1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/ModuleSlotTracker.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/MC/MCRegisterInfo.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/LowLevelTypeImpl.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetIntrinsicInfo.h"
66 #include "llvm/Target/TargetMachine.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstddef>
70 #include <cstdint>
71 #include <cstring>
72 #include <iterator>
73 #include <utility>
74 
75 using namespace llvm;
76 
77 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
78   if (MCID->ImplicitDefs)
79     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
80            ++ImpDefs)
81       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
82   if (MCID->ImplicitUses)
83     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
84            ++ImpUses)
85       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
86 }
87 
88 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
89 /// implicit operands. It reserves space for the number of operands specified by
90 /// the MCInstrDesc.
91 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
92                            DebugLoc dl, bool NoImp)
93     : MCID(&tid), debugLoc(std::move(dl)) {
94   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
95 
96   // Reserve space for the expected number of operands.
97   if (unsigned NumOps = MCID->getNumOperands() +
98     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
99     CapOperands = OperandCapacity::get(NumOps);
100     Operands = MF.allocateOperandArray(CapOperands);
101   }
102 
103   if (!NoImp)
104     addImplicitDefUseOperands(MF);
105 }
106 
107 /// MachineInstr ctor - Copies MachineInstr arg exactly
108 ///
109 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
110     : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
111       debugLoc(MI.getDebugLoc()) {
112   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
113 
114   CapOperands = OperandCapacity::get(MI.getNumOperands());
115   Operands = MF.allocateOperandArray(CapOperands);
116 
117   // Copy operands.
118   for (const MachineOperand &MO : MI.operands())
119     addOperand(MF, MO);
120 
121   // Copy all the sensible flags.
122   setFlags(MI.Flags);
123 }
124 
125 /// getRegInfo - If this instruction is embedded into a MachineFunction,
126 /// return the MachineRegisterInfo object for the current function, otherwise
127 /// return null.
128 MachineRegisterInfo *MachineInstr::getRegInfo() {
129   if (MachineBasicBlock *MBB = getParent())
130     return &MBB->getParent()->getRegInfo();
131   return nullptr;
132 }
133 
134 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
135 /// this instruction from their respective use lists.  This requires that the
136 /// operands already be on their use lists.
137 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
138   for (MachineOperand &MO : operands())
139     if (MO.isReg())
140       MRI.removeRegOperandFromUseList(&MO);
141 }
142 
143 /// AddRegOperandsToUseLists - Add all of the register operands in
144 /// this instruction from their respective use lists.  This requires that the
145 /// operands not be on their use lists yet.
146 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
147   for (MachineOperand &MO : operands())
148     if (MO.isReg())
149       MRI.addRegOperandToUseList(&MO);
150 }
151 
152 void MachineInstr::addOperand(const MachineOperand &Op) {
153   MachineBasicBlock *MBB = getParent();
154   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
155   MachineFunction *MF = MBB->getParent();
156   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
157   addOperand(*MF, Op);
158 }
159 
160 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
161 /// ranges. If MRI is non-null also update use-def chains.
162 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
163                          unsigned NumOps, MachineRegisterInfo *MRI) {
164   if (MRI)
165     return MRI->moveOperands(Dst, Src, NumOps);
166 
167   // MachineOperand is a trivially copyable type so we can just use memmove.
168   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
169 }
170 
171 /// addOperand - Add the specified operand to the instruction.  If it is an
172 /// implicit operand, it is added to the end of the operand list.  If it is
173 /// an explicit operand it is added at the end of the explicit operand list
174 /// (before the first implicit operand).
175 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
176   assert(MCID && "Cannot add operands before providing an instr descriptor");
177 
178   // Check if we're adding one of our existing operands.
179   if (&Op >= Operands && &Op < Operands + NumOperands) {
180     // This is unusual: MI->addOperand(MI->getOperand(i)).
181     // If adding Op requires reallocating or moving existing operands around,
182     // the Op reference could go stale. Support it by copying Op.
183     MachineOperand CopyOp(Op);
184     return addOperand(MF, CopyOp);
185   }
186 
187   // Find the insert location for the new operand.  Implicit registers go at
188   // the end, everything else goes before the implicit regs.
189   //
190   // FIXME: Allow mixed explicit and implicit operands on inline asm.
191   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
192   // implicit-defs, but they must not be moved around.  See the FIXME in
193   // InstrEmitter.cpp.
194   unsigned OpNo = getNumOperands();
195   bool isImpReg = Op.isReg() && Op.isImplicit();
196   if (!isImpReg && !isInlineAsm()) {
197     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
198       --OpNo;
199       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
200     }
201   }
202 
203 #ifndef NDEBUG
204   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
205   // OpNo now points as the desired insertion point.  Unless this is a variadic
206   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
207   // RegMask operands go between the explicit and implicit operands.
208   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
209           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
210          "Trying to add an operand to a machine instr that is already done!");
211 #endif
212 
213   MachineRegisterInfo *MRI = getRegInfo();
214 
215   // Determine if the Operands array needs to be reallocated.
216   // Save the old capacity and operand array.
217   OperandCapacity OldCap = CapOperands;
218   MachineOperand *OldOperands = Operands;
219   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
220     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
221     Operands = MF.allocateOperandArray(CapOperands);
222     // Move the operands before the insertion point.
223     if (OpNo)
224       moveOperands(Operands, OldOperands, OpNo, MRI);
225   }
226 
227   // Move the operands following the insertion point.
228   if (OpNo != NumOperands)
229     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
230                  MRI);
231   ++NumOperands;
232 
233   // Deallocate the old operand array.
234   if (OldOperands != Operands && OldOperands)
235     MF.deallocateOperandArray(OldCap, OldOperands);
236 
237   // Copy Op into place. It still needs to be inserted into the MRI use lists.
238   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
239   NewMO->ParentMI = this;
240 
241   // When adding a register operand, tell MRI about it.
242   if (NewMO->isReg()) {
243     // Ensure isOnRegUseList() returns false, regardless of Op's status.
244     NewMO->Contents.Reg.Prev = nullptr;
245     // Ignore existing ties. This is not a property that can be copied.
246     NewMO->TiedTo = 0;
247     // Add the new operand to MRI, but only for instructions in an MBB.
248     if (MRI)
249       MRI->addRegOperandToUseList(NewMO);
250     // The MCID operand information isn't accurate until we start adding
251     // explicit operands. The implicit operands are added first, then the
252     // explicits are inserted before them.
253     if (!isImpReg) {
254       // Tie uses to defs as indicated in MCInstrDesc.
255       if (NewMO->isUse()) {
256         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
257         if (DefIdx != -1)
258           tieOperands(DefIdx, OpNo);
259       }
260       // If the register operand is flagged as early, mark the operand as such.
261       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
262         NewMO->setIsEarlyClobber(true);
263     }
264   }
265 }
266 
267 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
268 /// fewer operand than it started with.
269 ///
270 void MachineInstr::RemoveOperand(unsigned OpNo) {
271   assert(OpNo < getNumOperands() && "Invalid operand number");
272   untieRegOperand(OpNo);
273 
274 #ifndef NDEBUG
275   // Moving tied operands would break the ties.
276   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
277     if (Operands[i].isReg())
278       assert(!Operands[i].isTied() && "Cannot move tied operands");
279 #endif
280 
281   MachineRegisterInfo *MRI = getRegInfo();
282   if (MRI && Operands[OpNo].isReg())
283     MRI->removeRegOperandFromUseList(Operands + OpNo);
284 
285   // Don't call the MachineOperand destructor. A lot of this code depends on
286   // MachineOperand having a trivial destructor anyway, and adding a call here
287   // wouldn't make it 'destructor-correct'.
288 
289   if (unsigned N = NumOperands - 1 - OpNo)
290     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
291   --NumOperands;
292 }
293 
294 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
295 /// This function should be used only occasionally. The setMemRefs function
296 /// is the primary method for setting up a MachineInstr's MemRefs list.
297 void MachineInstr::addMemOperand(MachineFunction &MF,
298                                  MachineMemOperand *MO) {
299   mmo_iterator OldMemRefs = MemRefs;
300   unsigned OldNumMemRefs = NumMemRefs;
301 
302   unsigned NewNum = NumMemRefs + 1;
303   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
304 
305   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
306   NewMemRefs[NewNum - 1] = MO;
307   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
308 }
309 
310 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
311 /// identical.
312 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
313   auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
314   auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
315   if ((E1 - I1) != (E2 - I2))
316     return false;
317   for (; I1 != E1; ++I1, ++I2) {
318     if (**I1 != **I2)
319       return false;
320   }
321   return true;
322 }
323 
324 std::pair<MachineInstr::mmo_iterator, unsigned>
325 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
326 
327   // If either of the incoming memrefs are empty, we must be conservative and
328   // treat this as if we've exhausted our space for memrefs and dropped them.
329   if (memoperands_empty() || Other.memoperands_empty())
330     return std::make_pair(nullptr, 0);
331 
332   // If both instructions have identical memrefs, we don't need to merge them.
333   // Since many instructions have a single memref, and we tend to merge things
334   // like pairs of loads from the same location, this catches a large number of
335   // cases in practice.
336   if (hasIdenticalMMOs(*this, Other))
337     return std::make_pair(MemRefs, NumMemRefs);
338 
339   // TODO: consider uniquing elements within the operand lists to reduce
340   // space usage and fall back to conservative information less often.
341   size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
342 
343   // If we don't have enough room to store this many memrefs, be conservative
344   // and drop them.  Otherwise, we'd fail asserts when trying to add them to
345   // the new instruction.
346   if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
347     return std::make_pair(nullptr, 0);
348 
349   MachineFunction *MF = getMF();
350   mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
351   mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
352                                   MemBegin);
353   MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
354                      MemEnd);
355   assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
356          "missing memrefs");
357 
358   return std::make_pair(MemBegin, CombinedNumMemRefs);
359 }
360 
361 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
362   assert(!isBundledWithPred() && "Must be called on bundle header");
363   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
364     if (MII->getDesc().getFlags() & Mask) {
365       if (Type == AnyInBundle)
366         return true;
367     } else {
368       if (Type == AllInBundle && !MII->isBundle())
369         return false;
370     }
371     // This was the last instruction in the bundle.
372     if (!MII->isBundledWithSucc())
373       return Type == AllInBundle;
374   }
375 }
376 
377 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
378                                  MICheckType Check) const {
379   // If opcodes or number of operands are not the same then the two
380   // instructions are obviously not identical.
381   if (Other.getOpcode() != getOpcode() ||
382       Other.getNumOperands() != getNumOperands())
383     return false;
384 
385   if (isBundle()) {
386     // We have passed the test above that both instructions have the same
387     // opcode, so we know that both instructions are bundles here. Let's compare
388     // MIs inside the bundle.
389     assert(Other.isBundle() && "Expected that both instructions are bundles.");
390     MachineBasicBlock::const_instr_iterator I1 = getIterator();
391     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
392     // Loop until we analysed the last intruction inside at least one of the
393     // bundles.
394     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
395       ++I1;
396       ++I2;
397       if (!I1->isIdenticalTo(*I2, Check))
398         return false;
399     }
400     // If we've reached the end of just one of the two bundles, but not both,
401     // the instructions are not identical.
402     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
403       return false;
404   }
405 
406   // Check operands to make sure they match.
407   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
408     const MachineOperand &MO = getOperand(i);
409     const MachineOperand &OMO = Other.getOperand(i);
410     if (!MO.isReg()) {
411       if (!MO.isIdenticalTo(OMO))
412         return false;
413       continue;
414     }
415 
416     // Clients may or may not want to ignore defs when testing for equality.
417     // For example, machine CSE pass only cares about finding common
418     // subexpressions, so it's safe to ignore virtual register defs.
419     if (MO.isDef()) {
420       if (Check == IgnoreDefs)
421         continue;
422       else if (Check == IgnoreVRegDefs) {
423         if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) ||
424             !TargetRegisterInfo::isVirtualRegister(OMO.getReg()))
425           if (!MO.isIdenticalTo(OMO))
426             return false;
427       } else {
428         if (!MO.isIdenticalTo(OMO))
429           return false;
430         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
431           return false;
432       }
433     } else {
434       if (!MO.isIdenticalTo(OMO))
435         return false;
436       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
437         return false;
438     }
439   }
440   // If DebugLoc does not match then two dbg.values are not identical.
441   if (isDebugValue())
442     if (getDebugLoc() && Other.getDebugLoc() &&
443         getDebugLoc() != Other.getDebugLoc())
444       return false;
445   return true;
446 }
447 
448 const MachineFunction *MachineInstr::getMF() const {
449   return getParent()->getParent();
450 }
451 
452 MachineInstr *MachineInstr::removeFromParent() {
453   assert(getParent() && "Not embedded in a basic block!");
454   return getParent()->remove(this);
455 }
456 
457 MachineInstr *MachineInstr::removeFromBundle() {
458   assert(getParent() && "Not embedded in a basic block!");
459   return getParent()->remove_instr(this);
460 }
461 
462 void MachineInstr::eraseFromParent() {
463   assert(getParent() && "Not embedded in a basic block!");
464   getParent()->erase(this);
465 }
466 
467 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
468   assert(getParent() && "Not embedded in a basic block!");
469   MachineBasicBlock *MBB = getParent();
470   MachineFunction *MF = MBB->getParent();
471   assert(MF && "Not embedded in a function!");
472 
473   MachineInstr *MI = (MachineInstr *)this;
474   MachineRegisterInfo &MRI = MF->getRegInfo();
475 
476   for (const MachineOperand &MO : MI->operands()) {
477     if (!MO.isReg() || !MO.isDef())
478       continue;
479     unsigned Reg = MO.getReg();
480     if (!TargetRegisterInfo::isVirtualRegister(Reg))
481       continue;
482     MRI.markUsesInDebugValueAsUndef(Reg);
483   }
484   MI->eraseFromParent();
485 }
486 
487 void MachineInstr::eraseFromBundle() {
488   assert(getParent() && "Not embedded in a basic block!");
489   getParent()->erase_instr(this);
490 }
491 
492 /// getNumExplicitOperands - Returns the number of non-implicit operands.
493 ///
494 unsigned MachineInstr::getNumExplicitOperands() const {
495   unsigned NumOperands = MCID->getNumOperands();
496   if (!MCID->isVariadic())
497     return NumOperands;
498 
499   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
500     const MachineOperand &MO = getOperand(i);
501     if (!MO.isReg() || !MO.isImplicit())
502       NumOperands++;
503   }
504   return NumOperands;
505 }
506 
507 void MachineInstr::bundleWithPred() {
508   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
509   setFlag(BundledPred);
510   MachineBasicBlock::instr_iterator Pred = getIterator();
511   --Pred;
512   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
513   Pred->setFlag(BundledSucc);
514 }
515 
516 void MachineInstr::bundleWithSucc() {
517   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
518   setFlag(BundledSucc);
519   MachineBasicBlock::instr_iterator Succ = getIterator();
520   ++Succ;
521   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
522   Succ->setFlag(BundledPred);
523 }
524 
525 void MachineInstr::unbundleFromPred() {
526   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
527   clearFlag(BundledPred);
528   MachineBasicBlock::instr_iterator Pred = getIterator();
529   --Pred;
530   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
531   Pred->clearFlag(BundledSucc);
532 }
533 
534 void MachineInstr::unbundleFromSucc() {
535   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
536   clearFlag(BundledSucc);
537   MachineBasicBlock::instr_iterator Succ = getIterator();
538   ++Succ;
539   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
540   Succ->clearFlag(BundledPred);
541 }
542 
543 bool MachineInstr::isStackAligningInlineAsm() const {
544   if (isInlineAsm()) {
545     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
546     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
547       return true;
548   }
549   return false;
550 }
551 
552 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
553   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
554   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
555   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
556 }
557 
558 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
559                                        unsigned *GroupNo) const {
560   assert(isInlineAsm() && "Expected an inline asm instruction");
561   assert(OpIdx < getNumOperands() && "OpIdx out of range");
562 
563   // Ignore queries about the initial operands.
564   if (OpIdx < InlineAsm::MIOp_FirstOperand)
565     return -1;
566 
567   unsigned Group = 0;
568   unsigned NumOps;
569   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
570        i += NumOps) {
571     const MachineOperand &FlagMO = getOperand(i);
572     // If we reach the implicit register operands, stop looking.
573     if (!FlagMO.isImm())
574       return -1;
575     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
576     if (i + NumOps > OpIdx) {
577       if (GroupNo)
578         *GroupNo = Group;
579       return i;
580     }
581     ++Group;
582   }
583   return -1;
584 }
585 
586 const DILocalVariable *MachineInstr::getDebugVariable() const {
587   assert(isDebugValue() && "not a DBG_VALUE");
588   return cast<DILocalVariable>(getOperand(2).getMetadata());
589 }
590 
591 const DIExpression *MachineInstr::getDebugExpression() const {
592   assert(isDebugValue() && "not a DBG_VALUE");
593   return cast<DIExpression>(getOperand(3).getMetadata());
594 }
595 
596 const TargetRegisterClass*
597 MachineInstr::getRegClassConstraint(unsigned OpIdx,
598                                     const TargetInstrInfo *TII,
599                                     const TargetRegisterInfo *TRI) const {
600   assert(getParent() && "Can't have an MBB reference here!");
601   assert(getMF() && "Can't have an MF reference here!");
602   const MachineFunction &MF = *getMF();
603 
604   // Most opcodes have fixed constraints in their MCInstrDesc.
605   if (!isInlineAsm())
606     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
607 
608   if (!getOperand(OpIdx).isReg())
609     return nullptr;
610 
611   // For tied uses on inline asm, get the constraint from the def.
612   unsigned DefIdx;
613   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
614     OpIdx = DefIdx;
615 
616   // Inline asm stores register class constraints in the flag word.
617   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
618   if (FlagIdx < 0)
619     return nullptr;
620 
621   unsigned Flag = getOperand(FlagIdx).getImm();
622   unsigned RCID;
623   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
624        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
625        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
626       InlineAsm::hasRegClassConstraint(Flag, RCID))
627     return TRI->getRegClass(RCID);
628 
629   // Assume that all registers in a memory operand are pointers.
630   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
631     return TRI->getPointerRegClass(MF);
632 
633   return nullptr;
634 }
635 
636 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
637     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
638     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
639   // Check every operands inside the bundle if we have
640   // been asked to.
641   if (ExploreBundle)
642     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
643          ++OpndIt)
644       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
645           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
646   else
647     // Otherwise, just check the current operands.
648     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
649       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
650   return CurRC;
651 }
652 
653 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
654     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
655     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
656   assert(CurRC && "Invalid initial register class");
657   // Check if Reg is constrained by some of its use/def from MI.
658   const MachineOperand &MO = getOperand(OpIdx);
659   if (!MO.isReg() || MO.getReg() != Reg)
660     return CurRC;
661   // If yes, accumulate the constraints through the operand.
662   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
663 }
664 
665 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
666     unsigned OpIdx, const TargetRegisterClass *CurRC,
667     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
668   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
669   const MachineOperand &MO = getOperand(OpIdx);
670   assert(MO.isReg() &&
671          "Cannot get register constraints for non-register operand");
672   assert(CurRC && "Invalid initial register class");
673   if (unsigned SubIdx = MO.getSubReg()) {
674     if (OpRC)
675       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
676     else
677       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
678   } else if (OpRC)
679     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
680   return CurRC;
681 }
682 
683 /// Return the number of instructions inside the MI bundle, not counting the
684 /// header instruction.
685 unsigned MachineInstr::getBundleSize() const {
686   MachineBasicBlock::const_instr_iterator I = getIterator();
687   unsigned Size = 0;
688   while (I->isBundledWithSucc()) {
689     ++Size;
690     ++I;
691   }
692   return Size;
693 }
694 
695 /// Returns true if the MachineInstr has an implicit-use operand of exactly
696 /// the given register (not considering sub/super-registers).
697 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
698   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
699     const MachineOperand &MO = getOperand(i);
700     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
701       return true;
702   }
703   return false;
704 }
705 
706 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
707 /// the specific register or -1 if it is not found. It further tightens
708 /// the search criteria to a use that kills the register if isKill is true.
709 int MachineInstr::findRegisterUseOperandIdx(
710     unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
711   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
712     const MachineOperand &MO = getOperand(i);
713     if (!MO.isReg() || !MO.isUse())
714       continue;
715     unsigned MOReg = MO.getReg();
716     if (!MOReg)
717       continue;
718     if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) &&
719                          TargetRegisterInfo::isPhysicalRegister(Reg) &&
720                          TRI->isSubRegister(MOReg, Reg)))
721       if (!isKill || MO.isKill())
722         return i;
723   }
724   return -1;
725 }
726 
727 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
728 /// indicating if this instruction reads or writes Reg. This also considers
729 /// partial defines.
730 std::pair<bool,bool>
731 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
732                                          SmallVectorImpl<unsigned> *Ops) const {
733   bool PartDef = false; // Partial redefine.
734   bool FullDef = false; // Full define.
735   bool Use = false;
736 
737   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
738     const MachineOperand &MO = getOperand(i);
739     if (!MO.isReg() || MO.getReg() != Reg)
740       continue;
741     if (Ops)
742       Ops->push_back(i);
743     if (MO.isUse())
744       Use |= !MO.isUndef();
745     else if (MO.getSubReg() && !MO.isUndef())
746       // A partial def undef doesn't count as reading the register.
747       PartDef = true;
748     else
749       FullDef = true;
750   }
751   // A partial redefine uses Reg unless there is also a full define.
752   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
753 }
754 
755 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
756 /// the specified register or -1 if it is not found. If isDead is true, defs
757 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
758 /// also checks if there is a def of a super-register.
759 int
760 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
761                                         const TargetRegisterInfo *TRI) const {
762   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
763   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
764     const MachineOperand &MO = getOperand(i);
765     // Accept regmask operands when Overlap is set.
766     // Ignore them when looking for a specific def operand (Overlap == false).
767     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
768       return i;
769     if (!MO.isReg() || !MO.isDef())
770       continue;
771     unsigned MOReg = MO.getReg();
772     bool Found = (MOReg == Reg);
773     if (!Found && TRI && isPhys &&
774         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
775       if (Overlap)
776         Found = TRI->regsOverlap(MOReg, Reg);
777       else
778         Found = TRI->isSubRegister(MOReg, Reg);
779     }
780     if (Found && (!isDead || MO.isDead()))
781       return i;
782   }
783   return -1;
784 }
785 
786 /// findFirstPredOperandIdx() - Find the index of the first operand in the
787 /// operand list that is used to represent the predicate. It returns -1 if
788 /// none is found.
789 int MachineInstr::findFirstPredOperandIdx() const {
790   // Don't call MCID.findFirstPredOperandIdx() because this variant
791   // is sometimes called on an instruction that's not yet complete, and
792   // so the number of operands is less than the MCID indicates. In
793   // particular, the PTX target does this.
794   const MCInstrDesc &MCID = getDesc();
795   if (MCID.isPredicable()) {
796     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
797       if (MCID.OpInfo[i].isPredicate())
798         return i;
799   }
800 
801   return -1;
802 }
803 
804 // MachineOperand::TiedTo is 4 bits wide.
805 const unsigned TiedMax = 15;
806 
807 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
808 ///
809 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
810 /// field. TiedTo can have these values:
811 ///
812 /// 0:              Operand is not tied to anything.
813 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
814 /// TiedMax:        Tied to an operand >= TiedMax-1.
815 ///
816 /// The tied def must be one of the first TiedMax operands on a normal
817 /// instruction. INLINEASM instructions allow more tied defs.
818 ///
819 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
820   MachineOperand &DefMO = getOperand(DefIdx);
821   MachineOperand &UseMO = getOperand(UseIdx);
822   assert(DefMO.isDef() && "DefIdx must be a def operand");
823   assert(UseMO.isUse() && "UseIdx must be a use operand");
824   assert(!DefMO.isTied() && "Def is already tied to another use");
825   assert(!UseMO.isTied() && "Use is already tied to another def");
826 
827   if (DefIdx < TiedMax)
828     UseMO.TiedTo = DefIdx + 1;
829   else {
830     // Inline asm can use the group descriptors to find tied operands, but on
831     // normal instruction, the tied def must be within the first TiedMax
832     // operands.
833     assert(isInlineAsm() && "DefIdx out of range");
834     UseMO.TiedTo = TiedMax;
835   }
836 
837   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
838   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
839 }
840 
841 /// Given the index of a tied register operand, find the operand it is tied to.
842 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
843 /// which must exist.
844 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
845   const MachineOperand &MO = getOperand(OpIdx);
846   assert(MO.isTied() && "Operand isn't tied");
847 
848   // Normally TiedTo is in range.
849   if (MO.TiedTo < TiedMax)
850     return MO.TiedTo - 1;
851 
852   // Uses on normal instructions can be out of range.
853   if (!isInlineAsm()) {
854     // Normal tied defs must be in the 0..TiedMax-1 range.
855     if (MO.isUse())
856       return TiedMax - 1;
857     // MO is a def. Search for the tied use.
858     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
859       const MachineOperand &UseMO = getOperand(i);
860       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
861         return i;
862     }
863     llvm_unreachable("Can't find tied use");
864   }
865 
866   // Now deal with inline asm by parsing the operand group descriptor flags.
867   // Find the beginning of each operand group.
868   SmallVector<unsigned, 8> GroupIdx;
869   unsigned OpIdxGroup = ~0u;
870   unsigned NumOps;
871   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
872        i += NumOps) {
873     const MachineOperand &FlagMO = getOperand(i);
874     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
875     unsigned CurGroup = GroupIdx.size();
876     GroupIdx.push_back(i);
877     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
878     // OpIdx belongs to this operand group.
879     if (OpIdx > i && OpIdx < i + NumOps)
880       OpIdxGroup = CurGroup;
881     unsigned TiedGroup;
882     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
883       continue;
884     // Operands in this group are tied to operands in TiedGroup which must be
885     // earlier. Find the number of operands between the two groups.
886     unsigned Delta = i - GroupIdx[TiedGroup];
887 
888     // OpIdx is a use tied to TiedGroup.
889     if (OpIdxGroup == CurGroup)
890       return OpIdx - Delta;
891 
892     // OpIdx is a def tied to this use group.
893     if (OpIdxGroup == TiedGroup)
894       return OpIdx + Delta;
895   }
896   llvm_unreachable("Invalid tied operand on inline asm");
897 }
898 
899 /// clearKillInfo - Clears kill flags on all operands.
900 ///
901 void MachineInstr::clearKillInfo() {
902   for (MachineOperand &MO : operands()) {
903     if (MO.isReg() && MO.isUse())
904       MO.setIsKill(false);
905   }
906 }
907 
908 void MachineInstr::substituteRegister(unsigned FromReg,
909                                       unsigned ToReg,
910                                       unsigned SubIdx,
911                                       const TargetRegisterInfo &RegInfo) {
912   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
913     if (SubIdx)
914       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
915     for (MachineOperand &MO : operands()) {
916       if (!MO.isReg() || MO.getReg() != FromReg)
917         continue;
918       MO.substPhysReg(ToReg, RegInfo);
919     }
920   } else {
921     for (MachineOperand &MO : operands()) {
922       if (!MO.isReg() || MO.getReg() != FromReg)
923         continue;
924       MO.substVirtReg(ToReg, SubIdx, RegInfo);
925     }
926   }
927 }
928 
929 /// isSafeToMove - Return true if it is safe to move this instruction. If
930 /// SawStore is set to true, it means that there is a store (or call) between
931 /// the instruction's location and its intended destination.
932 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
933   // Ignore stuff that we obviously can't move.
934   //
935   // Treat volatile loads as stores. This is not strictly necessary for
936   // volatiles, but it is required for atomic loads. It is not allowed to move
937   // a load across an atomic load with Ordering > Monotonic.
938   if (mayStore() || isCall() || isPHI() ||
939       (mayLoad() && hasOrderedMemoryRef())) {
940     SawStore = true;
941     return false;
942   }
943 
944   if (isPosition() || isDebugValue() || isTerminator() ||
945       hasUnmodeledSideEffects())
946     return false;
947 
948   // See if this instruction does a load.  If so, we have to guarantee that the
949   // loaded value doesn't change between the load and the its intended
950   // destination. The check for isInvariantLoad gives the targe the chance to
951   // classify the load as always returning a constant, e.g. a constant pool
952   // load.
953   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
954     // Otherwise, this is a real load.  If there is a store between the load and
955     // end of block, we can't move it.
956     return !SawStore;
957 
958   return true;
959 }
960 
961 bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other,
962                             bool UseTBAA) {
963   const MachineFunction *MF = getMF();
964   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
965   const MachineFrameInfo &MFI = MF->getFrameInfo();
966 
967   // If neither instruction stores to memory, they can't alias in any
968   // meaningful way, even if they read from the same address.
969   if (!mayStore() && !Other.mayStore())
970     return false;
971 
972   // Let the target decide if memory accesses cannot possibly overlap.
973   if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
974     return false;
975 
976   // FIXME: Need to handle multiple memory operands to support all targets.
977   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
978     return true;
979 
980   MachineMemOperand *MMOa = *memoperands_begin();
981   MachineMemOperand *MMOb = *Other.memoperands_begin();
982 
983   // The following interface to AA is fashioned after DAGCombiner::isAlias
984   // and operates with MachineMemOperand offset with some important
985   // assumptions:
986   //   - LLVM fundamentally assumes flat address spaces.
987   //   - MachineOperand offset can *only* result from legalization and
988   //     cannot affect queries other than the trivial case of overlap
989   //     checking.
990   //   - These offsets never wrap and never step outside
991   //     of allocated objects.
992   //   - There should never be any negative offsets here.
993   //
994   // FIXME: Modify API to hide this math from "user"
995   // Even before we go to AA we can reason locally about some
996   // memory objects. It can save compile time, and possibly catch some
997   // corner cases not currently covered.
998 
999   int64_t OffsetA = MMOa->getOffset();
1000   int64_t OffsetB = MMOb->getOffset();
1001 
1002   int64_t MinOffset = std::min(OffsetA, OffsetB);
1003   int64_t WidthA = MMOa->getSize();
1004   int64_t WidthB = MMOb->getSize();
1005   const Value *ValA = MMOa->getValue();
1006   const Value *ValB = MMOb->getValue();
1007   bool SameVal = (ValA && ValB && (ValA == ValB));
1008   if (!SameVal) {
1009     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1010     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1011     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1012       return false;
1013     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1014       return false;
1015     if (PSVa && PSVb && (PSVa == PSVb))
1016       SameVal = true;
1017   }
1018 
1019   if (SameVal) {
1020     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1021     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1022     return (MinOffset + LowWidth > MaxOffset);
1023   }
1024 
1025   if (!AA)
1026     return true;
1027 
1028   if (!ValA || !ValB)
1029     return true;
1030 
1031   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1032   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1033 
1034   int64_t Overlapa = WidthA + OffsetA - MinOffset;
1035   int64_t Overlapb = WidthB + OffsetB - MinOffset;
1036 
1037   AliasResult AAResult = AA->alias(
1038       MemoryLocation(ValA, Overlapa,
1039                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1040       MemoryLocation(ValB, Overlapb,
1041                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1042 
1043   return (AAResult != NoAlias);
1044 }
1045 
1046 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1047 /// or volatile memory reference, or if the information describing the memory
1048 /// reference is not available. Return false if it is known to have no ordered
1049 /// memory references.
1050 bool MachineInstr::hasOrderedMemoryRef() const {
1051   // An instruction known never to access memory won't have a volatile access.
1052   if (!mayStore() &&
1053       !mayLoad() &&
1054       !isCall() &&
1055       !hasUnmodeledSideEffects())
1056     return false;
1057 
1058   // Otherwise, if the instruction has no memory reference information,
1059   // conservatively assume it wasn't preserved.
1060   if (memoperands_empty())
1061     return true;
1062 
1063   // Check if any of our memory operands are ordered.
1064   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1065     return !MMO->isUnordered();
1066   });
1067 }
1068 
1069 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1070 /// trap and is loading from a location whose value is invariant across a run of
1071 /// this function.
1072 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1073   // If the instruction doesn't load at all, it isn't an invariant load.
1074   if (!mayLoad())
1075     return false;
1076 
1077   // If the instruction has lost its memoperands, conservatively assume that
1078   // it may not be an invariant load.
1079   if (memoperands_empty())
1080     return false;
1081 
1082   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1083 
1084   for (MachineMemOperand *MMO : memoperands()) {
1085     if (MMO->isVolatile()) return false;
1086     if (MMO->isStore()) return false;
1087     if (MMO->isInvariant() && MMO->isDereferenceable())
1088       continue;
1089 
1090     // A load from a constant PseudoSourceValue is invariant.
1091     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1092       if (PSV->isConstant(&MFI))
1093         continue;
1094 
1095     if (const Value *V = MMO->getValue()) {
1096       // If we have an AliasAnalysis, ask it whether the memory is constant.
1097       if (AA &&
1098           AA->pointsToConstantMemory(
1099               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1100         continue;
1101     }
1102 
1103     // Otherwise assume conservatively.
1104     return false;
1105   }
1106 
1107   // Everything checks out.
1108   return true;
1109 }
1110 
1111 /// isConstantValuePHI - If the specified instruction is a PHI that always
1112 /// merges together the same virtual register, return the register, otherwise
1113 /// return 0.
1114 unsigned MachineInstr::isConstantValuePHI() const {
1115   if (!isPHI())
1116     return 0;
1117   assert(getNumOperands() >= 3 &&
1118          "It's illegal to have a PHI without source operands");
1119 
1120   unsigned Reg = getOperand(1).getReg();
1121   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1122     if (getOperand(i).getReg() != Reg)
1123       return 0;
1124   return Reg;
1125 }
1126 
1127 bool MachineInstr::hasUnmodeledSideEffects() const {
1128   if (hasProperty(MCID::UnmodeledSideEffects))
1129     return true;
1130   if (isInlineAsm()) {
1131     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1132     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1133       return true;
1134   }
1135 
1136   return false;
1137 }
1138 
1139 bool MachineInstr::isLoadFoldBarrier() const {
1140   return mayStore() || isCall() || hasUnmodeledSideEffects();
1141 }
1142 
1143 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1144 ///
1145 bool MachineInstr::allDefsAreDead() const {
1146   for (const MachineOperand &MO : operands()) {
1147     if (!MO.isReg() || MO.isUse())
1148       continue;
1149     if (!MO.isDead())
1150       return false;
1151   }
1152   return true;
1153 }
1154 
1155 /// copyImplicitOps - Copy implicit register operands from specified
1156 /// instruction to this instruction.
1157 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1158                                    const MachineInstr &MI) {
1159   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1160        i != e; ++i) {
1161     const MachineOperand &MO = MI.getOperand(i);
1162     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1163       addOperand(MF, MO);
1164   }
1165 }
1166 
1167 bool MachineInstr::hasComplexRegisterTies() const {
1168   const MCInstrDesc &MCID = getDesc();
1169   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1170     const auto &Operand = getOperand(I);
1171     if (!Operand.isReg() || Operand.isDef())
1172       // Ignore the defined registers as MCID marks only the uses as tied.
1173       continue;
1174     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1175     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1176     if (ExpectedTiedIdx != TiedIdx)
1177       return true;
1178   }
1179   return false;
1180 }
1181 
1182 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1183                                  const MachineRegisterInfo &MRI) const {
1184   const MachineOperand &Op = getOperand(OpIdx);
1185   if (!Op.isReg())
1186     return LLT{};
1187 
1188   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1189     return MRI.getType(Op.getReg());
1190 
1191   auto &OpInfo = getDesc().OpInfo[OpIdx];
1192   if (!OpInfo.isGenericType())
1193     return MRI.getType(Op.getReg());
1194 
1195   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1196     return LLT{};
1197 
1198   PrintedTypes.set(OpInfo.getGenericTypeIndex());
1199   return MRI.getType(Op.getReg());
1200 }
1201 
1202 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1203 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1204   dbgs() << "  ";
1205   print(dbgs());
1206 }
1207 #endif
1208 
1209 void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc,
1210                          const TargetInstrInfo *TII) const {
1211   const Module *M = nullptr;
1212   if (const MachineBasicBlock *MBB = getParent())
1213     if (const MachineFunction *MF = MBB->getParent())
1214       M = MF->getFunction().getParent();
1215 
1216   ModuleSlotTracker MST(M);
1217   print(OS, MST, SkipOpers, SkipDebugLoc, TII);
1218 }
1219 
1220 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1221                          bool SkipOpers, bool SkipDebugLoc,
1222                          const TargetInstrInfo *TII) const {
1223   // We can be a bit tidier if we know the MachineFunction.
1224   const MachineFunction *MF = nullptr;
1225   const TargetRegisterInfo *TRI = nullptr;
1226   const MachineRegisterInfo *MRI = nullptr;
1227   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1228 
1229   if (const MachineBasicBlock *MBB = getParent()) {
1230     MF = MBB->getParent();
1231     if (MF) {
1232       MRI = &MF->getRegInfo();
1233       TRI = MF->getSubtarget().getRegisterInfo();
1234       if (!TII)
1235         TII = MF->getSubtarget().getInstrInfo();
1236       IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
1237     }
1238   }
1239 
1240   // Save a list of virtual registers.
1241   SmallVector<unsigned, 8> VirtRegs;
1242 
1243   SmallBitVector PrintedTypes(8);
1244   bool ShouldPrintRegisterTies = hasComplexRegisterTies();
1245   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1246     if (!ShouldPrintRegisterTies)
1247       return 0U;
1248     const MachineOperand &MO = getOperand(OpIdx);
1249     if (MO.isReg() && MO.isTied() && !MO.isDef())
1250       return findTiedOperandIdx(OpIdx);
1251     return 0U;
1252   };
1253   // Print explicitly defined operands on the left of an assignment syntax.
1254   unsigned StartOp = 0, e = getNumOperands();
1255   for (; StartOp < e && getOperand(StartOp).isReg() &&
1256          getOperand(StartOp).isDef() && !getOperand(StartOp).isImplicit();
1257        ++StartOp) {
1258     if (StartOp != 0)
1259       OS << ", ";
1260     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1261     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1262     getOperand(StartOp).print(OS, MST, TypeToPrint, /*PrintDef=*/false,
1263                               ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1264                               IntrinsicInfo);
1265     unsigned Reg = getOperand(StartOp).getReg();
1266     if (TargetRegisterInfo::isVirtualRegister(Reg))
1267       VirtRegs.push_back(Reg);
1268   }
1269 
1270   if (StartOp != 0)
1271     OS << " = ";
1272 
1273   // Print the opcode name.
1274   if (TII)
1275     OS << TII->getName(getOpcode());
1276   else
1277     OS << "UNKNOWN";
1278 
1279   if (SkipOpers)
1280     return;
1281 
1282   // Print the rest of the operands.
1283   bool FirstOp = true;
1284   unsigned AsmDescOp = ~0u;
1285   unsigned AsmOpCount = 0;
1286 
1287   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1288     // Print asm string.
1289     OS << " ";
1290     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1291     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1292     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1293     getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true,
1294                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1295                             IntrinsicInfo);
1296 
1297     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1298     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1299     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1300       OS << " [sideeffect]";
1301     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1302       OS << " [mayload]";
1303     if (ExtraInfo & InlineAsm::Extra_MayStore)
1304       OS << " [maystore]";
1305     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1306       OS << " [isconvergent]";
1307     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1308       OS << " [alignstack]";
1309     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1310       OS << " [attdialect]";
1311     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1312       OS << " [inteldialect]";
1313 
1314     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1315     FirstOp = false;
1316   }
1317 
1318   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1319     const MachineOperand &MO = getOperand(i);
1320 
1321     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1322       VirtRegs.push_back(MO.getReg());
1323 
1324     if (FirstOp) FirstOp = false; else OS << ",";
1325     OS << " ";
1326     if (i < getDesc().NumOperands) {
1327       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1328       if (MCOI.isPredicate())
1329         OS << "pred:";
1330       if (MCOI.isOptionalDef())
1331         OS << "opt:";
1332     }
1333     if (isDebugValue() && MO.isMetadata()) {
1334       // Pretty print DBG_VALUE instructions.
1335       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1336       if (DIV && !DIV->getName().empty())
1337         OS << "!\"" << DIV->getName() << '\"';
1338       else {
1339         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1340         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1341         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true,
1342                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1343       }
1344     } else if (TRI && (isInsertSubreg() || isRegSequence() ||
1345                        (isSubregToReg() && i == 3)) && MO.isImm()) {
1346       OS << TRI->getSubRegIndexName(MO.getImm());
1347     } else if (i == AsmDescOp && MO.isImm()) {
1348       // Pretty print the inline asm operand descriptor.
1349       OS << '$' << AsmOpCount++;
1350       unsigned Flag = MO.getImm();
1351       switch (InlineAsm::getKind(Flag)) {
1352       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1353       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1354       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1355       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1356       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1357       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1358       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1359       }
1360 
1361       unsigned RCID = 0;
1362       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1363           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1364         if (TRI) {
1365           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1366         } else
1367           OS << ":RC" << RCID;
1368       }
1369 
1370       if (InlineAsm::isMemKind(Flag)) {
1371         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1372         switch (MCID) {
1373         case InlineAsm::Constraint_es: OS << ":es"; break;
1374         case InlineAsm::Constraint_i:  OS << ":i"; break;
1375         case InlineAsm::Constraint_m:  OS << ":m"; break;
1376         case InlineAsm::Constraint_o:  OS << ":o"; break;
1377         case InlineAsm::Constraint_v:  OS << ":v"; break;
1378         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1379         case InlineAsm::Constraint_R:  OS << ":R"; break;
1380         case InlineAsm::Constraint_S:  OS << ":S"; break;
1381         case InlineAsm::Constraint_T:  OS << ":T"; break;
1382         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1383         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1384         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1385         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1386         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1387         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1388         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1389         case InlineAsm::Constraint_X:  OS << ":X"; break;
1390         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1391         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1392         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1393         default: OS << ":?"; break;
1394         }
1395       }
1396 
1397       unsigned TiedTo = 0;
1398       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1399         OS << " tiedto:$" << TiedTo;
1400 
1401       OS << ']';
1402 
1403       // Compute the index of the next operand descriptor.
1404       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1405     } else {
1406       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1407       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1408       if (MO.isImm() && isOperandSubregIdx(i))
1409         MachineOperand::printSubregIdx(OS, MO.getImm(), TRI);
1410       else
1411         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true,
1412                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1413     }
1414   }
1415 
1416   bool HaveSemi = false;
1417   const unsigned PrintableFlags = FrameSetup | FrameDestroy;
1418   if (Flags & PrintableFlags) {
1419     if (!HaveSemi) {
1420       OS << ";";
1421       HaveSemi = true;
1422     }
1423     OS << " flags: ";
1424 
1425     if (Flags & FrameSetup)
1426       OS << "FrameSetup";
1427 
1428     if (Flags & FrameDestroy)
1429       OS << "FrameDestroy";
1430   }
1431 
1432   if (!memoperands_empty()) {
1433     if (!HaveSemi) {
1434       OS << ";";
1435       HaveSemi = true;
1436     }
1437 
1438     OS << " mem:";
1439     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1440          i != e; ++i) {
1441       (*i)->print(OS, MST);
1442       if (std::next(i) != e)
1443         OS << " ";
1444     }
1445   }
1446 
1447   // Print the regclass of any virtual registers encountered.
1448   if (MRI && !VirtRegs.empty()) {
1449     if (!HaveSemi) {
1450       OS << ";";
1451       HaveSemi = true;
1452     }
1453     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1454       const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]);
1455       if (!RC)
1456         continue;
1457       // Generic virtual registers do not have register classes.
1458       if (RC.is<const RegisterBank *>())
1459         OS << " " << RC.get<const RegisterBank *>()->getName();
1460       else
1461         OS << " "
1462            << TRI->getRegClassName(RC.get<const TargetRegisterClass *>());
1463       OS << ':' << printReg(VirtRegs[i]);
1464       for (unsigned j = i+1; j != VirtRegs.size();) {
1465         if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) {
1466           ++j;
1467           continue;
1468         }
1469         if (VirtRegs[i] != VirtRegs[j])
1470           OS << "," << printReg(VirtRegs[j]);
1471         VirtRegs.erase(VirtRegs.begin()+j);
1472       }
1473     }
1474   }
1475 
1476   // Print debug location information.
1477   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1478     if (!HaveSemi)
1479       OS << ";";
1480     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1481     OS << " line no:" <<  DV->getLine();
1482     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1483       DebugLoc InlinedAtDL(InlinedAt);
1484       if (InlinedAtDL && MF) {
1485         OS << " inlined @[ ";
1486         InlinedAtDL.print(OS);
1487         OS << " ]";
1488       }
1489     }
1490     if (isIndirectDebugValue())
1491       OS << " indirect";
1492   } else if (SkipDebugLoc) {
1493     return;
1494   } else if (debugLoc && MF) {
1495     if (!HaveSemi)
1496       OS << ";";
1497     OS << " dbg:";
1498     debugLoc.print(OS);
1499   }
1500 
1501   OS << '\n';
1502 }
1503 
1504 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1505                                      const TargetRegisterInfo *RegInfo,
1506                                      bool AddIfNotFound) {
1507   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1508   bool hasAliases = isPhysReg &&
1509     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1510   bool Found = false;
1511   SmallVector<unsigned,4> DeadOps;
1512   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1513     MachineOperand &MO = getOperand(i);
1514     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1515       continue;
1516 
1517     // DEBUG_VALUE nodes do not contribute to code generation and should
1518     // always be ignored. Failure to do so may result in trying to modify
1519     // KILL flags on DEBUG_VALUE nodes.
1520     if (MO.isDebug())
1521       continue;
1522 
1523     unsigned Reg = MO.getReg();
1524     if (!Reg)
1525       continue;
1526 
1527     if (Reg == IncomingReg) {
1528       if (!Found) {
1529         if (MO.isKill())
1530           // The register is already marked kill.
1531           return true;
1532         if (isPhysReg && isRegTiedToDefOperand(i))
1533           // Two-address uses of physregs must not be marked kill.
1534           return true;
1535         MO.setIsKill();
1536         Found = true;
1537       }
1538     } else if (hasAliases && MO.isKill() &&
1539                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1540       // A super-register kill already exists.
1541       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1542         return true;
1543       if (RegInfo->isSubRegister(IncomingReg, Reg))
1544         DeadOps.push_back(i);
1545     }
1546   }
1547 
1548   // Trim unneeded kill operands.
1549   while (!DeadOps.empty()) {
1550     unsigned OpIdx = DeadOps.back();
1551     if (getOperand(OpIdx).isImplicit())
1552       RemoveOperand(OpIdx);
1553     else
1554       getOperand(OpIdx).setIsKill(false);
1555     DeadOps.pop_back();
1556   }
1557 
1558   // If not found, this means an alias of one of the operands is killed. Add a
1559   // new implicit operand if required.
1560   if (!Found && AddIfNotFound) {
1561     addOperand(MachineOperand::CreateReg(IncomingReg,
1562                                          false /*IsDef*/,
1563                                          true  /*IsImp*/,
1564                                          true  /*IsKill*/));
1565     return true;
1566   }
1567   return Found;
1568 }
1569 
1570 void MachineInstr::clearRegisterKills(unsigned Reg,
1571                                       const TargetRegisterInfo *RegInfo) {
1572   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1573     RegInfo = nullptr;
1574   for (MachineOperand &MO : operands()) {
1575     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1576       continue;
1577     unsigned OpReg = MO.getReg();
1578     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1579       MO.setIsKill(false);
1580   }
1581 }
1582 
1583 bool MachineInstr::addRegisterDead(unsigned Reg,
1584                                    const TargetRegisterInfo *RegInfo,
1585                                    bool AddIfNotFound) {
1586   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1587   bool hasAliases = isPhysReg &&
1588     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1589   bool Found = false;
1590   SmallVector<unsigned,4> DeadOps;
1591   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1592     MachineOperand &MO = getOperand(i);
1593     if (!MO.isReg() || !MO.isDef())
1594       continue;
1595     unsigned MOReg = MO.getReg();
1596     if (!MOReg)
1597       continue;
1598 
1599     if (MOReg == Reg) {
1600       MO.setIsDead();
1601       Found = true;
1602     } else if (hasAliases && MO.isDead() &&
1603                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1604       // There exists a super-register that's marked dead.
1605       if (RegInfo->isSuperRegister(Reg, MOReg))
1606         return true;
1607       if (RegInfo->isSubRegister(Reg, MOReg))
1608         DeadOps.push_back(i);
1609     }
1610   }
1611 
1612   // Trim unneeded dead operands.
1613   while (!DeadOps.empty()) {
1614     unsigned OpIdx = DeadOps.back();
1615     if (getOperand(OpIdx).isImplicit())
1616       RemoveOperand(OpIdx);
1617     else
1618       getOperand(OpIdx).setIsDead(false);
1619     DeadOps.pop_back();
1620   }
1621 
1622   // If not found, this means an alias of one of the operands is dead. Add a
1623   // new implicit operand if required.
1624   if (Found || !AddIfNotFound)
1625     return Found;
1626 
1627   addOperand(MachineOperand::CreateReg(Reg,
1628                                        true  /*IsDef*/,
1629                                        true  /*IsImp*/,
1630                                        false /*IsKill*/,
1631                                        true  /*IsDead*/));
1632   return true;
1633 }
1634 
1635 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1636   for (MachineOperand &MO : operands()) {
1637     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1638       continue;
1639     MO.setIsDead(false);
1640   }
1641 }
1642 
1643 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
1644   for (MachineOperand &MO : operands()) {
1645     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1646       continue;
1647     MO.setIsUndef(IsUndef);
1648   }
1649 }
1650 
1651 void MachineInstr::addRegisterDefined(unsigned Reg,
1652                                       const TargetRegisterInfo *RegInfo) {
1653   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1654     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
1655     if (MO)
1656       return;
1657   } else {
1658     for (const MachineOperand &MO : operands()) {
1659       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1660           MO.getSubReg() == 0)
1661         return;
1662     }
1663   }
1664   addOperand(MachineOperand::CreateReg(Reg,
1665                                        true  /*IsDef*/,
1666                                        true  /*IsImp*/));
1667 }
1668 
1669 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1670                                          const TargetRegisterInfo &TRI) {
1671   bool HasRegMask = false;
1672   for (MachineOperand &MO : operands()) {
1673     if (MO.isRegMask()) {
1674       HasRegMask = true;
1675       continue;
1676     }
1677     if (!MO.isReg() || !MO.isDef()) continue;
1678     unsigned Reg = MO.getReg();
1679     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1680     // If there are no uses, including partial uses, the def is dead.
1681     if (llvm::none_of(UsedRegs,
1682                       [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1683       MO.setIsDead();
1684   }
1685 
1686   // This is a call with a register mask operand.
1687   // Mask clobbers are always dead, so add defs for the non-dead defines.
1688   if (HasRegMask)
1689     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1690          I != E; ++I)
1691       addRegisterDefined(*I, &TRI);
1692 }
1693 
1694 unsigned
1695 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1696   // Build up a buffer of hash code components.
1697   SmallVector<size_t, 8> HashComponents;
1698   HashComponents.reserve(MI->getNumOperands() + 1);
1699   HashComponents.push_back(MI->getOpcode());
1700   for (const MachineOperand &MO : MI->operands()) {
1701     if (MO.isReg() && MO.isDef() &&
1702         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1703       continue;  // Skip virtual register defs.
1704 
1705     HashComponents.push_back(hash_value(MO));
1706   }
1707   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1708 }
1709 
1710 void MachineInstr::emitError(StringRef Msg) const {
1711   // Find the source location cookie.
1712   unsigned LocCookie = 0;
1713   const MDNode *LocMD = nullptr;
1714   for (unsigned i = getNumOperands(); i != 0; --i) {
1715     if (getOperand(i-1).isMetadata() &&
1716         (LocMD = getOperand(i-1).getMetadata()) &&
1717         LocMD->getNumOperands() != 0) {
1718       if (const ConstantInt *CI =
1719               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
1720         LocCookie = CI->getZExtValue();
1721         break;
1722       }
1723     }
1724   }
1725 
1726   if (const MachineBasicBlock *MBB = getParent())
1727     if (const MachineFunction *MF = MBB->getParent())
1728       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1729   report_fatal_error(Msg);
1730 }
1731 
1732 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
1733                                   const MCInstrDesc &MCID, bool IsIndirect,
1734                                   unsigned Reg, const MDNode *Variable,
1735                                   const MDNode *Expr) {
1736   assert(isa<DILocalVariable>(Variable) && "not a variable");
1737   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1738   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
1739          "Expected inlined-at fields to agree");
1740   if (IsIndirect)
1741     return BuildMI(MF, DL, MCID)
1742         .addReg(Reg, RegState::Debug)
1743         .addImm(0U)
1744         .addMetadata(Variable)
1745         .addMetadata(Expr);
1746   else
1747     return BuildMI(MF, DL, MCID)
1748         .addReg(Reg, RegState::Debug)
1749         .addReg(0U, RegState::Debug)
1750         .addMetadata(Variable)
1751         .addMetadata(Expr);
1752 }
1753 
1754 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
1755                                   MachineBasicBlock::iterator I,
1756                                   const DebugLoc &DL, const MCInstrDesc &MCID,
1757                                   bool IsIndirect, unsigned Reg,
1758                                   const MDNode *Variable, const MDNode *Expr) {
1759   assert(isa<DILocalVariable>(Variable) && "not a variable");
1760   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
1761   MachineFunction &MF = *BB.getParent();
1762   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
1763   BB.insert(I, MI);
1764   return MachineInstrBuilder(MF, MI);
1765 }
1766 
1767 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
1768 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
1769 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
1770   assert(MI.getOperand(0).isReg() && "can't spill non-register");
1771   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
1772          "Expected inlined-at fields to agree");
1773 
1774   const DIExpression *Expr = MI.getDebugExpression();
1775   if (MI.isIndirectDebugValue()) {
1776     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
1777     Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
1778   }
1779   return Expr;
1780 }
1781 
1782 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
1783                                           MachineBasicBlock::iterator I,
1784                                           const MachineInstr &Orig,
1785                                           int FrameIndex) {
1786   const DIExpression *Expr = computeExprForSpill(Orig);
1787   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
1788       .addFrameIndex(FrameIndex)
1789       .addImm(0U)
1790       .addMetadata(Orig.getDebugVariable())
1791       .addMetadata(Expr);
1792 }
1793 
1794 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
1795   const DIExpression *Expr = computeExprForSpill(Orig);
1796   Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
1797   Orig.getOperand(1).ChangeToImmediate(0U);
1798   Orig.getOperand(3).setMetadata(Expr);
1799 }
1800