1 //===-- MachineFunction.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect native machine code information for a function.  This allows
11 // target-specific information about the generated code to be stored with each
12 // function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/CodeGen/MachineConstantPool.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionInitializer.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/WinEHFuncInfo.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/ModuleSlotTracker.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCContext.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetFrameLowering.h"
43 #include "llvm/Target/TargetLowering.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "codegen"
49 
50 static cl::opt<unsigned>
51     AlignAllFunctions("align-all-functions",
52                       cl::desc("Force the alignment of all functions."),
53                       cl::init(0), cl::Hidden);
54 
55 void MachineFunctionInitializer::anchor() {}
56 
57 void MachineFunctionProperties::print(raw_ostream &ROS, bool OnlySet) const {
58   // Leave this function even in NDEBUG as an out-of-line anchor.
59 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
60   for (BitVector::size_type i = 0; i < Properties.size(); ++i) {
61     bool HasProperty = Properties[i];
62     if (OnlySet && !HasProperty)
63       continue;
64     switch(static_cast<Property>(i)) {
65       case Property::IsSSA:
66         ROS << (HasProperty ? "SSA, " : "Post SSA, ");
67         break;
68       case Property::TracksLiveness:
69         ROS << (HasProperty ? "" : "not ") << "tracking liveness, ";
70         break;
71       case Property::AllVRegsAllocated:
72         ROS << (HasProperty ? "AllVRegsAllocated" : "HasVRegs");
73         break;
74       default:
75         break;
76     }
77   }
78 #endif
79 }
80 
81 //===----------------------------------------------------------------------===//
82 // MachineFunction implementation
83 //===----------------------------------------------------------------------===//
84 
85 // Out-of-line virtual method.
86 MachineFunctionInfo::~MachineFunctionInfo() {}
87 
88 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
89   MBB->getParent()->DeleteMachineBasicBlock(MBB);
90 }
91 
92 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
93                                            const Function *Fn) {
94   if (Fn->hasFnAttribute(Attribute::StackAlignment))
95     return Fn->getFnStackAlignment();
96   return STI->getFrameLowering()->getStackAlignment();
97 }
98 
99 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
100                                  unsigned FunctionNum, MachineModuleInfo &mmi)
101     : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()),
102       MMI(mmi) {
103   // Assume the function starts in SSA form with correct liveness.
104   Properties.set(MachineFunctionProperties::Property::IsSSA);
105   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
106   if (STI->getRegisterInfo())
107     RegInfo = new (Allocator) MachineRegisterInfo(this);
108   else
109     RegInfo = nullptr;
110 
111   MFInfo = nullptr;
112   // We can realign the stack if the target supports it and the user hasn't
113   // explicitly asked us not to.
114   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
115                       !F->hasFnAttribute("no-realign-stack");
116   FrameInfo = new (Allocator) MachineFrameInfo(
117       getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP,
118       /*ForceRealign=*/CanRealignSP &&
119           F->hasFnAttribute(Attribute::StackAlignment));
120 
121   if (Fn->hasFnAttribute(Attribute::StackAlignment))
122     FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment());
123 
124   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
125   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
126 
127   // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn.
128   // FIXME: Use Function::optForSize().
129   if (!Fn->hasFnAttribute(Attribute::OptimizeForSize))
130     Alignment = std::max(Alignment,
131                          STI->getTargetLowering()->getPrefFunctionAlignment());
132 
133   if (AlignAllFunctions)
134     Alignment = AlignAllFunctions;
135 
136   FunctionNumber = FunctionNum;
137   JumpTableInfo = nullptr;
138 
139   if (isFuncletEHPersonality(classifyEHPersonality(
140           F->hasPersonalityFn() ? F->getPersonalityFn() : nullptr))) {
141     WinEHInfo = new (Allocator) WinEHFuncInfo();
142   }
143 
144   assert(TM.isCompatibleDataLayout(getDataLayout()) &&
145          "Can't create a MachineFunction using a Module with a "
146          "Target-incompatible DataLayout attached\n");
147 
148   PSVManager = llvm::make_unique<PseudoSourceValueManager>();
149 }
150 
151 MachineFunction::~MachineFunction() {
152   // Don't call destructors on MachineInstr and MachineOperand. All of their
153   // memory comes from the BumpPtrAllocator which is about to be purged.
154   //
155   // Do call MachineBasicBlock destructors, it contains std::vectors.
156   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
157     I->Insts.clearAndLeakNodesUnsafely();
158 
159   InstructionRecycler.clear(Allocator);
160   OperandRecycler.clear(Allocator);
161   BasicBlockRecycler.clear(Allocator);
162   if (RegInfo) {
163     RegInfo->~MachineRegisterInfo();
164     Allocator.Deallocate(RegInfo);
165   }
166   if (MFInfo) {
167     MFInfo->~MachineFunctionInfo();
168     Allocator.Deallocate(MFInfo);
169   }
170 
171   FrameInfo->~MachineFrameInfo();
172   Allocator.Deallocate(FrameInfo);
173 
174   ConstantPool->~MachineConstantPool();
175   Allocator.Deallocate(ConstantPool);
176 
177   if (JumpTableInfo) {
178     JumpTableInfo->~MachineJumpTableInfo();
179     Allocator.Deallocate(JumpTableInfo);
180   }
181 
182   if (WinEHInfo) {
183     WinEHInfo->~WinEHFuncInfo();
184     Allocator.Deallocate(WinEHInfo);
185   }
186 }
187 
188 const DataLayout &MachineFunction::getDataLayout() const {
189   return Fn->getParent()->getDataLayout();
190 }
191 
192 /// Get the JumpTableInfo for this function.
193 /// If it does not already exist, allocate one.
194 MachineJumpTableInfo *MachineFunction::
195 getOrCreateJumpTableInfo(unsigned EntryKind) {
196   if (JumpTableInfo) return JumpTableInfo;
197 
198   JumpTableInfo = new (Allocator)
199     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
200   return JumpTableInfo;
201 }
202 
203 /// Should we be emitting segmented stack stuff for the function
204 bool MachineFunction::shouldSplitStack() const {
205   return getFunction()->hasFnAttribute("split-stack");
206 }
207 
208 /// This discards all of the MachineBasicBlock numbers and recomputes them.
209 /// This guarantees that the MBB numbers are sequential, dense, and match the
210 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
211 /// is specified, only that block and those after it are renumbered.
212 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
213   if (empty()) { MBBNumbering.clear(); return; }
214   MachineFunction::iterator MBBI, E = end();
215   if (MBB == nullptr)
216     MBBI = begin();
217   else
218     MBBI = MBB->getIterator();
219 
220   // Figure out the block number this should have.
221   unsigned BlockNo = 0;
222   if (MBBI != begin())
223     BlockNo = std::prev(MBBI)->getNumber() + 1;
224 
225   for (; MBBI != E; ++MBBI, ++BlockNo) {
226     if (MBBI->getNumber() != (int)BlockNo) {
227       // Remove use of the old number.
228       if (MBBI->getNumber() != -1) {
229         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
230                "MBB number mismatch!");
231         MBBNumbering[MBBI->getNumber()] = nullptr;
232       }
233 
234       // If BlockNo is already taken, set that block's number to -1.
235       if (MBBNumbering[BlockNo])
236         MBBNumbering[BlockNo]->setNumber(-1);
237 
238       MBBNumbering[BlockNo] = &*MBBI;
239       MBBI->setNumber(BlockNo);
240     }
241   }
242 
243   // Okay, all the blocks are renumbered.  If we have compactified the block
244   // numbering, shrink MBBNumbering now.
245   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
246   MBBNumbering.resize(BlockNo);
247 }
248 
249 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
250 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
251                                                   const DebugLoc &DL,
252                                                   bool NoImp) {
253   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
254     MachineInstr(*this, MCID, DL, NoImp);
255 }
256 
257 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
258 /// identical in all ways except the instruction has no parent, prev, or next.
259 MachineInstr *
260 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
261   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
262              MachineInstr(*this, *Orig);
263 }
264 
265 /// Delete the given MachineInstr.
266 ///
267 /// This function also serves as the MachineInstr destructor - the real
268 /// ~MachineInstr() destructor must be empty.
269 void
270 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
271   // Strip it for parts. The operand array and the MI object itself are
272   // independently recyclable.
273   if (MI->Operands)
274     deallocateOperandArray(MI->CapOperands, MI->Operands);
275   // Don't call ~MachineInstr() which must be trivial anyway because
276   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
277   // destructors.
278   InstructionRecycler.Deallocate(Allocator, MI);
279 }
280 
281 /// Allocate a new MachineBasicBlock. Use this instead of
282 /// `new MachineBasicBlock'.
283 MachineBasicBlock *
284 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
285   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
286              MachineBasicBlock(*this, bb);
287 }
288 
289 /// Delete the given MachineBasicBlock.
290 void
291 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
292   assert(MBB->getParent() == this && "MBB parent mismatch!");
293   MBB->~MachineBasicBlock();
294   BasicBlockRecycler.Deallocate(Allocator, MBB);
295 }
296 
297 MachineMemOperand *MachineFunction::getMachineMemOperand(
298     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
299     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges) {
300   return new (Allocator)
301       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges);
302 }
303 
304 MachineMemOperand *
305 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
306                                       int64_t Offset, uint64_t Size) {
307   if (MMO->getValue())
308     return new (Allocator)
309                MachineMemOperand(MachinePointerInfo(MMO->getValue(),
310                                                     MMO->getOffset()+Offset),
311                                  MMO->getFlags(), Size,
312                                  MMO->getBaseAlignment());
313   return new (Allocator)
314              MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(),
315                                                   MMO->getOffset()+Offset),
316                                MMO->getFlags(), Size,
317                                MMO->getBaseAlignment());
318 }
319 
320 MachineInstr::mmo_iterator
321 MachineFunction::allocateMemRefsArray(unsigned long Num) {
322   return Allocator.Allocate<MachineMemOperand *>(Num);
323 }
324 
325 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
326 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
327                                     MachineInstr::mmo_iterator End) {
328   // Count the number of load mem refs.
329   unsigned Num = 0;
330   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
331     if ((*I)->isLoad())
332       ++Num;
333 
334   // Allocate a new array and populate it with the load information.
335   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
336   unsigned Index = 0;
337   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
338     if ((*I)->isLoad()) {
339       if (!(*I)->isStore())
340         // Reuse the MMO.
341         Result[Index] = *I;
342       else {
343         // Clone the MMO and unset the store flag.
344         MachineMemOperand *JustLoad =
345           getMachineMemOperand((*I)->getPointerInfo(),
346                                (*I)->getFlags() & ~MachineMemOperand::MOStore,
347                                (*I)->getSize(), (*I)->getBaseAlignment(),
348                                (*I)->getAAInfo());
349         Result[Index] = JustLoad;
350       }
351       ++Index;
352     }
353   }
354   return std::make_pair(Result, Result + Num);
355 }
356 
357 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
358 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
359                                      MachineInstr::mmo_iterator End) {
360   // Count the number of load mem refs.
361   unsigned Num = 0;
362   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
363     if ((*I)->isStore())
364       ++Num;
365 
366   // Allocate a new array and populate it with the store information.
367   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
368   unsigned Index = 0;
369   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
370     if ((*I)->isStore()) {
371       if (!(*I)->isLoad())
372         // Reuse the MMO.
373         Result[Index] = *I;
374       else {
375         // Clone the MMO and unset the load flag.
376         MachineMemOperand *JustStore =
377           getMachineMemOperand((*I)->getPointerInfo(),
378                                (*I)->getFlags() & ~MachineMemOperand::MOLoad,
379                                (*I)->getSize(), (*I)->getBaseAlignment(),
380                                (*I)->getAAInfo());
381         Result[Index] = JustStore;
382       }
383       ++Index;
384     }
385   }
386   return std::make_pair(Result, Result + Num);
387 }
388 
389 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
390   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
391   std::copy(Name.begin(), Name.end(), Dest);
392   Dest[Name.size()] = 0;
393   return Dest;
394 }
395 
396 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
397 LLVM_DUMP_METHOD void MachineFunction::dump() const {
398   print(dbgs());
399 }
400 #endif
401 
402 StringRef MachineFunction::getName() const {
403   assert(getFunction() && "No function!");
404   return getFunction()->getName();
405 }
406 
407 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
408   OS << "# Machine code for function " << getName() << ": ";
409   OS << "Properties: <";
410   getProperties().print(OS);
411   OS << ">\n";
412 
413   // Print Frame Information
414   FrameInfo->print(*this, OS);
415 
416   // Print JumpTable Information
417   if (JumpTableInfo)
418     JumpTableInfo->print(OS);
419 
420   // Print Constant Pool
421   ConstantPool->print(OS);
422 
423   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
424 
425   if (RegInfo && !RegInfo->livein_empty()) {
426     OS << "Function Live Ins: ";
427     for (MachineRegisterInfo::livein_iterator
428          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
429       OS << PrintReg(I->first, TRI);
430       if (I->second)
431         OS << " in " << PrintReg(I->second, TRI);
432       if (std::next(I) != E)
433         OS << ", ";
434     }
435     OS << '\n';
436   }
437 
438   ModuleSlotTracker MST(getFunction()->getParent());
439   MST.incorporateFunction(*getFunction());
440   for (const auto &BB : *this) {
441     OS << '\n';
442     BB.print(OS, MST, Indexes);
443   }
444 
445   OS << "\n# End machine code for function " << getName() << ".\n\n";
446 }
447 
448 namespace llvm {
449   template<>
450   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
451 
452   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
453 
454     static std::string getGraphName(const MachineFunction *F) {
455       return ("CFG for '" + F->getName() + "' function").str();
456     }
457 
458     std::string getNodeLabel(const MachineBasicBlock *Node,
459                              const MachineFunction *Graph) {
460       std::string OutStr;
461       {
462         raw_string_ostream OSS(OutStr);
463 
464         if (isSimple()) {
465           OSS << "BB#" << Node->getNumber();
466           if (const BasicBlock *BB = Node->getBasicBlock())
467             OSS << ": " << BB->getName();
468         } else
469           Node->print(OSS);
470       }
471 
472       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
473 
474       // Process string output to make it nicer...
475       for (unsigned i = 0; i != OutStr.length(); ++i)
476         if (OutStr[i] == '\n') {                            // Left justify
477           OutStr[i] = '\\';
478           OutStr.insert(OutStr.begin()+i+1, 'l');
479         }
480       return OutStr;
481     }
482   };
483 }
484 
485 void MachineFunction::viewCFG() const
486 {
487 #ifndef NDEBUG
488   ViewGraph(this, "mf" + getName());
489 #else
490   errs() << "MachineFunction::viewCFG is only available in debug builds on "
491          << "systems with Graphviz or gv!\n";
492 #endif // NDEBUG
493 }
494 
495 void MachineFunction::viewCFGOnly() const
496 {
497 #ifndef NDEBUG
498   ViewGraph(this, "mf" + getName(), true);
499 #else
500   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
501          << "systems with Graphviz or gv!\n";
502 #endif // NDEBUG
503 }
504 
505 /// Add the specified physical register as a live-in value and
506 /// create a corresponding virtual register for it.
507 unsigned MachineFunction::addLiveIn(unsigned PReg,
508                                     const TargetRegisterClass *RC) {
509   MachineRegisterInfo &MRI = getRegInfo();
510   unsigned VReg = MRI.getLiveInVirtReg(PReg);
511   if (VReg) {
512     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
513     (void)VRegRC;
514     // A physical register can be added several times.
515     // Between two calls, the register class of the related virtual register
516     // may have been constrained to match some operation constraints.
517     // In that case, check that the current register class includes the
518     // physical register and is a sub class of the specified RC.
519     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
520                              RC->hasSubClassEq(VRegRC))) &&
521             "Register class mismatch!");
522     return VReg;
523   }
524   VReg = MRI.createVirtualRegister(RC);
525   MRI.addLiveIn(PReg, VReg);
526   return VReg;
527 }
528 
529 /// Return the MCSymbol for the specified non-empty jump table.
530 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
531 /// normal 'L' label is returned.
532 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
533                                         bool isLinkerPrivate) const {
534   const DataLayout &DL = getDataLayout();
535   assert(JumpTableInfo && "No jump tables");
536   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
537 
538   const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
539                                        : DL.getPrivateGlobalPrefix();
540   SmallString<60> Name;
541   raw_svector_ostream(Name)
542     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
543   return Ctx.getOrCreateSymbol(Name);
544 }
545 
546 /// Return a function-local symbol to represent the PIC base.
547 MCSymbol *MachineFunction::getPICBaseSymbol() const {
548   const DataLayout &DL = getDataLayout();
549   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
550                                Twine(getFunctionNumber()) + "$pb");
551 }
552 
553 //===----------------------------------------------------------------------===//
554 //  MachineFrameInfo implementation
555 //===----------------------------------------------------------------------===//
556 
557 /// Make sure the function is at least Align bytes aligned.
558 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) {
559   if (!StackRealignable)
560     assert(Align <= StackAlignment &&
561            "For targets without stack realignment, Align is out of limit!");
562   if (MaxAlignment < Align) MaxAlignment = Align;
563 }
564 
565 /// Clamp the alignment if requested and emit a warning.
566 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align,
567                                            unsigned StackAlign) {
568   if (!ShouldClamp || Align <= StackAlign)
569     return Align;
570   DEBUG(dbgs() << "Warning: requested alignment " << Align
571                << " exceeds the stack alignment " << StackAlign
572                << " when stack realignment is off" << '\n');
573   return StackAlign;
574 }
575 
576 /// Create a new statically sized stack object, returning a nonnegative
577 /// identifier to represent it.
578 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment,
579                       bool isSS, const AllocaInst *Alloca) {
580   assert(Size != 0 && "Cannot allocate zero size stack objects!");
581   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
582   Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca,
583                                 !isSS));
584   int Index = (int)Objects.size() - NumFixedObjects - 1;
585   assert(Index >= 0 && "Bad frame index!");
586   ensureMaxAlignment(Alignment);
587   return Index;
588 }
589 
590 /// Create a new statically sized stack object that represents a spill slot,
591 /// returning a nonnegative identifier to represent it.
592 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size,
593                                              unsigned Alignment) {
594   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
595   CreateStackObject(Size, Alignment, true);
596   int Index = (int)Objects.size() - NumFixedObjects - 1;
597   ensureMaxAlignment(Alignment);
598   return Index;
599 }
600 
601 /// Notify the MachineFrameInfo object that a variable sized object has been
602 /// created. This must be created whenever a variable sized object is created,
603 /// whether or not the index returned is actually used.
604 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment,
605                                                 const AllocaInst *Alloca) {
606   HasVarSizedObjects = true;
607   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
608   Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true));
609   ensureMaxAlignment(Alignment);
610   return (int)Objects.size()-NumFixedObjects-1;
611 }
612 
613 /// Create a new object at a fixed location on the stack.
614 /// All fixed objects should be created before other objects are created for
615 /// efficiency. By default, fixed objects are immutable. This returns an
616 /// index with a negative value.
617 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
618                                         bool Immutable, bool isAliased) {
619   assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
620   // The alignment of the frame index can be determined from its offset from
621   // the incoming frame position.  If the frame object is at offset 32 and
622   // the stack is guaranteed to be 16-byte aligned, then we know that the
623   // object is 16-byte aligned. Note that unlike the non-fixed case, if the
624   // stack needs realignment, we can't assume that the stack will in fact be
625   // aligned.
626   unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment);
627   Align = clampStackAlignment(!StackRealignable, Align, StackAlignment);
628   Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable,
629                                               /*isSS*/   false,
630                                               /*Alloca*/ nullptr, isAliased));
631   return -++NumFixedObjects;
632 }
633 
634 /// Create a spill slot at a fixed location on the stack.
635 /// Returns an index with a negative value.
636 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size,
637                                                   int64_t SPOffset) {
638   unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment);
639   Align = clampStackAlignment(!StackRealignable, Align, StackAlignment);
640   Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset,
641                                               /*Immutable*/ true,
642                                               /*isSS*/ true,
643                                               /*Alloca*/ nullptr,
644                                               /*isAliased*/ false));
645   return -++NumFixedObjects;
646 }
647 
648 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const {
649   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
650   BitVector BV(TRI->getNumRegs());
651 
652   // Before CSI is calculated, no registers are considered pristine. They can be
653   // freely used and PEI will make sure they are saved.
654   if (!isCalleeSavedInfoValid())
655     return BV;
656 
657   for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
658     BV.set(*CSR);
659 
660   // Saved CSRs are not pristine.
661   for (auto &I : getCalleeSavedInfo())
662     for (MCSubRegIterator S(I.getReg(), TRI, true); S.isValid(); ++S)
663       BV.reset(*S);
664 
665   return BV;
666 }
667 
668 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const {
669   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
670   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
671   unsigned MaxAlign = getMaxAlignment();
672   int Offset = 0;
673 
674   // This code is very, very similar to PEI::calculateFrameObjectOffsets().
675   // It really should be refactored to share code. Until then, changes
676   // should keep in mind that there's tight coupling between the two.
677 
678   for (int i = getObjectIndexBegin(); i != 0; ++i) {
679     int FixedOff = -getObjectOffset(i);
680     if (FixedOff > Offset) Offset = FixedOff;
681   }
682   for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) {
683     if (isDeadObjectIndex(i))
684       continue;
685     Offset += getObjectSize(i);
686     unsigned Align = getObjectAlignment(i);
687     // Adjust to alignment boundary
688     Offset = (Offset+Align-1)/Align*Align;
689 
690     MaxAlign = std::max(Align, MaxAlign);
691   }
692 
693   if (adjustsStack() && TFI->hasReservedCallFrame(MF))
694     Offset += getMaxCallFrameSize();
695 
696   // Round up the size to a multiple of the alignment.  If the function has
697   // any calls or alloca's, align to the target's StackAlignment value to
698   // ensure that the callee's frame or the alloca data is suitably aligned;
699   // otherwise, for leaf functions, align to the TransientStackAlignment
700   // value.
701   unsigned StackAlign;
702   if (adjustsStack() || hasVarSizedObjects() ||
703       (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0))
704     StackAlign = TFI->getStackAlignment();
705   else
706     StackAlign = TFI->getTransientStackAlignment();
707 
708   // If the frame pointer is eliminated, all frame offsets will be relative to
709   // SP not FP. Align to MaxAlign so this works.
710   StackAlign = std::max(StackAlign, MaxAlign);
711   unsigned AlignMask = StackAlign - 1;
712   Offset = (Offset + AlignMask) & ~uint64_t(AlignMask);
713 
714   return (unsigned)Offset;
715 }
716 
717 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{
718   if (Objects.empty()) return;
719 
720   const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering();
721   int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
722 
723   OS << "Frame Objects:\n";
724 
725   for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
726     const StackObject &SO = Objects[i];
727     OS << "  fi#" << (int)(i-NumFixedObjects) << ": ";
728     if (SO.Size == ~0ULL) {
729       OS << "dead\n";
730       continue;
731     }
732     if (SO.Size == 0)
733       OS << "variable sized";
734     else
735       OS << "size=" << SO.Size;
736     OS << ", align=" << SO.Alignment;
737 
738     if (i < NumFixedObjects)
739       OS << ", fixed";
740     if (i < NumFixedObjects || SO.SPOffset != -1) {
741       int64_t Off = SO.SPOffset - ValOffset;
742       OS << ", at location [SP";
743       if (Off > 0)
744         OS << "+" << Off;
745       else if (Off < 0)
746         OS << Off;
747       OS << "]";
748     }
749     OS << "\n";
750   }
751 }
752 
753 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
754 void MachineFrameInfo::dump(const MachineFunction &MF) const {
755   print(MF, dbgs());
756 }
757 #endif
758 
759 //===----------------------------------------------------------------------===//
760 //  MachineJumpTableInfo implementation
761 //===----------------------------------------------------------------------===//
762 
763 /// Return the size of each entry in the jump table.
764 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
765   // The size of a jump table entry is 4 bytes unless the entry is just the
766   // address of a block, in which case it is the pointer size.
767   switch (getEntryKind()) {
768   case MachineJumpTableInfo::EK_BlockAddress:
769     return TD.getPointerSize();
770   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
771     return 8;
772   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
773   case MachineJumpTableInfo::EK_LabelDifference32:
774   case MachineJumpTableInfo::EK_Custom32:
775     return 4;
776   case MachineJumpTableInfo::EK_Inline:
777     return 0;
778   }
779   llvm_unreachable("Unknown jump table encoding!");
780 }
781 
782 /// Return the alignment of each entry in the jump table.
783 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
784   // The alignment of a jump table entry is the alignment of int32 unless the
785   // entry is just the address of a block, in which case it is the pointer
786   // alignment.
787   switch (getEntryKind()) {
788   case MachineJumpTableInfo::EK_BlockAddress:
789     return TD.getPointerABIAlignment();
790   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
791     return TD.getABIIntegerTypeAlignment(64);
792   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
793   case MachineJumpTableInfo::EK_LabelDifference32:
794   case MachineJumpTableInfo::EK_Custom32:
795     return TD.getABIIntegerTypeAlignment(32);
796   case MachineJumpTableInfo::EK_Inline:
797     return 1;
798   }
799   llvm_unreachable("Unknown jump table encoding!");
800 }
801 
802 /// Create a new jump table entry in the jump table info.
803 unsigned MachineJumpTableInfo::createJumpTableIndex(
804                                const std::vector<MachineBasicBlock*> &DestBBs) {
805   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
806   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
807   return JumpTables.size()-1;
808 }
809 
810 /// If Old is the target of any jump tables, update the jump tables to branch
811 /// to New instead.
812 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
813                                                   MachineBasicBlock *New) {
814   assert(Old != New && "Not making a change?");
815   bool MadeChange = false;
816   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
817     ReplaceMBBInJumpTable(i, Old, New);
818   return MadeChange;
819 }
820 
821 /// If Old is a target of the jump tables, update the jump table to branch to
822 /// New instead.
823 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
824                                                  MachineBasicBlock *Old,
825                                                  MachineBasicBlock *New) {
826   assert(Old != New && "Not making a change?");
827   bool MadeChange = false;
828   MachineJumpTableEntry &JTE = JumpTables[Idx];
829   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
830     if (JTE.MBBs[j] == Old) {
831       JTE.MBBs[j] = New;
832       MadeChange = true;
833     }
834   return MadeChange;
835 }
836 
837 void MachineJumpTableInfo::print(raw_ostream &OS) const {
838   if (JumpTables.empty()) return;
839 
840   OS << "Jump Tables:\n";
841 
842   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
843     OS << "  jt#" << i << ": ";
844     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
845       OS << " BB#" << JumpTables[i].MBBs[j]->getNumber();
846   }
847 
848   OS << '\n';
849 }
850 
851 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
852 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
853 #endif
854 
855 
856 //===----------------------------------------------------------------------===//
857 //  MachineConstantPool implementation
858 //===----------------------------------------------------------------------===//
859 
860 void MachineConstantPoolValue::anchor() { }
861 
862 Type *MachineConstantPoolEntry::getType() const {
863   if (isMachineConstantPoolEntry())
864     return Val.MachineCPVal->getType();
865   return Val.ConstVal->getType();
866 }
867 
868 bool MachineConstantPoolEntry::needsRelocation() const {
869   if (isMachineConstantPoolEntry())
870     return true;
871   return Val.ConstVal->needsRelocation();
872 }
873 
874 SectionKind
875 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
876   if (needsRelocation())
877     return SectionKind::getReadOnlyWithRel();
878   switch (DL->getTypeAllocSize(getType())) {
879   case 4:
880     return SectionKind::getMergeableConst4();
881   case 8:
882     return SectionKind::getMergeableConst8();
883   case 16:
884     return SectionKind::getMergeableConst16();
885   case 32:
886     return SectionKind::getMergeableConst32();
887   default:
888     return SectionKind::getReadOnly();
889   }
890 }
891 
892 MachineConstantPool::~MachineConstantPool() {
893   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
894     if (Constants[i].isMachineConstantPoolEntry())
895       delete Constants[i].Val.MachineCPVal;
896   for (DenseSet<MachineConstantPoolValue*>::iterator I =
897        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
898        I != E; ++I)
899     delete *I;
900 }
901 
902 /// Test whether the given two constants can be allocated the same constant pool
903 /// entry.
904 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
905                                       const DataLayout &DL) {
906   // Handle the trivial case quickly.
907   if (A == B) return true;
908 
909   // If they have the same type but weren't the same constant, quickly
910   // reject them.
911   if (A->getType() == B->getType()) return false;
912 
913   // We can't handle structs or arrays.
914   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
915       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
916     return false;
917 
918   // For now, only support constants with the same size.
919   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
920   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
921     return false;
922 
923   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
924 
925   // Try constant folding a bitcast of both instructions to an integer.  If we
926   // get two identical ConstantInt's, then we are good to share them.  We use
927   // the constant folding APIs to do this so that we get the benefit of
928   // DataLayout.
929   if (isa<PointerType>(A->getType()))
930     A = ConstantFoldCastOperand(Instruction::PtrToInt,
931                                 const_cast<Constant *>(A), IntTy, DL);
932   else if (A->getType() != IntTy)
933     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
934                                 IntTy, DL);
935   if (isa<PointerType>(B->getType()))
936     B = ConstantFoldCastOperand(Instruction::PtrToInt,
937                                 const_cast<Constant *>(B), IntTy, DL);
938   else if (B->getType() != IntTy)
939     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
940                                 IntTy, DL);
941 
942   return A == B;
943 }
944 
945 /// Create a new entry in the constant pool or return an existing one.
946 /// User must specify the log2 of the minimum required alignment for the object.
947 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
948                                                    unsigned Alignment) {
949   assert(Alignment && "Alignment must be specified!");
950   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
951 
952   // Check to see if we already have this constant.
953   //
954   // FIXME, this could be made much more efficient for large constant pools.
955   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
956     if (!Constants[i].isMachineConstantPoolEntry() &&
957         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
958       if ((unsigned)Constants[i].getAlignment() < Alignment)
959         Constants[i].Alignment = Alignment;
960       return i;
961     }
962 
963   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
964   return Constants.size()-1;
965 }
966 
967 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
968                                                    unsigned Alignment) {
969   assert(Alignment && "Alignment must be specified!");
970   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
971 
972   // Check to see if we already have this constant.
973   //
974   // FIXME, this could be made much more efficient for large constant pools.
975   int Idx = V->getExistingMachineCPValue(this, Alignment);
976   if (Idx != -1) {
977     MachineCPVsSharingEntries.insert(V);
978     return (unsigned)Idx;
979   }
980 
981   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
982   return Constants.size()-1;
983 }
984 
985 void MachineConstantPool::print(raw_ostream &OS) const {
986   if (Constants.empty()) return;
987 
988   OS << "Constant Pool:\n";
989   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
990     OS << "  cp#" << i << ": ";
991     if (Constants[i].isMachineConstantPoolEntry())
992       Constants[i].Val.MachineCPVal->print(OS);
993     else
994       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
995     OS << ", align=" << Constants[i].getAlignment();
996     OS << "\n";
997   }
998 }
999 
1000 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1001 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1002 #endif
1003