1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global common subexpression elimination on machine 11 // instructions using a scoped hash table based value numbering scheme. It 12 // must be run while the machine function is still in SSA form. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/RecyclingAllocator.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetInstrInfo.h" 29 #include "llvm/Target/TargetSubtargetInfo.h" 30 using namespace llvm; 31 32 #define DEBUG_TYPE "machine-cse" 33 34 STATISTIC(NumCoalesces, "Number of copies coalesced"); 35 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 36 STATISTIC(NumPhysCSEs, 37 "Number of physreg referencing common subexpr eliminated"); 38 STATISTIC(NumCrossBBCSEs, 39 "Number of cross-MBB physreg referencing CS eliminated"); 40 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 41 42 namespace { 43 class MachineCSE : public MachineFunctionPass { 44 const TargetInstrInfo *TII; 45 const TargetRegisterInfo *TRI; 46 AliasAnalysis *AA; 47 MachineDominatorTree *DT; 48 MachineRegisterInfo *MRI; 49 public: 50 static char ID; // Pass identification 51 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(0), CurrVN(0) { 52 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 53 } 54 55 bool runOnMachineFunction(MachineFunction &MF) override; 56 57 void getAnalysisUsage(AnalysisUsage &AU) const override { 58 AU.setPreservesCFG(); 59 MachineFunctionPass::getAnalysisUsage(AU); 60 AU.addRequired<AAResultsWrapperPass>(); 61 AU.addPreservedID(MachineLoopInfoID); 62 AU.addRequired<MachineDominatorTree>(); 63 AU.addPreserved<MachineDominatorTree>(); 64 } 65 66 void releaseMemory() override { 67 ScopeMap.clear(); 68 Exps.clear(); 69 } 70 71 private: 72 unsigned LookAheadLimit; 73 typedef RecyclingAllocator<BumpPtrAllocator, 74 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy; 75 typedef ScopedHashTable<MachineInstr*, unsigned, 76 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType; 77 typedef ScopedHTType::ScopeTy ScopeType; 78 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap; 79 ScopedHTType VNT; 80 SmallVector<MachineInstr*, 64> Exps; 81 unsigned CurrVN; 82 83 bool PerformTrivialCopyPropagation(MachineInstr *MI, 84 MachineBasicBlock *MBB); 85 bool isPhysDefTriviallyDead(unsigned Reg, 86 MachineBasicBlock::const_iterator I, 87 MachineBasicBlock::const_iterator E) const; 88 bool hasLivePhysRegDefUses(const MachineInstr *MI, 89 const MachineBasicBlock *MBB, 90 SmallSet<unsigned,8> &PhysRefs, 91 SmallVectorImpl<unsigned> &PhysDefs, 92 bool &PhysUseDef) const; 93 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 94 SmallSet<unsigned,8> &PhysRefs, 95 SmallVectorImpl<unsigned> &PhysDefs, 96 bool &NonLocal) const; 97 bool isCSECandidate(MachineInstr *MI); 98 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 99 MachineInstr *CSMI, MachineInstr *MI); 100 void EnterScope(MachineBasicBlock *MBB); 101 void ExitScope(MachineBasicBlock *MBB); 102 bool ProcessBlock(MachineBasicBlock *MBB); 103 void ExitScopeIfDone(MachineDomTreeNode *Node, 104 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 105 bool PerformCSE(MachineDomTreeNode *Node); 106 }; 107 } // end anonymous namespace 108 109 char MachineCSE::ID = 0; 110 char &llvm::MachineCSEID = MachineCSE::ID; 111 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, 112 "Machine Common Subexpression Elimination", false, false) 113 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 114 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 115 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, 116 "Machine Common Subexpression Elimination", false, false) 117 118 /// The source register of a COPY machine instruction can be propagated to all 119 /// its users, and this propagation could increase the probability of finding 120 /// common subexpressions. If the COPY has only one user, the COPY itself can 121 /// be removed. 122 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, 123 MachineBasicBlock *MBB) { 124 bool Changed = false; 125 for (MachineOperand &MO : MI->operands()) { 126 if (!MO.isReg() || !MO.isUse()) 127 continue; 128 unsigned Reg = MO.getReg(); 129 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 130 continue; 131 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); 132 MachineInstr *DefMI = MRI->getVRegDef(Reg); 133 if (!DefMI->isCopy()) 134 continue; 135 unsigned SrcReg = DefMI->getOperand(1).getReg(); 136 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 137 continue; 138 if (DefMI->getOperand(0).getSubReg()) 139 continue; 140 // FIXME: We should trivially coalesce subregister copies to expose CSE 141 // opportunities on instructions with truncated operands (see 142 // cse-add-with-overflow.ll). This can be done here as follows: 143 // if (SrcSubReg) 144 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 145 // SrcSubReg); 146 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 147 // 148 // The 2-addr pass has been updated to handle coalesced subregs. However, 149 // some machine-specific code still can't handle it. 150 // To handle it properly we also need a way find a constrained subregister 151 // class given a super-reg class and subreg index. 152 if (DefMI->getOperand(1).getSubReg()) 153 continue; 154 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 155 if (!MRI->constrainRegClass(SrcReg, RC)) 156 continue; 157 DEBUG(dbgs() << "Coalescing: " << *DefMI); 158 DEBUG(dbgs() << "*** to: " << *MI); 159 // Propagate SrcReg of copies to MI. 160 MO.setReg(SrcReg); 161 MRI->clearKillFlags(SrcReg); 162 // Coalesce single use copies. 163 if (OnlyOneUse) { 164 DefMI->eraseFromParent(); 165 ++NumCoalesces; 166 } 167 Changed = true; 168 } 169 170 return Changed; 171 } 172 173 bool 174 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 175 MachineBasicBlock::const_iterator I, 176 MachineBasicBlock::const_iterator E) const { 177 unsigned LookAheadLeft = LookAheadLimit; 178 while (LookAheadLeft) { 179 // Skip over dbg_value's. 180 I = skipDebugInstructionsForward(I, E); 181 182 if (I == E) 183 // Reached end of block, we don't know if register is dead or not. 184 return false; 185 186 bool SeenDef = false; 187 for (const MachineOperand &MO : I->operands()) { 188 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 189 SeenDef = true; 190 if (!MO.isReg() || !MO.getReg()) 191 continue; 192 if (!TRI->regsOverlap(MO.getReg(), Reg)) 193 continue; 194 if (MO.isUse()) 195 // Found a use! 196 return false; 197 SeenDef = true; 198 } 199 if (SeenDef) 200 // See a def of Reg (or an alias) before encountering any use, it's 201 // trivially dead. 202 return true; 203 204 --LookAheadLeft; 205 ++I; 206 } 207 return false; 208 } 209 210 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 211 /// physical registers (except for dead defs of physical registers). It also 212 /// returns the physical register def by reference if it's the only one and the 213 /// instruction does not uses a physical register. 214 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 215 const MachineBasicBlock *MBB, 216 SmallSet<unsigned,8> &PhysRefs, 217 SmallVectorImpl<unsigned> &PhysDefs, 218 bool &PhysUseDef) const{ 219 // First, add all uses to PhysRefs. 220 for (const MachineOperand &MO : MI->operands()) { 221 if (!MO.isReg() || MO.isDef()) 222 continue; 223 unsigned Reg = MO.getReg(); 224 if (!Reg) 225 continue; 226 if (TargetRegisterInfo::isVirtualRegister(Reg)) 227 continue; 228 // Reading constant physregs is ok. 229 if (!MRI->isConstantPhysReg(Reg)) 230 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 231 PhysRefs.insert(*AI); 232 } 233 234 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 235 // (which currently contains only uses), set the PhysUseDef flag. 236 PhysUseDef = false; 237 MachineBasicBlock::const_iterator I = MI; I = std::next(I); 238 for (const MachineOperand &MO : MI->operands()) { 239 if (!MO.isReg() || !MO.isDef()) 240 continue; 241 unsigned Reg = MO.getReg(); 242 if (!Reg) 243 continue; 244 if (TargetRegisterInfo::isVirtualRegister(Reg)) 245 continue; 246 // Check against PhysRefs even if the def is "dead". 247 if (PhysRefs.count(Reg)) 248 PhysUseDef = true; 249 // If the def is dead, it's ok. But the def may not marked "dead". That's 250 // common since this pass is run before livevariables. We can scan 251 // forward a few instructions and check if it is obviously dead. 252 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) 253 PhysDefs.push_back(Reg); 254 } 255 256 // Finally, add all defs to PhysRefs as well. 257 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 258 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI) 259 PhysRefs.insert(*AI); 260 261 return !PhysRefs.empty(); 262 } 263 264 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 265 SmallSet<unsigned,8> &PhysRefs, 266 SmallVectorImpl<unsigned> &PhysDefs, 267 bool &NonLocal) const { 268 // For now conservatively returns false if the common subexpression is 269 // not in the same basic block as the given instruction. The only exception 270 // is if the common subexpression is in the sole predecessor block. 271 const MachineBasicBlock *MBB = MI->getParent(); 272 const MachineBasicBlock *CSMBB = CSMI->getParent(); 273 274 bool CrossMBB = false; 275 if (CSMBB != MBB) { 276 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 277 return false; 278 279 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 280 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i])) 281 // Avoid extending live range of physical registers if they are 282 //allocatable or reserved. 283 return false; 284 } 285 CrossMBB = true; 286 } 287 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); 288 MachineBasicBlock::const_iterator E = MI; 289 MachineBasicBlock::const_iterator EE = CSMBB->end(); 290 unsigned LookAheadLeft = LookAheadLimit; 291 while (LookAheadLeft) { 292 // Skip over dbg_value's. 293 while (I != E && I != EE && I->isDebugValue()) 294 ++I; 295 296 if (I == EE) { 297 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 298 (void)CrossMBB; 299 CrossMBB = false; 300 NonLocal = true; 301 I = MBB->begin(); 302 EE = MBB->end(); 303 continue; 304 } 305 306 if (I == E) 307 return true; 308 309 for (const MachineOperand &MO : I->operands()) { 310 // RegMasks go on instructions like calls that clobber lots of physregs. 311 // Don't attempt to CSE across such an instruction. 312 if (MO.isRegMask()) 313 return false; 314 if (!MO.isReg() || !MO.isDef()) 315 continue; 316 unsigned MOReg = MO.getReg(); 317 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 318 continue; 319 if (PhysRefs.count(MOReg)) 320 return false; 321 } 322 323 --LookAheadLeft; 324 ++I; 325 } 326 327 return false; 328 } 329 330 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 331 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || 332 MI->isInlineAsm() || MI->isDebugValue()) 333 return false; 334 335 // Ignore copies. 336 if (MI->isCopyLike()) 337 return false; 338 339 // Ignore stuff that we obviously can't move. 340 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 341 MI->hasUnmodeledSideEffects()) 342 return false; 343 344 if (MI->mayLoad()) { 345 // Okay, this instruction does a load. As a refinement, we allow the target 346 // to decide whether the loaded value is actually a constant. If so, we can 347 // actually use it as a load. 348 if (!MI->isDereferenceableInvariantLoad(AA)) 349 // FIXME: we should be able to hoist loads with no other side effects if 350 // there are no other instructions which can change memory in this loop. 351 // This is a trivial form of alias analysis. 352 return false; 353 } 354 355 // Ignore stack guard loads, otherwise the register that holds CSEed value may 356 // be spilled and get loaded back with corrupted data. 357 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) 358 return false; 359 360 return true; 361 } 362 363 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 364 /// common expression that defines Reg. 365 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 366 MachineInstr *CSMI, MachineInstr *MI) { 367 // FIXME: Heuristics that works around the lack the live range splitting. 368 369 // If CSReg is used at all uses of Reg, CSE should not increase register 370 // pressure of CSReg. 371 bool MayIncreasePressure = true; 372 if (TargetRegisterInfo::isVirtualRegister(CSReg) && 373 TargetRegisterInfo::isVirtualRegister(Reg)) { 374 MayIncreasePressure = false; 375 SmallPtrSet<MachineInstr*, 8> CSUses; 376 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 377 CSUses.insert(&MI); 378 } 379 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 380 if (!CSUses.count(&MI)) { 381 MayIncreasePressure = true; 382 break; 383 } 384 } 385 } 386 if (!MayIncreasePressure) return true; 387 388 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 389 // an immediate predecessor. We don't want to increase register pressure and 390 // end up causing other computation to be spilled. 391 if (TII->isAsCheapAsAMove(*MI)) { 392 MachineBasicBlock *CSBB = CSMI->getParent(); 393 MachineBasicBlock *BB = MI->getParent(); 394 if (CSBB != BB && !CSBB->isSuccessor(BB)) 395 return false; 396 } 397 398 // Heuristics #2: If the expression doesn't not use a vr and the only use 399 // of the redundant computation are copies, do not cse. 400 bool HasVRegUse = false; 401 for (const MachineOperand &MO : MI->operands()) { 402 if (MO.isReg() && MO.isUse() && 403 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 404 HasVRegUse = true; 405 break; 406 } 407 } 408 if (!HasVRegUse) { 409 bool HasNonCopyUse = false; 410 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 411 // Ignore copies. 412 if (!MI.isCopyLike()) { 413 HasNonCopyUse = true; 414 break; 415 } 416 } 417 if (!HasNonCopyUse) 418 return false; 419 } 420 421 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 422 // it unless the defined value is already used in the BB of the new use. 423 bool HasPHI = false; 424 SmallPtrSet<MachineBasicBlock*, 4> CSBBs; 425 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 426 HasPHI |= MI.isPHI(); 427 CSBBs.insert(MI.getParent()); 428 } 429 430 if (!HasPHI) 431 return true; 432 return CSBBs.count(MI->getParent()); 433 } 434 435 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 436 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 437 ScopeType *Scope = new ScopeType(VNT); 438 ScopeMap[MBB] = Scope; 439 } 440 441 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 442 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 443 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 444 assert(SI != ScopeMap.end()); 445 delete SI->second; 446 ScopeMap.erase(SI); 447 } 448 449 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 450 bool Changed = false; 451 452 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 453 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 454 SmallVector<unsigned, 2> ImplicitDefs; 455 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 456 MachineInstr *MI = &*I; 457 ++I; 458 459 if (!isCSECandidate(MI)) 460 continue; 461 462 bool FoundCSE = VNT.count(MI); 463 if (!FoundCSE) { 464 // Using trivial copy propagation to find more CSE opportunities. 465 if (PerformTrivialCopyPropagation(MI, MBB)) { 466 Changed = true; 467 468 // After coalescing MI itself may become a copy. 469 if (MI->isCopyLike()) 470 continue; 471 472 // Try again to see if CSE is possible. 473 FoundCSE = VNT.count(MI); 474 } 475 } 476 477 // Commute commutable instructions. 478 bool Commuted = false; 479 if (!FoundCSE && MI->isCommutable()) { 480 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) { 481 Commuted = true; 482 FoundCSE = VNT.count(NewMI); 483 if (NewMI != MI) { 484 // New instruction. It doesn't need to be kept. 485 NewMI->eraseFromParent(); 486 Changed = true; 487 } else if (!FoundCSE) 488 // MI was changed but it didn't help, commute it back! 489 (void)TII->commuteInstruction(*MI); 490 } 491 } 492 493 // If the instruction defines physical registers and the values *may* be 494 // used, then it's not safe to replace it with a common subexpression. 495 // It's also not safe if the instruction uses physical registers. 496 bool CrossMBBPhysDef = false; 497 SmallSet<unsigned, 8> PhysRefs; 498 SmallVector<unsigned, 2> PhysDefs; 499 bool PhysUseDef = false; 500 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, 501 PhysDefs, PhysUseDef)) { 502 FoundCSE = false; 503 504 // ... Unless the CS is local or is in the sole predecessor block 505 // and it also defines the physical register which is not clobbered 506 // in between and the physical register uses were not clobbered. 507 // This can never be the case if the instruction both uses and 508 // defines the same physical register, which was detected above. 509 if (!PhysUseDef) { 510 unsigned CSVN = VNT.lookup(MI); 511 MachineInstr *CSMI = Exps[CSVN]; 512 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 513 FoundCSE = true; 514 } 515 } 516 517 if (!FoundCSE) { 518 VNT.insert(MI, CurrVN++); 519 Exps.push_back(MI); 520 continue; 521 } 522 523 // Found a common subexpression, eliminate it. 524 unsigned CSVN = VNT.lookup(MI); 525 MachineInstr *CSMI = Exps[CSVN]; 526 DEBUG(dbgs() << "Examining: " << *MI); 527 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 528 529 // Check if it's profitable to perform this CSE. 530 bool DoCSE = true; 531 unsigned NumDefs = MI->getDesc().getNumDefs() + 532 MI->getDesc().getNumImplicitDefs(); 533 534 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 535 MachineOperand &MO = MI->getOperand(i); 536 if (!MO.isReg() || !MO.isDef()) 537 continue; 538 unsigned OldReg = MO.getReg(); 539 unsigned NewReg = CSMI->getOperand(i).getReg(); 540 541 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 542 // we should make sure it is not dead at CSMI. 543 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 544 ImplicitDefsToUpdate.push_back(i); 545 546 // Keep track of implicit defs of CSMI and MI, to clear possibly 547 // made-redundant kill flags. 548 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) 549 ImplicitDefs.push_back(OldReg); 550 551 if (OldReg == NewReg) { 552 --NumDefs; 553 continue; 554 } 555 556 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 557 TargetRegisterInfo::isVirtualRegister(NewReg) && 558 "Do not CSE physical register defs!"); 559 560 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 561 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 562 DoCSE = false; 563 break; 564 } 565 566 // Don't perform CSE if the result of the old instruction cannot exist 567 // within the register class of the new instruction. 568 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg); 569 if (!MRI->constrainRegClass(NewReg, OldRC)) { 570 DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n"); 571 DoCSE = false; 572 break; 573 } 574 575 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 576 --NumDefs; 577 } 578 579 // Actually perform the elimination. 580 if (DoCSE) { 581 for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { 582 unsigned OldReg = CSEPair.first; 583 unsigned NewReg = CSEPair.second; 584 // OldReg may have been unused but is used now, clear the Dead flag 585 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); 586 assert(Def != nullptr && "CSEd register has no unique definition?"); 587 Def->clearRegisterDeads(NewReg); 588 // Replace with NewReg and clear kill flags which may be wrong now. 589 MRI->replaceRegWith(OldReg, NewReg); 590 MRI->clearKillFlags(NewReg); 591 } 592 593 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 594 // we should make sure it is not dead at CSMI. 595 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) 596 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); 597 598 // Go through implicit defs of CSMI and MI, and clear the kill flags on 599 // their uses in all the instructions between CSMI and MI. 600 // We might have made some of the kill flags redundant, consider: 601 // subs ... %NZCV<imp-def> <- CSMI 602 // csinc ... %NZCV<imp-use,kill> <- this kill flag isn't valid anymore 603 // subs ... %NZCV<imp-def> <- MI, to be eliminated 604 // csinc ... %NZCV<imp-use,kill> 605 // Since we eliminated MI, and reused a register imp-def'd by CSMI 606 // (here %NZCV), that register, if it was killed before MI, should have 607 // that kill flag removed, because it's lifetime was extended. 608 if (CSMI->getParent() == MI->getParent()) { 609 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II) 610 for (auto ImplicitDef : ImplicitDefs) 611 if (MachineOperand *MO = II->findRegisterUseOperand( 612 ImplicitDef, /*isKill=*/true, TRI)) 613 MO->setIsKill(false); 614 } else { 615 // If the instructions aren't in the same BB, bail out and clear the 616 // kill flag on all uses of the imp-def'd register. 617 for (auto ImplicitDef : ImplicitDefs) 618 MRI->clearKillFlags(ImplicitDef); 619 } 620 621 if (CrossMBBPhysDef) { 622 // Add physical register defs now coming in from a predecessor to MBB 623 // livein list. 624 while (!PhysDefs.empty()) { 625 unsigned LiveIn = PhysDefs.pop_back_val(); 626 if (!MBB->isLiveIn(LiveIn)) 627 MBB->addLiveIn(LiveIn); 628 } 629 ++NumCrossBBCSEs; 630 } 631 632 MI->eraseFromParent(); 633 ++NumCSEs; 634 if (!PhysRefs.empty()) 635 ++NumPhysCSEs; 636 if (Commuted) 637 ++NumCommutes; 638 Changed = true; 639 } else { 640 VNT.insert(MI, CurrVN++); 641 Exps.push_back(MI); 642 } 643 CSEPairs.clear(); 644 ImplicitDefsToUpdate.clear(); 645 ImplicitDefs.clear(); 646 } 647 648 return Changed; 649 } 650 651 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 652 /// dominator tree node if its a leaf or all of its children are done. Walk 653 /// up the dominator tree to destroy ancestors which are now done. 654 void 655 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 656 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 657 if (OpenChildren[Node]) 658 return; 659 660 // Pop scope. 661 ExitScope(Node->getBlock()); 662 663 // Now traverse upwards to pop ancestors whose offsprings are all done. 664 while (MachineDomTreeNode *Parent = Node->getIDom()) { 665 unsigned Left = --OpenChildren[Parent]; 666 if (Left != 0) 667 break; 668 ExitScope(Parent->getBlock()); 669 Node = Parent; 670 } 671 } 672 673 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 674 SmallVector<MachineDomTreeNode*, 32> Scopes; 675 SmallVector<MachineDomTreeNode*, 8> WorkList; 676 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 677 678 CurrVN = 0; 679 680 // Perform a DFS walk to determine the order of visit. 681 WorkList.push_back(Node); 682 do { 683 Node = WorkList.pop_back_val(); 684 Scopes.push_back(Node); 685 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 686 OpenChildren[Node] = Children.size(); 687 for (MachineDomTreeNode *Child : Children) 688 WorkList.push_back(Child); 689 } while (!WorkList.empty()); 690 691 // Now perform CSE. 692 bool Changed = false; 693 for (MachineDomTreeNode *Node : Scopes) { 694 MachineBasicBlock *MBB = Node->getBlock(); 695 EnterScope(MBB); 696 Changed |= ProcessBlock(MBB); 697 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 698 ExitScopeIfDone(Node, OpenChildren); 699 } 700 701 return Changed; 702 } 703 704 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 705 if (skipFunction(*MF.getFunction())) 706 return false; 707 708 TII = MF.getSubtarget().getInstrInfo(); 709 TRI = MF.getSubtarget().getRegisterInfo(); 710 MRI = &MF.getRegInfo(); 711 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 712 DT = &getAnalysis<MachineDominatorTree>(); 713 LookAheadLimit = TII->getMachineCSELookAheadLimit(); 714 return PerformCSE(DT->getRootNode()); 715 } 716