1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absense of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #define DEBUG_TYPE "block-placement2" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineLoopInfo.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/Support/Allocator.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/ADT/DenseMap.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/Statistic.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include <algorithm> 46 using namespace llvm; 47 48 STATISTIC(NumCondBranches, "Number of conditional branches"); 49 STATISTIC(NumUncondBranches, "Number of uncondittional branches"); 50 STATISTIC(CondBranchTakenFreq, 51 "Potential frequency of taking conditional branches"); 52 STATISTIC(UncondBranchTakenFreq, 53 "Potential frequency of taking unconditional branches"); 54 55 namespace { 56 class BlockChain; 57 /// \brief Type for our function-wide basic block -> block chain mapping. 58 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 59 } 60 61 namespace { 62 /// \brief A chain of blocks which will be laid out contiguously. 63 /// 64 /// This is the datastructure representing a chain of consecutive blocks that 65 /// are profitable to layout together in order to maximize fallthrough 66 /// probabilities. We also can use a block chain to represent a sequence of 67 /// basic blocks which have some external (correctness) requirement for 68 /// sequential layout. 69 /// 70 /// Eventually, the block chains will form a directed graph over the function. 71 /// We provide an SCC-supporting-iterator in order to quicky build and walk the 72 /// SCCs of block chains within a function. 73 /// 74 /// The block chains also have support for calculating and caching probability 75 /// information related to the chain itself versus other chains. This is used 76 /// for ranking during the final layout of block chains. 77 class BlockChain { 78 /// \brief The sequence of blocks belonging to this chain. 79 /// 80 /// This is the sequence of blocks for a particular chain. These will be laid 81 /// out in-order within the function. 82 SmallVector<MachineBasicBlock *, 4> Blocks; 83 84 /// \brief A handle to the function-wide basic block to block chain mapping. 85 /// 86 /// This is retained in each block chain to simplify the computation of child 87 /// block chains for SCC-formation and iteration. We store the edges to child 88 /// basic blocks, and map them back to their associated chains using this 89 /// structure. 90 BlockToChainMapType &BlockToChain; 91 92 public: 93 /// \brief Construct a new BlockChain. 94 /// 95 /// This builds a new block chain representing a single basic block in the 96 /// function. It also registers itself as the chain that block participates 97 /// in with the BlockToChain mapping. 98 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 99 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 100 assert(BB && "Cannot create a chain with a null basic block"); 101 BlockToChain[BB] = this; 102 } 103 104 /// \brief Iterator over blocks within the chain. 105 typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator iterator; 106 107 /// \brief Beginning of blocks within the chain. 108 iterator begin() const { return Blocks.begin(); } 109 110 /// \brief End of blocks within the chain. 111 iterator end() const { return Blocks.end(); } 112 113 /// \brief Merge a block chain into this one. 114 /// 115 /// This routine merges a block chain into this one. It takes care of forming 116 /// a contiguous sequence of basic blocks, updating the edge list, and 117 /// updating the block -> chain mapping. It does not free or tear down the 118 /// old chain, but the old chain's block list is no longer valid. 119 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 120 assert(BB); 121 assert(!Blocks.empty()); 122 123 // Fast path in case we don't have a chain already. 124 if (!Chain) { 125 assert(!BlockToChain[BB]); 126 Blocks.push_back(BB); 127 BlockToChain[BB] = this; 128 return; 129 } 130 131 assert(BB == *Chain->begin()); 132 assert(Chain->begin() != Chain->end()); 133 134 // Update the incoming blocks to point to this chain, and add them to the 135 // chain structure. 136 for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end(); 137 BI != BE; ++BI) { 138 Blocks.push_back(*BI); 139 assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain"); 140 BlockToChain[*BI] = this; 141 } 142 } 143 144 #ifndef NDEBUG 145 /// \brief Dump the blocks in this chain. 146 void dump() LLVM_ATTRIBUTE_USED { 147 for (iterator I = begin(), E = end(); I != E; ++I) 148 (*I)->dump(); 149 } 150 #endif // NDEBUG 151 152 /// \brief Count of predecessors within the loop currently being processed. 153 /// 154 /// This count is updated at each loop we process to represent the number of 155 /// in-loop predecessors of this chain. 156 unsigned LoopPredecessors; 157 }; 158 } 159 160 namespace { 161 class MachineBlockPlacement : public MachineFunctionPass { 162 /// \brief A typedef for a block filter set. 163 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 164 165 /// \brief A handle to the branch probability pass. 166 const MachineBranchProbabilityInfo *MBPI; 167 168 /// \brief A handle to the function-wide block frequency pass. 169 const MachineBlockFrequencyInfo *MBFI; 170 171 /// \brief A handle to the loop info. 172 const MachineLoopInfo *MLI; 173 174 /// \brief A handle to the target's instruction info. 175 const TargetInstrInfo *TII; 176 177 /// \brief A handle to the target's lowering info. 178 const TargetLowering *TLI; 179 180 /// \brief Allocator and owner of BlockChain structures. 181 /// 182 /// We build BlockChains lazily by merging together high probability BB 183 /// sequences acording to the "Algo2" in the paper mentioned at the top of 184 /// the file. To reduce malloc traffic, we allocate them using this slab-like 185 /// allocator, and destroy them after the pass completes. 186 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 187 188 /// \brief Function wide BasicBlock to BlockChain mapping. 189 /// 190 /// This mapping allows efficiently moving from any given basic block to the 191 /// BlockChain it participates in, if any. We use it to, among other things, 192 /// allow implicitly defining edges between chains as the existing edges 193 /// between basic blocks. 194 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 195 196 void markChainSuccessors(BlockChain &Chain, 197 MachineBasicBlock *LoopHeaderBB, 198 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 199 const BlockFilterSet *BlockFilter = 0); 200 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 201 BlockChain &Chain, 202 const BlockFilterSet *BlockFilter); 203 MachineBasicBlock *selectBestCandidateBlock( 204 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 205 const BlockFilterSet *BlockFilter); 206 MachineBasicBlock *getFirstUnplacedBlock( 207 MachineFunction &F, 208 const BlockChain &PlacedChain, 209 MachineFunction::iterator &PrevUnplacedBlockIt, 210 const BlockFilterSet *BlockFilter); 211 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 212 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 213 const BlockFilterSet *BlockFilter = 0); 214 MachineBasicBlock *findBestLoopTop(MachineFunction &F, 215 MachineLoop &L, 216 const BlockFilterSet &LoopBlockSet); 217 void buildLoopChains(MachineFunction &F, MachineLoop &L); 218 void buildCFGChains(MachineFunction &F); 219 void AlignLoops(MachineFunction &F); 220 221 public: 222 static char ID; // Pass identification, replacement for typeid 223 MachineBlockPlacement() : MachineFunctionPass(ID) { 224 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 225 } 226 227 bool runOnMachineFunction(MachineFunction &F); 228 229 void getAnalysisUsage(AnalysisUsage &AU) const { 230 AU.addRequired<MachineBranchProbabilityInfo>(); 231 AU.addRequired<MachineBlockFrequencyInfo>(); 232 AU.addRequired<MachineLoopInfo>(); 233 MachineFunctionPass::getAnalysisUsage(AU); 234 } 235 }; 236 } 237 238 char MachineBlockPlacement::ID = 0; 239 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 240 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2", 241 "Branch Probability Basic Block Placement", false, false) 242 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 243 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 244 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 245 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2", 246 "Branch Probability Basic Block Placement", false, false) 247 248 #ifndef NDEBUG 249 /// \brief Helper to print the name of a MBB. 250 /// 251 /// Only used by debug logging. 252 static std::string getBlockName(MachineBasicBlock *BB) { 253 std::string Result; 254 raw_string_ostream OS(Result); 255 OS << "BB#" << BB->getNumber() 256 << " (derived from LLVM BB '" << BB->getName() << "')"; 257 OS.flush(); 258 return Result; 259 } 260 261 /// \brief Helper to print the number of a MBB. 262 /// 263 /// Only used by debug logging. 264 static std::string getBlockNum(MachineBasicBlock *BB) { 265 std::string Result; 266 raw_string_ostream OS(Result); 267 OS << "BB#" << BB->getNumber(); 268 OS.flush(); 269 return Result; 270 } 271 #endif 272 273 /// \brief Mark a chain's successors as having one fewer preds. 274 /// 275 /// When a chain is being merged into the "placed" chain, this routine will 276 /// quickly walk the successors of each block in the chain and mark them as 277 /// having one fewer active predecessor. It also adds any successors of this 278 /// chain which reach the zero-predecessor state to the worklist passed in. 279 void MachineBlockPlacement::markChainSuccessors( 280 BlockChain &Chain, 281 MachineBasicBlock *LoopHeaderBB, 282 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 283 const BlockFilterSet *BlockFilter) { 284 // Walk all the blocks in this chain, marking their successors as having 285 // a predecessor placed. 286 for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end(); 287 CBI != CBE; ++CBI) { 288 // Add any successors for which this is the only un-placed in-loop 289 // predecessor to the worklist as a viable candidate for CFG-neutral 290 // placement. No subsequent placement of this block will violate the CFG 291 // shape, so we get to use heuristics to choose a favorable placement. 292 for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(), 293 SE = (*CBI)->succ_end(); 294 SI != SE; ++SI) { 295 if (BlockFilter && !BlockFilter->count(*SI)) 296 continue; 297 BlockChain &SuccChain = *BlockToChain[*SI]; 298 // Disregard edges within a fixed chain, or edges to the loop header. 299 if (&Chain == &SuccChain || *SI == LoopHeaderBB) 300 continue; 301 302 // This is a cross-chain edge that is within the loop, so decrement the 303 // loop predecessor count of the destination chain. 304 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 305 BlockWorkList.push_back(*SuccChain.begin()); 306 } 307 } 308 } 309 310 /// \brief Select the best successor for a block. 311 /// 312 /// This looks across all successors of a particular block and attempts to 313 /// select the "best" one to be the layout successor. It only considers direct 314 /// successors which also pass the block filter. It will attempt to avoid 315 /// breaking CFG structure, but cave and break such structures in the case of 316 /// very hot successor edges. 317 /// 318 /// \returns The best successor block found, or null if none are viable. 319 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor( 320 MachineBasicBlock *BB, BlockChain &Chain, 321 const BlockFilterSet *BlockFilter) { 322 const BranchProbability HotProb(4, 5); // 80% 323 324 MachineBasicBlock *BestSucc = 0; 325 // FIXME: Due to the performance of the probability and weight routines in 326 // the MBPI analysis, we manually compute probabilities using the edge 327 // weights. This is suboptimal as it means that the somewhat subtle 328 // definition of edge weight semantics is encoded here as well. We should 329 // improve the MBPI interface to effeciently support query patterns such as 330 // this. 331 uint32_t BestWeight = 0; 332 uint32_t WeightScale = 0; 333 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 334 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 335 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 336 SE = BB->succ_end(); 337 SI != SE; ++SI) { 338 if (BlockFilter && !BlockFilter->count(*SI)) 339 continue; 340 BlockChain &SuccChain = *BlockToChain[*SI]; 341 if (&SuccChain == &Chain) { 342 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n"); 343 continue; 344 } 345 if (*SI != *SuccChain.begin()) { 346 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Mid chain!\n"); 347 continue; 348 } 349 350 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI); 351 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 352 353 // Only consider successors which are either "hot", or wouldn't violate 354 // any CFG constraints. 355 if (SuccChain.LoopPredecessors != 0) { 356 if (SuccProb < HotProb) { 357 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> CFG conflict\n"); 358 continue; 359 } 360 361 // Make sure that a hot successor doesn't have a globally more important 362 // predecessor. 363 BlockFrequency CandidateEdgeFreq 364 = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); 365 bool BadCFGConflict = false; 366 for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(), 367 PE = (*SI)->pred_end(); 368 PI != PE; ++PI) { 369 if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) || 370 BlockToChain[*PI] == &Chain) 371 continue; 372 BlockFrequency PredEdgeFreq 373 = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI); 374 if (PredEdgeFreq >= CandidateEdgeFreq) { 375 BadCFGConflict = true; 376 break; 377 } 378 } 379 if (BadCFGConflict) { 380 DEBUG(dbgs() << " " << getBlockName(*SI) 381 << " -> non-cold CFG conflict\n"); 382 continue; 383 } 384 } 385 386 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 387 << " (prob)" 388 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 389 << "\n"); 390 if (BestSucc && BestWeight >= SuccWeight) 391 continue; 392 BestSucc = *SI; 393 BestWeight = SuccWeight; 394 } 395 return BestSucc; 396 } 397 398 namespace { 399 /// \brief Predicate struct to detect blocks already placed. 400 class IsBlockPlaced { 401 const BlockChain &PlacedChain; 402 const BlockToChainMapType &BlockToChain; 403 404 public: 405 IsBlockPlaced(const BlockChain &PlacedChain, 406 const BlockToChainMapType &BlockToChain) 407 : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {} 408 409 bool operator()(MachineBasicBlock *BB) const { 410 return BlockToChain.lookup(BB) == &PlacedChain; 411 } 412 }; 413 } 414 415 /// \brief Select the best block from a worklist. 416 /// 417 /// This looks through the provided worklist as a list of candidate basic 418 /// blocks and select the most profitable one to place. The definition of 419 /// profitable only really makes sense in the context of a loop. This returns 420 /// the most frequently visited block in the worklist, which in the case of 421 /// a loop, is the one most desirable to be physically close to the rest of the 422 /// loop body in order to improve icache behavior. 423 /// 424 /// \returns The best block found, or null if none are viable. 425 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 426 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 427 const BlockFilterSet *BlockFilter) { 428 // Once we need to walk the worklist looking for a candidate, cleanup the 429 // worklist of already placed entries. 430 // FIXME: If this shows up on profiles, it could be folded (at the cost of 431 // some code complexity) into the loop below. 432 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 433 IsBlockPlaced(Chain, BlockToChain)), 434 WorkList.end()); 435 436 MachineBasicBlock *BestBlock = 0; 437 BlockFrequency BestFreq; 438 for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(), 439 WBE = WorkList.end(); 440 WBI != WBE; ++WBI) { 441 BlockChain &SuccChain = *BlockToChain[*WBI]; 442 if (&SuccChain == &Chain) { 443 DEBUG(dbgs() << " " << getBlockName(*WBI) 444 << " -> Already merged!\n"); 445 continue; 446 } 447 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 448 449 BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI); 450 DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> " << CandidateFreq 451 << " (freq)\n"); 452 if (BestBlock && BestFreq >= CandidateFreq) 453 continue; 454 BestBlock = *WBI; 455 BestFreq = CandidateFreq; 456 } 457 return BestBlock; 458 } 459 460 /// \brief Retrieve the first unplaced basic block. 461 /// 462 /// This routine is called when we are unable to use the CFG to walk through 463 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 464 /// We walk through the function's blocks in order, starting from the 465 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 466 /// re-scanning the entire sequence on repeated calls to this routine. 467 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 468 MachineFunction &F, const BlockChain &PlacedChain, 469 MachineFunction::iterator &PrevUnplacedBlockIt, 470 const BlockFilterSet *BlockFilter) { 471 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 472 ++I) { 473 if (BlockFilter && !BlockFilter->count(I)) 474 continue; 475 if (BlockToChain[I] != &PlacedChain) { 476 PrevUnplacedBlockIt = I; 477 // Now select the head of the chain to which the unplaced block belongs 478 // as the block to place. This will force the entire chain to be placed, 479 // and satisfies the requirements of merging chains. 480 return *BlockToChain[I]->begin(); 481 } 482 } 483 return 0; 484 } 485 486 void MachineBlockPlacement::buildChain( 487 MachineBasicBlock *BB, 488 BlockChain &Chain, 489 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 490 const BlockFilterSet *BlockFilter) { 491 assert(BB); 492 assert(BlockToChain[BB] == &Chain); 493 MachineFunction &F = *BB->getParent(); 494 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 495 496 MachineBasicBlock *LoopHeaderBB = BB; 497 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 498 BB = *llvm::prior(Chain.end()); 499 for (;;) { 500 assert(BB); 501 assert(BlockToChain[BB] == &Chain); 502 assert(*llvm::prior(Chain.end()) == BB); 503 MachineBasicBlock *BestSucc = 0; 504 505 // Look for the best viable successor if there is one to place immediately 506 // after this block. 507 BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 508 509 // If an immediate successor isn't available, look for the best viable 510 // block among those we've identified as not violating the loop's CFG at 511 // this point. This won't be a fallthrough, but it will increase locality. 512 if (!BestSucc) 513 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 514 515 if (!BestSucc) { 516 BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, 517 BlockFilter); 518 if (!BestSucc) 519 break; 520 521 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 522 "layout successor until the CFG reduces\n"); 523 } 524 525 // Place this block, updating the datastructures to reflect its placement. 526 BlockChain &SuccChain = *BlockToChain[BestSucc]; 527 // Zero out LoopPredecessors for the successor we're about to merge in case 528 // we selected a successor that didn't fit naturally into the CFG. 529 SuccChain.LoopPredecessors = 0; 530 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) 531 << " to " << getBlockNum(BestSucc) << "\n"); 532 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 533 Chain.merge(BestSucc, &SuccChain); 534 BB = *llvm::prior(Chain.end()); 535 } 536 537 DEBUG(dbgs() << "Finished forming chain for header block " 538 << getBlockNum(*Chain.begin()) << "\n"); 539 } 540 541 /// \brief Find the best loop top block for layout. 542 /// 543 /// This routine implements the logic to analyze the loop looking for the best 544 /// block to layout at the top of the loop. Typically this is done to maximize 545 /// fallthrough opportunities. 546 MachineBasicBlock * 547 MachineBlockPlacement::findBestLoopTop(MachineFunction &F, 548 MachineLoop &L, 549 const BlockFilterSet &LoopBlockSet) { 550 // We don't want to layout the loop linearly in all cases. If the loop header 551 // is just a normal basic block in the loop, we want to look for what block 552 // within the loop is the best one to layout at the top. However, if the loop 553 // header has be pre-merged into a chain due to predecessors not having 554 // analyzable branches, *and* the predecessor it is merged with is *not* part 555 // of the loop, rotating the header into the middle of the loop will create 556 // a non-contiguous range of blocks which is Very Bad. So start with the 557 // header and only rotate if safe. 558 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 559 if (!LoopBlockSet.count(*HeaderChain.begin())) 560 return L.getHeader(); 561 562 BlockFrequency BestExitEdgeFreq; 563 MachineBasicBlock *ExitingBB = 0; 564 MachineBasicBlock *LoopingBB = 0; 565 // If there are exits to outer loops, loop rotation can severely limit 566 // fallthrough opportunites unless it selects such an exit. Keep a set of 567 // blocks where rotating to exit with that block will reach an outer loop. 568 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 569 570 DEBUG(dbgs() << "Finding best loop exit for: " 571 << getBlockName(L.getHeader()) << "\n"); 572 for (MachineLoop::block_iterator I = L.block_begin(), 573 E = L.block_end(); 574 I != E; ++I) { 575 BlockChain &Chain = *BlockToChain[*I]; 576 // Ensure that this block is at the end of a chain; otherwise it could be 577 // mid-way through an inner loop or a successor of an analyzable branch. 578 if (*I != *llvm::prior(Chain.end())) 579 continue; 580 581 // Now walk the successors. We need to establish whether this has a viable 582 // exiting successor and whether it has a viable non-exiting successor. 583 // We store the old exiting state and restore it if a viable looping 584 // successor isn't found. 585 MachineBasicBlock *OldExitingBB = ExitingBB; 586 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 587 // We also compute and store the best looping successor for use in layout. 588 MachineBasicBlock *BestLoopSucc = 0; 589 // FIXME: Due to the performance of the probability and weight routines in 590 // the MBPI analysis, we use the internal weights. This is only valid 591 // because it is purely a ranking function, we don't care about anything 592 // but the relative values. 593 uint32_t BestLoopSuccWeight = 0; 594 // FIXME: We also manually compute the probabilities to avoid quadratic 595 // behavior. 596 uint32_t WeightScale = 0; 597 uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale); 598 for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(), 599 SE = (*I)->succ_end(); 600 SI != SE; ++SI) { 601 if ((*SI)->isLandingPad()) 602 continue; 603 if (*SI == *I) 604 continue; 605 BlockChain &SuccChain = *BlockToChain[*SI]; 606 // Don't split chains, either this chain or the successor's chain. 607 if (&Chain == &SuccChain || *SI != *SuccChain.begin()) { 608 DEBUG(dbgs() << " " << (LoopBlockSet.count(*SI) ? "looping: " 609 : "exiting: ") 610 << getBlockName(*I) << " -> " 611 << getBlockName(*SI) << " (chain conflict)\n"); 612 continue; 613 } 614 615 uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI); 616 if (LoopBlockSet.count(*SI)) { 617 DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> " 618 << getBlockName(*SI) << " (" << SuccWeight << ")\n"); 619 if (BestLoopSucc && BestLoopSuccWeight >= SuccWeight) 620 continue; 621 622 BestLoopSucc = *SI; 623 BestLoopSuccWeight = SuccWeight; 624 continue; 625 } 626 627 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 628 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb; 629 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 630 << getBlockName(*SI) << " (" << ExitEdgeFreq << ")\n"); 631 // Note that we slightly bias this toward an existing layout successor to 632 // retain incoming order in the absence of better information. 633 // FIXME: Should we bias this more strongly? It's pretty weak. 634 if (!ExitingBB || ExitEdgeFreq > BestExitEdgeFreq || 635 ((*I)->isLayoutSuccessor(*SI) && 636 !(ExitEdgeFreq < BestExitEdgeFreq))) { 637 BestExitEdgeFreq = ExitEdgeFreq; 638 ExitingBB = *I; 639 } 640 641 if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) 642 if (ExitLoop->contains(&L)) 643 BlocksExitingToOuterLoop.insert(*I); 644 } 645 646 // Restore the old exiting state, no viable looping successor was found. 647 if (!BestLoopSucc) { 648 ExitingBB = OldExitingBB; 649 BestExitEdgeFreq = OldBestExitEdgeFreq; 650 continue; 651 } 652 653 // If this was best exiting block thus far, also record the looping block. 654 if (ExitingBB == *I) 655 LoopingBB = BestLoopSucc; 656 } 657 // Without a candidate exitting block or with only a single block in the 658 // loop, just use the loop header to layout the loop. 659 if (!ExitingBB || L.getNumBlocks() == 1) 660 return L.getHeader(); 661 662 // Also, if we have exit blocks which lead to outer loops but didn't select 663 // one of them as the exiting block we are rotating toward, disable loop 664 // rotation altogether. 665 if (!BlocksExitingToOuterLoop.empty() && 666 !BlocksExitingToOuterLoop.count(ExitingBB)) 667 return L.getHeader(); 668 669 assert(LoopingBB && "All successors of a loop block are exit blocks!"); 670 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 671 DEBUG(dbgs() << " Best top block: " << getBlockName(LoopingBB) << "\n"); 672 return LoopingBB; 673 } 674 675 /// \brief Forms basic block chains from the natural loop structures. 676 /// 677 /// These chains are designed to preserve the existing *structure* of the code 678 /// as much as possible. We can then stitch the chains together in a way which 679 /// both preserves the topological structure and minimizes taken conditional 680 /// branches. 681 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 682 MachineLoop &L) { 683 // First recurse through any nested loops, building chains for those inner 684 // loops. 685 for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) 686 buildLoopChains(F, **LI); 687 688 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 689 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end()); 690 691 MachineBasicBlock *LayoutTop = findBestLoopTop(F, L, LoopBlockSet); 692 BlockChain &LoopChain = *BlockToChain[LayoutTop]; 693 694 // FIXME: This is a really lame way of walking the chains in the loop: we 695 // walk the blocks, and use a set to prevent visiting a particular chain 696 // twice. 697 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 698 assert(LoopChain.LoopPredecessors == 0); 699 UpdatedPreds.insert(&LoopChain); 700 for (MachineLoop::block_iterator BI = L.block_begin(), 701 BE = L.block_end(); 702 BI != BE; ++BI) { 703 BlockChain &Chain = *BlockToChain[*BI]; 704 if (!UpdatedPreds.insert(&Chain)) 705 continue; 706 707 assert(Chain.LoopPredecessors == 0); 708 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 709 BCI != BCE; ++BCI) { 710 assert(BlockToChain[*BCI] == &Chain); 711 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 712 PE = (*BCI)->pred_end(); 713 PI != PE; ++PI) { 714 if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI)) 715 continue; 716 ++Chain.LoopPredecessors; 717 } 718 } 719 720 if (Chain.LoopPredecessors == 0) 721 BlockWorkList.push_back(*Chain.begin()); 722 } 723 724 buildChain(LayoutTop, LoopChain, BlockWorkList, &LoopBlockSet); 725 726 DEBUG({ 727 // Crash at the end so we get all of the debugging output first. 728 bool BadLoop = false; 729 if (LoopChain.LoopPredecessors) { 730 BadLoop = true; 731 dbgs() << "Loop chain contains a block without its preds placed!\n" 732 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 733 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 734 } 735 for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end(); 736 BCI != BCE; ++BCI) 737 if (!LoopBlockSet.erase(*BCI)) { 738 // We don't mark the loop as bad here because there are real situations 739 // where this can occur. For example, with an unanalyzable fallthrough 740 // from a loop block to a non-loop block or vice versa. 741 dbgs() << "Loop chain contains a block not contained by the loop!\n" 742 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 743 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 744 << " Bad block: " << getBlockName(*BCI) << "\n"; 745 } 746 747 if (!LoopBlockSet.empty()) { 748 BadLoop = true; 749 for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(), 750 LBE = LoopBlockSet.end(); 751 LBI != LBE; ++LBI) 752 dbgs() << "Loop contains blocks never placed into a chain!\n" 753 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 754 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 755 << " Bad block: " << getBlockName(*LBI) << "\n"; 756 } 757 assert(!BadLoop && "Detected problems with the placement of this loop."); 758 }); 759 } 760 761 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 762 // Ensure that every BB in the function has an associated chain to simplify 763 // the assumptions of the remaining algorithm. 764 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 765 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 766 MachineBasicBlock *BB = FI; 767 BlockChain *Chain 768 = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 769 // Also, merge any blocks which we cannot reason about and must preserve 770 // the exact fallthrough behavior for. 771 for (;;) { 772 Cond.clear(); 773 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 774 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 775 break; 776 777 MachineFunction::iterator NextFI(llvm::next(FI)); 778 MachineBasicBlock *NextBB = NextFI; 779 // Ensure that the layout successor is a viable block, as we know that 780 // fallthrough is a possibility. 781 assert(NextFI != FE && "Can't fallthrough past the last block."); 782 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 783 << getBlockName(BB) << " -> " << getBlockName(NextBB) 784 << "\n"); 785 Chain->merge(NextBB, 0); 786 FI = NextFI; 787 BB = NextBB; 788 } 789 } 790 791 // Build any loop-based chains. 792 for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE; 793 ++LI) 794 buildLoopChains(F, **LI); 795 796 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 797 798 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 799 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 800 MachineBasicBlock *BB = &*FI; 801 BlockChain &Chain = *BlockToChain[BB]; 802 if (!UpdatedPreds.insert(&Chain)) 803 continue; 804 805 assert(Chain.LoopPredecessors == 0); 806 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 807 BCI != BCE; ++BCI) { 808 assert(BlockToChain[*BCI] == &Chain); 809 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 810 PE = (*BCI)->pred_end(); 811 PI != PE; ++PI) { 812 if (BlockToChain[*PI] == &Chain) 813 continue; 814 ++Chain.LoopPredecessors; 815 } 816 } 817 818 if (Chain.LoopPredecessors == 0) 819 BlockWorkList.push_back(*Chain.begin()); 820 } 821 822 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 823 buildChain(&F.front(), FunctionChain, BlockWorkList); 824 825 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 826 DEBUG({ 827 // Crash at the end so we get all of the debugging output first. 828 bool BadFunc = false; 829 FunctionBlockSetType FunctionBlockSet; 830 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 831 FunctionBlockSet.insert(FI); 832 833 for (BlockChain::iterator BCI = FunctionChain.begin(), 834 BCE = FunctionChain.end(); 835 BCI != BCE; ++BCI) 836 if (!FunctionBlockSet.erase(*BCI)) { 837 BadFunc = true; 838 dbgs() << "Function chain contains a block not in the function!\n" 839 << " Bad block: " << getBlockName(*BCI) << "\n"; 840 } 841 842 if (!FunctionBlockSet.empty()) { 843 BadFunc = true; 844 for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(), 845 FBE = FunctionBlockSet.end(); 846 FBI != FBE; ++FBI) 847 dbgs() << "Function contains blocks never placed into a chain!\n" 848 << " Bad block: " << getBlockName(*FBI) << "\n"; 849 } 850 assert(!BadFunc && "Detected problems with the block placement."); 851 }); 852 853 // Splice the blocks into place. 854 MachineFunction::iterator InsertPos = F.begin(); 855 for (BlockChain::iterator BI = FunctionChain.begin(), 856 BE = FunctionChain.end(); 857 BI != BE; ++BI) { 858 DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain " 859 : " ... ") 860 << getBlockName(*BI) << "\n"); 861 if (InsertPos != MachineFunction::iterator(*BI)) 862 F.splice(InsertPos, *BI); 863 else 864 ++InsertPos; 865 866 // Update the terminator of the previous block. 867 if (BI == FunctionChain.begin()) 868 continue; 869 MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI)); 870 871 // FIXME: It would be awesome of updateTerminator would just return rather 872 // than assert when the branch cannot be analyzed in order to remove this 873 // boiler plate. 874 Cond.clear(); 875 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 876 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) 877 PrevBB->updateTerminator(); 878 } 879 880 // Fixup the last block. 881 Cond.clear(); 882 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 883 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 884 F.back().updateTerminator(); 885 } 886 887 /// \brief Recursive helper to align a loop and any nested loops. 888 static void AlignLoop(MachineFunction &F, MachineLoop *L, unsigned Align) { 889 // Recurse through nested loops. 890 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 891 AlignLoop(F, *I, Align); 892 893 L->getTopBlock()->setAlignment(Align); 894 } 895 896 /// \brief Align loop headers to target preferred alignments. 897 void MachineBlockPlacement::AlignLoops(MachineFunction &F) { 898 if (F.getFunction()->hasFnAttr(Attribute::OptimizeForSize)) 899 return; 900 901 unsigned Align = TLI->getPrefLoopAlignment(); 902 if (!Align) 903 return; // Don't care about loop alignment. 904 905 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I) 906 AlignLoop(F, *I, Align); 907 } 908 909 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 910 // Check for single-block functions and skip them. 911 if (llvm::next(F.begin()) == F.end()) 912 return false; 913 914 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 915 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 916 MLI = &getAnalysis<MachineLoopInfo>(); 917 TII = F.getTarget().getInstrInfo(); 918 TLI = F.getTarget().getTargetLowering(); 919 assert(BlockToChain.empty()); 920 921 buildCFGChains(F); 922 AlignLoops(F); 923 924 BlockToChain.clear(); 925 ChainAllocator.DestroyAll(); 926 927 // We always return true as we have no way to track whether the final order 928 // differs from the original order. 929 return true; 930 } 931 932 namespace { 933 /// \brief A pass to compute block placement statistics. 934 /// 935 /// A separate pass to compute interesting statistics for evaluating block 936 /// placement. This is separate from the actual placement pass so that they can 937 /// be computed in the absense of any placement transformations or when using 938 /// alternative placement strategies. 939 class MachineBlockPlacementStats : public MachineFunctionPass { 940 /// \brief A handle to the branch probability pass. 941 const MachineBranchProbabilityInfo *MBPI; 942 943 /// \brief A handle to the function-wide block frequency pass. 944 const MachineBlockFrequencyInfo *MBFI; 945 946 public: 947 static char ID; // Pass identification, replacement for typeid 948 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 949 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 950 } 951 952 bool runOnMachineFunction(MachineFunction &F); 953 954 void getAnalysisUsage(AnalysisUsage &AU) const { 955 AU.addRequired<MachineBranchProbabilityInfo>(); 956 AU.addRequired<MachineBlockFrequencyInfo>(); 957 AU.setPreservesAll(); 958 MachineFunctionPass::getAnalysisUsage(AU); 959 } 960 }; 961 } 962 963 char MachineBlockPlacementStats::ID = 0; 964 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 965 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 966 "Basic Block Placement Stats", false, false) 967 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 968 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 969 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 970 "Basic Block Placement Stats", false, false) 971 972 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 973 // Check for single-block functions and skip them. 974 if (llvm::next(F.begin()) == F.end()) 975 return false; 976 977 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 978 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 979 980 for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) { 981 BlockFrequency BlockFreq = MBFI->getBlockFreq(I); 982 Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches 983 : NumUncondBranches; 984 Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq 985 : UncondBranchTakenFreq; 986 for (MachineBasicBlock::succ_iterator SI = I->succ_begin(), 987 SE = I->succ_end(); 988 SI != SE; ++SI) { 989 // Skip if this successor is a fallthrough. 990 if (I->isLayoutSuccessor(*SI)) 991 continue; 992 993 BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI); 994 ++NumBranches; 995 BranchTakenFreq += EdgeFreq.getFrequency(); 996 } 997 } 998 999 return false; 1000 } 1001 1002