1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/DataTypes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 if (B) 46 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 47 } 48 49 MachineBasicBlock::~MachineBasicBlock() { 50 } 51 52 /// Return the MCSymbol for this basic block. 53 MCSymbol *MachineBasicBlock::getSymbol() const { 54 if (!CachedMCSymbol) { 55 const MachineFunction *MF = getParent(); 56 MCContext &Ctx = MF->getContext(); 57 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 58 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 59 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 60 Twine(MF->getFunctionNumber()) + 61 "_" + Twine(getNumber())); 62 } 63 64 return CachedMCSymbol; 65 } 66 67 68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 69 MBB.print(OS); 70 return OS; 71 } 72 73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 74 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 75 } 76 77 /// When an MBB is added to an MF, we need to update the parent pointer of the 78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 79 /// operand list for registers. 80 /// 81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 82 /// gets the next available unique MBB number. If it is removed from a 83 /// MachineFunction, it goes back to being #-1. 84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 85 MachineBasicBlock *N) { 86 MachineFunction &MF = *N->getParent(); 87 N->Number = MF.addToMBBNumbering(N); 88 89 // Make sure the instructions have their operands in the reginfo lists. 90 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 91 for (MachineBasicBlock::instr_iterator 92 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 93 I->AddRegOperandsToUseLists(RegInfo); 94 } 95 96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 97 MachineBasicBlock *N) { 98 N->getParent()->removeFromMBBNumbering(N->Number); 99 N->Number = -1; 100 } 101 102 /// When we add an instruction to a basic block list, we update its parent 103 /// pointer and add its operands from reg use/def lists if appropriate. 104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 105 assert(!N->getParent() && "machine instruction already in a basic block"); 106 N->setParent(Parent); 107 108 // Add the instruction's register operands to their corresponding 109 // use/def lists. 110 MachineFunction *MF = Parent->getParent(); 111 N->AddRegOperandsToUseLists(MF->getRegInfo()); 112 } 113 114 /// When we remove an instruction from a basic block list, we update its parent 115 /// pointer and remove its operands from reg use/def lists if appropriate. 116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 117 assert(N->getParent() && "machine instruction not in a basic block"); 118 119 // Remove from the use/def lists. 120 if (MachineFunction *MF = N->getMF()) 121 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 122 123 N->setParent(nullptr); 124 } 125 126 /// When moving a range of instructions from one MBB list to another, we need to 127 /// update the parent pointers and the use/def lists. 128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 129 instr_iterator First, 130 instr_iterator Last) { 131 assert(Parent->getParent() == FromList.Parent->getParent() && 132 "MachineInstr parent mismatch!"); 133 assert(this != &FromList && "Called without a real transfer..."); 134 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 135 136 // If splicing between two blocks within the same function, just update the 137 // parent pointers. 138 for (; First != Last; ++First) 139 First->setParent(Parent); 140 } 141 142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 143 assert(!MI->getParent() && "MI is still in a block!"); 144 Parent->getParent()->DeleteMachineInstr(MI); 145 } 146 147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 148 instr_iterator I = instr_begin(), E = instr_end(); 149 while (I != E && I->isPHI()) 150 ++I; 151 assert((I == E || !I->isInsideBundle()) && 152 "First non-phi MI cannot be inside a bundle!"); 153 return I; 154 } 155 156 MachineBasicBlock::iterator 157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 158 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 159 160 iterator E = end(); 161 while (I != E && (I->isPHI() || I->isPosition() || 162 TII->isBasicBlockPrologue(*I))) 163 ++I; 164 // FIXME: This needs to change if we wish to bundle labels 165 // inside the bundle. 166 assert((I == E || !I->isInsideBundle()) && 167 "First non-phi / non-label instruction is inside a bundle!"); 168 return I; 169 } 170 171 MachineBasicBlock::iterator 172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 173 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 174 175 iterator E = end(); 176 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 177 TII->isBasicBlockPrologue(*I))) 178 ++I; 179 // FIXME: This needs to change if we wish to bundle labels / dbg_values 180 // inside the bundle. 181 assert((I == E || !I->isInsideBundle()) && 182 "First non-phi / non-label / non-debug " 183 "instruction is inside a bundle!"); 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 188 iterator B = begin(), E = end(), I = E; 189 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 190 ; /*noop */ 191 while (I != E && !I->isTerminator()) 192 ++I; 193 return I; 194 } 195 196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 197 instr_iterator B = instr_begin(), E = instr_end(), I = E; 198 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 199 ; /*noop */ 200 while (I != E && !I->isTerminator()) 201 ++I; 202 return I; 203 } 204 205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 206 // Skip over begin-of-block dbg_value instructions. 207 return skipDebugInstructionsForward(begin(), end()); 208 } 209 210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 211 // Skip over end-of-block dbg_value instructions. 212 instr_iterator B = instr_begin(), I = instr_end(); 213 while (I != B) { 214 --I; 215 // Return instruction that starts a bundle. 216 if (I->isDebugValue() || I->isInsideBundle()) 217 continue; 218 return I; 219 } 220 // The block is all debug values. 221 return end(); 222 } 223 224 bool MachineBasicBlock::hasEHPadSuccessor() const { 225 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 226 if ((*I)->isEHPad()) 227 return true; 228 return false; 229 } 230 231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 233 print(dbgs()); 234 } 235 #endif 236 237 bool MachineBasicBlock::isLegalToHoistInto() const { 238 if (isReturnBlock() || hasEHPadSuccessor()) 239 return false; 240 return true; 241 } 242 243 StringRef MachineBasicBlock::getName() const { 244 if (const BasicBlock *LBB = getBasicBlock()) 245 return LBB->getName(); 246 else 247 return StringRef("", 0); 248 } 249 250 /// Return a hopefully unique identifier for this block. 251 std::string MachineBasicBlock::getFullName() const { 252 std::string Name; 253 if (getParent()) 254 Name = (getParent()->getName() + ":").str(); 255 if (getBasicBlock()) 256 Name += getBasicBlock()->getName(); 257 else 258 Name += ("BB" + Twine(getNumber())).str(); 259 return Name; 260 } 261 262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes) 263 const { 264 const MachineFunction *MF = getParent(); 265 if (!MF) { 266 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 267 << " is null\n"; 268 return; 269 } 270 const Function &F = MF->getFunction(); 271 const Module *M = F.getParent(); 272 ModuleSlotTracker MST(M); 273 print(OS, MST, Indexes); 274 } 275 276 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 277 const SlotIndexes *Indexes) const { 278 const MachineFunction *MF = getParent(); 279 if (!MF) { 280 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 281 << " is null\n"; 282 return; 283 } 284 285 if (Indexes) 286 OS << Indexes->getMBBStartIdx(this) << '\t'; 287 288 OS << printMBBReference(*this) << ": "; 289 290 const char *Comma = ""; 291 if (const BasicBlock *LBB = getBasicBlock()) { 292 OS << Comma << "derived from LLVM BB "; 293 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 294 Comma = ", "; 295 } 296 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 297 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 298 if (Alignment) 299 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 300 << " bytes)"; 301 302 OS << '\n'; 303 304 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 305 if (!livein_empty()) { 306 if (Indexes) OS << '\t'; 307 OS << " Live Ins:"; 308 for (const auto &LI : LiveIns) { 309 OS << ' ' << printReg(LI.PhysReg, TRI); 310 if (!LI.LaneMask.all()) 311 OS << ':' << PrintLaneMask(LI.LaneMask); 312 } 313 OS << '\n'; 314 } 315 // Print the preds of this block according to the CFG. 316 if (!pred_empty()) { 317 if (Indexes) OS << '\t'; 318 OS << " Predecessors according to CFG:"; 319 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 320 OS << " " << printMBBReference(*(*PI)); 321 OS << '\n'; 322 } 323 324 for (auto &I : instrs()) { 325 if (Indexes) { 326 if (Indexes->hasIndex(I)) 327 OS << Indexes->getInstructionIndex(I); 328 OS << '\t'; 329 } 330 OS << '\t'; 331 if (I.isInsideBundle()) 332 OS << " * "; 333 I.print(OS, MST); 334 } 335 336 // Print the successors of this block according to the CFG. 337 if (!succ_empty()) { 338 if (Indexes) OS << '\t'; 339 OS << " Successors according to CFG:"; 340 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 341 OS << " " << printMBBReference(*(*SI)); 342 if (!Probs.empty()) 343 OS << '(' << *getProbabilityIterator(SI) << ')'; 344 } 345 OS << '\n'; 346 } 347 if (IrrLoopHeaderWeight) { 348 if (Indexes) OS << '\t'; 349 OS << " Irreducible loop header weight: " 350 << IrrLoopHeaderWeight.getValue(); 351 OS << '\n'; 352 } 353 } 354 355 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 356 bool /*PrintType*/) const { 357 OS << "%bb." << getNumber(); 358 } 359 360 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 361 LiveInVector::iterator I = find_if( 362 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 363 if (I == LiveIns.end()) 364 return; 365 366 I->LaneMask &= ~LaneMask; 367 if (I->LaneMask.none()) 368 LiveIns.erase(I); 369 } 370 371 MachineBasicBlock::livein_iterator 372 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 373 // Get non-const version of iterator. 374 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 375 return LiveIns.erase(LI); 376 } 377 378 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 379 livein_iterator I = find_if( 380 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 381 return I != livein_end() && (I->LaneMask & LaneMask).any(); 382 } 383 384 void MachineBasicBlock::sortUniqueLiveIns() { 385 std::sort(LiveIns.begin(), LiveIns.end(), 386 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 387 return LI0.PhysReg < LI1.PhysReg; 388 }); 389 // Liveins are sorted by physreg now we can merge their lanemasks. 390 LiveInVector::const_iterator I = LiveIns.begin(); 391 LiveInVector::const_iterator J; 392 LiveInVector::iterator Out = LiveIns.begin(); 393 for (; I != LiveIns.end(); ++Out, I = J) { 394 unsigned PhysReg = I->PhysReg; 395 LaneBitmask LaneMask = I->LaneMask; 396 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 397 LaneMask |= J->LaneMask; 398 Out->PhysReg = PhysReg; 399 Out->LaneMask = LaneMask; 400 } 401 LiveIns.erase(Out, LiveIns.end()); 402 } 403 404 unsigned 405 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 406 assert(getParent() && "MBB must be inserted in function"); 407 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 408 assert(RC && "Register class is required"); 409 assert((isEHPad() || this == &getParent()->front()) && 410 "Only the entry block and landing pads can have physreg live ins"); 411 412 bool LiveIn = isLiveIn(PhysReg); 413 iterator I = SkipPHIsAndLabels(begin()), E = end(); 414 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 415 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 416 417 // Look for an existing copy. 418 if (LiveIn) 419 for (;I != E && I->isCopy(); ++I) 420 if (I->getOperand(1).getReg() == PhysReg) { 421 unsigned VirtReg = I->getOperand(0).getReg(); 422 if (!MRI.constrainRegClass(VirtReg, RC)) 423 llvm_unreachable("Incompatible live-in register class."); 424 return VirtReg; 425 } 426 427 // No luck, create a virtual register. 428 unsigned VirtReg = MRI.createVirtualRegister(RC); 429 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 430 .addReg(PhysReg, RegState::Kill); 431 if (!LiveIn) 432 addLiveIn(PhysReg); 433 return VirtReg; 434 } 435 436 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 437 getParent()->splice(NewAfter->getIterator(), getIterator()); 438 } 439 440 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 441 getParent()->splice(++NewBefore->getIterator(), getIterator()); 442 } 443 444 void MachineBasicBlock::updateTerminator() { 445 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 446 // A block with no successors has no concerns with fall-through edges. 447 if (this->succ_empty()) 448 return; 449 450 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 451 SmallVector<MachineOperand, 4> Cond; 452 DebugLoc DL = findBranchDebugLoc(); 453 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 454 (void) B; 455 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 456 if (Cond.empty()) { 457 if (TBB) { 458 // The block has an unconditional branch. If its successor is now its 459 // layout successor, delete the branch. 460 if (isLayoutSuccessor(TBB)) 461 TII->removeBranch(*this); 462 } else { 463 // The block has an unconditional fallthrough. If its successor is not its 464 // layout successor, insert a branch. First we have to locate the only 465 // non-landing-pad successor, as that is the fallthrough block. 466 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 467 if ((*SI)->isEHPad()) 468 continue; 469 assert(!TBB && "Found more than one non-landing-pad successor!"); 470 TBB = *SI; 471 } 472 473 // If there is no non-landing-pad successor, the block has no fall-through 474 // edges to be concerned with. 475 if (!TBB) 476 return; 477 478 // Finally update the unconditional successor to be reached via a branch 479 // if it would not be reached by fallthrough. 480 if (!isLayoutSuccessor(TBB)) 481 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 482 } 483 return; 484 } 485 486 if (FBB) { 487 // The block has a non-fallthrough conditional branch. If one of its 488 // successors is its layout successor, rewrite it to a fallthrough 489 // conditional branch. 490 if (isLayoutSuccessor(TBB)) { 491 if (TII->reverseBranchCondition(Cond)) 492 return; 493 TII->removeBranch(*this); 494 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 495 } else if (isLayoutSuccessor(FBB)) { 496 TII->removeBranch(*this); 497 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 498 } 499 return; 500 } 501 502 // Walk through the successors and find the successor which is not a landing 503 // pad and is not the conditional branch destination (in TBB) as the 504 // fallthrough successor. 505 MachineBasicBlock *FallthroughBB = nullptr; 506 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 507 if ((*SI)->isEHPad() || *SI == TBB) 508 continue; 509 assert(!FallthroughBB && "Found more than one fallthrough successor."); 510 FallthroughBB = *SI; 511 } 512 513 if (!FallthroughBB) { 514 if (canFallThrough()) { 515 // We fallthrough to the same basic block as the conditional jump targets. 516 // Remove the conditional jump, leaving unconditional fallthrough. 517 // FIXME: This does not seem like a reasonable pattern to support, but it 518 // has been seen in the wild coming out of degenerate ARM test cases. 519 TII->removeBranch(*this); 520 521 // Finally update the unconditional successor to be reached via a branch if 522 // it would not be reached by fallthrough. 523 if (!isLayoutSuccessor(TBB)) 524 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 525 return; 526 } 527 528 // We enter here iff exactly one successor is TBB which cannot fallthrough 529 // and the rest successors if any are EHPads. In this case, we need to 530 // change the conditional branch into unconditional branch. 531 TII->removeBranch(*this); 532 Cond.clear(); 533 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 534 return; 535 } 536 537 // The block has a fallthrough conditional branch. 538 if (isLayoutSuccessor(TBB)) { 539 if (TII->reverseBranchCondition(Cond)) { 540 // We can't reverse the condition, add an unconditional branch. 541 Cond.clear(); 542 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 543 return; 544 } 545 TII->removeBranch(*this); 546 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 547 } else if (!isLayoutSuccessor(FallthroughBB)) { 548 TII->removeBranch(*this); 549 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 550 } 551 } 552 553 void MachineBasicBlock::validateSuccProbs() const { 554 #ifndef NDEBUG 555 int64_t Sum = 0; 556 for (auto Prob : Probs) 557 Sum += Prob.getNumerator(); 558 // Due to precision issue, we assume that the sum of probabilities is one if 559 // the difference between the sum of their numerators and the denominator is 560 // no greater than the number of successors. 561 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 562 Probs.size() && 563 "The sum of successors's probabilities exceeds one."); 564 #endif // NDEBUG 565 } 566 567 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 568 BranchProbability Prob) { 569 // Probability list is either empty (if successor list isn't empty, this means 570 // disabled optimization) or has the same size as successor list. 571 if (!(Probs.empty() && !Successors.empty())) 572 Probs.push_back(Prob); 573 Successors.push_back(Succ); 574 Succ->addPredecessor(this); 575 } 576 577 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 578 // We need to make sure probability list is either empty or has the same size 579 // of successor list. When this function is called, we can safely delete all 580 // probability in the list. 581 Probs.clear(); 582 Successors.push_back(Succ); 583 Succ->addPredecessor(this); 584 } 585 586 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 587 bool NormalizeSuccProbs) { 588 succ_iterator I = find(Successors, Succ); 589 removeSuccessor(I, NormalizeSuccProbs); 590 } 591 592 MachineBasicBlock::succ_iterator 593 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 594 assert(I != Successors.end() && "Not a current successor!"); 595 596 // If probability list is empty it means we don't use it (disabled 597 // optimization). 598 if (!Probs.empty()) { 599 probability_iterator WI = getProbabilityIterator(I); 600 Probs.erase(WI); 601 if (NormalizeSuccProbs) 602 normalizeSuccProbs(); 603 } 604 605 (*I)->removePredecessor(this); 606 return Successors.erase(I); 607 } 608 609 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 610 MachineBasicBlock *New) { 611 if (Old == New) 612 return; 613 614 succ_iterator E = succ_end(); 615 succ_iterator NewI = E; 616 succ_iterator OldI = E; 617 for (succ_iterator I = succ_begin(); I != E; ++I) { 618 if (*I == Old) { 619 OldI = I; 620 if (NewI != E) 621 break; 622 } 623 if (*I == New) { 624 NewI = I; 625 if (OldI != E) 626 break; 627 } 628 } 629 assert(OldI != E && "Old is not a successor of this block"); 630 631 // If New isn't already a successor, let it take Old's place. 632 if (NewI == E) { 633 Old->removePredecessor(this); 634 New->addPredecessor(this); 635 *OldI = New; 636 return; 637 } 638 639 // New is already a successor. 640 // Update its probability instead of adding a duplicate edge. 641 if (!Probs.empty()) { 642 auto ProbIter = getProbabilityIterator(NewI); 643 if (!ProbIter->isUnknown()) 644 *ProbIter += *getProbabilityIterator(OldI); 645 } 646 removeSuccessor(OldI); 647 } 648 649 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 650 succ_iterator I) { 651 if (Orig->Probs.empty()) 652 addSuccessor(*I, Orig->getSuccProbability(I)); 653 else 654 addSuccessorWithoutProb(*I); 655 } 656 657 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 658 Predecessors.push_back(Pred); 659 } 660 661 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 662 pred_iterator I = find(Predecessors, Pred); 663 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 664 Predecessors.erase(I); 665 } 666 667 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 668 if (this == FromMBB) 669 return; 670 671 while (!FromMBB->succ_empty()) { 672 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 673 674 // If probability list is empty it means we don't use it (disabled optimization). 675 if (!FromMBB->Probs.empty()) { 676 auto Prob = *FromMBB->Probs.begin(); 677 addSuccessor(Succ, Prob); 678 } else 679 addSuccessorWithoutProb(Succ); 680 681 FromMBB->removeSuccessor(Succ); 682 } 683 } 684 685 void 686 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 687 if (this == FromMBB) 688 return; 689 690 while (!FromMBB->succ_empty()) { 691 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 692 if (!FromMBB->Probs.empty()) { 693 auto Prob = *FromMBB->Probs.begin(); 694 addSuccessor(Succ, Prob); 695 } else 696 addSuccessorWithoutProb(Succ); 697 FromMBB->removeSuccessor(Succ); 698 699 // Fix up any PHI nodes in the successor. 700 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 701 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 702 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 703 MachineOperand &MO = MI->getOperand(i); 704 if (MO.getMBB() == FromMBB) 705 MO.setMBB(this); 706 } 707 } 708 normalizeSuccProbs(); 709 } 710 711 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 712 return is_contained(predecessors(), MBB); 713 } 714 715 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 716 return is_contained(successors(), MBB); 717 } 718 719 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 720 MachineFunction::const_iterator I(this); 721 return std::next(I) == MachineFunction::const_iterator(MBB); 722 } 723 724 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 725 MachineFunction::iterator Fallthrough = getIterator(); 726 ++Fallthrough; 727 // If FallthroughBlock is off the end of the function, it can't fall through. 728 if (Fallthrough == getParent()->end()) 729 return nullptr; 730 731 // If FallthroughBlock isn't a successor, no fallthrough is possible. 732 if (!isSuccessor(&*Fallthrough)) 733 return nullptr; 734 735 // Analyze the branches, if any, at the end of the block. 736 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 737 SmallVector<MachineOperand, 4> Cond; 738 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 739 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 740 // If we couldn't analyze the branch, examine the last instruction. 741 // If the block doesn't end in a known control barrier, assume fallthrough 742 // is possible. The isPredicated check is needed because this code can be 743 // called during IfConversion, where an instruction which is normally a 744 // Barrier is predicated and thus no longer an actual control barrier. 745 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 746 ? &*Fallthrough 747 : nullptr; 748 } 749 750 // If there is no branch, control always falls through. 751 if (!TBB) return &*Fallthrough; 752 753 // If there is some explicit branch to the fallthrough block, it can obviously 754 // reach, even though the branch should get folded to fall through implicitly. 755 if (MachineFunction::iterator(TBB) == Fallthrough || 756 MachineFunction::iterator(FBB) == Fallthrough) 757 return &*Fallthrough; 758 759 // If it's an unconditional branch to some block not the fall through, it 760 // doesn't fall through. 761 if (Cond.empty()) return nullptr; 762 763 // Otherwise, if it is conditional and has no explicit false block, it falls 764 // through. 765 return (FBB == nullptr) ? &*Fallthrough : nullptr; 766 } 767 768 bool MachineBasicBlock::canFallThrough() { 769 return getFallThrough() != nullptr; 770 } 771 772 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 773 Pass &P) { 774 if (!canSplitCriticalEdge(Succ)) 775 return nullptr; 776 777 MachineFunction *MF = getParent(); 778 DebugLoc DL; // FIXME: this is nowhere 779 780 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 781 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 782 DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 783 << " -- " << printMBBReference(*NMBB) << " -- " 784 << printMBBReference(*Succ) << '\n'); 785 786 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 787 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 788 if (LIS) 789 LIS->insertMBBInMaps(NMBB); 790 else if (Indexes) 791 Indexes->insertMBBInMaps(NMBB); 792 793 // On some targets like Mips, branches may kill virtual registers. Make sure 794 // that LiveVariables is properly updated after updateTerminator replaces the 795 // terminators. 796 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 797 798 // Collect a list of virtual registers killed by the terminators. 799 SmallVector<unsigned, 4> KilledRegs; 800 if (LV) 801 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 802 I != E; ++I) { 803 MachineInstr *MI = &*I; 804 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 805 OE = MI->operands_end(); OI != OE; ++OI) { 806 if (!OI->isReg() || OI->getReg() == 0 || 807 !OI->isUse() || !OI->isKill() || OI->isUndef()) 808 continue; 809 unsigned Reg = OI->getReg(); 810 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 811 LV->getVarInfo(Reg).removeKill(*MI)) { 812 KilledRegs.push_back(Reg); 813 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 814 OI->setIsKill(false); 815 } 816 } 817 } 818 819 SmallVector<unsigned, 4> UsedRegs; 820 if (LIS) { 821 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 822 I != E; ++I) { 823 MachineInstr *MI = &*I; 824 825 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 826 OE = MI->operands_end(); OI != OE; ++OI) { 827 if (!OI->isReg() || OI->getReg() == 0) 828 continue; 829 830 unsigned Reg = OI->getReg(); 831 if (!is_contained(UsedRegs, Reg)) 832 UsedRegs.push_back(Reg); 833 } 834 } 835 } 836 837 ReplaceUsesOfBlockWith(Succ, NMBB); 838 839 // If updateTerminator() removes instructions, we need to remove them from 840 // SlotIndexes. 841 SmallVector<MachineInstr*, 4> Terminators; 842 if (Indexes) { 843 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 844 I != E; ++I) 845 Terminators.push_back(&*I); 846 } 847 848 updateTerminator(); 849 850 if (Indexes) { 851 SmallVector<MachineInstr*, 4> NewTerminators; 852 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 853 I != E; ++I) 854 NewTerminators.push_back(&*I); 855 856 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 857 E = Terminators.end(); I != E; ++I) { 858 if (!is_contained(NewTerminators, *I)) 859 Indexes->removeMachineInstrFromMaps(**I); 860 } 861 } 862 863 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 864 NMBB->addSuccessor(Succ); 865 if (!NMBB->isLayoutSuccessor(Succ)) { 866 SmallVector<MachineOperand, 4> Cond; 867 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 868 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 869 870 if (Indexes) { 871 for (MachineInstr &MI : NMBB->instrs()) { 872 // Some instructions may have been moved to NMBB by updateTerminator(), 873 // so we first remove any instruction that already has an index. 874 if (Indexes->hasIndex(MI)) 875 Indexes->removeMachineInstrFromMaps(MI); 876 Indexes->insertMachineInstrInMaps(MI); 877 } 878 } 879 } 880 881 // Fix PHI nodes in Succ so they refer to NMBB instead of this 882 for (MachineBasicBlock::instr_iterator 883 i = Succ->instr_begin(),e = Succ->instr_end(); 884 i != e && i->isPHI(); ++i) 885 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 886 if (i->getOperand(ni+1).getMBB() == this) 887 i->getOperand(ni+1).setMBB(NMBB); 888 889 // Inherit live-ins from the successor 890 for (const auto &LI : Succ->liveins()) 891 NMBB->addLiveIn(LI); 892 893 // Update LiveVariables. 894 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 895 if (LV) { 896 // Restore kills of virtual registers that were killed by the terminators. 897 while (!KilledRegs.empty()) { 898 unsigned Reg = KilledRegs.pop_back_val(); 899 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 900 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 901 continue; 902 if (TargetRegisterInfo::isVirtualRegister(Reg)) 903 LV->getVarInfo(Reg).Kills.push_back(&*I); 904 DEBUG(dbgs() << "Restored terminator kill: " << *I); 905 break; 906 } 907 } 908 // Update relevant live-through information. 909 LV->addNewBlock(NMBB, this, Succ); 910 } 911 912 if (LIS) { 913 // After splitting the edge and updating SlotIndexes, live intervals may be 914 // in one of two situations, depending on whether this block was the last in 915 // the function. If the original block was the last in the function, all 916 // live intervals will end prior to the beginning of the new split block. If 917 // the original block was not at the end of the function, all live intervals 918 // will extend to the end of the new split block. 919 920 bool isLastMBB = 921 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 922 923 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 924 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 925 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 926 927 // Find the registers used from NMBB in PHIs in Succ. 928 SmallSet<unsigned, 8> PHISrcRegs; 929 for (MachineBasicBlock::instr_iterator 930 I = Succ->instr_begin(), E = Succ->instr_end(); 931 I != E && I->isPHI(); ++I) { 932 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 933 if (I->getOperand(ni+1).getMBB() == NMBB) { 934 MachineOperand &MO = I->getOperand(ni); 935 unsigned Reg = MO.getReg(); 936 PHISrcRegs.insert(Reg); 937 if (MO.isUndef()) 938 continue; 939 940 LiveInterval &LI = LIS->getInterval(Reg); 941 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 942 assert(VNI && 943 "PHI sources should be live out of their predecessors."); 944 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 945 } 946 } 947 } 948 949 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 950 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 951 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 952 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 953 continue; 954 955 LiveInterval &LI = LIS->getInterval(Reg); 956 if (!LI.liveAt(PrevIndex)) 957 continue; 958 959 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 960 if (isLiveOut && isLastMBB) { 961 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 962 assert(VNI && "LiveInterval should have VNInfo where it is live."); 963 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 964 } else if (!isLiveOut && !isLastMBB) { 965 LI.removeSegment(StartIndex, EndIndex); 966 } 967 } 968 969 // Update all intervals for registers whose uses may have been modified by 970 // updateTerminator(). 971 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 972 } 973 974 if (MachineDominatorTree *MDT = 975 P.getAnalysisIfAvailable<MachineDominatorTree>()) 976 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 977 978 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 979 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 980 // If one or the other blocks were not in a loop, the new block is not 981 // either, and thus LI doesn't need to be updated. 982 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 983 if (TIL == DestLoop) { 984 // Both in the same loop, the NMBB joins loop. 985 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 986 } else if (TIL->contains(DestLoop)) { 987 // Edge from an outer loop to an inner loop. Add to the outer loop. 988 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 989 } else if (DestLoop->contains(TIL)) { 990 // Edge from an inner loop to an outer loop. Add to the outer loop. 991 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 992 } else { 993 // Edge from two loops with no containment relation. Because these 994 // are natural loops, we know that the destination block must be the 995 // header of its loop (adding a branch into a loop elsewhere would 996 // create an irreducible loop). 997 assert(DestLoop->getHeader() == Succ && 998 "Should not create irreducible loops!"); 999 if (MachineLoop *P = DestLoop->getParentLoop()) 1000 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1001 } 1002 } 1003 } 1004 1005 return NMBB; 1006 } 1007 1008 bool MachineBasicBlock::canSplitCriticalEdge( 1009 const MachineBasicBlock *Succ) const { 1010 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1011 // it in this generic function. 1012 if (Succ->isEHPad()) 1013 return false; 1014 1015 const MachineFunction *MF = getParent(); 1016 1017 // Performance might be harmed on HW that implements branching using exec mask 1018 // where both sides of the branches are always executed. 1019 if (MF->getTarget().requiresStructuredCFG()) 1020 return false; 1021 1022 // We may need to update this's terminator, but we can't do that if 1023 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1024 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1025 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1026 SmallVector<MachineOperand, 4> Cond; 1027 // AnalyzeBanch should modify this, since we did not allow modification. 1028 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1029 /*AllowModify*/ false)) 1030 return false; 1031 1032 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1033 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1034 // case that we can't handle. Since this never happens in properly optimized 1035 // code, just skip those edges. 1036 if (TBB && TBB == FBB) { 1037 DEBUG(dbgs() << "Won't split critical edge after degenerate " 1038 << printMBBReference(*this) << '\n'); 1039 return false; 1040 } 1041 return true; 1042 } 1043 1044 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1045 /// neighboring instructions so the bundle won't be broken by removing MI. 1046 static void unbundleSingleMI(MachineInstr *MI) { 1047 // Removing the first instruction in a bundle. 1048 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1049 MI->unbundleFromSucc(); 1050 // Removing the last instruction in a bundle. 1051 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1052 MI->unbundleFromPred(); 1053 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1054 // are already fine. 1055 } 1056 1057 MachineBasicBlock::instr_iterator 1058 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1059 unbundleSingleMI(&*I); 1060 return Insts.erase(I); 1061 } 1062 1063 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1064 unbundleSingleMI(MI); 1065 MI->clearFlag(MachineInstr::BundledPred); 1066 MI->clearFlag(MachineInstr::BundledSucc); 1067 return Insts.remove(MI); 1068 } 1069 1070 MachineBasicBlock::instr_iterator 1071 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1072 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1073 "Cannot insert instruction with bundle flags"); 1074 // Set the bundle flags when inserting inside a bundle. 1075 if (I != instr_end() && I->isBundledWithPred()) { 1076 MI->setFlag(MachineInstr::BundledPred); 1077 MI->setFlag(MachineInstr::BundledSucc); 1078 } 1079 return Insts.insert(I, MI); 1080 } 1081 1082 /// This method unlinks 'this' from the containing function, and returns it, but 1083 /// does not delete it. 1084 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1085 assert(getParent() && "Not embedded in a function!"); 1086 getParent()->remove(this); 1087 return this; 1088 } 1089 1090 /// This method unlinks 'this' from the containing function, and deletes it. 1091 void MachineBasicBlock::eraseFromParent() { 1092 assert(getParent() && "Not embedded in a function!"); 1093 getParent()->erase(this); 1094 } 1095 1096 /// Given a machine basic block that branched to 'Old', change the code and CFG 1097 /// so that it branches to 'New' instead. 1098 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1099 MachineBasicBlock *New) { 1100 assert(Old != New && "Cannot replace self with self!"); 1101 1102 MachineBasicBlock::instr_iterator I = instr_end(); 1103 while (I != instr_begin()) { 1104 --I; 1105 if (!I->isTerminator()) break; 1106 1107 // Scan the operands of this machine instruction, replacing any uses of Old 1108 // with New. 1109 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1110 if (I->getOperand(i).isMBB() && 1111 I->getOperand(i).getMBB() == Old) 1112 I->getOperand(i).setMBB(New); 1113 } 1114 1115 // Update the successor information. 1116 replaceSuccessor(Old, New); 1117 } 1118 1119 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1120 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1121 /// MBB successors from the CFG. DestA and DestB can be null. 1122 /// 1123 /// Besides DestA and DestB, retain other edges leading to LandingPads 1124 /// (currently there can be only one; we don't check or require that here). 1125 /// Note it is possible that DestA and/or DestB are LandingPads. 1126 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1127 MachineBasicBlock *DestB, 1128 bool IsCond) { 1129 // The values of DestA and DestB frequently come from a call to the 1130 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1131 // values from there. 1132 // 1133 // 1. If both DestA and DestB are null, then the block ends with no branches 1134 // (it falls through to its successor). 1135 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1136 // with only an unconditional branch. 1137 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1138 // with a conditional branch that falls through to a successor (DestB). 1139 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1140 // conditional branch followed by an unconditional branch. DestA is the 1141 // 'true' destination and DestB is the 'false' destination. 1142 1143 bool Changed = false; 1144 1145 MachineBasicBlock *FallThru = getNextNode(); 1146 1147 if (!DestA && !DestB) { 1148 // Block falls through to successor. 1149 DestA = FallThru; 1150 DestB = FallThru; 1151 } else if (DestA && !DestB) { 1152 if (IsCond) 1153 // Block ends in conditional jump that falls through to successor. 1154 DestB = FallThru; 1155 } else { 1156 assert(DestA && DestB && IsCond && 1157 "CFG in a bad state. Cannot correct CFG edges"); 1158 } 1159 1160 // Remove superfluous edges. I.e., those which aren't destinations of this 1161 // basic block, duplicate edges, or landing pads. 1162 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1163 MachineBasicBlock::succ_iterator SI = succ_begin(); 1164 while (SI != succ_end()) { 1165 const MachineBasicBlock *MBB = *SI; 1166 if (!SeenMBBs.insert(MBB).second || 1167 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1168 // This is a superfluous edge, remove it. 1169 SI = removeSuccessor(SI); 1170 Changed = true; 1171 } else { 1172 ++SI; 1173 } 1174 } 1175 1176 if (Changed) 1177 normalizeSuccProbs(); 1178 return Changed; 1179 } 1180 1181 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1182 /// instructions. Return UnknownLoc if there is none. 1183 DebugLoc 1184 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1185 // Skip debug declarations, we don't want a DebugLoc from them. 1186 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1187 if (MBBI != instr_end()) 1188 return MBBI->getDebugLoc(); 1189 return {}; 1190 } 1191 1192 /// Find and return the merged DebugLoc of the branch instructions of the block. 1193 /// Return UnknownLoc if there is none. 1194 DebugLoc 1195 MachineBasicBlock::findBranchDebugLoc() { 1196 DebugLoc DL; 1197 auto TI = getFirstTerminator(); 1198 while (TI != end() && !TI->isBranch()) 1199 ++TI; 1200 1201 if (TI != end()) { 1202 DL = TI->getDebugLoc(); 1203 for (++TI ; TI != end() ; ++TI) 1204 if (TI->isBranch()) 1205 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1206 } 1207 return DL; 1208 } 1209 1210 /// Return probability of the edge from this block to MBB. 1211 BranchProbability 1212 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1213 if (Probs.empty()) 1214 return BranchProbability(1, succ_size()); 1215 1216 const auto &Prob = *getProbabilityIterator(Succ); 1217 if (Prob.isUnknown()) { 1218 // For unknown probabilities, collect the sum of all known ones, and evenly 1219 // ditribute the complemental of the sum to each unknown probability. 1220 unsigned KnownProbNum = 0; 1221 auto Sum = BranchProbability::getZero(); 1222 for (auto &P : Probs) { 1223 if (!P.isUnknown()) { 1224 Sum += P; 1225 KnownProbNum++; 1226 } 1227 } 1228 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1229 } else 1230 return Prob; 1231 } 1232 1233 /// Set successor probability of a given iterator. 1234 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1235 BranchProbability Prob) { 1236 assert(!Prob.isUnknown()); 1237 if (Probs.empty()) 1238 return; 1239 *getProbabilityIterator(I) = Prob; 1240 } 1241 1242 /// Return probability iterator corresonding to the I successor iterator 1243 MachineBasicBlock::const_probability_iterator 1244 MachineBasicBlock::getProbabilityIterator( 1245 MachineBasicBlock::const_succ_iterator I) const { 1246 assert(Probs.size() == Successors.size() && "Async probability list!"); 1247 const size_t index = std::distance(Successors.begin(), I); 1248 assert(index < Probs.size() && "Not a current successor!"); 1249 return Probs.begin() + index; 1250 } 1251 1252 /// Return probability iterator corresonding to the I successor iterator. 1253 MachineBasicBlock::probability_iterator 1254 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1255 assert(Probs.size() == Successors.size() && "Async probability list!"); 1256 const size_t index = std::distance(Successors.begin(), I); 1257 assert(index < Probs.size() && "Not a current successor!"); 1258 return Probs.begin() + index; 1259 } 1260 1261 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1262 /// as of just before "MI". 1263 /// 1264 /// Search is localised to a neighborhood of 1265 /// Neighborhood instructions before (searching for defs or kills) and N 1266 /// instructions after (searching just for defs) MI. 1267 MachineBasicBlock::LivenessQueryResult 1268 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1269 unsigned Reg, const_iterator Before, 1270 unsigned Neighborhood) const { 1271 unsigned N = Neighborhood; 1272 1273 // Start by searching backwards from Before, looking for kills, reads or defs. 1274 const_iterator I(Before); 1275 // If this is the first insn in the block, don't search backwards. 1276 if (I != begin()) { 1277 do { 1278 --I; 1279 1280 MachineOperandIteratorBase::PhysRegInfo Info = 1281 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1282 1283 // Defs happen after uses so they take precedence if both are present. 1284 1285 // Register is dead after a dead def of the full register. 1286 if (Info.DeadDef) 1287 return LQR_Dead; 1288 // Register is (at least partially) live after a def. 1289 if (Info.Defined) { 1290 if (!Info.PartialDeadDef) 1291 return LQR_Live; 1292 // As soon as we saw a partial definition (dead or not), 1293 // we cannot tell if the value is partial live without 1294 // tracking the lanemasks. We are not going to do this, 1295 // so fall back on the remaining of the analysis. 1296 break; 1297 } 1298 // Register is dead after a full kill or clobber and no def. 1299 if (Info.Killed || Info.Clobbered) 1300 return LQR_Dead; 1301 // Register must be live if we read it. 1302 if (Info.Read) 1303 return LQR_Live; 1304 } while (I != begin() && --N > 0); 1305 } 1306 1307 // Did we get to the start of the block? 1308 if (I == begin()) { 1309 // If so, the register's state is definitely defined by the live-in state. 1310 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1311 ++RAI) 1312 if (isLiveIn(*RAI)) 1313 return LQR_Live; 1314 1315 return LQR_Dead; 1316 } 1317 1318 N = Neighborhood; 1319 1320 // Try searching forwards from Before, looking for reads or defs. 1321 I = const_iterator(Before); 1322 // If this is the last insn in the block, don't search forwards. 1323 if (I != end()) { 1324 for (++I; I != end() && N > 0; ++I, --N) { 1325 MachineOperandIteratorBase::PhysRegInfo Info = 1326 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1327 1328 // Register is live when we read it here. 1329 if (Info.Read) 1330 return LQR_Live; 1331 // Register is dead if we can fully overwrite or clobber it here. 1332 if (Info.FullyDefined || Info.Clobbered) 1333 return LQR_Dead; 1334 } 1335 } 1336 1337 // At this point we have no idea of the liveness of the register. 1338 return LQR_Unknown; 1339 } 1340 1341 const uint32_t * 1342 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1343 // EH funclet entry does not preserve any registers. 1344 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1345 } 1346 1347 const uint32_t * 1348 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1349 // If we see a return block with successors, this must be a funclet return, 1350 // which does not preserve any registers. If there are no successors, we don't 1351 // care what kind of return it is, putting a mask after it is a no-op. 1352 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1353 } 1354 1355 void MachineBasicBlock::clearLiveIns() { 1356 LiveIns.clear(); 1357 } 1358 1359 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1360 assert(getParent()->getProperties().hasProperty( 1361 MachineFunctionProperties::Property::TracksLiveness) && 1362 "Liveness information is accurate"); 1363 return LiveIns.begin(); 1364 } 1365