1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MILexer.h"
15 #include "MIParser.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/MIRPrinter.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/ModuleSlotTracker.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueSymbolTable.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/MC/MCDwarf.h"
55 #include "llvm/MC/MCInstrDesc.h"
56 #include "llvm/MC/MCRegisterInfo.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/BranchProbability.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/LowLevelTypeImpl.h"
62 #include "llvm/Support/MemoryBuffer.h"
63 #include "llvm/Support/SMLoc.h"
64 #include "llvm/Support/SourceMgr.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetInstrInfo.h"
67 #include "llvm/Target/TargetIntrinsicInfo.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetRegisterInfo.h"
70 #include "llvm/Target/TargetSubtargetInfo.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cctype>
74 #include <cstddef>
75 #include <cstdint>
76 #include <limits>
77 #include <string>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
83     SourceMgr &SM, const SlotMapping &IRSlots,
84     const Name2RegClassMap &Names2RegClasses,
85     const Name2RegBankMap &Names2RegBanks)
86   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
87     Names2RegBanks(Names2RegBanks) {
88 }
89 
90 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
91   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
92   if (I.second) {
93     MachineRegisterInfo &MRI = MF.getRegInfo();
94     VRegInfo *Info = new (Allocator) VRegInfo;
95     Info->VReg = MRI.createIncompleteVirtualRegister();
96     I.first->second = Info;
97   }
98   return *I.first->second;
99 }
100 
101 namespace {
102 
103 /// A wrapper struct around the 'MachineOperand' struct that includes a source
104 /// range and other attributes.
105 struct ParsedMachineOperand {
106   MachineOperand Operand;
107   StringRef::iterator Begin;
108   StringRef::iterator End;
109   Optional<unsigned> TiedDefIdx;
110 
111   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
112                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
113       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
114     if (TiedDefIdx)
115       assert(Operand.isReg() && Operand.isUse() &&
116              "Only used register operands can be tied");
117   }
118 };
119 
120 class MIParser {
121   MachineFunction &MF;
122   SMDiagnostic &Error;
123   StringRef Source, CurrentSource;
124   MIToken Token;
125   PerFunctionMIParsingState &PFS;
126   /// Maps from instruction names to op codes.
127   StringMap<unsigned> Names2InstrOpCodes;
128   /// Maps from register names to registers.
129   StringMap<unsigned> Names2Regs;
130   /// Maps from register mask names to register masks.
131   StringMap<const uint32_t *> Names2RegMasks;
132   /// Maps from subregister names to subregister indices.
133   StringMap<unsigned> Names2SubRegIndices;
134   /// Maps from slot numbers to function's unnamed basic blocks.
135   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
136   /// Maps from slot numbers to function's unnamed values.
137   DenseMap<unsigned, const Value *> Slots2Values;
138   /// Maps from target index names to target indices.
139   StringMap<int> Names2TargetIndices;
140   /// Maps from direct target flag names to the direct target flag values.
141   StringMap<unsigned> Names2DirectTargetFlags;
142   /// Maps from direct target flag names to the bitmask target flag values.
143   StringMap<unsigned> Names2BitmaskTargetFlags;
144   /// Maps from MMO target flag names to MMO target flag values.
145   StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags;
146 
147 public:
148   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
149            StringRef Source);
150 
151   /// \p SkipChar gives the number of characters to skip before looking
152   /// for the next token.
153   void lex(unsigned SkipChar = 0);
154 
155   /// Report an error at the current location with the given message.
156   ///
157   /// This function always return true.
158   bool error(const Twine &Msg);
159 
160   /// Report an error at the given location with the given message.
161   ///
162   /// This function always return true.
163   bool error(StringRef::iterator Loc, const Twine &Msg);
164 
165   bool
166   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
167   bool parseBasicBlocks();
168   bool parse(MachineInstr *&MI);
169   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
170   bool parseStandaloneNamedRegister(unsigned &Reg);
171   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
172   bool parseStandaloneRegister(unsigned &Reg);
173   bool parseStandaloneStackObject(int &FI);
174   bool parseStandaloneMDNode(MDNode *&Node);
175 
176   bool
177   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
178   bool parseBasicBlock(MachineBasicBlock &MBB,
179                        MachineBasicBlock *&AddFalthroughFrom);
180   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
181   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
182 
183   bool parseNamedRegister(unsigned &Reg);
184   bool parseVirtualRegister(VRegInfo *&Info);
185   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
186   bool parseRegisterFlag(unsigned &Flags);
187   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
188   bool parseSubRegisterIndex(unsigned &SubReg);
189   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
190   bool parseRegisterOperand(MachineOperand &Dest,
191                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
192   bool parseImmediateOperand(MachineOperand &Dest);
193   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
194                        const Constant *&C);
195   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
196   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
197   bool parseTypedImmediateOperand(MachineOperand &Dest);
198   bool parseFPImmediateOperand(MachineOperand &Dest);
199   bool parseMBBReference(MachineBasicBlock *&MBB);
200   bool parseMBBOperand(MachineOperand &Dest);
201   bool parseStackFrameIndex(int &FI);
202   bool parseStackObjectOperand(MachineOperand &Dest);
203   bool parseFixedStackFrameIndex(int &FI);
204   bool parseFixedStackObjectOperand(MachineOperand &Dest);
205   bool parseGlobalValue(GlobalValue *&GV);
206   bool parseGlobalAddressOperand(MachineOperand &Dest);
207   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
208   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
209   bool parseJumpTableIndexOperand(MachineOperand &Dest);
210   bool parseExternalSymbolOperand(MachineOperand &Dest);
211   bool parseMDNode(MDNode *&Node);
212   bool parseMetadataOperand(MachineOperand &Dest);
213   bool parseCFIOffset(int &Offset);
214   bool parseCFIRegister(unsigned &Reg);
215   bool parseCFIOperand(MachineOperand &Dest);
216   bool parseIRBlock(BasicBlock *&BB, const Function &F);
217   bool parseBlockAddressOperand(MachineOperand &Dest);
218   bool parseIntrinsicOperand(MachineOperand &Dest);
219   bool parsePredicateOperand(MachineOperand &Dest);
220   bool parseTargetIndexOperand(MachineOperand &Dest);
221   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
222   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
223   bool parseMachineOperand(MachineOperand &Dest,
224                            Optional<unsigned> &TiedDefIdx);
225   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
226                                          Optional<unsigned> &TiedDefIdx);
227   bool parseOffset(int64_t &Offset);
228   bool parseAlignment(unsigned &Alignment);
229   bool parseOperandsOffset(MachineOperand &Op);
230   bool parseIRValue(const Value *&V);
231   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
232   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
233   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
234   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
235   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
236   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
237 
238 private:
239   /// Convert the integer literal in the current token into an unsigned integer.
240   ///
241   /// Return true if an error occurred.
242   bool getUnsigned(unsigned &Result);
243 
244   /// Convert the integer literal in the current token into an uint64.
245   ///
246   /// Return true if an error occurred.
247   bool getUint64(uint64_t &Result);
248 
249   /// Convert the hexadecimal literal in the current token into an unsigned
250   ///  APInt with a minimum bitwidth required to represent the value.
251   ///
252   /// Return true if the literal does not represent an integer value.
253   bool getHexUint(APInt &Result);
254 
255   /// If the current token is of the given kind, consume it and return false.
256   /// Otherwise report an error and return true.
257   bool expectAndConsume(MIToken::TokenKind TokenKind);
258 
259   /// If the current token is of the given kind, consume it and return true.
260   /// Otherwise return false.
261   bool consumeIfPresent(MIToken::TokenKind TokenKind);
262 
263   void initNames2InstrOpCodes();
264 
265   /// Try to convert an instruction name to an opcode. Return true if the
266   /// instruction name is invalid.
267   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
268 
269   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
270 
271   bool assignRegisterTies(MachineInstr &MI,
272                           ArrayRef<ParsedMachineOperand> Operands);
273 
274   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
275                               const MCInstrDesc &MCID);
276 
277   void initNames2Regs();
278 
279   /// Try to convert a register name to a register number. Return true if the
280   /// register name is invalid.
281   bool getRegisterByName(StringRef RegName, unsigned &Reg);
282 
283   void initNames2RegMasks();
284 
285   /// Check if the given identifier is a name of a register mask.
286   ///
287   /// Return null if the identifier isn't a register mask.
288   const uint32_t *getRegMask(StringRef Identifier);
289 
290   void initNames2SubRegIndices();
291 
292   /// Check if the given identifier is a name of a subregister index.
293   ///
294   /// Return 0 if the name isn't a subregister index class.
295   unsigned getSubRegIndex(StringRef Name);
296 
297   const BasicBlock *getIRBlock(unsigned Slot);
298   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
299 
300   const Value *getIRValue(unsigned Slot);
301 
302   void initNames2TargetIndices();
303 
304   /// Try to convert a name of target index to the corresponding target index.
305   ///
306   /// Return true if the name isn't a name of a target index.
307   bool getTargetIndex(StringRef Name, int &Index);
308 
309   void initNames2DirectTargetFlags();
310 
311   /// Try to convert a name of a direct target flag to the corresponding
312   /// target flag.
313   ///
314   /// Return true if the name isn't a name of a direct flag.
315   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
316 
317   void initNames2BitmaskTargetFlags();
318 
319   /// Try to convert a name of a bitmask target flag to the corresponding
320   /// target flag.
321   ///
322   /// Return true if the name isn't a name of a bitmask target flag.
323   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
324 
325   void initNames2MMOTargetFlags();
326 
327   /// Try to convert a name of a MachineMemOperand target flag to the
328   /// corresponding target flag.
329   ///
330   /// Return true if the name isn't a name of a target MMO flag.
331   bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag);
332 
333   /// parseStringConstant
334   ///   ::= StringConstant
335   bool parseStringConstant(std::string &Result);
336 };
337 
338 } // end anonymous namespace
339 
340 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
341                    StringRef Source)
342     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
343 {}
344 
345 void MIParser::lex(unsigned SkipChar) {
346   CurrentSource = lexMIToken(
347       CurrentSource.data() + SkipChar, Token,
348       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
349 }
350 
351 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
352 
353 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
354   const SourceMgr &SM = *PFS.SM;
355   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
356   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
357   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
358     // Create an ordinary diagnostic when the source manager's buffer is the
359     // source string.
360     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
361     return true;
362   }
363   // Create a diagnostic for a YAML string literal.
364   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
365                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
366                        Source, None, None);
367   return true;
368 }
369 
370 static const char *toString(MIToken::TokenKind TokenKind) {
371   switch (TokenKind) {
372   case MIToken::comma:
373     return "','";
374   case MIToken::equal:
375     return "'='";
376   case MIToken::colon:
377     return "':'";
378   case MIToken::lparen:
379     return "'('";
380   case MIToken::rparen:
381     return "')'";
382   default:
383     return "<unknown token>";
384   }
385 }
386 
387 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
388   if (Token.isNot(TokenKind))
389     return error(Twine("expected ") + toString(TokenKind));
390   lex();
391   return false;
392 }
393 
394 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
395   if (Token.isNot(TokenKind))
396     return false;
397   lex();
398   return true;
399 }
400 
401 bool MIParser::parseBasicBlockDefinition(
402     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
403   assert(Token.is(MIToken::MachineBasicBlockLabel));
404   unsigned ID = 0;
405   if (getUnsigned(ID))
406     return true;
407   auto Loc = Token.location();
408   auto Name = Token.stringValue();
409   lex();
410   bool HasAddressTaken = false;
411   bool IsLandingPad = false;
412   unsigned Alignment = 0;
413   BasicBlock *BB = nullptr;
414   if (consumeIfPresent(MIToken::lparen)) {
415     do {
416       // TODO: Report an error when multiple same attributes are specified.
417       switch (Token.kind()) {
418       case MIToken::kw_address_taken:
419         HasAddressTaken = true;
420         lex();
421         break;
422       case MIToken::kw_landing_pad:
423         IsLandingPad = true;
424         lex();
425         break;
426       case MIToken::kw_align:
427         if (parseAlignment(Alignment))
428           return true;
429         break;
430       case MIToken::IRBlock:
431         // TODO: Report an error when both name and ir block are specified.
432         if (parseIRBlock(BB, *MF.getFunction()))
433           return true;
434         lex();
435         break;
436       default:
437         break;
438       }
439     } while (consumeIfPresent(MIToken::comma));
440     if (expectAndConsume(MIToken::rparen))
441       return true;
442   }
443   if (expectAndConsume(MIToken::colon))
444     return true;
445 
446   if (!Name.empty()) {
447     BB = dyn_cast_or_null<BasicBlock>(
448         MF.getFunction()->getValueSymbolTable()->lookup(Name));
449     if (!BB)
450       return error(Loc, Twine("basic block '") + Name +
451                             "' is not defined in the function '" +
452                             MF.getName() + "'");
453   }
454   auto *MBB = MF.CreateMachineBasicBlock(BB);
455   MF.insert(MF.end(), MBB);
456   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
457   if (!WasInserted)
458     return error(Loc, Twine("redefinition of machine basic block with id #") +
459                           Twine(ID));
460   if (Alignment)
461     MBB->setAlignment(Alignment);
462   if (HasAddressTaken)
463     MBB->setHasAddressTaken();
464   MBB->setIsEHPad(IsLandingPad);
465   return false;
466 }
467 
468 bool MIParser::parseBasicBlockDefinitions(
469     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
470   lex();
471   // Skip until the first machine basic block.
472   while (Token.is(MIToken::Newline))
473     lex();
474   if (Token.isErrorOrEOF())
475     return Token.isError();
476   if (Token.isNot(MIToken::MachineBasicBlockLabel))
477     return error("expected a basic block definition before instructions");
478   unsigned BraceDepth = 0;
479   do {
480     if (parseBasicBlockDefinition(MBBSlots))
481       return true;
482     bool IsAfterNewline = false;
483     // Skip until the next machine basic block.
484     while (true) {
485       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
486           Token.isErrorOrEOF())
487         break;
488       else if (Token.is(MIToken::MachineBasicBlockLabel))
489         return error("basic block definition should be located at the start of "
490                      "the line");
491       else if (consumeIfPresent(MIToken::Newline)) {
492         IsAfterNewline = true;
493         continue;
494       }
495       IsAfterNewline = false;
496       if (Token.is(MIToken::lbrace))
497         ++BraceDepth;
498       if (Token.is(MIToken::rbrace)) {
499         if (!BraceDepth)
500           return error("extraneous closing brace ('}')");
501         --BraceDepth;
502       }
503       lex();
504     }
505     // Verify that we closed all of the '{' at the end of a file or a block.
506     if (!Token.isError() && BraceDepth)
507       return error("expected '}'"); // FIXME: Report a note that shows '{'.
508   } while (!Token.isErrorOrEOF());
509   return Token.isError();
510 }
511 
512 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
513   assert(Token.is(MIToken::kw_liveins));
514   lex();
515   if (expectAndConsume(MIToken::colon))
516     return true;
517   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
518     return false;
519   do {
520     if (Token.isNot(MIToken::NamedRegister))
521       return error("expected a named register");
522     unsigned Reg = 0;
523     if (parseNamedRegister(Reg))
524       return true;
525     lex();
526     LaneBitmask Mask = LaneBitmask::getAll();
527     if (consumeIfPresent(MIToken::colon)) {
528       // Parse lane mask.
529       if (Token.isNot(MIToken::IntegerLiteral) &&
530           Token.isNot(MIToken::HexLiteral))
531         return error("expected a lane mask");
532       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
533                     "Use correct get-function for lane mask");
534       LaneBitmask::Type V;
535       if (getUnsigned(V))
536         return error("invalid lane mask value");
537       Mask = LaneBitmask(V);
538       lex();
539     }
540     MBB.addLiveIn(Reg, Mask);
541   } while (consumeIfPresent(MIToken::comma));
542   return false;
543 }
544 
545 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
546   assert(Token.is(MIToken::kw_successors));
547   lex();
548   if (expectAndConsume(MIToken::colon))
549     return true;
550   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
551     return false;
552   do {
553     if (Token.isNot(MIToken::MachineBasicBlock))
554       return error("expected a machine basic block reference");
555     MachineBasicBlock *SuccMBB = nullptr;
556     if (parseMBBReference(SuccMBB))
557       return true;
558     lex();
559     unsigned Weight = 0;
560     if (consumeIfPresent(MIToken::lparen)) {
561       if (Token.isNot(MIToken::IntegerLiteral) &&
562           Token.isNot(MIToken::HexLiteral))
563         return error("expected an integer literal after '('");
564       if (getUnsigned(Weight))
565         return true;
566       lex();
567       if (expectAndConsume(MIToken::rparen))
568         return true;
569     }
570     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
571   } while (consumeIfPresent(MIToken::comma));
572   MBB.normalizeSuccProbs();
573   return false;
574 }
575 
576 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
577                                MachineBasicBlock *&AddFalthroughFrom) {
578   // Skip the definition.
579   assert(Token.is(MIToken::MachineBasicBlockLabel));
580   lex();
581   if (consumeIfPresent(MIToken::lparen)) {
582     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
583       lex();
584     consumeIfPresent(MIToken::rparen);
585   }
586   consumeIfPresent(MIToken::colon);
587 
588   // Parse the liveins and successors.
589   // N.B: Multiple lists of successors and liveins are allowed and they're
590   // merged into one.
591   // Example:
592   //   liveins: %edi
593   //   liveins: %esi
594   //
595   // is equivalent to
596   //   liveins: %edi, %esi
597   bool ExplicitSuccessors = false;
598   while (true) {
599     if (Token.is(MIToken::kw_successors)) {
600       if (parseBasicBlockSuccessors(MBB))
601         return true;
602       ExplicitSuccessors = true;
603     } else if (Token.is(MIToken::kw_liveins)) {
604       if (parseBasicBlockLiveins(MBB))
605         return true;
606     } else if (consumeIfPresent(MIToken::Newline)) {
607       continue;
608     } else
609       break;
610     if (!Token.isNewlineOrEOF())
611       return error("expected line break at the end of a list");
612     lex();
613   }
614 
615   // Parse the instructions.
616   bool IsInBundle = false;
617   MachineInstr *PrevMI = nullptr;
618   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
619          !Token.is(MIToken::Eof)) {
620     if (consumeIfPresent(MIToken::Newline))
621       continue;
622     if (consumeIfPresent(MIToken::rbrace)) {
623       // The first parsing pass should verify that all closing '}' have an
624       // opening '{'.
625       assert(IsInBundle);
626       IsInBundle = false;
627       continue;
628     }
629     MachineInstr *MI = nullptr;
630     if (parse(MI))
631       return true;
632     MBB.insert(MBB.end(), MI);
633     if (IsInBundle) {
634       PrevMI->setFlag(MachineInstr::BundledSucc);
635       MI->setFlag(MachineInstr::BundledPred);
636     }
637     PrevMI = MI;
638     if (Token.is(MIToken::lbrace)) {
639       if (IsInBundle)
640         return error("nested instruction bundles are not allowed");
641       lex();
642       // This instruction is the start of the bundle.
643       MI->setFlag(MachineInstr::BundledSucc);
644       IsInBundle = true;
645       if (!Token.is(MIToken::Newline))
646         // The next instruction can be on the same line.
647         continue;
648     }
649     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
650     lex();
651   }
652 
653   // Construct successor list by searching for basic block machine operands.
654   if (!ExplicitSuccessors) {
655     SmallVector<MachineBasicBlock*,4> Successors;
656     bool IsFallthrough;
657     guessSuccessors(MBB, Successors, IsFallthrough);
658     for (MachineBasicBlock *Succ : Successors)
659       MBB.addSuccessor(Succ);
660 
661     if (IsFallthrough) {
662       AddFalthroughFrom = &MBB;
663     } else {
664       MBB.normalizeSuccProbs();
665     }
666   }
667 
668   return false;
669 }
670 
671 bool MIParser::parseBasicBlocks() {
672   lex();
673   // Skip until the first machine basic block.
674   while (Token.is(MIToken::Newline))
675     lex();
676   if (Token.isErrorOrEOF())
677     return Token.isError();
678   // The first parsing pass should have verified that this token is a MBB label
679   // in the 'parseBasicBlockDefinitions' method.
680   assert(Token.is(MIToken::MachineBasicBlockLabel));
681   MachineBasicBlock *AddFalthroughFrom = nullptr;
682   do {
683     MachineBasicBlock *MBB = nullptr;
684     if (parseMBBReference(MBB))
685       return true;
686     if (AddFalthroughFrom) {
687       if (!AddFalthroughFrom->isSuccessor(MBB))
688         AddFalthroughFrom->addSuccessor(MBB);
689       AddFalthroughFrom->normalizeSuccProbs();
690       AddFalthroughFrom = nullptr;
691     }
692     if (parseBasicBlock(*MBB, AddFalthroughFrom))
693       return true;
694     // The method 'parseBasicBlock' should parse the whole block until the next
695     // block or the end of file.
696     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
697   } while (Token.isNot(MIToken::Eof));
698   return false;
699 }
700 
701 bool MIParser::parse(MachineInstr *&MI) {
702   // Parse any register operands before '='
703   MachineOperand MO = MachineOperand::CreateImm(0);
704   SmallVector<ParsedMachineOperand, 8> Operands;
705   while (Token.isRegister() || Token.isRegisterFlag()) {
706     auto Loc = Token.location();
707     Optional<unsigned> TiedDefIdx;
708     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
709       return true;
710     Operands.push_back(
711         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
712     if (Token.isNot(MIToken::comma))
713       break;
714     lex();
715   }
716   if (!Operands.empty() && expectAndConsume(MIToken::equal))
717     return true;
718 
719   unsigned OpCode, Flags = 0;
720   if (Token.isError() || parseInstruction(OpCode, Flags))
721     return true;
722 
723   // Parse the remaining machine operands.
724   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
725          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
726     auto Loc = Token.location();
727     Optional<unsigned> TiedDefIdx;
728     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
729       return true;
730     Operands.push_back(
731         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
732     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
733         Token.is(MIToken::lbrace))
734       break;
735     if (Token.isNot(MIToken::comma))
736       return error("expected ',' before the next machine operand");
737     lex();
738   }
739 
740   DebugLoc DebugLocation;
741   if (Token.is(MIToken::kw_debug_location)) {
742     lex();
743     if (Token.isNot(MIToken::exclaim))
744       return error("expected a metadata node after 'debug-location'");
745     MDNode *Node = nullptr;
746     if (parseMDNode(Node))
747       return true;
748     DebugLocation = DebugLoc(Node);
749   }
750 
751   // Parse the machine memory operands.
752   SmallVector<MachineMemOperand *, 2> MemOperands;
753   if (Token.is(MIToken::coloncolon)) {
754     lex();
755     while (!Token.isNewlineOrEOF()) {
756       MachineMemOperand *MemOp = nullptr;
757       if (parseMachineMemoryOperand(MemOp))
758         return true;
759       MemOperands.push_back(MemOp);
760       if (Token.isNewlineOrEOF())
761         break;
762       if (Token.isNot(MIToken::comma))
763         return error("expected ',' before the next machine memory operand");
764       lex();
765     }
766   }
767 
768   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
769   if (!MCID.isVariadic()) {
770     // FIXME: Move the implicit operand verification to the machine verifier.
771     if (verifyImplicitOperands(Operands, MCID))
772       return true;
773   }
774 
775   // TODO: Check for extraneous machine operands.
776   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
777   MI->setFlags(Flags);
778   for (const auto &Operand : Operands)
779     MI->addOperand(MF, Operand.Operand);
780   if (assignRegisterTies(*MI, Operands))
781     return true;
782   if (MemOperands.empty())
783     return false;
784   MachineInstr::mmo_iterator MemRefs =
785       MF.allocateMemRefsArray(MemOperands.size());
786   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
787   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
788   return false;
789 }
790 
791 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
792   lex();
793   if (Token.isNot(MIToken::MachineBasicBlock))
794     return error("expected a machine basic block reference");
795   if (parseMBBReference(MBB))
796     return true;
797   lex();
798   if (Token.isNot(MIToken::Eof))
799     return error(
800         "expected end of string after the machine basic block reference");
801   return false;
802 }
803 
804 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
805   lex();
806   if (Token.isNot(MIToken::NamedRegister))
807     return error("expected a named register");
808   if (parseNamedRegister(Reg))
809     return true;
810   lex();
811   if (Token.isNot(MIToken::Eof))
812     return error("expected end of string after the register reference");
813   return false;
814 }
815 
816 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
817   lex();
818   if (Token.isNot(MIToken::VirtualRegister))
819     return error("expected a virtual register");
820   if (parseVirtualRegister(Info))
821     return true;
822   lex();
823   if (Token.isNot(MIToken::Eof))
824     return error("expected end of string after the register reference");
825   return false;
826 }
827 
828 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
829   lex();
830   if (Token.isNot(MIToken::NamedRegister) &&
831       Token.isNot(MIToken::VirtualRegister))
832     return error("expected either a named or virtual register");
833 
834   VRegInfo *Info;
835   if (parseRegister(Reg, Info))
836     return true;
837 
838   lex();
839   if (Token.isNot(MIToken::Eof))
840     return error("expected end of string after the register reference");
841   return false;
842 }
843 
844 bool MIParser::parseStandaloneStackObject(int &FI) {
845   lex();
846   if (Token.isNot(MIToken::StackObject))
847     return error("expected a stack object");
848   if (parseStackFrameIndex(FI))
849     return true;
850   if (Token.isNot(MIToken::Eof))
851     return error("expected end of string after the stack object reference");
852   return false;
853 }
854 
855 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
856   lex();
857   if (Token.isNot(MIToken::exclaim))
858     return error("expected a metadata node");
859   if (parseMDNode(Node))
860     return true;
861   if (Token.isNot(MIToken::Eof))
862     return error("expected end of string after the metadata node");
863   return false;
864 }
865 
866 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
867   assert(MO.isImplicit());
868   return MO.isDef() ? "implicit-def" : "implicit";
869 }
870 
871 static std::string getRegisterName(const TargetRegisterInfo *TRI,
872                                    unsigned Reg) {
873   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
874   return StringRef(TRI->getName(Reg)).lower();
875 }
876 
877 /// Return true if the parsed machine operands contain a given machine operand.
878 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
879                                 ArrayRef<ParsedMachineOperand> Operands) {
880   for (const auto &I : Operands) {
881     if (ImplicitOperand.isIdenticalTo(I.Operand))
882       return true;
883   }
884   return false;
885 }
886 
887 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
888                                       const MCInstrDesc &MCID) {
889   if (MCID.isCall())
890     // We can't verify call instructions as they can contain arbitrary implicit
891     // register and register mask operands.
892     return false;
893 
894   // Gather all the expected implicit operands.
895   SmallVector<MachineOperand, 4> ImplicitOperands;
896   if (MCID.ImplicitDefs)
897     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
898       ImplicitOperands.push_back(
899           MachineOperand::CreateReg(*ImpDefs, true, true));
900   if (MCID.ImplicitUses)
901     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
902       ImplicitOperands.push_back(
903           MachineOperand::CreateReg(*ImpUses, false, true));
904 
905   const auto *TRI = MF.getSubtarget().getRegisterInfo();
906   assert(TRI && "Expected target register info");
907   for (const auto &I : ImplicitOperands) {
908     if (isImplicitOperandIn(I, Operands))
909       continue;
910     return error(Operands.empty() ? Token.location() : Operands.back().End,
911                  Twine("missing implicit register operand '") +
912                      printImplicitRegisterFlag(I) + " %" +
913                      getRegisterName(TRI, I.getReg()) + "'");
914   }
915   return false;
916 }
917 
918 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
919   if (Token.is(MIToken::kw_frame_setup)) {
920     Flags |= MachineInstr::FrameSetup;
921     lex();
922   }
923   if (Token.isNot(MIToken::Identifier))
924     return error("expected a machine instruction");
925   StringRef InstrName = Token.stringValue();
926   if (parseInstrName(InstrName, OpCode))
927     return error(Twine("unknown machine instruction name '") + InstrName + "'");
928   lex();
929   return false;
930 }
931 
932 bool MIParser::parseNamedRegister(unsigned &Reg) {
933   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
934   StringRef Name = Token.stringValue();
935   if (getRegisterByName(Name, Reg))
936     return error(Twine("unknown register name '") + Name + "'");
937   return false;
938 }
939 
940 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
941   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
942   unsigned ID;
943   if (getUnsigned(ID))
944     return true;
945   Info = &PFS.getVRegInfo(ID);
946   return false;
947 }
948 
949 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
950   switch (Token.kind()) {
951   case MIToken::underscore:
952     Reg = 0;
953     return false;
954   case MIToken::NamedRegister:
955     return parseNamedRegister(Reg);
956   case MIToken::VirtualRegister:
957     if (parseVirtualRegister(Info))
958       return true;
959     Reg = Info->VReg;
960     return false;
961   // TODO: Parse other register kinds.
962   default:
963     llvm_unreachable("The current token should be a register");
964   }
965 }
966 
967 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
968   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
969     return error("expected '_', register class, or register bank name");
970   StringRef::iterator Loc = Token.location();
971   StringRef Name = Token.stringValue();
972 
973   // Was it a register class?
974   auto RCNameI = PFS.Names2RegClasses.find(Name);
975   if (RCNameI != PFS.Names2RegClasses.end()) {
976     lex();
977     const TargetRegisterClass &RC = *RCNameI->getValue();
978 
979     switch (RegInfo.Kind) {
980     case VRegInfo::UNKNOWN:
981     case VRegInfo::NORMAL:
982       RegInfo.Kind = VRegInfo::NORMAL;
983       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
984         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
985         return error(Loc, Twine("conflicting register classes, previously: ") +
986                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
987       }
988       RegInfo.D.RC = &RC;
989       RegInfo.Explicit = true;
990       return false;
991 
992     case VRegInfo::GENERIC:
993     case VRegInfo::REGBANK:
994       return error(Loc, "register class specification on generic register");
995     }
996     llvm_unreachable("Unexpected register kind");
997   }
998 
999   // Should be a register bank or a generic register.
1000   const RegisterBank *RegBank = nullptr;
1001   if (Name != "_") {
1002     auto RBNameI = PFS.Names2RegBanks.find(Name);
1003     if (RBNameI == PFS.Names2RegBanks.end())
1004       return error(Loc, "expected '_', register class, or register bank name");
1005     RegBank = RBNameI->getValue();
1006   }
1007 
1008   lex();
1009 
1010   switch (RegInfo.Kind) {
1011   case VRegInfo::UNKNOWN:
1012   case VRegInfo::GENERIC:
1013   case VRegInfo::REGBANK:
1014     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1015     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1016       return error(Loc, "conflicting generic register banks");
1017     RegInfo.D.RegBank = RegBank;
1018     RegInfo.Explicit = true;
1019     return false;
1020 
1021   case VRegInfo::NORMAL:
1022     return error(Loc, "register bank specification on normal register");
1023   }
1024   llvm_unreachable("Unexpected register kind");
1025 }
1026 
1027 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1028   const unsigned OldFlags = Flags;
1029   switch (Token.kind()) {
1030   case MIToken::kw_implicit:
1031     Flags |= RegState::Implicit;
1032     break;
1033   case MIToken::kw_implicit_define:
1034     Flags |= RegState::ImplicitDefine;
1035     break;
1036   case MIToken::kw_def:
1037     Flags |= RegState::Define;
1038     break;
1039   case MIToken::kw_dead:
1040     Flags |= RegState::Dead;
1041     break;
1042   case MIToken::kw_killed:
1043     Flags |= RegState::Kill;
1044     break;
1045   case MIToken::kw_undef:
1046     Flags |= RegState::Undef;
1047     break;
1048   case MIToken::kw_internal:
1049     Flags |= RegState::InternalRead;
1050     break;
1051   case MIToken::kw_early_clobber:
1052     Flags |= RegState::EarlyClobber;
1053     break;
1054   case MIToken::kw_debug_use:
1055     Flags |= RegState::Debug;
1056     break;
1057   default:
1058     llvm_unreachable("The current token should be a register flag");
1059   }
1060   if (OldFlags == Flags)
1061     // We know that the same flag is specified more than once when the flags
1062     // weren't modified.
1063     return error("duplicate '" + Token.stringValue() + "' register flag");
1064   lex();
1065   return false;
1066 }
1067 
1068 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1069   assert(Token.is(MIToken::dot));
1070   lex();
1071   if (Token.isNot(MIToken::Identifier))
1072     return error("expected a subregister index after '.'");
1073   auto Name = Token.stringValue();
1074   SubReg = getSubRegIndex(Name);
1075   if (!SubReg)
1076     return error(Twine("use of unknown subregister index '") + Name + "'");
1077   lex();
1078   return false;
1079 }
1080 
1081 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1082   if (!consumeIfPresent(MIToken::kw_tied_def))
1083     return true;
1084   if (Token.isNot(MIToken::IntegerLiteral))
1085     return error("expected an integer literal after 'tied-def'");
1086   if (getUnsigned(TiedDefIdx))
1087     return true;
1088   lex();
1089   if (expectAndConsume(MIToken::rparen))
1090     return true;
1091   return false;
1092 }
1093 
1094 bool MIParser::assignRegisterTies(MachineInstr &MI,
1095                                   ArrayRef<ParsedMachineOperand> Operands) {
1096   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1097   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1098     if (!Operands[I].TiedDefIdx)
1099       continue;
1100     // The parser ensures that this operand is a register use, so we just have
1101     // to check the tied-def operand.
1102     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1103     if (DefIdx >= E)
1104       return error(Operands[I].Begin,
1105                    Twine("use of invalid tied-def operand index '" +
1106                          Twine(DefIdx) + "'; instruction has only ") +
1107                        Twine(E) + " operands");
1108     const auto &DefOperand = Operands[DefIdx].Operand;
1109     if (!DefOperand.isReg() || !DefOperand.isDef())
1110       // FIXME: add note with the def operand.
1111       return error(Operands[I].Begin,
1112                    Twine("use of invalid tied-def operand index '") +
1113                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1114                        " isn't a defined register");
1115     // Check that the tied-def operand wasn't tied elsewhere.
1116     for (const auto &TiedPair : TiedRegisterPairs) {
1117       if (TiedPair.first == DefIdx)
1118         return error(Operands[I].Begin,
1119                      Twine("the tied-def operand #") + Twine(DefIdx) +
1120                          " is already tied with another register operand");
1121     }
1122     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1123   }
1124   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1125   // indices must be less than tied max.
1126   for (const auto &TiedPair : TiedRegisterPairs)
1127     MI.tieOperands(TiedPair.first, TiedPair.second);
1128   return false;
1129 }
1130 
1131 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1132                                     Optional<unsigned> &TiedDefIdx,
1133                                     bool IsDef) {
1134   unsigned Flags = IsDef ? RegState::Define : 0;
1135   while (Token.isRegisterFlag()) {
1136     if (parseRegisterFlag(Flags))
1137       return true;
1138   }
1139   if (!Token.isRegister())
1140     return error("expected a register after register flags");
1141   unsigned Reg;
1142   VRegInfo *RegInfo;
1143   if (parseRegister(Reg, RegInfo))
1144     return true;
1145   lex();
1146   unsigned SubReg = 0;
1147   if (Token.is(MIToken::dot)) {
1148     if (parseSubRegisterIndex(SubReg))
1149       return true;
1150     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1151       return error("subregister index expects a virtual register");
1152   }
1153   if (Token.is(MIToken::colon)) {
1154     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1155       return error("register class specification expects a virtual register");
1156     lex();
1157     if (parseRegisterClassOrBank(*RegInfo))
1158         return true;
1159   }
1160   MachineRegisterInfo &MRI = MF.getRegInfo();
1161   if ((Flags & RegState::Define) == 0) {
1162     if (consumeIfPresent(MIToken::lparen)) {
1163       unsigned Idx;
1164       if (!parseRegisterTiedDefIndex(Idx))
1165         TiedDefIdx = Idx;
1166       else {
1167         // Try a redundant low-level type.
1168         LLT Ty;
1169         if (parseLowLevelType(Token.location(), Ty))
1170           return error("expected tied-def or low-level type after '('");
1171 
1172         if (expectAndConsume(MIToken::rparen))
1173           return true;
1174 
1175         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1176           return error("inconsistent type for generic virtual register");
1177 
1178         MRI.setType(Reg, Ty);
1179       }
1180     }
1181   } else if (consumeIfPresent(MIToken::lparen)) {
1182     // Virtual registers may have a tpe with GlobalISel.
1183     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1184       return error("unexpected type on physical register");
1185 
1186     LLT Ty;
1187     if (parseLowLevelType(Token.location(), Ty))
1188       return true;
1189 
1190     if (expectAndConsume(MIToken::rparen))
1191       return true;
1192 
1193     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1194       return error("inconsistent type for generic virtual register");
1195 
1196     MRI.setType(Reg, Ty);
1197   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1198     // Generic virtual registers must have a type.
1199     // If we end up here this means the type hasn't been specified and
1200     // this is bad!
1201     if (RegInfo->Kind == VRegInfo::GENERIC ||
1202         RegInfo->Kind == VRegInfo::REGBANK)
1203       return error("generic virtual registers must have a type");
1204   }
1205   Dest = MachineOperand::CreateReg(
1206       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1207       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1208       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1209       Flags & RegState::InternalRead);
1210   return false;
1211 }
1212 
1213 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1214   assert(Token.is(MIToken::IntegerLiteral));
1215   const APSInt &Int = Token.integerValue();
1216   if (Int.getMinSignedBits() > 64)
1217     return error("integer literal is too large to be an immediate operand");
1218   Dest = MachineOperand::CreateImm(Int.getExtValue());
1219   lex();
1220   return false;
1221 }
1222 
1223 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1224                                const Constant *&C) {
1225   auto Source = StringValue.str(); // The source has to be null terminated.
1226   SMDiagnostic Err;
1227   C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(),
1228                          &PFS.IRSlots);
1229   if (!C)
1230     return error(Loc + Err.getColumnNo(), Err.getMessage());
1231   return false;
1232 }
1233 
1234 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1235   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1236     return true;
1237   lex();
1238   return false;
1239 }
1240 
1241 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1242   if (Token.is(MIToken::ScalarType)) {
1243     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1244     lex();
1245     return false;
1246   } else if (Token.is(MIToken::PointerType)) {
1247     const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
1248     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1249     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1250     lex();
1251     return false;
1252   }
1253 
1254   // Now we're looking for a vector.
1255   if (Token.isNot(MIToken::less))
1256     return error(Loc,
1257                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1258 
1259   lex();
1260 
1261   if (Token.isNot(MIToken::IntegerLiteral))
1262     return error(Loc, "expected <N x sM> for vctor type");
1263   uint64_t NumElements = Token.integerValue().getZExtValue();
1264   lex();
1265 
1266   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1267     return error(Loc, "expected '<N x sM>' for vector type");
1268   lex();
1269 
1270   if (Token.isNot(MIToken::ScalarType))
1271     return error(Loc, "expected '<N x sM>' for vector type");
1272   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1273   lex();
1274 
1275   if (Token.isNot(MIToken::greater))
1276     return error(Loc, "expected '<N x sM>' for vector type");
1277   lex();
1278 
1279   Ty = LLT::vector(NumElements, ScalarSize);
1280   return false;
1281 }
1282 
1283 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1284   assert(Token.is(MIToken::IntegerType));
1285   auto Loc = Token.location();
1286   lex();
1287   if (Token.isNot(MIToken::IntegerLiteral))
1288     return error("expected an integer literal");
1289   const Constant *C = nullptr;
1290   if (parseIRConstant(Loc, C))
1291     return true;
1292   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1293   return false;
1294 }
1295 
1296 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1297   auto Loc = Token.location();
1298   lex();
1299   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1300       Token.isNot(MIToken::HexLiteral))
1301     return error("expected a floating point literal");
1302   const Constant *C = nullptr;
1303   if (parseIRConstant(Loc, C))
1304     return true;
1305   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1306   return false;
1307 }
1308 
1309 bool MIParser::getUnsigned(unsigned &Result) {
1310   if (Token.hasIntegerValue()) {
1311     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1312     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1313     if (Val64 == Limit)
1314       return error("expected 32-bit integer (too large)");
1315     Result = Val64;
1316     return false;
1317   }
1318   if (Token.is(MIToken::HexLiteral)) {
1319     APInt A;
1320     if (getHexUint(A))
1321       return true;
1322     if (A.getBitWidth() > 32)
1323       return error("expected 32-bit integer (too large)");
1324     Result = A.getZExtValue();
1325     return false;
1326   }
1327   return true;
1328 }
1329 
1330 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1331   assert(Token.is(MIToken::MachineBasicBlock) ||
1332          Token.is(MIToken::MachineBasicBlockLabel));
1333   unsigned Number;
1334   if (getUnsigned(Number))
1335     return true;
1336   auto MBBInfo = PFS.MBBSlots.find(Number);
1337   if (MBBInfo == PFS.MBBSlots.end())
1338     return error(Twine("use of undefined machine basic block #") +
1339                  Twine(Number));
1340   MBB = MBBInfo->second;
1341   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1342     return error(Twine("the name of machine basic block #") + Twine(Number) +
1343                  " isn't '" + Token.stringValue() + "'");
1344   return false;
1345 }
1346 
1347 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1348   MachineBasicBlock *MBB;
1349   if (parseMBBReference(MBB))
1350     return true;
1351   Dest = MachineOperand::CreateMBB(MBB);
1352   lex();
1353   return false;
1354 }
1355 
1356 bool MIParser::parseStackFrameIndex(int &FI) {
1357   assert(Token.is(MIToken::StackObject));
1358   unsigned ID;
1359   if (getUnsigned(ID))
1360     return true;
1361   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1362   if (ObjectInfo == PFS.StackObjectSlots.end())
1363     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1364                  "'");
1365   StringRef Name;
1366   if (const auto *Alloca =
1367           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1368     Name = Alloca->getName();
1369   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1370     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1371                  "' isn't '" + Token.stringValue() + "'");
1372   lex();
1373   FI = ObjectInfo->second;
1374   return false;
1375 }
1376 
1377 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1378   int FI;
1379   if (parseStackFrameIndex(FI))
1380     return true;
1381   Dest = MachineOperand::CreateFI(FI);
1382   return false;
1383 }
1384 
1385 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1386   assert(Token.is(MIToken::FixedStackObject));
1387   unsigned ID;
1388   if (getUnsigned(ID))
1389     return true;
1390   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1391   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1392     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1393                  Twine(ID) + "'");
1394   lex();
1395   FI = ObjectInfo->second;
1396   return false;
1397 }
1398 
1399 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1400   int FI;
1401   if (parseFixedStackFrameIndex(FI))
1402     return true;
1403   Dest = MachineOperand::CreateFI(FI);
1404   return false;
1405 }
1406 
1407 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1408   switch (Token.kind()) {
1409   case MIToken::NamedGlobalValue: {
1410     const Module *M = MF.getFunction()->getParent();
1411     GV = M->getNamedValue(Token.stringValue());
1412     if (!GV)
1413       return error(Twine("use of undefined global value '") + Token.range() +
1414                    "'");
1415     break;
1416   }
1417   case MIToken::GlobalValue: {
1418     unsigned GVIdx;
1419     if (getUnsigned(GVIdx))
1420       return true;
1421     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1422       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1423                    "'");
1424     GV = PFS.IRSlots.GlobalValues[GVIdx];
1425     break;
1426   }
1427   default:
1428     llvm_unreachable("The current token should be a global value");
1429   }
1430   return false;
1431 }
1432 
1433 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1434   GlobalValue *GV = nullptr;
1435   if (parseGlobalValue(GV))
1436     return true;
1437   lex();
1438   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1439   if (parseOperandsOffset(Dest))
1440     return true;
1441   return false;
1442 }
1443 
1444 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1445   assert(Token.is(MIToken::ConstantPoolItem));
1446   unsigned ID;
1447   if (getUnsigned(ID))
1448     return true;
1449   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1450   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1451     return error("use of undefined constant '%const." + Twine(ID) + "'");
1452   lex();
1453   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1454   if (parseOperandsOffset(Dest))
1455     return true;
1456   return false;
1457 }
1458 
1459 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1460   assert(Token.is(MIToken::JumpTableIndex));
1461   unsigned ID;
1462   if (getUnsigned(ID))
1463     return true;
1464   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1465   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1466     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1467   lex();
1468   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1469   return false;
1470 }
1471 
1472 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1473   assert(Token.is(MIToken::ExternalSymbol));
1474   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1475   lex();
1476   Dest = MachineOperand::CreateES(Symbol);
1477   if (parseOperandsOffset(Dest))
1478     return true;
1479   return false;
1480 }
1481 
1482 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1483   assert(Token.is(MIToken::SubRegisterIndex));
1484   StringRef Name = Token.stringValue();
1485   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1486   if (SubRegIndex == 0)
1487     return error(Twine("unknown subregister index '") + Name + "'");
1488   lex();
1489   Dest = MachineOperand::CreateImm(SubRegIndex);
1490   return false;
1491 }
1492 
1493 bool MIParser::parseMDNode(MDNode *&Node) {
1494   assert(Token.is(MIToken::exclaim));
1495   auto Loc = Token.location();
1496   lex();
1497   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1498     return error("expected metadata id after '!'");
1499   unsigned ID;
1500   if (getUnsigned(ID))
1501     return true;
1502   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1503   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1504     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1505   lex();
1506   Node = NodeInfo->second.get();
1507   return false;
1508 }
1509 
1510 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1511   MDNode *Node = nullptr;
1512   if (parseMDNode(Node))
1513     return true;
1514   Dest = MachineOperand::CreateMetadata(Node);
1515   return false;
1516 }
1517 
1518 bool MIParser::parseCFIOffset(int &Offset) {
1519   if (Token.isNot(MIToken::IntegerLiteral))
1520     return error("expected a cfi offset");
1521   if (Token.integerValue().getMinSignedBits() > 32)
1522     return error("expected a 32 bit integer (the cfi offset is too large)");
1523   Offset = (int)Token.integerValue().getExtValue();
1524   lex();
1525   return false;
1526 }
1527 
1528 bool MIParser::parseCFIRegister(unsigned &Reg) {
1529   if (Token.isNot(MIToken::NamedRegister))
1530     return error("expected a cfi register");
1531   unsigned LLVMReg;
1532   if (parseNamedRegister(LLVMReg))
1533     return true;
1534   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1535   assert(TRI && "Expected target register info");
1536   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1537   if (DwarfReg < 0)
1538     return error("invalid DWARF register");
1539   Reg = (unsigned)DwarfReg;
1540   lex();
1541   return false;
1542 }
1543 
1544 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1545   auto Kind = Token.kind();
1546   lex();
1547   int Offset;
1548   unsigned Reg;
1549   unsigned CFIIndex;
1550   switch (Kind) {
1551   case MIToken::kw_cfi_same_value:
1552     if (parseCFIRegister(Reg))
1553       return true;
1554     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1555     break;
1556   case MIToken::kw_cfi_offset:
1557     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1558         parseCFIOffset(Offset))
1559       return true;
1560     CFIIndex =
1561         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1562     break;
1563   case MIToken::kw_cfi_def_cfa_register:
1564     if (parseCFIRegister(Reg))
1565       return true;
1566     CFIIndex =
1567         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1568     break;
1569   case MIToken::kw_cfi_def_cfa_offset:
1570     if (parseCFIOffset(Offset))
1571       return true;
1572     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1573     CFIIndex = MF.addFrameInst(
1574         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1575     break;
1576   case MIToken::kw_cfi_def_cfa:
1577     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1578         parseCFIOffset(Offset))
1579       return true;
1580     // NB: MCCFIInstruction::createDefCfa negates the offset.
1581     CFIIndex =
1582         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1583     break;
1584   default:
1585     // TODO: Parse the other CFI operands.
1586     llvm_unreachable("The current token should be a cfi operand");
1587   }
1588   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1589   return false;
1590 }
1591 
1592 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1593   switch (Token.kind()) {
1594   case MIToken::NamedIRBlock: {
1595     BB = dyn_cast_or_null<BasicBlock>(
1596         F.getValueSymbolTable()->lookup(Token.stringValue()));
1597     if (!BB)
1598       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1599     break;
1600   }
1601   case MIToken::IRBlock: {
1602     unsigned SlotNumber = 0;
1603     if (getUnsigned(SlotNumber))
1604       return true;
1605     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1606     if (!BB)
1607       return error(Twine("use of undefined IR block '%ir-block.") +
1608                    Twine(SlotNumber) + "'");
1609     break;
1610   }
1611   default:
1612     llvm_unreachable("The current token should be an IR block reference");
1613   }
1614   return false;
1615 }
1616 
1617 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1618   assert(Token.is(MIToken::kw_blockaddress));
1619   lex();
1620   if (expectAndConsume(MIToken::lparen))
1621     return true;
1622   if (Token.isNot(MIToken::GlobalValue) &&
1623       Token.isNot(MIToken::NamedGlobalValue))
1624     return error("expected a global value");
1625   GlobalValue *GV = nullptr;
1626   if (parseGlobalValue(GV))
1627     return true;
1628   auto *F = dyn_cast<Function>(GV);
1629   if (!F)
1630     return error("expected an IR function reference");
1631   lex();
1632   if (expectAndConsume(MIToken::comma))
1633     return true;
1634   BasicBlock *BB = nullptr;
1635   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1636     return error("expected an IR block reference");
1637   if (parseIRBlock(BB, *F))
1638     return true;
1639   lex();
1640   if (expectAndConsume(MIToken::rparen))
1641     return true;
1642   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1643   if (parseOperandsOffset(Dest))
1644     return true;
1645   return false;
1646 }
1647 
1648 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1649   assert(Token.is(MIToken::kw_intrinsic));
1650   lex();
1651   if (expectAndConsume(MIToken::lparen))
1652     return error("expected syntax intrinsic(@llvm.whatever)");
1653 
1654   if (Token.isNot(MIToken::NamedGlobalValue))
1655     return error("expected syntax intrinsic(@llvm.whatever)");
1656 
1657   std::string Name = Token.stringValue();
1658   lex();
1659 
1660   if (expectAndConsume(MIToken::rparen))
1661     return error("expected ')' to terminate intrinsic name");
1662 
1663   // Find out what intrinsic we're dealing with, first try the global namespace
1664   // and then the target's private intrinsics if that fails.
1665   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1666   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1667   if (ID == Intrinsic::not_intrinsic && TII)
1668     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1669 
1670   if (ID == Intrinsic::not_intrinsic)
1671     return error("unknown intrinsic name");
1672   Dest = MachineOperand::CreateIntrinsicID(ID);
1673 
1674   return false;
1675 }
1676 
1677 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1678   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1679   bool IsFloat = Token.is(MIToken::kw_floatpred);
1680   lex();
1681 
1682   if (expectAndConsume(MIToken::lparen))
1683     return error("expected syntax intpred(whatever) or floatpred(whatever");
1684 
1685   if (Token.isNot(MIToken::Identifier))
1686     return error("whatever");
1687 
1688   CmpInst::Predicate Pred;
1689   if (IsFloat) {
1690     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1691                .Case("false", CmpInst::FCMP_FALSE)
1692                .Case("oeq", CmpInst::FCMP_OEQ)
1693                .Case("ogt", CmpInst::FCMP_OGT)
1694                .Case("oge", CmpInst::FCMP_OGE)
1695                .Case("olt", CmpInst::FCMP_OLT)
1696                .Case("ole", CmpInst::FCMP_OLE)
1697                .Case("one", CmpInst::FCMP_ONE)
1698                .Case("ord", CmpInst::FCMP_ORD)
1699                .Case("uno", CmpInst::FCMP_UNO)
1700                .Case("ueq", CmpInst::FCMP_UEQ)
1701                .Case("ugt", CmpInst::FCMP_UGT)
1702                .Case("uge", CmpInst::FCMP_UGE)
1703                .Case("ult", CmpInst::FCMP_ULT)
1704                .Case("ule", CmpInst::FCMP_ULE)
1705                .Case("une", CmpInst::FCMP_UNE)
1706                .Case("true", CmpInst::FCMP_TRUE)
1707                .Default(CmpInst::BAD_FCMP_PREDICATE);
1708     if (!CmpInst::isFPPredicate(Pred))
1709       return error("invalid floating-point predicate");
1710   } else {
1711     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1712                .Case("eq", CmpInst::ICMP_EQ)
1713                .Case("ne", CmpInst::ICMP_NE)
1714                .Case("sgt", CmpInst::ICMP_SGT)
1715                .Case("sge", CmpInst::ICMP_SGE)
1716                .Case("slt", CmpInst::ICMP_SLT)
1717                .Case("sle", CmpInst::ICMP_SLE)
1718                .Case("ugt", CmpInst::ICMP_UGT)
1719                .Case("uge", CmpInst::ICMP_UGE)
1720                .Case("ult", CmpInst::ICMP_ULT)
1721                .Case("ule", CmpInst::ICMP_ULE)
1722                .Default(CmpInst::BAD_ICMP_PREDICATE);
1723     if (!CmpInst::isIntPredicate(Pred))
1724       return error("invalid integer predicate");
1725   }
1726 
1727   lex();
1728   Dest = MachineOperand::CreatePredicate(Pred);
1729   if (expectAndConsume(MIToken::rparen))
1730     return error("predicate should be terminated by ')'.");
1731 
1732   return false;
1733 }
1734 
1735 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1736   assert(Token.is(MIToken::kw_target_index));
1737   lex();
1738   if (expectAndConsume(MIToken::lparen))
1739     return true;
1740   if (Token.isNot(MIToken::Identifier))
1741     return error("expected the name of the target index");
1742   int Index = 0;
1743   if (getTargetIndex(Token.stringValue(), Index))
1744     return error("use of undefined target index '" + Token.stringValue() + "'");
1745   lex();
1746   if (expectAndConsume(MIToken::rparen))
1747     return true;
1748   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1749   if (parseOperandsOffset(Dest))
1750     return true;
1751   return false;
1752 }
1753 
1754 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
1755   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
1756   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1757   assert(TRI && "Expected target register info");
1758   lex();
1759   if (expectAndConsume(MIToken::lparen))
1760     return true;
1761 
1762   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1763   while (true) {
1764     if (Token.isNot(MIToken::NamedRegister))
1765       return error("expected a named register");
1766     unsigned Reg;
1767     if (parseNamedRegister(Reg))
1768       return true;
1769     lex();
1770     Mask[Reg / 32] |= 1U << (Reg % 32);
1771     // TODO: Report an error if the same register is used more than once.
1772     if (Token.isNot(MIToken::comma))
1773       break;
1774     lex();
1775   }
1776 
1777   if (expectAndConsume(MIToken::rparen))
1778     return true;
1779   Dest = MachineOperand::CreateRegMask(Mask);
1780   return false;
1781 }
1782 
1783 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1784   assert(Token.is(MIToken::kw_liveout));
1785   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1786   assert(TRI && "Expected target register info");
1787   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1788   lex();
1789   if (expectAndConsume(MIToken::lparen))
1790     return true;
1791   while (true) {
1792     if (Token.isNot(MIToken::NamedRegister))
1793       return error("expected a named register");
1794     unsigned Reg;
1795     if (parseNamedRegister(Reg))
1796       return true;
1797     lex();
1798     Mask[Reg / 32] |= 1U << (Reg % 32);
1799     // TODO: Report an error if the same register is used more than once.
1800     if (Token.isNot(MIToken::comma))
1801       break;
1802     lex();
1803   }
1804   if (expectAndConsume(MIToken::rparen))
1805     return true;
1806   Dest = MachineOperand::CreateRegLiveOut(Mask);
1807   return false;
1808 }
1809 
1810 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1811                                    Optional<unsigned> &TiedDefIdx) {
1812   switch (Token.kind()) {
1813   case MIToken::kw_implicit:
1814   case MIToken::kw_implicit_define:
1815   case MIToken::kw_def:
1816   case MIToken::kw_dead:
1817   case MIToken::kw_killed:
1818   case MIToken::kw_undef:
1819   case MIToken::kw_internal:
1820   case MIToken::kw_early_clobber:
1821   case MIToken::kw_debug_use:
1822   case MIToken::underscore:
1823   case MIToken::NamedRegister:
1824   case MIToken::VirtualRegister:
1825     return parseRegisterOperand(Dest, TiedDefIdx);
1826   case MIToken::IntegerLiteral:
1827     return parseImmediateOperand(Dest);
1828   case MIToken::IntegerType:
1829     return parseTypedImmediateOperand(Dest);
1830   case MIToken::kw_half:
1831   case MIToken::kw_float:
1832   case MIToken::kw_double:
1833   case MIToken::kw_x86_fp80:
1834   case MIToken::kw_fp128:
1835   case MIToken::kw_ppc_fp128:
1836     return parseFPImmediateOperand(Dest);
1837   case MIToken::MachineBasicBlock:
1838     return parseMBBOperand(Dest);
1839   case MIToken::StackObject:
1840     return parseStackObjectOperand(Dest);
1841   case MIToken::FixedStackObject:
1842     return parseFixedStackObjectOperand(Dest);
1843   case MIToken::GlobalValue:
1844   case MIToken::NamedGlobalValue:
1845     return parseGlobalAddressOperand(Dest);
1846   case MIToken::ConstantPoolItem:
1847     return parseConstantPoolIndexOperand(Dest);
1848   case MIToken::JumpTableIndex:
1849     return parseJumpTableIndexOperand(Dest);
1850   case MIToken::ExternalSymbol:
1851     return parseExternalSymbolOperand(Dest);
1852   case MIToken::SubRegisterIndex:
1853     return parseSubRegisterIndexOperand(Dest);
1854   case MIToken::exclaim:
1855     return parseMetadataOperand(Dest);
1856   case MIToken::kw_cfi_same_value:
1857   case MIToken::kw_cfi_offset:
1858   case MIToken::kw_cfi_def_cfa_register:
1859   case MIToken::kw_cfi_def_cfa_offset:
1860   case MIToken::kw_cfi_def_cfa:
1861     return parseCFIOperand(Dest);
1862   case MIToken::kw_blockaddress:
1863     return parseBlockAddressOperand(Dest);
1864   case MIToken::kw_intrinsic:
1865     return parseIntrinsicOperand(Dest);
1866   case MIToken::kw_target_index:
1867     return parseTargetIndexOperand(Dest);
1868   case MIToken::kw_liveout:
1869     return parseLiveoutRegisterMaskOperand(Dest);
1870   case MIToken::kw_floatpred:
1871   case MIToken::kw_intpred:
1872     return parsePredicateOperand(Dest);
1873   case MIToken::Error:
1874     return true;
1875   case MIToken::Identifier:
1876     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1877       Dest = MachineOperand::CreateRegMask(RegMask);
1878       lex();
1879       break;
1880     } else
1881       return parseCustomRegisterMaskOperand(Dest);
1882   default:
1883     // FIXME: Parse the MCSymbol machine operand.
1884     return error("expected a machine operand");
1885   }
1886   return false;
1887 }
1888 
1889 bool MIParser::parseMachineOperandAndTargetFlags(
1890     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1891   unsigned TF = 0;
1892   bool HasTargetFlags = false;
1893   if (Token.is(MIToken::kw_target_flags)) {
1894     HasTargetFlags = true;
1895     lex();
1896     if (expectAndConsume(MIToken::lparen))
1897       return true;
1898     if (Token.isNot(MIToken::Identifier))
1899       return error("expected the name of the target flag");
1900     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1901       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1902         return error("use of undefined target flag '" + Token.stringValue() +
1903                      "'");
1904     }
1905     lex();
1906     while (Token.is(MIToken::comma)) {
1907       lex();
1908       if (Token.isNot(MIToken::Identifier))
1909         return error("expected the name of the target flag");
1910       unsigned BitFlag = 0;
1911       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1912         return error("use of undefined target flag '" + Token.stringValue() +
1913                      "'");
1914       // TODO: Report an error when using a duplicate bit target flag.
1915       TF |= BitFlag;
1916       lex();
1917     }
1918     if (expectAndConsume(MIToken::rparen))
1919       return true;
1920   }
1921   auto Loc = Token.location();
1922   if (parseMachineOperand(Dest, TiedDefIdx))
1923     return true;
1924   if (!HasTargetFlags)
1925     return false;
1926   if (Dest.isReg())
1927     return error(Loc, "register operands can't have target flags");
1928   Dest.setTargetFlags(TF);
1929   return false;
1930 }
1931 
1932 bool MIParser::parseOffset(int64_t &Offset) {
1933   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1934     return false;
1935   StringRef Sign = Token.range();
1936   bool IsNegative = Token.is(MIToken::minus);
1937   lex();
1938   if (Token.isNot(MIToken::IntegerLiteral))
1939     return error("expected an integer literal after '" + Sign + "'");
1940   if (Token.integerValue().getMinSignedBits() > 64)
1941     return error("expected 64-bit integer (too large)");
1942   Offset = Token.integerValue().getExtValue();
1943   if (IsNegative)
1944     Offset = -Offset;
1945   lex();
1946   return false;
1947 }
1948 
1949 bool MIParser::parseAlignment(unsigned &Alignment) {
1950   assert(Token.is(MIToken::kw_align));
1951   lex();
1952   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1953     return error("expected an integer literal after 'align'");
1954   if (getUnsigned(Alignment))
1955     return true;
1956   lex();
1957   return false;
1958 }
1959 
1960 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1961   int64_t Offset = 0;
1962   if (parseOffset(Offset))
1963     return true;
1964   Op.setOffset(Offset);
1965   return false;
1966 }
1967 
1968 bool MIParser::parseIRValue(const Value *&V) {
1969   switch (Token.kind()) {
1970   case MIToken::NamedIRValue: {
1971     V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
1972     break;
1973   }
1974   case MIToken::IRValue: {
1975     unsigned SlotNumber = 0;
1976     if (getUnsigned(SlotNumber))
1977       return true;
1978     V = getIRValue(SlotNumber);
1979     break;
1980   }
1981   case MIToken::NamedGlobalValue:
1982   case MIToken::GlobalValue: {
1983     GlobalValue *GV = nullptr;
1984     if (parseGlobalValue(GV))
1985       return true;
1986     V = GV;
1987     break;
1988   }
1989   case MIToken::QuotedIRValue: {
1990     const Constant *C = nullptr;
1991     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1992       return true;
1993     V = C;
1994     break;
1995   }
1996   default:
1997     llvm_unreachable("The current token should be an IR block reference");
1998   }
1999   if (!V)
2000     return error(Twine("use of undefined IR value '") + Token.range() + "'");
2001   return false;
2002 }
2003 
2004 bool MIParser::getUint64(uint64_t &Result) {
2005   if (Token.hasIntegerValue()) {
2006     if (Token.integerValue().getActiveBits() > 64)
2007       return error("expected 64-bit integer (too large)");
2008     Result = Token.integerValue().getZExtValue();
2009     return false;
2010   }
2011   if (Token.is(MIToken::HexLiteral)) {
2012     APInt A;
2013     if (getHexUint(A))
2014       return true;
2015     if (A.getBitWidth() > 64)
2016       return error("expected 64-bit integer (too large)");
2017     Result = A.getZExtValue();
2018     return false;
2019   }
2020   return true;
2021 }
2022 
2023 bool MIParser::getHexUint(APInt &Result) {
2024   assert(Token.is(MIToken::HexLiteral));
2025   StringRef S = Token.range();
2026   assert(S[0] == '0' && tolower(S[1]) == 'x');
2027   // This could be a floating point literal with a special prefix.
2028   if (!isxdigit(S[2]))
2029     return true;
2030   StringRef V = S.substr(2);
2031   APInt A(V.size()*4, V, 16);
2032   Result = APInt(A.getActiveBits(),
2033                  ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2034   return false;
2035 }
2036 
2037 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2038   const auto OldFlags = Flags;
2039   switch (Token.kind()) {
2040   case MIToken::kw_volatile:
2041     Flags |= MachineMemOperand::MOVolatile;
2042     break;
2043   case MIToken::kw_non_temporal:
2044     Flags |= MachineMemOperand::MONonTemporal;
2045     break;
2046   case MIToken::kw_dereferenceable:
2047     Flags |= MachineMemOperand::MODereferenceable;
2048     break;
2049   case MIToken::kw_invariant:
2050     Flags |= MachineMemOperand::MOInvariant;
2051     break;
2052   case MIToken::StringConstant: {
2053     MachineMemOperand::Flags TF;
2054     if (getMMOTargetFlag(Token.stringValue(), TF))
2055       return error("use of undefined target MMO flag '" + Token.stringValue() +
2056                    "'");
2057     Flags |= TF;
2058     break;
2059   }
2060   default:
2061     llvm_unreachable("The current token should be a memory operand flag");
2062   }
2063   if (OldFlags == Flags)
2064     // We know that the same flag is specified more than once when the flags
2065     // weren't modified.
2066     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2067   lex();
2068   return false;
2069 }
2070 
2071 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2072   switch (Token.kind()) {
2073   case MIToken::kw_stack:
2074     PSV = MF.getPSVManager().getStack();
2075     break;
2076   case MIToken::kw_got:
2077     PSV = MF.getPSVManager().getGOT();
2078     break;
2079   case MIToken::kw_jump_table:
2080     PSV = MF.getPSVManager().getJumpTable();
2081     break;
2082   case MIToken::kw_constant_pool:
2083     PSV = MF.getPSVManager().getConstantPool();
2084     break;
2085   case MIToken::FixedStackObject: {
2086     int FI;
2087     if (parseFixedStackFrameIndex(FI))
2088       return true;
2089     PSV = MF.getPSVManager().getFixedStack(FI);
2090     // The token was already consumed, so use return here instead of break.
2091     return false;
2092   }
2093   case MIToken::StackObject: {
2094     int FI;
2095     if (parseStackFrameIndex(FI))
2096       return true;
2097     PSV = MF.getPSVManager().getFixedStack(FI);
2098     // The token was already consumed, so use return here instead of break.
2099     return false;
2100   }
2101   case MIToken::kw_call_entry:
2102     lex();
2103     switch (Token.kind()) {
2104     case MIToken::GlobalValue:
2105     case MIToken::NamedGlobalValue: {
2106       GlobalValue *GV = nullptr;
2107       if (parseGlobalValue(GV))
2108         return true;
2109       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2110       break;
2111     }
2112     case MIToken::ExternalSymbol:
2113       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2114           MF.createExternalSymbolName(Token.stringValue()));
2115       break;
2116     default:
2117       return error(
2118           "expected a global value or an external symbol after 'call-entry'");
2119     }
2120     break;
2121   default:
2122     llvm_unreachable("The current token should be pseudo source value");
2123   }
2124   lex();
2125   return false;
2126 }
2127 
2128 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2129   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2130       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2131       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2132       Token.is(MIToken::kw_call_entry)) {
2133     const PseudoSourceValue *PSV = nullptr;
2134     if (parseMemoryPseudoSourceValue(PSV))
2135       return true;
2136     int64_t Offset = 0;
2137     if (parseOffset(Offset))
2138       return true;
2139     Dest = MachinePointerInfo(PSV, Offset);
2140     return false;
2141   }
2142   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2143       Token.isNot(MIToken::GlobalValue) &&
2144       Token.isNot(MIToken::NamedGlobalValue) &&
2145       Token.isNot(MIToken::QuotedIRValue))
2146     return error("expected an IR value reference");
2147   const Value *V = nullptr;
2148   if (parseIRValue(V))
2149     return true;
2150   if (!V->getType()->isPointerTy())
2151     return error("expected a pointer IR value");
2152   lex();
2153   int64_t Offset = 0;
2154   if (parseOffset(Offset))
2155     return true;
2156   Dest = MachinePointerInfo(V, Offset);
2157   return false;
2158 }
2159 
2160 bool MIParser::parseOptionalScope(LLVMContext &Context,
2161                                   SyncScope::ID &SSID) {
2162   SSID = SyncScope::System;
2163   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2164     lex();
2165     if (expectAndConsume(MIToken::lparen))
2166       return error("expected '(' in syncscope");
2167 
2168     std::string SSN;
2169     if (parseStringConstant(SSN))
2170       return true;
2171 
2172     SSID = Context.getOrInsertSyncScopeID(SSN);
2173     if (expectAndConsume(MIToken::rparen))
2174       return error("expected ')' in syncscope");
2175   }
2176 
2177   return false;
2178 }
2179 
2180 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2181   Order = AtomicOrdering::NotAtomic;
2182   if (Token.isNot(MIToken::Identifier))
2183     return false;
2184 
2185   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2186               .Case("unordered", AtomicOrdering::Unordered)
2187               .Case("monotonic", AtomicOrdering::Monotonic)
2188               .Case("acquire", AtomicOrdering::Acquire)
2189               .Case("release", AtomicOrdering::Release)
2190               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2191               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2192               .Default(AtomicOrdering::NotAtomic);
2193 
2194   if (Order != AtomicOrdering::NotAtomic) {
2195     lex();
2196     return false;
2197   }
2198 
2199   return error("expected an atomic scope, ordering or a size integer literal");
2200 }
2201 
2202 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2203   if (expectAndConsume(MIToken::lparen))
2204     return true;
2205   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2206   while (Token.isMemoryOperandFlag()) {
2207     if (parseMemoryOperandFlag(Flags))
2208       return true;
2209   }
2210   if (Token.isNot(MIToken::Identifier) ||
2211       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2212     return error("expected 'load' or 'store' memory operation");
2213   if (Token.stringValue() == "load")
2214     Flags |= MachineMemOperand::MOLoad;
2215   else
2216     Flags |= MachineMemOperand::MOStore;
2217   lex();
2218 
2219   // Optional synchronization scope.
2220   SyncScope::ID SSID;
2221   if (parseOptionalScope(MF.getFunction()->getContext(), SSID))
2222     return true;
2223 
2224   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2225   AtomicOrdering Order, FailureOrder;
2226   if (parseOptionalAtomicOrdering(Order))
2227     return true;
2228 
2229   if (parseOptionalAtomicOrdering(FailureOrder))
2230     return true;
2231 
2232   if (Token.isNot(MIToken::IntegerLiteral))
2233     return error("expected the size integer literal after memory operation");
2234   uint64_t Size;
2235   if (getUint64(Size))
2236     return true;
2237   lex();
2238 
2239   MachinePointerInfo Ptr = MachinePointerInfo();
2240   if (Token.is(MIToken::Identifier)) {
2241     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
2242     if (Token.stringValue() != Word)
2243       return error(Twine("expected '") + Word + "'");
2244     lex();
2245 
2246     if (parseMachinePointerInfo(Ptr))
2247       return true;
2248   }
2249   unsigned BaseAlignment = Size;
2250   AAMDNodes AAInfo;
2251   MDNode *Range = nullptr;
2252   while (consumeIfPresent(MIToken::comma)) {
2253     switch (Token.kind()) {
2254     case MIToken::kw_align:
2255       if (parseAlignment(BaseAlignment))
2256         return true;
2257       break;
2258     case MIToken::md_tbaa:
2259       lex();
2260       if (parseMDNode(AAInfo.TBAA))
2261         return true;
2262       break;
2263     case MIToken::md_alias_scope:
2264       lex();
2265       if (parseMDNode(AAInfo.Scope))
2266         return true;
2267       break;
2268     case MIToken::md_noalias:
2269       lex();
2270       if (parseMDNode(AAInfo.NoAlias))
2271         return true;
2272       break;
2273     case MIToken::md_range:
2274       lex();
2275       if (parseMDNode(Range))
2276         return true;
2277       break;
2278     // TODO: Report an error on duplicate metadata nodes.
2279     default:
2280       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2281                    "'!noalias' or '!range'");
2282     }
2283   }
2284   if (expectAndConsume(MIToken::rparen))
2285     return true;
2286   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2287                                  SSID, Order, FailureOrder);
2288   return false;
2289 }
2290 
2291 void MIParser::initNames2InstrOpCodes() {
2292   if (!Names2InstrOpCodes.empty())
2293     return;
2294   const auto *TII = MF.getSubtarget().getInstrInfo();
2295   assert(TII && "Expected target instruction info");
2296   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2297     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2298 }
2299 
2300 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2301   initNames2InstrOpCodes();
2302   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2303   if (InstrInfo == Names2InstrOpCodes.end())
2304     return true;
2305   OpCode = InstrInfo->getValue();
2306   return false;
2307 }
2308 
2309 void MIParser::initNames2Regs() {
2310   if (!Names2Regs.empty())
2311     return;
2312   // The '%noreg' register is the register 0.
2313   Names2Regs.insert(std::make_pair("noreg", 0));
2314   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2315   assert(TRI && "Expected target register info");
2316   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2317     bool WasInserted =
2318         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2319             .second;
2320     (void)WasInserted;
2321     assert(WasInserted && "Expected registers to be unique case-insensitively");
2322   }
2323 }
2324 
2325 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2326   initNames2Regs();
2327   auto RegInfo = Names2Regs.find(RegName);
2328   if (RegInfo == Names2Regs.end())
2329     return true;
2330   Reg = RegInfo->getValue();
2331   return false;
2332 }
2333 
2334 void MIParser::initNames2RegMasks() {
2335   if (!Names2RegMasks.empty())
2336     return;
2337   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2338   assert(TRI && "Expected target register info");
2339   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2340   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2341   assert(RegMasks.size() == RegMaskNames.size());
2342   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2343     Names2RegMasks.insert(
2344         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2345 }
2346 
2347 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2348   initNames2RegMasks();
2349   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2350   if (RegMaskInfo == Names2RegMasks.end())
2351     return nullptr;
2352   return RegMaskInfo->getValue();
2353 }
2354 
2355 void MIParser::initNames2SubRegIndices() {
2356   if (!Names2SubRegIndices.empty())
2357     return;
2358   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2359   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2360     Names2SubRegIndices.insert(
2361         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2362 }
2363 
2364 unsigned MIParser::getSubRegIndex(StringRef Name) {
2365   initNames2SubRegIndices();
2366   auto SubRegInfo = Names2SubRegIndices.find(Name);
2367   if (SubRegInfo == Names2SubRegIndices.end())
2368     return 0;
2369   return SubRegInfo->getValue();
2370 }
2371 
2372 static void initSlots2BasicBlocks(
2373     const Function &F,
2374     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2375   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2376   MST.incorporateFunction(F);
2377   for (auto &BB : F) {
2378     if (BB.hasName())
2379       continue;
2380     int Slot = MST.getLocalSlot(&BB);
2381     if (Slot == -1)
2382       continue;
2383     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2384   }
2385 }
2386 
2387 static const BasicBlock *getIRBlockFromSlot(
2388     unsigned Slot,
2389     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2390   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2391   if (BlockInfo == Slots2BasicBlocks.end())
2392     return nullptr;
2393   return BlockInfo->second;
2394 }
2395 
2396 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2397   if (Slots2BasicBlocks.empty())
2398     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2399   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2400 }
2401 
2402 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2403   if (&F == MF.getFunction())
2404     return getIRBlock(Slot);
2405   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2406   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2407   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2408 }
2409 
2410 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2411                            DenseMap<unsigned, const Value *> &Slots2Values) {
2412   int Slot = MST.getLocalSlot(V);
2413   if (Slot == -1)
2414     return;
2415   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2416 }
2417 
2418 /// Creates the mapping from slot numbers to function's unnamed IR values.
2419 static void initSlots2Values(const Function &F,
2420                              DenseMap<unsigned, const Value *> &Slots2Values) {
2421   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2422   MST.incorporateFunction(F);
2423   for (const auto &Arg : F.args())
2424     mapValueToSlot(&Arg, MST, Slots2Values);
2425   for (const auto &BB : F) {
2426     mapValueToSlot(&BB, MST, Slots2Values);
2427     for (const auto &I : BB)
2428       mapValueToSlot(&I, MST, Slots2Values);
2429   }
2430 }
2431 
2432 const Value *MIParser::getIRValue(unsigned Slot) {
2433   if (Slots2Values.empty())
2434     initSlots2Values(*MF.getFunction(), Slots2Values);
2435   auto ValueInfo = Slots2Values.find(Slot);
2436   if (ValueInfo == Slots2Values.end())
2437     return nullptr;
2438   return ValueInfo->second;
2439 }
2440 
2441 void MIParser::initNames2TargetIndices() {
2442   if (!Names2TargetIndices.empty())
2443     return;
2444   const auto *TII = MF.getSubtarget().getInstrInfo();
2445   assert(TII && "Expected target instruction info");
2446   auto Indices = TII->getSerializableTargetIndices();
2447   for (const auto &I : Indices)
2448     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2449 }
2450 
2451 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2452   initNames2TargetIndices();
2453   auto IndexInfo = Names2TargetIndices.find(Name);
2454   if (IndexInfo == Names2TargetIndices.end())
2455     return true;
2456   Index = IndexInfo->second;
2457   return false;
2458 }
2459 
2460 void MIParser::initNames2DirectTargetFlags() {
2461   if (!Names2DirectTargetFlags.empty())
2462     return;
2463   const auto *TII = MF.getSubtarget().getInstrInfo();
2464   assert(TII && "Expected target instruction info");
2465   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2466   for (const auto &I : Flags)
2467     Names2DirectTargetFlags.insert(
2468         std::make_pair(StringRef(I.second), I.first));
2469 }
2470 
2471 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2472   initNames2DirectTargetFlags();
2473   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2474   if (FlagInfo == Names2DirectTargetFlags.end())
2475     return true;
2476   Flag = FlagInfo->second;
2477   return false;
2478 }
2479 
2480 void MIParser::initNames2BitmaskTargetFlags() {
2481   if (!Names2BitmaskTargetFlags.empty())
2482     return;
2483   const auto *TII = MF.getSubtarget().getInstrInfo();
2484   assert(TII && "Expected target instruction info");
2485   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2486   for (const auto &I : Flags)
2487     Names2BitmaskTargetFlags.insert(
2488         std::make_pair(StringRef(I.second), I.first));
2489 }
2490 
2491 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2492   initNames2BitmaskTargetFlags();
2493   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2494   if (FlagInfo == Names2BitmaskTargetFlags.end())
2495     return true;
2496   Flag = FlagInfo->second;
2497   return false;
2498 }
2499 
2500 void MIParser::initNames2MMOTargetFlags() {
2501   if (!Names2MMOTargetFlags.empty())
2502     return;
2503   const auto *TII = MF.getSubtarget().getInstrInfo();
2504   assert(TII && "Expected target instruction info");
2505   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
2506   for (const auto &I : Flags)
2507     Names2MMOTargetFlags.insert(
2508         std::make_pair(StringRef(I.second), I.first));
2509 }
2510 
2511 bool MIParser::getMMOTargetFlag(StringRef Name,
2512                                 MachineMemOperand::Flags &Flag) {
2513   initNames2MMOTargetFlags();
2514   auto FlagInfo = Names2MMOTargetFlags.find(Name);
2515   if (FlagInfo == Names2MMOTargetFlags.end())
2516     return true;
2517   Flag = FlagInfo->second;
2518   return false;
2519 }
2520 
2521 bool MIParser::parseStringConstant(std::string &Result) {
2522   if (Token.isNot(MIToken::StringConstant))
2523     return error("expected string constant");
2524   Result = Token.stringValue();
2525   lex();
2526   return false;
2527 }
2528 
2529 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2530                                              StringRef Src,
2531                                              SMDiagnostic &Error) {
2532   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2533 }
2534 
2535 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2536                                     StringRef Src, SMDiagnostic &Error) {
2537   return MIParser(PFS, Error, Src).parseBasicBlocks();
2538 }
2539 
2540 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2541                              MachineBasicBlock *&MBB, StringRef Src,
2542                              SMDiagnostic &Error) {
2543   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2544 }
2545 
2546 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2547                                   unsigned &Reg, StringRef Src,
2548                                   SMDiagnostic &Error) {
2549   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2550 }
2551 
2552 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2553                                        unsigned &Reg, StringRef Src,
2554                                        SMDiagnostic &Error) {
2555   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2556 }
2557 
2558 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2559                                          VRegInfo *&Info, StringRef Src,
2560                                          SMDiagnostic &Error) {
2561   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2562 }
2563 
2564 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2565                                      int &FI, StringRef Src,
2566                                      SMDiagnostic &Error) {
2567   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2568 }
2569 
2570 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2571                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2572   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2573 }
2574