1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MILexer.h" 15 #include "MIParser.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/MIRPrinter.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/ModuleSlotTracker.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueSymbolTable.h" 53 #include "llvm/MC/LaneBitmask.h" 54 #include "llvm/MC/MCDwarf.h" 55 #include "llvm/MC/MCInstrDesc.h" 56 #include "llvm/MC/MCRegisterInfo.h" 57 #include "llvm/Support/AtomicOrdering.h" 58 #include "llvm/Support/BranchProbability.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/LowLevelTypeImpl.h" 62 #include "llvm/Support/MemoryBuffer.h" 63 #include "llvm/Support/SMLoc.h" 64 #include "llvm/Support/SourceMgr.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetInstrInfo.h" 67 #include "llvm/Target/TargetIntrinsicInfo.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Target/TargetRegisterInfo.h" 70 #include "llvm/Target/TargetSubtargetInfo.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cctype> 74 #include <cstddef> 75 #include <cstdint> 76 #include <limits> 77 #include <string> 78 #include <utility> 79 80 using namespace llvm; 81 82 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 83 SourceMgr &SM, const SlotMapping &IRSlots, 84 const Name2RegClassMap &Names2RegClasses, 85 const Name2RegBankMap &Names2RegBanks) 86 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 87 Names2RegBanks(Names2RegBanks) { 88 } 89 90 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 91 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 92 if (I.second) { 93 MachineRegisterInfo &MRI = MF.getRegInfo(); 94 VRegInfo *Info = new (Allocator) VRegInfo; 95 Info->VReg = MRI.createIncompleteVirtualRegister(); 96 I.first->second = Info; 97 } 98 return *I.first->second; 99 } 100 101 namespace { 102 103 /// A wrapper struct around the 'MachineOperand' struct that includes a source 104 /// range and other attributes. 105 struct ParsedMachineOperand { 106 MachineOperand Operand; 107 StringRef::iterator Begin; 108 StringRef::iterator End; 109 Optional<unsigned> TiedDefIdx; 110 111 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 112 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 113 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 114 if (TiedDefIdx) 115 assert(Operand.isReg() && Operand.isUse() && 116 "Only used register operands can be tied"); 117 } 118 }; 119 120 class MIParser { 121 MachineFunction &MF; 122 SMDiagnostic &Error; 123 StringRef Source, CurrentSource; 124 MIToken Token; 125 PerFunctionMIParsingState &PFS; 126 /// Maps from instruction names to op codes. 127 StringMap<unsigned> Names2InstrOpCodes; 128 /// Maps from register names to registers. 129 StringMap<unsigned> Names2Regs; 130 /// Maps from register mask names to register masks. 131 StringMap<const uint32_t *> Names2RegMasks; 132 /// Maps from subregister names to subregister indices. 133 StringMap<unsigned> Names2SubRegIndices; 134 /// Maps from slot numbers to function's unnamed basic blocks. 135 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 136 /// Maps from slot numbers to function's unnamed values. 137 DenseMap<unsigned, const Value *> Slots2Values; 138 /// Maps from target index names to target indices. 139 StringMap<int> Names2TargetIndices; 140 /// Maps from direct target flag names to the direct target flag values. 141 StringMap<unsigned> Names2DirectTargetFlags; 142 /// Maps from direct target flag names to the bitmask target flag values. 143 StringMap<unsigned> Names2BitmaskTargetFlags; 144 /// Maps from MMO target flag names to MMO target flag values. 145 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 146 147 public: 148 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 149 StringRef Source); 150 151 /// \p SkipChar gives the number of characters to skip before looking 152 /// for the next token. 153 void lex(unsigned SkipChar = 0); 154 155 /// Report an error at the current location with the given message. 156 /// 157 /// This function always return true. 158 bool error(const Twine &Msg); 159 160 /// Report an error at the given location with the given message. 161 /// 162 /// This function always return true. 163 bool error(StringRef::iterator Loc, const Twine &Msg); 164 165 bool 166 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 167 bool parseBasicBlocks(); 168 bool parse(MachineInstr *&MI); 169 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 170 bool parseStandaloneNamedRegister(unsigned &Reg); 171 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 172 bool parseStandaloneRegister(unsigned &Reg); 173 bool parseStandaloneStackObject(int &FI); 174 bool parseStandaloneMDNode(MDNode *&Node); 175 176 bool 177 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 178 bool parseBasicBlock(MachineBasicBlock &MBB, 179 MachineBasicBlock *&AddFalthroughFrom); 180 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 181 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 182 183 bool parseNamedRegister(unsigned &Reg); 184 bool parseVirtualRegister(VRegInfo *&Info); 185 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 186 bool parseRegisterFlag(unsigned &Flags); 187 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 188 bool parseSubRegisterIndex(unsigned &SubReg); 189 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 190 bool parseRegisterOperand(MachineOperand &Dest, 191 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 192 bool parseImmediateOperand(MachineOperand &Dest); 193 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 194 const Constant *&C); 195 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 196 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 197 bool parseTypedImmediateOperand(MachineOperand &Dest); 198 bool parseFPImmediateOperand(MachineOperand &Dest); 199 bool parseMBBReference(MachineBasicBlock *&MBB); 200 bool parseMBBOperand(MachineOperand &Dest); 201 bool parseStackFrameIndex(int &FI); 202 bool parseStackObjectOperand(MachineOperand &Dest); 203 bool parseFixedStackFrameIndex(int &FI); 204 bool parseFixedStackObjectOperand(MachineOperand &Dest); 205 bool parseGlobalValue(GlobalValue *&GV); 206 bool parseGlobalAddressOperand(MachineOperand &Dest); 207 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 208 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 209 bool parseJumpTableIndexOperand(MachineOperand &Dest); 210 bool parseExternalSymbolOperand(MachineOperand &Dest); 211 bool parseMDNode(MDNode *&Node); 212 bool parseMetadataOperand(MachineOperand &Dest); 213 bool parseCFIOffset(int &Offset); 214 bool parseCFIRegister(unsigned &Reg); 215 bool parseCFIOperand(MachineOperand &Dest); 216 bool parseIRBlock(BasicBlock *&BB, const Function &F); 217 bool parseBlockAddressOperand(MachineOperand &Dest); 218 bool parseIntrinsicOperand(MachineOperand &Dest); 219 bool parsePredicateOperand(MachineOperand &Dest); 220 bool parseTargetIndexOperand(MachineOperand &Dest); 221 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 222 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 223 bool parseMachineOperand(MachineOperand &Dest, 224 Optional<unsigned> &TiedDefIdx); 225 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 226 Optional<unsigned> &TiedDefIdx); 227 bool parseOffset(int64_t &Offset); 228 bool parseAlignment(unsigned &Alignment); 229 bool parseOperandsOffset(MachineOperand &Op); 230 bool parseIRValue(const Value *&V); 231 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 232 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 233 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 234 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 235 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 236 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 237 238 private: 239 /// Convert the integer literal in the current token into an unsigned integer. 240 /// 241 /// Return true if an error occurred. 242 bool getUnsigned(unsigned &Result); 243 244 /// Convert the integer literal in the current token into an uint64. 245 /// 246 /// Return true if an error occurred. 247 bool getUint64(uint64_t &Result); 248 249 /// Convert the hexadecimal literal in the current token into an unsigned 250 /// APInt with a minimum bitwidth required to represent the value. 251 /// 252 /// Return true if the literal does not represent an integer value. 253 bool getHexUint(APInt &Result); 254 255 /// If the current token is of the given kind, consume it and return false. 256 /// Otherwise report an error and return true. 257 bool expectAndConsume(MIToken::TokenKind TokenKind); 258 259 /// If the current token is of the given kind, consume it and return true. 260 /// Otherwise return false. 261 bool consumeIfPresent(MIToken::TokenKind TokenKind); 262 263 void initNames2InstrOpCodes(); 264 265 /// Try to convert an instruction name to an opcode. Return true if the 266 /// instruction name is invalid. 267 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 268 269 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 270 271 bool assignRegisterTies(MachineInstr &MI, 272 ArrayRef<ParsedMachineOperand> Operands); 273 274 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 275 const MCInstrDesc &MCID); 276 277 void initNames2Regs(); 278 279 /// Try to convert a register name to a register number. Return true if the 280 /// register name is invalid. 281 bool getRegisterByName(StringRef RegName, unsigned &Reg); 282 283 void initNames2RegMasks(); 284 285 /// Check if the given identifier is a name of a register mask. 286 /// 287 /// Return null if the identifier isn't a register mask. 288 const uint32_t *getRegMask(StringRef Identifier); 289 290 void initNames2SubRegIndices(); 291 292 /// Check if the given identifier is a name of a subregister index. 293 /// 294 /// Return 0 if the name isn't a subregister index class. 295 unsigned getSubRegIndex(StringRef Name); 296 297 const BasicBlock *getIRBlock(unsigned Slot); 298 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 299 300 const Value *getIRValue(unsigned Slot); 301 302 void initNames2TargetIndices(); 303 304 /// Try to convert a name of target index to the corresponding target index. 305 /// 306 /// Return true if the name isn't a name of a target index. 307 bool getTargetIndex(StringRef Name, int &Index); 308 309 void initNames2DirectTargetFlags(); 310 311 /// Try to convert a name of a direct target flag to the corresponding 312 /// target flag. 313 /// 314 /// Return true if the name isn't a name of a direct flag. 315 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 316 317 void initNames2BitmaskTargetFlags(); 318 319 /// Try to convert a name of a bitmask target flag to the corresponding 320 /// target flag. 321 /// 322 /// Return true if the name isn't a name of a bitmask target flag. 323 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 324 325 void initNames2MMOTargetFlags(); 326 327 /// Try to convert a name of a MachineMemOperand target flag to the 328 /// corresponding target flag. 329 /// 330 /// Return true if the name isn't a name of a target MMO flag. 331 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 332 333 /// parseStringConstant 334 /// ::= StringConstant 335 bool parseStringConstant(std::string &Result); 336 }; 337 338 } // end anonymous namespace 339 340 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 341 StringRef Source) 342 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 343 {} 344 345 void MIParser::lex(unsigned SkipChar) { 346 CurrentSource = lexMIToken( 347 CurrentSource.data() + SkipChar, Token, 348 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 349 } 350 351 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 352 353 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 354 const SourceMgr &SM = *PFS.SM; 355 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 356 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 357 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 358 // Create an ordinary diagnostic when the source manager's buffer is the 359 // source string. 360 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 361 return true; 362 } 363 // Create a diagnostic for a YAML string literal. 364 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 365 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 366 Source, None, None); 367 return true; 368 } 369 370 static const char *toString(MIToken::TokenKind TokenKind) { 371 switch (TokenKind) { 372 case MIToken::comma: 373 return "','"; 374 case MIToken::equal: 375 return "'='"; 376 case MIToken::colon: 377 return "':'"; 378 case MIToken::lparen: 379 return "'('"; 380 case MIToken::rparen: 381 return "')'"; 382 default: 383 return "<unknown token>"; 384 } 385 } 386 387 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 388 if (Token.isNot(TokenKind)) 389 return error(Twine("expected ") + toString(TokenKind)); 390 lex(); 391 return false; 392 } 393 394 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 395 if (Token.isNot(TokenKind)) 396 return false; 397 lex(); 398 return true; 399 } 400 401 bool MIParser::parseBasicBlockDefinition( 402 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 403 assert(Token.is(MIToken::MachineBasicBlockLabel)); 404 unsigned ID = 0; 405 if (getUnsigned(ID)) 406 return true; 407 auto Loc = Token.location(); 408 auto Name = Token.stringValue(); 409 lex(); 410 bool HasAddressTaken = false; 411 bool IsLandingPad = false; 412 unsigned Alignment = 0; 413 BasicBlock *BB = nullptr; 414 if (consumeIfPresent(MIToken::lparen)) { 415 do { 416 // TODO: Report an error when multiple same attributes are specified. 417 switch (Token.kind()) { 418 case MIToken::kw_address_taken: 419 HasAddressTaken = true; 420 lex(); 421 break; 422 case MIToken::kw_landing_pad: 423 IsLandingPad = true; 424 lex(); 425 break; 426 case MIToken::kw_align: 427 if (parseAlignment(Alignment)) 428 return true; 429 break; 430 case MIToken::IRBlock: 431 // TODO: Report an error when both name and ir block are specified. 432 if (parseIRBlock(BB, *MF.getFunction())) 433 return true; 434 lex(); 435 break; 436 default: 437 break; 438 } 439 } while (consumeIfPresent(MIToken::comma)); 440 if (expectAndConsume(MIToken::rparen)) 441 return true; 442 } 443 if (expectAndConsume(MIToken::colon)) 444 return true; 445 446 if (!Name.empty()) { 447 BB = dyn_cast_or_null<BasicBlock>( 448 MF.getFunction()->getValueSymbolTable()->lookup(Name)); 449 if (!BB) 450 return error(Loc, Twine("basic block '") + Name + 451 "' is not defined in the function '" + 452 MF.getName() + "'"); 453 } 454 auto *MBB = MF.CreateMachineBasicBlock(BB); 455 MF.insert(MF.end(), MBB); 456 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 457 if (!WasInserted) 458 return error(Loc, Twine("redefinition of machine basic block with id #") + 459 Twine(ID)); 460 if (Alignment) 461 MBB->setAlignment(Alignment); 462 if (HasAddressTaken) 463 MBB->setHasAddressTaken(); 464 MBB->setIsEHPad(IsLandingPad); 465 return false; 466 } 467 468 bool MIParser::parseBasicBlockDefinitions( 469 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 470 lex(); 471 // Skip until the first machine basic block. 472 while (Token.is(MIToken::Newline)) 473 lex(); 474 if (Token.isErrorOrEOF()) 475 return Token.isError(); 476 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 477 return error("expected a basic block definition before instructions"); 478 unsigned BraceDepth = 0; 479 do { 480 if (parseBasicBlockDefinition(MBBSlots)) 481 return true; 482 bool IsAfterNewline = false; 483 // Skip until the next machine basic block. 484 while (true) { 485 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 486 Token.isErrorOrEOF()) 487 break; 488 else if (Token.is(MIToken::MachineBasicBlockLabel)) 489 return error("basic block definition should be located at the start of " 490 "the line"); 491 else if (consumeIfPresent(MIToken::Newline)) { 492 IsAfterNewline = true; 493 continue; 494 } 495 IsAfterNewline = false; 496 if (Token.is(MIToken::lbrace)) 497 ++BraceDepth; 498 if (Token.is(MIToken::rbrace)) { 499 if (!BraceDepth) 500 return error("extraneous closing brace ('}')"); 501 --BraceDepth; 502 } 503 lex(); 504 } 505 // Verify that we closed all of the '{' at the end of a file or a block. 506 if (!Token.isError() && BraceDepth) 507 return error("expected '}'"); // FIXME: Report a note that shows '{'. 508 } while (!Token.isErrorOrEOF()); 509 return Token.isError(); 510 } 511 512 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 513 assert(Token.is(MIToken::kw_liveins)); 514 lex(); 515 if (expectAndConsume(MIToken::colon)) 516 return true; 517 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 518 return false; 519 do { 520 if (Token.isNot(MIToken::NamedRegister)) 521 return error("expected a named register"); 522 unsigned Reg = 0; 523 if (parseNamedRegister(Reg)) 524 return true; 525 lex(); 526 LaneBitmask Mask = LaneBitmask::getAll(); 527 if (consumeIfPresent(MIToken::colon)) { 528 // Parse lane mask. 529 if (Token.isNot(MIToken::IntegerLiteral) && 530 Token.isNot(MIToken::HexLiteral)) 531 return error("expected a lane mask"); 532 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 533 "Use correct get-function for lane mask"); 534 LaneBitmask::Type V; 535 if (getUnsigned(V)) 536 return error("invalid lane mask value"); 537 Mask = LaneBitmask(V); 538 lex(); 539 } 540 MBB.addLiveIn(Reg, Mask); 541 } while (consumeIfPresent(MIToken::comma)); 542 return false; 543 } 544 545 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 546 assert(Token.is(MIToken::kw_successors)); 547 lex(); 548 if (expectAndConsume(MIToken::colon)) 549 return true; 550 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 551 return false; 552 do { 553 if (Token.isNot(MIToken::MachineBasicBlock)) 554 return error("expected a machine basic block reference"); 555 MachineBasicBlock *SuccMBB = nullptr; 556 if (parseMBBReference(SuccMBB)) 557 return true; 558 lex(); 559 unsigned Weight = 0; 560 if (consumeIfPresent(MIToken::lparen)) { 561 if (Token.isNot(MIToken::IntegerLiteral) && 562 Token.isNot(MIToken::HexLiteral)) 563 return error("expected an integer literal after '('"); 564 if (getUnsigned(Weight)) 565 return true; 566 lex(); 567 if (expectAndConsume(MIToken::rparen)) 568 return true; 569 } 570 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 571 } while (consumeIfPresent(MIToken::comma)); 572 MBB.normalizeSuccProbs(); 573 return false; 574 } 575 576 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 577 MachineBasicBlock *&AddFalthroughFrom) { 578 // Skip the definition. 579 assert(Token.is(MIToken::MachineBasicBlockLabel)); 580 lex(); 581 if (consumeIfPresent(MIToken::lparen)) { 582 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 583 lex(); 584 consumeIfPresent(MIToken::rparen); 585 } 586 consumeIfPresent(MIToken::colon); 587 588 // Parse the liveins and successors. 589 // N.B: Multiple lists of successors and liveins are allowed and they're 590 // merged into one. 591 // Example: 592 // liveins: %edi 593 // liveins: %esi 594 // 595 // is equivalent to 596 // liveins: %edi, %esi 597 bool ExplicitSuccessors = false; 598 while (true) { 599 if (Token.is(MIToken::kw_successors)) { 600 if (parseBasicBlockSuccessors(MBB)) 601 return true; 602 ExplicitSuccessors = true; 603 } else if (Token.is(MIToken::kw_liveins)) { 604 if (parseBasicBlockLiveins(MBB)) 605 return true; 606 } else if (consumeIfPresent(MIToken::Newline)) { 607 continue; 608 } else 609 break; 610 if (!Token.isNewlineOrEOF()) 611 return error("expected line break at the end of a list"); 612 lex(); 613 } 614 615 // Parse the instructions. 616 bool IsInBundle = false; 617 MachineInstr *PrevMI = nullptr; 618 while (!Token.is(MIToken::MachineBasicBlockLabel) && 619 !Token.is(MIToken::Eof)) { 620 if (consumeIfPresent(MIToken::Newline)) 621 continue; 622 if (consumeIfPresent(MIToken::rbrace)) { 623 // The first parsing pass should verify that all closing '}' have an 624 // opening '{'. 625 assert(IsInBundle); 626 IsInBundle = false; 627 continue; 628 } 629 MachineInstr *MI = nullptr; 630 if (parse(MI)) 631 return true; 632 MBB.insert(MBB.end(), MI); 633 if (IsInBundle) { 634 PrevMI->setFlag(MachineInstr::BundledSucc); 635 MI->setFlag(MachineInstr::BundledPred); 636 } 637 PrevMI = MI; 638 if (Token.is(MIToken::lbrace)) { 639 if (IsInBundle) 640 return error("nested instruction bundles are not allowed"); 641 lex(); 642 // This instruction is the start of the bundle. 643 MI->setFlag(MachineInstr::BundledSucc); 644 IsInBundle = true; 645 if (!Token.is(MIToken::Newline)) 646 // The next instruction can be on the same line. 647 continue; 648 } 649 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 650 lex(); 651 } 652 653 // Construct successor list by searching for basic block machine operands. 654 if (!ExplicitSuccessors) { 655 SmallVector<MachineBasicBlock*,4> Successors; 656 bool IsFallthrough; 657 guessSuccessors(MBB, Successors, IsFallthrough); 658 for (MachineBasicBlock *Succ : Successors) 659 MBB.addSuccessor(Succ); 660 661 if (IsFallthrough) { 662 AddFalthroughFrom = &MBB; 663 } else { 664 MBB.normalizeSuccProbs(); 665 } 666 } 667 668 return false; 669 } 670 671 bool MIParser::parseBasicBlocks() { 672 lex(); 673 // Skip until the first machine basic block. 674 while (Token.is(MIToken::Newline)) 675 lex(); 676 if (Token.isErrorOrEOF()) 677 return Token.isError(); 678 // The first parsing pass should have verified that this token is a MBB label 679 // in the 'parseBasicBlockDefinitions' method. 680 assert(Token.is(MIToken::MachineBasicBlockLabel)); 681 MachineBasicBlock *AddFalthroughFrom = nullptr; 682 do { 683 MachineBasicBlock *MBB = nullptr; 684 if (parseMBBReference(MBB)) 685 return true; 686 if (AddFalthroughFrom) { 687 if (!AddFalthroughFrom->isSuccessor(MBB)) 688 AddFalthroughFrom->addSuccessor(MBB); 689 AddFalthroughFrom->normalizeSuccProbs(); 690 AddFalthroughFrom = nullptr; 691 } 692 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 693 return true; 694 // The method 'parseBasicBlock' should parse the whole block until the next 695 // block or the end of file. 696 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 697 } while (Token.isNot(MIToken::Eof)); 698 return false; 699 } 700 701 bool MIParser::parse(MachineInstr *&MI) { 702 // Parse any register operands before '=' 703 MachineOperand MO = MachineOperand::CreateImm(0); 704 SmallVector<ParsedMachineOperand, 8> Operands; 705 while (Token.isRegister() || Token.isRegisterFlag()) { 706 auto Loc = Token.location(); 707 Optional<unsigned> TiedDefIdx; 708 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 709 return true; 710 Operands.push_back( 711 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 712 if (Token.isNot(MIToken::comma)) 713 break; 714 lex(); 715 } 716 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 717 return true; 718 719 unsigned OpCode, Flags = 0; 720 if (Token.isError() || parseInstruction(OpCode, Flags)) 721 return true; 722 723 // Parse the remaining machine operands. 724 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 725 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 726 auto Loc = Token.location(); 727 Optional<unsigned> TiedDefIdx; 728 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 729 return true; 730 Operands.push_back( 731 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 732 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 733 Token.is(MIToken::lbrace)) 734 break; 735 if (Token.isNot(MIToken::comma)) 736 return error("expected ',' before the next machine operand"); 737 lex(); 738 } 739 740 DebugLoc DebugLocation; 741 if (Token.is(MIToken::kw_debug_location)) { 742 lex(); 743 if (Token.isNot(MIToken::exclaim)) 744 return error("expected a metadata node after 'debug-location'"); 745 MDNode *Node = nullptr; 746 if (parseMDNode(Node)) 747 return true; 748 DebugLocation = DebugLoc(Node); 749 } 750 751 // Parse the machine memory operands. 752 SmallVector<MachineMemOperand *, 2> MemOperands; 753 if (Token.is(MIToken::coloncolon)) { 754 lex(); 755 while (!Token.isNewlineOrEOF()) { 756 MachineMemOperand *MemOp = nullptr; 757 if (parseMachineMemoryOperand(MemOp)) 758 return true; 759 MemOperands.push_back(MemOp); 760 if (Token.isNewlineOrEOF()) 761 break; 762 if (Token.isNot(MIToken::comma)) 763 return error("expected ',' before the next machine memory operand"); 764 lex(); 765 } 766 } 767 768 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 769 if (!MCID.isVariadic()) { 770 // FIXME: Move the implicit operand verification to the machine verifier. 771 if (verifyImplicitOperands(Operands, MCID)) 772 return true; 773 } 774 775 // TODO: Check for extraneous machine operands. 776 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 777 MI->setFlags(Flags); 778 for (const auto &Operand : Operands) 779 MI->addOperand(MF, Operand.Operand); 780 if (assignRegisterTies(*MI, Operands)) 781 return true; 782 if (MemOperands.empty()) 783 return false; 784 MachineInstr::mmo_iterator MemRefs = 785 MF.allocateMemRefsArray(MemOperands.size()); 786 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 787 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 788 return false; 789 } 790 791 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 792 lex(); 793 if (Token.isNot(MIToken::MachineBasicBlock)) 794 return error("expected a machine basic block reference"); 795 if (parseMBBReference(MBB)) 796 return true; 797 lex(); 798 if (Token.isNot(MIToken::Eof)) 799 return error( 800 "expected end of string after the machine basic block reference"); 801 return false; 802 } 803 804 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 805 lex(); 806 if (Token.isNot(MIToken::NamedRegister)) 807 return error("expected a named register"); 808 if (parseNamedRegister(Reg)) 809 return true; 810 lex(); 811 if (Token.isNot(MIToken::Eof)) 812 return error("expected end of string after the register reference"); 813 return false; 814 } 815 816 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 817 lex(); 818 if (Token.isNot(MIToken::VirtualRegister)) 819 return error("expected a virtual register"); 820 if (parseVirtualRegister(Info)) 821 return true; 822 lex(); 823 if (Token.isNot(MIToken::Eof)) 824 return error("expected end of string after the register reference"); 825 return false; 826 } 827 828 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 829 lex(); 830 if (Token.isNot(MIToken::NamedRegister) && 831 Token.isNot(MIToken::VirtualRegister)) 832 return error("expected either a named or virtual register"); 833 834 VRegInfo *Info; 835 if (parseRegister(Reg, Info)) 836 return true; 837 838 lex(); 839 if (Token.isNot(MIToken::Eof)) 840 return error("expected end of string after the register reference"); 841 return false; 842 } 843 844 bool MIParser::parseStandaloneStackObject(int &FI) { 845 lex(); 846 if (Token.isNot(MIToken::StackObject)) 847 return error("expected a stack object"); 848 if (parseStackFrameIndex(FI)) 849 return true; 850 if (Token.isNot(MIToken::Eof)) 851 return error("expected end of string after the stack object reference"); 852 return false; 853 } 854 855 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 856 lex(); 857 if (Token.isNot(MIToken::exclaim)) 858 return error("expected a metadata node"); 859 if (parseMDNode(Node)) 860 return true; 861 if (Token.isNot(MIToken::Eof)) 862 return error("expected end of string after the metadata node"); 863 return false; 864 } 865 866 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 867 assert(MO.isImplicit()); 868 return MO.isDef() ? "implicit-def" : "implicit"; 869 } 870 871 static std::string getRegisterName(const TargetRegisterInfo *TRI, 872 unsigned Reg) { 873 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 874 return StringRef(TRI->getName(Reg)).lower(); 875 } 876 877 /// Return true if the parsed machine operands contain a given machine operand. 878 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 879 ArrayRef<ParsedMachineOperand> Operands) { 880 for (const auto &I : Operands) { 881 if (ImplicitOperand.isIdenticalTo(I.Operand)) 882 return true; 883 } 884 return false; 885 } 886 887 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 888 const MCInstrDesc &MCID) { 889 if (MCID.isCall()) 890 // We can't verify call instructions as they can contain arbitrary implicit 891 // register and register mask operands. 892 return false; 893 894 // Gather all the expected implicit operands. 895 SmallVector<MachineOperand, 4> ImplicitOperands; 896 if (MCID.ImplicitDefs) 897 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 898 ImplicitOperands.push_back( 899 MachineOperand::CreateReg(*ImpDefs, true, true)); 900 if (MCID.ImplicitUses) 901 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 902 ImplicitOperands.push_back( 903 MachineOperand::CreateReg(*ImpUses, false, true)); 904 905 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 906 assert(TRI && "Expected target register info"); 907 for (const auto &I : ImplicitOperands) { 908 if (isImplicitOperandIn(I, Operands)) 909 continue; 910 return error(Operands.empty() ? Token.location() : Operands.back().End, 911 Twine("missing implicit register operand '") + 912 printImplicitRegisterFlag(I) + " %" + 913 getRegisterName(TRI, I.getReg()) + "'"); 914 } 915 return false; 916 } 917 918 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 919 if (Token.is(MIToken::kw_frame_setup)) { 920 Flags |= MachineInstr::FrameSetup; 921 lex(); 922 } 923 if (Token.isNot(MIToken::Identifier)) 924 return error("expected a machine instruction"); 925 StringRef InstrName = Token.stringValue(); 926 if (parseInstrName(InstrName, OpCode)) 927 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 928 lex(); 929 return false; 930 } 931 932 bool MIParser::parseNamedRegister(unsigned &Reg) { 933 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 934 StringRef Name = Token.stringValue(); 935 if (getRegisterByName(Name, Reg)) 936 return error(Twine("unknown register name '") + Name + "'"); 937 return false; 938 } 939 940 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 941 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 942 unsigned ID; 943 if (getUnsigned(ID)) 944 return true; 945 Info = &PFS.getVRegInfo(ID); 946 return false; 947 } 948 949 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 950 switch (Token.kind()) { 951 case MIToken::underscore: 952 Reg = 0; 953 return false; 954 case MIToken::NamedRegister: 955 return parseNamedRegister(Reg); 956 case MIToken::VirtualRegister: 957 if (parseVirtualRegister(Info)) 958 return true; 959 Reg = Info->VReg; 960 return false; 961 // TODO: Parse other register kinds. 962 default: 963 llvm_unreachable("The current token should be a register"); 964 } 965 } 966 967 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 968 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 969 return error("expected '_', register class, or register bank name"); 970 StringRef::iterator Loc = Token.location(); 971 StringRef Name = Token.stringValue(); 972 973 // Was it a register class? 974 auto RCNameI = PFS.Names2RegClasses.find(Name); 975 if (RCNameI != PFS.Names2RegClasses.end()) { 976 lex(); 977 const TargetRegisterClass &RC = *RCNameI->getValue(); 978 979 switch (RegInfo.Kind) { 980 case VRegInfo::UNKNOWN: 981 case VRegInfo::NORMAL: 982 RegInfo.Kind = VRegInfo::NORMAL; 983 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 984 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 985 return error(Loc, Twine("conflicting register classes, previously: ") + 986 Twine(TRI.getRegClassName(RegInfo.D.RC))); 987 } 988 RegInfo.D.RC = &RC; 989 RegInfo.Explicit = true; 990 return false; 991 992 case VRegInfo::GENERIC: 993 case VRegInfo::REGBANK: 994 return error(Loc, "register class specification on generic register"); 995 } 996 llvm_unreachable("Unexpected register kind"); 997 } 998 999 // Should be a register bank or a generic register. 1000 const RegisterBank *RegBank = nullptr; 1001 if (Name != "_") { 1002 auto RBNameI = PFS.Names2RegBanks.find(Name); 1003 if (RBNameI == PFS.Names2RegBanks.end()) 1004 return error(Loc, "expected '_', register class, or register bank name"); 1005 RegBank = RBNameI->getValue(); 1006 } 1007 1008 lex(); 1009 1010 switch (RegInfo.Kind) { 1011 case VRegInfo::UNKNOWN: 1012 case VRegInfo::GENERIC: 1013 case VRegInfo::REGBANK: 1014 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1015 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1016 return error(Loc, "conflicting generic register banks"); 1017 RegInfo.D.RegBank = RegBank; 1018 RegInfo.Explicit = true; 1019 return false; 1020 1021 case VRegInfo::NORMAL: 1022 return error(Loc, "register bank specification on normal register"); 1023 } 1024 llvm_unreachable("Unexpected register kind"); 1025 } 1026 1027 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1028 const unsigned OldFlags = Flags; 1029 switch (Token.kind()) { 1030 case MIToken::kw_implicit: 1031 Flags |= RegState::Implicit; 1032 break; 1033 case MIToken::kw_implicit_define: 1034 Flags |= RegState::ImplicitDefine; 1035 break; 1036 case MIToken::kw_def: 1037 Flags |= RegState::Define; 1038 break; 1039 case MIToken::kw_dead: 1040 Flags |= RegState::Dead; 1041 break; 1042 case MIToken::kw_killed: 1043 Flags |= RegState::Kill; 1044 break; 1045 case MIToken::kw_undef: 1046 Flags |= RegState::Undef; 1047 break; 1048 case MIToken::kw_internal: 1049 Flags |= RegState::InternalRead; 1050 break; 1051 case MIToken::kw_early_clobber: 1052 Flags |= RegState::EarlyClobber; 1053 break; 1054 case MIToken::kw_debug_use: 1055 Flags |= RegState::Debug; 1056 break; 1057 default: 1058 llvm_unreachable("The current token should be a register flag"); 1059 } 1060 if (OldFlags == Flags) 1061 // We know that the same flag is specified more than once when the flags 1062 // weren't modified. 1063 return error("duplicate '" + Token.stringValue() + "' register flag"); 1064 lex(); 1065 return false; 1066 } 1067 1068 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1069 assert(Token.is(MIToken::dot)); 1070 lex(); 1071 if (Token.isNot(MIToken::Identifier)) 1072 return error("expected a subregister index after '.'"); 1073 auto Name = Token.stringValue(); 1074 SubReg = getSubRegIndex(Name); 1075 if (!SubReg) 1076 return error(Twine("use of unknown subregister index '") + Name + "'"); 1077 lex(); 1078 return false; 1079 } 1080 1081 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1082 if (!consumeIfPresent(MIToken::kw_tied_def)) 1083 return true; 1084 if (Token.isNot(MIToken::IntegerLiteral)) 1085 return error("expected an integer literal after 'tied-def'"); 1086 if (getUnsigned(TiedDefIdx)) 1087 return true; 1088 lex(); 1089 if (expectAndConsume(MIToken::rparen)) 1090 return true; 1091 return false; 1092 } 1093 1094 bool MIParser::assignRegisterTies(MachineInstr &MI, 1095 ArrayRef<ParsedMachineOperand> Operands) { 1096 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1097 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1098 if (!Operands[I].TiedDefIdx) 1099 continue; 1100 // The parser ensures that this operand is a register use, so we just have 1101 // to check the tied-def operand. 1102 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1103 if (DefIdx >= E) 1104 return error(Operands[I].Begin, 1105 Twine("use of invalid tied-def operand index '" + 1106 Twine(DefIdx) + "'; instruction has only ") + 1107 Twine(E) + " operands"); 1108 const auto &DefOperand = Operands[DefIdx].Operand; 1109 if (!DefOperand.isReg() || !DefOperand.isDef()) 1110 // FIXME: add note with the def operand. 1111 return error(Operands[I].Begin, 1112 Twine("use of invalid tied-def operand index '") + 1113 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1114 " isn't a defined register"); 1115 // Check that the tied-def operand wasn't tied elsewhere. 1116 for (const auto &TiedPair : TiedRegisterPairs) { 1117 if (TiedPair.first == DefIdx) 1118 return error(Operands[I].Begin, 1119 Twine("the tied-def operand #") + Twine(DefIdx) + 1120 " is already tied with another register operand"); 1121 } 1122 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1123 } 1124 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1125 // indices must be less than tied max. 1126 for (const auto &TiedPair : TiedRegisterPairs) 1127 MI.tieOperands(TiedPair.first, TiedPair.second); 1128 return false; 1129 } 1130 1131 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1132 Optional<unsigned> &TiedDefIdx, 1133 bool IsDef) { 1134 unsigned Flags = IsDef ? RegState::Define : 0; 1135 while (Token.isRegisterFlag()) { 1136 if (parseRegisterFlag(Flags)) 1137 return true; 1138 } 1139 if (!Token.isRegister()) 1140 return error("expected a register after register flags"); 1141 unsigned Reg; 1142 VRegInfo *RegInfo; 1143 if (parseRegister(Reg, RegInfo)) 1144 return true; 1145 lex(); 1146 unsigned SubReg = 0; 1147 if (Token.is(MIToken::dot)) { 1148 if (parseSubRegisterIndex(SubReg)) 1149 return true; 1150 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1151 return error("subregister index expects a virtual register"); 1152 } 1153 if (Token.is(MIToken::colon)) { 1154 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1155 return error("register class specification expects a virtual register"); 1156 lex(); 1157 if (parseRegisterClassOrBank(*RegInfo)) 1158 return true; 1159 } 1160 MachineRegisterInfo &MRI = MF.getRegInfo(); 1161 if ((Flags & RegState::Define) == 0) { 1162 if (consumeIfPresent(MIToken::lparen)) { 1163 unsigned Idx; 1164 if (!parseRegisterTiedDefIndex(Idx)) 1165 TiedDefIdx = Idx; 1166 else { 1167 // Try a redundant low-level type. 1168 LLT Ty; 1169 if (parseLowLevelType(Token.location(), Ty)) 1170 return error("expected tied-def or low-level type after '('"); 1171 1172 if (expectAndConsume(MIToken::rparen)) 1173 return true; 1174 1175 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1176 return error("inconsistent type for generic virtual register"); 1177 1178 MRI.setType(Reg, Ty); 1179 } 1180 } 1181 } else if (consumeIfPresent(MIToken::lparen)) { 1182 // Virtual registers may have a tpe with GlobalISel. 1183 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1184 return error("unexpected type on physical register"); 1185 1186 LLT Ty; 1187 if (parseLowLevelType(Token.location(), Ty)) 1188 return true; 1189 1190 if (expectAndConsume(MIToken::rparen)) 1191 return true; 1192 1193 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1194 return error("inconsistent type for generic virtual register"); 1195 1196 MRI.setType(Reg, Ty); 1197 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1198 // Generic virtual registers must have a type. 1199 // If we end up here this means the type hasn't been specified and 1200 // this is bad! 1201 if (RegInfo->Kind == VRegInfo::GENERIC || 1202 RegInfo->Kind == VRegInfo::REGBANK) 1203 return error("generic virtual registers must have a type"); 1204 } 1205 Dest = MachineOperand::CreateReg( 1206 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1207 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1208 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1209 Flags & RegState::InternalRead); 1210 return false; 1211 } 1212 1213 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1214 assert(Token.is(MIToken::IntegerLiteral)); 1215 const APSInt &Int = Token.integerValue(); 1216 if (Int.getMinSignedBits() > 64) 1217 return error("integer literal is too large to be an immediate operand"); 1218 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1219 lex(); 1220 return false; 1221 } 1222 1223 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1224 const Constant *&C) { 1225 auto Source = StringValue.str(); // The source has to be null terminated. 1226 SMDiagnostic Err; 1227 C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(), 1228 &PFS.IRSlots); 1229 if (!C) 1230 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1231 return false; 1232 } 1233 1234 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1235 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1236 return true; 1237 lex(); 1238 return false; 1239 } 1240 1241 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1242 if (Token.is(MIToken::ScalarType)) { 1243 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1244 lex(); 1245 return false; 1246 } else if (Token.is(MIToken::PointerType)) { 1247 const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout(); 1248 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1249 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1250 lex(); 1251 return false; 1252 } 1253 1254 // Now we're looking for a vector. 1255 if (Token.isNot(MIToken::less)) 1256 return error(Loc, 1257 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1258 1259 lex(); 1260 1261 if (Token.isNot(MIToken::IntegerLiteral)) 1262 return error(Loc, "expected <N x sM> for vctor type"); 1263 uint64_t NumElements = Token.integerValue().getZExtValue(); 1264 lex(); 1265 1266 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1267 return error(Loc, "expected '<N x sM>' for vector type"); 1268 lex(); 1269 1270 if (Token.isNot(MIToken::ScalarType)) 1271 return error(Loc, "expected '<N x sM>' for vector type"); 1272 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1273 lex(); 1274 1275 if (Token.isNot(MIToken::greater)) 1276 return error(Loc, "expected '<N x sM>' for vector type"); 1277 lex(); 1278 1279 Ty = LLT::vector(NumElements, ScalarSize); 1280 return false; 1281 } 1282 1283 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1284 assert(Token.is(MIToken::IntegerType)); 1285 auto Loc = Token.location(); 1286 lex(); 1287 if (Token.isNot(MIToken::IntegerLiteral)) 1288 return error("expected an integer literal"); 1289 const Constant *C = nullptr; 1290 if (parseIRConstant(Loc, C)) 1291 return true; 1292 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1293 return false; 1294 } 1295 1296 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1297 auto Loc = Token.location(); 1298 lex(); 1299 if (Token.isNot(MIToken::FloatingPointLiteral) && 1300 Token.isNot(MIToken::HexLiteral)) 1301 return error("expected a floating point literal"); 1302 const Constant *C = nullptr; 1303 if (parseIRConstant(Loc, C)) 1304 return true; 1305 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1306 return false; 1307 } 1308 1309 bool MIParser::getUnsigned(unsigned &Result) { 1310 if (Token.hasIntegerValue()) { 1311 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1312 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1313 if (Val64 == Limit) 1314 return error("expected 32-bit integer (too large)"); 1315 Result = Val64; 1316 return false; 1317 } 1318 if (Token.is(MIToken::HexLiteral)) { 1319 APInt A; 1320 if (getHexUint(A)) 1321 return true; 1322 if (A.getBitWidth() > 32) 1323 return error("expected 32-bit integer (too large)"); 1324 Result = A.getZExtValue(); 1325 return false; 1326 } 1327 return true; 1328 } 1329 1330 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1331 assert(Token.is(MIToken::MachineBasicBlock) || 1332 Token.is(MIToken::MachineBasicBlockLabel)); 1333 unsigned Number; 1334 if (getUnsigned(Number)) 1335 return true; 1336 auto MBBInfo = PFS.MBBSlots.find(Number); 1337 if (MBBInfo == PFS.MBBSlots.end()) 1338 return error(Twine("use of undefined machine basic block #") + 1339 Twine(Number)); 1340 MBB = MBBInfo->second; 1341 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1342 return error(Twine("the name of machine basic block #") + Twine(Number) + 1343 " isn't '" + Token.stringValue() + "'"); 1344 return false; 1345 } 1346 1347 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1348 MachineBasicBlock *MBB; 1349 if (parseMBBReference(MBB)) 1350 return true; 1351 Dest = MachineOperand::CreateMBB(MBB); 1352 lex(); 1353 return false; 1354 } 1355 1356 bool MIParser::parseStackFrameIndex(int &FI) { 1357 assert(Token.is(MIToken::StackObject)); 1358 unsigned ID; 1359 if (getUnsigned(ID)) 1360 return true; 1361 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1362 if (ObjectInfo == PFS.StackObjectSlots.end()) 1363 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1364 "'"); 1365 StringRef Name; 1366 if (const auto *Alloca = 1367 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1368 Name = Alloca->getName(); 1369 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1370 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1371 "' isn't '" + Token.stringValue() + "'"); 1372 lex(); 1373 FI = ObjectInfo->second; 1374 return false; 1375 } 1376 1377 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1378 int FI; 1379 if (parseStackFrameIndex(FI)) 1380 return true; 1381 Dest = MachineOperand::CreateFI(FI); 1382 return false; 1383 } 1384 1385 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1386 assert(Token.is(MIToken::FixedStackObject)); 1387 unsigned ID; 1388 if (getUnsigned(ID)) 1389 return true; 1390 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1391 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1392 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1393 Twine(ID) + "'"); 1394 lex(); 1395 FI = ObjectInfo->second; 1396 return false; 1397 } 1398 1399 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1400 int FI; 1401 if (parseFixedStackFrameIndex(FI)) 1402 return true; 1403 Dest = MachineOperand::CreateFI(FI); 1404 return false; 1405 } 1406 1407 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1408 switch (Token.kind()) { 1409 case MIToken::NamedGlobalValue: { 1410 const Module *M = MF.getFunction()->getParent(); 1411 GV = M->getNamedValue(Token.stringValue()); 1412 if (!GV) 1413 return error(Twine("use of undefined global value '") + Token.range() + 1414 "'"); 1415 break; 1416 } 1417 case MIToken::GlobalValue: { 1418 unsigned GVIdx; 1419 if (getUnsigned(GVIdx)) 1420 return true; 1421 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1422 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1423 "'"); 1424 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1425 break; 1426 } 1427 default: 1428 llvm_unreachable("The current token should be a global value"); 1429 } 1430 return false; 1431 } 1432 1433 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1434 GlobalValue *GV = nullptr; 1435 if (parseGlobalValue(GV)) 1436 return true; 1437 lex(); 1438 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1439 if (parseOperandsOffset(Dest)) 1440 return true; 1441 return false; 1442 } 1443 1444 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1445 assert(Token.is(MIToken::ConstantPoolItem)); 1446 unsigned ID; 1447 if (getUnsigned(ID)) 1448 return true; 1449 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1450 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1451 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1452 lex(); 1453 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1454 if (parseOperandsOffset(Dest)) 1455 return true; 1456 return false; 1457 } 1458 1459 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1460 assert(Token.is(MIToken::JumpTableIndex)); 1461 unsigned ID; 1462 if (getUnsigned(ID)) 1463 return true; 1464 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1465 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1466 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1467 lex(); 1468 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1469 return false; 1470 } 1471 1472 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1473 assert(Token.is(MIToken::ExternalSymbol)); 1474 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1475 lex(); 1476 Dest = MachineOperand::CreateES(Symbol); 1477 if (parseOperandsOffset(Dest)) 1478 return true; 1479 return false; 1480 } 1481 1482 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1483 assert(Token.is(MIToken::SubRegisterIndex)); 1484 StringRef Name = Token.stringValue(); 1485 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1486 if (SubRegIndex == 0) 1487 return error(Twine("unknown subregister index '") + Name + "'"); 1488 lex(); 1489 Dest = MachineOperand::CreateImm(SubRegIndex); 1490 return false; 1491 } 1492 1493 bool MIParser::parseMDNode(MDNode *&Node) { 1494 assert(Token.is(MIToken::exclaim)); 1495 auto Loc = Token.location(); 1496 lex(); 1497 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1498 return error("expected metadata id after '!'"); 1499 unsigned ID; 1500 if (getUnsigned(ID)) 1501 return true; 1502 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1503 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1504 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1505 lex(); 1506 Node = NodeInfo->second.get(); 1507 return false; 1508 } 1509 1510 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1511 MDNode *Node = nullptr; 1512 if (parseMDNode(Node)) 1513 return true; 1514 Dest = MachineOperand::CreateMetadata(Node); 1515 return false; 1516 } 1517 1518 bool MIParser::parseCFIOffset(int &Offset) { 1519 if (Token.isNot(MIToken::IntegerLiteral)) 1520 return error("expected a cfi offset"); 1521 if (Token.integerValue().getMinSignedBits() > 32) 1522 return error("expected a 32 bit integer (the cfi offset is too large)"); 1523 Offset = (int)Token.integerValue().getExtValue(); 1524 lex(); 1525 return false; 1526 } 1527 1528 bool MIParser::parseCFIRegister(unsigned &Reg) { 1529 if (Token.isNot(MIToken::NamedRegister)) 1530 return error("expected a cfi register"); 1531 unsigned LLVMReg; 1532 if (parseNamedRegister(LLVMReg)) 1533 return true; 1534 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1535 assert(TRI && "Expected target register info"); 1536 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1537 if (DwarfReg < 0) 1538 return error("invalid DWARF register"); 1539 Reg = (unsigned)DwarfReg; 1540 lex(); 1541 return false; 1542 } 1543 1544 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1545 auto Kind = Token.kind(); 1546 lex(); 1547 int Offset; 1548 unsigned Reg; 1549 unsigned CFIIndex; 1550 switch (Kind) { 1551 case MIToken::kw_cfi_same_value: 1552 if (parseCFIRegister(Reg)) 1553 return true; 1554 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1555 break; 1556 case MIToken::kw_cfi_offset: 1557 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1558 parseCFIOffset(Offset)) 1559 return true; 1560 CFIIndex = 1561 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1562 break; 1563 case MIToken::kw_cfi_def_cfa_register: 1564 if (parseCFIRegister(Reg)) 1565 return true; 1566 CFIIndex = 1567 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1568 break; 1569 case MIToken::kw_cfi_def_cfa_offset: 1570 if (parseCFIOffset(Offset)) 1571 return true; 1572 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1573 CFIIndex = MF.addFrameInst( 1574 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1575 break; 1576 case MIToken::kw_cfi_def_cfa: 1577 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1578 parseCFIOffset(Offset)) 1579 return true; 1580 // NB: MCCFIInstruction::createDefCfa negates the offset. 1581 CFIIndex = 1582 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1583 break; 1584 default: 1585 // TODO: Parse the other CFI operands. 1586 llvm_unreachable("The current token should be a cfi operand"); 1587 } 1588 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1589 return false; 1590 } 1591 1592 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1593 switch (Token.kind()) { 1594 case MIToken::NamedIRBlock: { 1595 BB = dyn_cast_or_null<BasicBlock>( 1596 F.getValueSymbolTable()->lookup(Token.stringValue())); 1597 if (!BB) 1598 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1599 break; 1600 } 1601 case MIToken::IRBlock: { 1602 unsigned SlotNumber = 0; 1603 if (getUnsigned(SlotNumber)) 1604 return true; 1605 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1606 if (!BB) 1607 return error(Twine("use of undefined IR block '%ir-block.") + 1608 Twine(SlotNumber) + "'"); 1609 break; 1610 } 1611 default: 1612 llvm_unreachable("The current token should be an IR block reference"); 1613 } 1614 return false; 1615 } 1616 1617 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1618 assert(Token.is(MIToken::kw_blockaddress)); 1619 lex(); 1620 if (expectAndConsume(MIToken::lparen)) 1621 return true; 1622 if (Token.isNot(MIToken::GlobalValue) && 1623 Token.isNot(MIToken::NamedGlobalValue)) 1624 return error("expected a global value"); 1625 GlobalValue *GV = nullptr; 1626 if (parseGlobalValue(GV)) 1627 return true; 1628 auto *F = dyn_cast<Function>(GV); 1629 if (!F) 1630 return error("expected an IR function reference"); 1631 lex(); 1632 if (expectAndConsume(MIToken::comma)) 1633 return true; 1634 BasicBlock *BB = nullptr; 1635 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1636 return error("expected an IR block reference"); 1637 if (parseIRBlock(BB, *F)) 1638 return true; 1639 lex(); 1640 if (expectAndConsume(MIToken::rparen)) 1641 return true; 1642 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1643 if (parseOperandsOffset(Dest)) 1644 return true; 1645 return false; 1646 } 1647 1648 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1649 assert(Token.is(MIToken::kw_intrinsic)); 1650 lex(); 1651 if (expectAndConsume(MIToken::lparen)) 1652 return error("expected syntax intrinsic(@llvm.whatever)"); 1653 1654 if (Token.isNot(MIToken::NamedGlobalValue)) 1655 return error("expected syntax intrinsic(@llvm.whatever)"); 1656 1657 std::string Name = Token.stringValue(); 1658 lex(); 1659 1660 if (expectAndConsume(MIToken::rparen)) 1661 return error("expected ')' to terminate intrinsic name"); 1662 1663 // Find out what intrinsic we're dealing with, first try the global namespace 1664 // and then the target's private intrinsics if that fails. 1665 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1666 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1667 if (ID == Intrinsic::not_intrinsic && TII) 1668 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1669 1670 if (ID == Intrinsic::not_intrinsic) 1671 return error("unknown intrinsic name"); 1672 Dest = MachineOperand::CreateIntrinsicID(ID); 1673 1674 return false; 1675 } 1676 1677 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1678 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1679 bool IsFloat = Token.is(MIToken::kw_floatpred); 1680 lex(); 1681 1682 if (expectAndConsume(MIToken::lparen)) 1683 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1684 1685 if (Token.isNot(MIToken::Identifier)) 1686 return error("whatever"); 1687 1688 CmpInst::Predicate Pred; 1689 if (IsFloat) { 1690 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1691 .Case("false", CmpInst::FCMP_FALSE) 1692 .Case("oeq", CmpInst::FCMP_OEQ) 1693 .Case("ogt", CmpInst::FCMP_OGT) 1694 .Case("oge", CmpInst::FCMP_OGE) 1695 .Case("olt", CmpInst::FCMP_OLT) 1696 .Case("ole", CmpInst::FCMP_OLE) 1697 .Case("one", CmpInst::FCMP_ONE) 1698 .Case("ord", CmpInst::FCMP_ORD) 1699 .Case("uno", CmpInst::FCMP_UNO) 1700 .Case("ueq", CmpInst::FCMP_UEQ) 1701 .Case("ugt", CmpInst::FCMP_UGT) 1702 .Case("uge", CmpInst::FCMP_UGE) 1703 .Case("ult", CmpInst::FCMP_ULT) 1704 .Case("ule", CmpInst::FCMP_ULE) 1705 .Case("une", CmpInst::FCMP_UNE) 1706 .Case("true", CmpInst::FCMP_TRUE) 1707 .Default(CmpInst::BAD_FCMP_PREDICATE); 1708 if (!CmpInst::isFPPredicate(Pred)) 1709 return error("invalid floating-point predicate"); 1710 } else { 1711 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1712 .Case("eq", CmpInst::ICMP_EQ) 1713 .Case("ne", CmpInst::ICMP_NE) 1714 .Case("sgt", CmpInst::ICMP_SGT) 1715 .Case("sge", CmpInst::ICMP_SGE) 1716 .Case("slt", CmpInst::ICMP_SLT) 1717 .Case("sle", CmpInst::ICMP_SLE) 1718 .Case("ugt", CmpInst::ICMP_UGT) 1719 .Case("uge", CmpInst::ICMP_UGE) 1720 .Case("ult", CmpInst::ICMP_ULT) 1721 .Case("ule", CmpInst::ICMP_ULE) 1722 .Default(CmpInst::BAD_ICMP_PREDICATE); 1723 if (!CmpInst::isIntPredicate(Pred)) 1724 return error("invalid integer predicate"); 1725 } 1726 1727 lex(); 1728 Dest = MachineOperand::CreatePredicate(Pred); 1729 if (expectAndConsume(MIToken::rparen)) 1730 return error("predicate should be terminated by ')'."); 1731 1732 return false; 1733 } 1734 1735 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1736 assert(Token.is(MIToken::kw_target_index)); 1737 lex(); 1738 if (expectAndConsume(MIToken::lparen)) 1739 return true; 1740 if (Token.isNot(MIToken::Identifier)) 1741 return error("expected the name of the target index"); 1742 int Index = 0; 1743 if (getTargetIndex(Token.stringValue(), Index)) 1744 return error("use of undefined target index '" + Token.stringValue() + "'"); 1745 lex(); 1746 if (expectAndConsume(MIToken::rparen)) 1747 return true; 1748 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1749 if (parseOperandsOffset(Dest)) 1750 return true; 1751 return false; 1752 } 1753 1754 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 1755 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 1756 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1757 assert(TRI && "Expected target register info"); 1758 lex(); 1759 if (expectAndConsume(MIToken::lparen)) 1760 return true; 1761 1762 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1763 while (true) { 1764 if (Token.isNot(MIToken::NamedRegister)) 1765 return error("expected a named register"); 1766 unsigned Reg; 1767 if (parseNamedRegister(Reg)) 1768 return true; 1769 lex(); 1770 Mask[Reg / 32] |= 1U << (Reg % 32); 1771 // TODO: Report an error if the same register is used more than once. 1772 if (Token.isNot(MIToken::comma)) 1773 break; 1774 lex(); 1775 } 1776 1777 if (expectAndConsume(MIToken::rparen)) 1778 return true; 1779 Dest = MachineOperand::CreateRegMask(Mask); 1780 return false; 1781 } 1782 1783 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1784 assert(Token.is(MIToken::kw_liveout)); 1785 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1786 assert(TRI && "Expected target register info"); 1787 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1788 lex(); 1789 if (expectAndConsume(MIToken::lparen)) 1790 return true; 1791 while (true) { 1792 if (Token.isNot(MIToken::NamedRegister)) 1793 return error("expected a named register"); 1794 unsigned Reg; 1795 if (parseNamedRegister(Reg)) 1796 return true; 1797 lex(); 1798 Mask[Reg / 32] |= 1U << (Reg % 32); 1799 // TODO: Report an error if the same register is used more than once. 1800 if (Token.isNot(MIToken::comma)) 1801 break; 1802 lex(); 1803 } 1804 if (expectAndConsume(MIToken::rparen)) 1805 return true; 1806 Dest = MachineOperand::CreateRegLiveOut(Mask); 1807 return false; 1808 } 1809 1810 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1811 Optional<unsigned> &TiedDefIdx) { 1812 switch (Token.kind()) { 1813 case MIToken::kw_implicit: 1814 case MIToken::kw_implicit_define: 1815 case MIToken::kw_def: 1816 case MIToken::kw_dead: 1817 case MIToken::kw_killed: 1818 case MIToken::kw_undef: 1819 case MIToken::kw_internal: 1820 case MIToken::kw_early_clobber: 1821 case MIToken::kw_debug_use: 1822 case MIToken::underscore: 1823 case MIToken::NamedRegister: 1824 case MIToken::VirtualRegister: 1825 return parseRegisterOperand(Dest, TiedDefIdx); 1826 case MIToken::IntegerLiteral: 1827 return parseImmediateOperand(Dest); 1828 case MIToken::IntegerType: 1829 return parseTypedImmediateOperand(Dest); 1830 case MIToken::kw_half: 1831 case MIToken::kw_float: 1832 case MIToken::kw_double: 1833 case MIToken::kw_x86_fp80: 1834 case MIToken::kw_fp128: 1835 case MIToken::kw_ppc_fp128: 1836 return parseFPImmediateOperand(Dest); 1837 case MIToken::MachineBasicBlock: 1838 return parseMBBOperand(Dest); 1839 case MIToken::StackObject: 1840 return parseStackObjectOperand(Dest); 1841 case MIToken::FixedStackObject: 1842 return parseFixedStackObjectOperand(Dest); 1843 case MIToken::GlobalValue: 1844 case MIToken::NamedGlobalValue: 1845 return parseGlobalAddressOperand(Dest); 1846 case MIToken::ConstantPoolItem: 1847 return parseConstantPoolIndexOperand(Dest); 1848 case MIToken::JumpTableIndex: 1849 return parseJumpTableIndexOperand(Dest); 1850 case MIToken::ExternalSymbol: 1851 return parseExternalSymbolOperand(Dest); 1852 case MIToken::SubRegisterIndex: 1853 return parseSubRegisterIndexOperand(Dest); 1854 case MIToken::exclaim: 1855 return parseMetadataOperand(Dest); 1856 case MIToken::kw_cfi_same_value: 1857 case MIToken::kw_cfi_offset: 1858 case MIToken::kw_cfi_def_cfa_register: 1859 case MIToken::kw_cfi_def_cfa_offset: 1860 case MIToken::kw_cfi_def_cfa: 1861 return parseCFIOperand(Dest); 1862 case MIToken::kw_blockaddress: 1863 return parseBlockAddressOperand(Dest); 1864 case MIToken::kw_intrinsic: 1865 return parseIntrinsicOperand(Dest); 1866 case MIToken::kw_target_index: 1867 return parseTargetIndexOperand(Dest); 1868 case MIToken::kw_liveout: 1869 return parseLiveoutRegisterMaskOperand(Dest); 1870 case MIToken::kw_floatpred: 1871 case MIToken::kw_intpred: 1872 return parsePredicateOperand(Dest); 1873 case MIToken::Error: 1874 return true; 1875 case MIToken::Identifier: 1876 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1877 Dest = MachineOperand::CreateRegMask(RegMask); 1878 lex(); 1879 break; 1880 } else 1881 return parseCustomRegisterMaskOperand(Dest); 1882 default: 1883 // FIXME: Parse the MCSymbol machine operand. 1884 return error("expected a machine operand"); 1885 } 1886 return false; 1887 } 1888 1889 bool MIParser::parseMachineOperandAndTargetFlags( 1890 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1891 unsigned TF = 0; 1892 bool HasTargetFlags = false; 1893 if (Token.is(MIToken::kw_target_flags)) { 1894 HasTargetFlags = true; 1895 lex(); 1896 if (expectAndConsume(MIToken::lparen)) 1897 return true; 1898 if (Token.isNot(MIToken::Identifier)) 1899 return error("expected the name of the target flag"); 1900 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1901 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1902 return error("use of undefined target flag '" + Token.stringValue() + 1903 "'"); 1904 } 1905 lex(); 1906 while (Token.is(MIToken::comma)) { 1907 lex(); 1908 if (Token.isNot(MIToken::Identifier)) 1909 return error("expected the name of the target flag"); 1910 unsigned BitFlag = 0; 1911 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1912 return error("use of undefined target flag '" + Token.stringValue() + 1913 "'"); 1914 // TODO: Report an error when using a duplicate bit target flag. 1915 TF |= BitFlag; 1916 lex(); 1917 } 1918 if (expectAndConsume(MIToken::rparen)) 1919 return true; 1920 } 1921 auto Loc = Token.location(); 1922 if (parseMachineOperand(Dest, TiedDefIdx)) 1923 return true; 1924 if (!HasTargetFlags) 1925 return false; 1926 if (Dest.isReg()) 1927 return error(Loc, "register operands can't have target flags"); 1928 Dest.setTargetFlags(TF); 1929 return false; 1930 } 1931 1932 bool MIParser::parseOffset(int64_t &Offset) { 1933 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1934 return false; 1935 StringRef Sign = Token.range(); 1936 bool IsNegative = Token.is(MIToken::minus); 1937 lex(); 1938 if (Token.isNot(MIToken::IntegerLiteral)) 1939 return error("expected an integer literal after '" + Sign + "'"); 1940 if (Token.integerValue().getMinSignedBits() > 64) 1941 return error("expected 64-bit integer (too large)"); 1942 Offset = Token.integerValue().getExtValue(); 1943 if (IsNegative) 1944 Offset = -Offset; 1945 lex(); 1946 return false; 1947 } 1948 1949 bool MIParser::parseAlignment(unsigned &Alignment) { 1950 assert(Token.is(MIToken::kw_align)); 1951 lex(); 1952 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1953 return error("expected an integer literal after 'align'"); 1954 if (getUnsigned(Alignment)) 1955 return true; 1956 lex(); 1957 return false; 1958 } 1959 1960 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1961 int64_t Offset = 0; 1962 if (parseOffset(Offset)) 1963 return true; 1964 Op.setOffset(Offset); 1965 return false; 1966 } 1967 1968 bool MIParser::parseIRValue(const Value *&V) { 1969 switch (Token.kind()) { 1970 case MIToken::NamedIRValue: { 1971 V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue()); 1972 break; 1973 } 1974 case MIToken::IRValue: { 1975 unsigned SlotNumber = 0; 1976 if (getUnsigned(SlotNumber)) 1977 return true; 1978 V = getIRValue(SlotNumber); 1979 break; 1980 } 1981 case MIToken::NamedGlobalValue: 1982 case MIToken::GlobalValue: { 1983 GlobalValue *GV = nullptr; 1984 if (parseGlobalValue(GV)) 1985 return true; 1986 V = GV; 1987 break; 1988 } 1989 case MIToken::QuotedIRValue: { 1990 const Constant *C = nullptr; 1991 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1992 return true; 1993 V = C; 1994 break; 1995 } 1996 default: 1997 llvm_unreachable("The current token should be an IR block reference"); 1998 } 1999 if (!V) 2000 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2001 return false; 2002 } 2003 2004 bool MIParser::getUint64(uint64_t &Result) { 2005 if (Token.hasIntegerValue()) { 2006 if (Token.integerValue().getActiveBits() > 64) 2007 return error("expected 64-bit integer (too large)"); 2008 Result = Token.integerValue().getZExtValue(); 2009 return false; 2010 } 2011 if (Token.is(MIToken::HexLiteral)) { 2012 APInt A; 2013 if (getHexUint(A)) 2014 return true; 2015 if (A.getBitWidth() > 64) 2016 return error("expected 64-bit integer (too large)"); 2017 Result = A.getZExtValue(); 2018 return false; 2019 } 2020 return true; 2021 } 2022 2023 bool MIParser::getHexUint(APInt &Result) { 2024 assert(Token.is(MIToken::HexLiteral)); 2025 StringRef S = Token.range(); 2026 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2027 // This could be a floating point literal with a special prefix. 2028 if (!isxdigit(S[2])) 2029 return true; 2030 StringRef V = S.substr(2); 2031 APInt A(V.size()*4, V, 16); 2032 Result = APInt(A.getActiveBits(), 2033 ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2034 return false; 2035 } 2036 2037 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2038 const auto OldFlags = Flags; 2039 switch (Token.kind()) { 2040 case MIToken::kw_volatile: 2041 Flags |= MachineMemOperand::MOVolatile; 2042 break; 2043 case MIToken::kw_non_temporal: 2044 Flags |= MachineMemOperand::MONonTemporal; 2045 break; 2046 case MIToken::kw_dereferenceable: 2047 Flags |= MachineMemOperand::MODereferenceable; 2048 break; 2049 case MIToken::kw_invariant: 2050 Flags |= MachineMemOperand::MOInvariant; 2051 break; 2052 case MIToken::StringConstant: { 2053 MachineMemOperand::Flags TF; 2054 if (getMMOTargetFlag(Token.stringValue(), TF)) 2055 return error("use of undefined target MMO flag '" + Token.stringValue() + 2056 "'"); 2057 Flags |= TF; 2058 break; 2059 } 2060 default: 2061 llvm_unreachable("The current token should be a memory operand flag"); 2062 } 2063 if (OldFlags == Flags) 2064 // We know that the same flag is specified more than once when the flags 2065 // weren't modified. 2066 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2067 lex(); 2068 return false; 2069 } 2070 2071 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2072 switch (Token.kind()) { 2073 case MIToken::kw_stack: 2074 PSV = MF.getPSVManager().getStack(); 2075 break; 2076 case MIToken::kw_got: 2077 PSV = MF.getPSVManager().getGOT(); 2078 break; 2079 case MIToken::kw_jump_table: 2080 PSV = MF.getPSVManager().getJumpTable(); 2081 break; 2082 case MIToken::kw_constant_pool: 2083 PSV = MF.getPSVManager().getConstantPool(); 2084 break; 2085 case MIToken::FixedStackObject: { 2086 int FI; 2087 if (parseFixedStackFrameIndex(FI)) 2088 return true; 2089 PSV = MF.getPSVManager().getFixedStack(FI); 2090 // The token was already consumed, so use return here instead of break. 2091 return false; 2092 } 2093 case MIToken::StackObject: { 2094 int FI; 2095 if (parseStackFrameIndex(FI)) 2096 return true; 2097 PSV = MF.getPSVManager().getFixedStack(FI); 2098 // The token was already consumed, so use return here instead of break. 2099 return false; 2100 } 2101 case MIToken::kw_call_entry: 2102 lex(); 2103 switch (Token.kind()) { 2104 case MIToken::GlobalValue: 2105 case MIToken::NamedGlobalValue: { 2106 GlobalValue *GV = nullptr; 2107 if (parseGlobalValue(GV)) 2108 return true; 2109 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2110 break; 2111 } 2112 case MIToken::ExternalSymbol: 2113 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2114 MF.createExternalSymbolName(Token.stringValue())); 2115 break; 2116 default: 2117 return error( 2118 "expected a global value or an external symbol after 'call-entry'"); 2119 } 2120 break; 2121 default: 2122 llvm_unreachable("The current token should be pseudo source value"); 2123 } 2124 lex(); 2125 return false; 2126 } 2127 2128 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2129 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2130 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2131 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2132 Token.is(MIToken::kw_call_entry)) { 2133 const PseudoSourceValue *PSV = nullptr; 2134 if (parseMemoryPseudoSourceValue(PSV)) 2135 return true; 2136 int64_t Offset = 0; 2137 if (parseOffset(Offset)) 2138 return true; 2139 Dest = MachinePointerInfo(PSV, Offset); 2140 return false; 2141 } 2142 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2143 Token.isNot(MIToken::GlobalValue) && 2144 Token.isNot(MIToken::NamedGlobalValue) && 2145 Token.isNot(MIToken::QuotedIRValue)) 2146 return error("expected an IR value reference"); 2147 const Value *V = nullptr; 2148 if (parseIRValue(V)) 2149 return true; 2150 if (!V->getType()->isPointerTy()) 2151 return error("expected a pointer IR value"); 2152 lex(); 2153 int64_t Offset = 0; 2154 if (parseOffset(Offset)) 2155 return true; 2156 Dest = MachinePointerInfo(V, Offset); 2157 return false; 2158 } 2159 2160 bool MIParser::parseOptionalScope(LLVMContext &Context, 2161 SyncScope::ID &SSID) { 2162 SSID = SyncScope::System; 2163 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2164 lex(); 2165 if (expectAndConsume(MIToken::lparen)) 2166 return error("expected '(' in syncscope"); 2167 2168 std::string SSN; 2169 if (parseStringConstant(SSN)) 2170 return true; 2171 2172 SSID = Context.getOrInsertSyncScopeID(SSN); 2173 if (expectAndConsume(MIToken::rparen)) 2174 return error("expected ')' in syncscope"); 2175 } 2176 2177 return false; 2178 } 2179 2180 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2181 Order = AtomicOrdering::NotAtomic; 2182 if (Token.isNot(MIToken::Identifier)) 2183 return false; 2184 2185 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2186 .Case("unordered", AtomicOrdering::Unordered) 2187 .Case("monotonic", AtomicOrdering::Monotonic) 2188 .Case("acquire", AtomicOrdering::Acquire) 2189 .Case("release", AtomicOrdering::Release) 2190 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2191 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2192 .Default(AtomicOrdering::NotAtomic); 2193 2194 if (Order != AtomicOrdering::NotAtomic) { 2195 lex(); 2196 return false; 2197 } 2198 2199 return error("expected an atomic scope, ordering or a size integer literal"); 2200 } 2201 2202 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2203 if (expectAndConsume(MIToken::lparen)) 2204 return true; 2205 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2206 while (Token.isMemoryOperandFlag()) { 2207 if (parseMemoryOperandFlag(Flags)) 2208 return true; 2209 } 2210 if (Token.isNot(MIToken::Identifier) || 2211 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2212 return error("expected 'load' or 'store' memory operation"); 2213 if (Token.stringValue() == "load") 2214 Flags |= MachineMemOperand::MOLoad; 2215 else 2216 Flags |= MachineMemOperand::MOStore; 2217 lex(); 2218 2219 // Optional synchronization scope. 2220 SyncScope::ID SSID; 2221 if (parseOptionalScope(MF.getFunction()->getContext(), SSID)) 2222 return true; 2223 2224 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2225 AtomicOrdering Order, FailureOrder; 2226 if (parseOptionalAtomicOrdering(Order)) 2227 return true; 2228 2229 if (parseOptionalAtomicOrdering(FailureOrder)) 2230 return true; 2231 2232 if (Token.isNot(MIToken::IntegerLiteral)) 2233 return error("expected the size integer literal after memory operation"); 2234 uint64_t Size; 2235 if (getUint64(Size)) 2236 return true; 2237 lex(); 2238 2239 MachinePointerInfo Ptr = MachinePointerInfo(); 2240 if (Token.is(MIToken::Identifier)) { 2241 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2242 if (Token.stringValue() != Word) 2243 return error(Twine("expected '") + Word + "'"); 2244 lex(); 2245 2246 if (parseMachinePointerInfo(Ptr)) 2247 return true; 2248 } 2249 unsigned BaseAlignment = Size; 2250 AAMDNodes AAInfo; 2251 MDNode *Range = nullptr; 2252 while (consumeIfPresent(MIToken::comma)) { 2253 switch (Token.kind()) { 2254 case MIToken::kw_align: 2255 if (parseAlignment(BaseAlignment)) 2256 return true; 2257 break; 2258 case MIToken::md_tbaa: 2259 lex(); 2260 if (parseMDNode(AAInfo.TBAA)) 2261 return true; 2262 break; 2263 case MIToken::md_alias_scope: 2264 lex(); 2265 if (parseMDNode(AAInfo.Scope)) 2266 return true; 2267 break; 2268 case MIToken::md_noalias: 2269 lex(); 2270 if (parseMDNode(AAInfo.NoAlias)) 2271 return true; 2272 break; 2273 case MIToken::md_range: 2274 lex(); 2275 if (parseMDNode(Range)) 2276 return true; 2277 break; 2278 // TODO: Report an error on duplicate metadata nodes. 2279 default: 2280 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2281 "'!noalias' or '!range'"); 2282 } 2283 } 2284 if (expectAndConsume(MIToken::rparen)) 2285 return true; 2286 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2287 SSID, Order, FailureOrder); 2288 return false; 2289 } 2290 2291 void MIParser::initNames2InstrOpCodes() { 2292 if (!Names2InstrOpCodes.empty()) 2293 return; 2294 const auto *TII = MF.getSubtarget().getInstrInfo(); 2295 assert(TII && "Expected target instruction info"); 2296 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2297 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2298 } 2299 2300 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2301 initNames2InstrOpCodes(); 2302 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2303 if (InstrInfo == Names2InstrOpCodes.end()) 2304 return true; 2305 OpCode = InstrInfo->getValue(); 2306 return false; 2307 } 2308 2309 void MIParser::initNames2Regs() { 2310 if (!Names2Regs.empty()) 2311 return; 2312 // The '%noreg' register is the register 0. 2313 Names2Regs.insert(std::make_pair("noreg", 0)); 2314 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2315 assert(TRI && "Expected target register info"); 2316 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2317 bool WasInserted = 2318 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2319 .second; 2320 (void)WasInserted; 2321 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2322 } 2323 } 2324 2325 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2326 initNames2Regs(); 2327 auto RegInfo = Names2Regs.find(RegName); 2328 if (RegInfo == Names2Regs.end()) 2329 return true; 2330 Reg = RegInfo->getValue(); 2331 return false; 2332 } 2333 2334 void MIParser::initNames2RegMasks() { 2335 if (!Names2RegMasks.empty()) 2336 return; 2337 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2338 assert(TRI && "Expected target register info"); 2339 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2340 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2341 assert(RegMasks.size() == RegMaskNames.size()); 2342 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2343 Names2RegMasks.insert( 2344 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2345 } 2346 2347 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2348 initNames2RegMasks(); 2349 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2350 if (RegMaskInfo == Names2RegMasks.end()) 2351 return nullptr; 2352 return RegMaskInfo->getValue(); 2353 } 2354 2355 void MIParser::initNames2SubRegIndices() { 2356 if (!Names2SubRegIndices.empty()) 2357 return; 2358 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2359 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2360 Names2SubRegIndices.insert( 2361 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2362 } 2363 2364 unsigned MIParser::getSubRegIndex(StringRef Name) { 2365 initNames2SubRegIndices(); 2366 auto SubRegInfo = Names2SubRegIndices.find(Name); 2367 if (SubRegInfo == Names2SubRegIndices.end()) 2368 return 0; 2369 return SubRegInfo->getValue(); 2370 } 2371 2372 static void initSlots2BasicBlocks( 2373 const Function &F, 2374 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2375 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2376 MST.incorporateFunction(F); 2377 for (auto &BB : F) { 2378 if (BB.hasName()) 2379 continue; 2380 int Slot = MST.getLocalSlot(&BB); 2381 if (Slot == -1) 2382 continue; 2383 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2384 } 2385 } 2386 2387 static const BasicBlock *getIRBlockFromSlot( 2388 unsigned Slot, 2389 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2390 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2391 if (BlockInfo == Slots2BasicBlocks.end()) 2392 return nullptr; 2393 return BlockInfo->second; 2394 } 2395 2396 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2397 if (Slots2BasicBlocks.empty()) 2398 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2399 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2400 } 2401 2402 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2403 if (&F == MF.getFunction()) 2404 return getIRBlock(Slot); 2405 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2406 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2407 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2408 } 2409 2410 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2411 DenseMap<unsigned, const Value *> &Slots2Values) { 2412 int Slot = MST.getLocalSlot(V); 2413 if (Slot == -1) 2414 return; 2415 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2416 } 2417 2418 /// Creates the mapping from slot numbers to function's unnamed IR values. 2419 static void initSlots2Values(const Function &F, 2420 DenseMap<unsigned, const Value *> &Slots2Values) { 2421 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2422 MST.incorporateFunction(F); 2423 for (const auto &Arg : F.args()) 2424 mapValueToSlot(&Arg, MST, Slots2Values); 2425 for (const auto &BB : F) { 2426 mapValueToSlot(&BB, MST, Slots2Values); 2427 for (const auto &I : BB) 2428 mapValueToSlot(&I, MST, Slots2Values); 2429 } 2430 } 2431 2432 const Value *MIParser::getIRValue(unsigned Slot) { 2433 if (Slots2Values.empty()) 2434 initSlots2Values(*MF.getFunction(), Slots2Values); 2435 auto ValueInfo = Slots2Values.find(Slot); 2436 if (ValueInfo == Slots2Values.end()) 2437 return nullptr; 2438 return ValueInfo->second; 2439 } 2440 2441 void MIParser::initNames2TargetIndices() { 2442 if (!Names2TargetIndices.empty()) 2443 return; 2444 const auto *TII = MF.getSubtarget().getInstrInfo(); 2445 assert(TII && "Expected target instruction info"); 2446 auto Indices = TII->getSerializableTargetIndices(); 2447 for (const auto &I : Indices) 2448 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2449 } 2450 2451 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2452 initNames2TargetIndices(); 2453 auto IndexInfo = Names2TargetIndices.find(Name); 2454 if (IndexInfo == Names2TargetIndices.end()) 2455 return true; 2456 Index = IndexInfo->second; 2457 return false; 2458 } 2459 2460 void MIParser::initNames2DirectTargetFlags() { 2461 if (!Names2DirectTargetFlags.empty()) 2462 return; 2463 const auto *TII = MF.getSubtarget().getInstrInfo(); 2464 assert(TII && "Expected target instruction info"); 2465 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2466 for (const auto &I : Flags) 2467 Names2DirectTargetFlags.insert( 2468 std::make_pair(StringRef(I.second), I.first)); 2469 } 2470 2471 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2472 initNames2DirectTargetFlags(); 2473 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2474 if (FlagInfo == Names2DirectTargetFlags.end()) 2475 return true; 2476 Flag = FlagInfo->second; 2477 return false; 2478 } 2479 2480 void MIParser::initNames2BitmaskTargetFlags() { 2481 if (!Names2BitmaskTargetFlags.empty()) 2482 return; 2483 const auto *TII = MF.getSubtarget().getInstrInfo(); 2484 assert(TII && "Expected target instruction info"); 2485 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2486 for (const auto &I : Flags) 2487 Names2BitmaskTargetFlags.insert( 2488 std::make_pair(StringRef(I.second), I.first)); 2489 } 2490 2491 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2492 initNames2BitmaskTargetFlags(); 2493 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2494 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2495 return true; 2496 Flag = FlagInfo->second; 2497 return false; 2498 } 2499 2500 void MIParser::initNames2MMOTargetFlags() { 2501 if (!Names2MMOTargetFlags.empty()) 2502 return; 2503 const auto *TII = MF.getSubtarget().getInstrInfo(); 2504 assert(TII && "Expected target instruction info"); 2505 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2506 for (const auto &I : Flags) 2507 Names2MMOTargetFlags.insert( 2508 std::make_pair(StringRef(I.second), I.first)); 2509 } 2510 2511 bool MIParser::getMMOTargetFlag(StringRef Name, 2512 MachineMemOperand::Flags &Flag) { 2513 initNames2MMOTargetFlags(); 2514 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2515 if (FlagInfo == Names2MMOTargetFlags.end()) 2516 return true; 2517 Flag = FlagInfo->second; 2518 return false; 2519 } 2520 2521 bool MIParser::parseStringConstant(std::string &Result) { 2522 if (Token.isNot(MIToken::StringConstant)) 2523 return error("expected string constant"); 2524 Result = Token.stringValue(); 2525 lex(); 2526 return false; 2527 } 2528 2529 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2530 StringRef Src, 2531 SMDiagnostic &Error) { 2532 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2533 } 2534 2535 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2536 StringRef Src, SMDiagnostic &Error) { 2537 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2538 } 2539 2540 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2541 MachineBasicBlock *&MBB, StringRef Src, 2542 SMDiagnostic &Error) { 2543 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2544 } 2545 2546 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2547 unsigned &Reg, StringRef Src, 2548 SMDiagnostic &Error) { 2549 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2550 } 2551 2552 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2553 unsigned &Reg, StringRef Src, 2554 SMDiagnostic &Error) { 2555 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2556 } 2557 2558 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2559 VRegInfo *&Info, StringRef Src, 2560 SMDiagnostic &Error) { 2561 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2562 } 2563 2564 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2565 int &FI, StringRef Src, 2566 SMDiagnostic &Error) { 2567 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2568 } 2569 2570 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2571 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2572 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2573 } 2574