1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/AsmParser/Parser.h"
18 #include "llvm/AsmParser/SlotMapping.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/SourceMgr.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 
37 using namespace llvm;
38 
39 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
40     SourceMgr &SM, const SlotMapping &IRSlots)
41   : MF(MF), SM(&SM), IRSlots(IRSlots) {
42 }
43 
44 namespace {
45 
46 /// A wrapper struct around the 'MachineOperand' struct that includes a source
47 /// range and other attributes.
48 struct ParsedMachineOperand {
49   MachineOperand Operand;
50   StringRef::iterator Begin;
51   StringRef::iterator End;
52   Optional<unsigned> TiedDefIdx;
53 
54   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
55                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
56       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
57     if (TiedDefIdx)
58       assert(Operand.isReg() && Operand.isUse() &&
59              "Only used register operands can be tied");
60   }
61 };
62 
63 class MIParser {
64   MachineFunction &MF;
65   SMDiagnostic &Error;
66   StringRef Source, CurrentSource;
67   MIToken Token;
68   const PerFunctionMIParsingState &PFS;
69   /// Maps from instruction names to op codes.
70   StringMap<unsigned> Names2InstrOpCodes;
71   /// Maps from register names to registers.
72   StringMap<unsigned> Names2Regs;
73   /// Maps from register mask names to register masks.
74   StringMap<const uint32_t *> Names2RegMasks;
75   /// Maps from subregister names to subregister indices.
76   StringMap<unsigned> Names2SubRegIndices;
77   /// Maps from slot numbers to function's unnamed basic blocks.
78   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
79   /// Maps from slot numbers to function's unnamed values.
80   DenseMap<unsigned, const Value *> Slots2Values;
81   /// Maps from target index names to target indices.
82   StringMap<int> Names2TargetIndices;
83   /// Maps from direct target flag names to the direct target flag values.
84   StringMap<unsigned> Names2DirectTargetFlags;
85   /// Maps from direct target flag names to the bitmask target flag values.
86   StringMap<unsigned> Names2BitmaskTargetFlags;
87 
88 public:
89   MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
90            StringRef Source);
91 
92   /// \p SkipChar gives the number of characters to skip before looking
93   /// for the next token.
94   void lex(unsigned SkipChar = 0);
95 
96   /// Report an error at the current location with the given message.
97   ///
98   /// This function always return true.
99   bool error(const Twine &Msg);
100 
101   /// Report an error at the given location with the given message.
102   ///
103   /// This function always return true.
104   bool error(StringRef::iterator Loc, const Twine &Msg);
105 
106   bool
107   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
108   bool parseBasicBlocks();
109   bool parse(MachineInstr *&MI);
110   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
111   bool parseStandaloneNamedRegister(unsigned &Reg);
112   bool parseStandaloneVirtualRegister(unsigned &Reg);
113   bool parseStandaloneStackObject(int &FI);
114   bool parseStandaloneMDNode(MDNode *&Node);
115 
116   bool
117   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
118   bool parseBasicBlock(MachineBasicBlock &MBB);
119   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
120   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
121 
122   bool parseRegister(unsigned &Reg);
123   bool parseRegisterFlag(unsigned &Flags);
124   bool parseSubRegisterIndex(unsigned &SubReg);
125   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
126   bool parseSize(unsigned &Size);
127   bool parseRegisterOperand(MachineOperand &Dest,
128                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
129   bool parseImmediateOperand(MachineOperand &Dest);
130   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
131                        const Constant *&C);
132   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
133   bool parseIRType(StringRef::iterator Loc, StringRef Source, unsigned &Read,
134                    Type *&Ty);
135   // \p MustBeSized defines whether or not \p Ty must be sized.
136   bool parseIRType(StringRef::iterator Loc, Type *&Ty, bool MustBeSized = true);
137   bool parseTypedImmediateOperand(MachineOperand &Dest);
138   bool parseFPImmediateOperand(MachineOperand &Dest);
139   bool parseMBBReference(MachineBasicBlock *&MBB);
140   bool parseMBBOperand(MachineOperand &Dest);
141   bool parseStackFrameIndex(int &FI);
142   bool parseStackObjectOperand(MachineOperand &Dest);
143   bool parseFixedStackFrameIndex(int &FI);
144   bool parseFixedStackObjectOperand(MachineOperand &Dest);
145   bool parseGlobalValue(GlobalValue *&GV);
146   bool parseGlobalAddressOperand(MachineOperand &Dest);
147   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
148   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
149   bool parseJumpTableIndexOperand(MachineOperand &Dest);
150   bool parseExternalSymbolOperand(MachineOperand &Dest);
151   bool parseMDNode(MDNode *&Node);
152   bool parseMetadataOperand(MachineOperand &Dest);
153   bool parseCFIOffset(int &Offset);
154   bool parseCFIRegister(unsigned &Reg);
155   bool parseCFIOperand(MachineOperand &Dest);
156   bool parseIRBlock(BasicBlock *&BB, const Function &F);
157   bool parseBlockAddressOperand(MachineOperand &Dest);
158   bool parseTargetIndexOperand(MachineOperand &Dest);
159   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
160   bool parseMachineOperand(MachineOperand &Dest,
161                            Optional<unsigned> &TiedDefIdx);
162   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
163                                          Optional<unsigned> &TiedDefIdx);
164   bool parseOffset(int64_t &Offset);
165   bool parseAlignment(unsigned &Alignment);
166   bool parseOperandsOffset(MachineOperand &Op);
167   bool parseIRValue(const Value *&V);
168   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
169   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
170   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
171   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
172 
173 private:
174   /// Convert the integer literal in the current token into an unsigned integer.
175   ///
176   /// Return true if an error occurred.
177   bool getUnsigned(unsigned &Result);
178 
179   /// Convert the integer literal in the current token into an uint64.
180   ///
181   /// Return true if an error occurred.
182   bool getUint64(uint64_t &Result);
183 
184   /// If the current token is of the given kind, consume it and return false.
185   /// Otherwise report an error and return true.
186   bool expectAndConsume(MIToken::TokenKind TokenKind);
187 
188   /// If the current token is of the given kind, consume it and return true.
189   /// Otherwise return false.
190   bool consumeIfPresent(MIToken::TokenKind TokenKind);
191 
192   void initNames2InstrOpCodes();
193 
194   /// Try to convert an instruction name to an opcode. Return true if the
195   /// instruction name is invalid.
196   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
197 
198   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
199 
200   bool assignRegisterTies(MachineInstr &MI,
201                           ArrayRef<ParsedMachineOperand> Operands);
202 
203   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
204                               const MCInstrDesc &MCID);
205 
206   void initNames2Regs();
207 
208   /// Try to convert a register name to a register number. Return true if the
209   /// register name is invalid.
210   bool getRegisterByName(StringRef RegName, unsigned &Reg);
211 
212   void initNames2RegMasks();
213 
214   /// Check if the given identifier is a name of a register mask.
215   ///
216   /// Return null if the identifier isn't a register mask.
217   const uint32_t *getRegMask(StringRef Identifier);
218 
219   void initNames2SubRegIndices();
220 
221   /// Check if the given identifier is a name of a subregister index.
222   ///
223   /// Return 0 if the name isn't a subregister index class.
224   unsigned getSubRegIndex(StringRef Name);
225 
226   const BasicBlock *getIRBlock(unsigned Slot);
227   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
228 
229   const Value *getIRValue(unsigned Slot);
230 
231   void initNames2TargetIndices();
232 
233   /// Try to convert a name of target index to the corresponding target index.
234   ///
235   /// Return true if the name isn't a name of a target index.
236   bool getTargetIndex(StringRef Name, int &Index);
237 
238   void initNames2DirectTargetFlags();
239 
240   /// Try to convert a name of a direct target flag to the corresponding
241   /// target flag.
242   ///
243   /// Return true if the name isn't a name of a direct flag.
244   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
245 
246   void initNames2BitmaskTargetFlags();
247 
248   /// Try to convert a name of a bitmask target flag to the corresponding
249   /// target flag.
250   ///
251   /// Return true if the name isn't a name of a bitmask target flag.
252   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
253 };
254 
255 } // end anonymous namespace
256 
257 MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
258                    StringRef Source)
259     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
260 {}
261 
262 void MIParser::lex(unsigned SkipChar) {
263   CurrentSource = lexMIToken(
264       CurrentSource.data() + SkipChar, Token,
265       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
266 }
267 
268 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
269 
270 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
271   const SourceMgr &SM = *PFS.SM;
272   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
273   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
274   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
275     // Create an ordinary diagnostic when the source manager's buffer is the
276     // source string.
277     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
278     return true;
279   }
280   // Create a diagnostic for a YAML string literal.
281   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
282                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
283                        Source, None, None);
284   return true;
285 }
286 
287 static const char *toString(MIToken::TokenKind TokenKind) {
288   switch (TokenKind) {
289   case MIToken::comma:
290     return "','";
291   case MIToken::equal:
292     return "'='";
293   case MIToken::colon:
294     return "':'";
295   case MIToken::lparen:
296     return "'('";
297   case MIToken::rparen:
298     return "')'";
299   default:
300     return "<unknown token>";
301   }
302 }
303 
304 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
305   if (Token.isNot(TokenKind))
306     return error(Twine("expected ") + toString(TokenKind));
307   lex();
308   return false;
309 }
310 
311 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
312   if (Token.isNot(TokenKind))
313     return false;
314   lex();
315   return true;
316 }
317 
318 bool MIParser::parseBasicBlockDefinition(
319     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
320   assert(Token.is(MIToken::MachineBasicBlockLabel));
321   unsigned ID = 0;
322   if (getUnsigned(ID))
323     return true;
324   auto Loc = Token.location();
325   auto Name = Token.stringValue();
326   lex();
327   bool HasAddressTaken = false;
328   bool IsLandingPad = false;
329   unsigned Alignment = 0;
330   BasicBlock *BB = nullptr;
331   if (consumeIfPresent(MIToken::lparen)) {
332     do {
333       // TODO: Report an error when multiple same attributes are specified.
334       switch (Token.kind()) {
335       case MIToken::kw_address_taken:
336         HasAddressTaken = true;
337         lex();
338         break;
339       case MIToken::kw_landing_pad:
340         IsLandingPad = true;
341         lex();
342         break;
343       case MIToken::kw_align:
344         if (parseAlignment(Alignment))
345           return true;
346         break;
347       case MIToken::IRBlock:
348         // TODO: Report an error when both name and ir block are specified.
349         if (parseIRBlock(BB, *MF.getFunction()))
350           return true;
351         lex();
352         break;
353       default:
354         break;
355       }
356     } while (consumeIfPresent(MIToken::comma));
357     if (expectAndConsume(MIToken::rparen))
358       return true;
359   }
360   if (expectAndConsume(MIToken::colon))
361     return true;
362 
363   if (!Name.empty()) {
364     BB = dyn_cast_or_null<BasicBlock>(
365         MF.getFunction()->getValueSymbolTable().lookup(Name));
366     if (!BB)
367       return error(Loc, Twine("basic block '") + Name +
368                             "' is not defined in the function '" +
369                             MF.getName() + "'");
370   }
371   auto *MBB = MF.CreateMachineBasicBlock(BB);
372   MF.insert(MF.end(), MBB);
373   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
374   if (!WasInserted)
375     return error(Loc, Twine("redefinition of machine basic block with id #") +
376                           Twine(ID));
377   if (Alignment)
378     MBB->setAlignment(Alignment);
379   if (HasAddressTaken)
380     MBB->setHasAddressTaken();
381   MBB->setIsEHPad(IsLandingPad);
382   return false;
383 }
384 
385 bool MIParser::parseBasicBlockDefinitions(
386     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
387   lex();
388   // Skip until the first machine basic block.
389   while (Token.is(MIToken::Newline))
390     lex();
391   if (Token.isErrorOrEOF())
392     return Token.isError();
393   if (Token.isNot(MIToken::MachineBasicBlockLabel))
394     return error("expected a basic block definition before instructions");
395   unsigned BraceDepth = 0;
396   do {
397     if (parseBasicBlockDefinition(MBBSlots))
398       return true;
399     bool IsAfterNewline = false;
400     // Skip until the next machine basic block.
401     while (true) {
402       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
403           Token.isErrorOrEOF())
404         break;
405       else if (Token.is(MIToken::MachineBasicBlockLabel))
406         return error("basic block definition should be located at the start of "
407                      "the line");
408       else if (consumeIfPresent(MIToken::Newline)) {
409         IsAfterNewline = true;
410         continue;
411       }
412       IsAfterNewline = false;
413       if (Token.is(MIToken::lbrace))
414         ++BraceDepth;
415       if (Token.is(MIToken::rbrace)) {
416         if (!BraceDepth)
417           return error("extraneous closing brace ('}')");
418         --BraceDepth;
419       }
420       lex();
421     }
422     // Verify that we closed all of the '{' at the end of a file or a block.
423     if (!Token.isError() && BraceDepth)
424       return error("expected '}'"); // FIXME: Report a note that shows '{'.
425   } while (!Token.isErrorOrEOF());
426   return Token.isError();
427 }
428 
429 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
430   assert(Token.is(MIToken::kw_liveins));
431   lex();
432   if (expectAndConsume(MIToken::colon))
433     return true;
434   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
435     return false;
436   do {
437     if (Token.isNot(MIToken::NamedRegister))
438       return error("expected a named register");
439     unsigned Reg = 0;
440     if (parseRegister(Reg))
441       return true;
442     MBB.addLiveIn(Reg);
443     lex();
444   } while (consumeIfPresent(MIToken::comma));
445   return false;
446 }
447 
448 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
449   assert(Token.is(MIToken::kw_successors));
450   lex();
451   if (expectAndConsume(MIToken::colon))
452     return true;
453   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
454     return false;
455   do {
456     if (Token.isNot(MIToken::MachineBasicBlock))
457       return error("expected a machine basic block reference");
458     MachineBasicBlock *SuccMBB = nullptr;
459     if (parseMBBReference(SuccMBB))
460       return true;
461     lex();
462     unsigned Weight = 0;
463     if (consumeIfPresent(MIToken::lparen)) {
464       if (Token.isNot(MIToken::IntegerLiteral))
465         return error("expected an integer literal after '('");
466       if (getUnsigned(Weight))
467         return true;
468       lex();
469       if (expectAndConsume(MIToken::rparen))
470         return true;
471     }
472     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
473   } while (consumeIfPresent(MIToken::comma));
474   MBB.normalizeSuccProbs();
475   return false;
476 }
477 
478 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
479   // Skip the definition.
480   assert(Token.is(MIToken::MachineBasicBlockLabel));
481   lex();
482   if (consumeIfPresent(MIToken::lparen)) {
483     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
484       lex();
485     consumeIfPresent(MIToken::rparen);
486   }
487   consumeIfPresent(MIToken::colon);
488 
489   // Parse the liveins and successors.
490   // N.B: Multiple lists of successors and liveins are allowed and they're
491   // merged into one.
492   // Example:
493   //   liveins: %edi
494   //   liveins: %esi
495   //
496   // is equivalent to
497   //   liveins: %edi, %esi
498   while (true) {
499     if (Token.is(MIToken::kw_successors)) {
500       if (parseBasicBlockSuccessors(MBB))
501         return true;
502     } else if (Token.is(MIToken::kw_liveins)) {
503       if (parseBasicBlockLiveins(MBB))
504         return true;
505     } else if (consumeIfPresent(MIToken::Newline)) {
506       continue;
507     } else
508       break;
509     if (!Token.isNewlineOrEOF())
510       return error("expected line break at the end of a list");
511     lex();
512   }
513 
514   // Parse the instructions.
515   bool IsInBundle = false;
516   MachineInstr *PrevMI = nullptr;
517   while (true) {
518     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
519       return false;
520     else if (consumeIfPresent(MIToken::Newline))
521       continue;
522     if (consumeIfPresent(MIToken::rbrace)) {
523       // The first parsing pass should verify that all closing '}' have an
524       // opening '{'.
525       assert(IsInBundle);
526       IsInBundle = false;
527       continue;
528     }
529     MachineInstr *MI = nullptr;
530     if (parse(MI))
531       return true;
532     MBB.insert(MBB.end(), MI);
533     if (IsInBundle) {
534       PrevMI->setFlag(MachineInstr::BundledSucc);
535       MI->setFlag(MachineInstr::BundledPred);
536     }
537     PrevMI = MI;
538     if (Token.is(MIToken::lbrace)) {
539       if (IsInBundle)
540         return error("nested instruction bundles are not allowed");
541       lex();
542       // This instruction is the start of the bundle.
543       MI->setFlag(MachineInstr::BundledSucc);
544       IsInBundle = true;
545       if (!Token.is(MIToken::Newline))
546         // The next instruction can be on the same line.
547         continue;
548     }
549     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
550     lex();
551   }
552   return false;
553 }
554 
555 bool MIParser::parseBasicBlocks() {
556   lex();
557   // Skip until the first machine basic block.
558   while (Token.is(MIToken::Newline))
559     lex();
560   if (Token.isErrorOrEOF())
561     return Token.isError();
562   // The first parsing pass should have verified that this token is a MBB label
563   // in the 'parseBasicBlockDefinitions' method.
564   assert(Token.is(MIToken::MachineBasicBlockLabel));
565   do {
566     MachineBasicBlock *MBB = nullptr;
567     if (parseMBBReference(MBB))
568       return true;
569     if (parseBasicBlock(*MBB))
570       return true;
571     // The method 'parseBasicBlock' should parse the whole block until the next
572     // block or the end of file.
573     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
574   } while (Token.isNot(MIToken::Eof));
575   return false;
576 }
577 
578 bool MIParser::parse(MachineInstr *&MI) {
579   // Parse any register operands before '='
580   MachineOperand MO = MachineOperand::CreateImm(0);
581   SmallVector<ParsedMachineOperand, 8> Operands;
582   while (Token.isRegister() || Token.isRegisterFlag()) {
583     auto Loc = Token.location();
584     Optional<unsigned> TiedDefIdx;
585     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
586       return true;
587     Operands.push_back(
588         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
589     if (Token.isNot(MIToken::comma))
590       break;
591     lex();
592   }
593   if (!Operands.empty() && expectAndConsume(MIToken::equal))
594     return true;
595 
596   unsigned OpCode, Flags = 0;
597   if (Token.isError() || parseInstruction(OpCode, Flags))
598     return true;
599 
600   Type *Ty = nullptr;
601   if (isPreISelGenericOpcode(OpCode)) {
602     // For generic opcode, a type is mandatory.
603     auto Loc = Token.location();
604     if (parseIRType(Loc, Ty))
605       return true;
606   }
607 
608   // Parse the remaining machine operands.
609   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
610          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
611     auto Loc = Token.location();
612     Optional<unsigned> TiedDefIdx;
613     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
614       return true;
615     Operands.push_back(
616         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
617     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
618         Token.is(MIToken::lbrace))
619       break;
620     if (Token.isNot(MIToken::comma))
621       return error("expected ',' before the next machine operand");
622     lex();
623   }
624 
625   DebugLoc DebugLocation;
626   if (Token.is(MIToken::kw_debug_location)) {
627     lex();
628     if (Token.isNot(MIToken::exclaim))
629       return error("expected a metadata node after 'debug-location'");
630     MDNode *Node = nullptr;
631     if (parseMDNode(Node))
632       return true;
633     DebugLocation = DebugLoc(Node);
634   }
635 
636   // Parse the machine memory operands.
637   SmallVector<MachineMemOperand *, 2> MemOperands;
638   if (Token.is(MIToken::coloncolon)) {
639     lex();
640     while (!Token.isNewlineOrEOF()) {
641       MachineMemOperand *MemOp = nullptr;
642       if (parseMachineMemoryOperand(MemOp))
643         return true;
644       MemOperands.push_back(MemOp);
645       if (Token.isNewlineOrEOF())
646         break;
647       if (Token.isNot(MIToken::comma))
648         return error("expected ',' before the next machine memory operand");
649       lex();
650     }
651   }
652 
653   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
654   if (!MCID.isVariadic()) {
655     // FIXME: Move the implicit operand verification to the machine verifier.
656     if (verifyImplicitOperands(Operands, MCID))
657       return true;
658   }
659 
660   // TODO: Check for extraneous machine operands.
661   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
662   MI->setFlags(Flags);
663   if (Ty)
664     MI->setType(Ty);
665   for (const auto &Operand : Operands)
666     MI->addOperand(MF, Operand.Operand);
667   if (assignRegisterTies(*MI, Operands))
668     return true;
669   if (MemOperands.empty())
670     return false;
671   MachineInstr::mmo_iterator MemRefs =
672       MF.allocateMemRefsArray(MemOperands.size());
673   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
674   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
675   return false;
676 }
677 
678 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
679   lex();
680   if (Token.isNot(MIToken::MachineBasicBlock))
681     return error("expected a machine basic block reference");
682   if (parseMBBReference(MBB))
683     return true;
684   lex();
685   if (Token.isNot(MIToken::Eof))
686     return error(
687         "expected end of string after the machine basic block reference");
688   return false;
689 }
690 
691 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
692   lex();
693   if (Token.isNot(MIToken::NamedRegister))
694     return error("expected a named register");
695   if (parseRegister(Reg))
696     return true;
697   lex();
698   if (Token.isNot(MIToken::Eof))
699     return error("expected end of string after the register reference");
700   return false;
701 }
702 
703 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) {
704   lex();
705   if (Token.isNot(MIToken::VirtualRegister))
706     return error("expected a virtual register");
707   if (parseRegister(Reg))
708     return true;
709   lex();
710   if (Token.isNot(MIToken::Eof))
711     return error("expected end of string after the register reference");
712   return false;
713 }
714 
715 bool MIParser::parseStandaloneStackObject(int &FI) {
716   lex();
717   if (Token.isNot(MIToken::StackObject))
718     return error("expected a stack object");
719   if (parseStackFrameIndex(FI))
720     return true;
721   if (Token.isNot(MIToken::Eof))
722     return error("expected end of string after the stack object reference");
723   return false;
724 }
725 
726 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
727   lex();
728   if (Token.isNot(MIToken::exclaim))
729     return error("expected a metadata node");
730   if (parseMDNode(Node))
731     return true;
732   if (Token.isNot(MIToken::Eof))
733     return error("expected end of string after the metadata node");
734   return false;
735 }
736 
737 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
738   assert(MO.isImplicit());
739   return MO.isDef() ? "implicit-def" : "implicit";
740 }
741 
742 static std::string getRegisterName(const TargetRegisterInfo *TRI,
743                                    unsigned Reg) {
744   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
745   return StringRef(TRI->getName(Reg)).lower();
746 }
747 
748 /// Return true if the parsed machine operands contain a given machine operand.
749 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
750                                 ArrayRef<ParsedMachineOperand> Operands) {
751   for (const auto &I : Operands) {
752     if (ImplicitOperand.isIdenticalTo(I.Operand))
753       return true;
754   }
755   return false;
756 }
757 
758 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
759                                       const MCInstrDesc &MCID) {
760   if (MCID.isCall())
761     // We can't verify call instructions as they can contain arbitrary implicit
762     // register and register mask operands.
763     return false;
764 
765   // Gather all the expected implicit operands.
766   SmallVector<MachineOperand, 4> ImplicitOperands;
767   if (MCID.ImplicitDefs)
768     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
769       ImplicitOperands.push_back(
770           MachineOperand::CreateReg(*ImpDefs, true, true));
771   if (MCID.ImplicitUses)
772     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
773       ImplicitOperands.push_back(
774           MachineOperand::CreateReg(*ImpUses, false, true));
775 
776   const auto *TRI = MF.getSubtarget().getRegisterInfo();
777   assert(TRI && "Expected target register info");
778   for (const auto &I : ImplicitOperands) {
779     if (isImplicitOperandIn(I, Operands))
780       continue;
781     return error(Operands.empty() ? Token.location() : Operands.back().End,
782                  Twine("missing implicit register operand '") +
783                      printImplicitRegisterFlag(I) + " %" +
784                      getRegisterName(TRI, I.getReg()) + "'");
785   }
786   return false;
787 }
788 
789 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
790   if (Token.is(MIToken::kw_frame_setup)) {
791     Flags |= MachineInstr::FrameSetup;
792     lex();
793   }
794   if (Token.isNot(MIToken::Identifier))
795     return error("expected a machine instruction");
796   StringRef InstrName = Token.stringValue();
797   if (parseInstrName(InstrName, OpCode))
798     return error(Twine("unknown machine instruction name '") + InstrName + "'");
799   lex();
800   return false;
801 }
802 
803 bool MIParser::parseRegister(unsigned &Reg) {
804   switch (Token.kind()) {
805   case MIToken::underscore:
806     Reg = 0;
807     break;
808   case MIToken::NamedRegister: {
809     StringRef Name = Token.stringValue();
810     if (getRegisterByName(Name, Reg))
811       return error(Twine("unknown register name '") + Name + "'");
812     break;
813   }
814   case MIToken::VirtualRegister: {
815     unsigned ID;
816     if (getUnsigned(ID))
817       return true;
818     const auto RegInfo = PFS.VirtualRegisterSlots.find(ID);
819     if (RegInfo == PFS.VirtualRegisterSlots.end())
820       return error(Twine("use of undefined virtual register '%") + Twine(ID) +
821                    "'");
822     Reg = RegInfo->second;
823     break;
824   }
825   // TODO: Parse other register kinds.
826   default:
827     llvm_unreachable("The current token should be a register");
828   }
829   return false;
830 }
831 
832 bool MIParser::parseRegisterFlag(unsigned &Flags) {
833   const unsigned OldFlags = Flags;
834   switch (Token.kind()) {
835   case MIToken::kw_implicit:
836     Flags |= RegState::Implicit;
837     break;
838   case MIToken::kw_implicit_define:
839     Flags |= RegState::ImplicitDefine;
840     break;
841   case MIToken::kw_def:
842     Flags |= RegState::Define;
843     break;
844   case MIToken::kw_dead:
845     Flags |= RegState::Dead;
846     break;
847   case MIToken::kw_killed:
848     Flags |= RegState::Kill;
849     break;
850   case MIToken::kw_undef:
851     Flags |= RegState::Undef;
852     break;
853   case MIToken::kw_internal:
854     Flags |= RegState::InternalRead;
855     break;
856   case MIToken::kw_early_clobber:
857     Flags |= RegState::EarlyClobber;
858     break;
859   case MIToken::kw_debug_use:
860     Flags |= RegState::Debug;
861     break;
862   default:
863     llvm_unreachable("The current token should be a register flag");
864   }
865   if (OldFlags == Flags)
866     // We know that the same flag is specified more than once when the flags
867     // weren't modified.
868     return error("duplicate '" + Token.stringValue() + "' register flag");
869   lex();
870   return false;
871 }
872 
873 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
874   assert(Token.is(MIToken::colon));
875   lex();
876   if (Token.isNot(MIToken::Identifier))
877     return error("expected a subregister index after ':'");
878   auto Name = Token.stringValue();
879   SubReg = getSubRegIndex(Name);
880   if (!SubReg)
881     return error(Twine("use of unknown subregister index '") + Name + "'");
882   lex();
883   return false;
884 }
885 
886 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
887   if (!consumeIfPresent(MIToken::kw_tied_def))
888     return error("expected 'tied-def' after '('");
889   if (Token.isNot(MIToken::IntegerLiteral))
890     return error("expected an integer literal after 'tied-def'");
891   if (getUnsigned(TiedDefIdx))
892     return true;
893   lex();
894   if (expectAndConsume(MIToken::rparen))
895     return true;
896   return false;
897 }
898 
899 bool MIParser::parseSize(unsigned &Size) {
900   if (Token.isNot(MIToken::IntegerLiteral))
901     return error("expected an integer literal for the size");
902   if (getUnsigned(Size))
903     return true;
904   lex();
905   if (expectAndConsume(MIToken::rparen))
906     return true;
907   return false;
908 }
909 
910 bool MIParser::assignRegisterTies(MachineInstr &MI,
911                                   ArrayRef<ParsedMachineOperand> Operands) {
912   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
913   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
914     if (!Operands[I].TiedDefIdx)
915       continue;
916     // The parser ensures that this operand is a register use, so we just have
917     // to check the tied-def operand.
918     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
919     if (DefIdx >= E)
920       return error(Operands[I].Begin,
921                    Twine("use of invalid tied-def operand index '" +
922                          Twine(DefIdx) + "'; instruction has only ") +
923                        Twine(E) + " operands");
924     const auto &DefOperand = Operands[DefIdx].Operand;
925     if (!DefOperand.isReg() || !DefOperand.isDef())
926       // FIXME: add note with the def operand.
927       return error(Operands[I].Begin,
928                    Twine("use of invalid tied-def operand index '") +
929                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
930                        " isn't a defined register");
931     // Check that the tied-def operand wasn't tied elsewhere.
932     for (const auto &TiedPair : TiedRegisterPairs) {
933       if (TiedPair.first == DefIdx)
934         return error(Operands[I].Begin,
935                      Twine("the tied-def operand #") + Twine(DefIdx) +
936                          " is already tied with another register operand");
937     }
938     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
939   }
940   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
941   // indices must be less than tied max.
942   for (const auto &TiedPair : TiedRegisterPairs)
943     MI.tieOperands(TiedPair.first, TiedPair.second);
944   return false;
945 }
946 
947 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
948                                     Optional<unsigned> &TiedDefIdx,
949                                     bool IsDef) {
950   unsigned Reg;
951   unsigned Flags = IsDef ? RegState::Define : 0;
952   while (Token.isRegisterFlag()) {
953     if (parseRegisterFlag(Flags))
954       return true;
955   }
956   if (!Token.isRegister())
957     return error("expected a register after register flags");
958   if (parseRegister(Reg))
959     return true;
960   lex();
961   unsigned SubReg = 0;
962   if (Token.is(MIToken::colon)) {
963     if (parseSubRegisterIndex(SubReg))
964       return true;
965     if (!TargetRegisterInfo::isVirtualRegister(Reg))
966       return error("subregister index expects a virtual register");
967   }
968   if ((Flags & RegState::Define) == 0) {
969     if (consumeIfPresent(MIToken::lparen)) {
970       unsigned Idx;
971       if (parseRegisterTiedDefIndex(Idx))
972         return true;
973       TiedDefIdx = Idx;
974     }
975   } else if (consumeIfPresent(MIToken::lparen)) {
976     // Virtual registers may have a size with GlobalISel.
977     if (!TargetRegisterInfo::isVirtualRegister(Reg))
978       return error("unexpected size on physical register");
979     unsigned Size;
980     if (parseSize(Size))
981       return true;
982 
983     MachineRegisterInfo &MRI = MF.getRegInfo();
984     MRI.setSize(Reg, Size);
985   } else if (PFS.GenericVRegs.count(Reg)) {
986     // Generic virtual registers must have a size.
987     // If we end up here this means the size hasn't been specified and
988     // this is bad!
989     return error("generic virtual registers must have a size");
990   }
991   Dest = MachineOperand::CreateReg(
992       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
993       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
994       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
995       Flags & RegState::InternalRead);
996   return false;
997 }
998 
999 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1000   assert(Token.is(MIToken::IntegerLiteral));
1001   const APSInt &Int = Token.integerValue();
1002   if (Int.getMinSignedBits() > 64)
1003     return error("integer literal is too large to be an immediate operand");
1004   Dest = MachineOperand::CreateImm(Int.getExtValue());
1005   lex();
1006   return false;
1007 }
1008 
1009 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1010                                const Constant *&C) {
1011   auto Source = StringValue.str(); // The source has to be null terminated.
1012   SMDiagnostic Err;
1013   C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(),
1014                          &PFS.IRSlots);
1015   if (!C)
1016     return error(Loc + Err.getColumnNo(), Err.getMessage());
1017   return false;
1018 }
1019 
1020 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1021   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1022     return true;
1023   lex();
1024   return false;
1025 }
1026 
1027 bool MIParser::parseIRType(StringRef::iterator Loc, StringRef StringValue,
1028                            unsigned &Read, Type *&Ty) {
1029   auto Source = StringValue.str(); // The source has to be null terminated.
1030   SMDiagnostic Err;
1031   Ty = parseTypeAtBeginning(Source.c_str(), Read, Err,
1032                             *MF.getFunction()->getParent(), &PFS.IRSlots);
1033   if (!Ty)
1034     return error(Loc + Err.getColumnNo(), Err.getMessage());
1035   return false;
1036 }
1037 
1038 bool MIParser::parseIRType(StringRef::iterator Loc, Type *&Ty,
1039                            bool MustBeSized) {
1040   // At this point we enter in the IR world, i.e., to get the correct type,
1041   // we need to hand off the whole string, not just the current token.
1042   // E.g., <4 x i64> would give '<' as a token and there is not much
1043   // the IR parser can do with that.
1044   unsigned Read = 0;
1045   if (parseIRType(Loc, StringRef(Loc), Read, Ty))
1046     return true;
1047   // The type must be sized, otherwise there is not much the backend
1048   // can do with it.
1049   if (MustBeSized && !Ty->isSized())
1050     return error("expected a sized type");
1051   // The next token is Read characters from the Loc.
1052   // However, the current location is not Loc, but Loc + the length of Token.
1053   // Therefore, subtract the length of Token (range().end() - Loc) to the
1054   // number of characters to skip before the next token.
1055   lex(Read - (Token.range().end() - Loc));
1056   return false;
1057 }
1058 
1059 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1060   assert(Token.is(MIToken::IntegerType));
1061   auto Loc = Token.location();
1062   lex();
1063   if (Token.isNot(MIToken::IntegerLiteral))
1064     return error("expected an integer literal");
1065   const Constant *C = nullptr;
1066   if (parseIRConstant(Loc, C))
1067     return true;
1068   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1069   return false;
1070 }
1071 
1072 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1073   auto Loc = Token.location();
1074   lex();
1075   if (Token.isNot(MIToken::FloatingPointLiteral))
1076     return error("expected a floating point literal");
1077   const Constant *C = nullptr;
1078   if (parseIRConstant(Loc, C))
1079     return true;
1080   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1081   return false;
1082 }
1083 
1084 bool MIParser::getUnsigned(unsigned &Result) {
1085   assert(Token.hasIntegerValue() && "Expected a token with an integer value");
1086   const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1087   uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1088   if (Val64 == Limit)
1089     return error("expected 32-bit integer (too large)");
1090   Result = Val64;
1091   return false;
1092 }
1093 
1094 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1095   assert(Token.is(MIToken::MachineBasicBlock) ||
1096          Token.is(MIToken::MachineBasicBlockLabel));
1097   unsigned Number;
1098   if (getUnsigned(Number))
1099     return true;
1100   auto MBBInfo = PFS.MBBSlots.find(Number);
1101   if (MBBInfo == PFS.MBBSlots.end())
1102     return error(Twine("use of undefined machine basic block #") +
1103                  Twine(Number));
1104   MBB = MBBInfo->second;
1105   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1106     return error(Twine("the name of machine basic block #") + Twine(Number) +
1107                  " isn't '" + Token.stringValue() + "'");
1108   return false;
1109 }
1110 
1111 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1112   MachineBasicBlock *MBB;
1113   if (parseMBBReference(MBB))
1114     return true;
1115   Dest = MachineOperand::CreateMBB(MBB);
1116   lex();
1117   return false;
1118 }
1119 
1120 bool MIParser::parseStackFrameIndex(int &FI) {
1121   assert(Token.is(MIToken::StackObject));
1122   unsigned ID;
1123   if (getUnsigned(ID))
1124     return true;
1125   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1126   if (ObjectInfo == PFS.StackObjectSlots.end())
1127     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1128                  "'");
1129   StringRef Name;
1130   if (const auto *Alloca =
1131           MF.getFrameInfo()->getObjectAllocation(ObjectInfo->second))
1132     Name = Alloca->getName();
1133   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1134     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1135                  "' isn't '" + Token.stringValue() + "'");
1136   lex();
1137   FI = ObjectInfo->second;
1138   return false;
1139 }
1140 
1141 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1142   int FI;
1143   if (parseStackFrameIndex(FI))
1144     return true;
1145   Dest = MachineOperand::CreateFI(FI);
1146   return false;
1147 }
1148 
1149 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1150   assert(Token.is(MIToken::FixedStackObject));
1151   unsigned ID;
1152   if (getUnsigned(ID))
1153     return true;
1154   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1155   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1156     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1157                  Twine(ID) + "'");
1158   lex();
1159   FI = ObjectInfo->second;
1160   return false;
1161 }
1162 
1163 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1164   int FI;
1165   if (parseFixedStackFrameIndex(FI))
1166     return true;
1167   Dest = MachineOperand::CreateFI(FI);
1168   return false;
1169 }
1170 
1171 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1172   switch (Token.kind()) {
1173   case MIToken::NamedGlobalValue: {
1174     const Module *M = MF.getFunction()->getParent();
1175     GV = M->getNamedValue(Token.stringValue());
1176     if (!GV)
1177       return error(Twine("use of undefined global value '") + Token.range() +
1178                    "'");
1179     break;
1180   }
1181   case MIToken::GlobalValue: {
1182     unsigned GVIdx;
1183     if (getUnsigned(GVIdx))
1184       return true;
1185     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1186       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1187                    "'");
1188     GV = PFS.IRSlots.GlobalValues[GVIdx];
1189     break;
1190   }
1191   default:
1192     llvm_unreachable("The current token should be a global value");
1193   }
1194   return false;
1195 }
1196 
1197 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1198   GlobalValue *GV = nullptr;
1199   if (parseGlobalValue(GV))
1200     return true;
1201   lex();
1202   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1203   if (parseOperandsOffset(Dest))
1204     return true;
1205   return false;
1206 }
1207 
1208 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1209   assert(Token.is(MIToken::ConstantPoolItem));
1210   unsigned ID;
1211   if (getUnsigned(ID))
1212     return true;
1213   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1214   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1215     return error("use of undefined constant '%const." + Twine(ID) + "'");
1216   lex();
1217   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1218   if (parseOperandsOffset(Dest))
1219     return true;
1220   return false;
1221 }
1222 
1223 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1224   assert(Token.is(MIToken::JumpTableIndex));
1225   unsigned ID;
1226   if (getUnsigned(ID))
1227     return true;
1228   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1229   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1230     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1231   lex();
1232   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1233   return false;
1234 }
1235 
1236 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1237   assert(Token.is(MIToken::ExternalSymbol));
1238   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1239   lex();
1240   Dest = MachineOperand::CreateES(Symbol);
1241   if (parseOperandsOffset(Dest))
1242     return true;
1243   return false;
1244 }
1245 
1246 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1247   assert(Token.is(MIToken::SubRegisterIndex));
1248   StringRef Name = Token.stringValue();
1249   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1250   if (SubRegIndex == 0)
1251     return error(Twine("unknown subregister index '") + Name + "'");
1252   lex();
1253   Dest = MachineOperand::CreateImm(SubRegIndex);
1254   return false;
1255 }
1256 
1257 bool MIParser::parseMDNode(MDNode *&Node) {
1258   assert(Token.is(MIToken::exclaim));
1259   auto Loc = Token.location();
1260   lex();
1261   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1262     return error("expected metadata id after '!'");
1263   unsigned ID;
1264   if (getUnsigned(ID))
1265     return true;
1266   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1267   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1268     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1269   lex();
1270   Node = NodeInfo->second.get();
1271   return false;
1272 }
1273 
1274 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1275   MDNode *Node = nullptr;
1276   if (parseMDNode(Node))
1277     return true;
1278   Dest = MachineOperand::CreateMetadata(Node);
1279   return false;
1280 }
1281 
1282 bool MIParser::parseCFIOffset(int &Offset) {
1283   if (Token.isNot(MIToken::IntegerLiteral))
1284     return error("expected a cfi offset");
1285   if (Token.integerValue().getMinSignedBits() > 32)
1286     return error("expected a 32 bit integer (the cfi offset is too large)");
1287   Offset = (int)Token.integerValue().getExtValue();
1288   lex();
1289   return false;
1290 }
1291 
1292 bool MIParser::parseCFIRegister(unsigned &Reg) {
1293   if (Token.isNot(MIToken::NamedRegister))
1294     return error("expected a cfi register");
1295   unsigned LLVMReg;
1296   if (parseRegister(LLVMReg))
1297     return true;
1298   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1299   assert(TRI && "Expected target register info");
1300   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1301   if (DwarfReg < 0)
1302     return error("invalid DWARF register");
1303   Reg = (unsigned)DwarfReg;
1304   lex();
1305   return false;
1306 }
1307 
1308 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1309   auto Kind = Token.kind();
1310   lex();
1311   auto &MMI = MF.getMMI();
1312   int Offset;
1313   unsigned Reg;
1314   unsigned CFIIndex;
1315   switch (Kind) {
1316   case MIToken::kw_cfi_same_value:
1317     if (parseCFIRegister(Reg))
1318       return true;
1319     CFIIndex =
1320         MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1321     break;
1322   case MIToken::kw_cfi_offset:
1323     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1324         parseCFIOffset(Offset))
1325       return true;
1326     CFIIndex =
1327         MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1328     break;
1329   case MIToken::kw_cfi_def_cfa_register:
1330     if (parseCFIRegister(Reg))
1331       return true;
1332     CFIIndex =
1333         MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1334     break;
1335   case MIToken::kw_cfi_def_cfa_offset:
1336     if (parseCFIOffset(Offset))
1337       return true;
1338     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1339     CFIIndex = MMI.addFrameInst(
1340         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1341     break;
1342   case MIToken::kw_cfi_def_cfa:
1343     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1344         parseCFIOffset(Offset))
1345       return true;
1346     // NB: MCCFIInstruction::createDefCfa negates the offset.
1347     CFIIndex =
1348         MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1349     break;
1350   default:
1351     // TODO: Parse the other CFI operands.
1352     llvm_unreachable("The current token should be a cfi operand");
1353   }
1354   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1355   return false;
1356 }
1357 
1358 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1359   switch (Token.kind()) {
1360   case MIToken::NamedIRBlock: {
1361     BB = dyn_cast_or_null<BasicBlock>(
1362         F.getValueSymbolTable().lookup(Token.stringValue()));
1363     if (!BB)
1364       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1365     break;
1366   }
1367   case MIToken::IRBlock: {
1368     unsigned SlotNumber = 0;
1369     if (getUnsigned(SlotNumber))
1370       return true;
1371     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1372     if (!BB)
1373       return error(Twine("use of undefined IR block '%ir-block.") +
1374                    Twine(SlotNumber) + "'");
1375     break;
1376   }
1377   default:
1378     llvm_unreachable("The current token should be an IR block reference");
1379   }
1380   return false;
1381 }
1382 
1383 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1384   assert(Token.is(MIToken::kw_blockaddress));
1385   lex();
1386   if (expectAndConsume(MIToken::lparen))
1387     return true;
1388   if (Token.isNot(MIToken::GlobalValue) &&
1389       Token.isNot(MIToken::NamedGlobalValue))
1390     return error("expected a global value");
1391   GlobalValue *GV = nullptr;
1392   if (parseGlobalValue(GV))
1393     return true;
1394   auto *F = dyn_cast<Function>(GV);
1395   if (!F)
1396     return error("expected an IR function reference");
1397   lex();
1398   if (expectAndConsume(MIToken::comma))
1399     return true;
1400   BasicBlock *BB = nullptr;
1401   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1402     return error("expected an IR block reference");
1403   if (parseIRBlock(BB, *F))
1404     return true;
1405   lex();
1406   if (expectAndConsume(MIToken::rparen))
1407     return true;
1408   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1409   if (parseOperandsOffset(Dest))
1410     return true;
1411   return false;
1412 }
1413 
1414 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1415   assert(Token.is(MIToken::kw_target_index));
1416   lex();
1417   if (expectAndConsume(MIToken::lparen))
1418     return true;
1419   if (Token.isNot(MIToken::Identifier))
1420     return error("expected the name of the target index");
1421   int Index = 0;
1422   if (getTargetIndex(Token.stringValue(), Index))
1423     return error("use of undefined target index '" + Token.stringValue() + "'");
1424   lex();
1425   if (expectAndConsume(MIToken::rparen))
1426     return true;
1427   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1428   if (parseOperandsOffset(Dest))
1429     return true;
1430   return false;
1431 }
1432 
1433 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1434   assert(Token.is(MIToken::kw_liveout));
1435   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1436   assert(TRI && "Expected target register info");
1437   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1438   lex();
1439   if (expectAndConsume(MIToken::lparen))
1440     return true;
1441   while (true) {
1442     if (Token.isNot(MIToken::NamedRegister))
1443       return error("expected a named register");
1444     unsigned Reg = 0;
1445     if (parseRegister(Reg))
1446       return true;
1447     lex();
1448     Mask[Reg / 32] |= 1U << (Reg % 32);
1449     // TODO: Report an error if the same register is used more than once.
1450     if (Token.isNot(MIToken::comma))
1451       break;
1452     lex();
1453   }
1454   if (expectAndConsume(MIToken::rparen))
1455     return true;
1456   Dest = MachineOperand::CreateRegLiveOut(Mask);
1457   return false;
1458 }
1459 
1460 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1461                                    Optional<unsigned> &TiedDefIdx) {
1462   switch (Token.kind()) {
1463   case MIToken::kw_implicit:
1464   case MIToken::kw_implicit_define:
1465   case MIToken::kw_def:
1466   case MIToken::kw_dead:
1467   case MIToken::kw_killed:
1468   case MIToken::kw_undef:
1469   case MIToken::kw_internal:
1470   case MIToken::kw_early_clobber:
1471   case MIToken::kw_debug_use:
1472   case MIToken::underscore:
1473   case MIToken::NamedRegister:
1474   case MIToken::VirtualRegister:
1475     return parseRegisterOperand(Dest, TiedDefIdx);
1476   case MIToken::IntegerLiteral:
1477     return parseImmediateOperand(Dest);
1478   case MIToken::IntegerType:
1479     return parseTypedImmediateOperand(Dest);
1480   case MIToken::kw_half:
1481   case MIToken::kw_float:
1482   case MIToken::kw_double:
1483   case MIToken::kw_x86_fp80:
1484   case MIToken::kw_fp128:
1485   case MIToken::kw_ppc_fp128:
1486     return parseFPImmediateOperand(Dest);
1487   case MIToken::MachineBasicBlock:
1488     return parseMBBOperand(Dest);
1489   case MIToken::StackObject:
1490     return parseStackObjectOperand(Dest);
1491   case MIToken::FixedStackObject:
1492     return parseFixedStackObjectOperand(Dest);
1493   case MIToken::GlobalValue:
1494   case MIToken::NamedGlobalValue:
1495     return parseGlobalAddressOperand(Dest);
1496   case MIToken::ConstantPoolItem:
1497     return parseConstantPoolIndexOperand(Dest);
1498   case MIToken::JumpTableIndex:
1499     return parseJumpTableIndexOperand(Dest);
1500   case MIToken::ExternalSymbol:
1501     return parseExternalSymbolOperand(Dest);
1502   case MIToken::SubRegisterIndex:
1503     return parseSubRegisterIndexOperand(Dest);
1504   case MIToken::exclaim:
1505     return parseMetadataOperand(Dest);
1506   case MIToken::kw_cfi_same_value:
1507   case MIToken::kw_cfi_offset:
1508   case MIToken::kw_cfi_def_cfa_register:
1509   case MIToken::kw_cfi_def_cfa_offset:
1510   case MIToken::kw_cfi_def_cfa:
1511     return parseCFIOperand(Dest);
1512   case MIToken::kw_blockaddress:
1513     return parseBlockAddressOperand(Dest);
1514   case MIToken::kw_target_index:
1515     return parseTargetIndexOperand(Dest);
1516   case MIToken::kw_liveout:
1517     return parseLiveoutRegisterMaskOperand(Dest);
1518   case MIToken::Error:
1519     return true;
1520   case MIToken::Identifier:
1521     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1522       Dest = MachineOperand::CreateRegMask(RegMask);
1523       lex();
1524       break;
1525     }
1526   // fallthrough
1527   default:
1528     // FIXME: Parse the MCSymbol machine operand.
1529     return error("expected a machine operand");
1530   }
1531   return false;
1532 }
1533 
1534 bool MIParser::parseMachineOperandAndTargetFlags(
1535     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1536   unsigned TF = 0;
1537   bool HasTargetFlags = false;
1538   if (Token.is(MIToken::kw_target_flags)) {
1539     HasTargetFlags = true;
1540     lex();
1541     if (expectAndConsume(MIToken::lparen))
1542       return true;
1543     if (Token.isNot(MIToken::Identifier))
1544       return error("expected the name of the target flag");
1545     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1546       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1547         return error("use of undefined target flag '" + Token.stringValue() +
1548                      "'");
1549     }
1550     lex();
1551     while (Token.is(MIToken::comma)) {
1552       lex();
1553       if (Token.isNot(MIToken::Identifier))
1554         return error("expected the name of the target flag");
1555       unsigned BitFlag = 0;
1556       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1557         return error("use of undefined target flag '" + Token.stringValue() +
1558                      "'");
1559       // TODO: Report an error when using a duplicate bit target flag.
1560       TF |= BitFlag;
1561       lex();
1562     }
1563     if (expectAndConsume(MIToken::rparen))
1564       return true;
1565   }
1566   auto Loc = Token.location();
1567   if (parseMachineOperand(Dest, TiedDefIdx))
1568     return true;
1569   if (!HasTargetFlags)
1570     return false;
1571   if (Dest.isReg())
1572     return error(Loc, "register operands can't have target flags");
1573   Dest.setTargetFlags(TF);
1574   return false;
1575 }
1576 
1577 bool MIParser::parseOffset(int64_t &Offset) {
1578   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1579     return false;
1580   StringRef Sign = Token.range();
1581   bool IsNegative = Token.is(MIToken::minus);
1582   lex();
1583   if (Token.isNot(MIToken::IntegerLiteral))
1584     return error("expected an integer literal after '" + Sign + "'");
1585   if (Token.integerValue().getMinSignedBits() > 64)
1586     return error("expected 64-bit integer (too large)");
1587   Offset = Token.integerValue().getExtValue();
1588   if (IsNegative)
1589     Offset = -Offset;
1590   lex();
1591   return false;
1592 }
1593 
1594 bool MIParser::parseAlignment(unsigned &Alignment) {
1595   assert(Token.is(MIToken::kw_align));
1596   lex();
1597   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1598     return error("expected an integer literal after 'align'");
1599   if (getUnsigned(Alignment))
1600     return true;
1601   lex();
1602   return false;
1603 }
1604 
1605 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1606   int64_t Offset = 0;
1607   if (parseOffset(Offset))
1608     return true;
1609   Op.setOffset(Offset);
1610   return false;
1611 }
1612 
1613 bool MIParser::parseIRValue(const Value *&V) {
1614   switch (Token.kind()) {
1615   case MIToken::NamedIRValue: {
1616     V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue());
1617     break;
1618   }
1619   case MIToken::IRValue: {
1620     unsigned SlotNumber = 0;
1621     if (getUnsigned(SlotNumber))
1622       return true;
1623     V = getIRValue(SlotNumber);
1624     break;
1625   }
1626   case MIToken::NamedGlobalValue:
1627   case MIToken::GlobalValue: {
1628     GlobalValue *GV = nullptr;
1629     if (parseGlobalValue(GV))
1630       return true;
1631     V = GV;
1632     break;
1633   }
1634   case MIToken::QuotedIRValue: {
1635     const Constant *C = nullptr;
1636     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1637       return true;
1638     V = C;
1639     break;
1640   }
1641   default:
1642     llvm_unreachable("The current token should be an IR block reference");
1643   }
1644   if (!V)
1645     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1646   return false;
1647 }
1648 
1649 bool MIParser::getUint64(uint64_t &Result) {
1650   assert(Token.hasIntegerValue());
1651   if (Token.integerValue().getActiveBits() > 64)
1652     return error("expected 64-bit integer (too large)");
1653   Result = Token.integerValue().getZExtValue();
1654   return false;
1655 }
1656 
1657 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1658   const auto OldFlags = Flags;
1659   switch (Token.kind()) {
1660   case MIToken::kw_volatile:
1661     Flags |= MachineMemOperand::MOVolatile;
1662     break;
1663   case MIToken::kw_non_temporal:
1664     Flags |= MachineMemOperand::MONonTemporal;
1665     break;
1666   case MIToken::kw_invariant:
1667     Flags |= MachineMemOperand::MOInvariant;
1668     break;
1669   // TODO: parse the target specific memory operand flags.
1670   default:
1671     llvm_unreachable("The current token should be a memory operand flag");
1672   }
1673   if (OldFlags == Flags)
1674     // We know that the same flag is specified more than once when the flags
1675     // weren't modified.
1676     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1677   lex();
1678   return false;
1679 }
1680 
1681 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1682   switch (Token.kind()) {
1683   case MIToken::kw_stack:
1684     PSV = MF.getPSVManager().getStack();
1685     break;
1686   case MIToken::kw_got:
1687     PSV = MF.getPSVManager().getGOT();
1688     break;
1689   case MIToken::kw_jump_table:
1690     PSV = MF.getPSVManager().getJumpTable();
1691     break;
1692   case MIToken::kw_constant_pool:
1693     PSV = MF.getPSVManager().getConstantPool();
1694     break;
1695   case MIToken::FixedStackObject: {
1696     int FI;
1697     if (parseFixedStackFrameIndex(FI))
1698       return true;
1699     PSV = MF.getPSVManager().getFixedStack(FI);
1700     // The token was already consumed, so use return here instead of break.
1701     return false;
1702   }
1703   case MIToken::StackObject: {
1704     int FI;
1705     if (parseStackFrameIndex(FI))
1706       return true;
1707     PSV = MF.getPSVManager().getFixedStack(FI);
1708     // The token was already consumed, so use return here instead of break.
1709     return false;
1710   }
1711   case MIToken::kw_call_entry: {
1712     lex();
1713     switch (Token.kind()) {
1714     case MIToken::GlobalValue:
1715     case MIToken::NamedGlobalValue: {
1716       GlobalValue *GV = nullptr;
1717       if (parseGlobalValue(GV))
1718         return true;
1719       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1720       break;
1721     }
1722     case MIToken::ExternalSymbol:
1723       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1724           MF.createExternalSymbolName(Token.stringValue()));
1725       break;
1726     default:
1727       return error(
1728           "expected a global value or an external symbol after 'call-entry'");
1729     }
1730     break;
1731   }
1732   default:
1733     llvm_unreachable("The current token should be pseudo source value");
1734   }
1735   lex();
1736   return false;
1737 }
1738 
1739 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1740   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1741       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1742       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
1743       Token.is(MIToken::kw_call_entry)) {
1744     const PseudoSourceValue *PSV = nullptr;
1745     if (parseMemoryPseudoSourceValue(PSV))
1746       return true;
1747     int64_t Offset = 0;
1748     if (parseOffset(Offset))
1749       return true;
1750     Dest = MachinePointerInfo(PSV, Offset);
1751     return false;
1752   }
1753   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1754       Token.isNot(MIToken::GlobalValue) &&
1755       Token.isNot(MIToken::NamedGlobalValue) &&
1756       Token.isNot(MIToken::QuotedIRValue))
1757     return error("expected an IR value reference");
1758   const Value *V = nullptr;
1759   if (parseIRValue(V))
1760     return true;
1761   if (!V->getType()->isPointerTy())
1762     return error("expected a pointer IR value");
1763   lex();
1764   int64_t Offset = 0;
1765   if (parseOffset(Offset))
1766     return true;
1767   Dest = MachinePointerInfo(V, Offset);
1768   return false;
1769 }
1770 
1771 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1772   if (expectAndConsume(MIToken::lparen))
1773     return true;
1774   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
1775   while (Token.isMemoryOperandFlag()) {
1776     if (parseMemoryOperandFlag(Flags))
1777       return true;
1778   }
1779   if (Token.isNot(MIToken::Identifier) ||
1780       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1781     return error("expected 'load' or 'store' memory operation");
1782   if (Token.stringValue() == "load")
1783     Flags |= MachineMemOperand::MOLoad;
1784   else
1785     Flags |= MachineMemOperand::MOStore;
1786   lex();
1787 
1788   if (Token.isNot(MIToken::IntegerLiteral))
1789     return error("expected the size integer literal after memory operation");
1790   uint64_t Size;
1791   if (getUint64(Size))
1792     return true;
1793   lex();
1794 
1795   MachinePointerInfo Ptr = MachinePointerInfo();
1796   if (Token.is(MIToken::Identifier)) {
1797     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1798     if (Token.stringValue() != Word)
1799       return error(Twine("expected '") + Word + "'");
1800     lex();
1801 
1802     if (parseMachinePointerInfo(Ptr))
1803       return true;
1804   }
1805   unsigned BaseAlignment = Size;
1806   AAMDNodes AAInfo;
1807   MDNode *Range = nullptr;
1808   while (consumeIfPresent(MIToken::comma)) {
1809     switch (Token.kind()) {
1810     case MIToken::kw_align:
1811       if (parseAlignment(BaseAlignment))
1812         return true;
1813       break;
1814     case MIToken::md_tbaa:
1815       lex();
1816       if (parseMDNode(AAInfo.TBAA))
1817         return true;
1818       break;
1819     case MIToken::md_alias_scope:
1820       lex();
1821       if (parseMDNode(AAInfo.Scope))
1822         return true;
1823       break;
1824     case MIToken::md_noalias:
1825       lex();
1826       if (parseMDNode(AAInfo.NoAlias))
1827         return true;
1828       break;
1829     case MIToken::md_range:
1830       lex();
1831       if (parseMDNode(Range))
1832         return true;
1833       break;
1834     // TODO: Report an error on duplicate metadata nodes.
1835     default:
1836       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
1837                    "'!noalias' or '!range'");
1838     }
1839   }
1840   if (expectAndConsume(MIToken::rparen))
1841     return true;
1842   Dest =
1843       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
1844   return false;
1845 }
1846 
1847 void MIParser::initNames2InstrOpCodes() {
1848   if (!Names2InstrOpCodes.empty())
1849     return;
1850   const auto *TII = MF.getSubtarget().getInstrInfo();
1851   assert(TII && "Expected target instruction info");
1852   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
1853     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
1854 }
1855 
1856 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
1857   initNames2InstrOpCodes();
1858   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
1859   if (InstrInfo == Names2InstrOpCodes.end())
1860     return true;
1861   OpCode = InstrInfo->getValue();
1862   return false;
1863 }
1864 
1865 void MIParser::initNames2Regs() {
1866   if (!Names2Regs.empty())
1867     return;
1868   // The '%noreg' register is the register 0.
1869   Names2Regs.insert(std::make_pair("noreg", 0));
1870   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1871   assert(TRI && "Expected target register info");
1872   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
1873     bool WasInserted =
1874         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
1875             .second;
1876     (void)WasInserted;
1877     assert(WasInserted && "Expected registers to be unique case-insensitively");
1878   }
1879 }
1880 
1881 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
1882   initNames2Regs();
1883   auto RegInfo = Names2Regs.find(RegName);
1884   if (RegInfo == Names2Regs.end())
1885     return true;
1886   Reg = RegInfo->getValue();
1887   return false;
1888 }
1889 
1890 void MIParser::initNames2RegMasks() {
1891   if (!Names2RegMasks.empty())
1892     return;
1893   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1894   assert(TRI && "Expected target register info");
1895   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
1896   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
1897   assert(RegMasks.size() == RegMaskNames.size());
1898   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
1899     Names2RegMasks.insert(
1900         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
1901 }
1902 
1903 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
1904   initNames2RegMasks();
1905   auto RegMaskInfo = Names2RegMasks.find(Identifier);
1906   if (RegMaskInfo == Names2RegMasks.end())
1907     return nullptr;
1908   return RegMaskInfo->getValue();
1909 }
1910 
1911 void MIParser::initNames2SubRegIndices() {
1912   if (!Names2SubRegIndices.empty())
1913     return;
1914   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1915   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
1916     Names2SubRegIndices.insert(
1917         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
1918 }
1919 
1920 unsigned MIParser::getSubRegIndex(StringRef Name) {
1921   initNames2SubRegIndices();
1922   auto SubRegInfo = Names2SubRegIndices.find(Name);
1923   if (SubRegInfo == Names2SubRegIndices.end())
1924     return 0;
1925   return SubRegInfo->getValue();
1926 }
1927 
1928 static void initSlots2BasicBlocks(
1929     const Function &F,
1930     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
1931   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
1932   MST.incorporateFunction(F);
1933   for (auto &BB : F) {
1934     if (BB.hasName())
1935       continue;
1936     int Slot = MST.getLocalSlot(&BB);
1937     if (Slot == -1)
1938       continue;
1939     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
1940   }
1941 }
1942 
1943 static const BasicBlock *getIRBlockFromSlot(
1944     unsigned Slot,
1945     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
1946   auto BlockInfo = Slots2BasicBlocks.find(Slot);
1947   if (BlockInfo == Slots2BasicBlocks.end())
1948     return nullptr;
1949   return BlockInfo->second;
1950 }
1951 
1952 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
1953   if (Slots2BasicBlocks.empty())
1954     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
1955   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
1956 }
1957 
1958 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
1959   if (&F == MF.getFunction())
1960     return getIRBlock(Slot);
1961   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
1962   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
1963   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
1964 }
1965 
1966 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
1967                            DenseMap<unsigned, const Value *> &Slots2Values) {
1968   int Slot = MST.getLocalSlot(V);
1969   if (Slot == -1)
1970     return;
1971   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
1972 }
1973 
1974 /// Creates the mapping from slot numbers to function's unnamed IR values.
1975 static void initSlots2Values(const Function &F,
1976                              DenseMap<unsigned, const Value *> &Slots2Values) {
1977   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
1978   MST.incorporateFunction(F);
1979   for (const auto &Arg : F.args())
1980     mapValueToSlot(&Arg, MST, Slots2Values);
1981   for (const auto &BB : F) {
1982     mapValueToSlot(&BB, MST, Slots2Values);
1983     for (const auto &I : BB)
1984       mapValueToSlot(&I, MST, Slots2Values);
1985   }
1986 }
1987 
1988 const Value *MIParser::getIRValue(unsigned Slot) {
1989   if (Slots2Values.empty())
1990     initSlots2Values(*MF.getFunction(), Slots2Values);
1991   auto ValueInfo = Slots2Values.find(Slot);
1992   if (ValueInfo == Slots2Values.end())
1993     return nullptr;
1994   return ValueInfo->second;
1995 }
1996 
1997 void MIParser::initNames2TargetIndices() {
1998   if (!Names2TargetIndices.empty())
1999     return;
2000   const auto *TII = MF.getSubtarget().getInstrInfo();
2001   assert(TII && "Expected target instruction info");
2002   auto Indices = TII->getSerializableTargetIndices();
2003   for (const auto &I : Indices)
2004     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2005 }
2006 
2007 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2008   initNames2TargetIndices();
2009   auto IndexInfo = Names2TargetIndices.find(Name);
2010   if (IndexInfo == Names2TargetIndices.end())
2011     return true;
2012   Index = IndexInfo->second;
2013   return false;
2014 }
2015 
2016 void MIParser::initNames2DirectTargetFlags() {
2017   if (!Names2DirectTargetFlags.empty())
2018     return;
2019   const auto *TII = MF.getSubtarget().getInstrInfo();
2020   assert(TII && "Expected target instruction info");
2021   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2022   for (const auto &I : Flags)
2023     Names2DirectTargetFlags.insert(
2024         std::make_pair(StringRef(I.second), I.first));
2025 }
2026 
2027 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2028   initNames2DirectTargetFlags();
2029   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2030   if (FlagInfo == Names2DirectTargetFlags.end())
2031     return true;
2032   Flag = FlagInfo->second;
2033   return false;
2034 }
2035 
2036 void MIParser::initNames2BitmaskTargetFlags() {
2037   if (!Names2BitmaskTargetFlags.empty())
2038     return;
2039   const auto *TII = MF.getSubtarget().getInstrInfo();
2040   assert(TII && "Expected target instruction info");
2041   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2042   for (const auto &I : Flags)
2043     Names2BitmaskTargetFlags.insert(
2044         std::make_pair(StringRef(I.second), I.first));
2045 }
2046 
2047 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2048   initNames2BitmaskTargetFlags();
2049   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2050   if (FlagInfo == Names2BitmaskTargetFlags.end())
2051     return true;
2052   Flag = FlagInfo->second;
2053   return false;
2054 }
2055 
2056 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2057                                              StringRef Src,
2058                                              SMDiagnostic &Error) {
2059   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2060 }
2061 
2062 bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS,
2063                                     StringRef Src, SMDiagnostic &Error) {
2064   return MIParser(PFS, Error, Src).parseBasicBlocks();
2065 }
2066 
2067 bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS,
2068                              MachineBasicBlock *&MBB, StringRef Src,
2069                              SMDiagnostic &Error) {
2070   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2071 }
2072 
2073 bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS,
2074                                        unsigned &Reg, StringRef Src,
2075                                        SMDiagnostic &Error) {
2076   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2077 }
2078 
2079 bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS,
2080                                          unsigned &Reg, StringRef Src,
2081                                          SMDiagnostic &Error) {
2082   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg);
2083 }
2084 
2085 bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS,
2086                                      int &FI, StringRef Src,
2087                                      SMDiagnostic &Error) {
2088   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2089 }
2090 
2091 bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS,
2092                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2093   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2094 }
2095