1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the LiveRangeCalc class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LiveRangeCalc.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/CodeGen/MachineDominators.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 19 using namespace llvm; 20 21 #define DEBUG_TYPE "regalloc" 22 23 // Reserve an address that indicates a value that is known to be "undef". 24 static VNInfo UndefVNI(0xbad, SlotIndex()); 25 26 void LiveRangeCalc::resetLiveOutMap() { 27 unsigned NumBlocks = MF->getNumBlockIDs(); 28 Seen.clear(); 29 Seen.resize(NumBlocks); 30 EntryInfos.clear(); 31 Map.resize(NumBlocks); 32 } 33 34 void LiveRangeCalc::reset(const MachineFunction *mf, 35 SlotIndexes *SI, 36 MachineDominatorTree *MDT, 37 VNInfo::Allocator *VNIA) { 38 MF = mf; 39 MRI = &MF->getRegInfo(); 40 Indexes = SI; 41 DomTree = MDT; 42 Alloc = VNIA; 43 resetLiveOutMap(); 44 LiveIn.clear(); 45 } 46 47 48 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc, 49 LiveRange &LR, const MachineOperand &MO) { 50 const MachineInstr &MI = *MO.getParent(); 51 SlotIndex DefIdx = 52 Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber()); 53 54 // Create the def in LR. This may find an existing def. 55 LR.createDeadDef(DefIdx, Alloc); 56 } 57 58 void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) { 59 assert(MRI && Indexes && "call reset() first"); 60 61 // Step 1: Create minimal live segments for every definition of Reg. 62 // Visit all def operands. If the same instruction has multiple defs of Reg, 63 // createDeadDef() will deduplicate. 64 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); 65 unsigned Reg = LI.reg; 66 for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { 67 if (!MO.isDef() && !MO.readsReg()) 68 continue; 69 70 unsigned SubReg = MO.getSubReg(); 71 if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) { 72 LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg) 73 : MRI->getMaxLaneMaskForVReg(Reg); 74 // If this is the first time we see a subregister def, initialize 75 // subranges by creating a copy of the main range. 76 if (!LI.hasSubRanges() && !LI.empty()) { 77 LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg); 78 LI.createSubRangeFrom(*Alloc, ClassMask, LI); 79 } 80 81 LI.refineSubRanges(*Alloc, SubMask, 82 [&MO, this](LiveInterval::SubRange &SR) { 83 if (MO.isDef()) 84 createDeadDef(*Indexes, *Alloc, SR, MO); 85 }); 86 } 87 88 // Create the def in the main liverange. We do not have to do this if 89 // subranges are tracked as we recreate the main range later in this case. 90 if (MO.isDef() && !LI.hasSubRanges()) 91 createDeadDef(*Indexes, *Alloc, LI, MO); 92 } 93 94 // We may have created empty live ranges for partially undefined uses, we 95 // can't keep them because we won't find defs in them later. 96 LI.removeEmptySubRanges(); 97 98 // Step 2: Extend live segments to all uses, constructing SSA form as 99 // necessary. 100 if (LI.hasSubRanges()) { 101 for (LiveInterval::SubRange &S : LI.subranges()) { 102 LiveRangeCalc SubLRC; 103 SubLRC.reset(MF, Indexes, DomTree, Alloc); 104 SubLRC.extendToUses(S, Reg, S.LaneMask, &LI); 105 } 106 LI.clear(); 107 constructMainRangeFromSubranges(LI); 108 } else { 109 resetLiveOutMap(); 110 extendToUses(LI, Reg, LaneBitmask::getAll()); 111 } 112 } 113 114 void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) { 115 // First create dead defs at all defs found in subranges. 116 LiveRange &MainRange = LI; 117 assert(MainRange.segments.empty() && MainRange.valnos.empty() && 118 "Expect empty main liverange"); 119 120 for (const LiveInterval::SubRange &SR : LI.subranges()) { 121 for (const VNInfo *VNI : SR.valnos) { 122 if (!VNI->isUnused() && !VNI->isPHIDef()) 123 MainRange.createDeadDef(VNI->def, *Alloc); 124 } 125 } 126 resetLiveOutMap(); 127 extendToUses(MainRange, LI.reg, LaneBitmask::getAll(), &LI); 128 } 129 130 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) { 131 assert(MRI && Indexes && "call reset() first"); 132 133 // Visit all def operands. If the same instruction has multiple defs of Reg, 134 // LR.createDeadDef() will deduplicate. 135 for (MachineOperand &MO : MRI->def_operands(Reg)) 136 createDeadDef(*Indexes, *Alloc, LR, MO); 137 } 138 139 140 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask, 141 LiveInterval *LI) { 142 SmallVector<SlotIndex, 4> Undefs; 143 if (LI != nullptr) 144 LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes); 145 146 // Visit all operands that read Reg. This may include partial defs. 147 bool IsSubRange = !Mask.all(); 148 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); 149 for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { 150 // Clear all kill flags. They will be reinserted after register allocation 151 // by LiveIntervalAnalysis::addKillFlags(). 152 if (MO.isUse()) 153 MO.setIsKill(false); 154 // MO::readsReg returns "true" for subregister defs. This is for keeping 155 // liveness of the entire register (i.e. for the main range of the live 156 // interval). For subranges, definitions of non-overlapping subregisters 157 // do not count as uses. 158 if (!MO.readsReg() || (IsSubRange && MO.isDef())) 159 continue; 160 161 unsigned SubReg = MO.getSubReg(); 162 if (SubReg != 0) { 163 LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg); 164 if (MO.isDef()) 165 SLM = ~SLM; 166 // Ignore uses not reading the current (sub)range. 167 if ((SLM & Mask).none()) 168 continue; 169 } 170 171 // Determine the actual place of the use. 172 const MachineInstr *MI = MO.getParent(); 173 unsigned OpNo = (&MO - &MI->getOperand(0)); 174 SlotIndex UseIdx; 175 if (MI->isPHI()) { 176 assert(!MO.isDef() && "Cannot handle PHI def of partial register."); 177 // The actual place where a phi operand is used is the end of the pred 178 // MBB. PHI operands are paired: (Reg, PredMBB). 179 UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB()); 180 } else { 181 // Check for early-clobber redefs. 182 bool isEarlyClobber = false; 183 unsigned DefIdx; 184 if (MO.isDef()) 185 isEarlyClobber = MO.isEarlyClobber(); 186 else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) { 187 // FIXME: This would be a lot easier if tied early-clobber uses also 188 // had an early-clobber flag. 189 isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber(); 190 } 191 UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber); 192 } 193 194 // MI is reading Reg. We may have visited MI before if it happens to be 195 // reading Reg multiple times. That is OK, extend() is idempotent. 196 extend(LR, UseIdx, Reg, Undefs); 197 } 198 } 199 200 201 void LiveRangeCalc::updateFromLiveIns() { 202 LiveRangeUpdater Updater; 203 for (const LiveInBlock &I : LiveIn) { 204 if (!I.DomNode) 205 continue; 206 MachineBasicBlock *MBB = I.DomNode->getBlock(); 207 assert(I.Value && "No live-in value found"); 208 SlotIndex Start, End; 209 std::tie(Start, End) = Indexes->getMBBRange(MBB); 210 211 if (I.Kill.isValid()) 212 // Value is killed inside this block. 213 End = I.Kill; 214 else { 215 // The value is live-through, update LiveOut as well. 216 // Defer the Domtree lookup until it is needed. 217 assert(Seen.test(MBB->getNumber())); 218 Map[MBB] = LiveOutPair(I.Value, nullptr); 219 } 220 Updater.setDest(&I.LR); 221 Updater.add(Start, End, I.Value); 222 } 223 LiveIn.clear(); 224 } 225 226 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg, 227 ArrayRef<SlotIndex> Undefs) { 228 assert(Use.isValid() && "Invalid SlotIndex"); 229 assert(Indexes && "Missing SlotIndexes"); 230 assert(DomTree && "Missing dominator tree"); 231 232 MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot()); 233 assert(UseMBB && "No MBB at Use"); 234 235 // Is there a def in the same MBB we can extend? 236 auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use); 237 if (EP.first != nullptr || EP.second) 238 return; 239 240 // Find the single reaching def, or determine if Use is jointly dominated by 241 // multiple values, and we may need to create even more phi-defs to preserve 242 // VNInfo SSA form. Perform a search for all predecessor blocks where we 243 // know the dominating VNInfo. 244 if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs)) 245 return; 246 247 // When there were multiple different values, we may need new PHIs. 248 calculateValues(); 249 } 250 251 252 // This function is called by a client after using the low-level API to add 253 // live-out and live-in blocks. The unique value optimization is not 254 // available, SplitEditor::transferValues handles that case directly anyway. 255 void LiveRangeCalc::calculateValues() { 256 assert(Indexes && "Missing SlotIndexes"); 257 assert(DomTree && "Missing dominator tree"); 258 updateSSA(); 259 updateFromLiveIns(); 260 } 261 262 263 bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs, 264 MachineBasicBlock &MBB, BitVector &DefOnEntry, 265 BitVector &UndefOnEntry) { 266 unsigned BN = MBB.getNumber(); 267 if (DefOnEntry[BN]) 268 return true; 269 if (UndefOnEntry[BN]) 270 return false; 271 272 auto MarkDefined = [BN, &DefOnEntry](MachineBasicBlock &B) -> bool { 273 for (MachineBasicBlock *S : B.successors()) 274 DefOnEntry[S->getNumber()] = true; 275 DefOnEntry[BN] = true; 276 return true; 277 }; 278 279 SetVector<unsigned> WorkList; 280 // Checking if the entry of MBB is reached by some def: add all predecessors 281 // that are potentially defined-on-exit to the work list. 282 for (MachineBasicBlock *P : MBB.predecessors()) 283 WorkList.insert(P->getNumber()); 284 285 for (unsigned i = 0; i != WorkList.size(); ++i) { 286 // Determine if the exit from the block is reached by some def. 287 unsigned N = WorkList[i]; 288 MachineBasicBlock &B = *MF->getBlockNumbered(N); 289 if (Seen[N]) { 290 const LiveOutPair &LOB = Map[&B]; 291 if (LOB.first != nullptr && LOB.first != &UndefVNI) 292 return MarkDefined(B); 293 } 294 SlotIndex Begin, End; 295 std::tie(Begin, End) = Indexes->getMBBRange(&B); 296 // Treat End as not belonging to B. 297 // If LR has a segment S that starts at the next block, i.e. [End, ...), 298 // std::upper_bound will return the segment following S. Instead, 299 // S should be treated as the first segment that does not overlap B. 300 LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(), 301 End.getPrevSlot()); 302 if (UB != LR.begin()) { 303 LiveRange::Segment &Seg = *std::prev(UB); 304 if (Seg.end > Begin) { 305 // There is a segment that overlaps B. If the range is not explicitly 306 // undefined between the end of the segment and the end of the block, 307 // treat the block as defined on exit. If it is, go to the next block 308 // on the work list. 309 if (LR.isUndefIn(Undefs, Seg.end, End)) 310 continue; 311 return MarkDefined(B); 312 } 313 } 314 315 // No segment overlaps with this block. If this block is not defined on 316 // entry, or it undefines the range, do not process its predecessors. 317 if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) { 318 UndefOnEntry[N] = true; 319 continue; 320 } 321 if (DefOnEntry[N]) 322 return MarkDefined(B); 323 324 // Still don't know: add all predecessors to the work list. 325 for (MachineBasicBlock *P : B.predecessors()) 326 WorkList.insert(P->getNumber()); 327 } 328 329 UndefOnEntry[BN] = true; 330 return false; 331 } 332 333 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB, 334 SlotIndex Use, unsigned PhysReg, 335 ArrayRef<SlotIndex> Undefs) { 336 unsigned UseMBBNum = UseMBB.getNumber(); 337 338 // Block numbers where LR should be live-in. 339 SmallVector<unsigned, 16> WorkList(1, UseMBBNum); 340 341 // Remember if we have seen more than one value. 342 bool UniqueVNI = true; 343 VNInfo *TheVNI = nullptr; 344 345 bool FoundUndef = false; 346 347 // Using Seen as a visited set, perform a BFS for all reaching defs. 348 for (unsigned i = 0; i != WorkList.size(); ++i) { 349 MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]); 350 351 #ifndef NDEBUG 352 if (MBB->pred_empty()) { 353 MBB->getParent()->verify(); 354 errs() << "Use of " << PrintReg(PhysReg) 355 << " does not have a corresponding definition on every path:\n"; 356 const MachineInstr *MI = Indexes->getInstructionFromIndex(Use); 357 if (MI != nullptr) 358 errs() << Use << " " << *MI; 359 report_fatal_error("Use not jointly dominated by defs."); 360 } 361 362 if (TargetRegisterInfo::isPhysicalRegister(PhysReg) && 363 !MBB->isLiveIn(PhysReg)) { 364 MBB->getParent()->verify(); 365 const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo(); 366 errs() << "The register " << PrintReg(PhysReg, TRI) 367 << " needs to be live in to BB#" << MBB->getNumber() 368 << ", but is missing from the live-in list.\n"; 369 report_fatal_error("Invalid global physical register"); 370 } 371 #endif 372 FoundUndef |= MBB->pred_empty(); 373 374 for (MachineBasicBlock *Pred : MBB->predecessors()) { 375 // Is this a known live-out block? 376 if (Seen.test(Pred->getNumber())) { 377 if (VNInfo *VNI = Map[Pred].first) { 378 if (TheVNI && TheVNI != VNI) 379 UniqueVNI = false; 380 TheVNI = VNI; 381 } 382 continue; 383 } 384 385 SlotIndex Start, End; 386 std::tie(Start, End) = Indexes->getMBBRange(Pred); 387 388 // First time we see Pred. Try to determine the live-out value, but set 389 // it as null if Pred is live-through with an unknown value. 390 auto EP = LR.extendInBlock(Undefs, Start, End); 391 VNInfo *VNI = EP.first; 392 FoundUndef |= EP.second; 393 setLiveOutValue(Pred, EP.second ? &UndefVNI : VNI); 394 if (VNI) { 395 if (TheVNI && TheVNI != VNI) 396 UniqueVNI = false; 397 TheVNI = VNI; 398 } 399 if (VNI || EP.second) 400 continue; 401 402 // No, we need a live-in value for Pred as well 403 if (Pred != &UseMBB) 404 WorkList.push_back(Pred->getNumber()); 405 else 406 // Loopback to UseMBB, so value is really live through. 407 Use = SlotIndex(); 408 } 409 } 410 411 LiveIn.clear(); 412 FoundUndef |= (TheVNI == nullptr || TheVNI == &UndefVNI); 413 if (Undefs.size() > 0 && FoundUndef) 414 UniqueVNI = false; 415 416 // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but 417 // neither require it. Skip the sorting overhead for small updates. 418 if (WorkList.size() > 4) 419 array_pod_sort(WorkList.begin(), WorkList.end()); 420 421 // If a unique reaching def was found, blit in the live ranges immediately. 422 if (UniqueVNI) { 423 assert(TheVNI != nullptr && TheVNI != &UndefVNI); 424 LiveRangeUpdater Updater(&LR); 425 for (unsigned BN : WorkList) { 426 SlotIndex Start, End; 427 std::tie(Start, End) = Indexes->getMBBRange(BN); 428 // Trim the live range in UseMBB. 429 if (BN == UseMBBNum && Use.isValid()) 430 End = Use; 431 else 432 Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr); 433 Updater.add(Start, End, TheVNI); 434 } 435 return true; 436 } 437 438 // Prepare the defined/undefined bit vectors. 439 EntryInfoMap::iterator Entry; 440 bool DidInsert; 441 std::tie(Entry, DidInsert) = EntryInfos.insert( 442 std::make_pair(&LR, std::make_pair(BitVector(), BitVector()))); 443 if (DidInsert) { 444 // Initialize newly inserted entries. 445 unsigned N = MF->getNumBlockIDs(); 446 Entry->second.first.resize(N); 447 Entry->second.second.resize(N); 448 } 449 BitVector &DefOnEntry = Entry->second.first; 450 BitVector &UndefOnEntry = Entry->second.second; 451 452 // Multiple values were found, so transfer the work list to the LiveIn array 453 // where UpdateSSA will use it as a work list. 454 LiveIn.reserve(WorkList.size()); 455 for (unsigned BN : WorkList) { 456 MachineBasicBlock *MBB = MF->getBlockNumbered(BN); 457 if (Undefs.size() > 0 && 458 !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry)) 459 continue; 460 addLiveInBlock(LR, DomTree->getNode(MBB)); 461 if (MBB == &UseMBB) 462 LiveIn.back().Kill = Use; 463 } 464 465 return false; 466 } 467 468 469 // This is essentially the same iterative algorithm that SSAUpdater uses, 470 // except we already have a dominator tree, so we don't have to recompute it. 471 void LiveRangeCalc::updateSSA() { 472 assert(Indexes && "Missing SlotIndexes"); 473 assert(DomTree && "Missing dominator tree"); 474 475 // Interate until convergence. 476 bool Changed; 477 do { 478 Changed = false; 479 // Propagate live-out values down the dominator tree, inserting phi-defs 480 // when necessary. 481 for (LiveInBlock &I : LiveIn) { 482 MachineDomTreeNode *Node = I.DomNode; 483 // Skip block if the live-in value has already been determined. 484 if (!Node) 485 continue; 486 MachineBasicBlock *MBB = Node->getBlock(); 487 MachineDomTreeNode *IDom = Node->getIDom(); 488 LiveOutPair IDomValue; 489 490 // We need a live-in value to a block with no immediate dominator? 491 // This is probably an unreachable block that has survived somehow. 492 bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber()); 493 494 // IDom dominates all of our predecessors, but it may not be their 495 // immediate dominator. Check if any of them have live-out values that are 496 // properly dominated by IDom. If so, we need a phi-def here. 497 if (!needPHI) { 498 IDomValue = Map[IDom->getBlock()]; 499 500 // Cache the DomTree node that defined the value. 501 if (IDomValue.first && IDomValue.first != &UndefVNI && 502 !IDomValue.second) { 503 Map[IDom->getBlock()].second = IDomValue.second = 504 DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def)); 505 } 506 507 for (MachineBasicBlock *Pred : MBB->predecessors()) { 508 LiveOutPair &Value = Map[Pred]; 509 if (!Value.first || Value.first == IDomValue.first) 510 continue; 511 if (Value.first == &UndefVNI) { 512 needPHI = true; 513 break; 514 } 515 516 // Cache the DomTree node that defined the value. 517 if (!Value.second) 518 Value.second = 519 DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def)); 520 521 // This predecessor is carrying something other than IDomValue. 522 // It could be because IDomValue hasn't propagated yet, or it could be 523 // because MBB is in the dominance frontier of that value. 524 if (DomTree->dominates(IDom, Value.second)) { 525 needPHI = true; 526 break; 527 } 528 } 529 } 530 531 // The value may be live-through even if Kill is set, as can happen when 532 // we are called from extendRange. In that case LiveOutSeen is true, and 533 // LiveOut indicates a foreign or missing value. 534 LiveOutPair &LOP = Map[MBB]; 535 536 // Create a phi-def if required. 537 if (needPHI) { 538 Changed = true; 539 assert(Alloc && "Need VNInfo allocator to create PHI-defs"); 540 SlotIndex Start, End; 541 std::tie(Start, End) = Indexes->getMBBRange(MBB); 542 LiveRange &LR = I.LR; 543 VNInfo *VNI = LR.getNextValue(Start, *Alloc); 544 I.Value = VNI; 545 // This block is done, we know the final value. 546 I.DomNode = nullptr; 547 548 // Add liveness since updateFromLiveIns now skips this node. 549 if (I.Kill.isValid()) { 550 if (VNI) 551 LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI)); 552 } else { 553 if (VNI) 554 LR.addSegment(LiveInterval::Segment(Start, End, VNI)); 555 LOP = LiveOutPair(VNI, Node); 556 } 557 } else if (IDomValue.first && IDomValue.first != &UndefVNI) { 558 // No phi-def here. Remember incoming value. 559 I.Value = IDomValue.first; 560 561 // If the IDomValue is killed in the block, don't propagate through. 562 if (I.Kill.isValid()) 563 continue; 564 565 // Propagate IDomValue if it isn't killed: 566 // MBB is live-out and doesn't define its own value. 567 if (LOP.first == IDomValue.first) 568 continue; 569 Changed = true; 570 LOP = IDomValue; 571 } 572 } 573 } while (Changed); 574 } 575