1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "LiveDebugVariables.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IntervalMap.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervals.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <memory> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "livedebugvars" 67 68 static cl::opt<bool> 69 EnableLDV("live-debug-variables", cl::init(true), 70 cl::desc("Enable the live debug variables pass"), cl::Hidden); 71 72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 73 74 char LiveDebugVariables::ID = 0; 75 76 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 77 "Debug Variable Analysis", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 79 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 80 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 81 "Debug Variable Analysis", false, false) 82 83 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 84 AU.addRequired<MachineDominatorTree>(); 85 AU.addRequiredTransitive<LiveIntervals>(); 86 AU.setPreservesAll(); 87 MachineFunctionPass::getAnalysisUsage(AU); 88 } 89 90 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 91 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 92 } 93 94 enum : unsigned { UndefLocNo = ~0U }; 95 96 /// Describes a location by number along with some flags about the original 97 /// usage of the location. 98 class DbgValueLocation { 99 public: 100 DbgValueLocation(unsigned LocNo, bool WasIndirect) 101 : LocNo(LocNo), WasIndirect(WasIndirect) { 102 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing"); 103 assert(locNo() == LocNo && "location truncation"); 104 } 105 106 DbgValueLocation() : LocNo(0), WasIndirect(0) {} 107 108 unsigned locNo() const { 109 // Fix up the undef location number, which gets truncated. 110 return LocNo == INT_MAX ? UndefLocNo : LocNo; 111 } 112 bool wasIndirect() const { return WasIndirect; } 113 bool isUndef() const { return locNo() == UndefLocNo; } 114 115 DbgValueLocation changeLocNo(unsigned NewLocNo) const { 116 return DbgValueLocation(NewLocNo, WasIndirect); 117 } 118 119 friend inline bool operator==(const DbgValueLocation &LHS, 120 const DbgValueLocation &RHS) { 121 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect; 122 } 123 124 friend inline bool operator!=(const DbgValueLocation &LHS, 125 const DbgValueLocation &RHS) { 126 return !(LHS == RHS); 127 } 128 129 private: 130 unsigned LocNo : 31; 131 unsigned WasIndirect : 1; 132 }; 133 134 /// LocMap - Map of where a user value is live, and its location. 135 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>; 136 137 namespace { 138 139 class LDVImpl; 140 141 /// UserValue - A user value is a part of a debug info user variable. 142 /// 143 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 144 /// holds part of a user variable. The part is identified by a byte offset. 145 /// 146 /// UserValues are grouped into equivalence classes for easier searching. Two 147 /// user values are related if they refer to the same variable, or if they are 148 /// held by the same virtual register. The equivalence class is the transitive 149 /// closure of that relation. 150 class UserValue { 151 const DILocalVariable *Variable; ///< The debug info variable we are part of. 152 const DIExpression *Expression; ///< Any complex address expression. 153 DebugLoc dl; ///< The debug location for the variable. This is 154 ///< used by dwarf writer to find lexical scope. 155 UserValue *leader; ///< Equivalence class leader. 156 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 157 158 /// Numbered locations referenced by locmap. 159 SmallVector<MachineOperand, 4> locations; 160 161 /// Map of slot indices where this value is live. 162 LocMap locInts; 163 164 /// Set of interval start indexes that have been trimmed to the 165 /// lexical scope. 166 SmallSet<SlotIndex, 2> trimmedDefs; 167 168 /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. 169 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 170 SlotIndex StopIdx, 171 DbgValueLocation Loc, bool Spilled, LiveIntervals &LIS, 172 const TargetInstrInfo &TII, 173 const TargetRegisterInfo &TRI); 174 175 /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs 176 /// is live. Returns true if any changes were made. 177 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 178 LiveIntervals &LIS); 179 180 public: 181 /// UserValue - Create a new UserValue. 182 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L, 183 LocMap::Allocator &alloc) 184 : Variable(var), Expression(expr), dl(std::move(L)), leader(this), 185 locInts(alloc) {} 186 187 /// getLeader - Get the leader of this value's equivalence class. 188 UserValue *getLeader() { 189 UserValue *l = leader; 190 while (l != l->leader) 191 l = l->leader; 192 return leader = l; 193 } 194 195 /// getNext - Return the next UserValue in the equivalence class. 196 UserValue *getNext() const { return next; } 197 198 /// match - Does this UserValue match the parameters? 199 bool match(const DILocalVariable *Var, const DIExpression *Expr, 200 const DILocation *IA) const { 201 // FIXME: The fragment should be part of the equivalence class, but not 202 // other things in the expression like stack values. 203 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA; 204 } 205 206 /// merge - Merge equivalence classes. 207 static UserValue *merge(UserValue *L1, UserValue *L2) { 208 L2 = L2->getLeader(); 209 if (!L1) 210 return L2; 211 L1 = L1->getLeader(); 212 if (L1 == L2) 213 return L1; 214 // Splice L2 before L1's members. 215 UserValue *End = L2; 216 while (End->next) { 217 End->leader = L1; 218 End = End->next; 219 } 220 End->leader = L1; 221 End->next = L1->next; 222 L1->next = L2; 223 return L1; 224 } 225 226 /// getLocationNo - Return the location number that matches Loc. 227 unsigned getLocationNo(const MachineOperand &LocMO) { 228 if (LocMO.isReg()) { 229 if (LocMO.getReg() == 0) 230 return UndefLocNo; 231 // For register locations we dont care about use/def and other flags. 232 for (unsigned i = 0, e = locations.size(); i != e; ++i) 233 if (locations[i].isReg() && 234 locations[i].getReg() == LocMO.getReg() && 235 locations[i].getSubReg() == LocMO.getSubReg()) 236 return i; 237 } else 238 for (unsigned i = 0, e = locations.size(); i != e; ++i) 239 if (LocMO.isIdenticalTo(locations[i])) 240 return i; 241 locations.push_back(LocMO); 242 // We are storing a MachineOperand outside a MachineInstr. 243 locations.back().clearParent(); 244 // Don't store def operands. 245 if (locations.back().isReg()) { 246 if (locations.back().isDef()) 247 locations.back().setIsDead(false); 248 locations.back().setIsUse(); 249 } 250 return locations.size() - 1; 251 } 252 253 /// mapVirtRegs - Ensure that all virtual register locations are mapped. 254 void mapVirtRegs(LDVImpl *LDV); 255 256 /// addDef - Add a definition point to this value. 257 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) { 258 DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect); 259 // Add a singular (Idx,Idx) -> Loc mapping. 260 LocMap::iterator I = locInts.find(Idx); 261 if (!I.valid() || I.start() != Idx) 262 I.insert(Idx, Idx.getNextSlot(), Loc); 263 else 264 // A later DBG_VALUE at the same SlotIndex overrides the old location. 265 I.setValue(Loc); 266 } 267 268 /// extendDef - Extend the current definition as far as possible down. 269 /// Stop when meeting an existing def or when leaving the live 270 /// range of VNI. 271 /// End points where VNI is no longer live are added to Kills. 272 /// @param Idx Starting point for the definition. 273 /// @param Loc Location number to propagate. 274 /// @param LR Restrict liveness to where LR has the value VNI. May be null. 275 /// @param VNI When LR is not null, this is the value to restrict to. 276 /// @param Kills Append end points of VNI's live range to Kills. 277 /// @param LIS Live intervals analysis. 278 void extendDef(SlotIndex Idx, DbgValueLocation Loc, 279 LiveRange *LR, const VNInfo *VNI, 280 SmallVectorImpl<SlotIndex> *Kills, 281 LiveIntervals &LIS); 282 283 /// addDefsFromCopies - The value in LI/LocNo may be copies to other 284 /// registers. Determine if any of the copies are available at the kill 285 /// points, and add defs if possible. 286 /// @param LI Scan for copies of the value in LI->reg. 287 /// @param LocNo Location number of LI->reg. 288 /// @param WasIndirect Indicates if the original use of LI->reg was indirect 289 /// @param Kills Points where the range of LocNo could be extended. 290 /// @param NewDefs Append (Idx, LocNo) of inserted defs here. 291 void addDefsFromCopies( 292 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 293 const SmallVectorImpl<SlotIndex> &Kills, 294 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 295 MachineRegisterInfo &MRI, LiveIntervals &LIS); 296 297 /// computeIntervals - Compute the live intervals of all locations after 298 /// collecting all their def points. 299 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 300 LiveIntervals &LIS, LexicalScopes &LS); 301 302 /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is 303 /// live. Returns true if any changes were made. 304 bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 305 LiveIntervals &LIS); 306 307 /// rewriteLocations - Rewrite virtual register locations according to the 308 /// provided virtual register map. Record which locations were spilled. 309 void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 310 BitVector &SpilledLocations); 311 312 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 313 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 314 const TargetInstrInfo &TII, 315 const TargetRegisterInfo &TRI, 316 const BitVector &SpilledLocations); 317 318 /// getDebugLoc - Return DebugLoc of this UserValue. 319 DebugLoc getDebugLoc() { return dl;} 320 321 void print(raw_ostream &, const TargetRegisterInfo *); 322 }; 323 324 /// LDVImpl - Implementation of the LiveDebugVariables pass. 325 class LDVImpl { 326 LiveDebugVariables &pass; 327 LocMap::Allocator allocator; 328 MachineFunction *MF = nullptr; 329 LiveIntervals *LIS; 330 const TargetRegisterInfo *TRI; 331 332 /// Whether emitDebugValues is called. 333 bool EmitDone = false; 334 335 /// Whether the machine function is modified during the pass. 336 bool ModifiedMF = false; 337 338 /// userValues - All allocated UserValue instances. 339 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 340 341 /// Map virtual register to eq class leader. 342 using VRMap = DenseMap<unsigned, UserValue *>; 343 VRMap virtRegToEqClass; 344 345 /// Map user variable to eq class leader. 346 using UVMap = DenseMap<const DILocalVariable *, UserValue *>; 347 UVMap userVarMap; 348 349 /// getUserValue - Find or create a UserValue. 350 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 351 const DebugLoc &DL); 352 353 /// lookupVirtReg - Find the EC leader for VirtReg or null. 354 UserValue *lookupVirtReg(unsigned VirtReg); 355 356 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 357 /// @param MI DBG_VALUE instruction 358 /// @param Idx Last valid SLotIndex before instruction. 359 /// @return True if the DBG_VALUE instruction should be deleted. 360 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 361 362 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 363 /// a UserValue def for each instruction. 364 /// @param mf MachineFunction to be scanned. 365 /// @return True if any debug values were found. 366 bool collectDebugValues(MachineFunction &mf); 367 368 /// computeIntervals - Compute the live intervals of all user values after 369 /// collecting all their def points. 370 void computeIntervals(); 371 372 public: 373 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 374 375 bool runOnMachineFunction(MachineFunction &mf); 376 377 /// clear - Release all memory. 378 void clear() { 379 MF = nullptr; 380 userValues.clear(); 381 virtRegToEqClass.clear(); 382 userVarMap.clear(); 383 // Make sure we call emitDebugValues if the machine function was modified. 384 assert((!ModifiedMF || EmitDone) && 385 "Dbg values are not emitted in LDV"); 386 EmitDone = false; 387 ModifiedMF = false; 388 } 389 390 /// mapVirtReg - Map virtual register to an equivalence class. 391 void mapVirtReg(unsigned VirtReg, UserValue *EC); 392 393 /// splitRegister - Replace all references to OldReg with NewRegs. 394 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 395 396 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 397 void emitDebugValues(VirtRegMap *VRM); 398 399 void print(raw_ostream&); 400 }; 401 402 } // end anonymous namespace 403 404 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 405 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 406 const LLVMContext &Ctx) { 407 if (!DL) 408 return; 409 410 auto *Scope = cast<DIScope>(DL.getScope()); 411 // Omit the directory, because it's likely to be long and uninteresting. 412 CommentOS << Scope->getFilename(); 413 CommentOS << ':' << DL.getLine(); 414 if (DL.getCol() != 0) 415 CommentOS << ':' << DL.getCol(); 416 417 DebugLoc InlinedAtDL = DL.getInlinedAt(); 418 if (!InlinedAtDL) 419 return; 420 421 CommentOS << " @[ "; 422 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 423 CommentOS << " ]"; 424 } 425 426 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V, 427 const DILocation *DL) { 428 const LLVMContext &Ctx = V->getContext(); 429 StringRef Res = V->getName(); 430 if (!Res.empty()) 431 OS << Res << "," << V->getLine(); 432 if (auto *InlinedAt = DL->getInlinedAt()) { 433 if (DebugLoc InlinedAtDL = InlinedAt) { 434 OS << " @["; 435 printDebugLoc(InlinedAtDL, OS, Ctx); 436 OS << "]"; 437 } 438 } 439 } 440 441 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 442 auto *DV = cast<DILocalVariable>(Variable); 443 OS << "!\""; 444 printExtendedName(OS, DV, dl); 445 446 OS << "\"\t"; 447 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 448 OS << " [" << I.start() << ';' << I.stop() << "):"; 449 if (I.value().isUndef()) 450 OS << "undef"; 451 else { 452 OS << I.value().locNo(); 453 if (I.value().wasIndirect()) 454 OS << " ind"; 455 } 456 } 457 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 458 OS << " Loc" << i << '='; 459 locations[i].print(OS, TRI); 460 } 461 OS << '\n'; 462 } 463 464 void LDVImpl::print(raw_ostream &OS) { 465 OS << "********** DEBUG VARIABLES **********\n"; 466 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 467 userValues[i]->print(OS, TRI); 468 } 469 #endif 470 471 void UserValue::mapVirtRegs(LDVImpl *LDV) { 472 for (unsigned i = 0, e = locations.size(); i != e; ++i) 473 if (locations[i].isReg() && 474 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 475 LDV->mapVirtReg(locations[i].getReg(), this); 476 } 477 478 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 479 const DIExpression *Expr, const DebugLoc &DL) { 480 UserValue *&Leader = userVarMap[Var]; 481 if (Leader) { 482 UserValue *UV = Leader->getLeader(); 483 Leader = UV; 484 for (; UV; UV = UV->getNext()) 485 if (UV->match(Var, Expr, DL->getInlinedAt())) 486 return UV; 487 } 488 489 userValues.push_back( 490 llvm::make_unique<UserValue>(Var, Expr, DL, allocator)); 491 UserValue *UV = userValues.back().get(); 492 Leader = UserValue::merge(Leader, UV); 493 return UV; 494 } 495 496 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 497 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 498 UserValue *&Leader = virtRegToEqClass[VirtReg]; 499 Leader = UserValue::merge(Leader, EC); 500 } 501 502 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 503 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 504 return UV->getLeader(); 505 return nullptr; 506 } 507 508 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 509 // DBG_VALUE loc, offset, variable 510 if (MI.getNumOperands() != 4 || 511 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 512 !MI.getOperand(2).isMetadata()) { 513 DEBUG(dbgs() << "Can't handle " << MI); 514 return false; 515 } 516 517 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 518 // register that hasn't been defined yet. If we do not remove those here, then 519 // the re-insertion of the DBG_VALUE instruction after register allocation 520 // will be incorrect. 521 // TODO: If earlier passes are corrected to generate sane debug information 522 // (and if the machine verifier is improved to catch this), then these checks 523 // could be removed or replaced by asserts. 524 bool Discard = false; 525 if (MI.getOperand(0).isReg() && 526 TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg())) { 527 const unsigned Reg = MI.getOperand(0).getReg(); 528 if (!LIS->hasInterval(Reg)) { 529 // The DBG_VALUE is described by a virtual register that does not have a 530 // live interval. Discard the DBG_VALUE. 531 Discard = true; 532 DEBUG(dbgs() << "Discarding debug info (no LIS interval): " 533 << Idx << " " << MI); 534 } else { 535 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg 536 // is defined dead at Idx (where Idx is the slot index for the instruction 537 // preceeding the DBG_VALUE). 538 const LiveInterval &LI = LIS->getInterval(Reg); 539 LiveQueryResult LRQ = LI.Query(Idx); 540 if (!LRQ.valueOutOrDead()) { 541 // We have found a DBG_VALUE with the value in a virtual register that 542 // is not live. Discard the DBG_VALUE. 543 Discard = true; 544 DEBUG(dbgs() << "Discarding debug info (reg not live): " 545 << Idx << " " << MI); 546 } 547 } 548 } 549 550 // Get or create the UserValue for (variable,offset) here. 551 bool IsIndirect = MI.getOperand(1).isImm(); 552 if (IsIndirect) 553 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 554 const DILocalVariable *Var = MI.getDebugVariable(); 555 const DIExpression *Expr = MI.getDebugExpression(); 556 UserValue *UV = 557 getUserValue(Var, Expr, MI.getDebugLoc()); 558 if (!Discard) 559 UV->addDef(Idx, MI.getOperand(0), IsIndirect); 560 else { 561 MachineOperand MO = MachineOperand::CreateReg(0U, false); 562 MO.setIsDebug(); 563 UV->addDef(Idx, MO, false); 564 } 565 return true; 566 } 567 568 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 569 bool Changed = false; 570 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 571 ++MFI) { 572 MachineBasicBlock *MBB = &*MFI; 573 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 574 MBBI != MBBE;) { 575 if (!MBBI->isDebugValue()) { 576 ++MBBI; 577 continue; 578 } 579 // DBG_VALUE has no slot index, use the previous instruction instead. 580 SlotIndex Idx = 581 MBBI == MBB->begin() 582 ? LIS->getMBBStartIdx(MBB) 583 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 584 // Handle consecutive DBG_VALUE instructions with the same slot index. 585 do { 586 if (handleDebugValue(*MBBI, Idx)) { 587 MBBI = MBB->erase(MBBI); 588 Changed = true; 589 } else 590 ++MBBI; 591 } while (MBBI != MBBE && MBBI->isDebugValue()); 592 } 593 } 594 return Changed; 595 } 596 597 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 598 /// data-flow analysis to propagate them beyond basic block boundaries. 599 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR, 600 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 601 LiveIntervals &LIS) { 602 SlotIndex Start = Idx; 603 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 604 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 605 LocMap::iterator I = locInts.find(Start); 606 607 // Limit to VNI's live range. 608 bool ToEnd = true; 609 if (LR && VNI) { 610 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 611 if (!Segment || Segment->valno != VNI) { 612 if (Kills) 613 Kills->push_back(Start); 614 return; 615 } 616 if (Segment->end < Stop) { 617 Stop = Segment->end; 618 ToEnd = false; 619 } 620 } 621 622 // There could already be a short def at Start. 623 if (I.valid() && I.start() <= Start) { 624 // Stop when meeting a different location or an already extended interval. 625 Start = Start.getNextSlot(); 626 if (I.value() != Loc || I.stop() != Start) 627 return; 628 // This is a one-slot placeholder. Just skip it. 629 ++I; 630 } 631 632 // Limited by the next def. 633 if (I.valid() && I.start() < Stop) { 634 Stop = I.start(); 635 ToEnd = false; 636 } 637 // Limited by VNI's live range. 638 else if (!ToEnd && Kills) 639 Kills->push_back(Stop); 640 641 if (Start < Stop) 642 I.insert(Start, Stop, Loc); 643 } 644 645 void UserValue::addDefsFromCopies( 646 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 647 const SmallVectorImpl<SlotIndex> &Kills, 648 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 649 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 650 if (Kills.empty()) 651 return; 652 // Don't track copies from physregs, there are too many uses. 653 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 654 return; 655 656 // Collect all the (vreg, valno) pairs that are copies of LI. 657 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 658 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 659 MachineInstr *MI = MO.getParent(); 660 // Copies of the full value. 661 if (MO.getSubReg() || !MI->isCopy()) 662 continue; 663 unsigned DstReg = MI->getOperand(0).getReg(); 664 665 // Don't follow copies to physregs. These are usually setting up call 666 // arguments, and the argument registers are always call clobbered. We are 667 // better off in the source register which could be a callee-saved register, 668 // or it could be spilled. 669 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 670 continue; 671 672 // Is LocNo extended to reach this copy? If not, another def may be blocking 673 // it, or we are looking at a wrong value of LI. 674 SlotIndex Idx = LIS.getInstructionIndex(*MI); 675 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 676 if (!I.valid() || I.value().locNo() != LocNo) 677 continue; 678 679 if (!LIS.hasInterval(DstReg)) 680 continue; 681 LiveInterval *DstLI = &LIS.getInterval(DstReg); 682 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 683 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 684 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 685 } 686 687 if (CopyValues.empty()) 688 return; 689 690 DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n'); 691 692 // Try to add defs of the copied values for each kill point. 693 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 694 SlotIndex Idx = Kills[i]; 695 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 696 LiveInterval *DstLI = CopyValues[j].first; 697 const VNInfo *DstVNI = CopyValues[j].second; 698 if (DstLI->getVNInfoAt(Idx) != DstVNI) 699 continue; 700 // Check that there isn't already a def at Idx 701 LocMap::iterator I = locInts.find(Idx); 702 if (I.valid() && I.start() <= Idx) 703 continue; 704 DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 705 << DstVNI->id << " in " << *DstLI << '\n'); 706 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 707 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 708 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 709 DbgValueLocation NewLoc(LocNo, WasIndirect); 710 I.insert(Idx, Idx.getNextSlot(), NewLoc); 711 NewDefs.push_back(std::make_pair(Idx, NewLoc)); 712 break; 713 } 714 } 715 } 716 717 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 718 const TargetRegisterInfo &TRI, 719 LiveIntervals &LIS, LexicalScopes &LS) { 720 SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs; 721 722 // Collect all defs to be extended (Skipping undefs). 723 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 724 if (!I.value().isUndef()) 725 Defs.push_back(std::make_pair(I.start(), I.value())); 726 727 // Extend all defs, and possibly add new ones along the way. 728 for (unsigned i = 0; i != Defs.size(); ++i) { 729 SlotIndex Idx = Defs[i].first; 730 DbgValueLocation Loc = Defs[i].second; 731 const MachineOperand &LocMO = locations[Loc.locNo()]; 732 733 if (!LocMO.isReg()) { 734 extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS); 735 continue; 736 } 737 738 // Register locations are constrained to where the register value is live. 739 if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) { 740 LiveInterval *LI = nullptr; 741 const VNInfo *VNI = nullptr; 742 if (LIS.hasInterval(LocMO.getReg())) { 743 LI = &LIS.getInterval(LocMO.getReg()); 744 VNI = LI->getVNInfoAt(Idx); 745 } 746 SmallVector<SlotIndex, 16> Kills; 747 extendDef(Idx, Loc, LI, VNI, &Kills, LIS); 748 if (LI) 749 addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI, 750 LIS); 751 continue; 752 } 753 754 // For physregs, we only mark the start slot idx. DwarfDebug will see it 755 // as if the DBG_VALUE is valid up until the end of the basic block, or 756 // the next def of the physical register. So we do not need to extend the 757 // range. It might actually happen that the DBG_VALUE is the last use of 758 // the physical register (e.g. if this is an unused input argument to a 759 // function). 760 } 761 762 // Erase all the undefs. 763 for (LocMap::iterator I = locInts.begin(); I.valid();) 764 if (I.value().isUndef()) 765 I.erase(); 766 else 767 ++I; 768 769 // The computed intervals may extend beyond the range of the debug 770 // location's lexical scope. In this case, splitting of an interval 771 // can result in an interval outside of the scope being created, 772 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 773 // this, trim the intervals to the lexical scope. 774 775 LexicalScope *Scope = LS.findLexicalScope(dl); 776 if (!Scope) 777 return; 778 779 SlotIndex PrevEnd; 780 LocMap::iterator I = locInts.begin(); 781 782 // Iterate over the lexical scope ranges. Each time round the loop 783 // we check the intervals for overlap with the end of the previous 784 // range and the start of the next. The first range is handled as 785 // a special case where there is no PrevEnd. 786 for (const InsnRange &Range : Scope->getRanges()) { 787 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 788 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 789 790 // At the start of each iteration I has been advanced so that 791 // I.stop() >= PrevEnd. Check for overlap. 792 if (PrevEnd && I.start() < PrevEnd) { 793 SlotIndex IStop = I.stop(); 794 DbgValueLocation Loc = I.value(); 795 796 // Stop overlaps previous end - trim the end of the interval to 797 // the scope range. 798 I.setStopUnchecked(PrevEnd); 799 ++I; 800 801 // If the interval also overlaps the start of the "next" (i.e. 802 // current) range create a new interval for the remainder (which 803 // may be further trimmed). 804 if (RStart < IStop) 805 I.insert(RStart, IStop, Loc); 806 } 807 808 // Advance I so that I.stop() >= RStart, and check for overlap. 809 I.advanceTo(RStart); 810 if (!I.valid()) 811 return; 812 813 if (I.start() < RStart) { 814 // Interval start overlaps range - trim to the scope range. 815 I.setStartUnchecked(RStart); 816 // Remember that this interval was trimmed. 817 trimmedDefs.insert(RStart); 818 } 819 820 // The end of a lexical scope range is the last instruction in the 821 // range. To convert to an interval we need the index of the 822 // instruction after it. 823 REnd = REnd.getNextIndex(); 824 825 // Advance I to first interval outside current range. 826 I.advanceTo(REnd); 827 if (!I.valid()) 828 return; 829 830 PrevEnd = REnd; 831 } 832 833 // Check for overlap with end of final range. 834 if (PrevEnd && I.start() < PrevEnd) 835 I.setStopUnchecked(PrevEnd); 836 } 837 838 void LDVImpl::computeIntervals() { 839 LexicalScopes LS; 840 LS.initialize(*MF); 841 842 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 843 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 844 userValues[i]->mapVirtRegs(this); 845 } 846 } 847 848 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 849 clear(); 850 MF = &mf; 851 LIS = &pass.getAnalysis<LiveIntervals>(); 852 TRI = mf.getSubtarget().getRegisterInfo(); 853 DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 854 << mf.getName() << " **********\n"); 855 856 bool Changed = collectDebugValues(mf); 857 computeIntervals(); 858 DEBUG(print(dbgs())); 859 ModifiedMF = Changed; 860 return Changed; 861 } 862 863 static void removeDebugValues(MachineFunction &mf) { 864 for (MachineBasicBlock &MBB : mf) { 865 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 866 if (!MBBI->isDebugValue()) { 867 ++MBBI; 868 continue; 869 } 870 MBBI = MBB.erase(MBBI); 871 } 872 } 873 } 874 875 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 876 if (!EnableLDV) 877 return false; 878 if (!mf.getFunction().getSubprogram()) { 879 removeDebugValues(mf); 880 return false; 881 } 882 if (!pImpl) 883 pImpl = new LDVImpl(this); 884 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 885 } 886 887 void LiveDebugVariables::releaseMemory() { 888 if (pImpl) 889 static_cast<LDVImpl*>(pImpl)->clear(); 890 } 891 892 LiveDebugVariables::~LiveDebugVariables() { 893 if (pImpl) 894 delete static_cast<LDVImpl*>(pImpl); 895 } 896 897 //===----------------------------------------------------------------------===// 898 // Live Range Splitting 899 //===----------------------------------------------------------------------===// 900 901 bool 902 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 903 LiveIntervals& LIS) { 904 DEBUG({ 905 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 906 print(dbgs(), nullptr); 907 }); 908 bool DidChange = false; 909 LocMap::iterator LocMapI; 910 LocMapI.setMap(locInts); 911 for (unsigned i = 0; i != NewRegs.size(); ++i) { 912 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 913 if (LI->empty()) 914 continue; 915 916 // Don't allocate the new LocNo until it is needed. 917 unsigned NewLocNo = UndefLocNo; 918 919 // Iterate over the overlaps between locInts and LI. 920 LocMapI.find(LI->beginIndex()); 921 if (!LocMapI.valid()) 922 continue; 923 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 924 LiveInterval::iterator LIE = LI->end(); 925 while (LocMapI.valid() && LII != LIE) { 926 // At this point, we know that LocMapI.stop() > LII->start. 927 LII = LI->advanceTo(LII, LocMapI.start()); 928 if (LII == LIE) 929 break; 930 931 // Now LII->end > LocMapI.start(). Do we have an overlap? 932 if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) { 933 // Overlapping correct location. Allocate NewLocNo now. 934 if (NewLocNo == UndefLocNo) { 935 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 936 MO.setSubReg(locations[OldLocNo].getSubReg()); 937 NewLocNo = getLocationNo(MO); 938 DidChange = true; 939 } 940 941 SlotIndex LStart = LocMapI.start(); 942 SlotIndex LStop = LocMapI.stop(); 943 DbgValueLocation OldLoc = LocMapI.value(); 944 945 // Trim LocMapI down to the LII overlap. 946 if (LStart < LII->start) 947 LocMapI.setStartUnchecked(LII->start); 948 if (LStop > LII->end) 949 LocMapI.setStopUnchecked(LII->end); 950 951 // Change the value in the overlap. This may trigger coalescing. 952 LocMapI.setValue(OldLoc.changeLocNo(NewLocNo)); 953 954 // Re-insert any removed OldLocNo ranges. 955 if (LStart < LocMapI.start()) { 956 LocMapI.insert(LStart, LocMapI.start(), OldLoc); 957 ++LocMapI; 958 assert(LocMapI.valid() && "Unexpected coalescing"); 959 } 960 if (LStop > LocMapI.stop()) { 961 ++LocMapI; 962 LocMapI.insert(LII->end, LStop, OldLoc); 963 --LocMapI; 964 } 965 } 966 967 // Advance to the next overlap. 968 if (LII->end < LocMapI.stop()) { 969 if (++LII == LIE) 970 break; 971 LocMapI.advanceTo(LII->start); 972 } else { 973 ++LocMapI; 974 if (!LocMapI.valid()) 975 break; 976 LII = LI->advanceTo(LII, LocMapI.start()); 977 } 978 } 979 } 980 981 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 982 locations.erase(locations.begin() + OldLocNo); 983 LocMapI.goToBegin(); 984 while (LocMapI.valid()) { 985 DbgValueLocation v = LocMapI.value(); 986 if (v.locNo() == OldLocNo) { 987 DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 988 << LocMapI.stop() << ")\n"); 989 LocMapI.erase(); 990 } else { 991 if (v.locNo() > OldLocNo) 992 LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1)); 993 ++LocMapI; 994 } 995 } 996 997 DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);}); 998 return DidChange; 999 } 1000 1001 bool 1002 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 1003 LiveIntervals &LIS) { 1004 bool DidChange = false; 1005 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1006 // safely erase unused locations. 1007 for (unsigned i = locations.size(); i ; --i) { 1008 unsigned LocNo = i-1; 1009 const MachineOperand *Loc = &locations[LocNo]; 1010 if (!Loc->isReg() || Loc->getReg() != OldReg) 1011 continue; 1012 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1013 } 1014 return DidChange; 1015 } 1016 1017 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 1018 bool DidChange = false; 1019 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1020 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1021 1022 if (!DidChange) 1023 return; 1024 1025 // Map all of the new virtual registers. 1026 UserValue *UV = lookupVirtReg(OldReg); 1027 for (unsigned i = 0; i != NewRegs.size(); ++i) 1028 mapVirtReg(NewRegs[i], UV); 1029 } 1030 1031 void LiveDebugVariables:: 1032 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 1033 if (pImpl) 1034 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1035 } 1036 1037 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 1038 BitVector &SpilledLocations) { 1039 // Build a set of new locations with new numbers so we can coalesce our 1040 // IntervalMap if two vreg intervals collapse to the same physical location. 1041 // Use MapVector instead of SetVector because MapVector::insert returns the 1042 // position of the previously or newly inserted element. The boolean value 1043 // tracks if the location was produced by a spill. 1044 // FIXME: This will be problematic if we ever support direct and indirect 1045 // frame index locations, i.e. expressing both variables in memory and 1046 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1047 MapVector<MachineOperand, bool> NewLocations; 1048 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1049 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1050 bool Spilled = false; 1051 MachineOperand Loc = locations[I]; 1052 // Only virtual registers are rewritten. 1053 if (Loc.isReg() && Loc.getReg() && 1054 TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 1055 unsigned VirtReg = Loc.getReg(); 1056 if (VRM.isAssignedReg(VirtReg) && 1057 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1058 // This can create a %noreg operand in rare cases when the sub-register 1059 // index is no longer available. That means the user value is in a 1060 // non-existent sub-register, and %noreg is exactly what we want. 1061 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1062 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1063 // FIXME: Translate SubIdx to a stackslot offset. 1064 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1065 Spilled = true; 1066 } else { 1067 Loc.setReg(0); 1068 Loc.setSubReg(0); 1069 } 1070 } 1071 1072 // Insert this location if it doesn't already exist and record a mapping 1073 // from the old number to the new number. 1074 auto InsertResult = NewLocations.insert({Loc, Spilled}); 1075 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1076 LocNoMap[I] = NewLocNo; 1077 } 1078 1079 // Rewrite the locations and record which ones were spill slots. 1080 locations.clear(); 1081 SpilledLocations.clear(); 1082 SpilledLocations.resize(NewLocations.size()); 1083 for (auto &Pair : NewLocations) { 1084 locations.push_back(Pair.first); 1085 if (Pair.second) { 1086 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1087 SpilledLocations.set(NewLocNo); 1088 } 1089 } 1090 1091 // Update the interval map, but only coalesce left, since intervals to the 1092 // right use the old location numbers. This should merge two contiguous 1093 // DBG_VALUE intervals with different vregs that were allocated to the same 1094 // physical register. 1095 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1096 DbgValueLocation Loc = I.value(); 1097 unsigned NewLocNo = LocNoMap[Loc.locNo()]; 1098 I.setValueUnchecked(Loc.changeLocNo(NewLocNo)); 1099 I.setStart(I.start()); 1100 } 1101 } 1102 1103 /// Find an iterator for inserting a DBG_VALUE instruction. 1104 static MachineBasicBlock::iterator 1105 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1106 LiveIntervals &LIS) { 1107 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1108 Idx = Idx.getBaseIndex(); 1109 1110 // Try to find an insert location by going backwards from Idx. 1111 MachineInstr *MI; 1112 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1113 // We've reached the beginning of MBB. 1114 if (Idx == Start) { 1115 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1116 return I; 1117 } 1118 Idx = Idx.getPrevIndex(); 1119 } 1120 1121 // Don't insert anything after the first terminator, though. 1122 return MI->isTerminator() ? MBB->getFirstTerminator() : 1123 std::next(MachineBasicBlock::iterator(MI)); 1124 } 1125 1126 /// Find an iterator for inserting the next DBG_VALUE instruction 1127 /// (or end if no more insert locations found). 1128 static MachineBasicBlock::iterator 1129 findNextInsertLocation(MachineBasicBlock *MBB, 1130 MachineBasicBlock::iterator I, 1131 SlotIndex StopIdx, MachineOperand &LocMO, 1132 LiveIntervals &LIS, 1133 const TargetRegisterInfo &TRI) { 1134 if (!LocMO.isReg()) 1135 return MBB->instr_end(); 1136 unsigned Reg = LocMO.getReg(); 1137 1138 // Find the next instruction in the MBB that define the register Reg. 1139 while (I != MBB->end()) { 1140 if (!LIS.isNotInMIMap(*I) && 1141 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1142 break; 1143 if (I->definesRegister(Reg, &TRI)) 1144 // The insert location is directly after the instruction/bundle. 1145 return std::next(I); 1146 ++I; 1147 } 1148 return MBB->end(); 1149 } 1150 1151 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1152 SlotIndex StopIdx, 1153 DbgValueLocation Loc, bool Spilled, 1154 LiveIntervals &LIS, 1155 const TargetInstrInfo &TII, 1156 const TargetRegisterInfo &TRI) { 1157 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1158 // Only search within the current MBB. 1159 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1160 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS); 1161 MachineOperand &MO = locations[Loc.locNo()]; 1162 ++NumInsertedDebugValues; 1163 1164 assert(cast<DILocalVariable>(Variable) 1165 ->isValidLocationForIntrinsic(getDebugLoc()) && 1166 "Expected inlined-at fields to agree"); 1167 1168 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1169 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1170 // that the original virtual register was a pointer. 1171 const DIExpression *Expr = Expression; 1172 bool IsIndirect = Loc.wasIndirect(); 1173 if (Spilled) { 1174 if (IsIndirect) 1175 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 1176 IsIndirect = true; 1177 } 1178 1179 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1180 1181 do { 1182 MachineInstrBuilder MIB = 1183 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) 1184 .add(MO); 1185 if (IsIndirect) 1186 MIB.addImm(0U); 1187 else 1188 MIB.addReg(0U, RegState::Debug); 1189 MIB.addMetadata(Variable).addMetadata(Expr); 1190 1191 // Continue and insert DBG_VALUES after every redefinition of register 1192 // associated with the debug value within the range 1193 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI); 1194 } while (I != MBB->end()); 1195 } 1196 1197 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1198 const TargetInstrInfo &TII, 1199 const TargetRegisterInfo &TRI, 1200 const BitVector &SpilledLocations) { 1201 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1202 1203 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1204 SlotIndex Start = I.start(); 1205 SlotIndex Stop = I.stop(); 1206 DbgValueLocation Loc = I.value(); 1207 bool Spilled = !Loc.isUndef() ? SpilledLocations.test(Loc.locNo()) : false; 1208 1209 // If the interval start was trimmed to the lexical scope insert the 1210 // DBG_VALUE at the previous index (otherwise it appears after the 1211 // first instruction in the range). 1212 if (trimmedDefs.count(Start)) 1213 Start = Start.getPrevIndex(); 1214 1215 DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo()); 1216 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1217 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1218 1219 DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1220 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI); 1221 // This interval may span multiple basic blocks. 1222 // Insert a DBG_VALUE into each one. 1223 while (Stop > MBBEnd) { 1224 // Move to the next block. 1225 Start = MBBEnd; 1226 if (++MBB == MFEnd) 1227 break; 1228 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1229 DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1230 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI); 1231 } 1232 DEBUG(dbgs() << '\n'); 1233 if (MBB == MFEnd) 1234 break; 1235 1236 ++I; 1237 } 1238 } 1239 1240 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1241 DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1242 if (!MF) 1243 return; 1244 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1245 BitVector SpilledLocations; 1246 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1247 DEBUG(userValues[i]->print(dbgs(), TRI)); 1248 userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations); 1249 userValues[i]->emitDebugValues(VRM, *LIS, *TII, *TRI, SpilledLocations); 1250 } 1251 EmitDone = true; 1252 } 1253 1254 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1255 if (pImpl) 1256 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1257 } 1258 1259 bool LiveDebugVariables::doInitialization(Module &M) { 1260 return Pass::doInitialization(M); 1261 } 1262 1263 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1264 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1265 if (pImpl) 1266 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1267 } 1268 #endif 1269