1 //===-- IfConversion.cpp - Machine code if conversion pass. ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the machine instruction level if-conversion pass, which 11 // tries to convert conditional branches into predicated instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/Passes.h" 16 #include "BranchFolding.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/LivePhysRegs.h" 22 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 23 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSchedule.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetLowering.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 #include <utility> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ifcvt" 43 44 // Hidden options for help debugging. 45 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 46 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 47 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 48 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 49 cl::init(false), cl::Hidden); 50 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 51 cl::init(false), cl::Hidden); 52 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 53 cl::init(false), cl::Hidden); 54 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 55 cl::init(false), cl::Hidden); 56 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 57 cl::init(false), cl::Hidden); 58 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 59 cl::init(false), cl::Hidden); 60 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 61 cl::init(false), cl::Hidden); 62 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond", 63 cl::init(false), cl::Hidden); 64 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 65 cl::init(true), cl::Hidden); 66 67 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 68 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 69 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 70 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 71 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 72 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 73 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 74 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); 75 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 76 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 77 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 78 79 namespace { 80 class IfConverter : public MachineFunctionPass { 81 enum IfcvtKind { 82 ICNotClassfied, // BB data valid, but not classified. 83 ICSimpleFalse, // Same as ICSimple, but on the false path. 84 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 85 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 86 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 87 ICTriangleFalse, // Same as ICTriangle, but on the false path. 88 ICTriangle, // BB is entry of a triangle sub-CFG. 89 ICDiamond, // BB is entry of a diamond sub-CFG. 90 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a 91 // common tail that can be shared. 92 }; 93 94 /// One per MachineBasicBlock, this is used to cache the result 95 /// if-conversion feasibility analysis. This includes results from 96 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its 97 /// classification, and common tail block of its successors (if it's a 98 /// diamond shape), its size, whether it's predicable, and whether any 99 /// instruction can clobber the 'would-be' predicate. 100 /// 101 /// IsDone - True if BB is not to be considered for ifcvt. 102 /// IsBeingAnalyzed - True if BB is currently being analyzed. 103 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 104 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 105 /// IsBrAnalyzable - True if analyzeBranch() returns false. 106 /// HasFallThrough - True if BB may fallthrough to the following BB. 107 /// IsUnpredicable - True if BB is known to be unpredicable. 108 /// ClobbersPred - True if BB could modify predicates (e.g. has 109 /// cmp, call, etc.) 110 /// NonPredSize - Number of non-predicated instructions. 111 /// ExtraCost - Extra cost for multi-cycle instructions. 112 /// ExtraCost2 - Some instructions are slower when predicated 113 /// BB - Corresponding MachineBasicBlock. 114 /// TrueBB / FalseBB- See analyzeBranch(). 115 /// BrCond - Conditions for end of block conditional branches. 116 /// Predicate - Predicate used in the BB. 117 struct BBInfo { 118 bool IsDone : 1; 119 bool IsBeingAnalyzed : 1; 120 bool IsAnalyzed : 1; 121 bool IsEnqueued : 1; 122 bool IsBrAnalyzable : 1; 123 bool IsBrReversible : 1; 124 bool HasFallThrough : 1; 125 bool IsUnpredicable : 1; 126 bool CannotBeCopied : 1; 127 bool ClobbersPred : 1; 128 unsigned NonPredSize; 129 unsigned ExtraCost; 130 unsigned ExtraCost2; 131 MachineBasicBlock *BB; 132 MachineBasicBlock *TrueBB; 133 MachineBasicBlock *FalseBB; 134 SmallVector<MachineOperand, 4> BrCond; 135 SmallVector<MachineOperand, 4> Predicate; 136 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 137 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 138 IsBrReversible(false), HasFallThrough(false), 139 IsUnpredicable(false), CannotBeCopied(false), 140 ClobbersPred(false), NonPredSize(0), ExtraCost(0), 141 ExtraCost2(0), BB(nullptr), TrueBB(nullptr), 142 FalseBB(nullptr) {} 143 }; 144 145 /// Record information about pending if-conversions to attempt: 146 /// BBI - Corresponding BBInfo. 147 /// Kind - Type of block. See IfcvtKind. 148 /// NeedSubsumption - True if the to-be-predicated BB has already been 149 /// predicated. 150 /// NumDups - Number of instructions that would be duplicated due 151 /// to this if-conversion. (For diamonds, the number of 152 /// identical instructions at the beginnings of both 153 /// paths). 154 /// NumDups2 - For diamonds, the number of identical instructions 155 /// at the ends of both paths. 156 struct IfcvtToken { 157 BBInfo &BBI; 158 IfcvtKind Kind; 159 unsigned NumDups; 160 unsigned NumDups2; 161 bool NeedSubsumption : 1; 162 bool TClobbersPred : 1; 163 bool FClobbersPred : 1; 164 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, 165 bool tc = false, bool fc = false) 166 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), 167 TClobbersPred(tc), FClobbersPred(fc) {} 168 }; 169 170 /// Results of if-conversion feasibility analysis indexed by basic block 171 /// number. 172 std::vector<BBInfo> BBAnalysis; 173 TargetSchedModel SchedModel; 174 175 const TargetLoweringBase *TLI; 176 const TargetInstrInfo *TII; 177 const TargetRegisterInfo *TRI; 178 const MachineBranchProbabilityInfo *MBPI; 179 MachineRegisterInfo *MRI; 180 181 LivePhysRegs Redefs; 182 LivePhysRegs DontKill; 183 184 bool PreRegAlloc; 185 bool MadeChange; 186 int FnNum; 187 std::function<bool(const MachineFunction &)> PredicateFtor; 188 189 public: 190 static char ID; 191 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr) 192 : MachineFunctionPass(ID), FnNum(-1), PredicateFtor(std::move(Ftor)) { 193 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 194 } 195 196 void getAnalysisUsage(AnalysisUsage &AU) const override { 197 AU.addRequired<MachineBlockFrequencyInfo>(); 198 AU.addRequired<MachineBranchProbabilityInfo>(); 199 MachineFunctionPass::getAnalysisUsage(AU); 200 } 201 202 bool runOnMachineFunction(MachineFunction &MF) override; 203 204 MachineFunctionProperties getRequiredProperties() const override { 205 return MachineFunctionProperties().set( 206 MachineFunctionProperties::Property::NoVRegs); 207 } 208 209 private: 210 bool reverseBranchCondition(BBInfo &BBI) const; 211 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 212 BranchProbability Prediction) const; 213 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 214 bool FalseBranch, unsigned &Dups, 215 BranchProbability Prediction) const; 216 bool CountDuplicatedInstructions( 217 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 218 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 219 unsigned &Dups1, unsigned &Dups2, 220 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 221 bool SkipUnconditionalBranches) const; 222 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 223 unsigned &Dups1, unsigned &Dups2, 224 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 225 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 226 unsigned &Dups1, unsigned &Dups2, 227 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 228 void AnalyzeBranches(BBInfo &BBI); 229 void ScanInstructions(BBInfo &BBI, 230 MachineBasicBlock::iterator &Begin, 231 MachineBasicBlock::iterator &End, 232 bool BranchUnpredicable = false) const; 233 bool RescanInstructions( 234 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 235 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 236 BBInfo &TrueBBI, BBInfo &FalseBBI) const; 237 void AnalyzeBlock(MachineBasicBlock &MBB, 238 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 239 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond, 240 bool isTriangle = false, bool RevBranch = false, 241 bool hasCommonTail = false); 242 void AnalyzeBlocks(MachineFunction &MF, 243 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 244 void InvalidatePreds(MachineBasicBlock &MBB); 245 void RemoveExtraEdges(BBInfo &BBI); 246 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 247 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 248 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 249 unsigned NumDups1, unsigned NumDups2, 250 bool TClobbersPred, bool FClobbersPred, 251 bool RemoveBranch, bool MergeAddEdges); 252 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 253 unsigned NumDups1, unsigned NumDups2, 254 bool TClobbers, bool FClobbers); 255 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, 256 unsigned NumDups1, unsigned NumDups2, 257 bool TClobbers, bool FClobbers); 258 void PredicateBlock(BBInfo &BBI, 259 MachineBasicBlock::iterator E, 260 SmallVectorImpl<MachineOperand> &Cond, 261 SmallSet<unsigned, 4> *LaterRedefs = nullptr); 262 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 263 SmallVectorImpl<MachineOperand> &Cond, 264 bool IgnoreBr = false); 265 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 266 267 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 268 unsigned Cycle, unsigned Extra, 269 BranchProbability Prediction) const { 270 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 271 Prediction); 272 } 273 274 bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB, 275 unsigned TCycle, unsigned TExtra, 276 MachineBasicBlock &FBB, 277 unsigned FCycle, unsigned FExtra, 278 BranchProbability Prediction) const { 279 return TCycle > 0 && FCycle > 0 && 280 TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra, 281 Prediction); 282 } 283 284 /// Returns true if Block ends without a terminator. 285 bool blockAlwaysFallThrough(BBInfo &BBI) const { 286 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 287 } 288 289 /// Used to sort if-conversion candidates. 290 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 291 const std::unique_ptr<IfcvtToken> &C2) { 292 int Incr1 = (C1->Kind == ICDiamond) 293 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 294 int Incr2 = (C2->Kind == ICDiamond) 295 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 296 if (Incr1 > Incr2) 297 return true; 298 else if (Incr1 == Incr2) { 299 // Favors subsumption. 300 if (!C1->NeedSubsumption && C2->NeedSubsumption) 301 return true; 302 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 303 // Favors diamond over triangle, etc. 304 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 305 return true; 306 else if (C1->Kind == C2->Kind) 307 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 308 } 309 } 310 return false; 311 } 312 }; 313 314 char IfConverter::ID = 0; 315 } 316 317 char &llvm::IfConverterID = IfConverter::ID; 318 319 INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false) 320 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 321 INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false) 322 323 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 324 if (skipFunction(*MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) 325 return false; 326 327 const TargetSubtargetInfo &ST = MF.getSubtarget(); 328 TLI = ST.getTargetLowering(); 329 TII = ST.getInstrInfo(); 330 TRI = ST.getRegisterInfo(); 331 BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); 332 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 333 MRI = &MF.getRegInfo(); 334 SchedModel.init(ST.getSchedModel(), &ST, TII); 335 336 if (!TII) return false; 337 338 PreRegAlloc = MRI->isSSA(); 339 340 bool BFChange = false; 341 if (!PreRegAlloc) { 342 // Tail merge tend to expose more if-conversion opportunities. 343 BranchFolder BF(true, false, MBFI, *MBPI); 344 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(), 345 getAnalysisIfAvailable<MachineModuleInfo>()); 346 } 347 348 DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 349 << MF.getName() << "\'"); 350 351 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 352 DEBUG(dbgs() << " skipped\n"); 353 return false; 354 } 355 DEBUG(dbgs() << "\n"); 356 357 MF.RenumberBlocks(); 358 BBAnalysis.resize(MF.getNumBlockIDs()); 359 360 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 361 MadeChange = false; 362 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 363 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 364 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 365 // Do an initial analysis for each basic block and find all the potential 366 // candidates to perform if-conversion. 367 bool Change = false; 368 AnalyzeBlocks(MF, Tokens); 369 while (!Tokens.empty()) { 370 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 371 Tokens.pop_back(); 372 BBInfo &BBI = Token->BBI; 373 IfcvtKind Kind = Token->Kind; 374 unsigned NumDups = Token->NumDups; 375 unsigned NumDups2 = Token->NumDups2; 376 377 // If the block has been evicted out of the queue or it has already been 378 // marked dead (due to it being predicated), then skip it. 379 if (BBI.IsDone) 380 BBI.IsEnqueued = false; 381 if (!BBI.IsEnqueued) 382 continue; 383 384 BBI.IsEnqueued = false; 385 386 bool RetVal = false; 387 switch (Kind) { 388 default: llvm_unreachable("Unexpected!"); 389 case ICSimple: 390 case ICSimpleFalse: { 391 bool isFalse = Kind == ICSimpleFalse; 392 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 393 DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? 394 " false" : "") 395 << "): BB#" << BBI.BB->getNumber() << " (" 396 << ((Kind == ICSimpleFalse) 397 ? BBI.FalseBB->getNumber() 398 : BBI.TrueBB->getNumber()) << ") "); 399 RetVal = IfConvertSimple(BBI, Kind); 400 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 401 if (RetVal) { 402 if (isFalse) ++NumSimpleFalse; 403 else ++NumSimple; 404 } 405 break; 406 } 407 case ICTriangle: 408 case ICTriangleRev: 409 case ICTriangleFalse: 410 case ICTriangleFRev: { 411 bool isFalse = Kind == ICTriangleFalse; 412 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 413 if (DisableTriangle && !isFalse && !isRev) break; 414 if (DisableTriangleR && !isFalse && isRev) break; 415 if (DisableTriangleF && isFalse && !isRev) break; 416 if (DisableTriangleFR && isFalse && isRev) break; 417 DEBUG(dbgs() << "Ifcvt (Triangle"); 418 if (isFalse) 419 DEBUG(dbgs() << " false"); 420 if (isRev) 421 DEBUG(dbgs() << " rev"); 422 DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:" 423 << BBI.TrueBB->getNumber() << ",F:" 424 << BBI.FalseBB->getNumber() << ") "); 425 RetVal = IfConvertTriangle(BBI, Kind); 426 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 427 if (RetVal) { 428 if (isFalse) { 429 if (isRev) ++NumTriangleFRev; 430 else ++NumTriangleFalse; 431 } else { 432 if (isRev) ++NumTriangleRev; 433 else ++NumTriangle; 434 } 435 } 436 break; 437 } 438 case ICDiamond: { 439 if (DisableDiamond) break; 440 DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:" 441 << BBI.TrueBB->getNumber() << ",F:" 442 << BBI.FalseBB->getNumber() << ") "); 443 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, 444 Token->TClobbersPred, 445 Token->FClobbersPred); 446 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 447 if (RetVal) ++NumDiamonds; 448 break; 449 } 450 case ICForkedDiamond: { 451 if (DisableForkedDiamond) break; 452 DEBUG(dbgs() << "Ifcvt (Forked Diamond): BB#" 453 << BBI.BB->getNumber() << " (T:" 454 << BBI.TrueBB->getNumber() << ",F:" 455 << BBI.FalseBB->getNumber() << ") "); 456 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, 457 Token->TClobbersPred, 458 Token->FClobbersPred); 459 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 460 if (RetVal) ++NumForkedDiamonds; 461 break; 462 } 463 } 464 465 Change |= RetVal; 466 467 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 468 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 469 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 470 break; 471 } 472 473 if (!Change) 474 break; 475 MadeChange |= Change; 476 } 477 478 Tokens.clear(); 479 BBAnalysis.clear(); 480 481 if (MadeChange && IfCvtBranchFold) { 482 BranchFolder BF(false, false, MBFI, *MBPI); 483 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 484 getAnalysisIfAvailable<MachineModuleInfo>()); 485 } 486 487 MadeChange |= BFChange; 488 return MadeChange; 489 } 490 491 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. 492 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 493 MachineBasicBlock *TrueBB) { 494 for (MachineBasicBlock *SuccBB : BB->successors()) { 495 if (SuccBB != TrueBB) 496 return SuccBB; 497 } 498 return nullptr; 499 } 500 501 /// Reverse the condition of the end of the block branch. Swap block's 'true' 502 /// and 'false' successors. 503 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { 504 DebugLoc dl; // FIXME: this is nowhere 505 if (!TII->reverseBranchCondition(BBI.BrCond)) { 506 TII->removeBranch(*BBI.BB); 507 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 508 std::swap(BBI.TrueBB, BBI.FalseBB); 509 return true; 510 } 511 return false; 512 } 513 514 /// Returns the next block in the function blocks ordering. If it is the end, 515 /// returns NULL. 516 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { 517 MachineFunction::iterator I = MBB.getIterator(); 518 MachineFunction::iterator E = MBB.getParent()->end(); 519 if (++I == E) 520 return nullptr; 521 return &*I; 522 } 523 524 /// Returns true if the 'true' block (along with its predecessor) forms a valid 525 /// simple shape for ifcvt. It also returns the number of instructions that the 526 /// ifcvt would need to duplicate if performed in Dups. 527 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 528 BranchProbability Prediction) const { 529 Dups = 0; 530 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 531 return false; 532 533 if (TrueBBI.IsBrAnalyzable) 534 return false; 535 536 if (TrueBBI.BB->pred_size() > 1) { 537 if (TrueBBI.CannotBeCopied || 538 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 539 Prediction)) 540 return false; 541 Dups = TrueBBI.NonPredSize; 542 } 543 544 return true; 545 } 546 547 /// Returns true if the 'true' and 'false' blocks (along with their common 548 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is 549 /// true, it checks if 'true' block's false branch branches to the 'false' block 550 /// rather than the other way around. It also returns the number of instructions 551 /// that the ifcvt would need to duplicate if performed in 'Dups'. 552 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 553 bool FalseBranch, unsigned &Dups, 554 BranchProbability Prediction) const { 555 Dups = 0; 556 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 557 return false; 558 559 if (TrueBBI.BB->pred_size() > 1) { 560 if (TrueBBI.CannotBeCopied) 561 return false; 562 563 unsigned Size = TrueBBI.NonPredSize; 564 if (TrueBBI.IsBrAnalyzable) { 565 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 566 // Ends with an unconditional branch. It will be removed. 567 --Size; 568 else { 569 MachineBasicBlock *FExit = FalseBranch 570 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 571 if (FExit) 572 // Require a conditional branch 573 ++Size; 574 } 575 } 576 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 577 return false; 578 Dups = Size; 579 } 580 581 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 582 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 583 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 584 if (++I == TrueBBI.BB->getParent()->end()) 585 return false; 586 TExit = &*I; 587 } 588 return TExit && TExit == FalseBBI.BB; 589 } 590 591 /// Count duplicated instructions and move the iterators to show where they 592 /// are. 593 /// @param TIB True Iterator Begin 594 /// @param FIB False Iterator Begin 595 /// These two iterators initially point to the first instruction of the two 596 /// blocks, and finally point to the first non-shared instruction. 597 /// @param TIE True Iterator End 598 /// @param FIE False Iterator End 599 /// These two iterators initially point to End() for the two blocks() and 600 /// finally point to the first shared instruction in the tail. 601 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of 602 /// two blocks. 603 /// @param Dups1 count of duplicated instructions at the beginning of the 2 604 /// blocks. 605 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. 606 /// @param SkipUnconditionalBranches if true, Don't make sure that 607 /// unconditional branches at the end of the blocks are the same. True is 608 /// passed when the blocks are analyzable to allow for fallthrough to be 609 /// handled. 610 /// @return false if the shared portion prevents if conversion. 611 bool IfConverter::CountDuplicatedInstructions( 612 MachineBasicBlock::iterator &TIB, 613 MachineBasicBlock::iterator &FIB, 614 MachineBasicBlock::iterator &TIE, 615 MachineBasicBlock::iterator &FIE, 616 unsigned &Dups1, unsigned &Dups2, 617 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 618 bool SkipUnconditionalBranches) const { 619 620 while (TIB != TIE && FIB != FIE) { 621 // Skip dbg_value instructions. These do not count. 622 TIB = skipDebugInstructionsForward(TIB, TIE); 623 FIB = skipDebugInstructionsForward(FIB, FIE); 624 if (TIB == TIE || FIB == FIE) 625 break; 626 if (!TIB->isIdenticalTo(*FIB)) 627 break; 628 // A pred-clobbering instruction in the shared portion prevents 629 // if-conversion. 630 std::vector<MachineOperand> PredDefs; 631 if (TII->DefinesPredicate(*TIB, PredDefs)) 632 return false; 633 // If we get all the way to the branch instructions, don't count them. 634 if (!TIB->isBranch()) 635 ++Dups1; 636 ++TIB; 637 ++FIB; 638 } 639 640 // Check for already containing all of the block. 641 if (TIB == TIE || FIB == FIE) 642 return true; 643 // Now, in preparation for counting duplicate instructions at the ends of the 644 // blocks, switch to reverse_iterators. Note that getReverse() returns an 645 // iterator that points to the same instruction, unlike std::reverse_iterator. 646 // We have to do our own shifting so that we get the same range. 647 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse()); 648 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse()); 649 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse()); 650 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse()); 651 652 if (!TBB.succ_empty() || !FBB.succ_empty()) { 653 if (SkipUnconditionalBranches) { 654 while (RTIE != RTIB && RTIE->isUnconditionalBranch()) 655 ++RTIE; 656 while (RFIE != RFIB && RFIE->isUnconditionalBranch()) 657 ++RFIE; 658 } 659 } 660 661 // Count duplicate instructions at the ends of the blocks. 662 while (RTIE != RTIB && RFIE != RFIB) { 663 // Skip dbg_value instructions. These do not count. 664 // Note that these are reverse iterators going forward. 665 RTIE = skipDebugInstructionsForward(RTIE, RTIB); 666 RFIE = skipDebugInstructionsForward(RFIE, RFIB); 667 if (RTIE == RTIB || RFIE == RFIB) 668 break; 669 if (!RTIE->isIdenticalTo(*RFIE)) 670 break; 671 // We have to verify that any branch instructions are the same, and then we 672 // don't count them toward the # of duplicate instructions. 673 if (!RTIE->isBranch()) 674 ++Dups2; 675 ++RTIE; 676 ++RFIE; 677 } 678 TIE = std::next(RTIE.getReverse()); 679 FIE = std::next(RFIE.getReverse()); 680 return true; 681 } 682 683 /// RescanInstructions - Run ScanInstructions on a pair of blocks. 684 /// @param TIB - True Iterator Begin, points to first non-shared instruction 685 /// @param FIB - False Iterator Begin, points to first non-shared instruction 686 /// @param TIE - True Iterator End, points past last non-shared instruction 687 /// @param FIE - False Iterator End, points past last non-shared instruction 688 /// @param TrueBBI - BBInfo to update for the true block. 689 /// @param FalseBBI - BBInfo to update for the false block. 690 /// @returns - false if either block cannot be predicated or if both blocks end 691 /// with a predicate-clobbering instruction. 692 bool IfConverter::RescanInstructions( 693 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 694 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 695 BBInfo &TrueBBI, BBInfo &FalseBBI) const { 696 bool BranchUnpredicable = true; 697 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; 698 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); 699 if (TrueBBI.IsUnpredicable) 700 return false; 701 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); 702 if (FalseBBI.IsUnpredicable) 703 return false; 704 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) 705 return false; 706 return true; 707 } 708 709 #ifndef NDEBUG 710 static void verifySameBranchInstructions( 711 MachineBasicBlock *MBB1, 712 MachineBasicBlock *MBB2) { 713 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend(); 714 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend(); 715 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin(); 716 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin(); 717 while (E1 != B1 && E2 != B2) { 718 skipDebugInstructionsForward(E1, B1); 719 skipDebugInstructionsForward(E2, B2); 720 if (E1 == B1 && E2 == B2) 721 break; 722 723 if (E1 == B1) { 724 assert(!E2->isBranch() && "Branch mis-match, one block is empty."); 725 break; 726 } 727 if (E2 == B2) { 728 assert(!E1->isBranch() && "Branch mis-match, one block is empty."); 729 break; 730 } 731 732 if (E1->isBranch() || E2->isBranch()) 733 assert(E1->isIdenticalTo(*E2) && 734 "Branch mis-match, branch instructions don't match."); 735 else 736 break; 737 ++E1; 738 ++E2; 739 } 740 } 741 #endif 742 743 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along 744 /// with their common predecessor) form a diamond if a common tail block is 745 /// extracted. 746 /// While not strictly a diamond, this pattern would form a diamond if 747 /// tail-merging had merged the shared tails. 748 /// EBB 749 /// _/ \_ 750 /// | | 751 /// TBB FBB 752 /// / \ / \ 753 /// FalseBB TrueBB FalseBB 754 /// Currently only handles analyzable branches. 755 /// Specifically excludes actual diamonds to avoid overlap. 756 bool IfConverter::ValidForkedDiamond( 757 BBInfo &TrueBBI, BBInfo &FalseBBI, 758 unsigned &Dups1, unsigned &Dups2, 759 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 760 Dups1 = Dups2 = 0; 761 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 762 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 763 return false; 764 765 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) 766 return false; 767 // Don't IfConvert blocks that can't be folded into their predecessor. 768 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 769 return false; 770 771 // This function is specifically looking for conditional tails, as 772 // unconditional tails are already handled by the standard diamond case. 773 if (TrueBBI.BrCond.size() == 0 || 774 FalseBBI.BrCond.size() == 0) 775 return false; 776 777 MachineBasicBlock *TT = TrueBBI.TrueBB; 778 MachineBasicBlock *TF = TrueBBI.FalseBB; 779 MachineBasicBlock *FT = FalseBBI.TrueBB; 780 MachineBasicBlock *FF = FalseBBI.FalseBB; 781 782 if (!TT) 783 TT = getNextBlock(*TrueBBI.BB); 784 if (!TF) 785 TF = getNextBlock(*TrueBBI.BB); 786 if (!FT) 787 FT = getNextBlock(*FalseBBI.BB); 788 if (!FF) 789 FF = getNextBlock(*FalseBBI.BB); 790 791 if (!TT || !TF) 792 return false; 793 794 // Check successors. If they don't match, bail. 795 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) 796 return false; 797 798 bool FalseReversed = false; 799 if (TF == FT && TT == FF) { 800 // If the branches are opposing, but we can't reverse, don't do it. 801 if (!FalseBBI.IsBrReversible) 802 return false; 803 FalseReversed = true; 804 reverseBranchCondition(FalseBBI); 805 } 806 auto UnReverseOnExit = make_scope_exit([&]() { 807 if (FalseReversed) 808 reverseBranchCondition(FalseBBI); 809 }); 810 811 // Count duplicate instructions at the beginning of the true and false blocks. 812 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 813 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 814 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 815 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 816 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 817 *TrueBBI.BB, *FalseBBI.BB, 818 /* SkipUnconditionalBranches */ true)) 819 return false; 820 821 TrueBBICalc.BB = TrueBBI.BB; 822 FalseBBICalc.BB = FalseBBI.BB; 823 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 824 return false; 825 826 // The size is used to decide whether to if-convert, and the shared portions 827 // are subtracted off. Because of the subtraction, we just use the size that 828 // was calculated by the original ScanInstructions, as it is correct. 829 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 830 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 831 return true; 832 } 833 834 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 835 /// with their common predecessor) forms a valid diamond shape for ifcvt. 836 bool IfConverter::ValidDiamond( 837 BBInfo &TrueBBI, BBInfo &FalseBBI, 838 unsigned &Dups1, unsigned &Dups2, 839 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 840 Dups1 = Dups2 = 0; 841 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 842 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 843 return false; 844 845 MachineBasicBlock *TT = TrueBBI.TrueBB; 846 MachineBasicBlock *FT = FalseBBI.TrueBB; 847 848 if (!TT && blockAlwaysFallThrough(TrueBBI)) 849 TT = getNextBlock(*TrueBBI.BB); 850 if (!FT && blockAlwaysFallThrough(FalseBBI)) 851 FT = getNextBlock(*FalseBBI.BB); 852 if (TT != FT) 853 return false; 854 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 855 return false; 856 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 857 return false; 858 859 // FIXME: Allow true block to have an early exit? 860 if (TrueBBI.FalseBB || FalseBBI.FalseBB) 861 return false; 862 863 // Count duplicate instructions at the beginning and end of the true and 864 // false blocks. 865 // Skip unconditional branches only if we are considering an analyzable 866 // diamond. Otherwise the branches must be the same. 867 bool SkipUnconditionalBranches = 868 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; 869 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 870 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 871 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 872 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 873 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 874 *TrueBBI.BB, *FalseBBI.BB, 875 SkipUnconditionalBranches)) 876 return false; 877 878 TrueBBICalc.BB = TrueBBI.BB; 879 FalseBBICalc.BB = FalseBBI.BB; 880 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 881 return false; 882 // The size is used to decide whether to if-convert, and the shared portions 883 // are subtracted off. Because of the subtraction, we just use the size that 884 // was calculated by the original ScanInstructions, as it is correct. 885 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 886 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 887 return true; 888 } 889 890 /// AnalyzeBranches - Look at the branches at the end of a block to determine if 891 /// the block is predicable. 892 void IfConverter::AnalyzeBranches(BBInfo &BBI) { 893 if (BBI.IsDone) 894 return; 895 896 BBI.TrueBB = BBI.FalseBB = nullptr; 897 BBI.BrCond.clear(); 898 BBI.IsBrAnalyzable = 899 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 900 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 901 BBI.IsBrReversible = (RevCond.size() == 0) || 902 !TII->reverseBranchCondition(RevCond); 903 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 904 905 if (BBI.BrCond.size()) { 906 // No false branch. This BB must end with a conditional branch and a 907 // fallthrough. 908 if (!BBI.FalseBB) 909 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 910 if (!BBI.FalseBB) { 911 // Malformed bcc? True and false blocks are the same? 912 BBI.IsUnpredicable = true; 913 } 914 } 915 } 916 917 /// ScanInstructions - Scan all the instructions in the block to determine if 918 /// the block is predicable. In most cases, that means all the instructions 919 /// in the block are isPredicable(). Also checks if the block contains any 920 /// instruction which can clobber a predicate (e.g. condition code register). 921 /// If so, the block is not predicable unless it's the last instruction. 922 void IfConverter::ScanInstructions(BBInfo &BBI, 923 MachineBasicBlock::iterator &Begin, 924 MachineBasicBlock::iterator &End, 925 bool BranchUnpredicable) const { 926 if (BBI.IsDone || BBI.IsUnpredicable) 927 return; 928 929 bool AlreadyPredicated = !BBI.Predicate.empty(); 930 931 BBI.NonPredSize = 0; 932 BBI.ExtraCost = 0; 933 BBI.ExtraCost2 = 0; 934 BBI.ClobbersPred = false; 935 for (MachineInstr &MI : make_range(Begin, End)) { 936 if (MI.isDebugValue()) 937 continue; 938 939 // It's unsafe to duplicate convergent instructions in this context, so set 940 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the 941 // following CFG, which is subject to our "simple" transformation. 942 // 943 // BB0 // if (c1) goto BB1; else goto BB2; 944 // / \ 945 // BB1 | 946 // | BB2 // if (c2) goto TBB; else goto FBB; 947 // | / | 948 // | / | 949 // TBB | 950 // | | 951 // | FBB 952 // | 953 // exit 954 // 955 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd 956 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose 957 // TBB contains a convergent instruction. This is safe iff doing so does 958 // not add a control-flow dependency to the convergent instruction -- i.e., 959 // it's safe iff the set of control flows that leads us to the convergent 960 // instruction does not get smaller after the transformation. 961 // 962 // Originally we executed TBB if c1 || c2. After the transformation, there 963 // are two copies of TBB's instructions. We get to the first if c1, and we 964 // get to the second if !c1 && c2. 965 // 966 // There are clearly fewer ways to satisfy the condition "c1" than 967 // "c1 || c2". Since we've shrunk the set of control flows which lead to 968 // our convergent instruction, the transformation is unsafe. 969 if (MI.isNotDuplicable() || MI.isConvergent()) 970 BBI.CannotBeCopied = true; 971 972 bool isPredicated = TII->isPredicated(MI); 973 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 974 975 if (BranchUnpredicable && MI.isBranch()) { 976 BBI.IsUnpredicable = true; 977 return; 978 } 979 980 // A conditional branch is not predicable, but it may be eliminated. 981 if (isCondBr) 982 continue; 983 984 if (!isPredicated) { 985 BBI.NonPredSize++; 986 unsigned ExtraPredCost = TII->getPredicationCost(MI); 987 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 988 if (NumCycles > 1) 989 BBI.ExtraCost += NumCycles-1; 990 BBI.ExtraCost2 += ExtraPredCost; 991 } else if (!AlreadyPredicated) { 992 // FIXME: This instruction is already predicated before the 993 // if-conversion pass. It's probably something like a conditional move. 994 // Mark this block unpredicable for now. 995 BBI.IsUnpredicable = true; 996 return; 997 } 998 999 if (BBI.ClobbersPred && !isPredicated) { 1000 // Predicate modification instruction should end the block (except for 1001 // already predicated instructions and end of block branches). 1002 // Predicate may have been modified, the subsequent (currently) 1003 // unpredicated instructions cannot be correctly predicated. 1004 BBI.IsUnpredicable = true; 1005 return; 1006 } 1007 1008 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 1009 // still potentially predicable. 1010 std::vector<MachineOperand> PredDefs; 1011 if (TII->DefinesPredicate(MI, PredDefs)) 1012 BBI.ClobbersPred = true; 1013 1014 if (!TII->isPredicable(MI)) { 1015 BBI.IsUnpredicable = true; 1016 return; 1017 } 1018 } 1019 } 1020 1021 /// Determine if the block is a suitable candidate to be predicated by the 1022 /// specified predicate. 1023 /// @param BBI BBInfo for the block to check 1024 /// @param Pred Predicate array for the branch that leads to BBI 1025 /// @param isTriangle true if the Analysis is for a triangle 1026 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false 1027 /// case 1028 /// @param hasCommonTail true if BBI shares a tail with a sibling block that 1029 /// contains any instruction that would make the block unpredicable. 1030 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 1031 SmallVectorImpl<MachineOperand> &Pred, 1032 bool isTriangle, bool RevBranch, 1033 bool hasCommonTail) { 1034 // If the block is dead or unpredicable, then it cannot be predicated. 1035 // Two blocks may share a common unpredicable tail, but this doesn't prevent 1036 // them from being if-converted. The non-shared portion is assumed to have 1037 // been checked 1038 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) 1039 return false; 1040 1041 // If it is already predicated but we couldn't analyze its terminator, the 1042 // latter might fallthrough, but we can't determine where to. 1043 // Conservatively avoid if-converting again. 1044 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 1045 return false; 1046 1047 // If it is already predicated, check if the new predicate subsumes 1048 // its predicate. 1049 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 1050 return false; 1051 1052 if (!hasCommonTail && BBI.BrCond.size()) { 1053 if (!isTriangle) 1054 return false; 1055 1056 // Test predicate subsumption. 1057 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 1058 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1059 if (RevBranch) { 1060 if (TII->reverseBranchCondition(Cond)) 1061 return false; 1062 } 1063 if (TII->reverseBranchCondition(RevPred) || 1064 !TII->SubsumesPredicate(Cond, RevPred)) 1065 return false; 1066 } 1067 1068 return true; 1069 } 1070 1071 /// Analyze the structure of the sub-CFG starting from the specified block. 1072 /// Record its successors and whether it looks like an if-conversion candidate. 1073 void IfConverter::AnalyzeBlock( 1074 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1075 struct BBState { 1076 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {} 1077 MachineBasicBlock *MBB; 1078 1079 /// This flag is true if MBB's successors have been analyzed. 1080 bool SuccsAnalyzed; 1081 }; 1082 1083 // Push MBB to the stack. 1084 SmallVector<BBState, 16> BBStack(1, MBB); 1085 1086 while (!BBStack.empty()) { 1087 BBState &State = BBStack.back(); 1088 MachineBasicBlock *BB = State.MBB; 1089 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 1090 1091 if (!State.SuccsAnalyzed) { 1092 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 1093 BBStack.pop_back(); 1094 continue; 1095 } 1096 1097 BBI.BB = BB; 1098 BBI.IsBeingAnalyzed = true; 1099 1100 AnalyzeBranches(BBI); 1101 MachineBasicBlock::iterator Begin = BBI.BB->begin(); 1102 MachineBasicBlock::iterator End = BBI.BB->end(); 1103 ScanInstructions(BBI, Begin, End); 1104 1105 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 1106 // not considered for ifcvt anymore. 1107 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 1108 BBI.IsBeingAnalyzed = false; 1109 BBI.IsAnalyzed = true; 1110 BBStack.pop_back(); 1111 continue; 1112 } 1113 1114 // Do not ifcvt if either path is a back edge to the entry block. 1115 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 1116 BBI.IsBeingAnalyzed = false; 1117 BBI.IsAnalyzed = true; 1118 BBStack.pop_back(); 1119 continue; 1120 } 1121 1122 // Do not ifcvt if true and false fallthrough blocks are the same. 1123 if (!BBI.FalseBB) { 1124 BBI.IsBeingAnalyzed = false; 1125 BBI.IsAnalyzed = true; 1126 BBStack.pop_back(); 1127 continue; 1128 } 1129 1130 // Push the False and True blocks to the stack. 1131 State.SuccsAnalyzed = true; 1132 BBStack.push_back(*BBI.FalseBB); 1133 BBStack.push_back(*BBI.TrueBB); 1134 continue; 1135 } 1136 1137 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1138 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1139 1140 if (TrueBBI.IsDone && FalseBBI.IsDone) { 1141 BBI.IsBeingAnalyzed = false; 1142 BBI.IsAnalyzed = true; 1143 BBStack.pop_back(); 1144 continue; 1145 } 1146 1147 SmallVector<MachineOperand, 4> 1148 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1149 bool CanRevCond = !TII->reverseBranchCondition(RevCond); 1150 1151 unsigned Dups = 0; 1152 unsigned Dups2 = 0; 1153 bool TNeedSub = !TrueBBI.Predicate.empty(); 1154 bool FNeedSub = !FalseBBI.Predicate.empty(); 1155 bool Enqueued = false; 1156 1157 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 1158 1159 if (CanRevCond) { 1160 BBInfo TrueBBICalc, FalseBBICalc; 1161 auto feasibleDiamond = [&]() { 1162 bool MeetsSize = MeetIfcvtSizeLimit( 1163 *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) + 1164 TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2, 1165 *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) + 1166 FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2, 1167 Prediction); 1168 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, 1169 /* IsTriangle */ false, /* RevCond */ false, 1170 /* hasCommonTail */ true); 1171 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, 1172 /* IsTriangle */ false, /* RevCond */ false, 1173 /* hasCommonTail */ true); 1174 return MeetsSize && TrueFeasible && FalseFeasible; 1175 }; 1176 1177 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1178 TrueBBICalc, FalseBBICalc)) { 1179 if (feasibleDiamond()) { 1180 // Diamond: 1181 // EBB 1182 // / \_ 1183 // | | 1184 // TBB FBB 1185 // \ / 1186 // TailBB 1187 // Note TailBB can be empty. 1188 Tokens.push_back(llvm::make_unique<IfcvtToken>( 1189 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1190 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1191 Enqueued = true; 1192 } 1193 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1194 TrueBBICalc, FalseBBICalc)) { 1195 if (feasibleDiamond()) { 1196 // ForkedDiamond: 1197 // if TBB and FBB have a common tail that includes their conditional 1198 // branch instructions, then we can If Convert this pattern. 1199 // EBB 1200 // _/ \_ 1201 // | | 1202 // TBB FBB 1203 // / \ / \ 1204 // FalseBB TrueBB FalseBB 1205 // 1206 Tokens.push_back(llvm::make_unique<IfcvtToken>( 1207 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1208 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1209 Enqueued = true; 1210 } 1211 } 1212 } 1213 1214 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 1215 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1216 TrueBBI.ExtraCost2, Prediction) && 1217 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 1218 // Triangle: 1219 // EBB 1220 // | \_ 1221 // | | 1222 // | TBB 1223 // | / 1224 // FBB 1225 Tokens.push_back( 1226 llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 1227 Enqueued = true; 1228 } 1229 1230 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 1231 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1232 TrueBBI.ExtraCost2, Prediction) && 1233 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 1234 Tokens.push_back( 1235 llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 1236 Enqueued = true; 1237 } 1238 1239 if (ValidSimple(TrueBBI, Dups, Prediction) && 1240 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1241 TrueBBI.ExtraCost2, Prediction) && 1242 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 1243 // Simple (split, no rejoin): 1244 // EBB 1245 // | \_ 1246 // | | 1247 // | TBB---> exit 1248 // | 1249 // FBB 1250 Tokens.push_back( 1251 llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 1252 Enqueued = true; 1253 } 1254 1255 if (CanRevCond) { 1256 // Try the other path... 1257 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 1258 Prediction.getCompl()) && 1259 MeetIfcvtSizeLimit(*FalseBBI.BB, 1260 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1261 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1262 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 1263 Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 1264 FNeedSub, Dups)); 1265 Enqueued = true; 1266 } 1267 1268 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 1269 Prediction.getCompl()) && 1270 MeetIfcvtSizeLimit(*FalseBBI.BB, 1271 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1272 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1273 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 1274 Tokens.push_back( 1275 llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 1276 Enqueued = true; 1277 } 1278 1279 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 1280 MeetIfcvtSizeLimit(*FalseBBI.BB, 1281 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1282 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1283 FeasibilityAnalysis(FalseBBI, RevCond)) { 1284 Tokens.push_back( 1285 llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 1286 Enqueued = true; 1287 } 1288 } 1289 1290 BBI.IsEnqueued = Enqueued; 1291 BBI.IsBeingAnalyzed = false; 1292 BBI.IsAnalyzed = true; 1293 BBStack.pop_back(); 1294 } 1295 } 1296 1297 /// Analyze all blocks and find entries for all if-conversion candidates. 1298 void IfConverter::AnalyzeBlocks( 1299 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1300 for (MachineBasicBlock &MBB : MF) 1301 AnalyzeBlock(MBB, Tokens); 1302 1303 // Sort to favor more complex ifcvt scheme. 1304 std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp); 1305 } 1306 1307 /// Returns true either if ToMBB is the next block after MBB or that all the 1308 /// intervening blocks are empty (given MBB can fall through to its next block). 1309 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { 1310 MachineFunction::iterator PI = MBB.getIterator(); 1311 MachineFunction::iterator I = std::next(PI); 1312 MachineFunction::iterator TI = ToMBB.getIterator(); 1313 MachineFunction::iterator E = MBB.getParent()->end(); 1314 while (I != TI) { 1315 // Check isSuccessor to avoid case where the next block is empty, but 1316 // it's not a successor. 1317 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 1318 return false; 1319 PI = I++; 1320 } 1321 // Finally see if the last I is indeed a successor to PI. 1322 return PI->isSuccessor(&*I); 1323 } 1324 1325 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it 1326 /// can be if-converted. If predecessor is already enqueued, dequeue it! 1327 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { 1328 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { 1329 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 1330 if (PBBI.IsDone || PBBI.BB == &MBB) 1331 continue; 1332 PBBI.IsAnalyzed = false; 1333 PBBI.IsEnqueued = false; 1334 } 1335 } 1336 1337 /// Inserts an unconditional branch from \p MBB to \p ToMBB. 1338 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, 1339 const TargetInstrInfo *TII) { 1340 DebugLoc dl; // FIXME: this is nowhere 1341 SmallVector<MachineOperand, 0> NoCond; 1342 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl); 1343 } 1344 1345 /// Remove true / false edges if either / both are no longer successors. 1346 void IfConverter::RemoveExtraEdges(BBInfo &BBI) { 1347 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1348 SmallVector<MachineOperand, 4> Cond; 1349 if (!TII->analyzeBranch(*BBI.BB, TBB, FBB, Cond)) 1350 BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 1351 } 1352 1353 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1354 /// values defined in MI which are also live/used by MI. 1355 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1356 const TargetRegisterInfo *TRI = MI.getParent()->getParent() 1357 ->getSubtarget().getRegisterInfo(); 1358 1359 // Before stepping forward past MI, remember which regs were live 1360 // before MI. This is needed to set the Undef flag only when reg is 1361 // dead. 1362 SparseSet<unsigned> LiveBeforeMI; 1363 LiveBeforeMI.setUniverse(TRI->getNumRegs()); 1364 for (unsigned Reg : Redefs) 1365 LiveBeforeMI.insert(Reg); 1366 1367 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers; 1368 Redefs.stepForward(MI, Clobbers); 1369 1370 // Now add the implicit uses for each of the clobbered values. 1371 for (auto Clobber : Clobbers) { 1372 // FIXME: Const cast here is nasty, but better than making StepForward 1373 // take a mutable instruction instead of const. 1374 unsigned Reg = Clobber.first; 1375 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); 1376 MachineInstr *OpMI = Op.getParent(); 1377 MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI); 1378 if (Op.isRegMask()) { 1379 // First handle regmasks. They clobber any entries in the mask which 1380 // means that we need a def for those registers. 1381 if (LiveBeforeMI.count(Reg)) 1382 MIB.addReg(Reg, RegState::Implicit); 1383 1384 // We also need to add an implicit def of this register for the later 1385 // use to read from. 1386 // For the register allocator to have allocated a register clobbered 1387 // by the call which is used later, it must be the case that 1388 // the call doesn't return. 1389 MIB.addReg(Reg, RegState::Implicit | RegState::Define); 1390 continue; 1391 } 1392 assert(Op.isReg() && "Register operand required"); 1393 if (Op.isDead()) { 1394 // If we found a dead def, but it needs to be live, then remove the dead 1395 // flag. 1396 if (Redefs.contains(Op.getReg())) 1397 Op.setIsDead(false); 1398 } 1399 if (LiveBeforeMI.count(Reg)) 1400 MIB.addReg(Reg, RegState::Implicit); 1401 else { 1402 bool HasLiveSubReg = false; 1403 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) { 1404 if (!LiveBeforeMI.count(*S)) 1405 continue; 1406 HasLiveSubReg = true; 1407 break; 1408 } 1409 if (HasLiveSubReg) 1410 MIB.addReg(Reg, RegState::Implicit); 1411 } 1412 } 1413 } 1414 1415 /// Remove kill flags from operands with a registers in the \p DontKill set. 1416 static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) { 1417 for (MIBundleOperands O(MI); O.isValid(); ++O) { 1418 if (!O->isReg() || !O->isKill()) 1419 continue; 1420 if (DontKill.contains(O->getReg())) 1421 O->setIsKill(false); 1422 } 1423 } 1424 1425 /// Walks a range of machine instructions and removes kill flags for registers 1426 /// in the \p DontKill set. 1427 static void RemoveKills(MachineBasicBlock::iterator I, 1428 MachineBasicBlock::iterator E, 1429 const LivePhysRegs &DontKill, 1430 const MCRegisterInfo &MCRI) { 1431 for (MachineInstr &MI : make_range(I, E)) 1432 RemoveKills(MI, DontKill); 1433 } 1434 1435 /// If convert a simple (split, no rejoin) sub-CFG. 1436 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1437 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1438 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1439 BBInfo *CvtBBI = &TrueBBI; 1440 BBInfo *NextBBI = &FalseBBI; 1441 1442 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1443 if (Kind == ICSimpleFalse) 1444 std::swap(CvtBBI, NextBBI); 1445 1446 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1447 MachineBasicBlock &NextMBB = *NextBBI->BB; 1448 if (CvtBBI->IsDone || 1449 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1450 // Something has changed. It's no longer safe to predicate this block. 1451 BBI.IsAnalyzed = false; 1452 CvtBBI->IsAnalyzed = false; 1453 return false; 1454 } 1455 1456 if (CvtMBB.hasAddressTaken()) 1457 // Conservatively abort if-conversion if BB's address is taken. 1458 return false; 1459 1460 if (Kind == ICSimpleFalse) 1461 if (TII->reverseBranchCondition(Cond)) 1462 llvm_unreachable("Unable to reverse branch condition!"); 1463 1464 Redefs.init(*TRI); 1465 DontKill.init(*TRI); 1466 1467 if (MRI->tracksLiveness()) { 1468 // Initialize liveins to the first BB. These are potentiall redefined by 1469 // predicated instructions. 1470 Redefs.addLiveIns(CvtMBB); 1471 Redefs.addLiveIns(NextMBB); 1472 // Compute a set of registers which must not be killed by instructions in 1473 // BB1: This is everything live-in to BB2. 1474 DontKill.addLiveIns(NextMBB); 1475 } 1476 1477 if (CvtMBB.pred_size() > 1) { 1478 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1479 // Copy instructions in the true block, predicate them, and add them to 1480 // the entry block. 1481 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1482 1483 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so 1484 // explicitly remove CvtBBI as a successor. 1485 BBI.BB->removeSuccessor(&CvtMBB, true); 1486 } else { 1487 RemoveKills(CvtMBB.begin(), CvtMBB.end(), DontKill, *TRI); 1488 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1489 1490 // Merge converted block into entry block. 1491 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1492 MergeBlocks(BBI, *CvtBBI); 1493 } 1494 1495 bool IterIfcvt = true; 1496 if (!canFallThroughTo(*BBI.BB, NextMBB)) { 1497 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1498 BBI.HasFallThrough = false; 1499 // Now ifcvt'd block will look like this: 1500 // BB: 1501 // ... 1502 // t, f = cmp 1503 // if t op 1504 // b BBf 1505 // 1506 // We cannot further ifcvt this block because the unconditional branch 1507 // will have to be predicated on the new condition, that will not be 1508 // available if cmp executes. 1509 IterIfcvt = false; 1510 } 1511 1512 RemoveExtraEdges(BBI); 1513 1514 // Update block info. BB can be iteratively if-converted. 1515 if (!IterIfcvt) 1516 BBI.IsDone = true; 1517 InvalidatePreds(*BBI.BB); 1518 CvtBBI->IsDone = true; 1519 1520 // FIXME: Must maintain LiveIns. 1521 return true; 1522 } 1523 1524 /// If convert a triangle sub-CFG. 1525 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1526 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1527 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1528 BBInfo *CvtBBI = &TrueBBI; 1529 BBInfo *NextBBI = &FalseBBI; 1530 DebugLoc dl; // FIXME: this is nowhere 1531 1532 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1533 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1534 std::swap(CvtBBI, NextBBI); 1535 1536 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1537 MachineBasicBlock &NextMBB = *NextBBI->BB; 1538 if (CvtBBI->IsDone || 1539 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1540 // Something has changed. It's no longer safe to predicate this block. 1541 BBI.IsAnalyzed = false; 1542 CvtBBI->IsAnalyzed = false; 1543 return false; 1544 } 1545 1546 if (CvtMBB.hasAddressTaken()) 1547 // Conservatively abort if-conversion if BB's address is taken. 1548 return false; 1549 1550 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1551 if (TII->reverseBranchCondition(Cond)) 1552 llvm_unreachable("Unable to reverse branch condition!"); 1553 1554 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1555 if (reverseBranchCondition(*CvtBBI)) { 1556 // BB has been changed, modify its predecessors (except for this 1557 // one) so they don't get ifcvt'ed based on bad intel. 1558 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { 1559 if (PBB == BBI.BB) 1560 continue; 1561 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1562 if (PBBI.IsEnqueued) { 1563 PBBI.IsAnalyzed = false; 1564 PBBI.IsEnqueued = false; 1565 } 1566 } 1567 } 1568 } 1569 1570 // Initialize liveins to the first BB. These are potentially redefined by 1571 // predicated instructions. 1572 Redefs.init(*TRI); 1573 if (MRI->tracksLiveness()) { 1574 Redefs.addLiveIns(CvtMBB); 1575 Redefs.addLiveIns(NextMBB); 1576 } 1577 1578 DontKill.clear(); 1579 1580 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1581 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1582 1583 if (HasEarlyExit) { 1584 // Get probabilities before modifying CvtMBB and BBI.BB. 1585 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); 1586 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); 1587 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); 1588 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); 1589 } 1590 1591 // To be able to insert code freely at the end of BBI we sometimes remove 1592 // the branch from BBI to NextMBB temporarily. Remember if this happened. 1593 bool RemovedBranchToNextMBB = false; 1594 if (CvtMBB.pred_size() > 1) { 1595 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1596 // Copy instructions in the true block, predicate them, and add them to 1597 // the entry block. 1598 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1599 1600 // Keep the CFG updated. 1601 BBI.BB->removeSuccessor(&CvtMBB, true); 1602 } else { 1603 // Predicate the 'true' block after removing its branch. 1604 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB); 1605 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1606 1607 // Remove the branch from the entry of the triangle to NextBB to be able to 1608 // do the merge below. Keep the CFG updated, but remember we removed the 1609 // branch since we do want to execute NextMBB, either by introducing a 1610 // branch to it again, or merging it into the entry block. 1611 // How it's handled is decided further down. 1612 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1613 BBI.BB->removeSuccessor(&NextMBB, true); 1614 RemovedBranchToNextMBB = true; 1615 1616 // Now merge the entry of the triangle with the true block. 1617 MergeBlocks(BBI, *CvtBBI, false); 1618 } 1619 1620 // If 'true' block has a 'false' successor, add an exit branch to it. 1621 if (HasEarlyExit) { 1622 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1623 CvtBBI->BrCond.end()); 1624 if (TII->reverseBranchCondition(RevCond)) 1625 llvm_unreachable("Unable to reverse branch condition!"); 1626 1627 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1628 // NewNext = New_Prob(BBI.BB, NextMBB) = 1629 // Prob(BBI.BB, NextMBB) + 1630 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) 1631 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1632 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) 1633 auto NewTrueBB = getNextBlock(*BBI.BB); 1634 auto NewNext = BBNext + BBCvt * CvtNext; 1635 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); 1636 if (NewTrueBBIter != BBI.BB->succ_end()) 1637 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1638 1639 auto NewFalse = BBCvt * CvtFalse; 1640 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1641 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1642 } 1643 1644 // Merge in the 'false' block if the 'false' block has no other 1645 // predecessors. Otherwise, add an unconditional branch to 'false'. 1646 bool FalseBBDead = false; 1647 bool IterIfcvt = true; 1648 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); 1649 if (!isFallThrough) { 1650 // Only merge them if the true block does not fallthrough to the false 1651 // block. By not merging them, we make it possible to iteratively 1652 // ifcvt the blocks. 1653 if (!HasEarlyExit && 1654 // We might have removed BBI from NextMBB's predecessor list above but 1655 // we want it to be there, so consider that too. 1656 (NextMBB.pred_size() == (RemovedBranchToNextMBB ? 0 : 1)) && 1657 !NextBBI->HasFallThrough && 1658 !NextMBB.hasAddressTaken()) { 1659 // We will merge NextBBI into BBI, and thus remove the current 1660 // fallthrough from BBI into CvtBBI. 1661 BBI.BB->removeSuccessor(&CvtMBB, true); 1662 MergeBlocks(BBI, *NextBBI); 1663 FalseBBDead = true; 1664 } else { 1665 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1666 BBI.BB->addSuccessor(&NextMBB); 1667 BBI.HasFallThrough = false; 1668 } 1669 // Mixed predicated and unpredicated code. This cannot be iteratively 1670 // predicated. 1671 IterIfcvt = false; 1672 } 1673 1674 // Update block info. BB can be iteratively if-converted. 1675 if (!IterIfcvt) 1676 BBI.IsDone = true; 1677 InvalidatePreds(*BBI.BB); 1678 CvtBBI->IsDone = true; 1679 if (FalseBBDead) 1680 NextBBI->IsDone = true; 1681 1682 // FIXME: Must maintain LiveIns. 1683 return true; 1684 } 1685 1686 /// Common code shared between diamond conversions. 1687 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. 1688 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI 1689 /// and FalseBBI 1690 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI 1691 /// and \p FalseBBI 1692 /// \p RemoveBranch - Remove the common branch of the two blocks before 1693 /// predicating. Only false for unanalyzable fallthrough 1694 /// cases. The caller will replace the branch if necessary. 1695 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for 1696 /// unanalyzable fallthrough 1697 bool IfConverter::IfConvertDiamondCommon( 1698 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 1699 unsigned NumDups1, unsigned NumDups2, 1700 bool TClobbersPred, bool FClobbersPred, 1701 bool RemoveBranch, bool MergeAddEdges) { 1702 1703 if (TrueBBI.IsDone || FalseBBI.IsDone || 1704 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { 1705 // Something has changed. It's no longer safe to predicate these blocks. 1706 BBI.IsAnalyzed = false; 1707 TrueBBI.IsAnalyzed = false; 1708 FalseBBI.IsAnalyzed = false; 1709 return false; 1710 } 1711 1712 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1713 // Conservatively abort if-conversion if either BB has its address taken. 1714 return false; 1715 1716 // Put the predicated instructions from the 'true' block before the 1717 // instructions from the 'false' block, unless the true block would clobber 1718 // the predicate, in which case, do the opposite. 1719 BBInfo *BBI1 = &TrueBBI; 1720 BBInfo *BBI2 = &FalseBBI; 1721 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1722 if (TII->reverseBranchCondition(RevCond)) 1723 llvm_unreachable("Unable to reverse branch condition!"); 1724 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1725 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1726 1727 // Figure out the more profitable ordering. 1728 bool DoSwap = false; 1729 if (TClobbersPred && !FClobbersPred) 1730 DoSwap = true; 1731 else if (!TClobbersPred && !FClobbersPred) { 1732 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1733 DoSwap = true; 1734 } else if (TClobbersPred && FClobbersPred) 1735 llvm_unreachable("Predicate info cannot be clobbered by both sides."); 1736 if (DoSwap) { 1737 std::swap(BBI1, BBI2); 1738 std::swap(Cond1, Cond2); 1739 } 1740 1741 // Remove the conditional branch from entry to the blocks. 1742 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1743 1744 MachineBasicBlock &MBB1 = *BBI1->BB; 1745 MachineBasicBlock &MBB2 = *BBI2->BB; 1746 1747 // Initialize the Redefs: 1748 // - BB2 live-in regs need implicit uses before being redefined by BB1 1749 // instructions. 1750 // - BB1 live-out regs need implicit uses before being redefined by BB2 1751 // instructions. We start with BB1 live-ins so we have the live-out regs 1752 // after tracking the BB1 instructions. 1753 Redefs.init(*TRI); 1754 if (MRI->tracksLiveness()) { 1755 Redefs.addLiveIns(MBB1); 1756 Redefs.addLiveIns(MBB2); 1757 } 1758 1759 // Remove the duplicated instructions at the beginnings of both paths. 1760 // Skip dbg_value instructions 1761 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(); 1762 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(); 1763 BBI1->NonPredSize -= NumDups1; 1764 BBI2->NonPredSize -= NumDups1; 1765 1766 // Skip past the dups on each side separately since there may be 1767 // differing dbg_value entries. 1768 for (unsigned i = 0; i < NumDups1; ++DI1) { 1769 if (!DI1->isDebugValue()) 1770 ++i; 1771 } 1772 while (NumDups1 != 0) { 1773 ++DI2; 1774 if (!DI2->isDebugValue()) 1775 --NumDups1; 1776 } 1777 1778 // Compute a set of registers which must not be killed by instructions in BB1: 1779 // This is everything used+live in BB2 after the duplicated instructions. We 1780 // can compute this set by simulating liveness backwards from the end of BB2. 1781 DontKill.init(*TRI); 1782 if (MRI->tracksLiveness()) { 1783 for (const MachineInstr &MI : make_range(MBB2.rbegin(), ++DI2.getReverse())) 1784 DontKill.stepBackward(MI); 1785 1786 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { 1787 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Dummy; 1788 Redefs.stepForward(MI, Dummy); 1789 } 1790 } 1791 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); 1792 MBB2.erase(MBB2.begin(), DI2); 1793 1794 // The branches have been checked to match, so it is safe to remove the branch 1795 // in BB1 and rely on the copy in BB2 1796 #ifndef NDEBUG 1797 // Unanalyzable branches must match exactly. Check that now. 1798 if (!BBI1->IsBrAnalyzable) 1799 verifySameBranchInstructions(&MBB1, &MBB2); 1800 #endif 1801 BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB); 1802 // Remove duplicated instructions. 1803 DI1 = MBB1.end(); 1804 for (unsigned i = 0; i != NumDups2; ) { 1805 // NumDups2 only counted non-dbg_value instructions, so this won't 1806 // run off the head of the list. 1807 assert(DI1 != MBB1.begin()); 1808 --DI1; 1809 // skip dbg_value instructions 1810 if (!DI1->isDebugValue()) 1811 ++i; 1812 } 1813 MBB1.erase(DI1, MBB1.end()); 1814 1815 // Kill flags in the true block for registers living into the false block 1816 // must be removed. 1817 RemoveKills(MBB1.begin(), MBB1.end(), DontKill, *TRI); 1818 1819 DI2 = BBI2->BB->end(); 1820 // The branches have been checked to match. Skip over the branch in the false 1821 // block so that we don't try to predicate it. 1822 if (RemoveBranch) 1823 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB); 1824 else { 1825 do { 1826 assert(DI2 != MBB2.begin()); 1827 DI2--; 1828 } while (DI2->isBranch() || DI2->isDebugValue()); 1829 DI2++; 1830 } 1831 while (NumDups2 != 0) { 1832 // NumDups2 only counted non-dbg_value instructions, so this won't 1833 // run off the head of the list. 1834 assert(DI2 != MBB2.begin()); 1835 --DI2; 1836 // skip dbg_value instructions 1837 if (!DI2->isDebugValue()) 1838 --NumDups2; 1839 } 1840 1841 // Remember which registers would later be defined by the false block. 1842 // This allows us not to predicate instructions in the true block that would 1843 // later be re-defined. That is, rather than 1844 // subeq r0, r1, #1 1845 // addne r0, r1, #1 1846 // generate: 1847 // sub r0, r1, #1 1848 // addne r0, r1, #1 1849 SmallSet<unsigned, 4> RedefsByFalse; 1850 SmallSet<unsigned, 4> ExtUses; 1851 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { 1852 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { 1853 if (FI.isDebugValue()) 1854 continue; 1855 SmallVector<unsigned, 4> Defs; 1856 for (const MachineOperand &MO : FI.operands()) { 1857 if (!MO.isReg()) 1858 continue; 1859 unsigned Reg = MO.getReg(); 1860 if (!Reg) 1861 continue; 1862 if (MO.isDef()) { 1863 Defs.push_back(Reg); 1864 } else if (!RedefsByFalse.count(Reg)) { 1865 // These are defined before ctrl flow reach the 'false' instructions. 1866 // They cannot be modified by the 'true' instructions. 1867 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1868 SubRegs.isValid(); ++SubRegs) 1869 ExtUses.insert(*SubRegs); 1870 } 1871 } 1872 1873 for (unsigned Reg : Defs) { 1874 if (!ExtUses.count(Reg)) { 1875 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1876 SubRegs.isValid(); ++SubRegs) 1877 RedefsByFalse.insert(*SubRegs); 1878 } 1879 } 1880 } 1881 } 1882 1883 // Predicate the 'true' block. 1884 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); 1885 1886 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1887 // a non-predicated in BBI2, then we don't want to predicate the one from 1888 // BBI2. The reason is that if we merged these blocks, we would end up with 1889 // two predicated terminators in the same block. 1890 if (!MBB2.empty() && (DI2 == MBB2.end())) { 1891 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); 1892 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); 1893 if (BBI1T != MBB1.end() && TII->isPredicated(*BBI1T) && 1894 BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T)) 1895 --DI2; 1896 } 1897 1898 // Predicate the 'false' block. 1899 PredicateBlock(*BBI2, DI2, *Cond2); 1900 1901 // Merge the true block into the entry of the diamond. 1902 MergeBlocks(BBI, *BBI1, MergeAddEdges); 1903 MergeBlocks(BBI, *BBI2, MergeAddEdges); 1904 return true; 1905 } 1906 1907 /// If convert an almost-diamond sub-CFG where the true 1908 /// and false blocks share a common tail. 1909 bool IfConverter::IfConvertForkedDiamond( 1910 BBInfo &BBI, IfcvtKind Kind, 1911 unsigned NumDups1, unsigned NumDups2, 1912 bool TClobbersPred, bool FClobbersPred) { 1913 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1914 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1915 1916 // Save the debug location for later. 1917 DebugLoc dl; 1918 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); 1919 if (TIE != TrueBBI.BB->end()) 1920 dl = TIE->getDebugLoc(); 1921 // Removing branches from both blocks is safe, because we have already 1922 // determined that both blocks have the same branch instructions. The branch 1923 // will be added back at the end, unpredicated. 1924 if (!IfConvertDiamondCommon( 1925 BBI, TrueBBI, FalseBBI, 1926 NumDups1, NumDups2, 1927 TClobbersPred, FClobbersPred, 1928 /* RemoveBranch */ true, /* MergeAddEdges */ true)) 1929 return false; 1930 1931 // Add back the branch. 1932 // Debug location saved above when removing the branch from BBI2 1933 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, 1934 TrueBBI.BrCond, dl); 1935 1936 RemoveExtraEdges(BBI); 1937 1938 // Update block info. 1939 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 1940 InvalidatePreds(*BBI.BB); 1941 1942 // FIXME: Must maintain LiveIns. 1943 return true; 1944 } 1945 1946 /// If convert a diamond sub-CFG. 1947 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 1948 unsigned NumDups1, unsigned NumDups2, 1949 bool TClobbersPred, bool FClobbersPred) { 1950 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1951 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1952 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 1953 1954 // True block must fall through or end with an unanalyzable terminator. 1955 if (!TailBB) { 1956 if (blockAlwaysFallThrough(TrueBBI)) 1957 TailBB = FalseBBI.TrueBB; 1958 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 1959 } 1960 1961 if (!IfConvertDiamondCommon( 1962 BBI, TrueBBI, FalseBBI, 1963 NumDups1, NumDups2, 1964 TClobbersPred, FClobbersPred, 1965 /* RemoveBranch */ TrueBBI.IsBrAnalyzable, 1966 /* MergeAddEdges */ TailBB == nullptr)) 1967 return false; 1968 1969 // If the if-converted block falls through or unconditionally branches into 1970 // the tail block, and the tail block does not have other predecessors, then 1971 // fold the tail block in as well. Otherwise, unless it falls through to the 1972 // tail, add a unconditional branch to it. 1973 if (TailBB) { 1974 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 1975 bool CanMergeTail = !TailBBI.HasFallThrough && 1976 !TailBBI.BB->hasAddressTaken(); 1977 // The if-converted block can still have a predicated terminator 1978 // (e.g. a predicated return). If that is the case, we cannot merge 1979 // it with the tail block. 1980 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 1981 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 1982 CanMergeTail = false; 1983 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 1984 // check if there are any other predecessors besides those. 1985 unsigned NumPreds = TailBB->pred_size(); 1986 if (NumPreds > 1) 1987 CanMergeTail = false; 1988 else if (NumPreds == 1 && CanMergeTail) { 1989 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 1990 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) 1991 CanMergeTail = false; 1992 } 1993 if (CanMergeTail) { 1994 MergeBlocks(BBI, TailBBI); 1995 TailBBI.IsDone = true; 1996 } else { 1997 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 1998 InsertUncondBranch(*BBI.BB, *TailBB, TII); 1999 BBI.HasFallThrough = false; 2000 } 2001 } 2002 2003 // RemoveExtraEdges won't work if the block has an unanalyzable branch, 2004 // which can happen here if TailBB is unanalyzable and is merged, so 2005 // explicitly remove BBI1 and BBI2 as successors. 2006 BBI.BB->removeSuccessor(TrueBBI.BB); 2007 BBI.BB->removeSuccessor(FalseBBI.BB, /* NormalizeSuccessProbs */ true); 2008 RemoveExtraEdges(BBI); 2009 2010 // Update block info. 2011 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2012 InvalidatePreds(*BBI.BB); 2013 2014 // FIXME: Must maintain LiveIns. 2015 return true; 2016 } 2017 2018 static bool MaySpeculate(const MachineInstr &MI, 2019 SmallSet<unsigned, 4> &LaterRedefs) { 2020 bool SawStore = true; 2021 if (!MI.isSafeToMove(nullptr, SawStore)) 2022 return false; 2023 2024 for (const MachineOperand &MO : MI.operands()) { 2025 if (!MO.isReg()) 2026 continue; 2027 unsigned Reg = MO.getReg(); 2028 if (!Reg) 2029 continue; 2030 if (MO.isDef() && !LaterRedefs.count(Reg)) 2031 return false; 2032 } 2033 2034 return true; 2035 } 2036 2037 /// Predicate instructions from the start of the block to the specified end with 2038 /// the specified condition. 2039 void IfConverter::PredicateBlock(BBInfo &BBI, 2040 MachineBasicBlock::iterator E, 2041 SmallVectorImpl<MachineOperand> &Cond, 2042 SmallSet<unsigned, 4> *LaterRedefs) { 2043 bool AnyUnpred = false; 2044 bool MaySpec = LaterRedefs != nullptr; 2045 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { 2046 if (I.isDebugValue() || TII->isPredicated(I)) 2047 continue; 2048 // It may be possible not to predicate an instruction if it's the 'true' 2049 // side of a diamond and the 'false' side may re-define the instruction's 2050 // defs. 2051 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 2052 AnyUnpred = true; 2053 continue; 2054 } 2055 // If any instruction is predicated, then every instruction after it must 2056 // be predicated. 2057 MaySpec = false; 2058 if (!TII->PredicateInstruction(I, Cond)) { 2059 #ifndef NDEBUG 2060 dbgs() << "Unable to predicate " << I << "!\n"; 2061 #endif 2062 llvm_unreachable(nullptr); 2063 } 2064 2065 // If the predicated instruction now redefines a register as the result of 2066 // if-conversion, add an implicit kill. 2067 UpdatePredRedefs(I, Redefs); 2068 } 2069 2070 BBI.Predicate.append(Cond.begin(), Cond.end()); 2071 2072 BBI.IsAnalyzed = false; 2073 BBI.NonPredSize = 0; 2074 2075 ++NumIfConvBBs; 2076 if (AnyUnpred) 2077 ++NumUnpred; 2078 } 2079 2080 /// Copy and predicate instructions from source BB to the destination block. 2081 /// Skip end of block branches if IgnoreBr is true. 2082 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 2083 SmallVectorImpl<MachineOperand> &Cond, 2084 bool IgnoreBr) { 2085 MachineFunction &MF = *ToBBI.BB->getParent(); 2086 2087 MachineBasicBlock &FromMBB = *FromBBI.BB; 2088 for (MachineInstr &I : FromMBB) { 2089 // Do not copy the end of the block branches. 2090 if (IgnoreBr && I.isBranch()) 2091 break; 2092 2093 MachineInstr *MI = MF.CloneMachineInstr(&I); 2094 ToBBI.BB->insert(ToBBI.BB->end(), MI); 2095 ToBBI.NonPredSize++; 2096 unsigned ExtraPredCost = TII->getPredicationCost(I); 2097 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 2098 if (NumCycles > 1) 2099 ToBBI.ExtraCost += NumCycles-1; 2100 ToBBI.ExtraCost2 += ExtraPredCost; 2101 2102 if (!TII->isPredicated(I) && !MI->isDebugValue()) { 2103 if (!TII->PredicateInstruction(*MI, Cond)) { 2104 #ifndef NDEBUG 2105 dbgs() << "Unable to predicate " << I << "!\n"; 2106 #endif 2107 llvm_unreachable(nullptr); 2108 } 2109 } 2110 2111 // If the predicated instruction now redefines a register as the result of 2112 // if-conversion, add an implicit kill. 2113 UpdatePredRedefs(*MI, Redefs); 2114 2115 // Some kill flags may not be correct anymore. 2116 if (!DontKill.empty()) 2117 RemoveKills(*MI, DontKill); 2118 } 2119 2120 if (!IgnoreBr) { 2121 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), 2122 FromMBB.succ_end()); 2123 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2124 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2125 2126 for (MachineBasicBlock *Succ : Succs) { 2127 // Fallthrough edge can't be transferred. 2128 if (Succ == FallThrough) 2129 continue; 2130 ToBBI.BB->addSuccessor(Succ); 2131 } 2132 } 2133 2134 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2135 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 2136 2137 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2138 ToBBI.IsAnalyzed = false; 2139 2140 ++NumDupBBs; 2141 } 2142 2143 /// Move all instructions from FromBB to the end of ToBB. This will leave 2144 /// FromBB as an empty block, so remove all of its successor edges except for 2145 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is 2146 /// being moved, add those successor edges to ToBBI. 2147 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 2148 MachineBasicBlock &FromMBB = *FromBBI.BB; 2149 assert(!FromMBB.hasAddressTaken() && 2150 "Removing a BB whose address is taken!"); 2151 2152 // In case FromMBB contains terminators (e.g. return instruction), 2153 // first move the non-terminator instructions, then the terminators. 2154 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); 2155 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 2156 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); 2157 2158 // If FromBB has non-predicated terminator we should copy it at the end. 2159 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) 2160 ToTI = ToBBI.BB->end(); 2161 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); 2162 2163 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 2164 // unknown probabilities into known ones. 2165 // FIXME: This usage is too tricky and in the future we would like to 2166 // eliminate all unknown probabilities in MBB. 2167 if (ToBBI.IsBrAnalyzable) 2168 ToBBI.BB->normalizeSuccProbs(); 2169 2170 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(), 2171 FromMBB.succ_end()); 2172 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2173 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2174 // The edge probability from ToBBI.BB to FromMBB, which is only needed when 2175 // AddEdges is true and FromMBB is a successor of ToBBI.BB. 2176 auto To2FromProb = BranchProbability::getZero(); 2177 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { 2178 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); 2179 // Set the edge probability from ToBBI.BB to FromMBB to zero to avoid the 2180 // edge probability being merged to other edges when this edge is removed 2181 // later. 2182 ToBBI.BB->setSuccProbability(find(ToBBI.BB->successors(), &FromMBB), 2183 BranchProbability::getZero()); 2184 } 2185 2186 for (MachineBasicBlock *Succ : FromSuccs) { 2187 // Fallthrough edge can't be transferred. 2188 if (Succ == FallThrough) 2189 continue; 2190 2191 auto NewProb = BranchProbability::getZero(); 2192 if (AddEdges) { 2193 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 2194 // which is a portion of the edge probability from FromMBB to Succ. The 2195 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if 2196 // FromBBI is a successor of ToBBI.BB. See comment below for excepion). 2197 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); 2198 2199 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This 2200 // only happens when if-converting a diamond CFG and FromMBB is the 2201 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we 2202 // could just use the probabilities on FromMBB's out-edges when adding 2203 // new successors. 2204 if (!To2FromProb.isZero()) 2205 NewProb *= To2FromProb; 2206 } 2207 2208 FromMBB.removeSuccessor(Succ); 2209 2210 if (AddEdges) { 2211 // If the edge from ToBBI.BB to Succ already exists, update the 2212 // probability of this edge by adding NewProb to it. An example is shown 2213 // below, in which A is ToBBI.BB and B is FromMBB. In this case we 2214 // don't have to set C as A's successor as it already is. We only need to 2215 // update the edge probability on A->C. Note that B will not be 2216 // immediately removed from A's successors. It is possible that B->D is 2217 // not removed either if D is a fallthrough of B. Later the edge A->D 2218 // (generated here) and B->D will be combined into one edge. To maintain 2219 // correct edge probability of this combined edge, we need to set the edge 2220 // probability of A->B to zero, which is already done above. The edge 2221 // probability on A->D is calculated by scaling the original probability 2222 // on A->B by the probability of B->D. 2223 // 2224 // Before ifcvt: After ifcvt (assume B->D is kept): 2225 // 2226 // A A 2227 // /| /|\ 2228 // / B / B| 2229 // | /| | || 2230 // |/ | | |/ 2231 // C D C D 2232 // 2233 if (ToBBI.BB->isSuccessor(Succ)) 2234 ToBBI.BB->setSuccProbability( 2235 find(ToBBI.BB->successors(), Succ), 2236 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 2237 else 2238 ToBBI.BB->addSuccessor(Succ, NewProb); 2239 } 2240 } 2241 2242 // Now FromBBI always falls through to the next block! 2243 if (NBB && !FromMBB.isSuccessor(NBB)) 2244 FromMBB.addSuccessor(NBB); 2245 2246 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 2247 // we've done above. 2248 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable) 2249 ToBBI.BB->normalizeSuccProbs(); 2250 2251 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2252 FromBBI.Predicate.clear(); 2253 2254 ToBBI.NonPredSize += FromBBI.NonPredSize; 2255 ToBBI.ExtraCost += FromBBI.ExtraCost; 2256 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 2257 FromBBI.NonPredSize = 0; 2258 FromBBI.ExtraCost = 0; 2259 FromBBI.ExtraCost2 = 0; 2260 2261 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2262 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 2263 ToBBI.IsAnalyzed = false; 2264 FromBBI.IsAnalyzed = false; 2265 } 2266 2267 FunctionPass * 2268 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) { 2269 return new IfConverter(std::move(Ftor)); 2270 } 2271