1 //===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implement an interface to specify and query how an illegal operation on a 11 // given type should be expanded. 12 // 13 // Issues to be resolved: 14 // + Make it fast. 15 // + Support weird types like i3, <7 x i3>, ... 16 // + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...) 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/LowLevelTypeImpl.h" 32 #include "llvm/Support/MathExtras.h" 33 #include <algorithm> 34 #include <map> 35 36 using namespace llvm; 37 using namespace LegalizeActions; 38 39 #define DEBUG_TYPE "legalizer-info" 40 41 cl::opt<bool> llvm::DisableGISelLegalityCheck( 42 "disable-gisel-legality-check", 43 cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"), 44 cl::Hidden); 45 46 raw_ostream &LegalityQuery::print(raw_ostream &OS) const { 47 OS << Opcode << ", Tys={"; 48 for (const auto &Type : Types) { 49 OS << Type << ", "; 50 } 51 OS << "}, Opcode="; 52 53 OS << Opcode << ", MMOs={"; 54 for (const auto &MMODescr : MMODescrs) { 55 OS << MMODescr.SizeInBits << ", "; 56 } 57 OS << "}"; 58 59 return OS; 60 } 61 62 LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const { 63 LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs()); 64 dbgs() << "\n"); 65 if (Rules.empty()) { 66 LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n"); 67 return {LegalizeAction::UseLegacyRules, 0, LLT{}}; 68 } 69 for (const auto &Rule : Rules) { 70 if (Rule.match(Query)) { 71 LLVM_DEBUG(dbgs() << ".. match\n"); 72 std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query); 73 LLVM_DEBUG(dbgs() << ".. .. " << (unsigned)Rule.getAction() << ", " 74 << Mutation.first << ", " << Mutation.second << "\n"); 75 assert((Query.Types[Mutation.first] != Mutation.second || 76 Rule.getAction() == Lower || 77 Rule.getAction() == MoreElements || 78 Rule.getAction() == FewerElements) && 79 "Simple loop detected"); 80 return {Rule.getAction(), Mutation.first, Mutation.second}; 81 } else 82 LLVM_DEBUG(dbgs() << ".. no match\n"); 83 } 84 LLVM_DEBUG(dbgs() << ".. unsupported\n"); 85 return {LegalizeAction::Unsupported, 0, LLT{}}; 86 } 87 88 bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const { 89 #ifndef NDEBUG 90 if (Rules.empty()) { 91 LLVM_DEBUG( 92 dbgs() << ".. type index coverage check SKIPPED: no rules defined\n"); 93 return true; 94 } 95 const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset(); 96 if (FirstUncovered < 0) { 97 LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:" 98 " user-defined predicate detected\n"); 99 return true; 100 } 101 const bool AllCovered = (FirstUncovered >= NumTypeIdxs); 102 LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered 103 << ", " << (AllCovered ? "OK" : "FAIL") << "\n"); 104 return AllCovered; 105 #else 106 return true; 107 #endif 108 } 109 110 LegalizerInfo::LegalizerInfo() : TablesInitialized(false) { 111 // Set defaults. 112 // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the 113 // fundamental load/store Jakob proposed. Once loads & stores are supported. 114 setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}}); 115 setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}}); 116 setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}}); 117 setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}}); 118 setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}}); 119 120 setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}}); 121 setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}}); 122 123 setLegalizeScalarToDifferentSizeStrategy( 124 TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall); 125 setLegalizeScalarToDifferentSizeStrategy( 126 TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest); 127 setLegalizeScalarToDifferentSizeStrategy( 128 TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest); 129 setLegalizeScalarToDifferentSizeStrategy( 130 TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall); 131 setLegalizeScalarToDifferentSizeStrategy( 132 TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall); 133 134 setLegalizeScalarToDifferentSizeStrategy( 135 TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise); 136 setLegalizeScalarToDifferentSizeStrategy( 137 TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall); 138 setLegalizeScalarToDifferentSizeStrategy( 139 TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall); 140 setLegalizeScalarToDifferentSizeStrategy( 141 TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall); 142 setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}}); 143 } 144 145 void LegalizerInfo::computeTables() { 146 assert(TablesInitialized == false); 147 148 for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) { 149 const unsigned Opcode = FirstOp + OpcodeIdx; 150 for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size(); 151 ++TypeIdx) { 152 // 0. Collect information specified through the setAction API, i.e. 153 // for specific bit sizes. 154 // For scalar types: 155 SizeAndActionsVec ScalarSpecifiedActions; 156 // For pointer types: 157 std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions; 158 // For vector types: 159 std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions; 160 for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) { 161 const LLT Type = LLT2Action.first; 162 const LegalizeAction Action = LLT2Action.second; 163 164 auto SizeAction = std::make_pair(Type.getSizeInBits(), Action); 165 if (Type.isPointer()) 166 AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back( 167 SizeAction); 168 else if (Type.isVector()) 169 ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()] 170 .push_back(SizeAction); 171 else 172 ScalarSpecifiedActions.push_back(SizeAction); 173 } 174 175 // 1. Handle scalar types 176 { 177 // Decide how to handle bit sizes for which no explicit specification 178 // was given. 179 SizeChangeStrategy S = &unsupportedForDifferentSizes; 180 if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() && 181 ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr) 182 S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx]; 183 llvm::sort(ScalarSpecifiedActions.begin(), 184 ScalarSpecifiedActions.end()); 185 checkPartialSizeAndActionsVector(ScalarSpecifiedActions); 186 setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions)); 187 } 188 189 // 2. Handle pointer types 190 for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) { 191 llvm::sort(PointerSpecifiedActions.second.begin(), 192 PointerSpecifiedActions.second.end()); 193 checkPartialSizeAndActionsVector(PointerSpecifiedActions.second); 194 // For pointer types, we assume that there isn't a meaningfull way 195 // to change the number of bits used in the pointer. 196 setPointerAction( 197 Opcode, TypeIdx, PointerSpecifiedActions.first, 198 unsupportedForDifferentSizes(PointerSpecifiedActions.second)); 199 } 200 201 // 3. Handle vector types 202 SizeAndActionsVec ElementSizesSeen; 203 for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) { 204 llvm::sort(VectorSpecifiedActions.second.begin(), 205 VectorSpecifiedActions.second.end()); 206 const uint16_t ElementSize = VectorSpecifiedActions.first; 207 ElementSizesSeen.push_back({ElementSize, Legal}); 208 checkPartialSizeAndActionsVector(VectorSpecifiedActions.second); 209 // For vector types, we assume that the best way to adapt the number 210 // of elements is to the next larger number of elements type for which 211 // the vector type is legal, unless there is no such type. In that case, 212 // legalize towards a vector type with a smaller number of elements. 213 SizeAndActionsVec NumElementsActions; 214 for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) { 215 assert(BitsizeAndAction.first % ElementSize == 0); 216 const uint16_t NumElements = BitsizeAndAction.first / ElementSize; 217 NumElementsActions.push_back({NumElements, BitsizeAndAction.second}); 218 } 219 setVectorNumElementAction( 220 Opcode, TypeIdx, ElementSize, 221 moreToWiderTypesAndLessToWidest(NumElementsActions)); 222 } 223 llvm::sort(ElementSizesSeen); 224 SizeChangeStrategy VectorElementSizeChangeStrategy = 225 &unsupportedForDifferentSizes; 226 if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() && 227 VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr) 228 VectorElementSizeChangeStrategy = 229 VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx]; 230 setScalarInVectorAction( 231 Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen)); 232 } 233 } 234 235 TablesInitialized = true; 236 } 237 238 // FIXME: inefficient implementation for now. Without ComputeValueVTs we're 239 // probably going to need specialized lookup structures for various types before 240 // we have any hope of doing well with something like <13 x i3>. Even the common 241 // cases should do better than what we have now. 242 std::pair<LegalizeAction, LLT> 243 LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const { 244 assert(TablesInitialized && "backend forgot to call computeTables"); 245 // These *have* to be implemented for now, they're the fundamental basis of 246 // how everything else is transformed. 247 if (Aspect.Type.isScalar() || Aspect.Type.isPointer()) 248 return findScalarLegalAction(Aspect); 249 assert(Aspect.Type.isVector()); 250 return findVectorLegalAction(Aspect); 251 } 252 253 /// Helper function to get LLT for the given type index. 254 static LLT getTypeFromTypeIdx(const MachineInstr &MI, 255 const MachineRegisterInfo &MRI, unsigned OpIdx, 256 unsigned TypeIdx) { 257 assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx"); 258 // G_UNMERGE_VALUES has variable number of operands, but there is only 259 // one source type and one destination type as all destinations must be the 260 // same type. So, get the last operand if TypeIdx == 1. 261 if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1) 262 return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg()); 263 return MRI.getType(MI.getOperand(OpIdx).getReg()); 264 } 265 266 unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const { 267 assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode"); 268 return Opcode - FirstOp; 269 } 270 271 unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const { 272 unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode); 273 if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) { 274 LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias 275 << "\n"); 276 OpcodeIdx = getOpcodeIdxForOpcode(Alias); 277 LLVM_DEBUG(dbgs() << ".. opcode " << Alias << " is aliased to " 278 << RulesForOpcode[OpcodeIdx].getAlias() << "\n"); 279 assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases"); 280 } 281 282 return OpcodeIdx; 283 } 284 285 const LegalizeRuleSet & 286 LegalizerInfo::getActionDefinitions(unsigned Opcode) const { 287 unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode); 288 return RulesForOpcode[OpcodeIdx]; 289 } 290 291 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) { 292 unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode); 293 auto &Result = RulesForOpcode[OpcodeIdx]; 294 assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases"); 295 return Result; 296 } 297 298 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder( 299 std::initializer_list<unsigned> Opcodes) { 300 unsigned Representative = *Opcodes.begin(); 301 302 assert(!empty(Opcodes) && Opcodes.begin() + 1 != Opcodes.end() && 303 "Initializer list must have at least two opcodes"); 304 305 for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I) 306 aliasActionDefinitions(Representative, *I); 307 308 auto &Return = getActionDefinitionsBuilder(Representative); 309 Return.setIsAliasedByAnother(); 310 return Return; 311 } 312 313 void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo, 314 unsigned OpcodeFrom) { 315 assert(OpcodeTo != OpcodeFrom && "Cannot alias to self"); 316 assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode"); 317 const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom); 318 RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo); 319 } 320 321 LegalizeActionStep 322 LegalizerInfo::getAction(const LegalityQuery &Query) const { 323 LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query); 324 if (Step.Action != LegalizeAction::UseLegacyRules) { 325 return Step; 326 } 327 328 for (unsigned i = 0; i < Query.Types.size(); ++i) { 329 auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]}); 330 if (Action.first != Legal) { 331 LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i 332 << " Action=" << (unsigned)Action.first << ", " 333 << Action.second << "\n"); 334 return {Action.first, i, Action.second}; 335 } else 336 LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n"); 337 } 338 LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n"); 339 return {Legal, 0, LLT{}}; 340 } 341 342 LegalizeActionStep 343 LegalizerInfo::getAction(const MachineInstr &MI, 344 const MachineRegisterInfo &MRI) const { 345 SmallVector<LLT, 2> Types; 346 SmallBitVector SeenTypes(8); 347 const MCOperandInfo *OpInfo = MI.getDesc().OpInfo; 348 // FIXME: probably we'll need to cache the results here somehow? 349 for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) { 350 if (!OpInfo[i].isGenericType()) 351 continue; 352 353 // We must only record actions once for each TypeIdx; otherwise we'd 354 // try to legalize operands multiple times down the line. 355 unsigned TypeIdx = OpInfo[i].getGenericTypeIndex(); 356 if (SeenTypes[TypeIdx]) 357 continue; 358 359 SeenTypes.set(TypeIdx); 360 361 LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx); 362 Types.push_back(Ty); 363 } 364 365 SmallVector<LegalityQuery::MemDesc, 2> MemDescrs; 366 for (const auto &MMO : MI.memoperands()) 367 MemDescrs.push_back( 368 {MMO->getSize() /* in bytes */ * 8, MMO->getOrdering()}); 369 370 return getAction({MI.getOpcode(), Types, MemDescrs}); 371 } 372 373 bool LegalizerInfo::isLegal(const MachineInstr &MI, 374 const MachineRegisterInfo &MRI) const { 375 return getAction(MI, MRI).Action == Legal; 376 } 377 378 bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI, 379 MachineIRBuilder &MIRBuilder, 380 GISelChangeObserver &Observer) const { 381 return false; 382 } 383 384 LegalizerInfo::SizeAndActionsVec 385 LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest( 386 const SizeAndActionsVec &v, LegalizeAction IncreaseAction, 387 LegalizeAction DecreaseAction) { 388 SizeAndActionsVec result; 389 unsigned LargestSizeSoFar = 0; 390 if (v.size() >= 1 && v[0].first != 1) 391 result.push_back({1, IncreaseAction}); 392 for (size_t i = 0; i < v.size(); ++i) { 393 result.push_back(v[i]); 394 LargestSizeSoFar = v[i].first; 395 if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) { 396 result.push_back({LargestSizeSoFar + 1, IncreaseAction}); 397 LargestSizeSoFar = v[i].first + 1; 398 } 399 } 400 result.push_back({LargestSizeSoFar + 1, DecreaseAction}); 401 return result; 402 } 403 404 LegalizerInfo::SizeAndActionsVec 405 LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest( 406 const SizeAndActionsVec &v, LegalizeAction DecreaseAction, 407 LegalizeAction IncreaseAction) { 408 SizeAndActionsVec result; 409 if (v.size() == 0 || v[0].first != 1) 410 result.push_back({1, IncreaseAction}); 411 for (size_t i = 0; i < v.size(); ++i) { 412 result.push_back(v[i]); 413 if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) { 414 result.push_back({v[i].first + 1, DecreaseAction}); 415 } 416 } 417 return result; 418 } 419 420 LegalizerInfo::SizeAndAction 421 LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) { 422 assert(Size >= 1); 423 // Find the last element in Vec that has a bitsize equal to or smaller than 424 // the requested bit size. 425 // That is the element just before the first element that is bigger than Size. 426 auto VecIt = std::upper_bound( 427 Vec.begin(), Vec.end(), Size, 428 [](const uint32_t Size, const SizeAndAction lhs) -> bool { 429 return Size < lhs.first; 430 }); 431 assert(VecIt != Vec.begin() && "Does Vec not start with size 1?"); 432 --VecIt; 433 int VecIdx = VecIt - Vec.begin(); 434 435 LegalizeAction Action = Vec[VecIdx].second; 436 switch (Action) { 437 case Legal: 438 case Lower: 439 case Libcall: 440 case Custom: 441 return {Size, Action}; 442 case FewerElements: 443 // FIXME: is this special case still needed and correct? 444 // Special case for scalarization: 445 if (Vec == SizeAndActionsVec({{1, FewerElements}})) 446 return {1, FewerElements}; 447 LLVM_FALLTHROUGH; 448 case NarrowScalar: { 449 // The following needs to be a loop, as for now, we do allow needing to 450 // go over "Unsupported" bit sizes before finding a legalizable bit size. 451 // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8, 452 // we need to iterate over s9, and then to s32 to return (s32, Legal). 453 // If we want to get rid of the below loop, we should have stronger asserts 454 // when building the SizeAndActionsVecs, probably not allowing 455 // "Unsupported" unless at the ends of the vector. 456 for (int i = VecIdx - 1; i >= 0; --i) 457 if (!needsLegalizingToDifferentSize(Vec[i].second) && 458 Vec[i].second != Unsupported) 459 return {Vec[i].first, Action}; 460 llvm_unreachable(""); 461 } 462 case WidenScalar: 463 case MoreElements: { 464 // See above, the following needs to be a loop, at least for now. 465 for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i) 466 if (!needsLegalizingToDifferentSize(Vec[i].second) && 467 Vec[i].second != Unsupported) 468 return {Vec[i].first, Action}; 469 llvm_unreachable(""); 470 } 471 case Unsupported: 472 return {Size, Unsupported}; 473 case NotFound: 474 case UseLegacyRules: 475 llvm_unreachable("NotFound"); 476 } 477 llvm_unreachable("Action has an unknown enum value"); 478 } 479 480 std::pair<LegalizeAction, LLT> 481 LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const { 482 assert(Aspect.Type.isScalar() || Aspect.Type.isPointer()); 483 if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp) 484 return {NotFound, LLT()}; 485 const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode); 486 if (Aspect.Type.isPointer() && 487 AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) == 488 AddrSpace2PointerActions[OpcodeIdx].end()) { 489 return {NotFound, LLT()}; 490 } 491 const SmallVector<SizeAndActionsVec, 1> &Actions = 492 Aspect.Type.isPointer() 493 ? AddrSpace2PointerActions[OpcodeIdx] 494 .find(Aspect.Type.getAddressSpace()) 495 ->second 496 : ScalarActions[OpcodeIdx]; 497 if (Aspect.Idx >= Actions.size()) 498 return {NotFound, LLT()}; 499 const SizeAndActionsVec &Vec = Actions[Aspect.Idx]; 500 // FIXME: speed up this search, e.g. by using a results cache for repeated 501 // queries? 502 auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits()); 503 return {SizeAndAction.second, 504 Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first) 505 : LLT::pointer(Aspect.Type.getAddressSpace(), 506 SizeAndAction.first)}; 507 } 508 509 std::pair<LegalizeAction, LLT> 510 LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const { 511 assert(Aspect.Type.isVector()); 512 // First legalize the vector element size, then legalize the number of 513 // lanes in the vector. 514 if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp) 515 return {NotFound, Aspect.Type}; 516 const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode); 517 const unsigned TypeIdx = Aspect.Idx; 518 if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size()) 519 return {NotFound, Aspect.Type}; 520 const SizeAndActionsVec &ElemSizeVec = 521 ScalarInVectorActions[OpcodeIdx][TypeIdx]; 522 523 LLT IntermediateType; 524 auto ElementSizeAndAction = 525 findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits()); 526 IntermediateType = 527 LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first); 528 if (ElementSizeAndAction.second != Legal) 529 return {ElementSizeAndAction.second, IntermediateType}; 530 531 auto i = NumElements2Actions[OpcodeIdx].find( 532 IntermediateType.getScalarSizeInBits()); 533 if (i == NumElements2Actions[OpcodeIdx].end()) { 534 return {NotFound, IntermediateType}; 535 } 536 const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx]; 537 auto NumElementsAndAction = 538 findAction(NumElementsVec, IntermediateType.getNumElements()); 539 return {NumElementsAndAction.second, 540 LLT::vector(NumElementsAndAction.first, 541 IntermediateType.getScalarSizeInBits())}; 542 } 543 544 /// \pre Type indices of every opcode form a dense set starting from 0. 545 void LegalizerInfo::verify(const MCInstrInfo &MII) const { 546 #ifndef NDEBUG 547 std::vector<unsigned> FailedOpcodes; 548 for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) { 549 const MCInstrDesc &MCID = MII.get(Opcode); 550 const unsigned NumTypeIdxs = std::accumulate( 551 MCID.opInfo_begin(), MCID.opInfo_end(), 0U, 552 [](unsigned Acc, const MCOperandInfo &OpInfo) { 553 return OpInfo.isGenericType() 554 ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc) 555 : Acc; 556 }); 557 LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode 558 << "): " << NumTypeIdxs << " type ind" 559 << (NumTypeIdxs == 1 ? "ex" : "ices") << "\n"); 560 const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode); 561 if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs)) 562 FailedOpcodes.push_back(Opcode); 563 } 564 if (!FailedOpcodes.empty()) { 565 errs() << "The following opcodes have ill-defined legalization rules:"; 566 for (unsigned Opcode : FailedOpcodes) 567 errs() << " " << MII.getName(Opcode); 568 errs() << "\n"; 569 570 report_fatal_error("ill-defined LegalizerInfo" 571 ", try -debug-only=legalizer-info for details"); 572 } 573 #endif 574 } 575 576 #ifndef NDEBUG 577 // FIXME: This should be in the MachineVerifier, but it can't use the 578 // LegalizerInfo as it's currently in the separate GlobalISel library. 579 // Note that RegBankSelected property already checked in the verifier 580 // has the same layering problem, but we only use inline methods so 581 // end up not needing to link against the GlobalISel library. 582 const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) { 583 if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) { 584 const MachineRegisterInfo &MRI = MF.getRegInfo(); 585 for (const MachineBasicBlock &MBB : MF) 586 for (const MachineInstr &MI : MBB) 587 if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI)) 588 return &MI; 589 } 590 return nullptr; 591 } 592 #endif 593