1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GetElementPtrTypeIterator.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InlineAsm.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/IR/ValueMap.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetLibraryInfo.h" 42 #include "llvm/Target/TargetLowering.h" 43 #include "llvm/Target/TargetSubtargetInfo.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/BuildLibCalls.h" 46 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 49 using namespace llvm; 50 using namespace llvm::PatternMatch; 51 52 #define DEBUG_TYPE "codegenprepare" 53 54 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 55 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 56 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 57 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 58 "sunken Cmps"); 59 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 60 "of sunken Casts"); 61 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 62 "computations were sunk"); 63 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 64 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 65 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 66 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 67 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 68 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 69 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 70 71 static cl::opt<bool> DisableBranchOpts( 72 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 73 cl::desc("Disable branch optimizations in CodeGenPrepare")); 74 75 static cl::opt<bool> DisableSelectToBranch( 76 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 77 cl::desc("Disable select to branch conversion.")); 78 79 static cl::opt<bool> AddrSinkUsingGEPs( 80 "addr-sink-using-gep", cl::Hidden, cl::init(false), 81 cl::desc("Address sinking in CGP using GEPs.")); 82 83 static cl::opt<bool> EnableAndCmpSinking( 84 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 85 cl::desc("Enable sinkinig and/cmp into branches.")); 86 87 static cl::opt<bool> DisableStoreExtract( 88 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 89 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 90 91 static cl::opt<bool> StressStoreExtract( 92 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 93 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 94 95 static cl::opt<bool> DisableExtLdPromotion( 96 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 97 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 98 "CodeGenPrepare")); 99 100 static cl::opt<bool> StressExtLdPromotion( 101 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 102 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 103 "optimization in CodeGenPrepare")); 104 105 namespace { 106 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 107 struct TypeIsSExt { 108 Type *Ty; 109 bool IsSExt; 110 TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {} 111 }; 112 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 113 class TypePromotionTransaction; 114 115 class CodeGenPrepare : public FunctionPass { 116 /// TLI - Keep a pointer of a TargetLowering to consult for determining 117 /// transformation profitability. 118 const TargetMachine *TM; 119 const TargetLowering *TLI; 120 const TargetTransformInfo *TTI; 121 const TargetLibraryInfo *TLInfo; 122 DominatorTree *DT; 123 124 /// CurInstIterator - As we scan instructions optimizing them, this is the 125 /// next instruction to optimize. Xforms that can invalidate this should 126 /// update it. 127 BasicBlock::iterator CurInstIterator; 128 129 /// Keeps track of non-local addresses that have been sunk into a block. 130 /// This allows us to avoid inserting duplicate code for blocks with 131 /// multiple load/stores of the same address. 132 ValueMap<Value*, Value*> SunkAddrs; 133 134 /// Keeps track of all truncates inserted for the current function. 135 SetOfInstrs InsertedTruncsSet; 136 /// Keeps track of the type of the related instruction before their 137 /// promotion for the current function. 138 InstrToOrigTy PromotedInsts; 139 140 /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to 141 /// be updated. 142 bool ModifiedDT; 143 144 /// OptSize - True if optimizing for size. 145 bool OptSize; 146 147 public: 148 static char ID; // Pass identification, replacement for typeid 149 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 150 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr) { 151 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 152 } 153 bool runOnFunction(Function &F) override; 154 155 const char *getPassName() const override { return "CodeGen Prepare"; } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override { 158 AU.addPreserved<DominatorTreeWrapperPass>(); 159 AU.addRequired<TargetLibraryInfo>(); 160 AU.addRequired<TargetTransformInfo>(); 161 } 162 163 private: 164 bool EliminateFallThrough(Function &F); 165 bool EliminateMostlyEmptyBlocks(Function &F); 166 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 167 void EliminateMostlyEmptyBlock(BasicBlock *BB); 168 bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT); 169 bool OptimizeInst(Instruction *I, bool& ModifiedDT); 170 bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy); 171 bool OptimizeInlineAsmInst(CallInst *CS); 172 bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT); 173 bool MoveExtToFormExtLoad(Instruction *&I); 174 bool OptimizeExtUses(Instruction *I); 175 bool OptimizeSelectInst(SelectInst *SI); 176 bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); 177 bool OptimizeExtractElementInst(Instruction *Inst); 178 bool DupRetToEnableTailCallOpts(BasicBlock *BB); 179 bool PlaceDbgValues(Function &F); 180 bool sinkAndCmp(Function &F); 181 bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 182 Instruction *&Inst, 183 const SmallVectorImpl<Instruction *> &Exts, 184 unsigned CreatedInst); 185 bool splitBranchCondition(Function &F); 186 }; 187 } 188 189 char CodeGenPrepare::ID = 0; 190 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 191 "Optimize for code generation", false, false) 192 193 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 194 return new CodeGenPrepare(TM); 195 } 196 197 bool CodeGenPrepare::runOnFunction(Function &F) { 198 if (skipOptnoneFunction(F)) 199 return false; 200 201 bool EverMadeChange = false; 202 // Clear per function information. 203 InsertedTruncsSet.clear(); 204 PromotedInsts.clear(); 205 206 ModifiedDT = false; 207 if (TM) 208 TLI = TM->getSubtargetImpl()->getTargetLowering(); 209 TLInfo = &getAnalysis<TargetLibraryInfo>(); 210 TTI = &getAnalysis<TargetTransformInfo>(); 211 DominatorTreeWrapperPass *DTWP = 212 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 213 DT = DTWP ? &DTWP->getDomTree() : nullptr; 214 OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, 215 Attribute::OptimizeForSize); 216 217 /// This optimization identifies DIV instructions that can be 218 /// profitably bypassed and carried out with a shorter, faster divide. 219 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 220 const DenseMap<unsigned int, unsigned int> &BypassWidths = 221 TLI->getBypassSlowDivWidths(); 222 for (Function::iterator I = F.begin(); I != F.end(); I++) 223 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 224 } 225 226 // Eliminate blocks that contain only PHI nodes and an 227 // unconditional branch. 228 EverMadeChange |= EliminateMostlyEmptyBlocks(F); 229 230 // llvm.dbg.value is far away from the value then iSel may not be able 231 // handle it properly. iSel will drop llvm.dbg.value if it can not 232 // find a node corresponding to the value. 233 EverMadeChange |= PlaceDbgValues(F); 234 235 // If there is a mask, compare against zero, and branch that can be combined 236 // into a single target instruction, push the mask and compare into branch 237 // users. Do this before OptimizeBlock -> OptimizeInst -> 238 // OptimizeCmpExpression, which perturbs the pattern being searched for. 239 if (!DisableBranchOpts) { 240 EverMadeChange |= sinkAndCmp(F); 241 EverMadeChange |= splitBranchCondition(F); 242 } 243 244 bool MadeChange = true; 245 while (MadeChange) { 246 MadeChange = false; 247 for (Function::iterator I = F.begin(); I != F.end(); ) { 248 BasicBlock *BB = I++; 249 bool ModifiedDTOnIteration = false; 250 MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration); 251 252 // Restart BB iteration if the dominator tree of the Function was changed 253 ModifiedDT |= ModifiedDTOnIteration; 254 if (ModifiedDTOnIteration) 255 break; 256 } 257 EverMadeChange |= MadeChange; 258 } 259 260 SunkAddrs.clear(); 261 262 if (!DisableBranchOpts) { 263 MadeChange = false; 264 SmallPtrSet<BasicBlock*, 8> WorkList; 265 for (BasicBlock &BB : F) { 266 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 267 MadeChange |= ConstantFoldTerminator(&BB, true); 268 if (!MadeChange) continue; 269 270 for (SmallVectorImpl<BasicBlock*>::iterator 271 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 272 if (pred_begin(*II) == pred_end(*II)) 273 WorkList.insert(*II); 274 } 275 276 // Delete the dead blocks and any of their dead successors. 277 MadeChange |= !WorkList.empty(); 278 while (!WorkList.empty()) { 279 BasicBlock *BB = *WorkList.begin(); 280 WorkList.erase(BB); 281 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 282 283 DeleteDeadBlock(BB); 284 285 for (SmallVectorImpl<BasicBlock*>::iterator 286 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 287 if (pred_begin(*II) == pred_end(*II)) 288 WorkList.insert(*II); 289 } 290 291 // Merge pairs of basic blocks with unconditional branches, connected by 292 // a single edge. 293 if (EverMadeChange || MadeChange) 294 MadeChange |= EliminateFallThrough(F); 295 296 if (MadeChange) 297 ModifiedDT = true; 298 EverMadeChange |= MadeChange; 299 } 300 301 if (ModifiedDT && DT) 302 DT->recalculate(F); 303 304 return EverMadeChange; 305 } 306 307 /// EliminateFallThrough - Merge basic blocks which are connected 308 /// by a single edge, where one of the basic blocks has a single successor 309 /// pointing to the other basic block, which has a single predecessor. 310 bool CodeGenPrepare::EliminateFallThrough(Function &F) { 311 bool Changed = false; 312 // Scan all of the blocks in the function, except for the entry block. 313 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 314 BasicBlock *BB = I++; 315 // If the destination block has a single pred, then this is a trivial 316 // edge, just collapse it. 317 BasicBlock *SinglePred = BB->getSinglePredecessor(); 318 319 // Don't merge if BB's address is taken. 320 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 321 322 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 323 if (Term && !Term->isConditional()) { 324 Changed = true; 325 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 326 // Remember if SinglePred was the entry block of the function. 327 // If so, we will need to move BB back to the entry position. 328 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 329 MergeBasicBlockIntoOnlyPred(BB, this); 330 331 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 332 BB->moveBefore(&BB->getParent()->getEntryBlock()); 333 334 // We have erased a block. Update the iterator. 335 I = BB; 336 } 337 } 338 return Changed; 339 } 340 341 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, 342 /// debug info directives, and an unconditional branch. Passes before isel 343 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for 344 /// isel. Start by eliminating these blocks so we can split them the way we 345 /// want them. 346 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { 347 bool MadeChange = false; 348 // Note that this intentionally skips the entry block. 349 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 350 BasicBlock *BB = I++; 351 352 // If this block doesn't end with an uncond branch, ignore it. 353 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 354 if (!BI || !BI->isUnconditional()) 355 continue; 356 357 // If the instruction before the branch (skipping debug info) isn't a phi 358 // node, then other stuff is happening here. 359 BasicBlock::iterator BBI = BI; 360 if (BBI != BB->begin()) { 361 --BBI; 362 while (isa<DbgInfoIntrinsic>(BBI)) { 363 if (BBI == BB->begin()) 364 break; 365 --BBI; 366 } 367 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 368 continue; 369 } 370 371 // Do not break infinite loops. 372 BasicBlock *DestBB = BI->getSuccessor(0); 373 if (DestBB == BB) 374 continue; 375 376 if (!CanMergeBlocks(BB, DestBB)) 377 continue; 378 379 EliminateMostlyEmptyBlock(BB); 380 MadeChange = true; 381 } 382 return MadeChange; 383 } 384 385 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a 386 /// single uncond branch between them, and BB contains no other non-phi 387 /// instructions. 388 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, 389 const BasicBlock *DestBB) const { 390 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 391 // the successor. If there are more complex condition (e.g. preheaders), 392 // don't mess around with them. 393 BasicBlock::const_iterator BBI = BB->begin(); 394 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 395 for (const User *U : PN->users()) { 396 const Instruction *UI = cast<Instruction>(U); 397 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 398 return false; 399 // If User is inside DestBB block and it is a PHINode then check 400 // incoming value. If incoming value is not from BB then this is 401 // a complex condition (e.g. preheaders) we want to avoid here. 402 if (UI->getParent() == DestBB) { 403 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 404 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 405 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 406 if (Insn && Insn->getParent() == BB && 407 Insn->getParent() != UPN->getIncomingBlock(I)) 408 return false; 409 } 410 } 411 } 412 } 413 414 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 415 // and DestBB may have conflicting incoming values for the block. If so, we 416 // can't merge the block. 417 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 418 if (!DestBBPN) return true; // no conflict. 419 420 // Collect the preds of BB. 421 SmallPtrSet<const BasicBlock*, 16> BBPreds; 422 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 423 // It is faster to get preds from a PHI than with pred_iterator. 424 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 425 BBPreds.insert(BBPN->getIncomingBlock(i)); 426 } else { 427 BBPreds.insert(pred_begin(BB), pred_end(BB)); 428 } 429 430 // Walk the preds of DestBB. 431 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 432 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 433 if (BBPreds.count(Pred)) { // Common predecessor? 434 BBI = DestBB->begin(); 435 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 436 const Value *V1 = PN->getIncomingValueForBlock(Pred); 437 const Value *V2 = PN->getIncomingValueForBlock(BB); 438 439 // If V2 is a phi node in BB, look up what the mapped value will be. 440 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 441 if (V2PN->getParent() == BB) 442 V2 = V2PN->getIncomingValueForBlock(Pred); 443 444 // If there is a conflict, bail out. 445 if (V1 != V2) return false; 446 } 447 } 448 } 449 450 return true; 451 } 452 453 454 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and 455 /// an unconditional branch in it. 456 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { 457 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 458 BasicBlock *DestBB = BI->getSuccessor(0); 459 460 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 461 462 // If the destination block has a single pred, then this is a trivial edge, 463 // just collapse it. 464 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 465 if (SinglePred != DestBB) { 466 // Remember if SinglePred was the entry block of the function. If so, we 467 // will need to move BB back to the entry position. 468 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 469 MergeBasicBlockIntoOnlyPred(DestBB, this); 470 471 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 472 BB->moveBefore(&BB->getParent()->getEntryBlock()); 473 474 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 475 return; 476 } 477 } 478 479 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 480 // to handle the new incoming edges it is about to have. 481 PHINode *PN; 482 for (BasicBlock::iterator BBI = DestBB->begin(); 483 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 484 // Remove the incoming value for BB, and remember it. 485 Value *InVal = PN->removeIncomingValue(BB, false); 486 487 // Two options: either the InVal is a phi node defined in BB or it is some 488 // value that dominates BB. 489 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 490 if (InValPhi && InValPhi->getParent() == BB) { 491 // Add all of the input values of the input PHI as inputs of this phi. 492 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 493 PN->addIncoming(InValPhi->getIncomingValue(i), 494 InValPhi->getIncomingBlock(i)); 495 } else { 496 // Otherwise, add one instance of the dominating value for each edge that 497 // we will be adding. 498 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 499 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 500 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 501 } else { 502 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 503 PN->addIncoming(InVal, *PI); 504 } 505 } 506 } 507 508 // The PHIs are now updated, change everything that refers to BB to use 509 // DestBB and remove BB. 510 BB->replaceAllUsesWith(DestBB); 511 if (DT && !ModifiedDT) { 512 BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock(); 513 BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock(); 514 BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom); 515 DT->changeImmediateDominator(DestBB, NewIDom); 516 DT->eraseNode(BB); 517 } 518 BB->eraseFromParent(); 519 ++NumBlocksElim; 520 521 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 522 } 523 524 /// SinkCast - Sink the specified cast instruction into its user blocks 525 static bool SinkCast(CastInst *CI) { 526 BasicBlock *DefBB = CI->getParent(); 527 528 /// InsertedCasts - Only insert a cast in each block once. 529 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 530 531 bool MadeChange = false; 532 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 533 UI != E; ) { 534 Use &TheUse = UI.getUse(); 535 Instruction *User = cast<Instruction>(*UI); 536 537 // Figure out which BB this cast is used in. For PHI's this is the 538 // appropriate predecessor block. 539 BasicBlock *UserBB = User->getParent(); 540 if (PHINode *PN = dyn_cast<PHINode>(User)) { 541 UserBB = PN->getIncomingBlock(TheUse); 542 } 543 544 // Preincrement use iterator so we don't invalidate it. 545 ++UI; 546 547 // If this user is in the same block as the cast, don't change the cast. 548 if (UserBB == DefBB) continue; 549 550 // If we have already inserted a cast into this block, use it. 551 CastInst *&InsertedCast = InsertedCasts[UserBB]; 552 553 if (!InsertedCast) { 554 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 555 InsertedCast = 556 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 557 InsertPt); 558 MadeChange = true; 559 } 560 561 // Replace a use of the cast with a use of the new cast. 562 TheUse = InsertedCast; 563 ++NumCastUses; 564 } 565 566 // If we removed all uses, nuke the cast. 567 if (CI->use_empty()) { 568 CI->eraseFromParent(); 569 MadeChange = true; 570 } 571 572 return MadeChange; 573 } 574 575 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop 576 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), 577 /// sink it into user blocks to reduce the number of virtual 578 /// registers that must be created and coalesced. 579 /// 580 /// Return true if any changes are made. 581 /// 582 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ 583 // If this is a noop copy, 584 EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); 585 EVT DstVT = TLI.getValueType(CI->getType()); 586 587 // This is an fp<->int conversion? 588 if (SrcVT.isInteger() != DstVT.isInteger()) 589 return false; 590 591 // If this is an extension, it will be a zero or sign extension, which 592 // isn't a noop. 593 if (SrcVT.bitsLT(DstVT)) return false; 594 595 // If these values will be promoted, find out what they will be promoted 596 // to. This helps us consider truncates on PPC as noop copies when they 597 // are. 598 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 599 TargetLowering::TypePromoteInteger) 600 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 601 if (TLI.getTypeAction(CI->getContext(), DstVT) == 602 TargetLowering::TypePromoteInteger) 603 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 604 605 // If, after promotion, these are the same types, this is a noop copy. 606 if (SrcVT != DstVT) 607 return false; 608 609 return SinkCast(CI); 610 } 611 612 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce 613 /// the number of virtual registers that must be created and coalesced. This is 614 /// a clear win except on targets with multiple condition code registers 615 /// (PowerPC), where it might lose; some adjustment may be wanted there. 616 /// 617 /// Return true if any changes are made. 618 static bool OptimizeCmpExpression(CmpInst *CI) { 619 BasicBlock *DefBB = CI->getParent(); 620 621 /// InsertedCmp - Only insert a cmp in each block once. 622 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 623 624 bool MadeChange = false; 625 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 626 UI != E; ) { 627 Use &TheUse = UI.getUse(); 628 Instruction *User = cast<Instruction>(*UI); 629 630 // Preincrement use iterator so we don't invalidate it. 631 ++UI; 632 633 // Don't bother for PHI nodes. 634 if (isa<PHINode>(User)) 635 continue; 636 637 // Figure out which BB this cmp is used in. 638 BasicBlock *UserBB = User->getParent(); 639 640 // If this user is in the same block as the cmp, don't change the cmp. 641 if (UserBB == DefBB) continue; 642 643 // If we have already inserted a cmp into this block, use it. 644 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 645 646 if (!InsertedCmp) { 647 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 648 InsertedCmp = 649 CmpInst::Create(CI->getOpcode(), 650 CI->getPredicate(), CI->getOperand(0), 651 CI->getOperand(1), "", InsertPt); 652 MadeChange = true; 653 } 654 655 // Replace a use of the cmp with a use of the new cmp. 656 TheUse = InsertedCmp; 657 ++NumCmpUses; 658 } 659 660 // If we removed all uses, nuke the cmp. 661 if (CI->use_empty()) 662 CI->eraseFromParent(); 663 664 return MadeChange; 665 } 666 667 /// isExtractBitsCandidateUse - Check if the candidates could 668 /// be combined with shift instruction, which includes: 669 /// 1. Truncate instruction 670 /// 2. And instruction and the imm is a mask of the low bits: 671 /// imm & (imm+1) == 0 672 static bool isExtractBitsCandidateUse(Instruction *User) { 673 if (!isa<TruncInst>(User)) { 674 if (User->getOpcode() != Instruction::And || 675 !isa<ConstantInt>(User->getOperand(1))) 676 return false; 677 678 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 679 680 if ((Cimm & (Cimm + 1)).getBoolValue()) 681 return false; 682 } 683 return true; 684 } 685 686 /// SinkShiftAndTruncate - sink both shift and truncate instruction 687 /// to the use of truncate's BB. 688 static bool 689 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 690 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 691 const TargetLowering &TLI) { 692 BasicBlock *UserBB = User->getParent(); 693 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 694 TruncInst *TruncI = dyn_cast<TruncInst>(User); 695 bool MadeChange = false; 696 697 for (Value::user_iterator TruncUI = TruncI->user_begin(), 698 TruncE = TruncI->user_end(); 699 TruncUI != TruncE;) { 700 701 Use &TruncTheUse = TruncUI.getUse(); 702 Instruction *TruncUser = cast<Instruction>(*TruncUI); 703 // Preincrement use iterator so we don't invalidate it. 704 705 ++TruncUI; 706 707 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 708 if (!ISDOpcode) 709 continue; 710 711 // If the use is actually a legal node, there will not be an 712 // implicit truncate. 713 // FIXME: always querying the result type is just an 714 // approximation; some nodes' legality is determined by the 715 // operand or other means. There's no good way to find out though. 716 if (TLI.isOperationLegalOrCustom( 717 ISDOpcode, TLI.getValueType(TruncUser->getType(), true))) 718 continue; 719 720 // Don't bother for PHI nodes. 721 if (isa<PHINode>(TruncUser)) 722 continue; 723 724 BasicBlock *TruncUserBB = TruncUser->getParent(); 725 726 if (UserBB == TruncUserBB) 727 continue; 728 729 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 730 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 731 732 if (!InsertedShift && !InsertedTrunc) { 733 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 734 // Sink the shift 735 if (ShiftI->getOpcode() == Instruction::AShr) 736 InsertedShift = 737 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 738 else 739 InsertedShift = 740 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 741 742 // Sink the trunc 743 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 744 TruncInsertPt++; 745 746 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 747 TruncI->getType(), "", TruncInsertPt); 748 749 MadeChange = true; 750 751 TruncTheUse = InsertedTrunc; 752 } 753 } 754 return MadeChange; 755 } 756 757 /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if 758 /// the uses could potentially be combined with this shift instruction and 759 /// generate BitExtract instruction. It will only be applied if the architecture 760 /// supports BitExtract instruction. Here is an example: 761 /// BB1: 762 /// %x.extract.shift = lshr i64 %arg1, 32 763 /// BB2: 764 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 765 /// ==> 766 /// 767 /// BB2: 768 /// %x.extract.shift.1 = lshr i64 %arg1, 32 769 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 770 /// 771 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 772 /// instruction. 773 /// Return true if any changes are made. 774 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 775 const TargetLowering &TLI) { 776 BasicBlock *DefBB = ShiftI->getParent(); 777 778 /// Only insert instructions in each block once. 779 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 780 781 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType())); 782 783 bool MadeChange = false; 784 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 785 UI != E;) { 786 Use &TheUse = UI.getUse(); 787 Instruction *User = cast<Instruction>(*UI); 788 // Preincrement use iterator so we don't invalidate it. 789 ++UI; 790 791 // Don't bother for PHI nodes. 792 if (isa<PHINode>(User)) 793 continue; 794 795 if (!isExtractBitsCandidateUse(User)) 796 continue; 797 798 BasicBlock *UserBB = User->getParent(); 799 800 if (UserBB == DefBB) { 801 // If the shift and truncate instruction are in the same BB. The use of 802 // the truncate(TruncUse) may still introduce another truncate if not 803 // legal. In this case, we would like to sink both shift and truncate 804 // instruction to the BB of TruncUse. 805 // for example: 806 // BB1: 807 // i64 shift.result = lshr i64 opnd, imm 808 // trunc.result = trunc shift.result to i16 809 // 810 // BB2: 811 // ----> We will have an implicit truncate here if the architecture does 812 // not have i16 compare. 813 // cmp i16 trunc.result, opnd2 814 // 815 if (isa<TruncInst>(User) && shiftIsLegal 816 // If the type of the truncate is legal, no trucate will be 817 // introduced in other basic blocks. 818 && (!TLI.isTypeLegal(TLI.getValueType(User->getType())))) 819 MadeChange = 820 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI); 821 822 continue; 823 } 824 // If we have already inserted a shift into this block, use it. 825 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 826 827 if (!InsertedShift) { 828 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 829 830 if (ShiftI->getOpcode() == Instruction::AShr) 831 InsertedShift = 832 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 833 else 834 InsertedShift = 835 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 836 837 MadeChange = true; 838 } 839 840 // Replace a use of the shift with a use of the new shift. 841 TheUse = InsertedShift; 842 } 843 844 // If we removed all uses, nuke the shift. 845 if (ShiftI->use_empty()) 846 ShiftI->eraseFromParent(); 847 848 return MadeChange; 849 } 850 851 // ScalarizeMaskedLoad() translates masked load intrinsic, like 852 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 853 // <16 x i1> %mask, <16 x i32> %passthru) 854 // to a chain of basic blocks, whith loading element one-by-one if 855 // the appropriate mask bit is set 856 // 857 // %1 = bitcast i8* %addr to i32* 858 // %2 = extractelement <16 x i1> %mask, i32 0 859 // %3 = icmp eq i1 %2, true 860 // br i1 %3, label %cond.load, label %else 861 // 862 //cond.load: ; preds = %0 863 // %4 = getelementptr i32* %1, i32 0 864 // %5 = load i32* %4 865 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 866 // br label %else 867 // 868 //else: ; preds = %0, %cond.load 869 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 870 // %7 = extractelement <16 x i1> %mask, i32 1 871 // %8 = icmp eq i1 %7, true 872 // br i1 %8, label %cond.load1, label %else2 873 // 874 //cond.load1: ; preds = %else 875 // %9 = getelementptr i32* %1, i32 1 876 // %10 = load i32* %9 877 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 878 // br label %else2 879 // 880 //else2: ; preds = %else, %cond.load1 881 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 882 // %12 = extractelement <16 x i1> %mask, i32 2 883 // %13 = icmp eq i1 %12, true 884 // br i1 %13, label %cond.load4, label %else5 885 // 886 static void ScalarizeMaskedLoad(CallInst *CI) { 887 Value *Ptr = CI->getArgOperand(0); 888 Value *Src0 = CI->getArgOperand(3); 889 Value *Mask = CI->getArgOperand(2); 890 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 891 Type *EltTy = VecType->getElementType(); 892 893 assert(VecType && "Unexpected return type of masked load intrinsic"); 894 895 IRBuilder<> Builder(CI->getContext()); 896 Instruction *InsertPt = CI; 897 BasicBlock *IfBlock = CI->getParent(); 898 BasicBlock *CondBlock = nullptr; 899 BasicBlock *PrevIfBlock = CI->getParent(); 900 Builder.SetInsertPoint(InsertPt); 901 902 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 903 904 // Bitcast %addr fron i8* to EltTy* 905 Type *NewPtrType = 906 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 907 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 908 Value *UndefVal = UndefValue::get(VecType); 909 910 // The result vector 911 Value *VResult = UndefVal; 912 913 PHINode *Phi = nullptr; 914 Value *PrevPhi = UndefVal; 915 916 unsigned VectorWidth = VecType->getNumElements(); 917 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 918 919 // Fill the "else" block, created in the previous iteration 920 // 921 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 922 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 923 // %to_load = icmp eq i1 %mask_1, true 924 // br i1 %to_load, label %cond.load, label %else 925 // 926 if (Idx > 0) { 927 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 928 Phi->addIncoming(VResult, CondBlock); 929 Phi->addIncoming(PrevPhi, PrevIfBlock); 930 PrevPhi = Phi; 931 VResult = Phi; 932 } 933 934 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 935 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 936 ConstantInt::get(Predicate->getType(), 1)); 937 938 // Create "cond" block 939 // 940 // %EltAddr = getelementptr i32* %1, i32 0 941 // %Elt = load i32* %EltAddr 942 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 943 // 944 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 945 Builder.SetInsertPoint(InsertPt); 946 947 Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx)); 948 LoadInst* Load = Builder.CreateLoad(Gep, false); 949 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 950 951 // Create "else" block, fill it in the next iteration 952 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 953 Builder.SetInsertPoint(InsertPt); 954 Instruction *OldBr = IfBlock->getTerminator(); 955 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 956 OldBr->eraseFromParent(); 957 PrevIfBlock = IfBlock; 958 IfBlock = NewIfBlock; 959 } 960 961 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 962 Phi->addIncoming(VResult, CondBlock); 963 Phi->addIncoming(PrevPhi, PrevIfBlock); 964 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 965 CI->replaceAllUsesWith(NewI); 966 CI->eraseFromParent(); 967 } 968 969 // ScalarizeMaskedStore() translates masked store intrinsic, like 970 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 971 // <16 x i1> %mask) 972 // to a chain of basic blocks, that stores element one-by-one if 973 // the appropriate mask bit is set 974 // 975 // %1 = bitcast i8* %addr to i32* 976 // %2 = extractelement <16 x i1> %mask, i32 0 977 // %3 = icmp eq i1 %2, true 978 // br i1 %3, label %cond.store, label %else 979 // 980 // cond.store: ; preds = %0 981 // %4 = extractelement <16 x i32> %val, i32 0 982 // %5 = getelementptr i32* %1, i32 0 983 // store i32 %4, i32* %5 984 // br label %else 985 // 986 // else: ; preds = %0, %cond.store 987 // %6 = extractelement <16 x i1> %mask, i32 1 988 // %7 = icmp eq i1 %6, true 989 // br i1 %7, label %cond.store1, label %else2 990 // 991 // cond.store1: ; preds = %else 992 // %8 = extractelement <16 x i32> %val, i32 1 993 // %9 = getelementptr i32* %1, i32 1 994 // store i32 %8, i32* %9 995 // br label %else2 996 // . . . 997 static void ScalarizeMaskedStore(CallInst *CI) { 998 Value *Ptr = CI->getArgOperand(1); 999 Value *Src = CI->getArgOperand(0); 1000 Value *Mask = CI->getArgOperand(3); 1001 1002 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1003 Type *EltTy = VecType->getElementType(); 1004 1005 assert(VecType && "Unexpected data type in masked store intrinsic"); 1006 1007 IRBuilder<> Builder(CI->getContext()); 1008 Instruction *InsertPt = CI; 1009 BasicBlock *IfBlock = CI->getParent(); 1010 Builder.SetInsertPoint(InsertPt); 1011 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1012 1013 // Bitcast %addr fron i8* to EltTy* 1014 Type *NewPtrType = 1015 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1016 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1017 1018 unsigned VectorWidth = VecType->getNumElements(); 1019 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1020 1021 // Fill the "else" block, created in the previous iteration 1022 // 1023 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1024 // %to_store = icmp eq i1 %mask_1, true 1025 // br i1 %to_load, label %cond.store, label %else 1026 // 1027 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1028 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1029 ConstantInt::get(Predicate->getType(), 1)); 1030 1031 // Create "cond" block 1032 // 1033 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1034 // %EltAddr = getelementptr i32* %1, i32 0 1035 // %store i32 %OneElt, i32* %EltAddr 1036 // 1037 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1038 Builder.SetInsertPoint(InsertPt); 1039 1040 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1041 Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx)); 1042 Builder.CreateStore(OneElt, Gep); 1043 1044 // Create "else" block, fill it in the next iteration 1045 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1046 Builder.SetInsertPoint(InsertPt); 1047 Instruction *OldBr = IfBlock->getTerminator(); 1048 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1049 OldBr->eraseFromParent(); 1050 IfBlock = NewIfBlock; 1051 } 1052 CI->eraseFromParent(); 1053 } 1054 1055 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1056 BasicBlock *BB = CI->getParent(); 1057 1058 // Lower inline assembly if we can. 1059 // If we found an inline asm expession, and if the target knows how to 1060 // lower it to normal LLVM code, do so now. 1061 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1062 if (TLI->ExpandInlineAsm(CI)) { 1063 // Avoid invalidating the iterator. 1064 CurInstIterator = BB->begin(); 1065 // Avoid processing instructions out of order, which could cause 1066 // reuse before a value is defined. 1067 SunkAddrs.clear(); 1068 return true; 1069 } 1070 // Sink address computing for memory operands into the block. 1071 if (OptimizeInlineAsmInst(CI)) 1072 return true; 1073 } 1074 1075 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1076 if (II) { 1077 switch (II->getIntrinsicID()) { 1078 default: break; 1079 case Intrinsic::objectsize: { 1080 // Lower all uses of llvm.objectsize.* 1081 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1082 Type *ReturnTy = CI->getType(); 1083 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1084 1085 // Substituting this can cause recursive simplifications, which can 1086 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1087 // happens. 1088 WeakVH IterHandle(CurInstIterator); 1089 1090 replaceAndRecursivelySimplify(CI, RetVal, 1091 TLI ? TLI->getDataLayout() : nullptr, 1092 TLInfo, ModifiedDT ? nullptr : DT); 1093 1094 // If the iterator instruction was recursively deleted, start over at the 1095 // start of the block. 1096 if (IterHandle != CurInstIterator) { 1097 CurInstIterator = BB->begin(); 1098 SunkAddrs.clear(); 1099 } 1100 return true; 1101 } 1102 case Intrinsic::masked_load: { 1103 // Scalarize unsupported vector masked load 1104 if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) { 1105 ScalarizeMaskedLoad(CI); 1106 ModifiedDT = true; 1107 return true; 1108 } 1109 return false; 1110 } 1111 case Intrinsic::masked_store: { 1112 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) { 1113 ScalarizeMaskedStore(CI); 1114 ModifiedDT = true; 1115 return true; 1116 } 1117 return false; 1118 } 1119 } 1120 1121 if (TLI) { 1122 SmallVector<Value*, 2> PtrOps; 1123 Type *AccessTy; 1124 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy)) 1125 while (!PtrOps.empty()) 1126 if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy)) 1127 return true; 1128 } 1129 } 1130 1131 // From here on out we're working with named functions. 1132 if (!CI->getCalledFunction()) return false; 1133 1134 // We'll need DataLayout from here on out. 1135 const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr; 1136 if (!TD) return false; 1137 1138 // Lower all default uses of _chk calls. This is very similar 1139 // to what InstCombineCalls does, but here we are only lowering calls 1140 // to fortified library functions (e.g. __memcpy_chk) that have the default 1141 // "don't know" as the objectsize. Anything else should be left alone. 1142 FortifiedLibCallSimplifier Simplifier(TD, TLInfo, true); 1143 if (Value *V = Simplifier.optimizeCall(CI)) { 1144 CI->replaceAllUsesWith(V); 1145 CI->eraseFromParent(); 1146 return true; 1147 } 1148 return false; 1149 } 1150 1151 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return 1152 /// instructions to the predecessor to enable tail call optimizations. The 1153 /// case it is currently looking for is: 1154 /// @code 1155 /// bb0: 1156 /// %tmp0 = tail call i32 @f0() 1157 /// br label %return 1158 /// bb1: 1159 /// %tmp1 = tail call i32 @f1() 1160 /// br label %return 1161 /// bb2: 1162 /// %tmp2 = tail call i32 @f2() 1163 /// br label %return 1164 /// return: 1165 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1166 /// ret i32 %retval 1167 /// @endcode 1168 /// 1169 /// => 1170 /// 1171 /// @code 1172 /// bb0: 1173 /// %tmp0 = tail call i32 @f0() 1174 /// ret i32 %tmp0 1175 /// bb1: 1176 /// %tmp1 = tail call i32 @f1() 1177 /// ret i32 %tmp1 1178 /// bb2: 1179 /// %tmp2 = tail call i32 @f2() 1180 /// ret i32 %tmp2 1181 /// @endcode 1182 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { 1183 if (!TLI) 1184 return false; 1185 1186 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1187 if (!RI) 1188 return false; 1189 1190 PHINode *PN = nullptr; 1191 BitCastInst *BCI = nullptr; 1192 Value *V = RI->getReturnValue(); 1193 if (V) { 1194 BCI = dyn_cast<BitCastInst>(V); 1195 if (BCI) 1196 V = BCI->getOperand(0); 1197 1198 PN = dyn_cast<PHINode>(V); 1199 if (!PN) 1200 return false; 1201 } 1202 1203 if (PN && PN->getParent() != BB) 1204 return false; 1205 1206 // It's not safe to eliminate the sign / zero extension of the return value. 1207 // See llvm::isInTailCallPosition(). 1208 const Function *F = BB->getParent(); 1209 AttributeSet CallerAttrs = F->getAttributes(); 1210 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1211 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1212 return false; 1213 1214 // Make sure there are no instructions between the PHI and return, or that the 1215 // return is the first instruction in the block. 1216 if (PN) { 1217 BasicBlock::iterator BI = BB->begin(); 1218 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1219 if (&*BI == BCI) 1220 // Also skip over the bitcast. 1221 ++BI; 1222 if (&*BI != RI) 1223 return false; 1224 } else { 1225 BasicBlock::iterator BI = BB->begin(); 1226 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1227 if (&*BI != RI) 1228 return false; 1229 } 1230 1231 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1232 /// call. 1233 SmallVector<CallInst*, 4> TailCalls; 1234 if (PN) { 1235 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1236 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1237 // Make sure the phi value is indeed produced by the tail call. 1238 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1239 TLI->mayBeEmittedAsTailCall(CI)) 1240 TailCalls.push_back(CI); 1241 } 1242 } else { 1243 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1244 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1245 if (!VisitedBBs.insert(*PI).second) 1246 continue; 1247 1248 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1249 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1250 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1251 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1252 if (RI == RE) 1253 continue; 1254 1255 CallInst *CI = dyn_cast<CallInst>(&*RI); 1256 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1257 TailCalls.push_back(CI); 1258 } 1259 } 1260 1261 bool Changed = false; 1262 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1263 CallInst *CI = TailCalls[i]; 1264 CallSite CS(CI); 1265 1266 // Conservatively require the attributes of the call to match those of the 1267 // return. Ignore noalias because it doesn't affect the call sequence. 1268 AttributeSet CalleeAttrs = CS.getAttributes(); 1269 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1270 removeAttribute(Attribute::NoAlias) != 1271 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1272 removeAttribute(Attribute::NoAlias)) 1273 continue; 1274 1275 // Make sure the call instruction is followed by an unconditional branch to 1276 // the return block. 1277 BasicBlock *CallBB = CI->getParent(); 1278 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1279 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1280 continue; 1281 1282 // Duplicate the return into CallBB. 1283 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1284 ModifiedDT = Changed = true; 1285 ++NumRetsDup; 1286 } 1287 1288 // If we eliminated all predecessors of the block, delete the block now. 1289 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1290 BB->eraseFromParent(); 1291 1292 return Changed; 1293 } 1294 1295 //===----------------------------------------------------------------------===// 1296 // Memory Optimization 1297 //===----------------------------------------------------------------------===// 1298 1299 namespace { 1300 1301 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode 1302 /// which holds actual Value*'s for register values. 1303 struct ExtAddrMode : public TargetLowering::AddrMode { 1304 Value *BaseReg; 1305 Value *ScaledReg; 1306 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1307 void print(raw_ostream &OS) const; 1308 void dump() const; 1309 1310 bool operator==(const ExtAddrMode& O) const { 1311 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1312 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1313 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1314 } 1315 }; 1316 1317 #ifndef NDEBUG 1318 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1319 AM.print(OS); 1320 return OS; 1321 } 1322 #endif 1323 1324 void ExtAddrMode::print(raw_ostream &OS) const { 1325 bool NeedPlus = false; 1326 OS << "["; 1327 if (BaseGV) { 1328 OS << (NeedPlus ? " + " : "") 1329 << "GV:"; 1330 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1331 NeedPlus = true; 1332 } 1333 1334 if (BaseOffs) { 1335 OS << (NeedPlus ? " + " : "") 1336 << BaseOffs; 1337 NeedPlus = true; 1338 } 1339 1340 if (BaseReg) { 1341 OS << (NeedPlus ? " + " : "") 1342 << "Base:"; 1343 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1344 NeedPlus = true; 1345 } 1346 if (Scale) { 1347 OS << (NeedPlus ? " + " : "") 1348 << Scale << "*"; 1349 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1350 } 1351 1352 OS << ']'; 1353 } 1354 1355 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1356 void ExtAddrMode::dump() const { 1357 print(dbgs()); 1358 dbgs() << '\n'; 1359 } 1360 #endif 1361 1362 /// \brief This class provides transaction based operation on the IR. 1363 /// Every change made through this class is recorded in the internal state and 1364 /// can be undone (rollback) until commit is called. 1365 class TypePromotionTransaction { 1366 1367 /// \brief This represents the common interface of the individual transaction. 1368 /// Each class implements the logic for doing one specific modification on 1369 /// the IR via the TypePromotionTransaction. 1370 class TypePromotionAction { 1371 protected: 1372 /// The Instruction modified. 1373 Instruction *Inst; 1374 1375 public: 1376 /// \brief Constructor of the action. 1377 /// The constructor performs the related action on the IR. 1378 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1379 1380 virtual ~TypePromotionAction() {} 1381 1382 /// \brief Undo the modification done by this action. 1383 /// When this method is called, the IR must be in the same state as it was 1384 /// before this action was applied. 1385 /// \pre Undoing the action works if and only if the IR is in the exact same 1386 /// state as it was directly after this action was applied. 1387 virtual void undo() = 0; 1388 1389 /// \brief Advocate every change made by this action. 1390 /// When the results on the IR of the action are to be kept, it is important 1391 /// to call this function, otherwise hidden information may be kept forever. 1392 virtual void commit() { 1393 // Nothing to be done, this action is not doing anything. 1394 } 1395 }; 1396 1397 /// \brief Utility to remember the position of an instruction. 1398 class InsertionHandler { 1399 /// Position of an instruction. 1400 /// Either an instruction: 1401 /// - Is the first in a basic block: BB is used. 1402 /// - Has a previous instructon: PrevInst is used. 1403 union { 1404 Instruction *PrevInst; 1405 BasicBlock *BB; 1406 } Point; 1407 /// Remember whether or not the instruction had a previous instruction. 1408 bool HasPrevInstruction; 1409 1410 public: 1411 /// \brief Record the position of \p Inst. 1412 InsertionHandler(Instruction *Inst) { 1413 BasicBlock::iterator It = Inst; 1414 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1415 if (HasPrevInstruction) 1416 Point.PrevInst = --It; 1417 else 1418 Point.BB = Inst->getParent(); 1419 } 1420 1421 /// \brief Insert \p Inst at the recorded position. 1422 void insert(Instruction *Inst) { 1423 if (HasPrevInstruction) { 1424 if (Inst->getParent()) 1425 Inst->removeFromParent(); 1426 Inst->insertAfter(Point.PrevInst); 1427 } else { 1428 Instruction *Position = Point.BB->getFirstInsertionPt(); 1429 if (Inst->getParent()) 1430 Inst->moveBefore(Position); 1431 else 1432 Inst->insertBefore(Position); 1433 } 1434 } 1435 }; 1436 1437 /// \brief Move an instruction before another. 1438 class InstructionMoveBefore : public TypePromotionAction { 1439 /// Original position of the instruction. 1440 InsertionHandler Position; 1441 1442 public: 1443 /// \brief Move \p Inst before \p Before. 1444 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1445 : TypePromotionAction(Inst), Position(Inst) { 1446 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1447 Inst->moveBefore(Before); 1448 } 1449 1450 /// \brief Move the instruction back to its original position. 1451 void undo() override { 1452 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1453 Position.insert(Inst); 1454 } 1455 }; 1456 1457 /// \brief Set the operand of an instruction with a new value. 1458 class OperandSetter : public TypePromotionAction { 1459 /// Original operand of the instruction. 1460 Value *Origin; 1461 /// Index of the modified instruction. 1462 unsigned Idx; 1463 1464 public: 1465 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1466 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1467 : TypePromotionAction(Inst), Idx(Idx) { 1468 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1469 << "for:" << *Inst << "\n" 1470 << "with:" << *NewVal << "\n"); 1471 Origin = Inst->getOperand(Idx); 1472 Inst->setOperand(Idx, NewVal); 1473 } 1474 1475 /// \brief Restore the original value of the instruction. 1476 void undo() override { 1477 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1478 << "for: " << *Inst << "\n" 1479 << "with: " << *Origin << "\n"); 1480 Inst->setOperand(Idx, Origin); 1481 } 1482 }; 1483 1484 /// \brief Hide the operands of an instruction. 1485 /// Do as if this instruction was not using any of its operands. 1486 class OperandsHider : public TypePromotionAction { 1487 /// The list of original operands. 1488 SmallVector<Value *, 4> OriginalValues; 1489 1490 public: 1491 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1492 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1493 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1494 unsigned NumOpnds = Inst->getNumOperands(); 1495 OriginalValues.reserve(NumOpnds); 1496 for (unsigned It = 0; It < NumOpnds; ++It) { 1497 // Save the current operand. 1498 Value *Val = Inst->getOperand(It); 1499 OriginalValues.push_back(Val); 1500 // Set a dummy one. 1501 // We could use OperandSetter here, but that would implied an overhead 1502 // that we are not willing to pay. 1503 Inst->setOperand(It, UndefValue::get(Val->getType())); 1504 } 1505 } 1506 1507 /// \brief Restore the original list of uses. 1508 void undo() override { 1509 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1510 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1511 Inst->setOperand(It, OriginalValues[It]); 1512 } 1513 }; 1514 1515 /// \brief Build a truncate instruction. 1516 class TruncBuilder : public TypePromotionAction { 1517 Value *Val; 1518 public: 1519 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1520 /// result. 1521 /// trunc Opnd to Ty. 1522 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1523 IRBuilder<> Builder(Opnd); 1524 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 1525 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 1526 } 1527 1528 /// \brief Get the built value. 1529 Value *getBuiltValue() { return Val; } 1530 1531 /// \brief Remove the built instruction. 1532 void undo() override { 1533 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 1534 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1535 IVal->eraseFromParent(); 1536 } 1537 }; 1538 1539 /// \brief Build a sign extension instruction. 1540 class SExtBuilder : public TypePromotionAction { 1541 Value *Val; 1542 public: 1543 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1544 /// result. 1545 /// sext Opnd to Ty. 1546 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1547 : TypePromotionAction(InsertPt) { 1548 IRBuilder<> Builder(InsertPt); 1549 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 1550 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 1551 } 1552 1553 /// \brief Get the built value. 1554 Value *getBuiltValue() { return Val; } 1555 1556 /// \brief Remove the built instruction. 1557 void undo() override { 1558 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 1559 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1560 IVal->eraseFromParent(); 1561 } 1562 }; 1563 1564 /// \brief Build a zero extension instruction. 1565 class ZExtBuilder : public TypePromotionAction { 1566 Value *Val; 1567 public: 1568 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 1569 /// result. 1570 /// zext Opnd to Ty. 1571 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1572 : TypePromotionAction(InsertPt) { 1573 IRBuilder<> Builder(InsertPt); 1574 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 1575 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 1576 } 1577 1578 /// \brief Get the built value. 1579 Value *getBuiltValue() { return Val; } 1580 1581 /// \brief Remove the built instruction. 1582 void undo() override { 1583 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 1584 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1585 IVal->eraseFromParent(); 1586 } 1587 }; 1588 1589 /// \brief Mutate an instruction to another type. 1590 class TypeMutator : public TypePromotionAction { 1591 /// Record the original type. 1592 Type *OrigTy; 1593 1594 public: 1595 /// \brief Mutate the type of \p Inst into \p NewTy. 1596 TypeMutator(Instruction *Inst, Type *NewTy) 1597 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1598 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1599 << "\n"); 1600 Inst->mutateType(NewTy); 1601 } 1602 1603 /// \brief Mutate the instruction back to its original type. 1604 void undo() override { 1605 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1606 << "\n"); 1607 Inst->mutateType(OrigTy); 1608 } 1609 }; 1610 1611 /// \brief Replace the uses of an instruction by another instruction. 1612 class UsesReplacer : public TypePromotionAction { 1613 /// Helper structure to keep track of the replaced uses. 1614 struct InstructionAndIdx { 1615 /// The instruction using the instruction. 1616 Instruction *Inst; 1617 /// The index where this instruction is used for Inst. 1618 unsigned Idx; 1619 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1620 : Inst(Inst), Idx(Idx) {} 1621 }; 1622 1623 /// Keep track of the original uses (pair Instruction, Index). 1624 SmallVector<InstructionAndIdx, 4> OriginalUses; 1625 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1626 1627 public: 1628 /// \brief Replace all the use of \p Inst by \p New. 1629 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1630 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1631 << "\n"); 1632 // Record the original uses. 1633 for (Use &U : Inst->uses()) { 1634 Instruction *UserI = cast<Instruction>(U.getUser()); 1635 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1636 } 1637 // Now, we can replace the uses. 1638 Inst->replaceAllUsesWith(New); 1639 } 1640 1641 /// \brief Reassign the original uses of Inst to Inst. 1642 void undo() override { 1643 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 1644 for (use_iterator UseIt = OriginalUses.begin(), 1645 EndIt = OriginalUses.end(); 1646 UseIt != EndIt; ++UseIt) { 1647 UseIt->Inst->setOperand(UseIt->Idx, Inst); 1648 } 1649 } 1650 }; 1651 1652 /// \brief Remove an instruction from the IR. 1653 class InstructionRemover : public TypePromotionAction { 1654 /// Original position of the instruction. 1655 InsertionHandler Inserter; 1656 /// Helper structure to hide all the link to the instruction. In other 1657 /// words, this helps to do as if the instruction was removed. 1658 OperandsHider Hider; 1659 /// Keep track of the uses replaced, if any. 1660 UsesReplacer *Replacer; 1661 1662 public: 1663 /// \brief Remove all reference of \p Inst and optinally replace all its 1664 /// uses with New. 1665 /// \pre If !Inst->use_empty(), then New != nullptr 1666 InstructionRemover(Instruction *Inst, Value *New = nullptr) 1667 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 1668 Replacer(nullptr) { 1669 if (New) 1670 Replacer = new UsesReplacer(Inst, New); 1671 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 1672 Inst->removeFromParent(); 1673 } 1674 1675 ~InstructionRemover() { delete Replacer; } 1676 1677 /// \brief Really remove the instruction. 1678 void commit() override { delete Inst; } 1679 1680 /// \brief Resurrect the instruction and reassign it to the proper uses if 1681 /// new value was provided when build this action. 1682 void undo() override { 1683 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 1684 Inserter.insert(Inst); 1685 if (Replacer) 1686 Replacer->undo(); 1687 Hider.undo(); 1688 } 1689 }; 1690 1691 public: 1692 /// Restoration point. 1693 /// The restoration point is a pointer to an action instead of an iterator 1694 /// because the iterator may be invalidated but not the pointer. 1695 typedef const TypePromotionAction *ConstRestorationPt; 1696 /// Advocate every changes made in that transaction. 1697 void commit(); 1698 /// Undo all the changes made after the given point. 1699 void rollback(ConstRestorationPt Point); 1700 /// Get the current restoration point. 1701 ConstRestorationPt getRestorationPoint() const; 1702 1703 /// \name API for IR modification with state keeping to support rollback. 1704 /// @{ 1705 /// Same as Instruction::setOperand. 1706 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 1707 /// Same as Instruction::eraseFromParent. 1708 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 1709 /// Same as Value::replaceAllUsesWith. 1710 void replaceAllUsesWith(Instruction *Inst, Value *New); 1711 /// Same as Value::mutateType. 1712 void mutateType(Instruction *Inst, Type *NewTy); 1713 /// Same as IRBuilder::createTrunc. 1714 Value *createTrunc(Instruction *Opnd, Type *Ty); 1715 /// Same as IRBuilder::createSExt. 1716 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 1717 /// Same as IRBuilder::createZExt. 1718 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 1719 /// Same as Instruction::moveBefore. 1720 void moveBefore(Instruction *Inst, Instruction *Before); 1721 /// @} 1722 1723 private: 1724 /// The ordered list of actions made so far. 1725 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 1726 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 1727 }; 1728 1729 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 1730 Value *NewVal) { 1731 Actions.push_back( 1732 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 1733 } 1734 1735 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 1736 Value *NewVal) { 1737 Actions.push_back( 1738 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 1739 } 1740 1741 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 1742 Value *New) { 1743 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 1744 } 1745 1746 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 1747 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 1748 } 1749 1750 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 1751 Type *Ty) { 1752 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 1753 Value *Val = Ptr->getBuiltValue(); 1754 Actions.push_back(std::move(Ptr)); 1755 return Val; 1756 } 1757 1758 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 1759 Value *Opnd, Type *Ty) { 1760 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 1761 Value *Val = Ptr->getBuiltValue(); 1762 Actions.push_back(std::move(Ptr)); 1763 return Val; 1764 } 1765 1766 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 1767 Value *Opnd, Type *Ty) { 1768 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 1769 Value *Val = Ptr->getBuiltValue(); 1770 Actions.push_back(std::move(Ptr)); 1771 return Val; 1772 } 1773 1774 void TypePromotionTransaction::moveBefore(Instruction *Inst, 1775 Instruction *Before) { 1776 Actions.push_back( 1777 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 1778 } 1779 1780 TypePromotionTransaction::ConstRestorationPt 1781 TypePromotionTransaction::getRestorationPoint() const { 1782 return !Actions.empty() ? Actions.back().get() : nullptr; 1783 } 1784 1785 void TypePromotionTransaction::commit() { 1786 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 1787 ++It) 1788 (*It)->commit(); 1789 Actions.clear(); 1790 } 1791 1792 void TypePromotionTransaction::rollback( 1793 TypePromotionTransaction::ConstRestorationPt Point) { 1794 while (!Actions.empty() && Point != Actions.back().get()) { 1795 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 1796 Curr->undo(); 1797 } 1798 } 1799 1800 /// \brief A helper class for matching addressing modes. 1801 /// 1802 /// This encapsulates the logic for matching the target-legal addressing modes. 1803 class AddressingModeMatcher { 1804 SmallVectorImpl<Instruction*> &AddrModeInsts; 1805 const TargetLowering &TLI; 1806 1807 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 1808 /// the memory instruction that we're computing this address for. 1809 Type *AccessTy; 1810 Instruction *MemoryInst; 1811 1812 /// AddrMode - This is the addressing mode that we're building up. This is 1813 /// part of the return value of this addressing mode matching stuff. 1814 ExtAddrMode &AddrMode; 1815 1816 /// The truncate instruction inserted by other CodeGenPrepare optimizations. 1817 const SetOfInstrs &InsertedTruncs; 1818 /// A map from the instructions to their type before promotion. 1819 InstrToOrigTy &PromotedInsts; 1820 /// The ongoing transaction where every action should be registered. 1821 TypePromotionTransaction &TPT; 1822 1823 /// IgnoreProfitability - This is set to true when we should not do 1824 /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode 1825 /// always returns true. 1826 bool IgnoreProfitability; 1827 1828 AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI, 1829 const TargetLowering &T, Type *AT, 1830 Instruction *MI, ExtAddrMode &AM, 1831 const SetOfInstrs &InsertedTruncs, 1832 InstrToOrigTy &PromotedInsts, 1833 TypePromotionTransaction &TPT) 1834 : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM), 1835 InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) { 1836 IgnoreProfitability = false; 1837 } 1838 public: 1839 1840 /// Match - Find the maximal addressing mode that a load/store of V can fold, 1841 /// give an access type of AccessTy. This returns a list of involved 1842 /// instructions in AddrModeInsts. 1843 /// \p InsertedTruncs The truncate instruction inserted by other 1844 /// CodeGenPrepare 1845 /// optimizations. 1846 /// \p PromotedInsts maps the instructions to their type before promotion. 1847 /// \p The ongoing transaction where every action should be registered. 1848 static ExtAddrMode Match(Value *V, Type *AccessTy, 1849 Instruction *MemoryInst, 1850 SmallVectorImpl<Instruction*> &AddrModeInsts, 1851 const TargetLowering &TLI, 1852 const SetOfInstrs &InsertedTruncs, 1853 InstrToOrigTy &PromotedInsts, 1854 TypePromotionTransaction &TPT) { 1855 ExtAddrMode Result; 1856 1857 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy, 1858 MemoryInst, Result, InsertedTruncs, 1859 PromotedInsts, TPT).MatchAddr(V, 0); 1860 (void)Success; assert(Success && "Couldn't select *anything*?"); 1861 return Result; 1862 } 1863 private: 1864 bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 1865 bool MatchAddr(Value *V, unsigned Depth); 1866 bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 1867 bool *MovedAway = nullptr); 1868 bool IsProfitableToFoldIntoAddressingMode(Instruction *I, 1869 ExtAddrMode &AMBefore, 1870 ExtAddrMode &AMAfter); 1871 bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 1872 bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion, 1873 Value *PromotedOperand) const; 1874 }; 1875 1876 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. 1877 /// Return true and update AddrMode if this addr mode is legal for the target, 1878 /// false if not. 1879 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, 1880 unsigned Depth) { 1881 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 1882 // mode. Just process that directly. 1883 if (Scale == 1) 1884 return MatchAddr(ScaleReg, Depth); 1885 1886 // If the scale is 0, it takes nothing to add this. 1887 if (Scale == 0) 1888 return true; 1889 1890 // If we already have a scale of this value, we can add to it, otherwise, we 1891 // need an available scale field. 1892 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 1893 return false; 1894 1895 ExtAddrMode TestAddrMode = AddrMode; 1896 1897 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 1898 // [A+B + A*7] -> [B+A*8]. 1899 TestAddrMode.Scale += Scale; 1900 TestAddrMode.ScaledReg = ScaleReg; 1901 1902 // If the new address isn't legal, bail out. 1903 if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) 1904 return false; 1905 1906 // It was legal, so commit it. 1907 AddrMode = TestAddrMode; 1908 1909 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 1910 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 1911 // X*Scale + C*Scale to addr mode. 1912 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 1913 if (isa<Instruction>(ScaleReg) && // not a constant expr. 1914 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 1915 TestAddrMode.ScaledReg = AddLHS; 1916 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 1917 1918 // If this addressing mode is legal, commit it and remember that we folded 1919 // this instruction. 1920 if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { 1921 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 1922 AddrMode = TestAddrMode; 1923 return true; 1924 } 1925 } 1926 1927 // Otherwise, not (x+c)*scale, just return what we have. 1928 return true; 1929 } 1930 1931 /// MightBeFoldableInst - This is a little filter, which returns true if an 1932 /// addressing computation involving I might be folded into a load/store 1933 /// accessing it. This doesn't need to be perfect, but needs to accept at least 1934 /// the set of instructions that MatchOperationAddr can. 1935 static bool MightBeFoldableInst(Instruction *I) { 1936 switch (I->getOpcode()) { 1937 case Instruction::BitCast: 1938 case Instruction::AddrSpaceCast: 1939 // Don't touch identity bitcasts. 1940 if (I->getType() == I->getOperand(0)->getType()) 1941 return false; 1942 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 1943 case Instruction::PtrToInt: 1944 // PtrToInt is always a noop, as we know that the int type is pointer sized. 1945 return true; 1946 case Instruction::IntToPtr: 1947 // We know the input is intptr_t, so this is foldable. 1948 return true; 1949 case Instruction::Add: 1950 return true; 1951 case Instruction::Mul: 1952 case Instruction::Shl: 1953 // Can only handle X*C and X << C. 1954 return isa<ConstantInt>(I->getOperand(1)); 1955 case Instruction::GetElementPtr: 1956 return true; 1957 default: 1958 return false; 1959 } 1960 } 1961 1962 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 1963 /// \note \p Val is assumed to be the product of some type promotion. 1964 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 1965 /// to be legal, as the non-promoted value would have had the same state. 1966 static bool isPromotedInstructionLegal(const TargetLowering &TLI, Value *Val) { 1967 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 1968 if (!PromotedInst) 1969 return false; 1970 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 1971 // If the ISDOpcode is undefined, it was undefined before the promotion. 1972 if (!ISDOpcode) 1973 return true; 1974 // Otherwise, check if the promoted instruction is legal or not. 1975 return TLI.isOperationLegalOrCustom( 1976 ISDOpcode, TLI.getValueType(PromotedInst->getType())); 1977 } 1978 1979 /// \brief Hepler class to perform type promotion. 1980 class TypePromotionHelper { 1981 /// \brief Utility function to check whether or not a sign or zero extension 1982 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 1983 /// either using the operands of \p Inst or promoting \p Inst. 1984 /// The type of the extension is defined by \p IsSExt. 1985 /// In other words, check if: 1986 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 1987 /// #1 Promotion applies: 1988 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 1989 /// #2 Operand reuses: 1990 /// ext opnd1 to ConsideredExtType. 1991 /// \p PromotedInsts maps the instructions to their type before promotion. 1992 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 1993 const InstrToOrigTy &PromotedInsts, bool IsSExt); 1994 1995 /// \brief Utility function to determine if \p OpIdx should be promoted when 1996 /// promoting \p Inst. 1997 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 1998 if (isa<SelectInst>(Inst) && OpIdx == 0) 1999 return false; 2000 return true; 2001 } 2002 2003 /// \brief Utility function to promote the operand of \p Ext when this 2004 /// operand is a promotable trunc or sext or zext. 2005 /// \p PromotedInsts maps the instructions to their type before promotion. 2006 /// \p CreatedInsts[out] contains how many non-free instructions have been 2007 /// created to promote the operand of Ext. 2008 /// Newly added extensions are inserted in \p Exts. 2009 /// Newly added truncates are inserted in \p Truncs. 2010 /// Should never be called directly. 2011 /// \return The promoted value which is used instead of Ext. 2012 static Value *promoteOperandForTruncAndAnyExt( 2013 Instruction *Ext, TypePromotionTransaction &TPT, 2014 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2015 SmallVectorImpl<Instruction *> *Exts, 2016 SmallVectorImpl<Instruction *> *Truncs); 2017 2018 /// \brief Utility function to promote the operand of \p Ext when this 2019 /// operand is promotable and is not a supported trunc or sext. 2020 /// \p PromotedInsts maps the instructions to their type before promotion. 2021 /// \p CreatedInsts[out] contains how many non-free instructions have been 2022 /// created to promote the operand of Ext. 2023 /// Newly added extensions are inserted in \p Exts. 2024 /// Newly added truncates are inserted in \p Truncs. 2025 /// Should never be called directly. 2026 /// \return The promoted value which is used instead of Ext. 2027 static Value * 2028 promoteOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2029 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2030 SmallVectorImpl<Instruction *> *Exts, 2031 SmallVectorImpl<Instruction *> *Truncs, bool IsSExt); 2032 2033 /// \see promoteOperandForOther. 2034 static Value * 2035 signExtendOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2036 InstrToOrigTy &PromotedInsts, 2037 unsigned &CreatedInsts, 2038 SmallVectorImpl<Instruction *> *Exts, 2039 SmallVectorImpl<Instruction *> *Truncs) { 2040 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, Exts, 2041 Truncs, true); 2042 } 2043 2044 /// \see promoteOperandForOther. 2045 static Value * 2046 zeroExtendOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2047 InstrToOrigTy &PromotedInsts, 2048 unsigned &CreatedInsts, 2049 SmallVectorImpl<Instruction *> *Exts, 2050 SmallVectorImpl<Instruction *> *Truncs) { 2051 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, Exts, 2052 Truncs, false); 2053 } 2054 2055 public: 2056 /// Type for the utility function that promotes the operand of Ext. 2057 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2058 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2059 SmallVectorImpl<Instruction *> *Exts, 2060 SmallVectorImpl<Instruction *> *Truncs); 2061 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2062 /// action to promote the operand of \p Ext instead of using Ext. 2063 /// \return NULL if no promotable action is possible with the current 2064 /// sign extension. 2065 /// \p InsertedTruncs keeps track of all the truncate instructions inserted by 2066 /// the others CodeGenPrepare optimizations. This information is important 2067 /// because we do not want to promote these instructions as CodeGenPrepare 2068 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2069 /// \p PromotedInsts maps the instructions to their type before promotion. 2070 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedTruncs, 2071 const TargetLowering &TLI, 2072 const InstrToOrigTy &PromotedInsts); 2073 }; 2074 2075 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2076 Type *ConsideredExtType, 2077 const InstrToOrigTy &PromotedInsts, 2078 bool IsSExt) { 2079 // The promotion helper does not know how to deal with vector types yet. 2080 // To be able to fix that, we would need to fix the places where we 2081 // statically extend, e.g., constants and such. 2082 if (Inst->getType()->isVectorTy()) 2083 return false; 2084 2085 // We can always get through zext. 2086 if (isa<ZExtInst>(Inst)) 2087 return true; 2088 2089 // sext(sext) is ok too. 2090 if (IsSExt && isa<SExtInst>(Inst)) 2091 return true; 2092 2093 // We can get through binary operator, if it is legal. In other words, the 2094 // binary operator must have a nuw or nsw flag. 2095 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2096 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2097 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2098 (IsSExt && BinOp->hasNoSignedWrap()))) 2099 return true; 2100 2101 // Check if we can do the following simplification. 2102 // ext(trunc(opnd)) --> ext(opnd) 2103 if (!isa<TruncInst>(Inst)) 2104 return false; 2105 2106 Value *OpndVal = Inst->getOperand(0); 2107 // Check if we can use this operand in the extension. 2108 // If the type is larger than the result type of the extension, 2109 // we cannot. 2110 if (!OpndVal->getType()->isIntegerTy() || 2111 OpndVal->getType()->getIntegerBitWidth() > 2112 ConsideredExtType->getIntegerBitWidth()) 2113 return false; 2114 2115 // If the operand of the truncate is not an instruction, we will not have 2116 // any information on the dropped bits. 2117 // (Actually we could for constant but it is not worth the extra logic). 2118 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2119 if (!Opnd) 2120 return false; 2121 2122 // Check if the source of the type is narrow enough. 2123 // I.e., check that trunc just drops extended bits of the same kind of 2124 // the extension. 2125 // #1 get the type of the operand and check the kind of the extended bits. 2126 const Type *OpndType; 2127 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2128 if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt) 2129 OpndType = It->second.Ty; 2130 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2131 OpndType = Opnd->getOperand(0)->getType(); 2132 else 2133 return false; 2134 2135 // #2 check that the truncate just drop extended bits. 2136 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 2137 return true; 2138 2139 return false; 2140 } 2141 2142 TypePromotionHelper::Action TypePromotionHelper::getAction( 2143 Instruction *Ext, const SetOfInstrs &InsertedTruncs, 2144 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2145 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2146 "Unexpected instruction type"); 2147 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2148 Type *ExtTy = Ext->getType(); 2149 bool IsSExt = isa<SExtInst>(Ext); 2150 // If the operand of the extension is not an instruction, we cannot 2151 // get through. 2152 // If it, check we can get through. 2153 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2154 return nullptr; 2155 2156 // Do not promote if the operand has been added by codegenprepare. 2157 // Otherwise, it means we are undoing an optimization that is likely to be 2158 // redone, thus causing potential infinite loop. 2159 if (isa<TruncInst>(ExtOpnd) && InsertedTruncs.count(ExtOpnd)) 2160 return nullptr; 2161 2162 // SExt or Trunc instructions. 2163 // Return the related handler. 2164 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2165 isa<ZExtInst>(ExtOpnd)) 2166 return promoteOperandForTruncAndAnyExt; 2167 2168 // Regular instruction. 2169 // Abort early if we will have to insert non-free instructions. 2170 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2171 return nullptr; 2172 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2173 } 2174 2175 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2176 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2177 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2178 SmallVectorImpl<Instruction *> *Exts, 2179 SmallVectorImpl<Instruction *> *Truncs) { 2180 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2181 // get through it and this method should not be called. 2182 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2183 Value *ExtVal = SExt; 2184 if (isa<ZExtInst>(SExtOpnd)) { 2185 // Replace s|zext(zext(opnd)) 2186 // => zext(opnd). 2187 Value *ZExt = 2188 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2189 TPT.replaceAllUsesWith(SExt, ZExt); 2190 TPT.eraseInstruction(SExt); 2191 ExtVal = ZExt; 2192 } else { 2193 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2194 // => z|sext(opnd). 2195 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2196 } 2197 CreatedInsts = 0; 2198 2199 // Remove dead code. 2200 if (SExtOpnd->use_empty()) 2201 TPT.eraseInstruction(SExtOpnd); 2202 2203 // Check if the extension is still needed. 2204 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2205 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2206 if (ExtInst && Exts) 2207 Exts->push_back(ExtInst); 2208 return ExtVal; 2209 } 2210 2211 // At this point we have: ext ty opnd to ty. 2212 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2213 Value *NextVal = ExtInst->getOperand(0); 2214 TPT.eraseInstruction(ExtInst, NextVal); 2215 return NextVal; 2216 } 2217 2218 Value *TypePromotionHelper::promoteOperandForOther( 2219 Instruction *Ext, TypePromotionTransaction &TPT, 2220 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2221 SmallVectorImpl<Instruction *> *Exts, 2222 SmallVectorImpl<Instruction *> *Truncs, bool IsSExt) { 2223 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2224 // get through it and this method should not be called. 2225 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2226 CreatedInsts = 0; 2227 if (!ExtOpnd->hasOneUse()) { 2228 // ExtOpnd will be promoted. 2229 // All its uses, but Ext, will need to use a truncated value of the 2230 // promoted version. 2231 // Create the truncate now. 2232 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2233 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2234 ITrunc->removeFromParent(); 2235 // Insert it just after the definition. 2236 ITrunc->insertAfter(ExtOpnd); 2237 if (Truncs) 2238 Truncs->push_back(ITrunc); 2239 } 2240 2241 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2242 // Restore the operand of Ext (which has been replace by the previous call 2243 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2244 TPT.setOperand(Ext, 0, ExtOpnd); 2245 } 2246 2247 // Get through the Instruction: 2248 // 1. Update its type. 2249 // 2. Replace the uses of Ext by Inst. 2250 // 3. Extend each operand that needs to be extended. 2251 2252 // Remember the original type of the instruction before promotion. 2253 // This is useful to know that the high bits are sign extended bits. 2254 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2255 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2256 // Step #1. 2257 TPT.mutateType(ExtOpnd, Ext->getType()); 2258 // Step #2. 2259 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2260 // Step #3. 2261 Instruction *ExtForOpnd = Ext; 2262 2263 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2264 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2265 ++OpIdx) { 2266 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2267 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2268 !shouldExtOperand(ExtOpnd, OpIdx)) { 2269 DEBUG(dbgs() << "No need to propagate\n"); 2270 continue; 2271 } 2272 // Check if we can statically extend the operand. 2273 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2274 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2275 DEBUG(dbgs() << "Statically extend\n"); 2276 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2277 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2278 : Cst->getValue().zext(BitWidth); 2279 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2280 continue; 2281 } 2282 // UndefValue are typed, so we have to statically sign extend them. 2283 if (isa<UndefValue>(Opnd)) { 2284 DEBUG(dbgs() << "Statically extend\n"); 2285 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2286 continue; 2287 } 2288 2289 // Otherwise we have to explicity sign extend the operand. 2290 // Check if Ext was reused to extend an operand. 2291 if (!ExtForOpnd) { 2292 // If yes, create a new one. 2293 DEBUG(dbgs() << "More operands to ext\n"); 2294 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2295 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2296 if (!isa<Instruction>(ValForExtOpnd)) { 2297 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2298 continue; 2299 } 2300 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2301 ++CreatedInsts; 2302 } 2303 if (Exts) 2304 Exts->push_back(ExtForOpnd); 2305 TPT.setOperand(ExtForOpnd, 0, Opnd); 2306 2307 // Move the sign extension before the insertion point. 2308 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2309 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2310 // If more sext are required, new instructions will have to be created. 2311 ExtForOpnd = nullptr; 2312 } 2313 if (ExtForOpnd == Ext) { 2314 DEBUG(dbgs() << "Extension is useless now\n"); 2315 TPT.eraseInstruction(Ext); 2316 } 2317 return ExtOpnd; 2318 } 2319 2320 /// IsPromotionProfitable - Check whether or not promoting an instruction 2321 /// to a wider type was profitable. 2322 /// \p MatchedSize gives the number of instructions that have been matched 2323 /// in the addressing mode after the promotion was applied. 2324 /// \p SizeWithPromotion gives the number of created instructions for 2325 /// the promotion plus the number of instructions that have been 2326 /// matched in the addressing mode before the promotion. 2327 /// \p PromotedOperand is the value that has been promoted. 2328 /// \return True if the promotion is profitable, false otherwise. 2329 bool 2330 AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize, 2331 unsigned SizeWithPromotion, 2332 Value *PromotedOperand) const { 2333 // We folded less instructions than what we created to promote the operand. 2334 // This is not profitable. 2335 if (MatchedSize < SizeWithPromotion) 2336 return false; 2337 if (MatchedSize > SizeWithPromotion) 2338 return true; 2339 // The promotion is neutral but it may help folding the sign extension in 2340 // loads for instance. 2341 // Check that we did not create an illegal instruction. 2342 return isPromotedInstructionLegal(TLI, PromotedOperand); 2343 } 2344 2345 /// MatchOperationAddr - Given an instruction or constant expr, see if we can 2346 /// fold the operation into the addressing mode. If so, update the addressing 2347 /// mode and return true, otherwise return false without modifying AddrMode. 2348 /// If \p MovedAway is not NULL, it contains the information of whether or 2349 /// not AddrInst has to be folded into the addressing mode on success. 2350 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2351 /// because it has been moved away. 2352 /// Thus AddrInst must not be added in the matched instructions. 2353 /// This state can happen when AddrInst is a sext, since it may be moved away. 2354 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2355 /// not be referenced anymore. 2356 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, 2357 unsigned Depth, 2358 bool *MovedAway) { 2359 // Avoid exponential behavior on extremely deep expression trees. 2360 if (Depth >= 5) return false; 2361 2362 // By default, all matched instructions stay in place. 2363 if (MovedAway) 2364 *MovedAway = false; 2365 2366 switch (Opcode) { 2367 case Instruction::PtrToInt: 2368 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2369 return MatchAddr(AddrInst->getOperand(0), Depth); 2370 case Instruction::IntToPtr: 2371 // This inttoptr is a no-op if the integer type is pointer sized. 2372 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == 2373 TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace())) 2374 return MatchAddr(AddrInst->getOperand(0), Depth); 2375 return false; 2376 case Instruction::BitCast: 2377 case Instruction::AddrSpaceCast: 2378 // BitCast is always a noop, and we can handle it as long as it is 2379 // int->int or pointer->pointer (we don't want int<->fp or something). 2380 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 2381 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 2382 // Don't touch identity bitcasts. These were probably put here by LSR, 2383 // and we don't want to mess around with them. Assume it knows what it 2384 // is doing. 2385 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2386 return MatchAddr(AddrInst->getOperand(0), Depth); 2387 return false; 2388 case Instruction::Add: { 2389 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2390 ExtAddrMode BackupAddrMode = AddrMode; 2391 unsigned OldSize = AddrModeInsts.size(); 2392 // Start a transaction at this point. 2393 // The LHS may match but not the RHS. 2394 // Therefore, we need a higher level restoration point to undo partially 2395 // matched operation. 2396 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2397 TPT.getRestorationPoint(); 2398 2399 if (MatchAddr(AddrInst->getOperand(1), Depth+1) && 2400 MatchAddr(AddrInst->getOperand(0), Depth+1)) 2401 return true; 2402 2403 // Restore the old addr mode info. 2404 AddrMode = BackupAddrMode; 2405 AddrModeInsts.resize(OldSize); 2406 TPT.rollback(LastKnownGood); 2407 2408 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2409 if (MatchAddr(AddrInst->getOperand(0), Depth+1) && 2410 MatchAddr(AddrInst->getOperand(1), Depth+1)) 2411 return true; 2412 2413 // Otherwise we definitely can't merge the ADD in. 2414 AddrMode = BackupAddrMode; 2415 AddrModeInsts.resize(OldSize); 2416 TPT.rollback(LastKnownGood); 2417 break; 2418 } 2419 //case Instruction::Or: 2420 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2421 //break; 2422 case Instruction::Mul: 2423 case Instruction::Shl: { 2424 // Can only handle X*C and X << C. 2425 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2426 if (!RHS) 2427 return false; 2428 int64_t Scale = RHS->getSExtValue(); 2429 if (Opcode == Instruction::Shl) 2430 Scale = 1LL << Scale; 2431 2432 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2433 } 2434 case Instruction::GetElementPtr: { 2435 // Scan the GEP. We check it if it contains constant offsets and at most 2436 // one variable offset. 2437 int VariableOperand = -1; 2438 unsigned VariableScale = 0; 2439 2440 int64_t ConstantOffset = 0; 2441 const DataLayout *TD = TLI.getDataLayout(); 2442 gep_type_iterator GTI = gep_type_begin(AddrInst); 2443 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2444 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2445 const StructLayout *SL = TD->getStructLayout(STy); 2446 unsigned Idx = 2447 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2448 ConstantOffset += SL->getElementOffset(Idx); 2449 } else { 2450 uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType()); 2451 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2452 ConstantOffset += CI->getSExtValue()*TypeSize; 2453 } else if (TypeSize) { // Scales of zero don't do anything. 2454 // We only allow one variable index at the moment. 2455 if (VariableOperand != -1) 2456 return false; 2457 2458 // Remember the variable index. 2459 VariableOperand = i; 2460 VariableScale = TypeSize; 2461 } 2462 } 2463 } 2464 2465 // A common case is for the GEP to only do a constant offset. In this case, 2466 // just add it to the disp field and check validity. 2467 if (VariableOperand == -1) { 2468 AddrMode.BaseOffs += ConstantOffset; 2469 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ 2470 // Check to see if we can fold the base pointer in too. 2471 if (MatchAddr(AddrInst->getOperand(0), Depth+1)) 2472 return true; 2473 } 2474 AddrMode.BaseOffs -= ConstantOffset; 2475 return false; 2476 } 2477 2478 // Save the valid addressing mode in case we can't match. 2479 ExtAddrMode BackupAddrMode = AddrMode; 2480 unsigned OldSize = AddrModeInsts.size(); 2481 2482 // See if the scale and offset amount is valid for this target. 2483 AddrMode.BaseOffs += ConstantOffset; 2484 2485 // Match the base operand of the GEP. 2486 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { 2487 // If it couldn't be matched, just stuff the value in a register. 2488 if (AddrMode.HasBaseReg) { 2489 AddrMode = BackupAddrMode; 2490 AddrModeInsts.resize(OldSize); 2491 return false; 2492 } 2493 AddrMode.HasBaseReg = true; 2494 AddrMode.BaseReg = AddrInst->getOperand(0); 2495 } 2496 2497 // Match the remaining variable portion of the GEP. 2498 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2499 Depth)) { 2500 // If it couldn't be matched, try stuffing the base into a register 2501 // instead of matching it, and retrying the match of the scale. 2502 AddrMode = BackupAddrMode; 2503 AddrModeInsts.resize(OldSize); 2504 if (AddrMode.HasBaseReg) 2505 return false; 2506 AddrMode.HasBaseReg = true; 2507 AddrMode.BaseReg = AddrInst->getOperand(0); 2508 AddrMode.BaseOffs += ConstantOffset; 2509 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), 2510 VariableScale, Depth)) { 2511 // If even that didn't work, bail. 2512 AddrMode = BackupAddrMode; 2513 AddrModeInsts.resize(OldSize); 2514 return false; 2515 } 2516 } 2517 2518 return true; 2519 } 2520 case Instruction::SExt: 2521 case Instruction::ZExt: { 2522 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 2523 if (!Ext) 2524 return false; 2525 2526 // Try to move this ext out of the way of the addressing mode. 2527 // Ask for a method for doing so. 2528 TypePromotionHelper::Action TPH = 2529 TypePromotionHelper::getAction(Ext, InsertedTruncs, TLI, PromotedInsts); 2530 if (!TPH) 2531 return false; 2532 2533 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2534 TPT.getRestorationPoint(); 2535 unsigned CreatedInsts = 0; 2536 Value *PromotedOperand = 2537 TPH(Ext, TPT, PromotedInsts, CreatedInsts, nullptr, nullptr); 2538 // SExt has been moved away. 2539 // Thus either it will be rematched later in the recursive calls or it is 2540 // gone. Anyway, we must not fold it into the addressing mode at this point. 2541 // E.g., 2542 // op = add opnd, 1 2543 // idx = ext op 2544 // addr = gep base, idx 2545 // is now: 2546 // promotedOpnd = ext opnd <- no match here 2547 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2548 // addr = gep base, op <- match 2549 if (MovedAway) 2550 *MovedAway = true; 2551 2552 assert(PromotedOperand && 2553 "TypePromotionHelper should have filtered out those cases"); 2554 2555 ExtAddrMode BackupAddrMode = AddrMode; 2556 unsigned OldSize = AddrModeInsts.size(); 2557 2558 if (!MatchAddr(PromotedOperand, Depth) || 2559 !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts, 2560 PromotedOperand)) { 2561 AddrMode = BackupAddrMode; 2562 AddrModeInsts.resize(OldSize); 2563 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2564 TPT.rollback(LastKnownGood); 2565 return false; 2566 } 2567 return true; 2568 } 2569 } 2570 return false; 2571 } 2572 2573 /// MatchAddr - If we can, try to add the value of 'Addr' into the current 2574 /// addressing mode. If Addr can't be added to AddrMode this returns false and 2575 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type 2576 /// or intptr_t for the target. 2577 /// 2578 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { 2579 // Start a transaction at this point that we will rollback if the matching 2580 // fails. 2581 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2582 TPT.getRestorationPoint(); 2583 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2584 // Fold in immediates if legal for the target. 2585 AddrMode.BaseOffs += CI->getSExtValue(); 2586 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2587 return true; 2588 AddrMode.BaseOffs -= CI->getSExtValue(); 2589 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2590 // If this is a global variable, try to fold it into the addressing mode. 2591 if (!AddrMode.BaseGV) { 2592 AddrMode.BaseGV = GV; 2593 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2594 return true; 2595 AddrMode.BaseGV = nullptr; 2596 } 2597 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2598 ExtAddrMode BackupAddrMode = AddrMode; 2599 unsigned OldSize = AddrModeInsts.size(); 2600 2601 // Check to see if it is possible to fold this operation. 2602 bool MovedAway = false; 2603 if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2604 // This instruction may have been move away. If so, there is nothing 2605 // to check here. 2606 if (MovedAway) 2607 return true; 2608 // Okay, it's possible to fold this. Check to see if it is actually 2609 // *profitable* to do so. We use a simple cost model to avoid increasing 2610 // register pressure too much. 2611 if (I->hasOneUse() || 2612 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 2613 AddrModeInsts.push_back(I); 2614 return true; 2615 } 2616 2617 // It isn't profitable to do this, roll back. 2618 //cerr << "NOT FOLDING: " << *I; 2619 AddrMode = BackupAddrMode; 2620 AddrModeInsts.resize(OldSize); 2621 TPT.rollback(LastKnownGood); 2622 } 2623 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 2624 if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) 2625 return true; 2626 TPT.rollback(LastKnownGood); 2627 } else if (isa<ConstantPointerNull>(Addr)) { 2628 // Null pointer gets folded without affecting the addressing mode. 2629 return true; 2630 } 2631 2632 // Worse case, the target should support [reg] addressing modes. :) 2633 if (!AddrMode.HasBaseReg) { 2634 AddrMode.HasBaseReg = true; 2635 AddrMode.BaseReg = Addr; 2636 // Still check for legality in case the target supports [imm] but not [i+r]. 2637 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2638 return true; 2639 AddrMode.HasBaseReg = false; 2640 AddrMode.BaseReg = nullptr; 2641 } 2642 2643 // If the base register is already taken, see if we can do [r+r]. 2644 if (AddrMode.Scale == 0) { 2645 AddrMode.Scale = 1; 2646 AddrMode.ScaledReg = Addr; 2647 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2648 return true; 2649 AddrMode.Scale = 0; 2650 AddrMode.ScaledReg = nullptr; 2651 } 2652 // Couldn't match. 2653 TPT.rollback(LastKnownGood); 2654 return false; 2655 } 2656 2657 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified 2658 /// inline asm call are due to memory operands. If so, return true, otherwise 2659 /// return false. 2660 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 2661 const TargetLowering &TLI) { 2662 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI)); 2663 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2664 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2665 2666 // Compute the constraint code and ConstraintType to use. 2667 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 2668 2669 // If this asm operand is our Value*, and if it isn't an indirect memory 2670 // operand, we can't fold it! 2671 if (OpInfo.CallOperandVal == OpVal && 2672 (OpInfo.ConstraintType != TargetLowering::C_Memory || 2673 !OpInfo.isIndirect)) 2674 return false; 2675 } 2676 2677 return true; 2678 } 2679 2680 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a 2681 /// memory use. If we find an obviously non-foldable instruction, return true. 2682 /// Add the ultimately found memory instructions to MemoryUses. 2683 static bool FindAllMemoryUses(Instruction *I, 2684 SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses, 2685 SmallPtrSetImpl<Instruction*> &ConsideredInsts, 2686 const TargetLowering &TLI) { 2687 // If we already considered this instruction, we're done. 2688 if (!ConsideredInsts.insert(I).second) 2689 return false; 2690 2691 // If this is an obviously unfoldable instruction, bail out. 2692 if (!MightBeFoldableInst(I)) 2693 return true; 2694 2695 // Loop over all the uses, recursively processing them. 2696 for (Use &U : I->uses()) { 2697 Instruction *UserI = cast<Instruction>(U.getUser()); 2698 2699 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 2700 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 2701 continue; 2702 } 2703 2704 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 2705 unsigned opNo = U.getOperandNo(); 2706 if (opNo == 0) return true; // Storing addr, not into addr. 2707 MemoryUses.push_back(std::make_pair(SI, opNo)); 2708 continue; 2709 } 2710 2711 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 2712 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 2713 if (!IA) return true; 2714 2715 // If this is a memory operand, we're cool, otherwise bail out. 2716 if (!IsOperandAMemoryOperand(CI, IA, I, TLI)) 2717 return true; 2718 continue; 2719 } 2720 2721 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI)) 2722 return true; 2723 } 2724 2725 return false; 2726 } 2727 2728 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at 2729 /// the use site that we're folding it into. If so, there is no cost to 2730 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values 2731 /// that we know are live at the instruction already. 2732 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 2733 Value *KnownLive2) { 2734 // If Val is either of the known-live values, we know it is live! 2735 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 2736 return true; 2737 2738 // All values other than instructions and arguments (e.g. constants) are live. 2739 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 2740 2741 // If Val is a constant sized alloca in the entry block, it is live, this is 2742 // true because it is just a reference to the stack/frame pointer, which is 2743 // live for the whole function. 2744 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 2745 if (AI->isStaticAlloca()) 2746 return true; 2747 2748 // Check to see if this value is already used in the memory instruction's 2749 // block. If so, it's already live into the block at the very least, so we 2750 // can reasonably fold it. 2751 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 2752 } 2753 2754 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing 2755 /// mode of the machine to fold the specified instruction into a load or store 2756 /// that ultimately uses it. However, the specified instruction has multiple 2757 /// uses. Given this, it may actually increase register pressure to fold it 2758 /// into the load. For example, consider this code: 2759 /// 2760 /// X = ... 2761 /// Y = X+1 2762 /// use(Y) -> nonload/store 2763 /// Z = Y+1 2764 /// load Z 2765 /// 2766 /// In this case, Y has multiple uses, and can be folded into the load of Z 2767 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 2768 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 2769 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 2770 /// number of computations either. 2771 /// 2772 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 2773 /// X was live across 'load Z' for other reasons, we actually *would* want to 2774 /// fold the addressing mode in the Z case. This would make Y die earlier. 2775 bool AddressingModeMatcher:: 2776 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 2777 ExtAddrMode &AMAfter) { 2778 if (IgnoreProfitability) return true; 2779 2780 // AMBefore is the addressing mode before this instruction was folded into it, 2781 // and AMAfter is the addressing mode after the instruction was folded. Get 2782 // the set of registers referenced by AMAfter and subtract out those 2783 // referenced by AMBefore: this is the set of values which folding in this 2784 // address extends the lifetime of. 2785 // 2786 // Note that there are only two potential values being referenced here, 2787 // BaseReg and ScaleReg (global addresses are always available, as are any 2788 // folded immediates). 2789 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 2790 2791 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 2792 // lifetime wasn't extended by adding this instruction. 2793 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2794 BaseReg = nullptr; 2795 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2796 ScaledReg = nullptr; 2797 2798 // If folding this instruction (and it's subexprs) didn't extend any live 2799 // ranges, we're ok with it. 2800 if (!BaseReg && !ScaledReg) 2801 return true; 2802 2803 // If all uses of this instruction are ultimately load/store/inlineasm's, 2804 // check to see if their addressing modes will include this instruction. If 2805 // so, we can fold it into all uses, so it doesn't matter if it has multiple 2806 // uses. 2807 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 2808 SmallPtrSet<Instruction*, 16> ConsideredInsts; 2809 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI)) 2810 return false; // Has a non-memory, non-foldable use! 2811 2812 // Now that we know that all uses of this instruction are part of a chain of 2813 // computation involving only operations that could theoretically be folded 2814 // into a memory use, loop over each of these uses and see if they could 2815 // *actually* fold the instruction. 2816 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 2817 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 2818 Instruction *User = MemoryUses[i].first; 2819 unsigned OpNo = MemoryUses[i].second; 2820 2821 // Get the access type of this use. If the use isn't a pointer, we don't 2822 // know what it accesses. 2823 Value *Address = User->getOperand(OpNo); 2824 if (!Address->getType()->isPointerTy()) 2825 return false; 2826 Type *AddressAccessTy = Address->getType()->getPointerElementType(); 2827 2828 // Do a match against the root of this address, ignoring profitability. This 2829 // will tell us if the addressing mode for the memory operation will 2830 // *actually* cover the shared instruction. 2831 ExtAddrMode Result; 2832 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2833 TPT.getRestorationPoint(); 2834 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy, 2835 MemoryInst, Result, InsertedTruncs, 2836 PromotedInsts, TPT); 2837 Matcher.IgnoreProfitability = true; 2838 bool Success = Matcher.MatchAddr(Address, 0); 2839 (void)Success; assert(Success && "Couldn't select *anything*?"); 2840 2841 // The match was to check the profitability, the changes made are not 2842 // part of the original matcher. Therefore, they should be dropped 2843 // otherwise the original matcher will not present the right state. 2844 TPT.rollback(LastKnownGood); 2845 2846 // If the match didn't cover I, then it won't be shared by it. 2847 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 2848 I) == MatchedAddrModeInsts.end()) 2849 return false; 2850 2851 MatchedAddrModeInsts.clear(); 2852 } 2853 2854 return true; 2855 } 2856 2857 } // end anonymous namespace 2858 2859 /// IsNonLocalValue - Return true if the specified values are defined in a 2860 /// different basic block than BB. 2861 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 2862 if (Instruction *I = dyn_cast<Instruction>(V)) 2863 return I->getParent() != BB; 2864 return false; 2865 } 2866 2867 /// OptimizeMemoryInst - Load and Store Instructions often have 2868 /// addressing modes that can do significant amounts of computation. As such, 2869 /// instruction selection will try to get the load or store to do as much 2870 /// computation as possible for the program. The problem is that isel can only 2871 /// see within a single block. As such, we sink as much legal addressing mode 2872 /// stuff into the block as possible. 2873 /// 2874 /// This method is used to optimize both load/store and inline asms with memory 2875 /// operands. 2876 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 2877 Type *AccessTy) { 2878 Value *Repl = Addr; 2879 2880 // Try to collapse single-value PHI nodes. This is necessary to undo 2881 // unprofitable PRE transformations. 2882 SmallVector<Value*, 8> worklist; 2883 SmallPtrSet<Value*, 16> Visited; 2884 worklist.push_back(Addr); 2885 2886 // Use a worklist to iteratively look through PHI nodes, and ensure that 2887 // the addressing mode obtained from the non-PHI roots of the graph 2888 // are equivalent. 2889 Value *Consensus = nullptr; 2890 unsigned NumUsesConsensus = 0; 2891 bool IsNumUsesConsensusValid = false; 2892 SmallVector<Instruction*, 16> AddrModeInsts; 2893 ExtAddrMode AddrMode; 2894 TypePromotionTransaction TPT; 2895 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2896 TPT.getRestorationPoint(); 2897 while (!worklist.empty()) { 2898 Value *V = worklist.back(); 2899 worklist.pop_back(); 2900 2901 // Break use-def graph loops. 2902 if (!Visited.insert(V).second) { 2903 Consensus = nullptr; 2904 break; 2905 } 2906 2907 // For a PHI node, push all of its incoming values. 2908 if (PHINode *P = dyn_cast<PHINode>(V)) { 2909 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) 2910 worklist.push_back(P->getIncomingValue(i)); 2911 continue; 2912 } 2913 2914 // For non-PHIs, determine the addressing mode being computed. 2915 SmallVector<Instruction*, 16> NewAddrModeInsts; 2916 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 2917 V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet, 2918 PromotedInsts, TPT); 2919 2920 // This check is broken into two cases with very similar code to avoid using 2921 // getNumUses() as much as possible. Some values have a lot of uses, so 2922 // calling getNumUses() unconditionally caused a significant compile-time 2923 // regression. 2924 if (!Consensus) { 2925 Consensus = V; 2926 AddrMode = NewAddrMode; 2927 AddrModeInsts = NewAddrModeInsts; 2928 continue; 2929 } else if (NewAddrMode == AddrMode) { 2930 if (!IsNumUsesConsensusValid) { 2931 NumUsesConsensus = Consensus->getNumUses(); 2932 IsNumUsesConsensusValid = true; 2933 } 2934 2935 // Ensure that the obtained addressing mode is equivalent to that obtained 2936 // for all other roots of the PHI traversal. Also, when choosing one 2937 // such root as representative, select the one with the most uses in order 2938 // to keep the cost modeling heuristics in AddressingModeMatcher 2939 // applicable. 2940 unsigned NumUses = V->getNumUses(); 2941 if (NumUses > NumUsesConsensus) { 2942 Consensus = V; 2943 NumUsesConsensus = NumUses; 2944 AddrModeInsts = NewAddrModeInsts; 2945 } 2946 continue; 2947 } 2948 2949 Consensus = nullptr; 2950 break; 2951 } 2952 2953 // If the addressing mode couldn't be determined, or if multiple different 2954 // ones were determined, bail out now. 2955 if (!Consensus) { 2956 TPT.rollback(LastKnownGood); 2957 return false; 2958 } 2959 TPT.commit(); 2960 2961 // Check to see if any of the instructions supersumed by this addr mode are 2962 // non-local to I's BB. 2963 bool AnyNonLocal = false; 2964 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 2965 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 2966 AnyNonLocal = true; 2967 break; 2968 } 2969 } 2970 2971 // If all the instructions matched are already in this BB, don't do anything. 2972 if (!AnyNonLocal) { 2973 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 2974 return false; 2975 } 2976 2977 // Insert this computation right after this user. Since our caller is 2978 // scanning from the top of the BB to the bottom, reuse of the expr are 2979 // guaranteed to happen later. 2980 IRBuilder<> Builder(MemoryInst); 2981 2982 // Now that we determined the addressing expression we want to use and know 2983 // that we have to sink it into this block. Check to see if we have already 2984 // done this for some other load/store instr in this block. If so, reuse the 2985 // computation. 2986 Value *&SunkAddr = SunkAddrs[Addr]; 2987 if (SunkAddr) { 2988 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 2989 << *MemoryInst << "\n"); 2990 if (SunkAddr->getType() != Addr->getType()) 2991 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 2992 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 2993 TM && TM->getSubtarget<TargetSubtargetInfo>().useAA())) { 2994 // By default, we use the GEP-based method when AA is used later. This 2995 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 2996 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 2997 << *MemoryInst << "\n"); 2998 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 2999 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3000 3001 // First, find the pointer. 3002 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3003 ResultPtr = AddrMode.BaseReg; 3004 AddrMode.BaseReg = nullptr; 3005 } 3006 3007 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3008 // We can't add more than one pointer together, nor can we scale a 3009 // pointer (both of which seem meaningless). 3010 if (ResultPtr || AddrMode.Scale != 1) 3011 return false; 3012 3013 ResultPtr = AddrMode.ScaledReg; 3014 AddrMode.Scale = 0; 3015 } 3016 3017 if (AddrMode.BaseGV) { 3018 if (ResultPtr) 3019 return false; 3020 3021 ResultPtr = AddrMode.BaseGV; 3022 } 3023 3024 // If the real base value actually came from an inttoptr, then the matcher 3025 // will look through it and provide only the integer value. In that case, 3026 // use it here. 3027 if (!ResultPtr && AddrMode.BaseReg) { 3028 ResultPtr = 3029 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3030 AddrMode.BaseReg = nullptr; 3031 } else if (!ResultPtr && AddrMode.Scale == 1) { 3032 ResultPtr = 3033 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3034 AddrMode.Scale = 0; 3035 } 3036 3037 if (!ResultPtr && 3038 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3039 SunkAddr = Constant::getNullValue(Addr->getType()); 3040 } else if (!ResultPtr) { 3041 return false; 3042 } else { 3043 Type *I8PtrTy = 3044 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3045 3046 // Start with the base register. Do this first so that subsequent address 3047 // matching finds it last, which will prevent it from trying to match it 3048 // as the scaled value in case it happens to be a mul. That would be 3049 // problematic if we've sunk a different mul for the scale, because then 3050 // we'd end up sinking both muls. 3051 if (AddrMode.BaseReg) { 3052 Value *V = AddrMode.BaseReg; 3053 if (V->getType() != IntPtrTy) 3054 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3055 3056 ResultIndex = V; 3057 } 3058 3059 // Add the scale value. 3060 if (AddrMode.Scale) { 3061 Value *V = AddrMode.ScaledReg; 3062 if (V->getType() == IntPtrTy) { 3063 // done. 3064 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3065 cast<IntegerType>(V->getType())->getBitWidth()) { 3066 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3067 } else { 3068 // It is only safe to sign extend the BaseReg if we know that the math 3069 // required to create it did not overflow before we extend it. Since 3070 // the original IR value was tossed in favor of a constant back when 3071 // the AddrMode was created we need to bail out gracefully if widths 3072 // do not match instead of extending it. 3073 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3074 if (I && (ResultIndex != AddrMode.BaseReg)) 3075 I->eraseFromParent(); 3076 return false; 3077 } 3078 3079 if (AddrMode.Scale != 1) 3080 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3081 "sunkaddr"); 3082 if (ResultIndex) 3083 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3084 else 3085 ResultIndex = V; 3086 } 3087 3088 // Add in the Base Offset if present. 3089 if (AddrMode.BaseOffs) { 3090 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3091 if (ResultIndex) { 3092 // We need to add this separately from the scale above to help with 3093 // SDAG consecutive load/store merging. 3094 if (ResultPtr->getType() != I8PtrTy) 3095 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3096 ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 3097 } 3098 3099 ResultIndex = V; 3100 } 3101 3102 if (!ResultIndex) { 3103 SunkAddr = ResultPtr; 3104 } else { 3105 if (ResultPtr->getType() != I8PtrTy) 3106 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3107 SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 3108 } 3109 3110 if (SunkAddr->getType() != Addr->getType()) 3111 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3112 } 3113 } else { 3114 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3115 << *MemoryInst << "\n"); 3116 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 3117 Value *Result = nullptr; 3118 3119 // Start with the base register. Do this first so that subsequent address 3120 // matching finds it last, which will prevent it from trying to match it 3121 // as the scaled value in case it happens to be a mul. That would be 3122 // problematic if we've sunk a different mul for the scale, because then 3123 // we'd end up sinking both muls. 3124 if (AddrMode.BaseReg) { 3125 Value *V = AddrMode.BaseReg; 3126 if (V->getType()->isPointerTy()) 3127 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3128 if (V->getType() != IntPtrTy) 3129 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3130 Result = V; 3131 } 3132 3133 // Add the scale value. 3134 if (AddrMode.Scale) { 3135 Value *V = AddrMode.ScaledReg; 3136 if (V->getType() == IntPtrTy) { 3137 // done. 3138 } else if (V->getType()->isPointerTy()) { 3139 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3140 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3141 cast<IntegerType>(V->getType())->getBitWidth()) { 3142 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3143 } else { 3144 // It is only safe to sign extend the BaseReg if we know that the math 3145 // required to create it did not overflow before we extend it. Since 3146 // the original IR value was tossed in favor of a constant back when 3147 // the AddrMode was created we need to bail out gracefully if widths 3148 // do not match instead of extending it. 3149 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3150 if (I && (Result != AddrMode.BaseReg)) 3151 I->eraseFromParent(); 3152 return false; 3153 } 3154 if (AddrMode.Scale != 1) 3155 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3156 "sunkaddr"); 3157 if (Result) 3158 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3159 else 3160 Result = V; 3161 } 3162 3163 // Add in the BaseGV if present. 3164 if (AddrMode.BaseGV) { 3165 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3166 if (Result) 3167 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3168 else 3169 Result = V; 3170 } 3171 3172 // Add in the Base Offset if present. 3173 if (AddrMode.BaseOffs) { 3174 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3175 if (Result) 3176 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3177 else 3178 Result = V; 3179 } 3180 3181 if (!Result) 3182 SunkAddr = Constant::getNullValue(Addr->getType()); 3183 else 3184 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3185 } 3186 3187 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3188 3189 // If we have no uses, recursively delete the value and all dead instructions 3190 // using it. 3191 if (Repl->use_empty()) { 3192 // This can cause recursive deletion, which can invalidate our iterator. 3193 // Use a WeakVH to hold onto it in case this happens. 3194 WeakVH IterHandle(CurInstIterator); 3195 BasicBlock *BB = CurInstIterator->getParent(); 3196 3197 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3198 3199 if (IterHandle != CurInstIterator) { 3200 // If the iterator instruction was recursively deleted, start over at the 3201 // start of the block. 3202 CurInstIterator = BB->begin(); 3203 SunkAddrs.clear(); 3204 } 3205 } 3206 ++NumMemoryInsts; 3207 return true; 3208 } 3209 3210 /// OptimizeInlineAsmInst - If there are any memory operands, use 3211 /// OptimizeMemoryInst to sink their address computing into the block when 3212 /// possible / profitable. 3213 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { 3214 bool MadeChange = false; 3215 3216 TargetLowering::AsmOperandInfoVector 3217 TargetConstraints = TLI->ParseConstraints(CS); 3218 unsigned ArgNo = 0; 3219 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3220 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3221 3222 // Compute the constraint code and ConstraintType to use. 3223 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3224 3225 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3226 OpInfo.isIndirect) { 3227 Value *OpVal = CS->getArgOperand(ArgNo++); 3228 MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType()); 3229 } else if (OpInfo.Type == InlineAsm::isInput) 3230 ArgNo++; 3231 } 3232 3233 return MadeChange; 3234 } 3235 3236 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3237 /// sign extensions. 3238 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3239 assert(!Inst->use_empty() && "Input must have at least one use"); 3240 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3241 bool IsSExt = isa<SExtInst>(FirstUser); 3242 Type *ExtTy = FirstUser->getType(); 3243 for (const User *U : Inst->users()) { 3244 const Instruction *UI = cast<Instruction>(U); 3245 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3246 return false; 3247 Type *CurTy = UI->getType(); 3248 // Same input and output types: Same instruction after CSE. 3249 if (CurTy == ExtTy) 3250 continue; 3251 3252 // If IsSExt is true, we are in this situation: 3253 // a = Inst 3254 // b = sext ty1 a to ty2 3255 // c = sext ty1 a to ty3 3256 // Assuming ty2 is shorter than ty3, this could be turned into: 3257 // a = Inst 3258 // b = sext ty1 a to ty2 3259 // c = sext ty2 b to ty3 3260 // However, the last sext is not free. 3261 if (IsSExt) 3262 return false; 3263 3264 // This is a ZExt, maybe this is free to extend from one type to another. 3265 // In that case, we would not account for a different use. 3266 Type *NarrowTy; 3267 Type *LargeTy; 3268 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3269 CurTy->getScalarType()->getIntegerBitWidth()) { 3270 NarrowTy = CurTy; 3271 LargeTy = ExtTy; 3272 } else { 3273 NarrowTy = ExtTy; 3274 LargeTy = CurTy; 3275 } 3276 3277 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3278 return false; 3279 } 3280 // All uses are the same or can be derived from one another for free. 3281 return true; 3282 } 3283 3284 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 3285 /// load instruction. 3286 /// If an ext(load) can be formed, it is returned via \p LI for the load 3287 /// and \p Inst for the extension. 3288 /// Otherwise LI == nullptr and Inst == nullptr. 3289 /// When some promotion happened, \p TPT contains the proper state to 3290 /// revert them. 3291 /// 3292 /// \return true when promoting was necessary to expose the ext(load) 3293 /// opportunity, false otherwise. 3294 /// 3295 /// Example: 3296 /// \code 3297 /// %ld = load i32* %addr 3298 /// %add = add nuw i32 %ld, 4 3299 /// %zext = zext i32 %add to i64 3300 /// \endcode 3301 /// => 3302 /// \code 3303 /// %ld = load i32* %addr 3304 /// %zext = zext i32 %ld to i64 3305 /// %add = add nuw i64 %zext, 4 3306 /// \encode 3307 /// Thanks to the promotion, we can match zext(load i32*) to i64. 3308 bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT, 3309 LoadInst *&LI, Instruction *&Inst, 3310 const SmallVectorImpl<Instruction *> &Exts, 3311 unsigned CreatedInsts = 0) { 3312 // Iterate over all the extensions to see if one form an ext(load). 3313 for (auto I : Exts) { 3314 // Check if we directly have ext(load). 3315 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 3316 Inst = I; 3317 // No promotion happened here. 3318 return false; 3319 } 3320 // Check whether or not we want to do any promotion. 3321 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 3322 continue; 3323 // Get the action to perform the promotion. 3324 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 3325 I, InsertedTruncsSet, *TLI, PromotedInsts); 3326 // Check if we can promote. 3327 if (!TPH) 3328 continue; 3329 // Save the current state. 3330 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3331 TPT.getRestorationPoint(); 3332 SmallVector<Instruction *, 4> NewExts; 3333 unsigned NewCreatedInsts = 0; 3334 // Promote. 3335 Value *PromotedVal = 3336 TPH(I, TPT, PromotedInsts, NewCreatedInsts, &NewExts, nullptr); 3337 assert(PromotedVal && 3338 "TypePromotionHelper should have filtered out those cases"); 3339 3340 // We would be able to merge only one extension in a load. 3341 // Therefore, if we have more than 1 new extension we heuristically 3342 // cut this search path, because it means we degrade the code quality. 3343 // With exactly 2, the transformation is neutral, because we will merge 3344 // one extension but leave one. However, we optimistically keep going, 3345 // because the new extension may be removed too. 3346 unsigned TotalCreatedInsts = CreatedInsts + NewCreatedInsts; 3347 if (!StressExtLdPromotion && 3348 (TotalCreatedInsts > 1 || 3349 !isPromotedInstructionLegal(*TLI, PromotedVal))) { 3350 // The promotion is not profitable, rollback to the previous state. 3351 TPT.rollback(LastKnownGood); 3352 continue; 3353 } 3354 // The promotion is profitable. 3355 // Check if it exposes an ext(load). 3356 (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInsts); 3357 if (LI && (StressExtLdPromotion || NewCreatedInsts == 0 || 3358 // If we have created a new extension, i.e., now we have two 3359 // extensions. We must make sure one of them is merged with 3360 // the load, otherwise we may degrade the code quality. 3361 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 3362 // Promotion happened. 3363 return true; 3364 // If this does not help to expose an ext(load) then, rollback. 3365 TPT.rollback(LastKnownGood); 3366 } 3367 // None of the extension can form an ext(load). 3368 LI = nullptr; 3369 Inst = nullptr; 3370 return false; 3371 } 3372 3373 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same 3374 /// basic block as the load, unless conditions are unfavorable. This allows 3375 /// SelectionDAG to fold the extend into the load. 3376 /// \p I[in/out] the extension may be modified during the process if some 3377 /// promotions apply. 3378 /// 3379 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) { 3380 // Try to promote a chain of computation if it allows to form 3381 // an extended load. 3382 TypePromotionTransaction TPT; 3383 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3384 TPT.getRestorationPoint(); 3385 SmallVector<Instruction *, 1> Exts; 3386 Exts.push_back(I); 3387 // Look for a load being extended. 3388 LoadInst *LI = nullptr; 3389 Instruction *OldExt = I; 3390 bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts); 3391 if (!LI || !I) { 3392 assert(!HasPromoted && !LI && "If we did not match any load instruction " 3393 "the code must remain the same"); 3394 I = OldExt; 3395 return false; 3396 } 3397 3398 // If they're already in the same block, there's nothing to do. 3399 // Make the cheap checks first if we did not promote. 3400 // If we promoted, we need to check if it is indeed profitable. 3401 if (!HasPromoted && LI->getParent() == I->getParent()) 3402 return false; 3403 3404 EVT VT = TLI->getValueType(I->getType()); 3405 EVT LoadVT = TLI->getValueType(LI->getType()); 3406 3407 // If the load has other users and the truncate is not free, this probably 3408 // isn't worthwhile. 3409 if (!LI->hasOneUse() && TLI && 3410 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 3411 !TLI->isTruncateFree(I->getType(), LI->getType())) { 3412 I = OldExt; 3413 TPT.rollback(LastKnownGood); 3414 return false; 3415 } 3416 3417 // Check whether the target supports casts folded into loads. 3418 unsigned LType; 3419 if (isa<ZExtInst>(I)) 3420 LType = ISD::ZEXTLOAD; 3421 else { 3422 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 3423 LType = ISD::SEXTLOAD; 3424 } 3425 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 3426 I = OldExt; 3427 TPT.rollback(LastKnownGood); 3428 return false; 3429 } 3430 3431 // Move the extend into the same block as the load, so that SelectionDAG 3432 // can fold it. 3433 TPT.commit(); 3434 I->removeFromParent(); 3435 I->insertAfter(LI); 3436 ++NumExtsMoved; 3437 return true; 3438 } 3439 3440 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { 3441 BasicBlock *DefBB = I->getParent(); 3442 3443 // If the result of a {s|z}ext and its source are both live out, rewrite all 3444 // other uses of the source with result of extension. 3445 Value *Src = I->getOperand(0); 3446 if (Src->hasOneUse()) 3447 return false; 3448 3449 // Only do this xform if truncating is free. 3450 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 3451 return false; 3452 3453 // Only safe to perform the optimization if the source is also defined in 3454 // this block. 3455 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 3456 return false; 3457 3458 bool DefIsLiveOut = false; 3459 for (User *U : I->users()) { 3460 Instruction *UI = cast<Instruction>(U); 3461 3462 // Figure out which BB this ext is used in. 3463 BasicBlock *UserBB = UI->getParent(); 3464 if (UserBB == DefBB) continue; 3465 DefIsLiveOut = true; 3466 break; 3467 } 3468 if (!DefIsLiveOut) 3469 return false; 3470 3471 // Make sure none of the uses are PHI nodes. 3472 for (User *U : Src->users()) { 3473 Instruction *UI = cast<Instruction>(U); 3474 BasicBlock *UserBB = UI->getParent(); 3475 if (UserBB == DefBB) continue; 3476 // Be conservative. We don't want this xform to end up introducing 3477 // reloads just before load / store instructions. 3478 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 3479 return false; 3480 } 3481 3482 // InsertedTruncs - Only insert one trunc in each block once. 3483 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 3484 3485 bool MadeChange = false; 3486 for (Use &U : Src->uses()) { 3487 Instruction *User = cast<Instruction>(U.getUser()); 3488 3489 // Figure out which BB this ext is used in. 3490 BasicBlock *UserBB = User->getParent(); 3491 if (UserBB == DefBB) continue; 3492 3493 // Both src and def are live in this block. Rewrite the use. 3494 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 3495 3496 if (!InsertedTrunc) { 3497 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3498 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); 3499 InsertedTruncsSet.insert(InsertedTrunc); 3500 } 3501 3502 // Replace a use of the {s|z}ext source with a use of the result. 3503 U = InsertedTrunc; 3504 ++NumExtUses; 3505 MadeChange = true; 3506 } 3507 3508 return MadeChange; 3509 } 3510 3511 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be 3512 /// turned into an explicit branch. 3513 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { 3514 // FIXME: This should use the same heuristics as IfConversion to determine 3515 // whether a select is better represented as a branch. This requires that 3516 // branch probability metadata is preserved for the select, which is not the 3517 // case currently. 3518 3519 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 3520 3521 // If the branch is predicted right, an out of order CPU can avoid blocking on 3522 // the compare. Emit cmovs on compares with a memory operand as branches to 3523 // avoid stalls on the load from memory. If the compare has more than one use 3524 // there's probably another cmov or setcc around so it's not worth emitting a 3525 // branch. 3526 if (!Cmp) 3527 return false; 3528 3529 Value *CmpOp0 = Cmp->getOperand(0); 3530 Value *CmpOp1 = Cmp->getOperand(1); 3531 3532 // We check that the memory operand has one use to avoid uses of the loaded 3533 // value directly after the compare, making branches unprofitable. 3534 return Cmp->hasOneUse() && 3535 ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 3536 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); 3537 } 3538 3539 3540 /// If we have a SelectInst that will likely profit from branch prediction, 3541 /// turn it into a branch. 3542 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { 3543 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 3544 3545 // Can we convert the 'select' to CF ? 3546 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 3547 return false; 3548 3549 TargetLowering::SelectSupportKind SelectKind; 3550 if (VectorCond) 3551 SelectKind = TargetLowering::VectorMaskSelect; 3552 else if (SI->getType()->isVectorTy()) 3553 SelectKind = TargetLowering::ScalarCondVectorVal; 3554 else 3555 SelectKind = TargetLowering::ScalarValSelect; 3556 3557 // Do we have efficient codegen support for this kind of 'selects' ? 3558 if (TLI->isSelectSupported(SelectKind)) { 3559 // We have efficient codegen support for the select instruction. 3560 // Check if it is profitable to keep this 'select'. 3561 if (!TLI->isPredictableSelectExpensive() || 3562 !isFormingBranchFromSelectProfitable(SI)) 3563 return false; 3564 } 3565 3566 ModifiedDT = true; 3567 3568 // First, we split the block containing the select into 2 blocks. 3569 BasicBlock *StartBlock = SI->getParent(); 3570 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 3571 BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 3572 3573 // Create a new block serving as the landing pad for the branch. 3574 BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", 3575 NextBlock->getParent(), NextBlock); 3576 3577 // Move the unconditional branch from the block with the select in it into our 3578 // landing pad block. 3579 StartBlock->getTerminator()->eraseFromParent(); 3580 BranchInst::Create(NextBlock, SmallBlock); 3581 3582 // Insert the real conditional branch based on the original condition. 3583 BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); 3584 3585 // The select itself is replaced with a PHI Node. 3586 PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); 3587 PN->takeName(SI); 3588 PN->addIncoming(SI->getTrueValue(), StartBlock); 3589 PN->addIncoming(SI->getFalseValue(), SmallBlock); 3590 SI->replaceAllUsesWith(PN); 3591 SI->eraseFromParent(); 3592 3593 // Instruct OptimizeBlock to skip to the next block. 3594 CurInstIterator = StartBlock->end(); 3595 ++NumSelectsExpanded; 3596 return true; 3597 } 3598 3599 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 3600 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 3601 int SplatElem = -1; 3602 for (unsigned i = 0; i < Mask.size(); ++i) { 3603 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 3604 return false; 3605 SplatElem = Mask[i]; 3606 } 3607 3608 return true; 3609 } 3610 3611 /// Some targets have expensive vector shifts if the lanes aren't all the same 3612 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 3613 /// it's often worth sinking a shufflevector splat down to its use so that 3614 /// codegen can spot all lanes are identical. 3615 bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 3616 BasicBlock *DefBB = SVI->getParent(); 3617 3618 // Only do this xform if variable vector shifts are particularly expensive. 3619 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 3620 return false; 3621 3622 // We only expect better codegen by sinking a shuffle if we can recognise a 3623 // constant splat. 3624 if (!isBroadcastShuffle(SVI)) 3625 return false; 3626 3627 // InsertedShuffles - Only insert a shuffle in each block once. 3628 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 3629 3630 bool MadeChange = false; 3631 for (User *U : SVI->users()) { 3632 Instruction *UI = cast<Instruction>(U); 3633 3634 // Figure out which BB this ext is used in. 3635 BasicBlock *UserBB = UI->getParent(); 3636 if (UserBB == DefBB) continue; 3637 3638 // For now only apply this when the splat is used by a shift instruction. 3639 if (!UI->isShift()) continue; 3640 3641 // Everything checks out, sink the shuffle if the user's block doesn't 3642 // already have a copy. 3643 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 3644 3645 if (!InsertedShuffle) { 3646 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3647 InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), 3648 SVI->getOperand(1), 3649 SVI->getOperand(2), "", InsertPt); 3650 } 3651 3652 UI->replaceUsesOfWith(SVI, InsertedShuffle); 3653 MadeChange = true; 3654 } 3655 3656 // If we removed all uses, nuke the shuffle. 3657 if (SVI->use_empty()) { 3658 SVI->eraseFromParent(); 3659 MadeChange = true; 3660 } 3661 3662 return MadeChange; 3663 } 3664 3665 namespace { 3666 /// \brief Helper class to promote a scalar operation to a vector one. 3667 /// This class is used to move downward extractelement transition. 3668 /// E.g., 3669 /// a = vector_op <2 x i32> 3670 /// b = extractelement <2 x i32> a, i32 0 3671 /// c = scalar_op b 3672 /// store c 3673 /// 3674 /// => 3675 /// a = vector_op <2 x i32> 3676 /// c = vector_op a (equivalent to scalar_op on the related lane) 3677 /// * d = extractelement <2 x i32> c, i32 0 3678 /// * store d 3679 /// Assuming both extractelement and store can be combine, we get rid of the 3680 /// transition. 3681 class VectorPromoteHelper { 3682 /// Used to perform some checks on the legality of vector operations. 3683 const TargetLowering &TLI; 3684 3685 /// Used to estimated the cost of the promoted chain. 3686 const TargetTransformInfo &TTI; 3687 3688 /// The transition being moved downwards. 3689 Instruction *Transition; 3690 /// The sequence of instructions to be promoted. 3691 SmallVector<Instruction *, 4> InstsToBePromoted; 3692 /// Cost of combining a store and an extract. 3693 unsigned StoreExtractCombineCost; 3694 /// Instruction that will be combined with the transition. 3695 Instruction *CombineInst; 3696 3697 /// \brief The instruction that represents the current end of the transition. 3698 /// Since we are faking the promotion until we reach the end of the chain 3699 /// of computation, we need a way to get the current end of the transition. 3700 Instruction *getEndOfTransition() const { 3701 if (InstsToBePromoted.empty()) 3702 return Transition; 3703 return InstsToBePromoted.back(); 3704 } 3705 3706 /// \brief Return the index of the original value in the transition. 3707 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 3708 /// c, is at index 0. 3709 unsigned getTransitionOriginalValueIdx() const { 3710 assert(isa<ExtractElementInst>(Transition) && 3711 "Other kind of transitions are not supported yet"); 3712 return 0; 3713 } 3714 3715 /// \brief Return the index of the index in the transition. 3716 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 3717 /// is at index 1. 3718 unsigned getTransitionIdx() const { 3719 assert(isa<ExtractElementInst>(Transition) && 3720 "Other kind of transitions are not supported yet"); 3721 return 1; 3722 } 3723 3724 /// \brief Get the type of the transition. 3725 /// This is the type of the original value. 3726 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 3727 /// transition is <2 x i32>. 3728 Type *getTransitionType() const { 3729 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 3730 } 3731 3732 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 3733 /// I.e., we have the following sequence: 3734 /// Def = Transition <ty1> a to <ty2> 3735 /// b = ToBePromoted <ty2> Def, ... 3736 /// => 3737 /// b = ToBePromoted <ty1> a, ... 3738 /// Def = Transition <ty1> ToBePromoted to <ty2> 3739 void promoteImpl(Instruction *ToBePromoted); 3740 3741 /// \brief Check whether or not it is profitable to promote all the 3742 /// instructions enqueued to be promoted. 3743 bool isProfitableToPromote() { 3744 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 3745 unsigned Index = isa<ConstantInt>(ValIdx) 3746 ? cast<ConstantInt>(ValIdx)->getZExtValue() 3747 : -1; 3748 Type *PromotedType = getTransitionType(); 3749 3750 StoreInst *ST = cast<StoreInst>(CombineInst); 3751 unsigned AS = ST->getPointerAddressSpace(); 3752 unsigned Align = ST->getAlignment(); 3753 // Check if this store is supported. 3754 if (!TLI.allowsMisalignedMemoryAccesses( 3755 TLI.getValueType(ST->getValueOperand()->getType()), AS, Align)) { 3756 // If this is not supported, there is no way we can combine 3757 // the extract with the store. 3758 return false; 3759 } 3760 3761 // The scalar chain of computation has to pay for the transition 3762 // scalar to vector. 3763 // The vector chain has to account for the combining cost. 3764 uint64_t ScalarCost = 3765 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 3766 uint64_t VectorCost = StoreExtractCombineCost; 3767 for (const auto &Inst : InstsToBePromoted) { 3768 // Compute the cost. 3769 // By construction, all instructions being promoted are arithmetic ones. 3770 // Moreover, one argument is a constant that can be viewed as a splat 3771 // constant. 3772 Value *Arg0 = Inst->getOperand(0); 3773 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 3774 isa<ConstantFP>(Arg0); 3775 TargetTransformInfo::OperandValueKind Arg0OVK = 3776 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 3777 : TargetTransformInfo::OK_AnyValue; 3778 TargetTransformInfo::OperandValueKind Arg1OVK = 3779 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 3780 : TargetTransformInfo::OK_AnyValue; 3781 ScalarCost += TTI.getArithmeticInstrCost( 3782 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 3783 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 3784 Arg0OVK, Arg1OVK); 3785 } 3786 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 3787 << ScalarCost << "\nVector: " << VectorCost << '\n'); 3788 return ScalarCost > VectorCost; 3789 } 3790 3791 /// \brief Generate a constant vector with \p Val with the same 3792 /// number of elements as the transition. 3793 /// \p UseSplat defines whether or not \p Val should be replicated 3794 /// accross the whole vector. 3795 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 3796 /// otherwise we generate a vector with as many undef as possible: 3797 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 3798 /// used at the index of the extract. 3799 Value *getConstantVector(Constant *Val, bool UseSplat) const { 3800 unsigned ExtractIdx = UINT_MAX; 3801 if (!UseSplat) { 3802 // If we cannot determine where the constant must be, we have to 3803 // use a splat constant. 3804 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 3805 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 3806 ExtractIdx = CstVal->getSExtValue(); 3807 else 3808 UseSplat = true; 3809 } 3810 3811 unsigned End = getTransitionType()->getVectorNumElements(); 3812 if (UseSplat) 3813 return ConstantVector::getSplat(End, Val); 3814 3815 SmallVector<Constant *, 4> ConstVec; 3816 UndefValue *UndefVal = UndefValue::get(Val->getType()); 3817 for (unsigned Idx = 0; Idx != End; ++Idx) { 3818 if (Idx == ExtractIdx) 3819 ConstVec.push_back(Val); 3820 else 3821 ConstVec.push_back(UndefVal); 3822 } 3823 return ConstantVector::get(ConstVec); 3824 } 3825 3826 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 3827 /// in \p Use can trigger undefined behavior. 3828 static bool canCauseUndefinedBehavior(const Instruction *Use, 3829 unsigned OperandIdx) { 3830 // This is not safe to introduce undef when the operand is on 3831 // the right hand side of a division-like instruction. 3832 if (OperandIdx != 1) 3833 return false; 3834 switch (Use->getOpcode()) { 3835 default: 3836 return false; 3837 case Instruction::SDiv: 3838 case Instruction::UDiv: 3839 case Instruction::SRem: 3840 case Instruction::URem: 3841 return true; 3842 case Instruction::FDiv: 3843 case Instruction::FRem: 3844 return !Use->hasNoNaNs(); 3845 } 3846 llvm_unreachable(nullptr); 3847 } 3848 3849 public: 3850 VectorPromoteHelper(const TargetLowering &TLI, const TargetTransformInfo &TTI, 3851 Instruction *Transition, unsigned CombineCost) 3852 : TLI(TLI), TTI(TTI), Transition(Transition), 3853 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 3854 assert(Transition && "Do not know how to promote null"); 3855 } 3856 3857 /// \brief Check if we can promote \p ToBePromoted to \p Type. 3858 bool canPromote(const Instruction *ToBePromoted) const { 3859 // We could support CastInst too. 3860 return isa<BinaryOperator>(ToBePromoted); 3861 } 3862 3863 /// \brief Check if it is profitable to promote \p ToBePromoted 3864 /// by moving downward the transition through. 3865 bool shouldPromote(const Instruction *ToBePromoted) const { 3866 // Promote only if all the operands can be statically expanded. 3867 // Indeed, we do not want to introduce any new kind of transitions. 3868 for (const Use &U : ToBePromoted->operands()) { 3869 const Value *Val = U.get(); 3870 if (Val == getEndOfTransition()) { 3871 // If the use is a division and the transition is on the rhs, 3872 // we cannot promote the operation, otherwise we may create a 3873 // division by zero. 3874 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 3875 return false; 3876 continue; 3877 } 3878 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 3879 !isa<ConstantFP>(Val)) 3880 return false; 3881 } 3882 // Check that the resulting operation is legal. 3883 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 3884 if (!ISDOpcode) 3885 return false; 3886 return StressStoreExtract || 3887 TLI.isOperationLegalOrCustom( 3888 ISDOpcode, TLI.getValueType(getTransitionType(), true)); 3889 } 3890 3891 /// \brief Check whether or not \p Use can be combined 3892 /// with the transition. 3893 /// I.e., is it possible to do Use(Transition) => AnotherUse? 3894 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 3895 3896 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 3897 void enqueueForPromotion(Instruction *ToBePromoted) { 3898 InstsToBePromoted.push_back(ToBePromoted); 3899 } 3900 3901 /// \brief Set the instruction that will be combined with the transition. 3902 void recordCombineInstruction(Instruction *ToBeCombined) { 3903 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 3904 CombineInst = ToBeCombined; 3905 } 3906 3907 /// \brief Promote all the instructions enqueued for promotion if it is 3908 /// is profitable. 3909 /// \return True if the promotion happened, false otherwise. 3910 bool promote() { 3911 // Check if there is something to promote. 3912 // Right now, if we do not have anything to combine with, 3913 // we assume the promotion is not profitable. 3914 if (InstsToBePromoted.empty() || !CombineInst) 3915 return false; 3916 3917 // Check cost. 3918 if (!StressStoreExtract && !isProfitableToPromote()) 3919 return false; 3920 3921 // Promote. 3922 for (auto &ToBePromoted : InstsToBePromoted) 3923 promoteImpl(ToBePromoted); 3924 InstsToBePromoted.clear(); 3925 return true; 3926 } 3927 }; 3928 } // End of anonymous namespace. 3929 3930 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 3931 // At this point, we know that all the operands of ToBePromoted but Def 3932 // can be statically promoted. 3933 // For Def, we need to use its parameter in ToBePromoted: 3934 // b = ToBePromoted ty1 a 3935 // Def = Transition ty1 b to ty2 3936 // Move the transition down. 3937 // 1. Replace all uses of the promoted operation by the transition. 3938 // = ... b => = ... Def. 3939 assert(ToBePromoted->getType() == Transition->getType() && 3940 "The type of the result of the transition does not match " 3941 "the final type"); 3942 ToBePromoted->replaceAllUsesWith(Transition); 3943 // 2. Update the type of the uses. 3944 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 3945 Type *TransitionTy = getTransitionType(); 3946 ToBePromoted->mutateType(TransitionTy); 3947 // 3. Update all the operands of the promoted operation with promoted 3948 // operands. 3949 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 3950 for (Use &U : ToBePromoted->operands()) { 3951 Value *Val = U.get(); 3952 Value *NewVal = nullptr; 3953 if (Val == Transition) 3954 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 3955 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 3956 isa<ConstantFP>(Val)) { 3957 // Use a splat constant if it is not safe to use undef. 3958 NewVal = getConstantVector( 3959 cast<Constant>(Val), 3960 isa<UndefValue>(Val) || 3961 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 3962 } else 3963 llvm_unreachable("Did you modified shouldPromote and forgot to update " 3964 "this?"); 3965 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 3966 } 3967 Transition->removeFromParent(); 3968 Transition->insertAfter(ToBePromoted); 3969 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 3970 } 3971 3972 // See if we can speculate calls to intrinsic cttz/ctlz. 3973 // 3974 // Example: 3975 // entry: 3976 // ... 3977 // %cmp = icmp eq i64 %val, 0 3978 // br i1 %cmp, label %end.bb, label %then.bb 3979 // 3980 // then.bb: 3981 // %c = tail call i64 @llvm.cttz.i64(i64 %val, i1 true) 3982 // br label %EndBB 3983 // 3984 // end.bb: 3985 // %cond = phi i64 [ %c, %then.bb ], [ 64, %entry ] 3986 // 3987 // ==> 3988 // 3989 // entry: 3990 // ... 3991 // %c = tail call i64 @llvm.cttz.i64(i64 %val, i1 false) 3992 // 3993 static bool OptimizeBranchInst(BranchInst *BrInst, const TargetLowering &TLI) { 3994 assert(BrInst->isConditional() && "Expected a conditional branch!"); 3995 BasicBlock *ThenBB = BrInst->getSuccessor(1); 3996 BasicBlock *EndBB = BrInst->getSuccessor(0); 3997 3998 // See if ThenBB contains only one instruction (excluding the 3999 // terminator and DbgInfoIntrinsic calls). 4000 IntrinsicInst *II = nullptr; 4001 CastInst *CI = nullptr; 4002 for (BasicBlock::iterator I = ThenBB->begin(), 4003 E = std::prev(ThenBB->end()); I != E; ++I) { 4004 // Skip debug info. 4005 if (isa<DbgInfoIntrinsic>(I)) 4006 continue; 4007 4008 // Check if this is a zero extension or a truncate of a previously 4009 // matched call to intrinsic cttz/ctlz. 4010 if (II) { 4011 // Early exit if we already found a "free" zero extend/truncate. 4012 if (CI) 4013 return false; 4014 4015 Type *SrcTy = II->getType(); 4016 Type *DestTy = I->getType(); 4017 Value *V; 4018 4019 if (match(cast<Instruction>(I), m_ZExt(m_Value(V))) && V == II) { 4020 // Speculate this zero extend only if it is "free" for the target. 4021 if (TLI.isZExtFree(SrcTy, DestTy)) { 4022 CI = cast<CastInst>(I); 4023 continue; 4024 } 4025 } else if (match(cast<Instruction>(I), m_Trunc(m_Value(V))) && V == II) { 4026 // Speculate this truncate only if it is "free" for the target. 4027 if (TLI.isTruncateFree(SrcTy, DestTy)) { 4028 CI = cast<CastInst>(I); 4029 continue; 4030 } 4031 } else { 4032 // Avoid speculating more than one instruction. 4033 return false; 4034 } 4035 } 4036 4037 // See if this is a call to intrinsic cttz/ctlz. 4038 if (match(cast<Instruction>(I), m_Intrinsic<Intrinsic::cttz>())) { 4039 // Avoid speculating expensive intrinsic calls. 4040 if (!TLI.isCheapToSpeculateCttz()) 4041 return false; 4042 } 4043 else if (match(cast<Instruction>(I), m_Intrinsic<Intrinsic::ctlz>())) { 4044 // Avoid speculating expensive intrinsic calls. 4045 if (!TLI.isCheapToSpeculateCtlz()) 4046 return false; 4047 } else 4048 return false; 4049 4050 II = cast<IntrinsicInst>(I); 4051 } 4052 4053 // Look for PHI nodes with 'II' as the incoming value from 'ThenBB'. 4054 BasicBlock *EntryBB = BrInst->getParent(); 4055 for (BasicBlock::iterator I = EndBB->begin(); 4056 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 4057 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 4058 Value *OrigV = PN->getIncomingValueForBlock(EntryBB); 4059 4060 if (!OrigV) 4061 return false; 4062 4063 if (ThenV != II && (!CI || ThenV != CI)) 4064 return false; 4065 4066 if (ConstantInt *CInt = dyn_cast<ConstantInt>(OrigV)) { 4067 unsigned BitWidth = II->getType()->getIntegerBitWidth(); 4068 4069 // Don't try to simplify this phi node if 'ThenV' is a cttz/ctlz 4070 // intrinsic call, but 'OrigV' is not equal to the 'size-of' in bits 4071 // of the value in input to the cttz/ctlz. 4072 if (CInt->getValue() != BitWidth) 4073 return false; 4074 4075 // Hoist the call to cttz/ctlz from ThenBB into EntryBB. 4076 EntryBB->getInstList().splice(BrInst, ThenBB->getInstList(), 4077 ThenBB->begin(), std::prev(ThenBB->end())); 4078 4079 // Update PN setting ThenV as the incoming value from both 'EntryBB' 4080 // and 'ThenBB'. Eventually, method 'OptimizeInst' will fold this 4081 // phi node if all the incoming values are the same. 4082 PN->setIncomingValue(PN->getBasicBlockIndex(EntryBB), ThenV); 4083 PN->setIncomingValue(PN->getBasicBlockIndex(ThenBB), ThenV); 4084 4085 // Clear the 'undef on zero' flag of the cttz/ctlz intrinsic call. 4086 if (cast<ConstantInt>(II->getArgOperand(1))->isOne()) { 4087 Type *Ty = II->getArgOperand(0)->getType(); 4088 Value *Args[] = { II->getArgOperand(0), 4089 ConstantInt::getFalse(II->getContext()) }; 4090 Module *M = EntryBB->getParent()->getParent(); 4091 Value *IF = Intrinsic::getDeclaration(M, II->getIntrinsicID(), Ty); 4092 IRBuilder<> Builder(II); 4093 Instruction *NewI = Builder.CreateCall(IF, Args); 4094 4095 // Replace the old call to cttz/ctlz. 4096 II->replaceAllUsesWith(NewI); 4097 II->eraseFromParent(); 4098 } 4099 4100 // Update BrInst condition so that the branch to EndBB is always taken. 4101 // Later on, method 'ConstantFoldTerminator' will simplify this branch 4102 // replacing it with a direct branch to 'EndBB'. 4103 // As a side effect, CodeGenPrepare will attempt to simplify the control 4104 // flow graph by deleting basic block 'ThenBB' and merging 'EntryBB' into 4105 // 'EndBB' (calling method 'EliminateFallThrough'). 4106 BrInst->setCondition(ConstantInt::getTrue(BrInst->getContext())); 4107 return true; 4108 } 4109 } 4110 4111 return false; 4112 } 4113 4114 /// Some targets can do store(extractelement) with one instruction. 4115 /// Try to push the extractelement towards the stores when the target 4116 /// has this feature and this is profitable. 4117 bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) { 4118 unsigned CombineCost = UINT_MAX; 4119 if (DisableStoreExtract || !TLI || 4120 (!StressStoreExtract && 4121 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 4122 Inst->getOperand(1), CombineCost))) 4123 return false; 4124 4125 // At this point we know that Inst is a vector to scalar transition. 4126 // Try to move it down the def-use chain, until: 4127 // - We can combine the transition with its single use 4128 // => we got rid of the transition. 4129 // - We escape the current basic block 4130 // => we would need to check that we are moving it at a cheaper place and 4131 // we do not do that for now. 4132 BasicBlock *Parent = Inst->getParent(); 4133 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 4134 VectorPromoteHelper VPH(*TLI, *TTI, Inst, CombineCost); 4135 // If the transition has more than one use, assume this is not going to be 4136 // beneficial. 4137 while (Inst->hasOneUse()) { 4138 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 4139 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 4140 4141 if (ToBePromoted->getParent() != Parent) { 4142 DEBUG(dbgs() << "Instruction to promote is in a different block (" 4143 << ToBePromoted->getParent()->getName() 4144 << ") than the transition (" << Parent->getName() << ").\n"); 4145 return false; 4146 } 4147 4148 if (VPH.canCombine(ToBePromoted)) { 4149 DEBUG(dbgs() << "Assume " << *Inst << '\n' 4150 << "will be combined with: " << *ToBePromoted << '\n'); 4151 VPH.recordCombineInstruction(ToBePromoted); 4152 bool Changed = VPH.promote(); 4153 NumStoreExtractExposed += Changed; 4154 return Changed; 4155 } 4156 4157 DEBUG(dbgs() << "Try promoting.\n"); 4158 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 4159 return false; 4160 4161 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 4162 4163 VPH.enqueueForPromotion(ToBePromoted); 4164 Inst = ToBePromoted; 4165 } 4166 return false; 4167 } 4168 4169 bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { 4170 if (PHINode *P = dyn_cast<PHINode>(I)) { 4171 // It is possible for very late stage optimizations (such as SimplifyCFG) 4172 // to introduce PHI nodes too late to be cleaned up. If we detect such a 4173 // trivial PHI, go ahead and zap it here. 4174 if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr, 4175 TLInfo, DT)) { 4176 P->replaceAllUsesWith(V); 4177 P->eraseFromParent(); 4178 ++NumPHIsElim; 4179 return true; 4180 } 4181 return false; 4182 } 4183 4184 if (CastInst *CI = dyn_cast<CastInst>(I)) { 4185 // If the source of the cast is a constant, then this should have 4186 // already been constant folded. The only reason NOT to constant fold 4187 // it is if something (e.g. LSR) was careful to place the constant 4188 // evaluation in a block other than then one that uses it (e.g. to hoist 4189 // the address of globals out of a loop). If this is the case, we don't 4190 // want to forward-subst the cast. 4191 if (isa<Constant>(CI->getOperand(0))) 4192 return false; 4193 4194 if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) 4195 return true; 4196 4197 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 4198 /// Sink a zext or sext into its user blocks if the target type doesn't 4199 /// fit in one register 4200 if (TLI && TLI->getTypeAction(CI->getContext(), 4201 TLI->getValueType(CI->getType())) == 4202 TargetLowering::TypeExpandInteger) { 4203 return SinkCast(CI); 4204 } else { 4205 bool MadeChange = MoveExtToFormExtLoad(I); 4206 return MadeChange | OptimizeExtUses(I); 4207 } 4208 } 4209 return false; 4210 } 4211 4212 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4213 if (!TLI || !TLI->hasMultipleConditionRegisters()) 4214 return OptimizeCmpExpression(CI); 4215 4216 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4217 if (TLI) 4218 return OptimizeMemoryInst(I, I->getOperand(0), LI->getType()); 4219 return false; 4220 } 4221 4222 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 4223 if (TLI) 4224 return OptimizeMemoryInst(I, SI->getOperand(1), 4225 SI->getOperand(0)->getType()); 4226 return false; 4227 } 4228 4229 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 4230 4231 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 4232 BinOp->getOpcode() == Instruction::LShr)) { 4233 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 4234 if (TLI && CI && TLI->hasExtractBitsInsn()) 4235 return OptimizeExtractBits(BinOp, CI, *TLI); 4236 4237 return false; 4238 } 4239 4240 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 4241 if (GEPI->hasAllZeroIndices()) { 4242 /// The GEP operand must be a pointer, so must its result -> BitCast 4243 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 4244 GEPI->getName(), GEPI); 4245 GEPI->replaceAllUsesWith(NC); 4246 GEPI->eraseFromParent(); 4247 ++NumGEPsElim; 4248 OptimizeInst(NC, ModifiedDT); 4249 return true; 4250 } 4251 return false; 4252 } 4253 4254 if (CallInst *CI = dyn_cast<CallInst>(I)) 4255 return OptimizeCallInst(CI, ModifiedDT); 4256 4257 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 4258 return OptimizeSelectInst(SI); 4259 4260 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 4261 return OptimizeShuffleVectorInst(SVI); 4262 4263 if (isa<ExtractElementInst>(I)) 4264 return OptimizeExtractElementInst(I); 4265 4266 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 4267 if (TLI && BI->isConditional() && BI->getCondition()->hasOneUse()) { 4268 // Check if the branch condition compares a value agaist zero. 4269 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 4270 if (ICI->getPredicate() == ICmpInst::ICMP_EQ && 4271 match(ICI->getOperand(1), m_Zero())) { 4272 BasicBlock *ThenBB = BI->getSuccessor(1); 4273 BasicBlock *EndBB = BI->getSuccessor(0); 4274 4275 // Check if ThenBB is only reachable from this basic block; also, 4276 // check if EndBB has more than one predecessor. 4277 if (ThenBB->getSinglePredecessor() && 4278 !EndBB->getSinglePredecessor()) { 4279 TerminatorInst *TI = ThenBB->getTerminator(); 4280 4281 if (TI->getNumSuccessors() == 1 && TI->getSuccessor(0) == EndBB && 4282 // Try to speculate calls to intrinsic cttz/ctlz from 'ThenBB'. 4283 OptimizeBranchInst(BI, *TLI)) { 4284 ModifiedDT = true; 4285 return true; 4286 } 4287 } 4288 } 4289 } 4290 } 4291 return false; 4292 } 4293 4294 return false; 4295 } 4296 4297 // In this pass we look for GEP and cast instructions that are used 4298 // across basic blocks and rewrite them to improve basic-block-at-a-time 4299 // selection. 4300 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 4301 SunkAddrs.clear(); 4302 bool MadeChange = false; 4303 4304 CurInstIterator = BB.begin(); 4305 while (CurInstIterator != BB.end()) { 4306 MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT); 4307 if (ModifiedDT) 4308 return true; 4309 } 4310 MadeChange |= DupRetToEnableTailCallOpts(&BB); 4311 4312 return MadeChange; 4313 } 4314 4315 // llvm.dbg.value is far away from the value then iSel may not be able 4316 // handle it properly. iSel will drop llvm.dbg.value if it can not 4317 // find a node corresponding to the value. 4318 bool CodeGenPrepare::PlaceDbgValues(Function &F) { 4319 bool MadeChange = false; 4320 for (BasicBlock &BB : F) { 4321 Instruction *PrevNonDbgInst = nullptr; 4322 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 4323 Instruction *Insn = BI++; 4324 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 4325 // Leave dbg.values that refer to an alloca alone. These 4326 // instrinsics describe the address of a variable (= the alloca) 4327 // being taken. They should not be moved next to the alloca 4328 // (and to the beginning of the scope), but rather stay close to 4329 // where said address is used. 4330 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 4331 PrevNonDbgInst = Insn; 4332 continue; 4333 } 4334 4335 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 4336 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 4337 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 4338 DVI->removeFromParent(); 4339 if (isa<PHINode>(VI)) 4340 DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); 4341 else 4342 DVI->insertAfter(VI); 4343 MadeChange = true; 4344 ++NumDbgValueMoved; 4345 } 4346 } 4347 } 4348 return MadeChange; 4349 } 4350 4351 // If there is a sequence that branches based on comparing a single bit 4352 // against zero that can be combined into a single instruction, and the 4353 // target supports folding these into a single instruction, sink the 4354 // mask and compare into the branch uses. Do this before OptimizeBlock -> 4355 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 4356 // searched for. 4357 bool CodeGenPrepare::sinkAndCmp(Function &F) { 4358 if (!EnableAndCmpSinking) 4359 return false; 4360 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 4361 return false; 4362 bool MadeChange = false; 4363 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 4364 BasicBlock *BB = I++; 4365 4366 // Does this BB end with the following? 4367 // %andVal = and %val, #single-bit-set 4368 // %icmpVal = icmp %andResult, 0 4369 // br i1 %cmpVal label %dest1, label %dest2" 4370 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 4371 if (!Brcc || !Brcc->isConditional()) 4372 continue; 4373 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 4374 if (!Cmp || Cmp->getParent() != BB) 4375 continue; 4376 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 4377 if (!Zero || !Zero->isZero()) 4378 continue; 4379 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 4380 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 4381 continue; 4382 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 4383 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 4384 continue; 4385 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 4386 4387 // Push the "and; icmp" for any users that are conditional branches. 4388 // Since there can only be one branch use per BB, we don't need to keep 4389 // track of which BBs we insert into. 4390 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 4391 UI != E; ) { 4392 Use &TheUse = *UI; 4393 // Find brcc use. 4394 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 4395 ++UI; 4396 if (!BrccUser || !BrccUser->isConditional()) 4397 continue; 4398 BasicBlock *UserBB = BrccUser->getParent(); 4399 if (UserBB == BB) continue; 4400 DEBUG(dbgs() << "found Brcc use\n"); 4401 4402 // Sink the "and; icmp" to use. 4403 MadeChange = true; 4404 BinaryOperator *NewAnd = 4405 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 4406 BrccUser); 4407 CmpInst *NewCmp = 4408 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 4409 "", BrccUser); 4410 TheUse = NewCmp; 4411 ++NumAndCmpsMoved; 4412 DEBUG(BrccUser->getParent()->dump()); 4413 } 4414 } 4415 return MadeChange; 4416 } 4417 4418 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 4419 /// success, or returns false if no or invalid metadata was found. 4420 static bool extractBranchMetadata(BranchInst *BI, 4421 uint64_t &ProbTrue, uint64_t &ProbFalse) { 4422 assert(BI->isConditional() && 4423 "Looking for probabilities on unconditional branch?"); 4424 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 4425 if (!ProfileData || ProfileData->getNumOperands() != 3) 4426 return false; 4427 4428 const auto *CITrue = 4429 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 4430 const auto *CIFalse = 4431 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 4432 if (!CITrue || !CIFalse) 4433 return false; 4434 4435 ProbTrue = CITrue->getValue().getZExtValue(); 4436 ProbFalse = CIFalse->getValue().getZExtValue(); 4437 4438 return true; 4439 } 4440 4441 /// \brief Scale down both weights to fit into uint32_t. 4442 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 4443 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 4444 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 4445 NewTrue = NewTrue / Scale; 4446 NewFalse = NewFalse / Scale; 4447 } 4448 4449 /// \brief Some targets prefer to split a conditional branch like: 4450 /// \code 4451 /// %0 = icmp ne i32 %a, 0 4452 /// %1 = icmp ne i32 %b, 0 4453 /// %or.cond = or i1 %0, %1 4454 /// br i1 %or.cond, label %TrueBB, label %FalseBB 4455 /// \endcode 4456 /// into multiple branch instructions like: 4457 /// \code 4458 /// bb1: 4459 /// %0 = icmp ne i32 %a, 0 4460 /// br i1 %0, label %TrueBB, label %bb2 4461 /// bb2: 4462 /// %1 = icmp ne i32 %b, 0 4463 /// br i1 %1, label %TrueBB, label %FalseBB 4464 /// \endcode 4465 /// This usually allows instruction selection to do even further optimizations 4466 /// and combine the compare with the branch instruction. Currently this is 4467 /// applied for targets which have "cheap" jump instructions. 4468 /// 4469 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 4470 /// 4471 bool CodeGenPrepare::splitBranchCondition(Function &F) { 4472 if (!TM || TM->Options.EnableFastISel != true || 4473 !TLI || TLI->isJumpExpensive()) 4474 return false; 4475 4476 bool MadeChange = false; 4477 for (auto &BB : F) { 4478 // Does this BB end with the following? 4479 // %cond1 = icmp|fcmp|binary instruction ... 4480 // %cond2 = icmp|fcmp|binary instruction ... 4481 // %cond.or = or|and i1 %cond1, cond2 4482 // br i1 %cond.or label %dest1, label %dest2" 4483 BinaryOperator *LogicOp; 4484 BasicBlock *TBB, *FBB; 4485 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 4486 continue; 4487 4488 unsigned Opc; 4489 Value *Cond1, *Cond2; 4490 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 4491 m_OneUse(m_Value(Cond2))))) 4492 Opc = Instruction::And; 4493 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 4494 m_OneUse(m_Value(Cond2))))) 4495 Opc = Instruction::Or; 4496 else 4497 continue; 4498 4499 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 4500 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 4501 continue; 4502 4503 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 4504 4505 // Create a new BB. 4506 auto *InsertBefore = std::next(Function::iterator(BB)) 4507 .getNodePtrUnchecked(); 4508 auto TmpBB = BasicBlock::Create(BB.getContext(), 4509 BB.getName() + ".cond.split", 4510 BB.getParent(), InsertBefore); 4511 4512 // Update original basic block by using the first condition directly by the 4513 // branch instruction and removing the no longer needed and/or instruction. 4514 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 4515 Br1->setCondition(Cond1); 4516 LogicOp->eraseFromParent(); 4517 4518 // Depending on the conditon we have to either replace the true or the false 4519 // successor of the original branch instruction. 4520 if (Opc == Instruction::And) 4521 Br1->setSuccessor(0, TmpBB); 4522 else 4523 Br1->setSuccessor(1, TmpBB); 4524 4525 // Fill in the new basic block. 4526 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 4527 if (auto *I = dyn_cast<Instruction>(Cond2)) { 4528 I->removeFromParent(); 4529 I->insertBefore(Br2); 4530 } 4531 4532 // Update PHI nodes in both successors. The original BB needs to be 4533 // replaced in one succesor's PHI nodes, because the branch comes now from 4534 // the newly generated BB (NewBB). In the other successor we need to add one 4535 // incoming edge to the PHI nodes, because both branch instructions target 4536 // now the same successor. Depending on the original branch condition 4537 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 4538 // we perfrom the correct update for the PHI nodes. 4539 // This doesn't change the successor order of the just created branch 4540 // instruction (or any other instruction). 4541 if (Opc == Instruction::Or) 4542 std::swap(TBB, FBB); 4543 4544 // Replace the old BB with the new BB. 4545 for (auto &I : *TBB) { 4546 PHINode *PN = dyn_cast<PHINode>(&I); 4547 if (!PN) 4548 break; 4549 int i; 4550 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 4551 PN->setIncomingBlock(i, TmpBB); 4552 } 4553 4554 // Add another incoming edge form the new BB. 4555 for (auto &I : *FBB) { 4556 PHINode *PN = dyn_cast<PHINode>(&I); 4557 if (!PN) 4558 break; 4559 auto *Val = PN->getIncomingValueForBlock(&BB); 4560 PN->addIncoming(Val, TmpBB); 4561 } 4562 4563 // Update the branch weights (from SelectionDAGBuilder:: 4564 // FindMergedConditions). 4565 if (Opc == Instruction::Or) { 4566 // Codegen X | Y as: 4567 // BB1: 4568 // jmp_if_X TBB 4569 // jmp TmpBB 4570 // TmpBB: 4571 // jmp_if_Y TBB 4572 // jmp FBB 4573 // 4574 4575 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 4576 // The requirement is that 4577 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 4578 // = TrueProb for orignal BB. 4579 // Assuming the orignal weights are A and B, one choice is to set BB1's 4580 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 4581 // assumes that 4582 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 4583 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 4584 // TmpBB, but the math is more complicated. 4585 uint64_t TrueWeight, FalseWeight; 4586 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4587 uint64_t NewTrueWeight = TrueWeight; 4588 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 4589 scaleWeights(NewTrueWeight, NewFalseWeight); 4590 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4591 .createBranchWeights(TrueWeight, FalseWeight)); 4592 4593 NewTrueWeight = TrueWeight; 4594 NewFalseWeight = 2 * FalseWeight; 4595 scaleWeights(NewTrueWeight, NewFalseWeight); 4596 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4597 .createBranchWeights(TrueWeight, FalseWeight)); 4598 } 4599 } else { 4600 // Codegen X & Y as: 4601 // BB1: 4602 // jmp_if_X TmpBB 4603 // jmp FBB 4604 // TmpBB: 4605 // jmp_if_Y TBB 4606 // jmp FBB 4607 // 4608 // This requires creation of TmpBB after CurBB. 4609 4610 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 4611 // The requirement is that 4612 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 4613 // = FalseProb for orignal BB. 4614 // Assuming the orignal weights are A and B, one choice is to set BB1's 4615 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 4616 // assumes that 4617 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 4618 uint64_t TrueWeight, FalseWeight; 4619 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4620 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 4621 uint64_t NewFalseWeight = FalseWeight; 4622 scaleWeights(NewTrueWeight, NewFalseWeight); 4623 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4624 .createBranchWeights(TrueWeight, FalseWeight)); 4625 4626 NewTrueWeight = 2 * TrueWeight; 4627 NewFalseWeight = FalseWeight; 4628 scaleWeights(NewTrueWeight, NewFalseWeight); 4629 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4630 .createBranchWeights(TrueWeight, FalseWeight)); 4631 } 4632 } 4633 4634 // Request DOM Tree update. 4635 // Note: No point in getting fancy here, since the DT info is never 4636 // available to CodeGenPrepare and the existing update code is broken 4637 // anyways. 4638 ModifiedDT = true; 4639 4640 MadeChange = true; 4641 4642 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 4643 TmpBB->dump()); 4644 } 4645 return MadeChange; 4646 } 4647