1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/CodeGen/Analysis.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/CodeGen/TargetPassConfig.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/MDBuilder.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/Statepoint.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/IR/ValueMap.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetLowering.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 57 #include "llvm/Transforms/Utils/BuildLibCalls.h" 58 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 59 #include "llvm/Transforms/Utils/Cloning.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 62 #include "llvm/Transforms/Utils/ValueMapper.h" 63 64 using namespace llvm; 65 using namespace llvm::PatternMatch; 66 67 #define DEBUG_TYPE "codegenprepare" 68 69 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 70 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 71 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 72 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 73 "sunken Cmps"); 74 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 75 "of sunken Casts"); 76 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 77 "computations were sunk"); 78 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 79 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 80 STATISTIC(NumAndsAdded, 81 "Number of and mask instructions added to form ext loads"); 82 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 83 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 84 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 85 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 86 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 87 88 STATISTIC(NumMemCmpCalls, "Number of memcmp calls"); 89 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size"); 90 STATISTIC(NumMemCmpGreaterThanMax, 91 "Number of memcmp calls with size greater than max size"); 92 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls"); 93 94 static cl::opt<bool> DisableBranchOpts( 95 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 96 cl::desc("Disable branch optimizations in CodeGenPrepare")); 97 98 static cl::opt<bool> 99 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 100 cl::desc("Disable GC optimizations in CodeGenPrepare")); 101 102 static cl::opt<bool> DisableSelectToBranch( 103 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 104 cl::desc("Disable select to branch conversion.")); 105 106 static cl::opt<bool> AddrSinkUsingGEPs( 107 "addr-sink-using-gep", cl::Hidden, cl::init(true), 108 cl::desc("Address sinking in CGP using GEPs.")); 109 110 static cl::opt<bool> EnableAndCmpSinking( 111 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 112 cl::desc("Enable sinkinig and/cmp into branches.")); 113 114 static cl::opt<bool> DisableStoreExtract( 115 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 116 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 117 118 static cl::opt<bool> StressStoreExtract( 119 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 120 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 121 122 static cl::opt<bool> DisableExtLdPromotion( 123 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 124 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 125 "CodeGenPrepare")); 126 127 static cl::opt<bool> StressExtLdPromotion( 128 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 129 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 130 "optimization in CodeGenPrepare")); 131 132 static cl::opt<bool> DisablePreheaderProtect( 133 "disable-preheader-prot", cl::Hidden, cl::init(false), 134 cl::desc("Disable protection against removing loop preheaders")); 135 136 static cl::opt<bool> ProfileGuidedSectionPrefix( 137 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 138 cl::desc("Use profile info to add section prefix for hot/cold functions")); 139 140 static cl::opt<unsigned> FreqRatioToSkipMerge( 141 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 142 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 143 "(frequency of destination block) is greater than this ratio")); 144 145 static cl::opt<bool> ForceSplitStore( 146 "force-split-store", cl::Hidden, cl::init(false), 147 cl::desc("Force store splitting no matter what the target query says.")); 148 149 static cl::opt<bool> 150 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 151 cl::desc("Enable merging of redundant sexts when one is dominating" 152 " the other."), cl::init(true)); 153 154 static cl::opt<unsigned> MemCmpNumLoadsPerBlock( 155 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1), 156 cl::desc("The number of loads per basic block for inline expansion of " 157 "memcmp that is only being compared against zero.")); 158 159 namespace { 160 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 161 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 162 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 163 typedef SmallVector<Instruction *, 16> SExts; 164 typedef DenseMap<Value *, SExts> ValueToSExts; 165 class TypePromotionTransaction; 166 167 class CodeGenPrepare : public FunctionPass { 168 const TargetMachine *TM; 169 const TargetSubtargetInfo *SubtargetInfo; 170 const TargetLowering *TLI; 171 const TargetRegisterInfo *TRI; 172 const TargetTransformInfo *TTI; 173 const TargetLibraryInfo *TLInfo; 174 const LoopInfo *LI; 175 std::unique_ptr<BlockFrequencyInfo> BFI; 176 std::unique_ptr<BranchProbabilityInfo> BPI; 177 178 /// As we scan instructions optimizing them, this is the next instruction 179 /// to optimize. Transforms that can invalidate this should update it. 180 BasicBlock::iterator CurInstIterator; 181 182 /// Keeps track of non-local addresses that have been sunk into a block. 183 /// This allows us to avoid inserting duplicate code for blocks with 184 /// multiple load/stores of the same address. 185 ValueMap<Value*, Value*> SunkAddrs; 186 187 /// Keeps track of all instructions inserted for the current function. 188 SetOfInstrs InsertedInsts; 189 /// Keeps track of the type of the related instruction before their 190 /// promotion for the current function. 191 InstrToOrigTy PromotedInsts; 192 193 /// Keep track of instructions removed during promotion. 194 SetOfInstrs RemovedInsts; 195 196 /// Keep track of sext chains based on their initial value. 197 DenseMap<Value *, Instruction *> SeenChainsForSExt; 198 199 /// Keep track of SExt promoted. 200 ValueToSExts ValToSExtendedUses; 201 202 /// True if CFG is modified in any way. 203 bool ModifiedDT; 204 205 /// True if optimizing for size. 206 bool OptSize; 207 208 /// DataLayout for the Function being processed. 209 const DataLayout *DL; 210 211 public: 212 static char ID; // Pass identification, replacement for typeid 213 CodeGenPrepare() 214 : FunctionPass(ID), TM(nullptr), TLI(nullptr), TTI(nullptr), 215 DL(nullptr) { 216 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 217 } 218 bool runOnFunction(Function &F) override; 219 220 StringRef getPassName() const override { return "CodeGen Prepare"; } 221 222 void getAnalysisUsage(AnalysisUsage &AU) const override { 223 // FIXME: When we can selectively preserve passes, preserve the domtree. 224 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 225 AU.addRequired<TargetLibraryInfoWrapperPass>(); 226 AU.addRequired<TargetTransformInfoWrapperPass>(); 227 AU.addRequired<LoopInfoWrapperPass>(); 228 } 229 230 private: 231 bool eliminateFallThrough(Function &F); 232 bool eliminateMostlyEmptyBlocks(Function &F); 233 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 234 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 235 void eliminateMostlyEmptyBlock(BasicBlock *BB); 236 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 237 bool isPreheader); 238 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 239 bool optimizeInst(Instruction *I, bool &ModifiedDT); 240 bool optimizeMemoryInst(Instruction *I, Value *Addr, 241 Type *AccessTy, unsigned AS); 242 bool optimizeInlineAsmInst(CallInst *CS); 243 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 244 bool optimizeExt(Instruction *&I); 245 bool optimizeExtUses(Instruction *I); 246 bool optimizeLoadExt(LoadInst *I); 247 bool optimizeSelectInst(SelectInst *SI); 248 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 249 bool optimizeSwitchInst(SwitchInst *CI); 250 bool optimizeExtractElementInst(Instruction *Inst); 251 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 252 bool placeDbgValues(Function &F); 253 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 254 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 255 bool tryToPromoteExts(TypePromotionTransaction &TPT, 256 const SmallVectorImpl<Instruction *> &Exts, 257 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 258 unsigned CreatedInstsCost = 0); 259 bool mergeSExts(Function &F); 260 bool performAddressTypePromotion( 261 Instruction *&Inst, 262 bool AllowPromotionWithoutCommonHeader, 263 bool HasPromoted, TypePromotionTransaction &TPT, 264 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 265 bool splitBranchCondition(Function &F); 266 bool simplifyOffsetableRelocate(Instruction &I); 267 bool splitIndirectCriticalEdges(Function &F); 268 }; 269 } 270 271 char CodeGenPrepare::ID = 0; 272 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 273 "Optimize for code generation", false, false) 274 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 275 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 276 "Optimize for code generation", false, false) 277 278 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 279 280 bool CodeGenPrepare::runOnFunction(Function &F) { 281 if (skipFunction(F)) 282 return false; 283 284 DL = &F.getParent()->getDataLayout(); 285 286 bool EverMadeChange = false; 287 // Clear per function information. 288 InsertedInsts.clear(); 289 PromotedInsts.clear(); 290 BFI.reset(); 291 BPI.reset(); 292 293 ModifiedDT = false; 294 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 295 TM = &TPC->getTM<TargetMachine>(); 296 SubtargetInfo = TM->getSubtargetImpl(F); 297 TLI = SubtargetInfo->getTargetLowering(); 298 TRI = SubtargetInfo->getRegisterInfo(); 299 } 300 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 301 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 302 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 303 OptSize = F.optForSize(); 304 305 if (ProfileGuidedSectionPrefix) { 306 ProfileSummaryInfo *PSI = 307 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 308 if (PSI->isFunctionHotInCallGraph(&F)) 309 F.setSectionPrefix(".hot"); 310 else if (PSI->isFunctionColdInCallGraph(&F)) 311 F.setSectionPrefix(".unlikely"); 312 } 313 314 /// This optimization identifies DIV instructions that can be 315 /// profitably bypassed and carried out with a shorter, faster divide. 316 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 317 const DenseMap<unsigned int, unsigned int> &BypassWidths = 318 TLI->getBypassSlowDivWidths(); 319 BasicBlock* BB = &*F.begin(); 320 while (BB != nullptr) { 321 // bypassSlowDivision may create new BBs, but we don't want to reapply the 322 // optimization to those blocks. 323 BasicBlock* Next = BB->getNextNode(); 324 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 325 BB = Next; 326 } 327 } 328 329 // Eliminate blocks that contain only PHI nodes and an 330 // unconditional branch. 331 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 332 333 // llvm.dbg.value is far away from the value then iSel may not be able 334 // handle it properly. iSel will drop llvm.dbg.value if it can not 335 // find a node corresponding to the value. 336 EverMadeChange |= placeDbgValues(F); 337 338 if (!DisableBranchOpts) 339 EverMadeChange |= splitBranchCondition(F); 340 341 // Split some critical edges where one of the sources is an indirect branch, 342 // to help generate sane code for PHIs involving such edges. 343 EverMadeChange |= splitIndirectCriticalEdges(F); 344 345 bool MadeChange = true; 346 while (MadeChange) { 347 MadeChange = false; 348 SeenChainsForSExt.clear(); 349 ValToSExtendedUses.clear(); 350 RemovedInsts.clear(); 351 for (Function::iterator I = F.begin(); I != F.end(); ) { 352 BasicBlock *BB = &*I++; 353 bool ModifiedDTOnIteration = false; 354 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 355 356 // Restart BB iteration if the dominator tree of the Function was changed 357 if (ModifiedDTOnIteration) 358 break; 359 } 360 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 361 MadeChange |= mergeSExts(F); 362 363 // Really free removed instructions during promotion. 364 for (Instruction *I : RemovedInsts) 365 I->deleteValue(); 366 367 EverMadeChange |= MadeChange; 368 } 369 370 SunkAddrs.clear(); 371 372 if (!DisableBranchOpts) { 373 MadeChange = false; 374 SmallPtrSet<BasicBlock*, 8> WorkList; 375 for (BasicBlock &BB : F) { 376 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 377 MadeChange |= ConstantFoldTerminator(&BB, true); 378 if (!MadeChange) continue; 379 380 for (SmallVectorImpl<BasicBlock*>::iterator 381 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 382 if (pred_begin(*II) == pred_end(*II)) 383 WorkList.insert(*II); 384 } 385 386 // Delete the dead blocks and any of their dead successors. 387 MadeChange |= !WorkList.empty(); 388 while (!WorkList.empty()) { 389 BasicBlock *BB = *WorkList.begin(); 390 WorkList.erase(BB); 391 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 392 393 DeleteDeadBlock(BB); 394 395 for (SmallVectorImpl<BasicBlock*>::iterator 396 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 397 if (pred_begin(*II) == pred_end(*II)) 398 WorkList.insert(*II); 399 } 400 401 // Merge pairs of basic blocks with unconditional branches, connected by 402 // a single edge. 403 if (EverMadeChange || MadeChange) 404 MadeChange |= eliminateFallThrough(F); 405 406 EverMadeChange |= MadeChange; 407 } 408 409 if (!DisableGCOpts) { 410 SmallVector<Instruction *, 2> Statepoints; 411 for (BasicBlock &BB : F) 412 for (Instruction &I : BB) 413 if (isStatepoint(I)) 414 Statepoints.push_back(&I); 415 for (auto &I : Statepoints) 416 EverMadeChange |= simplifyOffsetableRelocate(*I); 417 } 418 419 return EverMadeChange; 420 } 421 422 /// Merge basic blocks which are connected by a single edge, where one of the 423 /// basic blocks has a single successor pointing to the other basic block, 424 /// which has a single predecessor. 425 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 426 bool Changed = false; 427 // Scan all of the blocks in the function, except for the entry block. 428 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 429 BasicBlock *BB = &*I++; 430 // If the destination block has a single pred, then this is a trivial 431 // edge, just collapse it. 432 BasicBlock *SinglePred = BB->getSinglePredecessor(); 433 434 // Don't merge if BB's address is taken. 435 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 436 437 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 438 if (Term && !Term->isConditional()) { 439 Changed = true; 440 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 441 // Remember if SinglePred was the entry block of the function. 442 // If so, we will need to move BB back to the entry position. 443 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 444 MergeBasicBlockIntoOnlyPred(BB, nullptr); 445 446 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 447 BB->moveBefore(&BB->getParent()->getEntryBlock()); 448 449 // We have erased a block. Update the iterator. 450 I = BB->getIterator(); 451 } 452 } 453 return Changed; 454 } 455 456 /// Find a destination block from BB if BB is mergeable empty block. 457 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 458 // If this block doesn't end with an uncond branch, ignore it. 459 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 460 if (!BI || !BI->isUnconditional()) 461 return nullptr; 462 463 // If the instruction before the branch (skipping debug info) isn't a phi 464 // node, then other stuff is happening here. 465 BasicBlock::iterator BBI = BI->getIterator(); 466 if (BBI != BB->begin()) { 467 --BBI; 468 while (isa<DbgInfoIntrinsic>(BBI)) { 469 if (BBI == BB->begin()) 470 break; 471 --BBI; 472 } 473 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 474 return nullptr; 475 } 476 477 // Do not break infinite loops. 478 BasicBlock *DestBB = BI->getSuccessor(0); 479 if (DestBB == BB) 480 return nullptr; 481 482 if (!canMergeBlocks(BB, DestBB)) 483 DestBB = nullptr; 484 485 return DestBB; 486 } 487 488 // Return the unique indirectbr predecessor of a block. This may return null 489 // even if such a predecessor exists, if it's not useful for splitting. 490 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 491 // predecessors of BB. 492 static BasicBlock * 493 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 494 // If the block doesn't have any PHIs, we don't care about it, since there's 495 // no point in splitting it. 496 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 497 if (!PN) 498 return nullptr; 499 500 // Verify we have exactly one IBR predecessor. 501 // Conservatively bail out if one of the other predecessors is not a "regular" 502 // terminator (that is, not a switch or a br). 503 BasicBlock *IBB = nullptr; 504 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 505 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 506 TerminatorInst *PredTerm = PredBB->getTerminator(); 507 switch (PredTerm->getOpcode()) { 508 case Instruction::IndirectBr: 509 if (IBB) 510 return nullptr; 511 IBB = PredBB; 512 break; 513 case Instruction::Br: 514 case Instruction::Switch: 515 OtherPreds.push_back(PredBB); 516 continue; 517 default: 518 return nullptr; 519 } 520 } 521 522 return IBB; 523 } 524 525 // Split critical edges where the source of the edge is an indirectbr 526 // instruction. This isn't always possible, but we can handle some easy cases. 527 // This is useful because MI is unable to split such critical edges, 528 // which means it will not be able to sink instructions along those edges. 529 // This is especially painful for indirect branches with many successors, where 530 // we end up having to prepare all outgoing values in the origin block. 531 // 532 // Our normal algorithm for splitting critical edges requires us to update 533 // the outgoing edges of the edge origin block, but for an indirectbr this 534 // is hard, since it would require finding and updating the block addresses 535 // the indirect branch uses. But if a block only has a single indirectbr 536 // predecessor, with the others being regular branches, we can do it in a 537 // different way. 538 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr. 539 // We can split D into D0 and D1, where D0 contains only the PHIs from D, 540 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and 541 // create the following structure: 542 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1 543 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) { 544 // Check whether the function has any indirectbrs, and collect which blocks 545 // they may jump to. Since most functions don't have indirect branches, 546 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 547 SmallSetVector<BasicBlock *, 16> Targets; 548 for (auto &BB : F) { 549 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 550 if (!IBI) 551 continue; 552 553 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 554 Targets.insert(IBI->getSuccessor(Succ)); 555 } 556 557 if (Targets.empty()) 558 return false; 559 560 bool Changed = false; 561 for (BasicBlock *Target : Targets) { 562 SmallVector<BasicBlock *, 16> OtherPreds; 563 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 564 // If we did not found an indirectbr, or the indirectbr is the only 565 // incoming edge, this isn't the kind of edge we're looking for. 566 if (!IBRPred || OtherPreds.empty()) 567 continue; 568 569 // Don't even think about ehpads/landingpads. 570 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 571 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 572 continue; 573 574 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 575 // It's possible Target was its own successor through an indirectbr. 576 // In this case, the indirectbr now comes from BodyBlock. 577 if (IBRPred == Target) 578 IBRPred = BodyBlock; 579 580 // At this point Target only has PHIs, and BodyBlock has the rest of the 581 // block's body. Create a copy of Target that will be used by the "direct" 582 // preds. 583 ValueToValueMapTy VMap; 584 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 585 586 for (BasicBlock *Pred : OtherPreds) { 587 // If the target is a loop to itself, then the terminator of the split 588 // block needs to be updated. 589 if (Pred == Target) 590 BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 591 else 592 Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 593 } 594 595 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 596 // they are clones, so the number of PHIs are the same. 597 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 598 // (b) Leave that as the only edge in the "Indirect" PHI. 599 // (c) Merge the two in the body block. 600 BasicBlock::iterator Indirect = Target->begin(), 601 End = Target->getFirstNonPHI()->getIterator(); 602 BasicBlock::iterator Direct = DirectSucc->begin(); 603 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 604 605 assert(&*End == Target->getTerminator() && 606 "Block was expected to only contain PHIs"); 607 608 while (Indirect != End) { 609 PHINode *DirPHI = cast<PHINode>(Direct); 610 PHINode *IndPHI = cast<PHINode>(Indirect); 611 612 // Now, clean up - the direct block shouldn't get the indirect value, 613 // and vice versa. 614 DirPHI->removeIncomingValue(IBRPred); 615 Direct++; 616 617 // Advance the pointer here, to avoid invalidation issues when the old 618 // PHI is erased. 619 Indirect++; 620 621 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 622 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 623 IBRPred); 624 625 // Create a PHI in the body block, to merge the direct and indirect 626 // predecessors. 627 PHINode *MergePHI = 628 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 629 MergePHI->addIncoming(NewIndPHI, Target); 630 MergePHI->addIncoming(DirPHI, DirectSucc); 631 632 IndPHI->replaceAllUsesWith(MergePHI); 633 IndPHI->eraseFromParent(); 634 } 635 636 Changed = true; 637 } 638 639 return Changed; 640 } 641 642 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 643 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 644 /// edges in ways that are non-optimal for isel. Start by eliminating these 645 /// blocks so we can split them the way we want them. 646 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 647 SmallPtrSet<BasicBlock *, 16> Preheaders; 648 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 649 while (!LoopList.empty()) { 650 Loop *L = LoopList.pop_back_val(); 651 LoopList.insert(LoopList.end(), L->begin(), L->end()); 652 if (BasicBlock *Preheader = L->getLoopPreheader()) 653 Preheaders.insert(Preheader); 654 } 655 656 bool MadeChange = false; 657 // Note that this intentionally skips the entry block. 658 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 659 BasicBlock *BB = &*I++; 660 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 661 if (!DestBB || 662 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 663 continue; 664 665 eliminateMostlyEmptyBlock(BB); 666 MadeChange = true; 667 } 668 return MadeChange; 669 } 670 671 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 672 BasicBlock *DestBB, 673 bool isPreheader) { 674 // Do not delete loop preheaders if doing so would create a critical edge. 675 // Loop preheaders can be good locations to spill registers. If the 676 // preheader is deleted and we create a critical edge, registers may be 677 // spilled in the loop body instead. 678 if (!DisablePreheaderProtect && isPreheader && 679 !(BB->getSinglePredecessor() && 680 BB->getSinglePredecessor()->getSingleSuccessor())) 681 return false; 682 683 // Try to skip merging if the unique predecessor of BB is terminated by a 684 // switch or indirect branch instruction, and BB is used as an incoming block 685 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 686 // add COPY instructions in the predecessor of BB instead of BB (if it is not 687 // merged). Note that the critical edge created by merging such blocks wont be 688 // split in MachineSink because the jump table is not analyzable. By keeping 689 // such empty block (BB), ISel will place COPY instructions in BB, not in the 690 // predecessor of BB. 691 BasicBlock *Pred = BB->getUniquePredecessor(); 692 if (!Pred || 693 !(isa<SwitchInst>(Pred->getTerminator()) || 694 isa<IndirectBrInst>(Pred->getTerminator()))) 695 return true; 696 697 if (BB->getTerminator() != BB->getFirstNonPHI()) 698 return true; 699 700 // We use a simple cost heuristic which determine skipping merging is 701 // profitable if the cost of skipping merging is less than the cost of 702 // merging : Cost(skipping merging) < Cost(merging BB), where the 703 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 704 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 705 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 706 // Freq(Pred) / Freq(BB) > 2. 707 // Note that if there are multiple empty blocks sharing the same incoming 708 // value for the PHIs in the DestBB, we consider them together. In such 709 // case, Cost(merging BB) will be the sum of their frequencies. 710 711 if (!isa<PHINode>(DestBB->begin())) 712 return true; 713 714 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 715 716 // Find all other incoming blocks from which incoming values of all PHIs in 717 // DestBB are the same as the ones from BB. 718 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 719 ++PI) { 720 BasicBlock *DestBBPred = *PI; 721 if (DestBBPred == BB) 722 continue; 723 724 bool HasAllSameValue = true; 725 BasicBlock::const_iterator DestBBI = DestBB->begin(); 726 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 727 if (DestPN->getIncomingValueForBlock(BB) != 728 DestPN->getIncomingValueForBlock(DestBBPred)) { 729 HasAllSameValue = false; 730 break; 731 } 732 } 733 if (HasAllSameValue) 734 SameIncomingValueBBs.insert(DestBBPred); 735 } 736 737 // See if all BB's incoming values are same as the value from Pred. In this 738 // case, no reason to skip merging because COPYs are expected to be place in 739 // Pred already. 740 if (SameIncomingValueBBs.count(Pred)) 741 return true; 742 743 if (!BFI) { 744 Function &F = *BB->getParent(); 745 LoopInfo LI{DominatorTree(F)}; 746 BPI.reset(new BranchProbabilityInfo(F, LI)); 747 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 748 } 749 750 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 751 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 752 753 for (auto SameValueBB : SameIncomingValueBBs) 754 if (SameValueBB->getUniquePredecessor() == Pred && 755 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 756 BBFreq += BFI->getBlockFreq(SameValueBB); 757 758 return PredFreq.getFrequency() <= 759 BBFreq.getFrequency() * FreqRatioToSkipMerge; 760 } 761 762 /// Return true if we can merge BB into DestBB if there is a single 763 /// unconditional branch between them, and BB contains no other non-phi 764 /// instructions. 765 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 766 const BasicBlock *DestBB) const { 767 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 768 // the successor. If there are more complex condition (e.g. preheaders), 769 // don't mess around with them. 770 BasicBlock::const_iterator BBI = BB->begin(); 771 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 772 for (const User *U : PN->users()) { 773 const Instruction *UI = cast<Instruction>(U); 774 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 775 return false; 776 // If User is inside DestBB block and it is a PHINode then check 777 // incoming value. If incoming value is not from BB then this is 778 // a complex condition (e.g. preheaders) we want to avoid here. 779 if (UI->getParent() == DestBB) { 780 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 781 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 782 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 783 if (Insn && Insn->getParent() == BB && 784 Insn->getParent() != UPN->getIncomingBlock(I)) 785 return false; 786 } 787 } 788 } 789 } 790 791 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 792 // and DestBB may have conflicting incoming values for the block. If so, we 793 // can't merge the block. 794 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 795 if (!DestBBPN) return true; // no conflict. 796 797 // Collect the preds of BB. 798 SmallPtrSet<const BasicBlock*, 16> BBPreds; 799 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 800 // It is faster to get preds from a PHI than with pred_iterator. 801 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 802 BBPreds.insert(BBPN->getIncomingBlock(i)); 803 } else { 804 BBPreds.insert(pred_begin(BB), pred_end(BB)); 805 } 806 807 // Walk the preds of DestBB. 808 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 809 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 810 if (BBPreds.count(Pred)) { // Common predecessor? 811 BBI = DestBB->begin(); 812 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 813 const Value *V1 = PN->getIncomingValueForBlock(Pred); 814 const Value *V2 = PN->getIncomingValueForBlock(BB); 815 816 // If V2 is a phi node in BB, look up what the mapped value will be. 817 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 818 if (V2PN->getParent() == BB) 819 V2 = V2PN->getIncomingValueForBlock(Pred); 820 821 // If there is a conflict, bail out. 822 if (V1 != V2) return false; 823 } 824 } 825 } 826 827 return true; 828 } 829 830 831 /// Eliminate a basic block that has only phi's and an unconditional branch in 832 /// it. 833 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 834 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 835 BasicBlock *DestBB = BI->getSuccessor(0); 836 837 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 838 839 // If the destination block has a single pred, then this is a trivial edge, 840 // just collapse it. 841 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 842 if (SinglePred != DestBB) { 843 // Remember if SinglePred was the entry block of the function. If so, we 844 // will need to move BB back to the entry position. 845 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 846 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 847 848 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 849 BB->moveBefore(&BB->getParent()->getEntryBlock()); 850 851 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 852 return; 853 } 854 } 855 856 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 857 // to handle the new incoming edges it is about to have. 858 PHINode *PN; 859 for (BasicBlock::iterator BBI = DestBB->begin(); 860 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 861 // Remove the incoming value for BB, and remember it. 862 Value *InVal = PN->removeIncomingValue(BB, false); 863 864 // Two options: either the InVal is a phi node defined in BB or it is some 865 // value that dominates BB. 866 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 867 if (InValPhi && InValPhi->getParent() == BB) { 868 // Add all of the input values of the input PHI as inputs of this phi. 869 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 870 PN->addIncoming(InValPhi->getIncomingValue(i), 871 InValPhi->getIncomingBlock(i)); 872 } else { 873 // Otherwise, add one instance of the dominating value for each edge that 874 // we will be adding. 875 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 876 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 877 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 878 } else { 879 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 880 PN->addIncoming(InVal, *PI); 881 } 882 } 883 } 884 885 // The PHIs are now updated, change everything that refers to BB to use 886 // DestBB and remove BB. 887 BB->replaceAllUsesWith(DestBB); 888 BB->eraseFromParent(); 889 ++NumBlocksElim; 890 891 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 892 } 893 894 // Computes a map of base pointer relocation instructions to corresponding 895 // derived pointer relocation instructions given a vector of all relocate calls 896 static void computeBaseDerivedRelocateMap( 897 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 898 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 899 &RelocateInstMap) { 900 // Collect information in two maps: one primarily for locating the base object 901 // while filling the second map; the second map is the final structure holding 902 // a mapping between Base and corresponding Derived relocate calls 903 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 904 for (auto *ThisRelocate : AllRelocateCalls) { 905 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 906 ThisRelocate->getDerivedPtrIndex()); 907 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 908 } 909 for (auto &Item : RelocateIdxMap) { 910 std::pair<unsigned, unsigned> Key = Item.first; 911 if (Key.first == Key.second) 912 // Base relocation: nothing to insert 913 continue; 914 915 GCRelocateInst *I = Item.second; 916 auto BaseKey = std::make_pair(Key.first, Key.first); 917 918 // We're iterating over RelocateIdxMap so we cannot modify it. 919 auto MaybeBase = RelocateIdxMap.find(BaseKey); 920 if (MaybeBase == RelocateIdxMap.end()) 921 // TODO: We might want to insert a new base object relocate and gep off 922 // that, if there are enough derived object relocates. 923 continue; 924 925 RelocateInstMap[MaybeBase->second].push_back(I); 926 } 927 } 928 929 // Accepts a GEP and extracts the operands into a vector provided they're all 930 // small integer constants 931 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 932 SmallVectorImpl<Value *> &OffsetV) { 933 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 934 // Only accept small constant integer operands 935 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 936 if (!Op || Op->getZExtValue() > 20) 937 return false; 938 } 939 940 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 941 OffsetV.push_back(GEP->getOperand(i)); 942 return true; 943 } 944 945 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 946 // replace, computes a replacement, and affects it. 947 static bool 948 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 949 const SmallVectorImpl<GCRelocateInst *> &Targets) { 950 bool MadeChange = false; 951 for (GCRelocateInst *ToReplace : Targets) { 952 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 953 "Not relocating a derived object of the original base object"); 954 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 955 // A duplicate relocate call. TODO: coalesce duplicates. 956 continue; 957 } 958 959 if (RelocatedBase->getParent() != ToReplace->getParent()) { 960 // Base and derived relocates are in different basic blocks. 961 // In this case transform is only valid when base dominates derived 962 // relocate. However it would be too expensive to check dominance 963 // for each such relocate, so we skip the whole transformation. 964 continue; 965 } 966 967 Value *Base = ToReplace->getBasePtr(); 968 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 969 if (!Derived || Derived->getPointerOperand() != Base) 970 continue; 971 972 SmallVector<Value *, 2> OffsetV; 973 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 974 continue; 975 976 // Create a Builder and replace the target callsite with a gep 977 assert(RelocatedBase->getNextNode() && 978 "Should always have one since it's not a terminator"); 979 980 // Insert after RelocatedBase 981 IRBuilder<> Builder(RelocatedBase->getNextNode()); 982 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 983 984 // If gc_relocate does not match the actual type, cast it to the right type. 985 // In theory, there must be a bitcast after gc_relocate if the type does not 986 // match, and we should reuse it to get the derived pointer. But it could be 987 // cases like this: 988 // bb1: 989 // ... 990 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 991 // br label %merge 992 // 993 // bb2: 994 // ... 995 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 996 // br label %merge 997 // 998 // merge: 999 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1000 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1001 // 1002 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1003 // no matter there is already one or not. In this way, we can handle all cases, and 1004 // the extra bitcast should be optimized away in later passes. 1005 Value *ActualRelocatedBase = RelocatedBase; 1006 if (RelocatedBase->getType() != Base->getType()) { 1007 ActualRelocatedBase = 1008 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1009 } 1010 Value *Replacement = Builder.CreateGEP( 1011 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1012 Replacement->takeName(ToReplace); 1013 // If the newly generated derived pointer's type does not match the original derived 1014 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1015 Value *ActualReplacement = Replacement; 1016 if (Replacement->getType() != ToReplace->getType()) { 1017 ActualReplacement = 1018 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1019 } 1020 ToReplace->replaceAllUsesWith(ActualReplacement); 1021 ToReplace->eraseFromParent(); 1022 1023 MadeChange = true; 1024 } 1025 return MadeChange; 1026 } 1027 1028 // Turns this: 1029 // 1030 // %base = ... 1031 // %ptr = gep %base + 15 1032 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1033 // %base' = relocate(%tok, i32 4, i32 4) 1034 // %ptr' = relocate(%tok, i32 4, i32 5) 1035 // %val = load %ptr' 1036 // 1037 // into this: 1038 // 1039 // %base = ... 1040 // %ptr = gep %base + 15 1041 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1042 // %base' = gc.relocate(%tok, i32 4, i32 4) 1043 // %ptr' = gep %base' + 15 1044 // %val = load %ptr' 1045 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1046 bool MadeChange = false; 1047 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1048 1049 for (auto *U : I.users()) 1050 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1051 // Collect all the relocate calls associated with a statepoint 1052 AllRelocateCalls.push_back(Relocate); 1053 1054 // We need atleast one base pointer relocation + one derived pointer 1055 // relocation to mangle 1056 if (AllRelocateCalls.size() < 2) 1057 return false; 1058 1059 // RelocateInstMap is a mapping from the base relocate instruction to the 1060 // corresponding derived relocate instructions 1061 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1062 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1063 if (RelocateInstMap.empty()) 1064 return false; 1065 1066 for (auto &Item : RelocateInstMap) 1067 // Item.first is the RelocatedBase to offset against 1068 // Item.second is the vector of Targets to replace 1069 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1070 return MadeChange; 1071 } 1072 1073 /// SinkCast - Sink the specified cast instruction into its user blocks 1074 static bool SinkCast(CastInst *CI) { 1075 BasicBlock *DefBB = CI->getParent(); 1076 1077 /// InsertedCasts - Only insert a cast in each block once. 1078 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1079 1080 bool MadeChange = false; 1081 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1082 UI != E; ) { 1083 Use &TheUse = UI.getUse(); 1084 Instruction *User = cast<Instruction>(*UI); 1085 1086 // Figure out which BB this cast is used in. For PHI's this is the 1087 // appropriate predecessor block. 1088 BasicBlock *UserBB = User->getParent(); 1089 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1090 UserBB = PN->getIncomingBlock(TheUse); 1091 } 1092 1093 // Preincrement use iterator so we don't invalidate it. 1094 ++UI; 1095 1096 // The first insertion point of a block containing an EH pad is after the 1097 // pad. If the pad is the user, we cannot sink the cast past the pad. 1098 if (User->isEHPad()) 1099 continue; 1100 1101 // If the block selected to receive the cast is an EH pad that does not 1102 // allow non-PHI instructions before the terminator, we can't sink the 1103 // cast. 1104 if (UserBB->getTerminator()->isEHPad()) 1105 continue; 1106 1107 // If this user is in the same block as the cast, don't change the cast. 1108 if (UserBB == DefBB) continue; 1109 1110 // If we have already inserted a cast into this block, use it. 1111 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1112 1113 if (!InsertedCast) { 1114 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1115 assert(InsertPt != UserBB->end()); 1116 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1117 CI->getType(), "", &*InsertPt); 1118 } 1119 1120 // Replace a use of the cast with a use of the new cast. 1121 TheUse = InsertedCast; 1122 MadeChange = true; 1123 ++NumCastUses; 1124 } 1125 1126 // If we removed all uses, nuke the cast. 1127 if (CI->use_empty()) { 1128 CI->eraseFromParent(); 1129 MadeChange = true; 1130 } 1131 1132 return MadeChange; 1133 } 1134 1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1137 /// reduce the number of virtual registers that must be created and coalesced. 1138 /// 1139 /// Return true if any changes are made. 1140 /// 1141 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1142 const DataLayout &DL) { 1143 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1144 // than sinking only nop casts, but is helpful on some platforms. 1145 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1146 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1147 ASC->getDestAddressSpace())) 1148 return false; 1149 } 1150 1151 // If this is a noop copy, 1152 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1153 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1154 1155 // This is an fp<->int conversion? 1156 if (SrcVT.isInteger() != DstVT.isInteger()) 1157 return false; 1158 1159 // If this is an extension, it will be a zero or sign extension, which 1160 // isn't a noop. 1161 if (SrcVT.bitsLT(DstVT)) return false; 1162 1163 // If these values will be promoted, find out what they will be promoted 1164 // to. This helps us consider truncates on PPC as noop copies when they 1165 // are. 1166 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1167 TargetLowering::TypePromoteInteger) 1168 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1169 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1170 TargetLowering::TypePromoteInteger) 1171 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1172 1173 // If, after promotion, these are the same types, this is a noop copy. 1174 if (SrcVT != DstVT) 1175 return false; 1176 1177 return SinkCast(CI); 1178 } 1179 1180 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1181 /// possible. 1182 /// 1183 /// Return true if any changes were made. 1184 static bool CombineUAddWithOverflow(CmpInst *CI) { 1185 Value *A, *B; 1186 Instruction *AddI; 1187 if (!match(CI, 1188 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1189 return false; 1190 1191 Type *Ty = AddI->getType(); 1192 if (!isa<IntegerType>(Ty)) 1193 return false; 1194 1195 // We don't want to move around uses of condition values this late, so we we 1196 // check if it is legal to create the call to the intrinsic in the basic 1197 // block containing the icmp: 1198 1199 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1200 return false; 1201 1202 #ifndef NDEBUG 1203 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1204 // for now: 1205 if (AddI->hasOneUse()) 1206 assert(*AddI->user_begin() == CI && "expected!"); 1207 #endif 1208 1209 Module *M = CI->getModule(); 1210 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1211 1212 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1213 1214 auto *UAddWithOverflow = 1215 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1216 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1217 auto *Overflow = 1218 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1219 1220 CI->replaceAllUsesWith(Overflow); 1221 AddI->replaceAllUsesWith(UAdd); 1222 CI->eraseFromParent(); 1223 AddI->eraseFromParent(); 1224 return true; 1225 } 1226 1227 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1228 /// registers that must be created and coalesced. This is a clear win except on 1229 /// targets with multiple condition code registers (PowerPC), where it might 1230 /// lose; some adjustment may be wanted there. 1231 /// 1232 /// Return true if any changes are made. 1233 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1234 BasicBlock *DefBB = CI->getParent(); 1235 1236 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1237 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1238 return false; 1239 1240 // Only insert a cmp in each block once. 1241 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1242 1243 bool MadeChange = false; 1244 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1245 UI != E; ) { 1246 Use &TheUse = UI.getUse(); 1247 Instruction *User = cast<Instruction>(*UI); 1248 1249 // Preincrement use iterator so we don't invalidate it. 1250 ++UI; 1251 1252 // Don't bother for PHI nodes. 1253 if (isa<PHINode>(User)) 1254 continue; 1255 1256 // Figure out which BB this cmp is used in. 1257 BasicBlock *UserBB = User->getParent(); 1258 1259 // If this user is in the same block as the cmp, don't change the cmp. 1260 if (UserBB == DefBB) continue; 1261 1262 // If we have already inserted a cmp into this block, use it. 1263 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1264 1265 if (!InsertedCmp) { 1266 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1267 assert(InsertPt != UserBB->end()); 1268 InsertedCmp = 1269 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1270 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1271 // Propagate the debug info. 1272 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1273 } 1274 1275 // Replace a use of the cmp with a use of the new cmp. 1276 TheUse = InsertedCmp; 1277 MadeChange = true; 1278 ++NumCmpUses; 1279 } 1280 1281 // If we removed all uses, nuke the cmp. 1282 if (CI->use_empty()) { 1283 CI->eraseFromParent(); 1284 MadeChange = true; 1285 } 1286 1287 return MadeChange; 1288 } 1289 1290 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1291 if (SinkCmpExpression(CI, TLI)) 1292 return true; 1293 1294 if (CombineUAddWithOverflow(CI)) 1295 return true; 1296 1297 return false; 1298 } 1299 1300 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1301 /// used in a compare to allow isel to generate better code for targets where 1302 /// this operation can be combined. 1303 /// 1304 /// Return true if any changes are made. 1305 static bool sinkAndCmp0Expression(Instruction *AndI, 1306 const TargetLowering &TLI, 1307 SetOfInstrs &InsertedInsts) { 1308 // Double-check that we're not trying to optimize an instruction that was 1309 // already optimized by some other part of this pass. 1310 assert(!InsertedInsts.count(AndI) && 1311 "Attempting to optimize already optimized and instruction"); 1312 (void) InsertedInsts; 1313 1314 // Nothing to do for single use in same basic block. 1315 if (AndI->hasOneUse() && 1316 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1317 return false; 1318 1319 // Try to avoid cases where sinking/duplicating is likely to increase register 1320 // pressure. 1321 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1322 !isa<ConstantInt>(AndI->getOperand(1)) && 1323 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1324 return false; 1325 1326 for (auto *U : AndI->users()) { 1327 Instruction *User = cast<Instruction>(U); 1328 1329 // Only sink for and mask feeding icmp with 0. 1330 if (!isa<ICmpInst>(User)) 1331 return false; 1332 1333 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1334 if (!CmpC || !CmpC->isZero()) 1335 return false; 1336 } 1337 1338 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1339 return false; 1340 1341 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1342 DEBUG(AndI->getParent()->dump()); 1343 1344 // Push the 'and' into the same block as the icmp 0. There should only be 1345 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1346 // others, so we don't need to keep track of which BBs we insert into. 1347 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1348 UI != E; ) { 1349 Use &TheUse = UI.getUse(); 1350 Instruction *User = cast<Instruction>(*UI); 1351 1352 // Preincrement use iterator so we don't invalidate it. 1353 ++UI; 1354 1355 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1356 1357 // Keep the 'and' in the same place if the use is already in the same block. 1358 Instruction *InsertPt = 1359 User->getParent() == AndI->getParent() ? AndI : User; 1360 Instruction *InsertedAnd = 1361 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1362 AndI->getOperand(1), "", InsertPt); 1363 // Propagate the debug info. 1364 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1365 1366 // Replace a use of the 'and' with a use of the new 'and'. 1367 TheUse = InsertedAnd; 1368 ++NumAndUses; 1369 DEBUG(User->getParent()->dump()); 1370 } 1371 1372 // We removed all uses, nuke the and. 1373 AndI->eraseFromParent(); 1374 return true; 1375 } 1376 1377 /// Check if the candidates could be combined with a shift instruction, which 1378 /// includes: 1379 /// 1. Truncate instruction 1380 /// 2. And instruction and the imm is a mask of the low bits: 1381 /// imm & (imm+1) == 0 1382 static bool isExtractBitsCandidateUse(Instruction *User) { 1383 if (!isa<TruncInst>(User)) { 1384 if (User->getOpcode() != Instruction::And || 1385 !isa<ConstantInt>(User->getOperand(1))) 1386 return false; 1387 1388 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1389 1390 if ((Cimm & (Cimm + 1)).getBoolValue()) 1391 return false; 1392 } 1393 return true; 1394 } 1395 1396 /// Sink both shift and truncate instruction to the use of truncate's BB. 1397 static bool 1398 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1399 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1400 const TargetLowering &TLI, const DataLayout &DL) { 1401 BasicBlock *UserBB = User->getParent(); 1402 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1403 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1404 bool MadeChange = false; 1405 1406 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1407 TruncE = TruncI->user_end(); 1408 TruncUI != TruncE;) { 1409 1410 Use &TruncTheUse = TruncUI.getUse(); 1411 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1412 // Preincrement use iterator so we don't invalidate it. 1413 1414 ++TruncUI; 1415 1416 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1417 if (!ISDOpcode) 1418 continue; 1419 1420 // If the use is actually a legal node, there will not be an 1421 // implicit truncate. 1422 // FIXME: always querying the result type is just an 1423 // approximation; some nodes' legality is determined by the 1424 // operand or other means. There's no good way to find out though. 1425 if (TLI.isOperationLegalOrCustom( 1426 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1427 continue; 1428 1429 // Don't bother for PHI nodes. 1430 if (isa<PHINode>(TruncUser)) 1431 continue; 1432 1433 BasicBlock *TruncUserBB = TruncUser->getParent(); 1434 1435 if (UserBB == TruncUserBB) 1436 continue; 1437 1438 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1439 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1440 1441 if (!InsertedShift && !InsertedTrunc) { 1442 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1443 assert(InsertPt != TruncUserBB->end()); 1444 // Sink the shift 1445 if (ShiftI->getOpcode() == Instruction::AShr) 1446 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1447 "", &*InsertPt); 1448 else 1449 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1450 "", &*InsertPt); 1451 1452 // Sink the trunc 1453 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1454 TruncInsertPt++; 1455 assert(TruncInsertPt != TruncUserBB->end()); 1456 1457 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1458 TruncI->getType(), "", &*TruncInsertPt); 1459 1460 MadeChange = true; 1461 1462 TruncTheUse = InsertedTrunc; 1463 } 1464 } 1465 return MadeChange; 1466 } 1467 1468 /// Sink the shift *right* instruction into user blocks if the uses could 1469 /// potentially be combined with this shift instruction and generate BitExtract 1470 /// instruction. It will only be applied if the architecture supports BitExtract 1471 /// instruction. Here is an example: 1472 /// BB1: 1473 /// %x.extract.shift = lshr i64 %arg1, 32 1474 /// BB2: 1475 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1476 /// ==> 1477 /// 1478 /// BB2: 1479 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1480 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1481 /// 1482 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1483 /// instruction. 1484 /// Return true if any changes are made. 1485 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1486 const TargetLowering &TLI, 1487 const DataLayout &DL) { 1488 BasicBlock *DefBB = ShiftI->getParent(); 1489 1490 /// Only insert instructions in each block once. 1491 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1492 1493 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1494 1495 bool MadeChange = false; 1496 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1497 UI != E;) { 1498 Use &TheUse = UI.getUse(); 1499 Instruction *User = cast<Instruction>(*UI); 1500 // Preincrement use iterator so we don't invalidate it. 1501 ++UI; 1502 1503 // Don't bother for PHI nodes. 1504 if (isa<PHINode>(User)) 1505 continue; 1506 1507 if (!isExtractBitsCandidateUse(User)) 1508 continue; 1509 1510 BasicBlock *UserBB = User->getParent(); 1511 1512 if (UserBB == DefBB) { 1513 // If the shift and truncate instruction are in the same BB. The use of 1514 // the truncate(TruncUse) may still introduce another truncate if not 1515 // legal. In this case, we would like to sink both shift and truncate 1516 // instruction to the BB of TruncUse. 1517 // for example: 1518 // BB1: 1519 // i64 shift.result = lshr i64 opnd, imm 1520 // trunc.result = trunc shift.result to i16 1521 // 1522 // BB2: 1523 // ----> We will have an implicit truncate here if the architecture does 1524 // not have i16 compare. 1525 // cmp i16 trunc.result, opnd2 1526 // 1527 if (isa<TruncInst>(User) && shiftIsLegal 1528 // If the type of the truncate is legal, no trucate will be 1529 // introduced in other basic blocks. 1530 && 1531 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1532 MadeChange = 1533 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1534 1535 continue; 1536 } 1537 // If we have already inserted a shift into this block, use it. 1538 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1539 1540 if (!InsertedShift) { 1541 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1542 assert(InsertPt != UserBB->end()); 1543 1544 if (ShiftI->getOpcode() == Instruction::AShr) 1545 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1546 "", &*InsertPt); 1547 else 1548 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1549 "", &*InsertPt); 1550 1551 MadeChange = true; 1552 } 1553 1554 // Replace a use of the shift with a use of the new shift. 1555 TheUse = InsertedShift; 1556 } 1557 1558 // If we removed all uses, nuke the shift. 1559 if (ShiftI->use_empty()) 1560 ShiftI->eraseFromParent(); 1561 1562 return MadeChange; 1563 } 1564 1565 /// If counting leading or trailing zeros is an expensive operation and a zero 1566 /// input is defined, add a check for zero to avoid calling the intrinsic. 1567 /// 1568 /// We want to transform: 1569 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1570 /// 1571 /// into: 1572 /// entry: 1573 /// %cmpz = icmp eq i64 %A, 0 1574 /// br i1 %cmpz, label %cond.end, label %cond.false 1575 /// cond.false: 1576 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1577 /// br label %cond.end 1578 /// cond.end: 1579 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1580 /// 1581 /// If the transform is performed, return true and set ModifiedDT to true. 1582 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1583 const TargetLowering *TLI, 1584 const DataLayout *DL, 1585 bool &ModifiedDT) { 1586 if (!TLI || !DL) 1587 return false; 1588 1589 // If a zero input is undefined, it doesn't make sense to despeculate that. 1590 if (match(CountZeros->getOperand(1), m_One())) 1591 return false; 1592 1593 // If it's cheap to speculate, there's nothing to do. 1594 auto IntrinsicID = CountZeros->getIntrinsicID(); 1595 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1596 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1597 return false; 1598 1599 // Only handle legal scalar cases. Anything else requires too much work. 1600 Type *Ty = CountZeros->getType(); 1601 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1602 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1603 return false; 1604 1605 // The intrinsic will be sunk behind a compare against zero and branch. 1606 BasicBlock *StartBlock = CountZeros->getParent(); 1607 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1608 1609 // Create another block after the count zero intrinsic. A PHI will be added 1610 // in this block to select the result of the intrinsic or the bit-width 1611 // constant if the input to the intrinsic is zero. 1612 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1613 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1614 1615 // Set up a builder to create a compare, conditional branch, and PHI. 1616 IRBuilder<> Builder(CountZeros->getContext()); 1617 Builder.SetInsertPoint(StartBlock->getTerminator()); 1618 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1619 1620 // Replace the unconditional branch that was created by the first split with 1621 // a compare against zero and a conditional branch. 1622 Value *Zero = Constant::getNullValue(Ty); 1623 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1624 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1625 StartBlock->getTerminator()->eraseFromParent(); 1626 1627 // Create a PHI in the end block to select either the output of the intrinsic 1628 // or the bit width of the operand. 1629 Builder.SetInsertPoint(&EndBlock->front()); 1630 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1631 CountZeros->replaceAllUsesWith(PN); 1632 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1633 PN->addIncoming(BitWidth, StartBlock); 1634 PN->addIncoming(CountZeros, CallBlock); 1635 1636 // We are explicitly handling the zero case, so we can set the intrinsic's 1637 // undefined zero argument to 'true'. This will also prevent reprocessing the 1638 // intrinsic; we only despeculate when a zero input is defined. 1639 CountZeros->setArgOperand(1, Builder.getTrue()); 1640 ModifiedDT = true; 1641 return true; 1642 } 1643 1644 // This class provides helper functions to expand a memcmp library call into an 1645 // inline expansion. 1646 class MemCmpExpansion { 1647 struct ResultBlock { 1648 BasicBlock *BB; 1649 PHINode *PhiSrc1; 1650 PHINode *PhiSrc2; 1651 ResultBlock(); 1652 }; 1653 1654 CallInst *CI; 1655 ResultBlock ResBlock; 1656 unsigned MaxLoadSize; 1657 unsigned NumBlocks; 1658 unsigned NumBlocksNonOneByte; 1659 unsigned NumLoadsPerBlock; 1660 std::vector<BasicBlock *> LoadCmpBlocks; 1661 BasicBlock *EndBlock; 1662 PHINode *PhiRes; 1663 bool IsUsedForZeroCmp; 1664 const DataLayout &DL; 1665 1666 unsigned calculateNumBlocks(unsigned Size); 1667 void createLoadCmpBlocks(); 1668 void createResultBlock(); 1669 void setupResultBlockPHINodes(); 1670 void setupEndBlockPHINodes(); 1671 void emitLoadCompareBlock(unsigned Index, unsigned LoadSize, 1672 unsigned GEPIndex); 1673 Value *getCompareLoadPairs(unsigned Index, unsigned Size, 1674 unsigned &NumBytesProcessed, IRBuilder<> &Builder); 1675 void emitLoadCompareBlockMultipleLoads(unsigned Index, unsigned Size, 1676 unsigned &NumBytesProcessed); 1677 void emitLoadCompareByteBlock(unsigned Index, unsigned GEPIndex); 1678 void emitMemCmpResultBlock(); 1679 Value *getMemCmpExpansionZeroCase(unsigned Size); 1680 Value *getMemCmpEqZeroOneBlock(unsigned Size); 1681 unsigned getLoadSize(unsigned Size); 1682 unsigned getNumLoads(unsigned Size); 1683 1684 public: 1685 MemCmpExpansion(CallInst *CI, uint64_t Size, unsigned MaxLoadSize, 1686 unsigned NumLoadsPerBlock, const DataLayout &DL); 1687 Value *getMemCmpExpansion(uint64_t Size); 1688 }; 1689 1690 MemCmpExpansion::ResultBlock::ResultBlock() 1691 : BB(nullptr), PhiSrc1(nullptr), PhiSrc2(nullptr) {} 1692 1693 // Initialize the basic block structure required for expansion of memcmp call 1694 // with given maximum load size and memcmp size parameter. 1695 // This structure includes: 1696 // 1. A list of load compare blocks - LoadCmpBlocks. 1697 // 2. An EndBlock, split from original instruction point, which is the block to 1698 // return from. 1699 // 3. ResultBlock, block to branch to for early exit when a 1700 // LoadCmpBlock finds a difference. 1701 MemCmpExpansion::MemCmpExpansion(CallInst *CI, uint64_t Size, 1702 unsigned MaxLoadSize, unsigned LoadsPerBlock, 1703 const DataLayout &TheDataLayout) 1704 : CI(CI), MaxLoadSize(MaxLoadSize), NumLoadsPerBlock(LoadsPerBlock), 1705 DL(TheDataLayout) { 1706 1707 // A memcmp with zero-comparison with only one block of load and compare does 1708 // not need to set up any extra blocks. This case could be handled in the DAG, 1709 // but since we have all of the machinery to flexibly expand any memcpy here, 1710 // we choose to handle this case too to avoid fragmented lowering. 1711 IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI); 1712 NumBlocks = calculateNumBlocks(Size); 1713 if (!IsUsedForZeroCmp || NumBlocks != 1) { 1714 BasicBlock *StartBlock = CI->getParent(); 1715 EndBlock = StartBlock->splitBasicBlock(CI, "endblock"); 1716 setupEndBlockPHINodes(); 1717 createResultBlock(); 1718 1719 // If return value of memcmp is not used in a zero equality, we need to 1720 // calculate which source was larger. The calculation requires the 1721 // two loaded source values of each load compare block. 1722 // These will be saved in the phi nodes created by setupResultBlockPHINodes. 1723 if (!IsUsedForZeroCmp) 1724 setupResultBlockPHINodes(); 1725 1726 // Create the number of required load compare basic blocks. 1727 createLoadCmpBlocks(); 1728 1729 // Update the terminator added by splitBasicBlock to branch to the first 1730 // LoadCmpBlock. 1731 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]); 1732 } 1733 1734 IRBuilder<> Builder(CI->getContext()); 1735 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1736 } 1737 1738 void MemCmpExpansion::createLoadCmpBlocks() { 1739 for (unsigned i = 0; i < NumBlocks; i++) { 1740 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb", 1741 EndBlock->getParent(), EndBlock); 1742 LoadCmpBlocks.push_back(BB); 1743 } 1744 } 1745 1746 void MemCmpExpansion::createResultBlock() { 1747 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block", 1748 EndBlock->getParent(), EndBlock); 1749 } 1750 1751 // This function creates the IR instructions for loading and comparing 1 byte. 1752 // It loads 1 byte from each source of the memcmp parameters with the given 1753 // GEPIndex. It then subtracts the two loaded values and adds this result to the 1754 // final phi node for selecting the memcmp result. 1755 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned Index, 1756 unsigned GEPIndex) { 1757 IRBuilder<> Builder(CI->getContext()); 1758 1759 Value *Source1 = CI->getArgOperand(0); 1760 Value *Source2 = CI->getArgOperand(1); 1761 1762 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1763 Type *LoadSizeType = Type::getInt8Ty(CI->getContext()); 1764 // Cast source to LoadSizeType*. 1765 if (Source1->getType() != LoadSizeType) 1766 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1767 if (Source2->getType() != LoadSizeType) 1768 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1769 1770 // Get the base address using the GEPIndex. 1771 if (GEPIndex != 0) { 1772 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1773 ConstantInt::get(LoadSizeType, GEPIndex)); 1774 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1775 ConstantInt::get(LoadSizeType, GEPIndex)); 1776 } 1777 1778 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1779 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1780 1781 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext())); 1782 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext())); 1783 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2); 1784 1785 PhiRes->addIncoming(Diff, LoadCmpBlocks[Index]); 1786 1787 if (Index < (LoadCmpBlocks.size() - 1)) { 1788 // Early exit branch if difference found to EndBlock. Otherwise, continue to 1789 // next LoadCmpBlock, 1790 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 1791 ConstantInt::get(Diff->getType(), 0)); 1792 BranchInst *CmpBr = 1793 BranchInst::Create(EndBlock, LoadCmpBlocks[Index + 1], Cmp); 1794 Builder.Insert(CmpBr); 1795 } else { 1796 // The last block has an unconditional branch to EndBlock. 1797 BranchInst *CmpBr = BranchInst::Create(EndBlock); 1798 Builder.Insert(CmpBr); 1799 } 1800 } 1801 1802 unsigned MemCmpExpansion::getNumLoads(unsigned Size) { 1803 return (Size / MaxLoadSize) + countPopulation(Size % MaxLoadSize); 1804 } 1805 1806 unsigned MemCmpExpansion::getLoadSize(unsigned Size) { 1807 return MinAlign(PowerOf2Floor(Size), MaxLoadSize); 1808 } 1809 1810 /// Generate an equality comparison for one or more pairs of loaded values. 1811 /// This is used in the case where the memcmp() call is compared equal or not 1812 /// equal to zero. 1813 Value *MemCmpExpansion::getCompareLoadPairs(unsigned Index, unsigned Size, 1814 unsigned &NumBytesProcessed, 1815 IRBuilder<> &Builder) { 1816 std::vector<Value *> XorList, OrList; 1817 Value *Diff; 1818 1819 unsigned RemainingBytes = Size - NumBytesProcessed; 1820 unsigned NumLoadsRemaining = getNumLoads(RemainingBytes); 1821 unsigned NumLoads = std::min(NumLoadsRemaining, NumLoadsPerBlock); 1822 1823 // For a single-block expansion, start inserting before the memcmp call. 1824 if (LoadCmpBlocks.empty()) 1825 Builder.SetInsertPoint(CI); 1826 else 1827 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1828 1829 Value *Cmp = nullptr; 1830 for (unsigned i = 0; i < NumLoads; ++i) { 1831 unsigned LoadSize = getLoadSize(RemainingBytes); 1832 unsigned GEPIndex = NumBytesProcessed / LoadSize; 1833 NumBytesProcessed += LoadSize; 1834 RemainingBytes -= LoadSize; 1835 1836 Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8); 1837 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 1838 assert(LoadSize <= MaxLoadSize && "Unexpected load type"); 1839 1840 Value *Source1 = CI->getArgOperand(0); 1841 Value *Source2 = CI->getArgOperand(1); 1842 1843 // Cast source to LoadSizeType*. 1844 if (Source1->getType() != LoadSizeType) 1845 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1846 if (Source2->getType() != LoadSizeType) 1847 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1848 1849 // Get the base address using the GEPIndex. 1850 if (GEPIndex != 0) { 1851 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1852 ConstantInt::get(LoadSizeType, GEPIndex)); 1853 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1854 ConstantInt::get(LoadSizeType, GEPIndex)); 1855 } 1856 1857 // Get a constant or load a value for each source address. 1858 Value *LoadSrc1 = nullptr; 1859 if (auto *Source1C = dyn_cast<Constant>(Source1)) 1860 LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL); 1861 if (!LoadSrc1) 1862 LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1863 1864 Value *LoadSrc2 = nullptr; 1865 if (auto *Source2C = dyn_cast<Constant>(Source2)) 1866 LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL); 1867 if (!LoadSrc2) 1868 LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1869 1870 if (NumLoads != 1) { 1871 if (LoadSizeType != MaxLoadType) { 1872 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType); 1873 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType); 1874 } 1875 // If we have multiple loads per block, we need to generate a composite 1876 // comparison using xor+or. 1877 Diff = Builder.CreateXor(LoadSrc1, LoadSrc2); 1878 Diff = Builder.CreateZExt(Diff, MaxLoadType); 1879 XorList.push_back(Diff); 1880 } else { 1881 // If there's only one load per block, we just compare the loaded values. 1882 Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2); 1883 } 1884 } 1885 1886 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> { 1887 std::vector<Value *> OutList; 1888 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) { 1889 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]); 1890 OutList.push_back(Or); 1891 } 1892 if (InList.size() % 2 != 0) 1893 OutList.push_back(InList.back()); 1894 return OutList; 1895 }; 1896 1897 if (!Cmp) { 1898 // Pairwise OR the XOR results. 1899 OrList = pairWiseOr(XorList); 1900 1901 // Pairwise OR the OR results until one result left. 1902 while (OrList.size() != 1) { 1903 OrList = pairWiseOr(OrList); 1904 } 1905 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0)); 1906 } 1907 1908 return Cmp; 1909 } 1910 1911 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads( 1912 unsigned Index, unsigned Size, unsigned &NumBytesProcessed) { 1913 IRBuilder<> Builder(CI->getContext()); 1914 Value *Cmp = getCompareLoadPairs(Index, Size, NumBytesProcessed, Builder); 1915 1916 BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1)) 1917 ? EndBlock 1918 : LoadCmpBlocks[Index + 1]; 1919 // Early exit branch if difference found to ResultBlock. Otherwise, 1920 // continue to next LoadCmpBlock or EndBlock. 1921 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 1922 Builder.Insert(CmpBr); 1923 1924 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 1925 // since early exit to ResultBlock was not taken (no difference was found in 1926 // any of the bytes). 1927 if (Index == LoadCmpBlocks.size() - 1) { 1928 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 1929 PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]); 1930 } 1931 } 1932 1933 // This function creates the IR intructions for loading and comparing using the 1934 // given LoadSize. It loads the number of bytes specified by LoadSize from each 1935 // source of the memcmp parameters. It then does a subtract to see if there was 1936 // a difference in the loaded values. If a difference is found, it branches 1937 // with an early exit to the ResultBlock for calculating which source was 1938 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or 1939 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with 1940 // a special case through emitLoadCompareByteBlock. The special handling can 1941 // simply subtract the loaded values and add it to the result phi node. 1942 void MemCmpExpansion::emitLoadCompareBlock(unsigned Index, unsigned LoadSize, 1943 unsigned GEPIndex) { 1944 if (LoadSize == 1) { 1945 MemCmpExpansion::emitLoadCompareByteBlock(Index, GEPIndex); 1946 return; 1947 } 1948 1949 IRBuilder<> Builder(CI->getContext()); 1950 1951 Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8); 1952 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 1953 assert(LoadSize <= MaxLoadSize && "Unexpected load type"); 1954 1955 Value *Source1 = CI->getArgOperand(0); 1956 Value *Source2 = CI->getArgOperand(1); 1957 1958 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1959 // Cast source to LoadSizeType*. 1960 if (Source1->getType() != LoadSizeType) 1961 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1962 if (Source2->getType() != LoadSizeType) 1963 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1964 1965 // Get the base address using the GEPIndex. 1966 if (GEPIndex != 0) { 1967 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1968 ConstantInt::get(LoadSizeType, GEPIndex)); 1969 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1970 ConstantInt::get(LoadSizeType, GEPIndex)); 1971 } 1972 1973 // Load LoadSizeType from the base address. 1974 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1975 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1976 1977 if (DL.isLittleEndian()) { 1978 Function *F = LoadCmpBlocks[Index]->getParent(); 1979 1980 Function *Bswap = Intrinsic::getDeclaration(F->getParent(), 1981 Intrinsic::bswap, LoadSizeType); 1982 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 1983 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 1984 } 1985 1986 if (LoadSizeType != MaxLoadType) { 1987 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType); 1988 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType); 1989 } 1990 1991 // Add the loaded values to the phi nodes for calculating memcmp result only 1992 // if result is not used in a zero equality. 1993 if (!IsUsedForZeroCmp) { 1994 ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[Index]); 1995 ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[Index]); 1996 } 1997 1998 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2); 1999 2000 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 2001 ConstantInt::get(Diff->getType(), 0)); 2002 BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1)) 2003 ? EndBlock 2004 : LoadCmpBlocks[Index + 1]; 2005 // Early exit branch if difference found to ResultBlock. Otherwise, continue 2006 // to next LoadCmpBlock or EndBlock. 2007 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 2008 Builder.Insert(CmpBr); 2009 2010 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 2011 // since early exit to ResultBlock was not taken (no difference was found in 2012 // any of the bytes). 2013 if (Index == LoadCmpBlocks.size() - 1) { 2014 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 2015 PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]); 2016 } 2017 } 2018 2019 // This function populates the ResultBlock with a sequence to calculate the 2020 // memcmp result. It compares the two loaded source values and returns -1 if 2021 // src1 < src2 and 1 if src1 > src2. 2022 void MemCmpExpansion::emitMemCmpResultBlock() { 2023 IRBuilder<> Builder(CI->getContext()); 2024 2025 // Special case: if memcmp result is used in a zero equality, result does not 2026 // need to be calculated and can simply return 1. 2027 if (IsUsedForZeroCmp) { 2028 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 2029 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 2030 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1); 2031 PhiRes->addIncoming(Res, ResBlock.BB); 2032 BranchInst *NewBr = BranchInst::Create(EndBlock); 2033 Builder.Insert(NewBr); 2034 return; 2035 } 2036 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 2037 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 2038 2039 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1, 2040 ResBlock.PhiSrc2); 2041 2042 Value *Res = 2043 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1), 2044 ConstantInt::get(Builder.getInt32Ty(), 1)); 2045 2046 BranchInst *NewBr = BranchInst::Create(EndBlock); 2047 Builder.Insert(NewBr); 2048 PhiRes->addIncoming(Res, ResBlock.BB); 2049 } 2050 2051 unsigned MemCmpExpansion::calculateNumBlocks(unsigned Size) { 2052 unsigned NumBlocks = 0; 2053 bool HaveOneByteLoad = false; 2054 unsigned RemainingSize = Size; 2055 unsigned LoadSize = MaxLoadSize; 2056 while (RemainingSize) { 2057 if (LoadSize == 1) 2058 HaveOneByteLoad = true; 2059 NumBlocks += RemainingSize / LoadSize; 2060 RemainingSize = RemainingSize % LoadSize; 2061 LoadSize = LoadSize / 2; 2062 } 2063 NumBlocksNonOneByte = HaveOneByteLoad ? (NumBlocks - 1) : NumBlocks; 2064 2065 if (IsUsedForZeroCmp) 2066 NumBlocks = NumBlocks / NumLoadsPerBlock + 2067 (NumBlocks % NumLoadsPerBlock != 0 ? 1 : 0); 2068 2069 return NumBlocks; 2070 } 2071 2072 void MemCmpExpansion::setupResultBlockPHINodes() { 2073 IRBuilder<> Builder(CI->getContext()); 2074 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 2075 Builder.SetInsertPoint(ResBlock.BB); 2076 ResBlock.PhiSrc1 = 2077 Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src1"); 2078 ResBlock.PhiSrc2 = 2079 Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src2"); 2080 } 2081 2082 void MemCmpExpansion::setupEndBlockPHINodes() { 2083 IRBuilder<> Builder(CI->getContext()); 2084 2085 Builder.SetInsertPoint(&EndBlock->front()); 2086 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res"); 2087 } 2088 2089 Value *MemCmpExpansion::getMemCmpExpansionZeroCase(unsigned Size) { 2090 unsigned NumBytesProcessed = 0; 2091 // This loop populates each of the LoadCmpBlocks with the IR sequence to 2092 // handle multiple loads per block. 2093 for (unsigned i = 0; i < NumBlocks; ++i) 2094 emitLoadCompareBlockMultipleLoads(i, Size, NumBytesProcessed); 2095 2096 emitMemCmpResultBlock(); 2097 return PhiRes; 2098 } 2099 2100 /// A memcmp expansion that compares equality with 0 and only has one block of 2101 /// load and compare can bypass the compare, branch, and phi IR that is required 2102 /// in the general case. 2103 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock(unsigned Size) { 2104 unsigned NumBytesProcessed = 0; 2105 IRBuilder<> Builder(CI->getContext()); 2106 Value *Cmp = getCompareLoadPairs(0, Size, NumBytesProcessed, Builder); 2107 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext())); 2108 } 2109 2110 // This function expands the memcmp call into an inline expansion and returns 2111 // the memcmp result. 2112 Value *MemCmpExpansion::getMemCmpExpansion(uint64_t Size) { 2113 if (IsUsedForZeroCmp) 2114 return NumBlocks == 1 ? getMemCmpEqZeroOneBlock(Size) : 2115 getMemCmpExpansionZeroCase(Size); 2116 2117 // This loop calls emitLoadCompareBlock for comparing Size bytes of the two 2118 // memcmp sources. It starts with loading using the maximum load size set by 2119 // the target. It processes any remaining bytes using a load size which is the 2120 // next smallest power of 2. 2121 unsigned LoadSize = MaxLoadSize; 2122 unsigned NumBytesToBeProcessed = Size; 2123 unsigned Index = 0; 2124 while (NumBytesToBeProcessed) { 2125 // Calculate how many blocks we can create with the current load size. 2126 unsigned NumBlocks = NumBytesToBeProcessed / LoadSize; 2127 unsigned GEPIndex = (Size - NumBytesToBeProcessed) / LoadSize; 2128 NumBytesToBeProcessed = NumBytesToBeProcessed % LoadSize; 2129 2130 // For each NumBlocks, populate the instruction sequence for loading and 2131 // comparing LoadSize bytes. 2132 while (NumBlocks--) { 2133 emitLoadCompareBlock(Index, LoadSize, GEPIndex); 2134 Index++; 2135 GEPIndex++; 2136 } 2137 // Get the next LoadSize to use. 2138 LoadSize = LoadSize / 2; 2139 } 2140 2141 emitMemCmpResultBlock(); 2142 return PhiRes; 2143 } 2144 2145 // This function checks to see if an expansion of memcmp can be generated. 2146 // It checks for constant compare size that is less than the max inline size. 2147 // If an expansion cannot occur, returns false to leave as a library call. 2148 // Otherwise, the library call is replaced with a new IR instruction sequence. 2149 /// We want to transform: 2150 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15) 2151 /// To: 2152 /// loadbb: 2153 /// %0 = bitcast i32* %buffer2 to i8* 2154 /// %1 = bitcast i32* %buffer1 to i8* 2155 /// %2 = bitcast i8* %1 to i64* 2156 /// %3 = bitcast i8* %0 to i64* 2157 /// %4 = load i64, i64* %2 2158 /// %5 = load i64, i64* %3 2159 /// %6 = call i64 @llvm.bswap.i64(i64 %4) 2160 /// %7 = call i64 @llvm.bswap.i64(i64 %5) 2161 /// %8 = sub i64 %6, %7 2162 /// %9 = icmp ne i64 %8, 0 2163 /// br i1 %9, label %res_block, label %loadbb1 2164 /// res_block: ; preds = %loadbb2, 2165 /// %loadbb1, %loadbb 2166 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ] 2167 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ] 2168 /// %10 = icmp ult i64 %phi.src1, %phi.src2 2169 /// %11 = select i1 %10, i32 -1, i32 1 2170 /// br label %endblock 2171 /// loadbb1: ; preds = %loadbb 2172 /// %12 = bitcast i32* %buffer2 to i8* 2173 /// %13 = bitcast i32* %buffer1 to i8* 2174 /// %14 = bitcast i8* %13 to i32* 2175 /// %15 = bitcast i8* %12 to i32* 2176 /// %16 = getelementptr i32, i32* %14, i32 2 2177 /// %17 = getelementptr i32, i32* %15, i32 2 2178 /// %18 = load i32, i32* %16 2179 /// %19 = load i32, i32* %17 2180 /// %20 = call i32 @llvm.bswap.i32(i32 %18) 2181 /// %21 = call i32 @llvm.bswap.i32(i32 %19) 2182 /// %22 = zext i32 %20 to i64 2183 /// %23 = zext i32 %21 to i64 2184 /// %24 = sub i64 %22, %23 2185 /// %25 = icmp ne i64 %24, 0 2186 /// br i1 %25, label %res_block, label %loadbb2 2187 /// loadbb2: ; preds = %loadbb1 2188 /// %26 = bitcast i32* %buffer2 to i8* 2189 /// %27 = bitcast i32* %buffer1 to i8* 2190 /// %28 = bitcast i8* %27 to i16* 2191 /// %29 = bitcast i8* %26 to i16* 2192 /// %30 = getelementptr i16, i16* %28, i16 6 2193 /// %31 = getelementptr i16, i16* %29, i16 6 2194 /// %32 = load i16, i16* %30 2195 /// %33 = load i16, i16* %31 2196 /// %34 = call i16 @llvm.bswap.i16(i16 %32) 2197 /// %35 = call i16 @llvm.bswap.i16(i16 %33) 2198 /// %36 = zext i16 %34 to i64 2199 /// %37 = zext i16 %35 to i64 2200 /// %38 = sub i64 %36, %37 2201 /// %39 = icmp ne i64 %38, 0 2202 /// br i1 %39, label %res_block, label %loadbb3 2203 /// loadbb3: ; preds = %loadbb2 2204 /// %40 = bitcast i32* %buffer2 to i8* 2205 /// %41 = bitcast i32* %buffer1 to i8* 2206 /// %42 = getelementptr i8, i8* %41, i8 14 2207 /// %43 = getelementptr i8, i8* %40, i8 14 2208 /// %44 = load i8, i8* %42 2209 /// %45 = load i8, i8* %43 2210 /// %46 = zext i8 %44 to i32 2211 /// %47 = zext i8 %45 to i32 2212 /// %48 = sub i32 %46, %47 2213 /// br label %endblock 2214 /// endblock: ; preds = %res_block, 2215 /// %loadbb3 2216 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ] 2217 /// ret i32 %phi.res 2218 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI, 2219 const TargetLowering *TLI, const DataLayout *DL) { 2220 NumMemCmpCalls++; 2221 IRBuilder<> Builder(CI->getContext()); 2222 2223 // TTI call to check if target would like to expand memcmp. Also, get the 2224 // MaxLoadSize. 2225 unsigned MaxLoadSize; 2226 if (!TTI->expandMemCmp(CI, MaxLoadSize)) 2227 return false; 2228 2229 // Early exit from expansion if -Oz. 2230 if (CI->getFunction()->optForMinSize()) 2231 return false; 2232 2233 // Early exit from expansion if size is not a constant. 2234 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2235 if (!SizeCast) { 2236 NumMemCmpNotConstant++; 2237 return false; 2238 } 2239 2240 // Early exit from expansion if size greater than max bytes to load. 2241 uint64_t SizeVal = SizeCast->getZExtValue(); 2242 unsigned NumLoads = 0; 2243 unsigned RemainingSize = SizeVal; 2244 unsigned LoadSize = MaxLoadSize; 2245 while (RemainingSize) { 2246 NumLoads += RemainingSize / LoadSize; 2247 RemainingSize = RemainingSize % LoadSize; 2248 LoadSize = LoadSize / 2; 2249 } 2250 2251 if (NumLoads > TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize())) { 2252 NumMemCmpGreaterThanMax++; 2253 return false; 2254 } 2255 2256 NumMemCmpInlined++; 2257 2258 // MemCmpHelper object creates and sets up basic blocks required for 2259 // expanding memcmp with size SizeVal. 2260 unsigned NumLoadsPerBlock = MemCmpNumLoadsPerBlock; 2261 MemCmpExpansion MemCmpHelper(CI, SizeVal, MaxLoadSize, NumLoadsPerBlock, *DL); 2262 2263 Value *Res = MemCmpHelper.getMemCmpExpansion(SizeVal); 2264 2265 // Replace call with result of expansion and erase call. 2266 CI->replaceAllUsesWith(Res); 2267 CI->eraseFromParent(); 2268 2269 return true; 2270 } 2271 2272 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2273 BasicBlock *BB = CI->getParent(); 2274 2275 // Lower inline assembly if we can. 2276 // If we found an inline asm expession, and if the target knows how to 2277 // lower it to normal LLVM code, do so now. 2278 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 2279 if (TLI->ExpandInlineAsm(CI)) { 2280 // Avoid invalidating the iterator. 2281 CurInstIterator = BB->begin(); 2282 // Avoid processing instructions out of order, which could cause 2283 // reuse before a value is defined. 2284 SunkAddrs.clear(); 2285 return true; 2286 } 2287 // Sink address computing for memory operands into the block. 2288 if (optimizeInlineAsmInst(CI)) 2289 return true; 2290 } 2291 2292 // Align the pointer arguments to this call if the target thinks it's a good 2293 // idea 2294 unsigned MinSize, PrefAlign; 2295 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2296 for (auto &Arg : CI->arg_operands()) { 2297 // We want to align both objects whose address is used directly and 2298 // objects whose address is used in casts and GEPs, though it only makes 2299 // sense for GEPs if the offset is a multiple of the desired alignment and 2300 // if size - offset meets the size threshold. 2301 if (!Arg->getType()->isPointerTy()) 2302 continue; 2303 APInt Offset(DL->getPointerSizeInBits( 2304 cast<PointerType>(Arg->getType())->getAddressSpace()), 2305 0); 2306 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2307 uint64_t Offset2 = Offset.getLimitedValue(); 2308 if ((Offset2 & (PrefAlign-1)) != 0) 2309 continue; 2310 AllocaInst *AI; 2311 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2312 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2313 AI->setAlignment(PrefAlign); 2314 // Global variables can only be aligned if they are defined in this 2315 // object (i.e. they are uniquely initialized in this object), and 2316 // over-aligning global variables that have an explicit section is 2317 // forbidden. 2318 GlobalVariable *GV; 2319 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2320 GV->getPointerAlignment(*DL) < PrefAlign && 2321 DL->getTypeAllocSize(GV->getValueType()) >= 2322 MinSize + Offset2) 2323 GV->setAlignment(PrefAlign); 2324 } 2325 // If this is a memcpy (or similar) then we may be able to improve the 2326 // alignment 2327 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2328 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 2329 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 2330 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 2331 if (Align > MI->getAlignment()) 2332 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 2333 } 2334 } 2335 2336 // If we have a cold call site, try to sink addressing computation into the 2337 // cold block. This interacts with our handling for loads and stores to 2338 // ensure that we can fold all uses of a potential addressing computation 2339 // into their uses. TODO: generalize this to work over profiling data 2340 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 2341 for (auto &Arg : CI->arg_operands()) { 2342 if (!Arg->getType()->isPointerTy()) 2343 continue; 2344 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2345 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2346 } 2347 2348 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2349 if (II) { 2350 switch (II->getIntrinsicID()) { 2351 default: break; 2352 case Intrinsic::objectsize: { 2353 // Lower all uses of llvm.objectsize.* 2354 ConstantInt *RetVal = 2355 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 2356 // Substituting this can cause recursive simplifications, which can 2357 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 2358 // this 2359 // happens. 2360 Value *CurValue = &*CurInstIterator; 2361 WeakTrackingVH IterHandle(CurValue); 2362 2363 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2364 2365 // If the iterator instruction was recursively deleted, start over at the 2366 // start of the block. 2367 if (IterHandle != CurValue) { 2368 CurInstIterator = BB->begin(); 2369 SunkAddrs.clear(); 2370 } 2371 return true; 2372 } 2373 case Intrinsic::aarch64_stlxr: 2374 case Intrinsic::aarch64_stxr: { 2375 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2376 if (!ExtVal || !ExtVal->hasOneUse() || 2377 ExtVal->getParent() == CI->getParent()) 2378 return false; 2379 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2380 ExtVal->moveBefore(CI); 2381 // Mark this instruction as "inserted by CGP", so that other 2382 // optimizations don't touch it. 2383 InsertedInsts.insert(ExtVal); 2384 return true; 2385 } 2386 case Intrinsic::invariant_group_barrier: 2387 II->replaceAllUsesWith(II->getArgOperand(0)); 2388 II->eraseFromParent(); 2389 return true; 2390 2391 case Intrinsic::cttz: 2392 case Intrinsic::ctlz: 2393 // If counting zeros is expensive, try to avoid it. 2394 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2395 } 2396 2397 if (TLI) { 2398 SmallVector<Value*, 2> PtrOps; 2399 Type *AccessTy; 2400 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2401 while (!PtrOps.empty()) { 2402 Value *PtrVal = PtrOps.pop_back_val(); 2403 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2404 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2405 return true; 2406 } 2407 } 2408 } 2409 2410 // From here on out we're working with named functions. 2411 if (!CI->getCalledFunction()) return false; 2412 2413 // Lower all default uses of _chk calls. This is very similar 2414 // to what InstCombineCalls does, but here we are only lowering calls 2415 // to fortified library functions (e.g. __memcpy_chk) that have the default 2416 // "don't know" as the objectsize. Anything else should be left alone. 2417 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2418 if (Value *V = Simplifier.optimizeCall(CI)) { 2419 CI->replaceAllUsesWith(V); 2420 CI->eraseFromParent(); 2421 return true; 2422 } 2423 2424 LibFunc Func; 2425 if (TLInfo->getLibFunc(ImmutableCallSite(CI), Func) && 2426 Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TLI, DL)) { 2427 ModifiedDT = true; 2428 return true; 2429 } 2430 return false; 2431 } 2432 2433 /// Look for opportunities to duplicate return instructions to the predecessor 2434 /// to enable tail call optimizations. The case it is currently looking for is: 2435 /// @code 2436 /// bb0: 2437 /// %tmp0 = tail call i32 @f0() 2438 /// br label %return 2439 /// bb1: 2440 /// %tmp1 = tail call i32 @f1() 2441 /// br label %return 2442 /// bb2: 2443 /// %tmp2 = tail call i32 @f2() 2444 /// br label %return 2445 /// return: 2446 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2447 /// ret i32 %retval 2448 /// @endcode 2449 /// 2450 /// => 2451 /// 2452 /// @code 2453 /// bb0: 2454 /// %tmp0 = tail call i32 @f0() 2455 /// ret i32 %tmp0 2456 /// bb1: 2457 /// %tmp1 = tail call i32 @f1() 2458 /// ret i32 %tmp1 2459 /// bb2: 2460 /// %tmp2 = tail call i32 @f2() 2461 /// ret i32 %tmp2 2462 /// @endcode 2463 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 2464 if (!TLI) 2465 return false; 2466 2467 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2468 if (!RetI) 2469 return false; 2470 2471 PHINode *PN = nullptr; 2472 BitCastInst *BCI = nullptr; 2473 Value *V = RetI->getReturnValue(); 2474 if (V) { 2475 BCI = dyn_cast<BitCastInst>(V); 2476 if (BCI) 2477 V = BCI->getOperand(0); 2478 2479 PN = dyn_cast<PHINode>(V); 2480 if (!PN) 2481 return false; 2482 } 2483 2484 if (PN && PN->getParent() != BB) 2485 return false; 2486 2487 // Make sure there are no instructions between the PHI and return, or that the 2488 // return is the first instruction in the block. 2489 if (PN) { 2490 BasicBlock::iterator BI = BB->begin(); 2491 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 2492 if (&*BI == BCI) 2493 // Also skip over the bitcast. 2494 ++BI; 2495 if (&*BI != RetI) 2496 return false; 2497 } else { 2498 BasicBlock::iterator BI = BB->begin(); 2499 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2500 if (&*BI != RetI) 2501 return false; 2502 } 2503 2504 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2505 /// call. 2506 const Function *F = BB->getParent(); 2507 SmallVector<CallInst*, 4> TailCalls; 2508 if (PN) { 2509 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2510 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2511 // Make sure the phi value is indeed produced by the tail call. 2512 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2513 TLI->mayBeEmittedAsTailCall(CI) && 2514 attributesPermitTailCall(F, CI, RetI, *TLI)) 2515 TailCalls.push_back(CI); 2516 } 2517 } else { 2518 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2519 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2520 if (!VisitedBBs.insert(*PI).second) 2521 continue; 2522 2523 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2524 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2525 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2526 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2527 if (RI == RE) 2528 continue; 2529 2530 CallInst *CI = dyn_cast<CallInst>(&*RI); 2531 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2532 attributesPermitTailCall(F, CI, RetI, *TLI)) 2533 TailCalls.push_back(CI); 2534 } 2535 } 2536 2537 bool Changed = false; 2538 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2539 CallInst *CI = TailCalls[i]; 2540 CallSite CS(CI); 2541 2542 // Conservatively require the attributes of the call to match those of the 2543 // return. Ignore noalias because it doesn't affect the call sequence. 2544 AttributeList CalleeAttrs = CS.getAttributes(); 2545 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2546 .removeAttribute(Attribute::NoAlias) != 2547 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2548 .removeAttribute(Attribute::NoAlias)) 2549 continue; 2550 2551 // Make sure the call instruction is followed by an unconditional branch to 2552 // the return block. 2553 BasicBlock *CallBB = CI->getParent(); 2554 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2555 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2556 continue; 2557 2558 // Duplicate the return into CallBB. 2559 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2560 ModifiedDT = Changed = true; 2561 ++NumRetsDup; 2562 } 2563 2564 // If we eliminated all predecessors of the block, delete the block now. 2565 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2566 BB->eraseFromParent(); 2567 2568 return Changed; 2569 } 2570 2571 //===----------------------------------------------------------------------===// 2572 // Memory Optimization 2573 //===----------------------------------------------------------------------===// 2574 2575 namespace { 2576 2577 /// This is an extended version of TargetLowering::AddrMode 2578 /// which holds actual Value*'s for register values. 2579 struct ExtAddrMode : public TargetLowering::AddrMode { 2580 Value *BaseReg; 2581 Value *ScaledReg; 2582 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2583 void print(raw_ostream &OS) const; 2584 void dump() const; 2585 2586 bool operator==(const ExtAddrMode& O) const { 2587 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2588 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2589 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2590 } 2591 }; 2592 2593 #ifndef NDEBUG 2594 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2595 AM.print(OS); 2596 return OS; 2597 } 2598 #endif 2599 2600 void ExtAddrMode::print(raw_ostream &OS) const { 2601 bool NeedPlus = false; 2602 OS << "["; 2603 if (BaseGV) { 2604 OS << (NeedPlus ? " + " : "") 2605 << "GV:"; 2606 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2607 NeedPlus = true; 2608 } 2609 2610 if (BaseOffs) { 2611 OS << (NeedPlus ? " + " : "") 2612 << BaseOffs; 2613 NeedPlus = true; 2614 } 2615 2616 if (BaseReg) { 2617 OS << (NeedPlus ? " + " : "") 2618 << "Base:"; 2619 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2620 NeedPlus = true; 2621 } 2622 if (Scale) { 2623 OS << (NeedPlus ? " + " : "") 2624 << Scale << "*"; 2625 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2626 } 2627 2628 OS << ']'; 2629 } 2630 2631 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2632 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2633 print(dbgs()); 2634 dbgs() << '\n'; 2635 } 2636 #endif 2637 2638 /// \brief This class provides transaction based operation on the IR. 2639 /// Every change made through this class is recorded in the internal state and 2640 /// can be undone (rollback) until commit is called. 2641 class TypePromotionTransaction { 2642 2643 /// \brief This represents the common interface of the individual transaction. 2644 /// Each class implements the logic for doing one specific modification on 2645 /// the IR via the TypePromotionTransaction. 2646 class TypePromotionAction { 2647 protected: 2648 /// The Instruction modified. 2649 Instruction *Inst; 2650 2651 public: 2652 /// \brief Constructor of the action. 2653 /// The constructor performs the related action on the IR. 2654 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2655 2656 virtual ~TypePromotionAction() {} 2657 2658 /// \brief Undo the modification done by this action. 2659 /// When this method is called, the IR must be in the same state as it was 2660 /// before this action was applied. 2661 /// \pre Undoing the action works if and only if the IR is in the exact same 2662 /// state as it was directly after this action was applied. 2663 virtual void undo() = 0; 2664 2665 /// \brief Advocate every change made by this action. 2666 /// When the results on the IR of the action are to be kept, it is important 2667 /// to call this function, otherwise hidden information may be kept forever. 2668 virtual void commit() { 2669 // Nothing to be done, this action is not doing anything. 2670 } 2671 }; 2672 2673 /// \brief Utility to remember the position of an instruction. 2674 class InsertionHandler { 2675 /// Position of an instruction. 2676 /// Either an instruction: 2677 /// - Is the first in a basic block: BB is used. 2678 /// - Has a previous instructon: PrevInst is used. 2679 union { 2680 Instruction *PrevInst; 2681 BasicBlock *BB; 2682 } Point; 2683 /// Remember whether or not the instruction had a previous instruction. 2684 bool HasPrevInstruction; 2685 2686 public: 2687 /// \brief Record the position of \p Inst. 2688 InsertionHandler(Instruction *Inst) { 2689 BasicBlock::iterator It = Inst->getIterator(); 2690 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2691 if (HasPrevInstruction) 2692 Point.PrevInst = &*--It; 2693 else 2694 Point.BB = Inst->getParent(); 2695 } 2696 2697 /// \brief Insert \p Inst at the recorded position. 2698 void insert(Instruction *Inst) { 2699 if (HasPrevInstruction) { 2700 if (Inst->getParent()) 2701 Inst->removeFromParent(); 2702 Inst->insertAfter(Point.PrevInst); 2703 } else { 2704 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2705 if (Inst->getParent()) 2706 Inst->moveBefore(Position); 2707 else 2708 Inst->insertBefore(Position); 2709 } 2710 } 2711 }; 2712 2713 /// \brief Move an instruction before another. 2714 class InstructionMoveBefore : public TypePromotionAction { 2715 /// Original position of the instruction. 2716 InsertionHandler Position; 2717 2718 public: 2719 /// \brief Move \p Inst before \p Before. 2720 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2721 : TypePromotionAction(Inst), Position(Inst) { 2722 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2723 Inst->moveBefore(Before); 2724 } 2725 2726 /// \brief Move the instruction back to its original position. 2727 void undo() override { 2728 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2729 Position.insert(Inst); 2730 } 2731 }; 2732 2733 /// \brief Set the operand of an instruction with a new value. 2734 class OperandSetter : public TypePromotionAction { 2735 /// Original operand of the instruction. 2736 Value *Origin; 2737 /// Index of the modified instruction. 2738 unsigned Idx; 2739 2740 public: 2741 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2742 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2743 : TypePromotionAction(Inst), Idx(Idx) { 2744 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2745 << "for:" << *Inst << "\n" 2746 << "with:" << *NewVal << "\n"); 2747 Origin = Inst->getOperand(Idx); 2748 Inst->setOperand(Idx, NewVal); 2749 } 2750 2751 /// \brief Restore the original value of the instruction. 2752 void undo() override { 2753 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2754 << "for: " << *Inst << "\n" 2755 << "with: " << *Origin << "\n"); 2756 Inst->setOperand(Idx, Origin); 2757 } 2758 }; 2759 2760 /// \brief Hide the operands of an instruction. 2761 /// Do as if this instruction was not using any of its operands. 2762 class OperandsHider : public TypePromotionAction { 2763 /// The list of original operands. 2764 SmallVector<Value *, 4> OriginalValues; 2765 2766 public: 2767 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2768 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2769 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2770 unsigned NumOpnds = Inst->getNumOperands(); 2771 OriginalValues.reserve(NumOpnds); 2772 for (unsigned It = 0; It < NumOpnds; ++It) { 2773 // Save the current operand. 2774 Value *Val = Inst->getOperand(It); 2775 OriginalValues.push_back(Val); 2776 // Set a dummy one. 2777 // We could use OperandSetter here, but that would imply an overhead 2778 // that we are not willing to pay. 2779 Inst->setOperand(It, UndefValue::get(Val->getType())); 2780 } 2781 } 2782 2783 /// \brief Restore the original list of uses. 2784 void undo() override { 2785 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2786 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2787 Inst->setOperand(It, OriginalValues[It]); 2788 } 2789 }; 2790 2791 /// \brief Build a truncate instruction. 2792 class TruncBuilder : public TypePromotionAction { 2793 Value *Val; 2794 public: 2795 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2796 /// result. 2797 /// trunc Opnd to Ty. 2798 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2799 IRBuilder<> Builder(Opnd); 2800 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2801 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2802 } 2803 2804 /// \brief Get the built value. 2805 Value *getBuiltValue() { return Val; } 2806 2807 /// \brief Remove the built instruction. 2808 void undo() override { 2809 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2810 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2811 IVal->eraseFromParent(); 2812 } 2813 }; 2814 2815 /// \brief Build a sign extension instruction. 2816 class SExtBuilder : public TypePromotionAction { 2817 Value *Val; 2818 public: 2819 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2820 /// result. 2821 /// sext Opnd to Ty. 2822 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2823 : TypePromotionAction(InsertPt) { 2824 IRBuilder<> Builder(InsertPt); 2825 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2826 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2827 } 2828 2829 /// \brief Get the built value. 2830 Value *getBuiltValue() { return Val; } 2831 2832 /// \brief Remove the built instruction. 2833 void undo() override { 2834 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2835 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2836 IVal->eraseFromParent(); 2837 } 2838 }; 2839 2840 /// \brief Build a zero extension instruction. 2841 class ZExtBuilder : public TypePromotionAction { 2842 Value *Val; 2843 public: 2844 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2845 /// result. 2846 /// zext Opnd to Ty. 2847 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2848 : TypePromotionAction(InsertPt) { 2849 IRBuilder<> Builder(InsertPt); 2850 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2851 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2852 } 2853 2854 /// \brief Get the built value. 2855 Value *getBuiltValue() { return Val; } 2856 2857 /// \brief Remove the built instruction. 2858 void undo() override { 2859 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2860 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2861 IVal->eraseFromParent(); 2862 } 2863 }; 2864 2865 /// \brief Mutate an instruction to another type. 2866 class TypeMutator : public TypePromotionAction { 2867 /// Record the original type. 2868 Type *OrigTy; 2869 2870 public: 2871 /// \brief Mutate the type of \p Inst into \p NewTy. 2872 TypeMutator(Instruction *Inst, Type *NewTy) 2873 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2874 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2875 << "\n"); 2876 Inst->mutateType(NewTy); 2877 } 2878 2879 /// \brief Mutate the instruction back to its original type. 2880 void undo() override { 2881 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2882 << "\n"); 2883 Inst->mutateType(OrigTy); 2884 } 2885 }; 2886 2887 /// \brief Replace the uses of an instruction by another instruction. 2888 class UsesReplacer : public TypePromotionAction { 2889 /// Helper structure to keep track of the replaced uses. 2890 struct InstructionAndIdx { 2891 /// The instruction using the instruction. 2892 Instruction *Inst; 2893 /// The index where this instruction is used for Inst. 2894 unsigned Idx; 2895 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2896 : Inst(Inst), Idx(Idx) {} 2897 }; 2898 2899 /// Keep track of the original uses (pair Instruction, Index). 2900 SmallVector<InstructionAndIdx, 4> OriginalUses; 2901 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2902 2903 public: 2904 /// \brief Replace all the use of \p Inst by \p New. 2905 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2906 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2907 << "\n"); 2908 // Record the original uses. 2909 for (Use &U : Inst->uses()) { 2910 Instruction *UserI = cast<Instruction>(U.getUser()); 2911 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2912 } 2913 // Now, we can replace the uses. 2914 Inst->replaceAllUsesWith(New); 2915 } 2916 2917 /// \brief Reassign the original uses of Inst to Inst. 2918 void undo() override { 2919 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2920 for (use_iterator UseIt = OriginalUses.begin(), 2921 EndIt = OriginalUses.end(); 2922 UseIt != EndIt; ++UseIt) { 2923 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2924 } 2925 } 2926 }; 2927 2928 /// \brief Remove an instruction from the IR. 2929 class InstructionRemover : public TypePromotionAction { 2930 /// Original position of the instruction. 2931 InsertionHandler Inserter; 2932 /// Helper structure to hide all the link to the instruction. In other 2933 /// words, this helps to do as if the instruction was removed. 2934 OperandsHider Hider; 2935 /// Keep track of the uses replaced, if any. 2936 UsesReplacer *Replacer; 2937 /// Keep track of instructions removed. 2938 SetOfInstrs &RemovedInsts; 2939 2940 public: 2941 /// \brief Remove all reference of \p Inst and optinally replace all its 2942 /// uses with New. 2943 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2944 /// \pre If !Inst->use_empty(), then New != nullptr 2945 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2946 Value *New = nullptr) 2947 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2948 Replacer(nullptr), RemovedInsts(RemovedInsts) { 2949 if (New) 2950 Replacer = new UsesReplacer(Inst, New); 2951 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2952 RemovedInsts.insert(Inst); 2953 /// The instructions removed here will be freed after completing 2954 /// optimizeBlock() for all blocks as we need to keep track of the 2955 /// removed instructions during promotion. 2956 Inst->removeFromParent(); 2957 } 2958 2959 ~InstructionRemover() override { delete Replacer; } 2960 2961 /// \brief Resurrect the instruction and reassign it to the proper uses if 2962 /// new value was provided when build this action. 2963 void undo() override { 2964 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2965 Inserter.insert(Inst); 2966 if (Replacer) 2967 Replacer->undo(); 2968 Hider.undo(); 2969 RemovedInsts.erase(Inst); 2970 } 2971 }; 2972 2973 public: 2974 /// Restoration point. 2975 /// The restoration point is a pointer to an action instead of an iterator 2976 /// because the iterator may be invalidated but not the pointer. 2977 typedef const TypePromotionAction *ConstRestorationPt; 2978 2979 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2980 : RemovedInsts(RemovedInsts) {} 2981 2982 /// Advocate every changes made in that transaction. 2983 void commit(); 2984 /// Undo all the changes made after the given point. 2985 void rollback(ConstRestorationPt Point); 2986 /// Get the current restoration point. 2987 ConstRestorationPt getRestorationPoint() const; 2988 2989 /// \name API for IR modification with state keeping to support rollback. 2990 /// @{ 2991 /// Same as Instruction::setOperand. 2992 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2993 /// Same as Instruction::eraseFromParent. 2994 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2995 /// Same as Value::replaceAllUsesWith. 2996 void replaceAllUsesWith(Instruction *Inst, Value *New); 2997 /// Same as Value::mutateType. 2998 void mutateType(Instruction *Inst, Type *NewTy); 2999 /// Same as IRBuilder::createTrunc. 3000 Value *createTrunc(Instruction *Opnd, Type *Ty); 3001 /// Same as IRBuilder::createSExt. 3002 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3003 /// Same as IRBuilder::createZExt. 3004 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3005 /// Same as Instruction::moveBefore. 3006 void moveBefore(Instruction *Inst, Instruction *Before); 3007 /// @} 3008 3009 private: 3010 /// The ordered list of actions made so far. 3011 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3012 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 3013 SetOfInstrs &RemovedInsts; 3014 }; 3015 3016 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3017 Value *NewVal) { 3018 Actions.push_back( 3019 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 3020 } 3021 3022 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3023 Value *NewVal) { 3024 Actions.push_back( 3025 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, 3026 RemovedInsts, NewVal)); 3027 } 3028 3029 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3030 Value *New) { 3031 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3032 } 3033 3034 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3035 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3036 } 3037 3038 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3039 Type *Ty) { 3040 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3041 Value *Val = Ptr->getBuiltValue(); 3042 Actions.push_back(std::move(Ptr)); 3043 return Val; 3044 } 3045 3046 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3047 Value *Opnd, Type *Ty) { 3048 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3049 Value *Val = Ptr->getBuiltValue(); 3050 Actions.push_back(std::move(Ptr)); 3051 return Val; 3052 } 3053 3054 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3055 Value *Opnd, Type *Ty) { 3056 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3057 Value *Val = Ptr->getBuiltValue(); 3058 Actions.push_back(std::move(Ptr)); 3059 return Val; 3060 } 3061 3062 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3063 Instruction *Before) { 3064 Actions.push_back( 3065 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 3066 } 3067 3068 TypePromotionTransaction::ConstRestorationPt 3069 TypePromotionTransaction::getRestorationPoint() const { 3070 return !Actions.empty() ? Actions.back().get() : nullptr; 3071 } 3072 3073 void TypePromotionTransaction::commit() { 3074 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 3075 ++It) 3076 (*It)->commit(); 3077 Actions.clear(); 3078 } 3079 3080 void TypePromotionTransaction::rollback( 3081 TypePromotionTransaction::ConstRestorationPt Point) { 3082 while (!Actions.empty() && Point != Actions.back().get()) { 3083 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3084 Curr->undo(); 3085 } 3086 } 3087 3088 /// \brief A helper class for matching addressing modes. 3089 /// 3090 /// This encapsulates the logic for matching the target-legal addressing modes. 3091 class AddressingModeMatcher { 3092 SmallVectorImpl<Instruction*> &AddrModeInsts; 3093 const TargetLowering &TLI; 3094 const TargetRegisterInfo &TRI; 3095 const DataLayout &DL; 3096 3097 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3098 /// the memory instruction that we're computing this address for. 3099 Type *AccessTy; 3100 unsigned AddrSpace; 3101 Instruction *MemoryInst; 3102 3103 /// This is the addressing mode that we're building up. This is 3104 /// part of the return value of this addressing mode matching stuff. 3105 ExtAddrMode &AddrMode; 3106 3107 /// The instructions inserted by other CodeGenPrepare optimizations. 3108 const SetOfInstrs &InsertedInsts; 3109 /// A map from the instructions to their type before promotion. 3110 InstrToOrigTy &PromotedInsts; 3111 /// The ongoing transaction where every action should be registered. 3112 TypePromotionTransaction &TPT; 3113 3114 /// This is set to true when we should not do profitability checks. 3115 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3116 bool IgnoreProfitability; 3117 3118 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 3119 const TargetLowering &TLI, 3120 const TargetRegisterInfo &TRI, 3121 Type *AT, unsigned AS, 3122 Instruction *MI, ExtAddrMode &AM, 3123 const SetOfInstrs &InsertedInsts, 3124 InstrToOrigTy &PromotedInsts, 3125 TypePromotionTransaction &TPT) 3126 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3127 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3128 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3129 PromotedInsts(PromotedInsts), TPT(TPT) { 3130 IgnoreProfitability = false; 3131 } 3132 public: 3133 3134 /// Find the maximal addressing mode that a load/store of V can fold, 3135 /// give an access type of AccessTy. This returns a list of involved 3136 /// instructions in AddrModeInsts. 3137 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3138 /// optimizations. 3139 /// \p PromotedInsts maps the instructions to their type before promotion. 3140 /// \p The ongoing transaction where every action should be registered. 3141 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 3142 Instruction *MemoryInst, 3143 SmallVectorImpl<Instruction*> &AddrModeInsts, 3144 const TargetLowering &TLI, 3145 const TargetRegisterInfo &TRI, 3146 const SetOfInstrs &InsertedInsts, 3147 InstrToOrigTy &PromotedInsts, 3148 TypePromotionTransaction &TPT) { 3149 ExtAddrMode Result; 3150 3151 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 3152 AccessTy, AS, 3153 MemoryInst, Result, InsertedInsts, 3154 PromotedInsts, TPT).matchAddr(V, 0); 3155 (void)Success; assert(Success && "Couldn't select *anything*?"); 3156 return Result; 3157 } 3158 private: 3159 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3160 bool matchAddr(Value *V, unsigned Depth); 3161 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 3162 bool *MovedAway = nullptr); 3163 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3164 ExtAddrMode &AMBefore, 3165 ExtAddrMode &AMAfter); 3166 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3167 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3168 Value *PromotedOperand) const; 3169 }; 3170 3171 /// Try adding ScaleReg*Scale to the current addressing mode. 3172 /// Return true and update AddrMode if this addr mode is legal for the target, 3173 /// false if not. 3174 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3175 unsigned Depth) { 3176 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3177 // mode. Just process that directly. 3178 if (Scale == 1) 3179 return matchAddr(ScaleReg, Depth); 3180 3181 // If the scale is 0, it takes nothing to add this. 3182 if (Scale == 0) 3183 return true; 3184 3185 // If we already have a scale of this value, we can add to it, otherwise, we 3186 // need an available scale field. 3187 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3188 return false; 3189 3190 ExtAddrMode TestAddrMode = AddrMode; 3191 3192 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3193 // [A+B + A*7] -> [B+A*8]. 3194 TestAddrMode.Scale += Scale; 3195 TestAddrMode.ScaledReg = ScaleReg; 3196 3197 // If the new address isn't legal, bail out. 3198 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3199 return false; 3200 3201 // It was legal, so commit it. 3202 AddrMode = TestAddrMode; 3203 3204 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3205 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3206 // X*Scale + C*Scale to addr mode. 3207 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3208 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3209 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3210 TestAddrMode.ScaledReg = AddLHS; 3211 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3212 3213 // If this addressing mode is legal, commit it and remember that we folded 3214 // this instruction. 3215 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3216 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3217 AddrMode = TestAddrMode; 3218 return true; 3219 } 3220 } 3221 3222 // Otherwise, not (x+c)*scale, just return what we have. 3223 return true; 3224 } 3225 3226 /// This is a little filter, which returns true if an addressing computation 3227 /// involving I might be folded into a load/store accessing it. 3228 /// This doesn't need to be perfect, but needs to accept at least 3229 /// the set of instructions that MatchOperationAddr can. 3230 static bool MightBeFoldableInst(Instruction *I) { 3231 switch (I->getOpcode()) { 3232 case Instruction::BitCast: 3233 case Instruction::AddrSpaceCast: 3234 // Don't touch identity bitcasts. 3235 if (I->getType() == I->getOperand(0)->getType()) 3236 return false; 3237 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3238 case Instruction::PtrToInt: 3239 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3240 return true; 3241 case Instruction::IntToPtr: 3242 // We know the input is intptr_t, so this is foldable. 3243 return true; 3244 case Instruction::Add: 3245 return true; 3246 case Instruction::Mul: 3247 case Instruction::Shl: 3248 // Can only handle X*C and X << C. 3249 return isa<ConstantInt>(I->getOperand(1)); 3250 case Instruction::GetElementPtr: 3251 return true; 3252 default: 3253 return false; 3254 } 3255 } 3256 3257 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3258 /// \note \p Val is assumed to be the product of some type promotion. 3259 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3260 /// to be legal, as the non-promoted value would have had the same state. 3261 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3262 const DataLayout &DL, Value *Val) { 3263 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3264 if (!PromotedInst) 3265 return false; 3266 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3267 // If the ISDOpcode is undefined, it was undefined before the promotion. 3268 if (!ISDOpcode) 3269 return true; 3270 // Otherwise, check if the promoted instruction is legal or not. 3271 return TLI.isOperationLegalOrCustom( 3272 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3273 } 3274 3275 /// \brief Hepler class to perform type promotion. 3276 class TypePromotionHelper { 3277 /// \brief Utility function to check whether or not a sign or zero extension 3278 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3279 /// either using the operands of \p Inst or promoting \p Inst. 3280 /// The type of the extension is defined by \p IsSExt. 3281 /// In other words, check if: 3282 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3283 /// #1 Promotion applies: 3284 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3285 /// #2 Operand reuses: 3286 /// ext opnd1 to ConsideredExtType. 3287 /// \p PromotedInsts maps the instructions to their type before promotion. 3288 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3289 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3290 3291 /// \brief Utility function to determine if \p OpIdx should be promoted when 3292 /// promoting \p Inst. 3293 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3294 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3295 } 3296 3297 /// \brief Utility function to promote the operand of \p Ext when this 3298 /// operand is a promotable trunc or sext or zext. 3299 /// \p PromotedInsts maps the instructions to their type before promotion. 3300 /// \p CreatedInstsCost[out] contains the cost of all instructions 3301 /// created to promote the operand of Ext. 3302 /// Newly added extensions are inserted in \p Exts. 3303 /// Newly added truncates are inserted in \p Truncs. 3304 /// Should never be called directly. 3305 /// \return The promoted value which is used instead of Ext. 3306 static Value *promoteOperandForTruncAndAnyExt( 3307 Instruction *Ext, TypePromotionTransaction &TPT, 3308 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3309 SmallVectorImpl<Instruction *> *Exts, 3310 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3311 3312 /// \brief Utility function to promote the operand of \p Ext when this 3313 /// operand is promotable and is not a supported trunc or sext. 3314 /// \p PromotedInsts maps the instructions to their type before promotion. 3315 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3316 /// created to promote the operand of Ext. 3317 /// Newly added extensions are inserted in \p Exts. 3318 /// Newly added truncates are inserted in \p Truncs. 3319 /// Should never be called directly. 3320 /// \return The promoted value which is used instead of Ext. 3321 static Value *promoteOperandForOther(Instruction *Ext, 3322 TypePromotionTransaction &TPT, 3323 InstrToOrigTy &PromotedInsts, 3324 unsigned &CreatedInstsCost, 3325 SmallVectorImpl<Instruction *> *Exts, 3326 SmallVectorImpl<Instruction *> *Truncs, 3327 const TargetLowering &TLI, bool IsSExt); 3328 3329 /// \see promoteOperandForOther. 3330 static Value *signExtendOperandForOther( 3331 Instruction *Ext, TypePromotionTransaction &TPT, 3332 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3333 SmallVectorImpl<Instruction *> *Exts, 3334 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3335 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3336 Exts, Truncs, TLI, true); 3337 } 3338 3339 /// \see promoteOperandForOther. 3340 static Value *zeroExtendOperandForOther( 3341 Instruction *Ext, TypePromotionTransaction &TPT, 3342 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3343 SmallVectorImpl<Instruction *> *Exts, 3344 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3345 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3346 Exts, Truncs, TLI, false); 3347 } 3348 3349 public: 3350 /// Type for the utility function that promotes the operand of Ext. 3351 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 3352 InstrToOrigTy &PromotedInsts, 3353 unsigned &CreatedInstsCost, 3354 SmallVectorImpl<Instruction *> *Exts, 3355 SmallVectorImpl<Instruction *> *Truncs, 3356 const TargetLowering &TLI); 3357 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3358 /// action to promote the operand of \p Ext instead of using Ext. 3359 /// \return NULL if no promotable action is possible with the current 3360 /// sign extension. 3361 /// \p InsertedInsts keeps track of all the instructions inserted by the 3362 /// other CodeGenPrepare optimizations. This information is important 3363 /// because we do not want to promote these instructions as CodeGenPrepare 3364 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3365 /// \p PromotedInsts maps the instructions to their type before promotion. 3366 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3367 const TargetLowering &TLI, 3368 const InstrToOrigTy &PromotedInsts); 3369 }; 3370 3371 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3372 Type *ConsideredExtType, 3373 const InstrToOrigTy &PromotedInsts, 3374 bool IsSExt) { 3375 // The promotion helper does not know how to deal with vector types yet. 3376 // To be able to fix that, we would need to fix the places where we 3377 // statically extend, e.g., constants and such. 3378 if (Inst->getType()->isVectorTy()) 3379 return false; 3380 3381 // We can always get through zext. 3382 if (isa<ZExtInst>(Inst)) 3383 return true; 3384 3385 // sext(sext) is ok too. 3386 if (IsSExt && isa<SExtInst>(Inst)) 3387 return true; 3388 3389 // We can get through binary operator, if it is legal. In other words, the 3390 // binary operator must have a nuw or nsw flag. 3391 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3392 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3393 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3394 (IsSExt && BinOp->hasNoSignedWrap()))) 3395 return true; 3396 3397 // Check if we can do the following simplification. 3398 // ext(trunc(opnd)) --> ext(opnd) 3399 if (!isa<TruncInst>(Inst)) 3400 return false; 3401 3402 Value *OpndVal = Inst->getOperand(0); 3403 // Check if we can use this operand in the extension. 3404 // If the type is larger than the result type of the extension, we cannot. 3405 if (!OpndVal->getType()->isIntegerTy() || 3406 OpndVal->getType()->getIntegerBitWidth() > 3407 ConsideredExtType->getIntegerBitWidth()) 3408 return false; 3409 3410 // If the operand of the truncate is not an instruction, we will not have 3411 // any information on the dropped bits. 3412 // (Actually we could for constant but it is not worth the extra logic). 3413 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3414 if (!Opnd) 3415 return false; 3416 3417 // Check if the source of the type is narrow enough. 3418 // I.e., check that trunc just drops extended bits of the same kind of 3419 // the extension. 3420 // #1 get the type of the operand and check the kind of the extended bits. 3421 const Type *OpndType; 3422 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3423 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3424 OpndType = It->second.getPointer(); 3425 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3426 OpndType = Opnd->getOperand(0)->getType(); 3427 else 3428 return false; 3429 3430 // #2 check that the truncate just drops extended bits. 3431 return Inst->getType()->getIntegerBitWidth() >= 3432 OpndType->getIntegerBitWidth(); 3433 } 3434 3435 TypePromotionHelper::Action TypePromotionHelper::getAction( 3436 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3437 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3438 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3439 "Unexpected instruction type"); 3440 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3441 Type *ExtTy = Ext->getType(); 3442 bool IsSExt = isa<SExtInst>(Ext); 3443 // If the operand of the extension is not an instruction, we cannot 3444 // get through. 3445 // If it, check we can get through. 3446 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3447 return nullptr; 3448 3449 // Do not promote if the operand has been added by codegenprepare. 3450 // Otherwise, it means we are undoing an optimization that is likely to be 3451 // redone, thus causing potential infinite loop. 3452 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3453 return nullptr; 3454 3455 // SExt or Trunc instructions. 3456 // Return the related handler. 3457 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3458 isa<ZExtInst>(ExtOpnd)) 3459 return promoteOperandForTruncAndAnyExt; 3460 3461 // Regular instruction. 3462 // Abort early if we will have to insert non-free instructions. 3463 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3464 return nullptr; 3465 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3466 } 3467 3468 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3469 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 3470 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3471 SmallVectorImpl<Instruction *> *Exts, 3472 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3473 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3474 // get through it and this method should not be called. 3475 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3476 Value *ExtVal = SExt; 3477 bool HasMergedNonFreeExt = false; 3478 if (isa<ZExtInst>(SExtOpnd)) { 3479 // Replace s|zext(zext(opnd)) 3480 // => zext(opnd). 3481 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3482 Value *ZExt = 3483 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3484 TPT.replaceAllUsesWith(SExt, ZExt); 3485 TPT.eraseInstruction(SExt); 3486 ExtVal = ZExt; 3487 } else { 3488 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3489 // => z|sext(opnd). 3490 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3491 } 3492 CreatedInstsCost = 0; 3493 3494 // Remove dead code. 3495 if (SExtOpnd->use_empty()) 3496 TPT.eraseInstruction(SExtOpnd); 3497 3498 // Check if the extension is still needed. 3499 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3500 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3501 if (ExtInst) { 3502 if (Exts) 3503 Exts->push_back(ExtInst); 3504 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3505 } 3506 return ExtVal; 3507 } 3508 3509 // At this point we have: ext ty opnd to ty. 3510 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3511 Value *NextVal = ExtInst->getOperand(0); 3512 TPT.eraseInstruction(ExtInst, NextVal); 3513 return NextVal; 3514 } 3515 3516 Value *TypePromotionHelper::promoteOperandForOther( 3517 Instruction *Ext, TypePromotionTransaction &TPT, 3518 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3519 SmallVectorImpl<Instruction *> *Exts, 3520 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3521 bool IsSExt) { 3522 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3523 // get through it and this method should not be called. 3524 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3525 CreatedInstsCost = 0; 3526 if (!ExtOpnd->hasOneUse()) { 3527 // ExtOpnd will be promoted. 3528 // All its uses, but Ext, will need to use a truncated value of the 3529 // promoted version. 3530 // Create the truncate now. 3531 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3532 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3533 ITrunc->removeFromParent(); 3534 // Insert it just after the definition. 3535 ITrunc->insertAfter(ExtOpnd); 3536 if (Truncs) 3537 Truncs->push_back(ITrunc); 3538 } 3539 3540 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3541 // Restore the operand of Ext (which has been replaced by the previous call 3542 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3543 TPT.setOperand(Ext, 0, ExtOpnd); 3544 } 3545 3546 // Get through the Instruction: 3547 // 1. Update its type. 3548 // 2. Replace the uses of Ext by Inst. 3549 // 3. Extend each operand that needs to be extended. 3550 3551 // Remember the original type of the instruction before promotion. 3552 // This is useful to know that the high bits are sign extended bits. 3553 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3554 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3555 // Step #1. 3556 TPT.mutateType(ExtOpnd, Ext->getType()); 3557 // Step #2. 3558 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3559 // Step #3. 3560 Instruction *ExtForOpnd = Ext; 3561 3562 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3563 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3564 ++OpIdx) { 3565 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3566 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3567 !shouldExtOperand(ExtOpnd, OpIdx)) { 3568 DEBUG(dbgs() << "No need to propagate\n"); 3569 continue; 3570 } 3571 // Check if we can statically extend the operand. 3572 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3573 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3574 DEBUG(dbgs() << "Statically extend\n"); 3575 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3576 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3577 : Cst->getValue().zext(BitWidth); 3578 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3579 continue; 3580 } 3581 // UndefValue are typed, so we have to statically sign extend them. 3582 if (isa<UndefValue>(Opnd)) { 3583 DEBUG(dbgs() << "Statically extend\n"); 3584 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3585 continue; 3586 } 3587 3588 // Otherwise we have to explicity sign extend the operand. 3589 // Check if Ext was reused to extend an operand. 3590 if (!ExtForOpnd) { 3591 // If yes, create a new one. 3592 DEBUG(dbgs() << "More operands to ext\n"); 3593 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3594 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3595 if (!isa<Instruction>(ValForExtOpnd)) { 3596 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3597 continue; 3598 } 3599 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3600 } 3601 if (Exts) 3602 Exts->push_back(ExtForOpnd); 3603 TPT.setOperand(ExtForOpnd, 0, Opnd); 3604 3605 // Move the sign extension before the insertion point. 3606 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3607 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3608 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3609 // If more sext are required, new instructions will have to be created. 3610 ExtForOpnd = nullptr; 3611 } 3612 if (ExtForOpnd == Ext) { 3613 DEBUG(dbgs() << "Extension is useless now\n"); 3614 TPT.eraseInstruction(Ext); 3615 } 3616 return ExtOpnd; 3617 } 3618 3619 /// Check whether or not promoting an instruction to a wider type is profitable. 3620 /// \p NewCost gives the cost of extension instructions created by the 3621 /// promotion. 3622 /// \p OldCost gives the cost of extension instructions before the promotion 3623 /// plus the number of instructions that have been 3624 /// matched in the addressing mode the promotion. 3625 /// \p PromotedOperand is the value that has been promoted. 3626 /// \return True if the promotion is profitable, false otherwise. 3627 bool AddressingModeMatcher::isPromotionProfitable( 3628 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3629 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3630 // The cost of the new extensions is greater than the cost of the 3631 // old extension plus what we folded. 3632 // This is not profitable. 3633 if (NewCost > OldCost) 3634 return false; 3635 if (NewCost < OldCost) 3636 return true; 3637 // The promotion is neutral but it may help folding the sign extension in 3638 // loads for instance. 3639 // Check that we did not create an illegal instruction. 3640 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3641 } 3642 3643 /// Given an instruction or constant expr, see if we can fold the operation 3644 /// into the addressing mode. If so, update the addressing mode and return 3645 /// true, otherwise return false without modifying AddrMode. 3646 /// If \p MovedAway is not NULL, it contains the information of whether or 3647 /// not AddrInst has to be folded into the addressing mode on success. 3648 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3649 /// because it has been moved away. 3650 /// Thus AddrInst must not be added in the matched instructions. 3651 /// This state can happen when AddrInst is a sext, since it may be moved away. 3652 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3653 /// not be referenced anymore. 3654 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3655 unsigned Depth, 3656 bool *MovedAway) { 3657 // Avoid exponential behavior on extremely deep expression trees. 3658 if (Depth >= 5) return false; 3659 3660 // By default, all matched instructions stay in place. 3661 if (MovedAway) 3662 *MovedAway = false; 3663 3664 switch (Opcode) { 3665 case Instruction::PtrToInt: 3666 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3667 return matchAddr(AddrInst->getOperand(0), Depth); 3668 case Instruction::IntToPtr: { 3669 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3670 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3671 // This inttoptr is a no-op if the integer type is pointer sized. 3672 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3673 return matchAddr(AddrInst->getOperand(0), Depth); 3674 return false; 3675 } 3676 case Instruction::BitCast: 3677 // BitCast is always a noop, and we can handle it as long as it is 3678 // int->int or pointer->pointer (we don't want int<->fp or something). 3679 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3680 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3681 // Don't touch identity bitcasts. These were probably put here by LSR, 3682 // and we don't want to mess around with them. Assume it knows what it 3683 // is doing. 3684 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3685 return matchAddr(AddrInst->getOperand(0), Depth); 3686 return false; 3687 case Instruction::AddrSpaceCast: { 3688 unsigned SrcAS 3689 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3690 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3691 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3692 return matchAddr(AddrInst->getOperand(0), Depth); 3693 return false; 3694 } 3695 case Instruction::Add: { 3696 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3697 ExtAddrMode BackupAddrMode = AddrMode; 3698 unsigned OldSize = AddrModeInsts.size(); 3699 // Start a transaction at this point. 3700 // The LHS may match but not the RHS. 3701 // Therefore, we need a higher level restoration point to undo partially 3702 // matched operation. 3703 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3704 TPT.getRestorationPoint(); 3705 3706 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3707 matchAddr(AddrInst->getOperand(0), Depth+1)) 3708 return true; 3709 3710 // Restore the old addr mode info. 3711 AddrMode = BackupAddrMode; 3712 AddrModeInsts.resize(OldSize); 3713 TPT.rollback(LastKnownGood); 3714 3715 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3716 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3717 matchAddr(AddrInst->getOperand(1), Depth+1)) 3718 return true; 3719 3720 // Otherwise we definitely can't merge the ADD in. 3721 AddrMode = BackupAddrMode; 3722 AddrModeInsts.resize(OldSize); 3723 TPT.rollback(LastKnownGood); 3724 break; 3725 } 3726 //case Instruction::Or: 3727 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3728 //break; 3729 case Instruction::Mul: 3730 case Instruction::Shl: { 3731 // Can only handle X*C and X << C. 3732 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3733 if (!RHS) 3734 return false; 3735 int64_t Scale = RHS->getSExtValue(); 3736 if (Opcode == Instruction::Shl) 3737 Scale = 1LL << Scale; 3738 3739 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3740 } 3741 case Instruction::GetElementPtr: { 3742 // Scan the GEP. We check it if it contains constant offsets and at most 3743 // one variable offset. 3744 int VariableOperand = -1; 3745 unsigned VariableScale = 0; 3746 3747 int64_t ConstantOffset = 0; 3748 gep_type_iterator GTI = gep_type_begin(AddrInst); 3749 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3750 if (StructType *STy = GTI.getStructTypeOrNull()) { 3751 const StructLayout *SL = DL.getStructLayout(STy); 3752 unsigned Idx = 3753 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3754 ConstantOffset += SL->getElementOffset(Idx); 3755 } else { 3756 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3757 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3758 ConstantOffset += CI->getSExtValue()*TypeSize; 3759 } else if (TypeSize) { // Scales of zero don't do anything. 3760 // We only allow one variable index at the moment. 3761 if (VariableOperand != -1) 3762 return false; 3763 3764 // Remember the variable index. 3765 VariableOperand = i; 3766 VariableScale = TypeSize; 3767 } 3768 } 3769 } 3770 3771 // A common case is for the GEP to only do a constant offset. In this case, 3772 // just add it to the disp field and check validity. 3773 if (VariableOperand == -1) { 3774 AddrMode.BaseOffs += ConstantOffset; 3775 if (ConstantOffset == 0 || 3776 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3777 // Check to see if we can fold the base pointer in too. 3778 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3779 return true; 3780 } 3781 AddrMode.BaseOffs -= ConstantOffset; 3782 return false; 3783 } 3784 3785 // Save the valid addressing mode in case we can't match. 3786 ExtAddrMode BackupAddrMode = AddrMode; 3787 unsigned OldSize = AddrModeInsts.size(); 3788 3789 // See if the scale and offset amount is valid for this target. 3790 AddrMode.BaseOffs += ConstantOffset; 3791 3792 // Match the base operand of the GEP. 3793 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3794 // If it couldn't be matched, just stuff the value in a register. 3795 if (AddrMode.HasBaseReg) { 3796 AddrMode = BackupAddrMode; 3797 AddrModeInsts.resize(OldSize); 3798 return false; 3799 } 3800 AddrMode.HasBaseReg = true; 3801 AddrMode.BaseReg = AddrInst->getOperand(0); 3802 } 3803 3804 // Match the remaining variable portion of the GEP. 3805 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3806 Depth)) { 3807 // If it couldn't be matched, try stuffing the base into a register 3808 // instead of matching it, and retrying the match of the scale. 3809 AddrMode = BackupAddrMode; 3810 AddrModeInsts.resize(OldSize); 3811 if (AddrMode.HasBaseReg) 3812 return false; 3813 AddrMode.HasBaseReg = true; 3814 AddrMode.BaseReg = AddrInst->getOperand(0); 3815 AddrMode.BaseOffs += ConstantOffset; 3816 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3817 VariableScale, Depth)) { 3818 // If even that didn't work, bail. 3819 AddrMode = BackupAddrMode; 3820 AddrModeInsts.resize(OldSize); 3821 return false; 3822 } 3823 } 3824 3825 return true; 3826 } 3827 case Instruction::SExt: 3828 case Instruction::ZExt: { 3829 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3830 if (!Ext) 3831 return false; 3832 3833 // Try to move this ext out of the way of the addressing mode. 3834 // Ask for a method for doing so. 3835 TypePromotionHelper::Action TPH = 3836 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3837 if (!TPH) 3838 return false; 3839 3840 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3841 TPT.getRestorationPoint(); 3842 unsigned CreatedInstsCost = 0; 3843 unsigned ExtCost = !TLI.isExtFree(Ext); 3844 Value *PromotedOperand = 3845 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3846 // SExt has been moved away. 3847 // Thus either it will be rematched later in the recursive calls or it is 3848 // gone. Anyway, we must not fold it into the addressing mode at this point. 3849 // E.g., 3850 // op = add opnd, 1 3851 // idx = ext op 3852 // addr = gep base, idx 3853 // is now: 3854 // promotedOpnd = ext opnd <- no match here 3855 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3856 // addr = gep base, op <- match 3857 if (MovedAway) 3858 *MovedAway = true; 3859 3860 assert(PromotedOperand && 3861 "TypePromotionHelper should have filtered out those cases"); 3862 3863 ExtAddrMode BackupAddrMode = AddrMode; 3864 unsigned OldSize = AddrModeInsts.size(); 3865 3866 if (!matchAddr(PromotedOperand, Depth) || 3867 // The total of the new cost is equal to the cost of the created 3868 // instructions. 3869 // The total of the old cost is equal to the cost of the extension plus 3870 // what we have saved in the addressing mode. 3871 !isPromotionProfitable(CreatedInstsCost, 3872 ExtCost + (AddrModeInsts.size() - OldSize), 3873 PromotedOperand)) { 3874 AddrMode = BackupAddrMode; 3875 AddrModeInsts.resize(OldSize); 3876 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3877 TPT.rollback(LastKnownGood); 3878 return false; 3879 } 3880 return true; 3881 } 3882 } 3883 return false; 3884 } 3885 3886 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3887 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3888 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3889 /// for the target. 3890 /// 3891 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3892 // Start a transaction at this point that we will rollback if the matching 3893 // fails. 3894 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3895 TPT.getRestorationPoint(); 3896 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3897 // Fold in immediates if legal for the target. 3898 AddrMode.BaseOffs += CI->getSExtValue(); 3899 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3900 return true; 3901 AddrMode.BaseOffs -= CI->getSExtValue(); 3902 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3903 // If this is a global variable, try to fold it into the addressing mode. 3904 if (!AddrMode.BaseGV) { 3905 AddrMode.BaseGV = GV; 3906 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3907 return true; 3908 AddrMode.BaseGV = nullptr; 3909 } 3910 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3911 ExtAddrMode BackupAddrMode = AddrMode; 3912 unsigned OldSize = AddrModeInsts.size(); 3913 3914 // Check to see if it is possible to fold this operation. 3915 bool MovedAway = false; 3916 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3917 // This instruction may have been moved away. If so, there is nothing 3918 // to check here. 3919 if (MovedAway) 3920 return true; 3921 // Okay, it's possible to fold this. Check to see if it is actually 3922 // *profitable* to do so. We use a simple cost model to avoid increasing 3923 // register pressure too much. 3924 if (I->hasOneUse() || 3925 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3926 AddrModeInsts.push_back(I); 3927 return true; 3928 } 3929 3930 // It isn't profitable to do this, roll back. 3931 //cerr << "NOT FOLDING: " << *I; 3932 AddrMode = BackupAddrMode; 3933 AddrModeInsts.resize(OldSize); 3934 TPT.rollback(LastKnownGood); 3935 } 3936 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3937 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3938 return true; 3939 TPT.rollback(LastKnownGood); 3940 } else if (isa<ConstantPointerNull>(Addr)) { 3941 // Null pointer gets folded without affecting the addressing mode. 3942 return true; 3943 } 3944 3945 // Worse case, the target should support [reg] addressing modes. :) 3946 if (!AddrMode.HasBaseReg) { 3947 AddrMode.HasBaseReg = true; 3948 AddrMode.BaseReg = Addr; 3949 // Still check for legality in case the target supports [imm] but not [i+r]. 3950 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3951 return true; 3952 AddrMode.HasBaseReg = false; 3953 AddrMode.BaseReg = nullptr; 3954 } 3955 3956 // If the base register is already taken, see if we can do [r+r]. 3957 if (AddrMode.Scale == 0) { 3958 AddrMode.Scale = 1; 3959 AddrMode.ScaledReg = Addr; 3960 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3961 return true; 3962 AddrMode.Scale = 0; 3963 AddrMode.ScaledReg = nullptr; 3964 } 3965 // Couldn't match. 3966 TPT.rollback(LastKnownGood); 3967 return false; 3968 } 3969 3970 /// Check to see if all uses of OpVal by the specified inline asm call are due 3971 /// to memory operands. If so, return true, otherwise return false. 3972 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3973 const TargetLowering &TLI, 3974 const TargetRegisterInfo &TRI) { 3975 const Function *F = CI->getFunction(); 3976 TargetLowering::AsmOperandInfoVector TargetConstraints = 3977 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3978 ImmutableCallSite(CI)); 3979 3980 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3981 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3982 3983 // Compute the constraint code and ConstraintType to use. 3984 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3985 3986 // If this asm operand is our Value*, and if it isn't an indirect memory 3987 // operand, we can't fold it! 3988 if (OpInfo.CallOperandVal == OpVal && 3989 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3990 !OpInfo.isIndirect)) 3991 return false; 3992 } 3993 3994 return true; 3995 } 3996 3997 /// Recursively walk all the uses of I until we find a memory use. 3998 /// If we find an obviously non-foldable instruction, return true. 3999 /// Add the ultimately found memory instructions to MemoryUses. 4000 static bool FindAllMemoryUses( 4001 Instruction *I, 4002 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4003 SmallPtrSetImpl<Instruction *> &ConsideredInsts, 4004 const TargetLowering &TLI, const TargetRegisterInfo &TRI) { 4005 // If we already considered this instruction, we're done. 4006 if (!ConsideredInsts.insert(I).second) 4007 return false; 4008 4009 // If this is an obviously unfoldable instruction, bail out. 4010 if (!MightBeFoldableInst(I)) 4011 return true; 4012 4013 const bool OptSize = I->getFunction()->optForSize(); 4014 4015 // Loop over all the uses, recursively processing them. 4016 for (Use &U : I->uses()) { 4017 Instruction *UserI = cast<Instruction>(U.getUser()); 4018 4019 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4020 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4021 continue; 4022 } 4023 4024 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4025 unsigned opNo = U.getOperandNo(); 4026 if (opNo != StoreInst::getPointerOperandIndex()) 4027 return true; // Storing addr, not into addr. 4028 MemoryUses.push_back(std::make_pair(SI, opNo)); 4029 continue; 4030 } 4031 4032 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4033 unsigned opNo = U.getOperandNo(); 4034 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4035 return true; // Storing addr, not into addr. 4036 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4037 continue; 4038 } 4039 4040 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4041 unsigned opNo = U.getOperandNo(); 4042 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4043 return true; // Storing addr, not into addr. 4044 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4045 continue; 4046 } 4047 4048 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4049 // If this is a cold call, we can sink the addressing calculation into 4050 // the cold path. See optimizeCallInst 4051 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4052 continue; 4053 4054 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4055 if (!IA) return true; 4056 4057 // If this is a memory operand, we're cool, otherwise bail out. 4058 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4059 return true; 4060 continue; 4061 } 4062 4063 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI)) 4064 return true; 4065 } 4066 4067 return false; 4068 } 4069 4070 /// Return true if Val is already known to be live at the use site that we're 4071 /// folding it into. If so, there is no cost to include it in the addressing 4072 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4073 /// instruction already. 4074 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4075 Value *KnownLive2) { 4076 // If Val is either of the known-live values, we know it is live! 4077 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4078 return true; 4079 4080 // All values other than instructions and arguments (e.g. constants) are live. 4081 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4082 4083 // If Val is a constant sized alloca in the entry block, it is live, this is 4084 // true because it is just a reference to the stack/frame pointer, which is 4085 // live for the whole function. 4086 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4087 if (AI->isStaticAlloca()) 4088 return true; 4089 4090 // Check to see if this value is already used in the memory instruction's 4091 // block. If so, it's already live into the block at the very least, so we 4092 // can reasonably fold it. 4093 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4094 } 4095 4096 /// It is possible for the addressing mode of the machine to fold the specified 4097 /// instruction into a load or store that ultimately uses it. 4098 /// However, the specified instruction has multiple uses. 4099 /// Given this, it may actually increase register pressure to fold it 4100 /// into the load. For example, consider this code: 4101 /// 4102 /// X = ... 4103 /// Y = X+1 4104 /// use(Y) -> nonload/store 4105 /// Z = Y+1 4106 /// load Z 4107 /// 4108 /// In this case, Y has multiple uses, and can be folded into the load of Z 4109 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4110 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4111 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4112 /// number of computations either. 4113 /// 4114 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4115 /// X was live across 'load Z' for other reasons, we actually *would* want to 4116 /// fold the addressing mode in the Z case. This would make Y die earlier. 4117 bool AddressingModeMatcher:: 4118 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4119 ExtAddrMode &AMAfter) { 4120 if (IgnoreProfitability) return true; 4121 4122 // AMBefore is the addressing mode before this instruction was folded into it, 4123 // and AMAfter is the addressing mode after the instruction was folded. Get 4124 // the set of registers referenced by AMAfter and subtract out those 4125 // referenced by AMBefore: this is the set of values which folding in this 4126 // address extends the lifetime of. 4127 // 4128 // Note that there are only two potential values being referenced here, 4129 // BaseReg and ScaleReg (global addresses are always available, as are any 4130 // folded immediates). 4131 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4132 4133 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4134 // lifetime wasn't extended by adding this instruction. 4135 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4136 BaseReg = nullptr; 4137 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4138 ScaledReg = nullptr; 4139 4140 // If folding this instruction (and it's subexprs) didn't extend any live 4141 // ranges, we're ok with it. 4142 if (!BaseReg && !ScaledReg) 4143 return true; 4144 4145 // If all uses of this instruction can have the address mode sunk into them, 4146 // we can remove the addressing mode and effectively trade one live register 4147 // for another (at worst.) In this context, folding an addressing mode into 4148 // the use is just a particularly nice way of sinking it. 4149 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4150 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4151 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4152 return false; // Has a non-memory, non-foldable use! 4153 4154 // Now that we know that all uses of this instruction are part of a chain of 4155 // computation involving only operations that could theoretically be folded 4156 // into a memory use, loop over each of these memory operation uses and see 4157 // if they could *actually* fold the instruction. The assumption is that 4158 // addressing modes are cheap and that duplicating the computation involved 4159 // many times is worthwhile, even on a fastpath. For sinking candidates 4160 // (i.e. cold call sites), this serves as a way to prevent excessive code 4161 // growth since most architectures have some reasonable small and fast way to 4162 // compute an effective address. (i.e LEA on x86) 4163 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4164 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4165 Instruction *User = MemoryUses[i].first; 4166 unsigned OpNo = MemoryUses[i].second; 4167 4168 // Get the access type of this use. If the use isn't a pointer, we don't 4169 // know what it accesses. 4170 Value *Address = User->getOperand(OpNo); 4171 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4172 if (!AddrTy) 4173 return false; 4174 Type *AddressAccessTy = AddrTy->getElementType(); 4175 unsigned AS = AddrTy->getAddressSpace(); 4176 4177 // Do a match against the root of this address, ignoring profitability. This 4178 // will tell us if the addressing mode for the memory operation will 4179 // *actually* cover the shared instruction. 4180 ExtAddrMode Result; 4181 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4182 TPT.getRestorationPoint(); 4183 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4184 AddressAccessTy, AS, 4185 MemoryInst, Result, InsertedInsts, 4186 PromotedInsts, TPT); 4187 Matcher.IgnoreProfitability = true; 4188 bool Success = Matcher.matchAddr(Address, 0); 4189 (void)Success; assert(Success && "Couldn't select *anything*?"); 4190 4191 // The match was to check the profitability, the changes made are not 4192 // part of the original matcher. Therefore, they should be dropped 4193 // otherwise the original matcher will not present the right state. 4194 TPT.rollback(LastKnownGood); 4195 4196 // If the match didn't cover I, then it won't be shared by it. 4197 if (!is_contained(MatchedAddrModeInsts, I)) 4198 return false; 4199 4200 MatchedAddrModeInsts.clear(); 4201 } 4202 4203 return true; 4204 } 4205 4206 } // end anonymous namespace 4207 4208 /// Return true if the specified values are defined in a 4209 /// different basic block than BB. 4210 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4211 if (Instruction *I = dyn_cast<Instruction>(V)) 4212 return I->getParent() != BB; 4213 return false; 4214 } 4215 4216 /// Sink addressing mode computation immediate before MemoryInst if doing so 4217 /// can be done without increasing register pressure. The need for the 4218 /// register pressure constraint means this can end up being an all or nothing 4219 /// decision for all uses of the same addressing computation. 4220 /// 4221 /// Load and Store Instructions often have addressing modes that can do 4222 /// significant amounts of computation. As such, instruction selection will try 4223 /// to get the load or store to do as much computation as possible for the 4224 /// program. The problem is that isel can only see within a single block. As 4225 /// such, we sink as much legal addressing mode work into the block as possible. 4226 /// 4227 /// This method is used to optimize both load/store and inline asms with memory 4228 /// operands. It's also used to sink addressing computations feeding into cold 4229 /// call sites into their (cold) basic block. 4230 /// 4231 /// The motivation for handling sinking into cold blocks is that doing so can 4232 /// both enable other address mode sinking (by satisfying the register pressure 4233 /// constraint above), and reduce register pressure globally (by removing the 4234 /// addressing mode computation from the fast path entirely.). 4235 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4236 Type *AccessTy, unsigned AddrSpace) { 4237 Value *Repl = Addr; 4238 4239 // Try to collapse single-value PHI nodes. This is necessary to undo 4240 // unprofitable PRE transformations. 4241 SmallVector<Value*, 8> worklist; 4242 SmallPtrSet<Value*, 16> Visited; 4243 worklist.push_back(Addr); 4244 4245 // Use a worklist to iteratively look through PHI nodes, and ensure that 4246 // the addressing mode obtained from the non-PHI roots of the graph 4247 // are equivalent. 4248 Value *Consensus = nullptr; 4249 unsigned NumUsesConsensus = 0; 4250 bool IsNumUsesConsensusValid = false; 4251 SmallVector<Instruction*, 16> AddrModeInsts; 4252 ExtAddrMode AddrMode; 4253 TypePromotionTransaction TPT(RemovedInsts); 4254 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4255 TPT.getRestorationPoint(); 4256 while (!worklist.empty()) { 4257 Value *V = worklist.back(); 4258 worklist.pop_back(); 4259 4260 // Break use-def graph loops. 4261 if (!Visited.insert(V).second) { 4262 Consensus = nullptr; 4263 break; 4264 } 4265 4266 // For a PHI node, push all of its incoming values. 4267 if (PHINode *P = dyn_cast<PHINode>(V)) { 4268 for (Value *IncValue : P->incoming_values()) 4269 worklist.push_back(IncValue); 4270 continue; 4271 } 4272 4273 // For non-PHIs, determine the addressing mode being computed. Note that 4274 // the result may differ depending on what other uses our candidate 4275 // addressing instructions might have. 4276 SmallVector<Instruction*, 16> NewAddrModeInsts; 4277 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4278 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TLI, *TRI, 4279 InsertedInsts, PromotedInsts, TPT); 4280 4281 // This check is broken into two cases with very similar code to avoid using 4282 // getNumUses() as much as possible. Some values have a lot of uses, so 4283 // calling getNumUses() unconditionally caused a significant compile-time 4284 // regression. 4285 if (!Consensus) { 4286 Consensus = V; 4287 AddrMode = NewAddrMode; 4288 AddrModeInsts = NewAddrModeInsts; 4289 continue; 4290 } else if (NewAddrMode == AddrMode) { 4291 if (!IsNumUsesConsensusValid) { 4292 NumUsesConsensus = Consensus->getNumUses(); 4293 IsNumUsesConsensusValid = true; 4294 } 4295 4296 // Ensure that the obtained addressing mode is equivalent to that obtained 4297 // for all other roots of the PHI traversal. Also, when choosing one 4298 // such root as representative, select the one with the most uses in order 4299 // to keep the cost modeling heuristics in AddressingModeMatcher 4300 // applicable. 4301 unsigned NumUses = V->getNumUses(); 4302 if (NumUses > NumUsesConsensus) { 4303 Consensus = V; 4304 NumUsesConsensus = NumUses; 4305 AddrModeInsts = NewAddrModeInsts; 4306 } 4307 continue; 4308 } 4309 4310 Consensus = nullptr; 4311 break; 4312 } 4313 4314 // If the addressing mode couldn't be determined, or if multiple different 4315 // ones were determined, bail out now. 4316 if (!Consensus) { 4317 TPT.rollback(LastKnownGood); 4318 return false; 4319 } 4320 TPT.commit(); 4321 4322 // If all the instructions matched are already in this BB, don't do anything. 4323 if (none_of(AddrModeInsts, [&](Value *V) { 4324 return IsNonLocalValue(V, MemoryInst->getParent()); 4325 })) { 4326 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4327 return false; 4328 } 4329 4330 // Insert this computation right after this user. Since our caller is 4331 // scanning from the top of the BB to the bottom, reuse of the expr are 4332 // guaranteed to happen later. 4333 IRBuilder<> Builder(MemoryInst); 4334 4335 // Now that we determined the addressing expression we want to use and know 4336 // that we have to sink it into this block. Check to see if we have already 4337 // done this for some other load/store instr in this block. If so, reuse the 4338 // computation. 4339 Value *&SunkAddr = SunkAddrs[Addr]; 4340 if (SunkAddr) { 4341 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4342 << *MemoryInst << "\n"); 4343 if (SunkAddr->getType() != Addr->getType()) 4344 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4345 } else if (AddrSinkUsingGEPs || 4346 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4347 SubtargetInfo->useAA())) { 4348 // By default, we use the GEP-based method when AA is used later. This 4349 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4350 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4351 << *MemoryInst << "\n"); 4352 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4353 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4354 4355 // First, find the pointer. 4356 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4357 ResultPtr = AddrMode.BaseReg; 4358 AddrMode.BaseReg = nullptr; 4359 } 4360 4361 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4362 // We can't add more than one pointer together, nor can we scale a 4363 // pointer (both of which seem meaningless). 4364 if (ResultPtr || AddrMode.Scale != 1) 4365 return false; 4366 4367 ResultPtr = AddrMode.ScaledReg; 4368 AddrMode.Scale = 0; 4369 } 4370 4371 if (AddrMode.BaseGV) { 4372 if (ResultPtr) 4373 return false; 4374 4375 ResultPtr = AddrMode.BaseGV; 4376 } 4377 4378 // If the real base value actually came from an inttoptr, then the matcher 4379 // will look through it and provide only the integer value. In that case, 4380 // use it here. 4381 if (!ResultPtr && AddrMode.BaseReg) { 4382 ResultPtr = 4383 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 4384 AddrMode.BaseReg = nullptr; 4385 } else if (!ResultPtr && AddrMode.Scale == 1) { 4386 ResultPtr = 4387 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 4388 AddrMode.Scale = 0; 4389 } 4390 4391 if (!ResultPtr && 4392 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4393 SunkAddr = Constant::getNullValue(Addr->getType()); 4394 } else if (!ResultPtr) { 4395 return false; 4396 } else { 4397 Type *I8PtrTy = 4398 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4399 Type *I8Ty = Builder.getInt8Ty(); 4400 4401 // Start with the base register. Do this first so that subsequent address 4402 // matching finds it last, which will prevent it from trying to match it 4403 // as the scaled value in case it happens to be a mul. That would be 4404 // problematic if we've sunk a different mul for the scale, because then 4405 // we'd end up sinking both muls. 4406 if (AddrMode.BaseReg) { 4407 Value *V = AddrMode.BaseReg; 4408 if (V->getType() != IntPtrTy) 4409 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4410 4411 ResultIndex = V; 4412 } 4413 4414 // Add the scale value. 4415 if (AddrMode.Scale) { 4416 Value *V = AddrMode.ScaledReg; 4417 if (V->getType() == IntPtrTy) { 4418 // done. 4419 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4420 cast<IntegerType>(V->getType())->getBitWidth()) { 4421 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4422 } else { 4423 // It is only safe to sign extend the BaseReg if we know that the math 4424 // required to create it did not overflow before we extend it. Since 4425 // the original IR value was tossed in favor of a constant back when 4426 // the AddrMode was created we need to bail out gracefully if widths 4427 // do not match instead of extending it. 4428 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 4429 if (I && (ResultIndex != AddrMode.BaseReg)) 4430 I->eraseFromParent(); 4431 return false; 4432 } 4433 4434 if (AddrMode.Scale != 1) 4435 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4436 "sunkaddr"); 4437 if (ResultIndex) 4438 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4439 else 4440 ResultIndex = V; 4441 } 4442 4443 // Add in the Base Offset if present. 4444 if (AddrMode.BaseOffs) { 4445 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4446 if (ResultIndex) { 4447 // We need to add this separately from the scale above to help with 4448 // SDAG consecutive load/store merging. 4449 if (ResultPtr->getType() != I8PtrTy) 4450 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4451 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4452 } 4453 4454 ResultIndex = V; 4455 } 4456 4457 if (!ResultIndex) { 4458 SunkAddr = ResultPtr; 4459 } else { 4460 if (ResultPtr->getType() != I8PtrTy) 4461 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4462 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4463 } 4464 4465 if (SunkAddr->getType() != Addr->getType()) 4466 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4467 } 4468 } else { 4469 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4470 << *MemoryInst << "\n"); 4471 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4472 Value *Result = nullptr; 4473 4474 // Start with the base register. Do this first so that subsequent address 4475 // matching finds it last, which will prevent it from trying to match it 4476 // as the scaled value in case it happens to be a mul. That would be 4477 // problematic if we've sunk a different mul for the scale, because then 4478 // we'd end up sinking both muls. 4479 if (AddrMode.BaseReg) { 4480 Value *V = AddrMode.BaseReg; 4481 if (V->getType()->isPointerTy()) 4482 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4483 if (V->getType() != IntPtrTy) 4484 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4485 Result = V; 4486 } 4487 4488 // Add the scale value. 4489 if (AddrMode.Scale) { 4490 Value *V = AddrMode.ScaledReg; 4491 if (V->getType() == IntPtrTy) { 4492 // done. 4493 } else if (V->getType()->isPointerTy()) { 4494 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4495 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4496 cast<IntegerType>(V->getType())->getBitWidth()) { 4497 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4498 } else { 4499 // It is only safe to sign extend the BaseReg if we know that the math 4500 // required to create it did not overflow before we extend it. Since 4501 // the original IR value was tossed in favor of a constant back when 4502 // the AddrMode was created we need to bail out gracefully if widths 4503 // do not match instead of extending it. 4504 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4505 if (I && (Result != AddrMode.BaseReg)) 4506 I->eraseFromParent(); 4507 return false; 4508 } 4509 if (AddrMode.Scale != 1) 4510 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4511 "sunkaddr"); 4512 if (Result) 4513 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4514 else 4515 Result = V; 4516 } 4517 4518 // Add in the BaseGV if present. 4519 if (AddrMode.BaseGV) { 4520 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4521 if (Result) 4522 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4523 else 4524 Result = V; 4525 } 4526 4527 // Add in the Base Offset if present. 4528 if (AddrMode.BaseOffs) { 4529 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4530 if (Result) 4531 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4532 else 4533 Result = V; 4534 } 4535 4536 if (!Result) 4537 SunkAddr = Constant::getNullValue(Addr->getType()); 4538 else 4539 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4540 } 4541 4542 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4543 4544 // If we have no uses, recursively delete the value and all dead instructions 4545 // using it. 4546 if (Repl->use_empty()) { 4547 // This can cause recursive deletion, which can invalidate our iterator. 4548 // Use a WeakTrackingVH to hold onto it in case this happens. 4549 Value *CurValue = &*CurInstIterator; 4550 WeakTrackingVH IterHandle(CurValue); 4551 BasicBlock *BB = CurInstIterator->getParent(); 4552 4553 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4554 4555 if (IterHandle != CurValue) { 4556 // If the iterator instruction was recursively deleted, start over at the 4557 // start of the block. 4558 CurInstIterator = BB->begin(); 4559 SunkAddrs.clear(); 4560 } 4561 } 4562 ++NumMemoryInsts; 4563 return true; 4564 } 4565 4566 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4567 /// address computing into the block when possible / profitable. 4568 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4569 bool MadeChange = false; 4570 4571 const TargetRegisterInfo *TRI = 4572 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4573 TargetLowering::AsmOperandInfoVector TargetConstraints = 4574 TLI->ParseConstraints(*DL, TRI, CS); 4575 unsigned ArgNo = 0; 4576 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4577 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4578 4579 // Compute the constraint code and ConstraintType to use. 4580 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4581 4582 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4583 OpInfo.isIndirect) { 4584 Value *OpVal = CS->getArgOperand(ArgNo++); 4585 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4586 } else if (OpInfo.Type == InlineAsm::isInput) 4587 ArgNo++; 4588 } 4589 4590 return MadeChange; 4591 } 4592 4593 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4594 /// sign extensions. 4595 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4596 assert(!Val->use_empty() && "Input must have at least one use"); 4597 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4598 bool IsSExt = isa<SExtInst>(FirstUser); 4599 Type *ExtTy = FirstUser->getType(); 4600 for (const User *U : Val->users()) { 4601 const Instruction *UI = cast<Instruction>(U); 4602 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4603 return false; 4604 Type *CurTy = UI->getType(); 4605 // Same input and output types: Same instruction after CSE. 4606 if (CurTy == ExtTy) 4607 continue; 4608 4609 // If IsSExt is true, we are in this situation: 4610 // a = Val 4611 // b = sext ty1 a to ty2 4612 // c = sext ty1 a to ty3 4613 // Assuming ty2 is shorter than ty3, this could be turned into: 4614 // a = Val 4615 // b = sext ty1 a to ty2 4616 // c = sext ty2 b to ty3 4617 // However, the last sext is not free. 4618 if (IsSExt) 4619 return false; 4620 4621 // This is a ZExt, maybe this is free to extend from one type to another. 4622 // In that case, we would not account for a different use. 4623 Type *NarrowTy; 4624 Type *LargeTy; 4625 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4626 CurTy->getScalarType()->getIntegerBitWidth()) { 4627 NarrowTy = CurTy; 4628 LargeTy = ExtTy; 4629 } else { 4630 NarrowTy = ExtTy; 4631 LargeTy = CurTy; 4632 } 4633 4634 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4635 return false; 4636 } 4637 // All uses are the same or can be derived from one another for free. 4638 return true; 4639 } 4640 4641 /// \brief Try to speculatively promote extensions in \p Exts and continue 4642 /// promoting through newly promoted operands recursively as far as doing so is 4643 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4644 /// When some promotion happened, \p TPT contains the proper state to revert 4645 /// them. 4646 /// 4647 /// \return true if some promotion happened, false otherwise. 4648 bool CodeGenPrepare::tryToPromoteExts( 4649 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4650 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4651 unsigned CreatedInstsCost) { 4652 bool Promoted = false; 4653 4654 // Iterate over all the extensions to try to promote them. 4655 for (auto I : Exts) { 4656 // Early check if we directly have ext(load). 4657 if (isa<LoadInst>(I->getOperand(0))) { 4658 ProfitablyMovedExts.push_back(I); 4659 continue; 4660 } 4661 4662 // Check whether or not we want to do any promotion. The reason we have 4663 // this check inside the for loop is to catch the case where an extension 4664 // is directly fed by a load because in such case the extension can be moved 4665 // up without any promotion on its operands. 4666 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4667 return false; 4668 4669 // Get the action to perform the promotion. 4670 TypePromotionHelper::Action TPH = 4671 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4672 // Check if we can promote. 4673 if (!TPH) { 4674 // Save the current extension as we cannot move up through its operand. 4675 ProfitablyMovedExts.push_back(I); 4676 continue; 4677 } 4678 4679 // Save the current state. 4680 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4681 TPT.getRestorationPoint(); 4682 SmallVector<Instruction *, 4> NewExts; 4683 unsigned NewCreatedInstsCost = 0; 4684 unsigned ExtCost = !TLI->isExtFree(I); 4685 // Promote. 4686 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4687 &NewExts, nullptr, *TLI); 4688 assert(PromotedVal && 4689 "TypePromotionHelper should have filtered out those cases"); 4690 4691 // We would be able to merge only one extension in a load. 4692 // Therefore, if we have more than 1 new extension we heuristically 4693 // cut this search path, because it means we degrade the code quality. 4694 // With exactly 2, the transformation is neutral, because we will merge 4695 // one extension but leave one. However, we optimistically keep going, 4696 // because the new extension may be removed too. 4697 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4698 // FIXME: It would be possible to propagate a negative value instead of 4699 // conservatively ceiling it to 0. 4700 TotalCreatedInstsCost = 4701 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4702 if (!StressExtLdPromotion && 4703 (TotalCreatedInstsCost > 1 || 4704 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4705 // This promotion is not profitable, rollback to the previous state, and 4706 // save the current extension in ProfitablyMovedExts as the latest 4707 // speculative promotion turned out to be unprofitable. 4708 TPT.rollback(LastKnownGood); 4709 ProfitablyMovedExts.push_back(I); 4710 continue; 4711 } 4712 // Continue promoting NewExts as far as doing so is profitable. 4713 SmallVector<Instruction *, 2> NewlyMovedExts; 4714 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4715 bool NewPromoted = false; 4716 for (auto ExtInst : NewlyMovedExts) { 4717 Instruction *MovedExt = cast<Instruction>(ExtInst); 4718 Value *ExtOperand = MovedExt->getOperand(0); 4719 // If we have reached to a load, we need this extra profitability check 4720 // as it could potentially be merged into an ext(load). 4721 if (isa<LoadInst>(ExtOperand) && 4722 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4723 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4724 continue; 4725 4726 ProfitablyMovedExts.push_back(MovedExt); 4727 NewPromoted = true; 4728 } 4729 4730 // If none of speculative promotions for NewExts is profitable, rollback 4731 // and save the current extension (I) as the last profitable extension. 4732 if (!NewPromoted) { 4733 TPT.rollback(LastKnownGood); 4734 ProfitablyMovedExts.push_back(I); 4735 continue; 4736 } 4737 // The promotion is profitable. 4738 Promoted = true; 4739 } 4740 return Promoted; 4741 } 4742 4743 /// Merging redundant sexts when one is dominating the other. 4744 bool CodeGenPrepare::mergeSExts(Function &F) { 4745 DominatorTree DT(F); 4746 bool Changed = false; 4747 for (auto &Entry : ValToSExtendedUses) { 4748 SExts &Insts = Entry.second; 4749 SExts CurPts; 4750 for (Instruction *Inst : Insts) { 4751 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4752 Inst->getOperand(0) != Entry.first) 4753 continue; 4754 bool inserted = false; 4755 for (auto &Pt : CurPts) { 4756 if (DT.dominates(Inst, Pt)) { 4757 Pt->replaceAllUsesWith(Inst); 4758 RemovedInsts.insert(Pt); 4759 Pt->removeFromParent(); 4760 Pt = Inst; 4761 inserted = true; 4762 Changed = true; 4763 break; 4764 } 4765 if (!DT.dominates(Pt, Inst)) 4766 // Give up if we need to merge in a common dominator as the 4767 // expermients show it is not profitable. 4768 continue; 4769 Inst->replaceAllUsesWith(Pt); 4770 RemovedInsts.insert(Inst); 4771 Inst->removeFromParent(); 4772 inserted = true; 4773 Changed = true; 4774 break; 4775 } 4776 if (!inserted) 4777 CurPts.push_back(Inst); 4778 } 4779 } 4780 return Changed; 4781 } 4782 4783 /// Return true, if an ext(load) can be formed from an extension in 4784 /// \p MovedExts. 4785 bool CodeGenPrepare::canFormExtLd( 4786 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4787 Instruction *&Inst, bool HasPromoted) { 4788 for (auto *MovedExtInst : MovedExts) { 4789 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4790 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4791 Inst = MovedExtInst; 4792 break; 4793 } 4794 } 4795 if (!LI) 4796 return false; 4797 4798 // If they're already in the same block, there's nothing to do. 4799 // Make the cheap checks first if we did not promote. 4800 // If we promoted, we need to check if it is indeed profitable. 4801 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4802 return false; 4803 4804 EVT VT = TLI->getValueType(*DL, Inst->getType()); 4805 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4806 4807 // If the load has other users and the truncate is not free, this probably 4808 // isn't worthwhile. 4809 if (!LI->hasOneUse() && (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4810 !TLI->isTruncateFree(Inst->getType(), LI->getType())) 4811 return false; 4812 4813 // Check whether the target supports casts folded into loads. 4814 unsigned LType; 4815 if (isa<ZExtInst>(Inst)) 4816 LType = ISD::ZEXTLOAD; 4817 else { 4818 assert(isa<SExtInst>(Inst) && "Unexpected ext type!"); 4819 LType = ISD::SEXTLOAD; 4820 } 4821 4822 return TLI->isLoadExtLegal(LType, VT, LoadVT); 4823 } 4824 4825 /// Move a zext or sext fed by a load into the same basic block as the load, 4826 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4827 /// extend into the load. 4828 /// 4829 /// E.g., 4830 /// \code 4831 /// %ld = load i32* %addr 4832 /// %add = add nuw i32 %ld, 4 4833 /// %zext = zext i32 %add to i64 4834 // \endcode 4835 /// => 4836 /// \code 4837 /// %ld = load i32* %addr 4838 /// %zext = zext i32 %ld to i64 4839 /// %add = add nuw i64 %zext, 4 4840 /// \encode 4841 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4842 /// allow us to match zext(load i32*) to i64. 4843 /// 4844 /// Also, try to promote the computations used to obtain a sign extended 4845 /// value used into memory accesses. 4846 /// E.g., 4847 /// \code 4848 /// a = add nsw i32 b, 3 4849 /// d = sext i32 a to i64 4850 /// e = getelementptr ..., i64 d 4851 /// \endcode 4852 /// => 4853 /// \code 4854 /// f = sext i32 b to i64 4855 /// a = add nsw i64 f, 3 4856 /// e = getelementptr ..., i64 a 4857 /// \endcode 4858 /// 4859 /// \p Inst[in/out] the extension may be modified during the process if some 4860 /// promotions apply. 4861 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4862 // ExtLoad formation and address type promotion infrastructure requires TLI to 4863 // be effective. 4864 if (!TLI) 4865 return false; 4866 4867 bool AllowPromotionWithoutCommonHeader = false; 4868 /// See if it is an interesting sext operations for the address type 4869 /// promotion before trying to promote it, e.g., the ones with the right 4870 /// type and used in memory accesses. 4871 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4872 *Inst, AllowPromotionWithoutCommonHeader); 4873 TypePromotionTransaction TPT(RemovedInsts); 4874 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4875 TPT.getRestorationPoint(); 4876 SmallVector<Instruction *, 1> Exts; 4877 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4878 Exts.push_back(Inst); 4879 4880 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4881 4882 // Look for a load being extended. 4883 LoadInst *LI = nullptr; 4884 Instruction *ExtFedByLoad; 4885 4886 // Try to promote a chain of computation if it allows to form an extended 4887 // load. 4888 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4889 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4890 TPT.commit(); 4891 // Move the extend into the same block as the load 4892 ExtFedByLoad->removeFromParent(); 4893 ExtFedByLoad->insertAfter(LI); 4894 // CGP does not check if the zext would be speculatively executed when moved 4895 // to the same basic block as the load. Preserving its original location 4896 // would pessimize the debugging experience, as well as negatively impact 4897 // the quality of sample pgo. We don't want to use "line 0" as that has a 4898 // size cost in the line-table section and logically the zext can be seen as 4899 // part of the load. Therefore we conservatively reuse the same debug 4900 // location for the load and the zext. 4901 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4902 ++NumExtsMoved; 4903 Inst = ExtFedByLoad; 4904 return true; 4905 } 4906 4907 // Continue promoting SExts if known as considerable depending on targets. 4908 if (ATPConsiderable && 4909 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4910 HasPromoted, TPT, SpeculativelyMovedExts)) 4911 return true; 4912 4913 TPT.rollback(LastKnownGood); 4914 return false; 4915 } 4916 4917 // Perform address type promotion if doing so is profitable. 4918 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4919 // instructions that sign extended the same initial value. However, if 4920 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4921 // extension is just profitable. 4922 bool CodeGenPrepare::performAddressTypePromotion( 4923 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4924 bool HasPromoted, TypePromotionTransaction &TPT, 4925 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4926 bool Promoted = false; 4927 SmallPtrSet<Instruction *, 1> UnhandledExts; 4928 bool AllSeenFirst = true; 4929 for (auto I : SpeculativelyMovedExts) { 4930 Value *HeadOfChain = I->getOperand(0); 4931 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4932 SeenChainsForSExt.find(HeadOfChain); 4933 // If there is an unhandled SExt which has the same header, try to promote 4934 // it as well. 4935 if (AlreadySeen != SeenChainsForSExt.end()) { 4936 if (AlreadySeen->second != nullptr) 4937 UnhandledExts.insert(AlreadySeen->second); 4938 AllSeenFirst = false; 4939 } 4940 } 4941 4942 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4943 SpeculativelyMovedExts.size() == 1)) { 4944 TPT.commit(); 4945 if (HasPromoted) 4946 Promoted = true; 4947 for (auto I : SpeculativelyMovedExts) { 4948 Value *HeadOfChain = I->getOperand(0); 4949 SeenChainsForSExt[HeadOfChain] = nullptr; 4950 ValToSExtendedUses[HeadOfChain].push_back(I); 4951 } 4952 // Update Inst as promotion happen. 4953 Inst = SpeculativelyMovedExts.pop_back_val(); 4954 } else { 4955 // This is the first chain visited from the header, keep the current chain 4956 // as unhandled. Defer to promote this until we encounter another SExt 4957 // chain derived from the same header. 4958 for (auto I : SpeculativelyMovedExts) { 4959 Value *HeadOfChain = I->getOperand(0); 4960 SeenChainsForSExt[HeadOfChain] = Inst; 4961 } 4962 return false; 4963 } 4964 4965 if (!AllSeenFirst && !UnhandledExts.empty()) 4966 for (auto VisitedSExt : UnhandledExts) { 4967 if (RemovedInsts.count(VisitedSExt)) 4968 continue; 4969 TypePromotionTransaction TPT(RemovedInsts); 4970 SmallVector<Instruction *, 1> Exts; 4971 SmallVector<Instruction *, 2> Chains; 4972 Exts.push_back(VisitedSExt); 4973 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 4974 TPT.commit(); 4975 if (HasPromoted) 4976 Promoted = true; 4977 for (auto I : Chains) { 4978 Value *HeadOfChain = I->getOperand(0); 4979 // Mark this as handled. 4980 SeenChainsForSExt[HeadOfChain] = nullptr; 4981 ValToSExtendedUses[HeadOfChain].push_back(I); 4982 } 4983 } 4984 return Promoted; 4985 } 4986 4987 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4988 BasicBlock *DefBB = I->getParent(); 4989 4990 // If the result of a {s|z}ext and its source are both live out, rewrite all 4991 // other uses of the source with result of extension. 4992 Value *Src = I->getOperand(0); 4993 if (Src->hasOneUse()) 4994 return false; 4995 4996 // Only do this xform if truncating is free. 4997 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4998 return false; 4999 5000 // Only safe to perform the optimization if the source is also defined in 5001 // this block. 5002 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5003 return false; 5004 5005 bool DefIsLiveOut = false; 5006 for (User *U : I->users()) { 5007 Instruction *UI = cast<Instruction>(U); 5008 5009 // Figure out which BB this ext is used in. 5010 BasicBlock *UserBB = UI->getParent(); 5011 if (UserBB == DefBB) continue; 5012 DefIsLiveOut = true; 5013 break; 5014 } 5015 if (!DefIsLiveOut) 5016 return false; 5017 5018 // Make sure none of the uses are PHI nodes. 5019 for (User *U : Src->users()) { 5020 Instruction *UI = cast<Instruction>(U); 5021 BasicBlock *UserBB = UI->getParent(); 5022 if (UserBB == DefBB) continue; 5023 // Be conservative. We don't want this xform to end up introducing 5024 // reloads just before load / store instructions. 5025 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5026 return false; 5027 } 5028 5029 // InsertedTruncs - Only insert one trunc in each block once. 5030 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5031 5032 bool MadeChange = false; 5033 for (Use &U : Src->uses()) { 5034 Instruction *User = cast<Instruction>(U.getUser()); 5035 5036 // Figure out which BB this ext is used in. 5037 BasicBlock *UserBB = User->getParent(); 5038 if (UserBB == DefBB) continue; 5039 5040 // Both src and def are live in this block. Rewrite the use. 5041 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5042 5043 if (!InsertedTrunc) { 5044 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5045 assert(InsertPt != UserBB->end()); 5046 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5047 InsertedInsts.insert(InsertedTrunc); 5048 } 5049 5050 // Replace a use of the {s|z}ext source with a use of the result. 5051 U = InsertedTrunc; 5052 ++NumExtUses; 5053 MadeChange = true; 5054 } 5055 5056 return MadeChange; 5057 } 5058 5059 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5060 // just after the load if the target can fold this into one extload instruction, 5061 // with the hope of eliminating some of the other later "and" instructions using 5062 // the loaded value. "and"s that are made trivially redundant by the insertion 5063 // of the new "and" are removed by this function, while others (e.g. those whose 5064 // path from the load goes through a phi) are left for isel to potentially 5065 // remove. 5066 // 5067 // For example: 5068 // 5069 // b0: 5070 // x = load i32 5071 // ... 5072 // b1: 5073 // y = and x, 0xff 5074 // z = use y 5075 // 5076 // becomes: 5077 // 5078 // b0: 5079 // x = load i32 5080 // x' = and x, 0xff 5081 // ... 5082 // b1: 5083 // z = use x' 5084 // 5085 // whereas: 5086 // 5087 // b0: 5088 // x1 = load i32 5089 // ... 5090 // b1: 5091 // x2 = load i32 5092 // ... 5093 // b2: 5094 // x = phi x1, x2 5095 // y = and x, 0xff 5096 // 5097 // becomes (after a call to optimizeLoadExt for each load): 5098 // 5099 // b0: 5100 // x1 = load i32 5101 // x1' = and x1, 0xff 5102 // ... 5103 // b1: 5104 // x2 = load i32 5105 // x2' = and x2, 0xff 5106 // ... 5107 // b2: 5108 // x = phi x1', x2' 5109 // y = and x, 0xff 5110 // 5111 5112 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5113 5114 if (!Load->isSimple() || 5115 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5116 return false; 5117 5118 // Skip loads we've already transformed. 5119 if (Load->hasOneUse() && 5120 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5121 return false; 5122 5123 // Look at all uses of Load, looking through phis, to determine how many bits 5124 // of the loaded value are needed. 5125 SmallVector<Instruction *, 8> WorkList; 5126 SmallPtrSet<Instruction *, 16> Visited; 5127 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5128 for (auto *U : Load->users()) 5129 WorkList.push_back(cast<Instruction>(U)); 5130 5131 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5132 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5133 APInt DemandBits(BitWidth, 0); 5134 APInt WidestAndBits(BitWidth, 0); 5135 5136 while (!WorkList.empty()) { 5137 Instruction *I = WorkList.back(); 5138 WorkList.pop_back(); 5139 5140 // Break use-def graph loops. 5141 if (!Visited.insert(I).second) 5142 continue; 5143 5144 // For a PHI node, push all of its users. 5145 if (auto *Phi = dyn_cast<PHINode>(I)) { 5146 for (auto *U : Phi->users()) 5147 WorkList.push_back(cast<Instruction>(U)); 5148 continue; 5149 } 5150 5151 switch (I->getOpcode()) { 5152 case llvm::Instruction::And: { 5153 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5154 if (!AndC) 5155 return false; 5156 APInt AndBits = AndC->getValue(); 5157 DemandBits |= AndBits; 5158 // Keep track of the widest and mask we see. 5159 if (AndBits.ugt(WidestAndBits)) 5160 WidestAndBits = AndBits; 5161 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5162 AndsToMaybeRemove.push_back(I); 5163 break; 5164 } 5165 5166 case llvm::Instruction::Shl: { 5167 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5168 if (!ShlC) 5169 return false; 5170 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5171 DemandBits.setLowBits(BitWidth - ShiftAmt); 5172 break; 5173 } 5174 5175 case llvm::Instruction::Trunc: { 5176 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5177 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5178 DemandBits.setLowBits(TruncBitWidth); 5179 break; 5180 } 5181 5182 default: 5183 return false; 5184 } 5185 } 5186 5187 uint32_t ActiveBits = DemandBits.getActiveBits(); 5188 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5189 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5190 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5191 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5192 // followed by an AND. 5193 // TODO: Look into removing this restriction by fixing backends to either 5194 // return false for isLoadExtLegal for i1 or have them select this pattern to 5195 // a single instruction. 5196 // 5197 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5198 // mask, since these are the only ands that will be removed by isel. 5199 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5200 WidestAndBits != DemandBits) 5201 return false; 5202 5203 LLVMContext &Ctx = Load->getType()->getContext(); 5204 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5205 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5206 5207 // Reject cases that won't be matched as extloads. 5208 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5209 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5210 return false; 5211 5212 IRBuilder<> Builder(Load->getNextNode()); 5213 auto *NewAnd = dyn_cast<Instruction>( 5214 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5215 // Mark this instruction as "inserted by CGP", so that other 5216 // optimizations don't touch it. 5217 InsertedInsts.insert(NewAnd); 5218 5219 // Replace all uses of load with new and (except for the use of load in the 5220 // new and itself). 5221 Load->replaceAllUsesWith(NewAnd); 5222 NewAnd->setOperand(0, Load); 5223 5224 // Remove any and instructions that are now redundant. 5225 for (auto *And : AndsToMaybeRemove) 5226 // Check that the and mask is the same as the one we decided to put on the 5227 // new and. 5228 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5229 And->replaceAllUsesWith(NewAnd); 5230 if (&*CurInstIterator == And) 5231 CurInstIterator = std::next(And->getIterator()); 5232 And->eraseFromParent(); 5233 ++NumAndUses; 5234 } 5235 5236 ++NumAndsAdded; 5237 return true; 5238 } 5239 5240 /// Check if V (an operand of a select instruction) is an expensive instruction 5241 /// that is only used once. 5242 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5243 auto *I = dyn_cast<Instruction>(V); 5244 // If it's safe to speculatively execute, then it should not have side 5245 // effects; therefore, it's safe to sink and possibly *not* execute. 5246 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5247 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5248 } 5249 5250 /// Returns true if a SelectInst should be turned into an explicit branch. 5251 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5252 const TargetLowering *TLI, 5253 SelectInst *SI) { 5254 // If even a predictable select is cheap, then a branch can't be cheaper. 5255 if (!TLI->isPredictableSelectExpensive()) 5256 return false; 5257 5258 // FIXME: This should use the same heuristics as IfConversion to determine 5259 // whether a select is better represented as a branch. 5260 5261 // If metadata tells us that the select condition is obviously predictable, 5262 // then we want to replace the select with a branch. 5263 uint64_t TrueWeight, FalseWeight; 5264 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5265 uint64_t Max = std::max(TrueWeight, FalseWeight); 5266 uint64_t Sum = TrueWeight + FalseWeight; 5267 if (Sum != 0) { 5268 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5269 if (Probability > TLI->getPredictableBranchThreshold()) 5270 return true; 5271 } 5272 } 5273 5274 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5275 5276 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5277 // comparison condition. If the compare has more than one use, there's 5278 // probably another cmov or setcc around, so it's not worth emitting a branch. 5279 if (!Cmp || !Cmp->hasOneUse()) 5280 return false; 5281 5282 // If either operand of the select is expensive and only needed on one side 5283 // of the select, we should form a branch. 5284 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5285 sinkSelectOperand(TTI, SI->getFalseValue())) 5286 return true; 5287 5288 return false; 5289 } 5290 5291 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5292 /// false value of \p SI. If the true/false value of \p SI is defined by any 5293 /// select instructions in \p Selects, look through the defining select 5294 /// instruction until the true/false value is not defined in \p Selects. 5295 static Value *getTrueOrFalseValue( 5296 SelectInst *SI, bool isTrue, 5297 const SmallPtrSet<const Instruction *, 2> &Selects) { 5298 Value *V; 5299 5300 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5301 DefSI = dyn_cast<SelectInst>(V)) { 5302 assert(DefSI->getCondition() == SI->getCondition() && 5303 "The condition of DefSI does not match with SI"); 5304 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5305 } 5306 return V; 5307 } 5308 5309 /// If we have a SelectInst that will likely profit from branch prediction, 5310 /// turn it into a branch. 5311 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5312 // Find all consecutive select instructions that share the same condition. 5313 SmallVector<SelectInst *, 2> ASI; 5314 ASI.push_back(SI); 5315 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5316 It != SI->getParent()->end(); ++It) { 5317 SelectInst *I = dyn_cast<SelectInst>(&*It); 5318 if (I && SI->getCondition() == I->getCondition()) { 5319 ASI.push_back(I); 5320 } else { 5321 break; 5322 } 5323 } 5324 5325 SelectInst *LastSI = ASI.back(); 5326 // Increment the current iterator to skip all the rest of select instructions 5327 // because they will be either "not lowered" or "all lowered" to branch. 5328 CurInstIterator = std::next(LastSI->getIterator()); 5329 5330 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5331 5332 // Can we convert the 'select' to CF ? 5333 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5334 SI->getMetadata(LLVMContext::MD_unpredictable)) 5335 return false; 5336 5337 TargetLowering::SelectSupportKind SelectKind; 5338 if (VectorCond) 5339 SelectKind = TargetLowering::VectorMaskSelect; 5340 else if (SI->getType()->isVectorTy()) 5341 SelectKind = TargetLowering::ScalarCondVectorVal; 5342 else 5343 SelectKind = TargetLowering::ScalarValSelect; 5344 5345 if (TLI->isSelectSupported(SelectKind) && 5346 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5347 return false; 5348 5349 ModifiedDT = true; 5350 5351 // Transform a sequence like this: 5352 // start: 5353 // %cmp = cmp uge i32 %a, %b 5354 // %sel = select i1 %cmp, i32 %c, i32 %d 5355 // 5356 // Into: 5357 // start: 5358 // %cmp = cmp uge i32 %a, %b 5359 // br i1 %cmp, label %select.true, label %select.false 5360 // select.true: 5361 // br label %select.end 5362 // select.false: 5363 // br label %select.end 5364 // select.end: 5365 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5366 // 5367 // In addition, we may sink instructions that produce %c or %d from 5368 // the entry block into the destination(s) of the new branch. 5369 // If the true or false blocks do not contain a sunken instruction, that 5370 // block and its branch may be optimized away. In that case, one side of the 5371 // first branch will point directly to select.end, and the corresponding PHI 5372 // predecessor block will be the start block. 5373 5374 // First, we split the block containing the select into 2 blocks. 5375 BasicBlock *StartBlock = SI->getParent(); 5376 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5377 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5378 5379 // Delete the unconditional branch that was just created by the split. 5380 StartBlock->getTerminator()->eraseFromParent(); 5381 5382 // These are the new basic blocks for the conditional branch. 5383 // At least one will become an actual new basic block. 5384 BasicBlock *TrueBlock = nullptr; 5385 BasicBlock *FalseBlock = nullptr; 5386 BranchInst *TrueBranch = nullptr; 5387 BranchInst *FalseBranch = nullptr; 5388 5389 // Sink expensive instructions into the conditional blocks to avoid executing 5390 // them speculatively. 5391 for (SelectInst *SI : ASI) { 5392 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5393 if (TrueBlock == nullptr) { 5394 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5395 EndBlock->getParent(), EndBlock); 5396 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5397 } 5398 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5399 TrueInst->moveBefore(TrueBranch); 5400 } 5401 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5402 if (FalseBlock == nullptr) { 5403 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5404 EndBlock->getParent(), EndBlock); 5405 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5406 } 5407 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5408 FalseInst->moveBefore(FalseBranch); 5409 } 5410 } 5411 5412 // If there was nothing to sink, then arbitrarily choose the 'false' side 5413 // for a new input value to the PHI. 5414 if (TrueBlock == FalseBlock) { 5415 assert(TrueBlock == nullptr && 5416 "Unexpected basic block transform while optimizing select"); 5417 5418 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5419 EndBlock->getParent(), EndBlock); 5420 BranchInst::Create(EndBlock, FalseBlock); 5421 } 5422 5423 // Insert the real conditional branch based on the original condition. 5424 // If we did not create a new block for one of the 'true' or 'false' paths 5425 // of the condition, it means that side of the branch goes to the end block 5426 // directly and the path originates from the start block from the point of 5427 // view of the new PHI. 5428 BasicBlock *TT, *FT; 5429 if (TrueBlock == nullptr) { 5430 TT = EndBlock; 5431 FT = FalseBlock; 5432 TrueBlock = StartBlock; 5433 } else if (FalseBlock == nullptr) { 5434 TT = TrueBlock; 5435 FT = EndBlock; 5436 FalseBlock = StartBlock; 5437 } else { 5438 TT = TrueBlock; 5439 FT = FalseBlock; 5440 } 5441 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5442 5443 SmallPtrSet<const Instruction *, 2> INS; 5444 INS.insert(ASI.begin(), ASI.end()); 5445 // Use reverse iterator because later select may use the value of the 5446 // earlier select, and we need to propagate value through earlier select 5447 // to get the PHI operand. 5448 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5449 SelectInst *SI = *It; 5450 // The select itself is replaced with a PHI Node. 5451 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5452 PN->takeName(SI); 5453 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5454 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5455 5456 SI->replaceAllUsesWith(PN); 5457 SI->eraseFromParent(); 5458 INS.erase(SI); 5459 ++NumSelectsExpanded; 5460 } 5461 5462 // Instruct OptimizeBlock to skip to the next block. 5463 CurInstIterator = StartBlock->end(); 5464 return true; 5465 } 5466 5467 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5468 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5469 int SplatElem = -1; 5470 for (unsigned i = 0; i < Mask.size(); ++i) { 5471 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5472 return false; 5473 SplatElem = Mask[i]; 5474 } 5475 5476 return true; 5477 } 5478 5479 /// Some targets have expensive vector shifts if the lanes aren't all the same 5480 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5481 /// it's often worth sinking a shufflevector splat down to its use so that 5482 /// codegen can spot all lanes are identical. 5483 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5484 BasicBlock *DefBB = SVI->getParent(); 5485 5486 // Only do this xform if variable vector shifts are particularly expensive. 5487 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5488 return false; 5489 5490 // We only expect better codegen by sinking a shuffle if we can recognise a 5491 // constant splat. 5492 if (!isBroadcastShuffle(SVI)) 5493 return false; 5494 5495 // InsertedShuffles - Only insert a shuffle in each block once. 5496 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5497 5498 bool MadeChange = false; 5499 for (User *U : SVI->users()) { 5500 Instruction *UI = cast<Instruction>(U); 5501 5502 // Figure out which BB this ext is used in. 5503 BasicBlock *UserBB = UI->getParent(); 5504 if (UserBB == DefBB) continue; 5505 5506 // For now only apply this when the splat is used by a shift instruction. 5507 if (!UI->isShift()) continue; 5508 5509 // Everything checks out, sink the shuffle if the user's block doesn't 5510 // already have a copy. 5511 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5512 5513 if (!InsertedShuffle) { 5514 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5515 assert(InsertPt != UserBB->end()); 5516 InsertedShuffle = 5517 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5518 SVI->getOperand(2), "", &*InsertPt); 5519 } 5520 5521 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5522 MadeChange = true; 5523 } 5524 5525 // If we removed all uses, nuke the shuffle. 5526 if (SVI->use_empty()) { 5527 SVI->eraseFromParent(); 5528 MadeChange = true; 5529 } 5530 5531 return MadeChange; 5532 } 5533 5534 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5535 if (!TLI || !DL) 5536 return false; 5537 5538 Value *Cond = SI->getCondition(); 5539 Type *OldType = Cond->getType(); 5540 LLVMContext &Context = Cond->getContext(); 5541 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5542 unsigned RegWidth = RegType.getSizeInBits(); 5543 5544 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5545 return false; 5546 5547 // If the register width is greater than the type width, expand the condition 5548 // of the switch instruction and each case constant to the width of the 5549 // register. By widening the type of the switch condition, subsequent 5550 // comparisons (for case comparisons) will not need to be extended to the 5551 // preferred register width, so we will potentially eliminate N-1 extends, 5552 // where N is the number of cases in the switch. 5553 auto *NewType = Type::getIntNTy(Context, RegWidth); 5554 5555 // Zero-extend the switch condition and case constants unless the switch 5556 // condition is a function argument that is already being sign-extended. 5557 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5558 // everything instead. 5559 Instruction::CastOps ExtType = Instruction::ZExt; 5560 if (auto *Arg = dyn_cast<Argument>(Cond)) 5561 if (Arg->hasSExtAttr()) 5562 ExtType = Instruction::SExt; 5563 5564 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5565 ExtInst->insertBefore(SI); 5566 SI->setCondition(ExtInst); 5567 for (auto Case : SI->cases()) { 5568 APInt NarrowConst = Case.getCaseValue()->getValue(); 5569 APInt WideConst = (ExtType == Instruction::ZExt) ? 5570 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5571 Case.setValue(ConstantInt::get(Context, WideConst)); 5572 } 5573 5574 return true; 5575 } 5576 5577 5578 namespace { 5579 /// \brief Helper class to promote a scalar operation to a vector one. 5580 /// This class is used to move downward extractelement transition. 5581 /// E.g., 5582 /// a = vector_op <2 x i32> 5583 /// b = extractelement <2 x i32> a, i32 0 5584 /// c = scalar_op b 5585 /// store c 5586 /// 5587 /// => 5588 /// a = vector_op <2 x i32> 5589 /// c = vector_op a (equivalent to scalar_op on the related lane) 5590 /// * d = extractelement <2 x i32> c, i32 0 5591 /// * store d 5592 /// Assuming both extractelement and store can be combine, we get rid of the 5593 /// transition. 5594 class VectorPromoteHelper { 5595 /// DataLayout associated with the current module. 5596 const DataLayout &DL; 5597 5598 /// Used to perform some checks on the legality of vector operations. 5599 const TargetLowering &TLI; 5600 5601 /// Used to estimated the cost of the promoted chain. 5602 const TargetTransformInfo &TTI; 5603 5604 /// The transition being moved downwards. 5605 Instruction *Transition; 5606 /// The sequence of instructions to be promoted. 5607 SmallVector<Instruction *, 4> InstsToBePromoted; 5608 /// Cost of combining a store and an extract. 5609 unsigned StoreExtractCombineCost; 5610 /// Instruction that will be combined with the transition. 5611 Instruction *CombineInst; 5612 5613 /// \brief The instruction that represents the current end of the transition. 5614 /// Since we are faking the promotion until we reach the end of the chain 5615 /// of computation, we need a way to get the current end of the transition. 5616 Instruction *getEndOfTransition() const { 5617 if (InstsToBePromoted.empty()) 5618 return Transition; 5619 return InstsToBePromoted.back(); 5620 } 5621 5622 /// \brief Return the index of the original value in the transition. 5623 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5624 /// c, is at index 0. 5625 unsigned getTransitionOriginalValueIdx() const { 5626 assert(isa<ExtractElementInst>(Transition) && 5627 "Other kind of transitions are not supported yet"); 5628 return 0; 5629 } 5630 5631 /// \brief Return the index of the index in the transition. 5632 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5633 /// is at index 1. 5634 unsigned getTransitionIdx() const { 5635 assert(isa<ExtractElementInst>(Transition) && 5636 "Other kind of transitions are not supported yet"); 5637 return 1; 5638 } 5639 5640 /// \brief Get the type of the transition. 5641 /// This is the type of the original value. 5642 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5643 /// transition is <2 x i32>. 5644 Type *getTransitionType() const { 5645 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5646 } 5647 5648 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5649 /// I.e., we have the following sequence: 5650 /// Def = Transition <ty1> a to <ty2> 5651 /// b = ToBePromoted <ty2> Def, ... 5652 /// => 5653 /// b = ToBePromoted <ty1> a, ... 5654 /// Def = Transition <ty1> ToBePromoted to <ty2> 5655 void promoteImpl(Instruction *ToBePromoted); 5656 5657 /// \brief Check whether or not it is profitable to promote all the 5658 /// instructions enqueued to be promoted. 5659 bool isProfitableToPromote() { 5660 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5661 unsigned Index = isa<ConstantInt>(ValIdx) 5662 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5663 : -1; 5664 Type *PromotedType = getTransitionType(); 5665 5666 StoreInst *ST = cast<StoreInst>(CombineInst); 5667 unsigned AS = ST->getPointerAddressSpace(); 5668 unsigned Align = ST->getAlignment(); 5669 // Check if this store is supported. 5670 if (!TLI.allowsMisalignedMemoryAccesses( 5671 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5672 Align)) { 5673 // If this is not supported, there is no way we can combine 5674 // the extract with the store. 5675 return false; 5676 } 5677 5678 // The scalar chain of computation has to pay for the transition 5679 // scalar to vector. 5680 // The vector chain has to account for the combining cost. 5681 uint64_t ScalarCost = 5682 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5683 uint64_t VectorCost = StoreExtractCombineCost; 5684 for (const auto &Inst : InstsToBePromoted) { 5685 // Compute the cost. 5686 // By construction, all instructions being promoted are arithmetic ones. 5687 // Moreover, one argument is a constant that can be viewed as a splat 5688 // constant. 5689 Value *Arg0 = Inst->getOperand(0); 5690 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5691 isa<ConstantFP>(Arg0); 5692 TargetTransformInfo::OperandValueKind Arg0OVK = 5693 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5694 : TargetTransformInfo::OK_AnyValue; 5695 TargetTransformInfo::OperandValueKind Arg1OVK = 5696 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5697 : TargetTransformInfo::OK_AnyValue; 5698 ScalarCost += TTI.getArithmeticInstrCost( 5699 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5700 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5701 Arg0OVK, Arg1OVK); 5702 } 5703 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5704 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5705 return ScalarCost > VectorCost; 5706 } 5707 5708 /// \brief Generate a constant vector with \p Val with the same 5709 /// number of elements as the transition. 5710 /// \p UseSplat defines whether or not \p Val should be replicated 5711 /// across the whole vector. 5712 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5713 /// otherwise we generate a vector with as many undef as possible: 5714 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5715 /// used at the index of the extract. 5716 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5717 unsigned ExtractIdx = UINT_MAX; 5718 if (!UseSplat) { 5719 // If we cannot determine where the constant must be, we have to 5720 // use a splat constant. 5721 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5722 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5723 ExtractIdx = CstVal->getSExtValue(); 5724 else 5725 UseSplat = true; 5726 } 5727 5728 unsigned End = getTransitionType()->getVectorNumElements(); 5729 if (UseSplat) 5730 return ConstantVector::getSplat(End, Val); 5731 5732 SmallVector<Constant *, 4> ConstVec; 5733 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5734 for (unsigned Idx = 0; Idx != End; ++Idx) { 5735 if (Idx == ExtractIdx) 5736 ConstVec.push_back(Val); 5737 else 5738 ConstVec.push_back(UndefVal); 5739 } 5740 return ConstantVector::get(ConstVec); 5741 } 5742 5743 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5744 /// in \p Use can trigger undefined behavior. 5745 static bool canCauseUndefinedBehavior(const Instruction *Use, 5746 unsigned OperandIdx) { 5747 // This is not safe to introduce undef when the operand is on 5748 // the right hand side of a division-like instruction. 5749 if (OperandIdx != 1) 5750 return false; 5751 switch (Use->getOpcode()) { 5752 default: 5753 return false; 5754 case Instruction::SDiv: 5755 case Instruction::UDiv: 5756 case Instruction::SRem: 5757 case Instruction::URem: 5758 return true; 5759 case Instruction::FDiv: 5760 case Instruction::FRem: 5761 return !Use->hasNoNaNs(); 5762 } 5763 llvm_unreachable(nullptr); 5764 } 5765 5766 public: 5767 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5768 const TargetTransformInfo &TTI, Instruction *Transition, 5769 unsigned CombineCost) 5770 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5771 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5772 assert(Transition && "Do not know how to promote null"); 5773 } 5774 5775 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5776 bool canPromote(const Instruction *ToBePromoted) const { 5777 // We could support CastInst too. 5778 return isa<BinaryOperator>(ToBePromoted); 5779 } 5780 5781 /// \brief Check if it is profitable to promote \p ToBePromoted 5782 /// by moving downward the transition through. 5783 bool shouldPromote(const Instruction *ToBePromoted) const { 5784 // Promote only if all the operands can be statically expanded. 5785 // Indeed, we do not want to introduce any new kind of transitions. 5786 for (const Use &U : ToBePromoted->operands()) { 5787 const Value *Val = U.get(); 5788 if (Val == getEndOfTransition()) { 5789 // If the use is a division and the transition is on the rhs, 5790 // we cannot promote the operation, otherwise we may create a 5791 // division by zero. 5792 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5793 return false; 5794 continue; 5795 } 5796 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5797 !isa<ConstantFP>(Val)) 5798 return false; 5799 } 5800 // Check that the resulting operation is legal. 5801 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5802 if (!ISDOpcode) 5803 return false; 5804 return StressStoreExtract || 5805 TLI.isOperationLegalOrCustom( 5806 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5807 } 5808 5809 /// \brief Check whether or not \p Use can be combined 5810 /// with the transition. 5811 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5812 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5813 5814 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5815 void enqueueForPromotion(Instruction *ToBePromoted) { 5816 InstsToBePromoted.push_back(ToBePromoted); 5817 } 5818 5819 /// \brief Set the instruction that will be combined with the transition. 5820 void recordCombineInstruction(Instruction *ToBeCombined) { 5821 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5822 CombineInst = ToBeCombined; 5823 } 5824 5825 /// \brief Promote all the instructions enqueued for promotion if it is 5826 /// is profitable. 5827 /// \return True if the promotion happened, false otherwise. 5828 bool promote() { 5829 // Check if there is something to promote. 5830 // Right now, if we do not have anything to combine with, 5831 // we assume the promotion is not profitable. 5832 if (InstsToBePromoted.empty() || !CombineInst) 5833 return false; 5834 5835 // Check cost. 5836 if (!StressStoreExtract && !isProfitableToPromote()) 5837 return false; 5838 5839 // Promote. 5840 for (auto &ToBePromoted : InstsToBePromoted) 5841 promoteImpl(ToBePromoted); 5842 InstsToBePromoted.clear(); 5843 return true; 5844 } 5845 }; 5846 } // End of anonymous namespace. 5847 5848 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5849 // At this point, we know that all the operands of ToBePromoted but Def 5850 // can be statically promoted. 5851 // For Def, we need to use its parameter in ToBePromoted: 5852 // b = ToBePromoted ty1 a 5853 // Def = Transition ty1 b to ty2 5854 // Move the transition down. 5855 // 1. Replace all uses of the promoted operation by the transition. 5856 // = ... b => = ... Def. 5857 assert(ToBePromoted->getType() == Transition->getType() && 5858 "The type of the result of the transition does not match " 5859 "the final type"); 5860 ToBePromoted->replaceAllUsesWith(Transition); 5861 // 2. Update the type of the uses. 5862 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5863 Type *TransitionTy = getTransitionType(); 5864 ToBePromoted->mutateType(TransitionTy); 5865 // 3. Update all the operands of the promoted operation with promoted 5866 // operands. 5867 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5868 for (Use &U : ToBePromoted->operands()) { 5869 Value *Val = U.get(); 5870 Value *NewVal = nullptr; 5871 if (Val == Transition) 5872 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5873 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5874 isa<ConstantFP>(Val)) { 5875 // Use a splat constant if it is not safe to use undef. 5876 NewVal = getConstantVector( 5877 cast<Constant>(Val), 5878 isa<UndefValue>(Val) || 5879 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5880 } else 5881 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5882 "this?"); 5883 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5884 } 5885 Transition->removeFromParent(); 5886 Transition->insertAfter(ToBePromoted); 5887 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5888 } 5889 5890 /// Some targets can do store(extractelement) with one instruction. 5891 /// Try to push the extractelement towards the stores when the target 5892 /// has this feature and this is profitable. 5893 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5894 unsigned CombineCost = UINT_MAX; 5895 if (DisableStoreExtract || !TLI || 5896 (!StressStoreExtract && 5897 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5898 Inst->getOperand(1), CombineCost))) 5899 return false; 5900 5901 // At this point we know that Inst is a vector to scalar transition. 5902 // Try to move it down the def-use chain, until: 5903 // - We can combine the transition with its single use 5904 // => we got rid of the transition. 5905 // - We escape the current basic block 5906 // => we would need to check that we are moving it at a cheaper place and 5907 // we do not do that for now. 5908 BasicBlock *Parent = Inst->getParent(); 5909 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5910 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5911 // If the transition has more than one use, assume this is not going to be 5912 // beneficial. 5913 while (Inst->hasOneUse()) { 5914 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5915 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5916 5917 if (ToBePromoted->getParent() != Parent) { 5918 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5919 << ToBePromoted->getParent()->getName() 5920 << ") than the transition (" << Parent->getName() << ").\n"); 5921 return false; 5922 } 5923 5924 if (VPH.canCombine(ToBePromoted)) { 5925 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5926 << "will be combined with: " << *ToBePromoted << '\n'); 5927 VPH.recordCombineInstruction(ToBePromoted); 5928 bool Changed = VPH.promote(); 5929 NumStoreExtractExposed += Changed; 5930 return Changed; 5931 } 5932 5933 DEBUG(dbgs() << "Try promoting.\n"); 5934 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5935 return false; 5936 5937 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5938 5939 VPH.enqueueForPromotion(ToBePromoted); 5940 Inst = ToBePromoted; 5941 } 5942 return false; 5943 } 5944 5945 /// For the instruction sequence of store below, F and I values 5946 /// are bundled together as an i64 value before being stored into memory. 5947 /// Sometimes it is more efficent to generate separate stores for F and I, 5948 /// which can remove the bitwise instructions or sink them to colder places. 5949 /// 5950 /// (store (or (zext (bitcast F to i32) to i64), 5951 /// (shl (zext I to i64), 32)), addr) --> 5952 /// (store F, addr) and (store I, addr+4) 5953 /// 5954 /// Similarly, splitting for other merged store can also be beneficial, like: 5955 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5956 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5957 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5958 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5959 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5960 /// 5961 /// We allow each target to determine specifically which kind of splitting is 5962 /// supported. 5963 /// 5964 /// The store patterns are commonly seen from the simple code snippet below 5965 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5966 /// void goo(const std::pair<int, float> &); 5967 /// hoo() { 5968 /// ... 5969 /// goo(std::make_pair(tmp, ftmp)); 5970 /// ... 5971 /// } 5972 /// 5973 /// Although we already have similar splitting in DAG Combine, we duplicate 5974 /// it in CodeGenPrepare to catch the case in which pattern is across 5975 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5976 /// during code expansion. 5977 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5978 const TargetLowering &TLI) { 5979 // Handle simple but common cases only. 5980 Type *StoreType = SI.getValueOperand()->getType(); 5981 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5982 DL.getTypeSizeInBits(StoreType) == 0) 5983 return false; 5984 5985 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5986 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5987 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5988 DL.getTypeSizeInBits(SplitStoreType)) 5989 return false; 5990 5991 // Match the following patterns: 5992 // (store (or (zext LValue to i64), 5993 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5994 // or 5995 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5996 // (zext LValue to i64), 5997 // Expect both operands of OR and the first operand of SHL have only 5998 // one use. 5999 Value *LValue, *HValue; 6000 if (!match(SI.getValueOperand(), 6001 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6002 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6003 m_SpecificInt(HalfValBitSize)))))) 6004 return false; 6005 6006 // Check LValue and HValue are int with size less or equal than 32. 6007 if (!LValue->getType()->isIntegerTy() || 6008 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6009 !HValue->getType()->isIntegerTy() || 6010 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6011 return false; 6012 6013 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6014 // as the input of target query. 6015 auto *LBC = dyn_cast<BitCastInst>(LValue); 6016 auto *HBC = dyn_cast<BitCastInst>(HValue); 6017 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6018 : EVT::getEVT(LValue->getType()); 6019 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6020 : EVT::getEVT(HValue->getType()); 6021 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6022 return false; 6023 6024 // Start to split store. 6025 IRBuilder<> Builder(SI.getContext()); 6026 Builder.SetInsertPoint(&SI); 6027 6028 // If LValue/HValue is a bitcast in another BB, create a new one in current 6029 // BB so it may be merged with the splitted stores by dag combiner. 6030 if (LBC && LBC->getParent() != SI.getParent()) 6031 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6032 if (HBC && HBC->getParent() != SI.getParent()) 6033 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6034 6035 auto CreateSplitStore = [&](Value *V, bool Upper) { 6036 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6037 Value *Addr = Builder.CreateBitCast( 6038 SI.getOperand(1), 6039 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6040 if (Upper) 6041 Addr = Builder.CreateGEP( 6042 SplitStoreType, Addr, 6043 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6044 Builder.CreateAlignedStore( 6045 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6046 }; 6047 6048 CreateSplitStore(LValue, false); 6049 CreateSplitStore(HValue, true); 6050 6051 // Delete the old store. 6052 SI.eraseFromParent(); 6053 return true; 6054 } 6055 6056 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6057 // Bail out if we inserted the instruction to prevent optimizations from 6058 // stepping on each other's toes. 6059 if (InsertedInsts.count(I)) 6060 return false; 6061 6062 if (PHINode *P = dyn_cast<PHINode>(I)) { 6063 // It is possible for very late stage optimizations (such as SimplifyCFG) 6064 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6065 // trivial PHI, go ahead and zap it here. 6066 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6067 P->replaceAllUsesWith(V); 6068 P->eraseFromParent(); 6069 ++NumPHIsElim; 6070 return true; 6071 } 6072 return false; 6073 } 6074 6075 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6076 // If the source of the cast is a constant, then this should have 6077 // already been constant folded. The only reason NOT to constant fold 6078 // it is if something (e.g. LSR) was careful to place the constant 6079 // evaluation in a block other than then one that uses it (e.g. to hoist 6080 // the address of globals out of a loop). If this is the case, we don't 6081 // want to forward-subst the cast. 6082 if (isa<Constant>(CI->getOperand(0))) 6083 return false; 6084 6085 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6086 return true; 6087 6088 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6089 /// Sink a zext or sext into its user blocks if the target type doesn't 6090 /// fit in one register 6091 if (TLI && 6092 TLI->getTypeAction(CI->getContext(), 6093 TLI->getValueType(*DL, CI->getType())) == 6094 TargetLowering::TypeExpandInteger) { 6095 return SinkCast(CI); 6096 } else { 6097 bool MadeChange = optimizeExt(I); 6098 return MadeChange | optimizeExtUses(I); 6099 } 6100 } 6101 return false; 6102 } 6103 6104 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6105 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6106 return OptimizeCmpExpression(CI, TLI); 6107 6108 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6109 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6110 if (TLI) { 6111 bool Modified = optimizeLoadExt(LI); 6112 unsigned AS = LI->getPointerAddressSpace(); 6113 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6114 return Modified; 6115 } 6116 return false; 6117 } 6118 6119 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6120 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6121 return true; 6122 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6123 if (TLI) { 6124 unsigned AS = SI->getPointerAddressSpace(); 6125 return optimizeMemoryInst(I, SI->getOperand(1), 6126 SI->getOperand(0)->getType(), AS); 6127 } 6128 return false; 6129 } 6130 6131 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6132 unsigned AS = RMW->getPointerAddressSpace(); 6133 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6134 RMW->getType(), AS); 6135 } 6136 6137 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6138 unsigned AS = CmpX->getPointerAddressSpace(); 6139 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6140 CmpX->getCompareOperand()->getType(), AS); 6141 } 6142 6143 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6144 6145 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6146 EnableAndCmpSinking && TLI) 6147 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6148 6149 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6150 BinOp->getOpcode() == Instruction::LShr)) { 6151 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6152 if (TLI && CI && TLI->hasExtractBitsInsn()) 6153 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6154 6155 return false; 6156 } 6157 6158 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6159 if (GEPI->hasAllZeroIndices()) { 6160 /// The GEP operand must be a pointer, so must its result -> BitCast 6161 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6162 GEPI->getName(), GEPI); 6163 GEPI->replaceAllUsesWith(NC); 6164 GEPI->eraseFromParent(); 6165 ++NumGEPsElim; 6166 optimizeInst(NC, ModifiedDT); 6167 return true; 6168 } 6169 return false; 6170 } 6171 6172 if (CallInst *CI = dyn_cast<CallInst>(I)) 6173 return optimizeCallInst(CI, ModifiedDT); 6174 6175 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6176 return optimizeSelectInst(SI); 6177 6178 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6179 return optimizeShuffleVectorInst(SVI); 6180 6181 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6182 return optimizeSwitchInst(Switch); 6183 6184 if (isa<ExtractElementInst>(I)) 6185 return optimizeExtractElementInst(I); 6186 6187 return false; 6188 } 6189 6190 /// Given an OR instruction, check to see if this is a bitreverse 6191 /// idiom. If so, insert the new intrinsic and return true. 6192 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6193 const TargetLowering &TLI) { 6194 if (!I.getType()->isIntegerTy() || 6195 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6196 TLI.getValueType(DL, I.getType(), true))) 6197 return false; 6198 6199 SmallVector<Instruction*, 4> Insts; 6200 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6201 return false; 6202 Instruction *LastInst = Insts.back(); 6203 I.replaceAllUsesWith(LastInst); 6204 RecursivelyDeleteTriviallyDeadInstructions(&I); 6205 return true; 6206 } 6207 6208 // In this pass we look for GEP and cast instructions that are used 6209 // across basic blocks and rewrite them to improve basic-block-at-a-time 6210 // selection. 6211 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6212 SunkAddrs.clear(); 6213 bool MadeChange = false; 6214 6215 CurInstIterator = BB.begin(); 6216 while (CurInstIterator != BB.end()) { 6217 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6218 if (ModifiedDT) 6219 return true; 6220 } 6221 6222 bool MadeBitReverse = true; 6223 while (TLI && MadeBitReverse) { 6224 MadeBitReverse = false; 6225 for (auto &I : reverse(BB)) { 6226 if (makeBitReverse(I, *DL, *TLI)) { 6227 MadeBitReverse = MadeChange = true; 6228 ModifiedDT = true; 6229 break; 6230 } 6231 } 6232 } 6233 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6234 6235 return MadeChange; 6236 } 6237 6238 // llvm.dbg.value is far away from the value then iSel may not be able 6239 // handle it properly. iSel will drop llvm.dbg.value if it can not 6240 // find a node corresponding to the value. 6241 bool CodeGenPrepare::placeDbgValues(Function &F) { 6242 bool MadeChange = false; 6243 for (BasicBlock &BB : F) { 6244 Instruction *PrevNonDbgInst = nullptr; 6245 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6246 Instruction *Insn = &*BI++; 6247 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6248 // Leave dbg.values that refer to an alloca alone. These 6249 // instrinsics describe the address of a variable (= the alloca) 6250 // being taken. They should not be moved next to the alloca 6251 // (and to the beginning of the scope), but rather stay close to 6252 // where said address is used. 6253 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6254 PrevNonDbgInst = Insn; 6255 continue; 6256 } 6257 6258 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6259 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6260 // If VI is a phi in a block with an EHPad terminator, we can't insert 6261 // after it. 6262 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6263 continue; 6264 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6265 DVI->removeFromParent(); 6266 if (isa<PHINode>(VI)) 6267 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6268 else 6269 DVI->insertAfter(VI); 6270 MadeChange = true; 6271 ++NumDbgValueMoved; 6272 } 6273 } 6274 } 6275 return MadeChange; 6276 } 6277 6278 /// \brief Scale down both weights to fit into uint32_t. 6279 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6280 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6281 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 6282 NewTrue = NewTrue / Scale; 6283 NewFalse = NewFalse / Scale; 6284 } 6285 6286 /// \brief Some targets prefer to split a conditional branch like: 6287 /// \code 6288 /// %0 = icmp ne i32 %a, 0 6289 /// %1 = icmp ne i32 %b, 0 6290 /// %or.cond = or i1 %0, %1 6291 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6292 /// \endcode 6293 /// into multiple branch instructions like: 6294 /// \code 6295 /// bb1: 6296 /// %0 = icmp ne i32 %a, 0 6297 /// br i1 %0, label %TrueBB, label %bb2 6298 /// bb2: 6299 /// %1 = icmp ne i32 %b, 0 6300 /// br i1 %1, label %TrueBB, label %FalseBB 6301 /// \endcode 6302 /// This usually allows instruction selection to do even further optimizations 6303 /// and combine the compare with the branch instruction. Currently this is 6304 /// applied for targets which have "cheap" jump instructions. 6305 /// 6306 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6307 /// 6308 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6309 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6310 return false; 6311 6312 bool MadeChange = false; 6313 for (auto &BB : F) { 6314 // Does this BB end with the following? 6315 // %cond1 = icmp|fcmp|binary instruction ... 6316 // %cond2 = icmp|fcmp|binary instruction ... 6317 // %cond.or = or|and i1 %cond1, cond2 6318 // br i1 %cond.or label %dest1, label %dest2" 6319 BinaryOperator *LogicOp; 6320 BasicBlock *TBB, *FBB; 6321 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6322 continue; 6323 6324 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6325 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6326 continue; 6327 6328 unsigned Opc; 6329 Value *Cond1, *Cond2; 6330 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6331 m_OneUse(m_Value(Cond2))))) 6332 Opc = Instruction::And; 6333 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6334 m_OneUse(m_Value(Cond2))))) 6335 Opc = Instruction::Or; 6336 else 6337 continue; 6338 6339 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6340 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6341 continue; 6342 6343 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6344 6345 // Create a new BB. 6346 auto TmpBB = 6347 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6348 BB.getParent(), BB.getNextNode()); 6349 6350 // Update original basic block by using the first condition directly by the 6351 // branch instruction and removing the no longer needed and/or instruction. 6352 Br1->setCondition(Cond1); 6353 LogicOp->eraseFromParent(); 6354 6355 // Depending on the conditon we have to either replace the true or the false 6356 // successor of the original branch instruction. 6357 if (Opc == Instruction::And) 6358 Br1->setSuccessor(0, TmpBB); 6359 else 6360 Br1->setSuccessor(1, TmpBB); 6361 6362 // Fill in the new basic block. 6363 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6364 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6365 I->removeFromParent(); 6366 I->insertBefore(Br2); 6367 } 6368 6369 // Update PHI nodes in both successors. The original BB needs to be 6370 // replaced in one succesor's PHI nodes, because the branch comes now from 6371 // the newly generated BB (NewBB). In the other successor we need to add one 6372 // incoming edge to the PHI nodes, because both branch instructions target 6373 // now the same successor. Depending on the original branch condition 6374 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6375 // we perform the correct update for the PHI nodes. 6376 // This doesn't change the successor order of the just created branch 6377 // instruction (or any other instruction). 6378 if (Opc == Instruction::Or) 6379 std::swap(TBB, FBB); 6380 6381 // Replace the old BB with the new BB. 6382 for (auto &I : *TBB) { 6383 PHINode *PN = dyn_cast<PHINode>(&I); 6384 if (!PN) 6385 break; 6386 int i; 6387 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 6388 PN->setIncomingBlock(i, TmpBB); 6389 } 6390 6391 // Add another incoming edge form the new BB. 6392 for (auto &I : *FBB) { 6393 PHINode *PN = dyn_cast<PHINode>(&I); 6394 if (!PN) 6395 break; 6396 auto *Val = PN->getIncomingValueForBlock(&BB); 6397 PN->addIncoming(Val, TmpBB); 6398 } 6399 6400 // Update the branch weights (from SelectionDAGBuilder:: 6401 // FindMergedConditions). 6402 if (Opc == Instruction::Or) { 6403 // Codegen X | Y as: 6404 // BB1: 6405 // jmp_if_X TBB 6406 // jmp TmpBB 6407 // TmpBB: 6408 // jmp_if_Y TBB 6409 // jmp FBB 6410 // 6411 6412 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6413 // The requirement is that 6414 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6415 // = TrueProb for orignal BB. 6416 // Assuming the orignal weights are A and B, one choice is to set BB1's 6417 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6418 // assumes that 6419 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6420 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6421 // TmpBB, but the math is more complicated. 6422 uint64_t TrueWeight, FalseWeight; 6423 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6424 uint64_t NewTrueWeight = TrueWeight; 6425 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6426 scaleWeights(NewTrueWeight, NewFalseWeight); 6427 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6428 .createBranchWeights(TrueWeight, FalseWeight)); 6429 6430 NewTrueWeight = TrueWeight; 6431 NewFalseWeight = 2 * FalseWeight; 6432 scaleWeights(NewTrueWeight, NewFalseWeight); 6433 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6434 .createBranchWeights(TrueWeight, FalseWeight)); 6435 } 6436 } else { 6437 // Codegen X & Y as: 6438 // BB1: 6439 // jmp_if_X TmpBB 6440 // jmp FBB 6441 // TmpBB: 6442 // jmp_if_Y TBB 6443 // jmp FBB 6444 // 6445 // This requires creation of TmpBB after CurBB. 6446 6447 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6448 // The requirement is that 6449 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6450 // = FalseProb for orignal BB. 6451 // Assuming the orignal weights are A and B, one choice is to set BB1's 6452 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6453 // assumes that 6454 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6455 uint64_t TrueWeight, FalseWeight; 6456 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6457 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6458 uint64_t NewFalseWeight = FalseWeight; 6459 scaleWeights(NewTrueWeight, NewFalseWeight); 6460 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6461 .createBranchWeights(TrueWeight, FalseWeight)); 6462 6463 NewTrueWeight = 2 * TrueWeight; 6464 NewFalseWeight = FalseWeight; 6465 scaleWeights(NewTrueWeight, NewFalseWeight); 6466 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6467 .createBranchWeights(TrueWeight, FalseWeight)); 6468 } 6469 } 6470 6471 // Note: No point in getting fancy here, since the DT info is never 6472 // available to CodeGenPrepare. 6473 ModifiedDT = true; 6474 6475 MadeChange = true; 6476 6477 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6478 TmpBB->dump()); 6479 } 6480 return MadeChange; 6481 } 6482