1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/CodeGen/Analysis.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/CodeGen/TargetPassConfig.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/MDBuilder.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/Statepoint.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/IR/ValueMap.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetLowering.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 57 #include "llvm/Transforms/Utils/BuildLibCalls.h" 58 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 59 #include "llvm/Transforms/Utils/Cloning.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 62 #include "llvm/Transforms/Utils/ValueMapper.h" 63 64 using namespace llvm; 65 using namespace llvm::PatternMatch; 66 67 #define DEBUG_TYPE "codegenprepare" 68 69 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 70 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 71 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 72 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 73 "sunken Cmps"); 74 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 75 "of sunken Casts"); 76 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 77 "computations were sunk"); 78 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 79 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 80 STATISTIC(NumAndsAdded, 81 "Number of and mask instructions added to form ext loads"); 82 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 83 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 84 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 85 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 86 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 87 88 STATISTIC(NumMemCmpCalls, "Number of memcmp calls"); 89 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size"); 90 STATISTIC(NumMemCmpGreaterThanMax, 91 "Number of memcmp calls with size greater than max size"); 92 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls"); 93 94 static cl::opt<bool> DisableBranchOpts( 95 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 96 cl::desc("Disable branch optimizations in CodeGenPrepare")); 97 98 static cl::opt<bool> 99 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 100 cl::desc("Disable GC optimizations in CodeGenPrepare")); 101 102 static cl::opt<bool> DisableSelectToBranch( 103 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 104 cl::desc("Disable select to branch conversion.")); 105 106 static cl::opt<bool> AddrSinkUsingGEPs( 107 "addr-sink-using-gep", cl::Hidden, cl::init(true), 108 cl::desc("Address sinking in CGP using GEPs.")); 109 110 static cl::opt<bool> EnableAndCmpSinking( 111 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 112 cl::desc("Enable sinkinig and/cmp into branches.")); 113 114 static cl::opt<bool> DisableStoreExtract( 115 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 116 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 117 118 static cl::opt<bool> StressStoreExtract( 119 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 120 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 121 122 static cl::opt<bool> DisableExtLdPromotion( 123 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 124 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 125 "CodeGenPrepare")); 126 127 static cl::opt<bool> StressExtLdPromotion( 128 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 129 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 130 "optimization in CodeGenPrepare")); 131 132 static cl::opt<bool> DisablePreheaderProtect( 133 "disable-preheader-prot", cl::Hidden, cl::init(false), 134 cl::desc("Disable protection against removing loop preheaders")); 135 136 static cl::opt<bool> ProfileGuidedSectionPrefix( 137 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 138 cl::desc("Use profile info to add section prefix for hot/cold functions")); 139 140 static cl::opt<unsigned> FreqRatioToSkipMerge( 141 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 142 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 143 "(frequency of destination block) is greater than this ratio")); 144 145 static cl::opt<bool> ForceSplitStore( 146 "force-split-store", cl::Hidden, cl::init(false), 147 cl::desc("Force store splitting no matter what the target query says.")); 148 149 static cl::opt<bool> 150 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 151 cl::desc("Enable merging of redundant sexts when one is dominating" 152 " the other."), cl::init(true)); 153 154 static cl::opt<unsigned> MemCmpNumLoadsPerBlock( 155 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1), 156 cl::desc("The number of loads per basic block for inline expansion of " 157 "memcmp that is only being compared against zero.")); 158 159 namespace { 160 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 161 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 162 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 163 typedef SmallVector<Instruction *, 16> SExts; 164 typedef DenseMap<Value *, SExts> ValueToSExts; 165 class TypePromotionTransaction; 166 167 class CodeGenPrepare : public FunctionPass { 168 const TargetMachine *TM; 169 const TargetSubtargetInfo *SubtargetInfo; 170 const TargetLowering *TLI; 171 const TargetRegisterInfo *TRI; 172 const TargetTransformInfo *TTI; 173 const TargetLibraryInfo *TLInfo; 174 const LoopInfo *LI; 175 std::unique_ptr<BlockFrequencyInfo> BFI; 176 std::unique_ptr<BranchProbabilityInfo> BPI; 177 178 /// As we scan instructions optimizing them, this is the next instruction 179 /// to optimize. Transforms that can invalidate this should update it. 180 BasicBlock::iterator CurInstIterator; 181 182 /// Keeps track of non-local addresses that have been sunk into a block. 183 /// This allows us to avoid inserting duplicate code for blocks with 184 /// multiple load/stores of the same address. 185 ValueMap<Value*, Value*> SunkAddrs; 186 187 /// Keeps track of all instructions inserted for the current function. 188 SetOfInstrs InsertedInsts; 189 /// Keeps track of the type of the related instruction before their 190 /// promotion for the current function. 191 InstrToOrigTy PromotedInsts; 192 193 /// Keep track of instructions removed during promotion. 194 SetOfInstrs RemovedInsts; 195 196 /// Keep track of sext chains based on their initial value. 197 DenseMap<Value *, Instruction *> SeenChainsForSExt; 198 199 /// Keep track of SExt promoted. 200 ValueToSExts ValToSExtendedUses; 201 202 /// True if CFG is modified in any way. 203 bool ModifiedDT; 204 205 /// True if optimizing for size. 206 bool OptSize; 207 208 /// DataLayout for the Function being processed. 209 const DataLayout *DL; 210 211 public: 212 static char ID; // Pass identification, replacement for typeid 213 CodeGenPrepare() 214 : FunctionPass(ID), TM(nullptr), TLI(nullptr), TTI(nullptr), 215 DL(nullptr) { 216 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 217 } 218 bool runOnFunction(Function &F) override; 219 220 StringRef getPassName() const override { return "CodeGen Prepare"; } 221 222 void getAnalysisUsage(AnalysisUsage &AU) const override { 223 // FIXME: When we can selectively preserve passes, preserve the domtree. 224 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 225 AU.addRequired<TargetLibraryInfoWrapperPass>(); 226 AU.addRequired<TargetTransformInfoWrapperPass>(); 227 AU.addRequired<LoopInfoWrapperPass>(); 228 } 229 230 private: 231 bool eliminateFallThrough(Function &F); 232 bool eliminateMostlyEmptyBlocks(Function &F); 233 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 234 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 235 void eliminateMostlyEmptyBlock(BasicBlock *BB); 236 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 237 bool isPreheader); 238 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 239 bool optimizeInst(Instruction *I, bool &ModifiedDT); 240 bool optimizeMemoryInst(Instruction *I, Value *Addr, 241 Type *AccessTy, unsigned AS); 242 bool optimizeInlineAsmInst(CallInst *CS); 243 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 244 bool optimizeExt(Instruction *&I); 245 bool optimizeExtUses(Instruction *I); 246 bool optimizeLoadExt(LoadInst *I); 247 bool optimizeSelectInst(SelectInst *SI); 248 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 249 bool optimizeSwitchInst(SwitchInst *CI); 250 bool optimizeExtractElementInst(Instruction *Inst); 251 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 252 bool placeDbgValues(Function &F); 253 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 254 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 255 bool tryToPromoteExts(TypePromotionTransaction &TPT, 256 const SmallVectorImpl<Instruction *> &Exts, 257 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 258 unsigned CreatedInstsCost = 0); 259 bool mergeSExts(Function &F); 260 bool performAddressTypePromotion( 261 Instruction *&Inst, 262 bool AllowPromotionWithoutCommonHeader, 263 bool HasPromoted, TypePromotionTransaction &TPT, 264 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 265 bool splitBranchCondition(Function &F); 266 bool simplifyOffsetableRelocate(Instruction &I); 267 bool splitIndirectCriticalEdges(Function &F); 268 }; 269 } 270 271 char CodeGenPrepare::ID = 0; 272 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 273 "Optimize for code generation", false, false) 274 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 275 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 276 "Optimize for code generation", false, false) 277 278 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 279 280 bool CodeGenPrepare::runOnFunction(Function &F) { 281 if (skipFunction(F)) 282 return false; 283 284 DL = &F.getParent()->getDataLayout(); 285 286 bool EverMadeChange = false; 287 // Clear per function information. 288 InsertedInsts.clear(); 289 PromotedInsts.clear(); 290 BFI.reset(); 291 BPI.reset(); 292 293 ModifiedDT = false; 294 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 295 TM = &TPC->getTM<TargetMachine>(); 296 SubtargetInfo = TM->getSubtargetImpl(F); 297 TLI = SubtargetInfo->getTargetLowering(); 298 TRI = SubtargetInfo->getRegisterInfo(); 299 } 300 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 301 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 302 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 303 OptSize = F.optForSize(); 304 305 if (ProfileGuidedSectionPrefix) { 306 ProfileSummaryInfo *PSI = 307 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 308 if (PSI->isFunctionHotInCallGraph(&F)) 309 F.setSectionPrefix(".hot"); 310 else if (PSI->isFunctionColdInCallGraph(&F)) 311 F.setSectionPrefix(".unlikely"); 312 } 313 314 /// This optimization identifies DIV instructions that can be 315 /// profitably bypassed and carried out with a shorter, faster divide. 316 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 317 const DenseMap<unsigned int, unsigned int> &BypassWidths = 318 TLI->getBypassSlowDivWidths(); 319 BasicBlock* BB = &*F.begin(); 320 while (BB != nullptr) { 321 // bypassSlowDivision may create new BBs, but we don't want to reapply the 322 // optimization to those blocks. 323 BasicBlock* Next = BB->getNextNode(); 324 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 325 BB = Next; 326 } 327 } 328 329 // Eliminate blocks that contain only PHI nodes and an 330 // unconditional branch. 331 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 332 333 // llvm.dbg.value is far away from the value then iSel may not be able 334 // handle it properly. iSel will drop llvm.dbg.value if it can not 335 // find a node corresponding to the value. 336 EverMadeChange |= placeDbgValues(F); 337 338 if (!DisableBranchOpts) 339 EverMadeChange |= splitBranchCondition(F); 340 341 // Split some critical edges where one of the sources is an indirect branch, 342 // to help generate sane code for PHIs involving such edges. 343 EverMadeChange |= splitIndirectCriticalEdges(F); 344 345 bool MadeChange = true; 346 while (MadeChange) { 347 MadeChange = false; 348 SeenChainsForSExt.clear(); 349 ValToSExtendedUses.clear(); 350 RemovedInsts.clear(); 351 for (Function::iterator I = F.begin(); I != F.end(); ) { 352 BasicBlock *BB = &*I++; 353 bool ModifiedDTOnIteration = false; 354 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 355 356 // Restart BB iteration if the dominator tree of the Function was changed 357 if (ModifiedDTOnIteration) 358 break; 359 } 360 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 361 MadeChange |= mergeSExts(F); 362 363 // Really free removed instructions during promotion. 364 for (Instruction *I : RemovedInsts) 365 I->deleteValue(); 366 367 EverMadeChange |= MadeChange; 368 } 369 370 SunkAddrs.clear(); 371 372 if (!DisableBranchOpts) { 373 MadeChange = false; 374 SmallPtrSet<BasicBlock*, 8> WorkList; 375 for (BasicBlock &BB : F) { 376 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 377 MadeChange |= ConstantFoldTerminator(&BB, true); 378 if (!MadeChange) continue; 379 380 for (SmallVectorImpl<BasicBlock*>::iterator 381 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 382 if (pred_begin(*II) == pred_end(*II)) 383 WorkList.insert(*II); 384 } 385 386 // Delete the dead blocks and any of their dead successors. 387 MadeChange |= !WorkList.empty(); 388 while (!WorkList.empty()) { 389 BasicBlock *BB = *WorkList.begin(); 390 WorkList.erase(BB); 391 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 392 393 DeleteDeadBlock(BB); 394 395 for (SmallVectorImpl<BasicBlock*>::iterator 396 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 397 if (pred_begin(*II) == pred_end(*II)) 398 WorkList.insert(*II); 399 } 400 401 // Merge pairs of basic blocks with unconditional branches, connected by 402 // a single edge. 403 if (EverMadeChange || MadeChange) 404 MadeChange |= eliminateFallThrough(F); 405 406 EverMadeChange |= MadeChange; 407 } 408 409 if (!DisableGCOpts) { 410 SmallVector<Instruction *, 2> Statepoints; 411 for (BasicBlock &BB : F) 412 for (Instruction &I : BB) 413 if (isStatepoint(I)) 414 Statepoints.push_back(&I); 415 for (auto &I : Statepoints) 416 EverMadeChange |= simplifyOffsetableRelocate(*I); 417 } 418 419 return EverMadeChange; 420 } 421 422 /// Merge basic blocks which are connected by a single edge, where one of the 423 /// basic blocks has a single successor pointing to the other basic block, 424 /// which has a single predecessor. 425 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 426 bool Changed = false; 427 // Scan all of the blocks in the function, except for the entry block. 428 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 429 BasicBlock *BB = &*I++; 430 // If the destination block has a single pred, then this is a trivial 431 // edge, just collapse it. 432 BasicBlock *SinglePred = BB->getSinglePredecessor(); 433 434 // Don't merge if BB's address is taken. 435 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 436 437 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 438 if (Term && !Term->isConditional()) { 439 Changed = true; 440 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 441 // Remember if SinglePred was the entry block of the function. 442 // If so, we will need to move BB back to the entry position. 443 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 444 MergeBasicBlockIntoOnlyPred(BB, nullptr); 445 446 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 447 BB->moveBefore(&BB->getParent()->getEntryBlock()); 448 449 // We have erased a block. Update the iterator. 450 I = BB->getIterator(); 451 } 452 } 453 return Changed; 454 } 455 456 /// Find a destination block from BB if BB is mergeable empty block. 457 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 458 // If this block doesn't end with an uncond branch, ignore it. 459 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 460 if (!BI || !BI->isUnconditional()) 461 return nullptr; 462 463 // If the instruction before the branch (skipping debug info) isn't a phi 464 // node, then other stuff is happening here. 465 BasicBlock::iterator BBI = BI->getIterator(); 466 if (BBI != BB->begin()) { 467 --BBI; 468 while (isa<DbgInfoIntrinsic>(BBI)) { 469 if (BBI == BB->begin()) 470 break; 471 --BBI; 472 } 473 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 474 return nullptr; 475 } 476 477 // Do not break infinite loops. 478 BasicBlock *DestBB = BI->getSuccessor(0); 479 if (DestBB == BB) 480 return nullptr; 481 482 if (!canMergeBlocks(BB, DestBB)) 483 DestBB = nullptr; 484 485 return DestBB; 486 } 487 488 // Return the unique indirectbr predecessor of a block. This may return null 489 // even if such a predecessor exists, if it's not useful for splitting. 490 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 491 // predecessors of BB. 492 static BasicBlock * 493 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 494 // If the block doesn't have any PHIs, we don't care about it, since there's 495 // no point in splitting it. 496 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 497 if (!PN) 498 return nullptr; 499 500 // Verify we have exactly one IBR predecessor. 501 // Conservatively bail out if one of the other predecessors is not a "regular" 502 // terminator (that is, not a switch or a br). 503 BasicBlock *IBB = nullptr; 504 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 505 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 506 TerminatorInst *PredTerm = PredBB->getTerminator(); 507 switch (PredTerm->getOpcode()) { 508 case Instruction::IndirectBr: 509 if (IBB) 510 return nullptr; 511 IBB = PredBB; 512 break; 513 case Instruction::Br: 514 case Instruction::Switch: 515 OtherPreds.push_back(PredBB); 516 continue; 517 default: 518 return nullptr; 519 } 520 } 521 522 return IBB; 523 } 524 525 // Split critical edges where the source of the edge is an indirectbr 526 // instruction. This isn't always possible, but we can handle some easy cases. 527 // This is useful because MI is unable to split such critical edges, 528 // which means it will not be able to sink instructions along those edges. 529 // This is especially painful for indirect branches with many successors, where 530 // we end up having to prepare all outgoing values in the origin block. 531 // 532 // Our normal algorithm for splitting critical edges requires us to update 533 // the outgoing edges of the edge origin block, but for an indirectbr this 534 // is hard, since it would require finding and updating the block addresses 535 // the indirect branch uses. But if a block only has a single indirectbr 536 // predecessor, with the others being regular branches, we can do it in a 537 // different way. 538 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr. 539 // We can split D into D0 and D1, where D0 contains only the PHIs from D, 540 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and 541 // create the following structure: 542 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1 543 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) { 544 // Check whether the function has any indirectbrs, and collect which blocks 545 // they may jump to. Since most functions don't have indirect branches, 546 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 547 SmallSetVector<BasicBlock *, 16> Targets; 548 for (auto &BB : F) { 549 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 550 if (!IBI) 551 continue; 552 553 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 554 Targets.insert(IBI->getSuccessor(Succ)); 555 } 556 557 if (Targets.empty()) 558 return false; 559 560 bool Changed = false; 561 for (BasicBlock *Target : Targets) { 562 SmallVector<BasicBlock *, 16> OtherPreds; 563 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 564 // If we did not found an indirectbr, or the indirectbr is the only 565 // incoming edge, this isn't the kind of edge we're looking for. 566 if (!IBRPred || OtherPreds.empty()) 567 continue; 568 569 // Don't even think about ehpads/landingpads. 570 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 571 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 572 continue; 573 574 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 575 // It's possible Target was its own successor through an indirectbr. 576 // In this case, the indirectbr now comes from BodyBlock. 577 if (IBRPred == Target) 578 IBRPred = BodyBlock; 579 580 // At this point Target only has PHIs, and BodyBlock has the rest of the 581 // block's body. Create a copy of Target that will be used by the "direct" 582 // preds. 583 ValueToValueMapTy VMap; 584 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 585 586 for (BasicBlock *Pred : OtherPreds) { 587 // If the target is a loop to itself, then the terminator of the split 588 // block needs to be updated. 589 if (Pred == Target) 590 BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 591 else 592 Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 593 } 594 595 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 596 // they are clones, so the number of PHIs are the same. 597 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 598 // (b) Leave that as the only edge in the "Indirect" PHI. 599 // (c) Merge the two in the body block. 600 BasicBlock::iterator Indirect = Target->begin(), 601 End = Target->getFirstNonPHI()->getIterator(); 602 BasicBlock::iterator Direct = DirectSucc->begin(); 603 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 604 605 assert(&*End == Target->getTerminator() && 606 "Block was expected to only contain PHIs"); 607 608 while (Indirect != End) { 609 PHINode *DirPHI = cast<PHINode>(Direct); 610 PHINode *IndPHI = cast<PHINode>(Indirect); 611 612 // Now, clean up - the direct block shouldn't get the indirect value, 613 // and vice versa. 614 DirPHI->removeIncomingValue(IBRPred); 615 Direct++; 616 617 // Advance the pointer here, to avoid invalidation issues when the old 618 // PHI is erased. 619 Indirect++; 620 621 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 622 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 623 IBRPred); 624 625 // Create a PHI in the body block, to merge the direct and indirect 626 // predecessors. 627 PHINode *MergePHI = 628 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 629 MergePHI->addIncoming(NewIndPHI, Target); 630 MergePHI->addIncoming(DirPHI, DirectSucc); 631 632 IndPHI->replaceAllUsesWith(MergePHI); 633 IndPHI->eraseFromParent(); 634 } 635 636 Changed = true; 637 } 638 639 return Changed; 640 } 641 642 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 643 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 644 /// edges in ways that are non-optimal for isel. Start by eliminating these 645 /// blocks so we can split them the way we want them. 646 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 647 SmallPtrSet<BasicBlock *, 16> Preheaders; 648 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 649 while (!LoopList.empty()) { 650 Loop *L = LoopList.pop_back_val(); 651 LoopList.insert(LoopList.end(), L->begin(), L->end()); 652 if (BasicBlock *Preheader = L->getLoopPreheader()) 653 Preheaders.insert(Preheader); 654 } 655 656 bool MadeChange = false; 657 // Note that this intentionally skips the entry block. 658 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 659 BasicBlock *BB = &*I++; 660 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 661 if (!DestBB || 662 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 663 continue; 664 665 eliminateMostlyEmptyBlock(BB); 666 MadeChange = true; 667 } 668 return MadeChange; 669 } 670 671 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 672 BasicBlock *DestBB, 673 bool isPreheader) { 674 // Do not delete loop preheaders if doing so would create a critical edge. 675 // Loop preheaders can be good locations to spill registers. If the 676 // preheader is deleted and we create a critical edge, registers may be 677 // spilled in the loop body instead. 678 if (!DisablePreheaderProtect && isPreheader && 679 !(BB->getSinglePredecessor() && 680 BB->getSinglePredecessor()->getSingleSuccessor())) 681 return false; 682 683 // Try to skip merging if the unique predecessor of BB is terminated by a 684 // switch or indirect branch instruction, and BB is used as an incoming block 685 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 686 // add COPY instructions in the predecessor of BB instead of BB (if it is not 687 // merged). Note that the critical edge created by merging such blocks wont be 688 // split in MachineSink because the jump table is not analyzable. By keeping 689 // such empty block (BB), ISel will place COPY instructions in BB, not in the 690 // predecessor of BB. 691 BasicBlock *Pred = BB->getUniquePredecessor(); 692 if (!Pred || 693 !(isa<SwitchInst>(Pred->getTerminator()) || 694 isa<IndirectBrInst>(Pred->getTerminator()))) 695 return true; 696 697 if (BB->getTerminator() != BB->getFirstNonPHI()) 698 return true; 699 700 // We use a simple cost heuristic which determine skipping merging is 701 // profitable if the cost of skipping merging is less than the cost of 702 // merging : Cost(skipping merging) < Cost(merging BB), where the 703 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 704 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 705 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 706 // Freq(Pred) / Freq(BB) > 2. 707 // Note that if there are multiple empty blocks sharing the same incoming 708 // value for the PHIs in the DestBB, we consider them together. In such 709 // case, Cost(merging BB) will be the sum of their frequencies. 710 711 if (!isa<PHINode>(DestBB->begin())) 712 return true; 713 714 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 715 716 // Find all other incoming blocks from which incoming values of all PHIs in 717 // DestBB are the same as the ones from BB. 718 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 719 ++PI) { 720 BasicBlock *DestBBPred = *PI; 721 if (DestBBPred == BB) 722 continue; 723 724 bool HasAllSameValue = true; 725 BasicBlock::const_iterator DestBBI = DestBB->begin(); 726 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 727 if (DestPN->getIncomingValueForBlock(BB) != 728 DestPN->getIncomingValueForBlock(DestBBPred)) { 729 HasAllSameValue = false; 730 break; 731 } 732 } 733 if (HasAllSameValue) 734 SameIncomingValueBBs.insert(DestBBPred); 735 } 736 737 // See if all BB's incoming values are same as the value from Pred. In this 738 // case, no reason to skip merging because COPYs are expected to be place in 739 // Pred already. 740 if (SameIncomingValueBBs.count(Pred)) 741 return true; 742 743 if (!BFI) { 744 Function &F = *BB->getParent(); 745 LoopInfo LI{DominatorTree(F)}; 746 BPI.reset(new BranchProbabilityInfo(F, LI)); 747 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 748 } 749 750 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 751 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 752 753 for (auto SameValueBB : SameIncomingValueBBs) 754 if (SameValueBB->getUniquePredecessor() == Pred && 755 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 756 BBFreq += BFI->getBlockFreq(SameValueBB); 757 758 return PredFreq.getFrequency() <= 759 BBFreq.getFrequency() * FreqRatioToSkipMerge; 760 } 761 762 /// Return true if we can merge BB into DestBB if there is a single 763 /// unconditional branch between them, and BB contains no other non-phi 764 /// instructions. 765 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 766 const BasicBlock *DestBB) const { 767 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 768 // the successor. If there are more complex condition (e.g. preheaders), 769 // don't mess around with them. 770 BasicBlock::const_iterator BBI = BB->begin(); 771 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 772 for (const User *U : PN->users()) { 773 const Instruction *UI = cast<Instruction>(U); 774 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 775 return false; 776 // If User is inside DestBB block and it is a PHINode then check 777 // incoming value. If incoming value is not from BB then this is 778 // a complex condition (e.g. preheaders) we want to avoid here. 779 if (UI->getParent() == DestBB) { 780 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 781 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 782 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 783 if (Insn && Insn->getParent() == BB && 784 Insn->getParent() != UPN->getIncomingBlock(I)) 785 return false; 786 } 787 } 788 } 789 } 790 791 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 792 // and DestBB may have conflicting incoming values for the block. If so, we 793 // can't merge the block. 794 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 795 if (!DestBBPN) return true; // no conflict. 796 797 // Collect the preds of BB. 798 SmallPtrSet<const BasicBlock*, 16> BBPreds; 799 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 800 // It is faster to get preds from a PHI than with pred_iterator. 801 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 802 BBPreds.insert(BBPN->getIncomingBlock(i)); 803 } else { 804 BBPreds.insert(pred_begin(BB), pred_end(BB)); 805 } 806 807 // Walk the preds of DestBB. 808 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 809 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 810 if (BBPreds.count(Pred)) { // Common predecessor? 811 BBI = DestBB->begin(); 812 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 813 const Value *V1 = PN->getIncomingValueForBlock(Pred); 814 const Value *V2 = PN->getIncomingValueForBlock(BB); 815 816 // If V2 is a phi node in BB, look up what the mapped value will be. 817 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 818 if (V2PN->getParent() == BB) 819 V2 = V2PN->getIncomingValueForBlock(Pred); 820 821 // If there is a conflict, bail out. 822 if (V1 != V2) return false; 823 } 824 } 825 } 826 827 return true; 828 } 829 830 831 /// Eliminate a basic block that has only phi's and an unconditional branch in 832 /// it. 833 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 834 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 835 BasicBlock *DestBB = BI->getSuccessor(0); 836 837 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 838 839 // If the destination block has a single pred, then this is a trivial edge, 840 // just collapse it. 841 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 842 if (SinglePred != DestBB) { 843 // Remember if SinglePred was the entry block of the function. If so, we 844 // will need to move BB back to the entry position. 845 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 846 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 847 848 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 849 BB->moveBefore(&BB->getParent()->getEntryBlock()); 850 851 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 852 return; 853 } 854 } 855 856 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 857 // to handle the new incoming edges it is about to have. 858 PHINode *PN; 859 for (BasicBlock::iterator BBI = DestBB->begin(); 860 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 861 // Remove the incoming value for BB, and remember it. 862 Value *InVal = PN->removeIncomingValue(BB, false); 863 864 // Two options: either the InVal is a phi node defined in BB or it is some 865 // value that dominates BB. 866 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 867 if (InValPhi && InValPhi->getParent() == BB) { 868 // Add all of the input values of the input PHI as inputs of this phi. 869 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 870 PN->addIncoming(InValPhi->getIncomingValue(i), 871 InValPhi->getIncomingBlock(i)); 872 } else { 873 // Otherwise, add one instance of the dominating value for each edge that 874 // we will be adding. 875 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 876 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 877 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 878 } else { 879 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 880 PN->addIncoming(InVal, *PI); 881 } 882 } 883 } 884 885 // The PHIs are now updated, change everything that refers to BB to use 886 // DestBB and remove BB. 887 BB->replaceAllUsesWith(DestBB); 888 BB->eraseFromParent(); 889 ++NumBlocksElim; 890 891 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 892 } 893 894 // Computes a map of base pointer relocation instructions to corresponding 895 // derived pointer relocation instructions given a vector of all relocate calls 896 static void computeBaseDerivedRelocateMap( 897 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 898 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 899 &RelocateInstMap) { 900 // Collect information in two maps: one primarily for locating the base object 901 // while filling the second map; the second map is the final structure holding 902 // a mapping between Base and corresponding Derived relocate calls 903 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 904 for (auto *ThisRelocate : AllRelocateCalls) { 905 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 906 ThisRelocate->getDerivedPtrIndex()); 907 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 908 } 909 for (auto &Item : RelocateIdxMap) { 910 std::pair<unsigned, unsigned> Key = Item.first; 911 if (Key.first == Key.second) 912 // Base relocation: nothing to insert 913 continue; 914 915 GCRelocateInst *I = Item.second; 916 auto BaseKey = std::make_pair(Key.first, Key.first); 917 918 // We're iterating over RelocateIdxMap so we cannot modify it. 919 auto MaybeBase = RelocateIdxMap.find(BaseKey); 920 if (MaybeBase == RelocateIdxMap.end()) 921 // TODO: We might want to insert a new base object relocate and gep off 922 // that, if there are enough derived object relocates. 923 continue; 924 925 RelocateInstMap[MaybeBase->second].push_back(I); 926 } 927 } 928 929 // Accepts a GEP and extracts the operands into a vector provided they're all 930 // small integer constants 931 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 932 SmallVectorImpl<Value *> &OffsetV) { 933 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 934 // Only accept small constant integer operands 935 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 936 if (!Op || Op->getZExtValue() > 20) 937 return false; 938 } 939 940 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 941 OffsetV.push_back(GEP->getOperand(i)); 942 return true; 943 } 944 945 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 946 // replace, computes a replacement, and affects it. 947 static bool 948 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 949 const SmallVectorImpl<GCRelocateInst *> &Targets) { 950 bool MadeChange = false; 951 for (GCRelocateInst *ToReplace : Targets) { 952 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 953 "Not relocating a derived object of the original base object"); 954 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 955 // A duplicate relocate call. TODO: coalesce duplicates. 956 continue; 957 } 958 959 if (RelocatedBase->getParent() != ToReplace->getParent()) { 960 // Base and derived relocates are in different basic blocks. 961 // In this case transform is only valid when base dominates derived 962 // relocate. However it would be too expensive to check dominance 963 // for each such relocate, so we skip the whole transformation. 964 continue; 965 } 966 967 Value *Base = ToReplace->getBasePtr(); 968 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 969 if (!Derived || Derived->getPointerOperand() != Base) 970 continue; 971 972 SmallVector<Value *, 2> OffsetV; 973 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 974 continue; 975 976 // Create a Builder and replace the target callsite with a gep 977 assert(RelocatedBase->getNextNode() && 978 "Should always have one since it's not a terminator"); 979 980 // Insert after RelocatedBase 981 IRBuilder<> Builder(RelocatedBase->getNextNode()); 982 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 983 984 // If gc_relocate does not match the actual type, cast it to the right type. 985 // In theory, there must be a bitcast after gc_relocate if the type does not 986 // match, and we should reuse it to get the derived pointer. But it could be 987 // cases like this: 988 // bb1: 989 // ... 990 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 991 // br label %merge 992 // 993 // bb2: 994 // ... 995 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 996 // br label %merge 997 // 998 // merge: 999 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1000 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1001 // 1002 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1003 // no matter there is already one or not. In this way, we can handle all cases, and 1004 // the extra bitcast should be optimized away in later passes. 1005 Value *ActualRelocatedBase = RelocatedBase; 1006 if (RelocatedBase->getType() != Base->getType()) { 1007 ActualRelocatedBase = 1008 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1009 } 1010 Value *Replacement = Builder.CreateGEP( 1011 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1012 Replacement->takeName(ToReplace); 1013 // If the newly generated derived pointer's type does not match the original derived 1014 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1015 Value *ActualReplacement = Replacement; 1016 if (Replacement->getType() != ToReplace->getType()) { 1017 ActualReplacement = 1018 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1019 } 1020 ToReplace->replaceAllUsesWith(ActualReplacement); 1021 ToReplace->eraseFromParent(); 1022 1023 MadeChange = true; 1024 } 1025 return MadeChange; 1026 } 1027 1028 // Turns this: 1029 // 1030 // %base = ... 1031 // %ptr = gep %base + 15 1032 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1033 // %base' = relocate(%tok, i32 4, i32 4) 1034 // %ptr' = relocate(%tok, i32 4, i32 5) 1035 // %val = load %ptr' 1036 // 1037 // into this: 1038 // 1039 // %base = ... 1040 // %ptr = gep %base + 15 1041 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1042 // %base' = gc.relocate(%tok, i32 4, i32 4) 1043 // %ptr' = gep %base' + 15 1044 // %val = load %ptr' 1045 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1046 bool MadeChange = false; 1047 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1048 1049 for (auto *U : I.users()) 1050 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1051 // Collect all the relocate calls associated with a statepoint 1052 AllRelocateCalls.push_back(Relocate); 1053 1054 // We need atleast one base pointer relocation + one derived pointer 1055 // relocation to mangle 1056 if (AllRelocateCalls.size() < 2) 1057 return false; 1058 1059 // RelocateInstMap is a mapping from the base relocate instruction to the 1060 // corresponding derived relocate instructions 1061 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1062 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1063 if (RelocateInstMap.empty()) 1064 return false; 1065 1066 for (auto &Item : RelocateInstMap) 1067 // Item.first is the RelocatedBase to offset against 1068 // Item.second is the vector of Targets to replace 1069 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1070 return MadeChange; 1071 } 1072 1073 /// SinkCast - Sink the specified cast instruction into its user blocks 1074 static bool SinkCast(CastInst *CI) { 1075 BasicBlock *DefBB = CI->getParent(); 1076 1077 /// InsertedCasts - Only insert a cast in each block once. 1078 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1079 1080 bool MadeChange = false; 1081 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1082 UI != E; ) { 1083 Use &TheUse = UI.getUse(); 1084 Instruction *User = cast<Instruction>(*UI); 1085 1086 // Figure out which BB this cast is used in. For PHI's this is the 1087 // appropriate predecessor block. 1088 BasicBlock *UserBB = User->getParent(); 1089 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1090 UserBB = PN->getIncomingBlock(TheUse); 1091 } 1092 1093 // Preincrement use iterator so we don't invalidate it. 1094 ++UI; 1095 1096 // The first insertion point of a block containing an EH pad is after the 1097 // pad. If the pad is the user, we cannot sink the cast past the pad. 1098 if (User->isEHPad()) 1099 continue; 1100 1101 // If the block selected to receive the cast is an EH pad that does not 1102 // allow non-PHI instructions before the terminator, we can't sink the 1103 // cast. 1104 if (UserBB->getTerminator()->isEHPad()) 1105 continue; 1106 1107 // If this user is in the same block as the cast, don't change the cast. 1108 if (UserBB == DefBB) continue; 1109 1110 // If we have already inserted a cast into this block, use it. 1111 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1112 1113 if (!InsertedCast) { 1114 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1115 assert(InsertPt != UserBB->end()); 1116 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1117 CI->getType(), "", &*InsertPt); 1118 } 1119 1120 // Replace a use of the cast with a use of the new cast. 1121 TheUse = InsertedCast; 1122 MadeChange = true; 1123 ++NumCastUses; 1124 } 1125 1126 // If we removed all uses, nuke the cast. 1127 if (CI->use_empty()) { 1128 CI->eraseFromParent(); 1129 MadeChange = true; 1130 } 1131 1132 return MadeChange; 1133 } 1134 1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1137 /// reduce the number of virtual registers that must be created and coalesced. 1138 /// 1139 /// Return true if any changes are made. 1140 /// 1141 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1142 const DataLayout &DL) { 1143 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1144 // than sinking only nop casts, but is helpful on some platforms. 1145 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1146 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1147 ASC->getDestAddressSpace())) 1148 return false; 1149 } 1150 1151 // If this is a noop copy, 1152 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1153 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1154 1155 // This is an fp<->int conversion? 1156 if (SrcVT.isInteger() != DstVT.isInteger()) 1157 return false; 1158 1159 // If this is an extension, it will be a zero or sign extension, which 1160 // isn't a noop. 1161 if (SrcVT.bitsLT(DstVT)) return false; 1162 1163 // If these values will be promoted, find out what they will be promoted 1164 // to. This helps us consider truncates on PPC as noop copies when they 1165 // are. 1166 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1167 TargetLowering::TypePromoteInteger) 1168 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1169 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1170 TargetLowering::TypePromoteInteger) 1171 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1172 1173 // If, after promotion, these are the same types, this is a noop copy. 1174 if (SrcVT != DstVT) 1175 return false; 1176 1177 return SinkCast(CI); 1178 } 1179 1180 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1181 /// possible. 1182 /// 1183 /// Return true if any changes were made. 1184 static bool CombineUAddWithOverflow(CmpInst *CI) { 1185 Value *A, *B; 1186 Instruction *AddI; 1187 if (!match(CI, 1188 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1189 return false; 1190 1191 Type *Ty = AddI->getType(); 1192 if (!isa<IntegerType>(Ty)) 1193 return false; 1194 1195 // We don't want to move around uses of condition values this late, so we we 1196 // check if it is legal to create the call to the intrinsic in the basic 1197 // block containing the icmp: 1198 1199 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1200 return false; 1201 1202 #ifndef NDEBUG 1203 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1204 // for now: 1205 if (AddI->hasOneUse()) 1206 assert(*AddI->user_begin() == CI && "expected!"); 1207 #endif 1208 1209 Module *M = CI->getModule(); 1210 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1211 1212 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1213 1214 auto *UAddWithOverflow = 1215 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1216 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1217 auto *Overflow = 1218 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1219 1220 CI->replaceAllUsesWith(Overflow); 1221 AddI->replaceAllUsesWith(UAdd); 1222 CI->eraseFromParent(); 1223 AddI->eraseFromParent(); 1224 return true; 1225 } 1226 1227 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1228 /// registers that must be created and coalesced. This is a clear win except on 1229 /// targets with multiple condition code registers (PowerPC), where it might 1230 /// lose; some adjustment may be wanted there. 1231 /// 1232 /// Return true if any changes are made. 1233 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1234 BasicBlock *DefBB = CI->getParent(); 1235 1236 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1237 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1238 return false; 1239 1240 // Only insert a cmp in each block once. 1241 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1242 1243 bool MadeChange = false; 1244 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1245 UI != E; ) { 1246 Use &TheUse = UI.getUse(); 1247 Instruction *User = cast<Instruction>(*UI); 1248 1249 // Preincrement use iterator so we don't invalidate it. 1250 ++UI; 1251 1252 // Don't bother for PHI nodes. 1253 if (isa<PHINode>(User)) 1254 continue; 1255 1256 // Figure out which BB this cmp is used in. 1257 BasicBlock *UserBB = User->getParent(); 1258 1259 // If this user is in the same block as the cmp, don't change the cmp. 1260 if (UserBB == DefBB) continue; 1261 1262 // If we have already inserted a cmp into this block, use it. 1263 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1264 1265 if (!InsertedCmp) { 1266 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1267 assert(InsertPt != UserBB->end()); 1268 InsertedCmp = 1269 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1270 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1271 // Propagate the debug info. 1272 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1273 } 1274 1275 // Replace a use of the cmp with a use of the new cmp. 1276 TheUse = InsertedCmp; 1277 MadeChange = true; 1278 ++NumCmpUses; 1279 } 1280 1281 // If we removed all uses, nuke the cmp. 1282 if (CI->use_empty()) { 1283 CI->eraseFromParent(); 1284 MadeChange = true; 1285 } 1286 1287 return MadeChange; 1288 } 1289 1290 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1291 if (SinkCmpExpression(CI, TLI)) 1292 return true; 1293 1294 if (CombineUAddWithOverflow(CI)) 1295 return true; 1296 1297 return false; 1298 } 1299 1300 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1301 /// used in a compare to allow isel to generate better code for targets where 1302 /// this operation can be combined. 1303 /// 1304 /// Return true if any changes are made. 1305 static bool sinkAndCmp0Expression(Instruction *AndI, 1306 const TargetLowering &TLI, 1307 SetOfInstrs &InsertedInsts) { 1308 // Double-check that we're not trying to optimize an instruction that was 1309 // already optimized by some other part of this pass. 1310 assert(!InsertedInsts.count(AndI) && 1311 "Attempting to optimize already optimized and instruction"); 1312 (void) InsertedInsts; 1313 1314 // Nothing to do for single use in same basic block. 1315 if (AndI->hasOneUse() && 1316 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1317 return false; 1318 1319 // Try to avoid cases where sinking/duplicating is likely to increase register 1320 // pressure. 1321 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1322 !isa<ConstantInt>(AndI->getOperand(1)) && 1323 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1324 return false; 1325 1326 for (auto *U : AndI->users()) { 1327 Instruction *User = cast<Instruction>(U); 1328 1329 // Only sink for and mask feeding icmp with 0. 1330 if (!isa<ICmpInst>(User)) 1331 return false; 1332 1333 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1334 if (!CmpC || !CmpC->isZero()) 1335 return false; 1336 } 1337 1338 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1339 return false; 1340 1341 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1342 DEBUG(AndI->getParent()->dump()); 1343 1344 // Push the 'and' into the same block as the icmp 0. There should only be 1345 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1346 // others, so we don't need to keep track of which BBs we insert into. 1347 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1348 UI != E; ) { 1349 Use &TheUse = UI.getUse(); 1350 Instruction *User = cast<Instruction>(*UI); 1351 1352 // Preincrement use iterator so we don't invalidate it. 1353 ++UI; 1354 1355 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1356 1357 // Keep the 'and' in the same place if the use is already in the same block. 1358 Instruction *InsertPt = 1359 User->getParent() == AndI->getParent() ? AndI : User; 1360 Instruction *InsertedAnd = 1361 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1362 AndI->getOperand(1), "", InsertPt); 1363 // Propagate the debug info. 1364 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1365 1366 // Replace a use of the 'and' with a use of the new 'and'. 1367 TheUse = InsertedAnd; 1368 ++NumAndUses; 1369 DEBUG(User->getParent()->dump()); 1370 } 1371 1372 // We removed all uses, nuke the and. 1373 AndI->eraseFromParent(); 1374 return true; 1375 } 1376 1377 /// Check if the candidates could be combined with a shift instruction, which 1378 /// includes: 1379 /// 1. Truncate instruction 1380 /// 2. And instruction and the imm is a mask of the low bits: 1381 /// imm & (imm+1) == 0 1382 static bool isExtractBitsCandidateUse(Instruction *User) { 1383 if (!isa<TruncInst>(User)) { 1384 if (User->getOpcode() != Instruction::And || 1385 !isa<ConstantInt>(User->getOperand(1))) 1386 return false; 1387 1388 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1389 1390 if ((Cimm & (Cimm + 1)).getBoolValue()) 1391 return false; 1392 } 1393 return true; 1394 } 1395 1396 /// Sink both shift and truncate instruction to the use of truncate's BB. 1397 static bool 1398 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1399 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1400 const TargetLowering &TLI, const DataLayout &DL) { 1401 BasicBlock *UserBB = User->getParent(); 1402 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1403 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1404 bool MadeChange = false; 1405 1406 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1407 TruncE = TruncI->user_end(); 1408 TruncUI != TruncE;) { 1409 1410 Use &TruncTheUse = TruncUI.getUse(); 1411 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1412 // Preincrement use iterator so we don't invalidate it. 1413 1414 ++TruncUI; 1415 1416 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1417 if (!ISDOpcode) 1418 continue; 1419 1420 // If the use is actually a legal node, there will not be an 1421 // implicit truncate. 1422 // FIXME: always querying the result type is just an 1423 // approximation; some nodes' legality is determined by the 1424 // operand or other means. There's no good way to find out though. 1425 if (TLI.isOperationLegalOrCustom( 1426 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1427 continue; 1428 1429 // Don't bother for PHI nodes. 1430 if (isa<PHINode>(TruncUser)) 1431 continue; 1432 1433 BasicBlock *TruncUserBB = TruncUser->getParent(); 1434 1435 if (UserBB == TruncUserBB) 1436 continue; 1437 1438 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1439 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1440 1441 if (!InsertedShift && !InsertedTrunc) { 1442 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1443 assert(InsertPt != TruncUserBB->end()); 1444 // Sink the shift 1445 if (ShiftI->getOpcode() == Instruction::AShr) 1446 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1447 "", &*InsertPt); 1448 else 1449 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1450 "", &*InsertPt); 1451 1452 // Sink the trunc 1453 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1454 TruncInsertPt++; 1455 assert(TruncInsertPt != TruncUserBB->end()); 1456 1457 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1458 TruncI->getType(), "", &*TruncInsertPt); 1459 1460 MadeChange = true; 1461 1462 TruncTheUse = InsertedTrunc; 1463 } 1464 } 1465 return MadeChange; 1466 } 1467 1468 /// Sink the shift *right* instruction into user blocks if the uses could 1469 /// potentially be combined with this shift instruction and generate BitExtract 1470 /// instruction. It will only be applied if the architecture supports BitExtract 1471 /// instruction. Here is an example: 1472 /// BB1: 1473 /// %x.extract.shift = lshr i64 %arg1, 32 1474 /// BB2: 1475 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1476 /// ==> 1477 /// 1478 /// BB2: 1479 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1480 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1481 /// 1482 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1483 /// instruction. 1484 /// Return true if any changes are made. 1485 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1486 const TargetLowering &TLI, 1487 const DataLayout &DL) { 1488 BasicBlock *DefBB = ShiftI->getParent(); 1489 1490 /// Only insert instructions in each block once. 1491 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1492 1493 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1494 1495 bool MadeChange = false; 1496 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1497 UI != E;) { 1498 Use &TheUse = UI.getUse(); 1499 Instruction *User = cast<Instruction>(*UI); 1500 // Preincrement use iterator so we don't invalidate it. 1501 ++UI; 1502 1503 // Don't bother for PHI nodes. 1504 if (isa<PHINode>(User)) 1505 continue; 1506 1507 if (!isExtractBitsCandidateUse(User)) 1508 continue; 1509 1510 BasicBlock *UserBB = User->getParent(); 1511 1512 if (UserBB == DefBB) { 1513 // If the shift and truncate instruction are in the same BB. The use of 1514 // the truncate(TruncUse) may still introduce another truncate if not 1515 // legal. In this case, we would like to sink both shift and truncate 1516 // instruction to the BB of TruncUse. 1517 // for example: 1518 // BB1: 1519 // i64 shift.result = lshr i64 opnd, imm 1520 // trunc.result = trunc shift.result to i16 1521 // 1522 // BB2: 1523 // ----> We will have an implicit truncate here if the architecture does 1524 // not have i16 compare. 1525 // cmp i16 trunc.result, opnd2 1526 // 1527 if (isa<TruncInst>(User) && shiftIsLegal 1528 // If the type of the truncate is legal, no trucate will be 1529 // introduced in other basic blocks. 1530 && 1531 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1532 MadeChange = 1533 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1534 1535 continue; 1536 } 1537 // If we have already inserted a shift into this block, use it. 1538 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1539 1540 if (!InsertedShift) { 1541 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1542 assert(InsertPt != UserBB->end()); 1543 1544 if (ShiftI->getOpcode() == Instruction::AShr) 1545 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1546 "", &*InsertPt); 1547 else 1548 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1549 "", &*InsertPt); 1550 1551 MadeChange = true; 1552 } 1553 1554 // Replace a use of the shift with a use of the new shift. 1555 TheUse = InsertedShift; 1556 } 1557 1558 // If we removed all uses, nuke the shift. 1559 if (ShiftI->use_empty()) 1560 ShiftI->eraseFromParent(); 1561 1562 return MadeChange; 1563 } 1564 1565 /// If counting leading or trailing zeros is an expensive operation and a zero 1566 /// input is defined, add a check for zero to avoid calling the intrinsic. 1567 /// 1568 /// We want to transform: 1569 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1570 /// 1571 /// into: 1572 /// entry: 1573 /// %cmpz = icmp eq i64 %A, 0 1574 /// br i1 %cmpz, label %cond.end, label %cond.false 1575 /// cond.false: 1576 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1577 /// br label %cond.end 1578 /// cond.end: 1579 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1580 /// 1581 /// If the transform is performed, return true and set ModifiedDT to true. 1582 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1583 const TargetLowering *TLI, 1584 const DataLayout *DL, 1585 bool &ModifiedDT) { 1586 if (!TLI || !DL) 1587 return false; 1588 1589 // If a zero input is undefined, it doesn't make sense to despeculate that. 1590 if (match(CountZeros->getOperand(1), m_One())) 1591 return false; 1592 1593 // If it's cheap to speculate, there's nothing to do. 1594 auto IntrinsicID = CountZeros->getIntrinsicID(); 1595 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1596 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1597 return false; 1598 1599 // Only handle legal scalar cases. Anything else requires too much work. 1600 Type *Ty = CountZeros->getType(); 1601 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1602 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1603 return false; 1604 1605 // The intrinsic will be sunk behind a compare against zero and branch. 1606 BasicBlock *StartBlock = CountZeros->getParent(); 1607 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1608 1609 // Create another block after the count zero intrinsic. A PHI will be added 1610 // in this block to select the result of the intrinsic or the bit-width 1611 // constant if the input to the intrinsic is zero. 1612 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1613 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1614 1615 // Set up a builder to create a compare, conditional branch, and PHI. 1616 IRBuilder<> Builder(CountZeros->getContext()); 1617 Builder.SetInsertPoint(StartBlock->getTerminator()); 1618 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1619 1620 // Replace the unconditional branch that was created by the first split with 1621 // a compare against zero and a conditional branch. 1622 Value *Zero = Constant::getNullValue(Ty); 1623 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1624 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1625 StartBlock->getTerminator()->eraseFromParent(); 1626 1627 // Create a PHI in the end block to select either the output of the intrinsic 1628 // or the bit width of the operand. 1629 Builder.SetInsertPoint(&EndBlock->front()); 1630 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1631 CountZeros->replaceAllUsesWith(PN); 1632 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1633 PN->addIncoming(BitWidth, StartBlock); 1634 PN->addIncoming(CountZeros, CallBlock); 1635 1636 // We are explicitly handling the zero case, so we can set the intrinsic's 1637 // undefined zero argument to 'true'. This will also prevent reprocessing the 1638 // intrinsic; we only despeculate when a zero input is defined. 1639 CountZeros->setArgOperand(1, Builder.getTrue()); 1640 ModifiedDT = true; 1641 return true; 1642 } 1643 1644 // This class provides helper functions to expand a memcmp library call into an 1645 // inline expansion. 1646 class MemCmpExpansion { 1647 struct ResultBlock { 1648 BasicBlock *BB; 1649 PHINode *PhiSrc1; 1650 PHINode *PhiSrc2; 1651 ResultBlock(); 1652 }; 1653 1654 CallInst *CI; 1655 ResultBlock ResBlock; 1656 unsigned MaxLoadSize; 1657 unsigned NumBlocks; 1658 unsigned NumBlocksNonOneByte; 1659 unsigned NumLoadsPerBlock; 1660 std::vector<BasicBlock *> LoadCmpBlocks; 1661 BasicBlock *EndBlock; 1662 PHINode *PhiRes; 1663 bool IsUsedForZeroCmp; 1664 const DataLayout &DL; 1665 IRBuilder<> Builder; 1666 1667 unsigned calculateNumBlocks(unsigned Size); 1668 void createLoadCmpBlocks(); 1669 void createResultBlock(); 1670 void setupResultBlockPHINodes(); 1671 void setupEndBlockPHINodes(); 1672 void emitLoadCompareBlock(unsigned Index, unsigned LoadSize, 1673 unsigned GEPIndex); 1674 Value *getCompareLoadPairs(unsigned Index, unsigned Size, 1675 unsigned &NumBytesProcessed); 1676 void emitLoadCompareBlockMultipleLoads(unsigned Index, unsigned Size, 1677 unsigned &NumBytesProcessed); 1678 void emitLoadCompareByteBlock(unsigned Index, unsigned GEPIndex); 1679 void emitMemCmpResultBlock(); 1680 Value *getMemCmpExpansionZeroCase(unsigned Size); 1681 Value *getMemCmpEqZeroOneBlock(unsigned Size); 1682 Value *getMemCmpOneBlock(unsigned Size); 1683 unsigned getLoadSize(unsigned Size); 1684 unsigned getNumLoads(unsigned Size); 1685 1686 public: 1687 MemCmpExpansion(CallInst *CI, uint64_t Size, unsigned MaxLoadSize, 1688 unsigned NumLoadsPerBlock, const DataLayout &DL); 1689 Value *getMemCmpExpansion(uint64_t Size); 1690 }; 1691 1692 MemCmpExpansion::ResultBlock::ResultBlock() 1693 : BB(nullptr), PhiSrc1(nullptr), PhiSrc2(nullptr) {} 1694 1695 // Initialize the basic block structure required for expansion of memcmp call 1696 // with given maximum load size and memcmp size parameter. 1697 // This structure includes: 1698 // 1. A list of load compare blocks - LoadCmpBlocks. 1699 // 2. An EndBlock, split from original instruction point, which is the block to 1700 // return from. 1701 // 3. ResultBlock, block to branch to for early exit when a 1702 // LoadCmpBlock finds a difference. 1703 MemCmpExpansion::MemCmpExpansion(CallInst *CI, uint64_t Size, 1704 unsigned MaxLoadSize, unsigned LoadsPerBlock, 1705 const DataLayout &TheDataLayout) 1706 : CI(CI), MaxLoadSize(MaxLoadSize), NumLoadsPerBlock(LoadsPerBlock), 1707 DL(TheDataLayout), Builder(CI) { 1708 1709 // A memcmp with zero-comparison with only one block of load and compare does 1710 // not need to set up any extra blocks. This case could be handled in the DAG, 1711 // but since we have all of the machinery to flexibly expand any memcpy here, 1712 // we choose to handle this case too to avoid fragmented lowering. 1713 IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI); 1714 NumBlocks = calculateNumBlocks(Size); 1715 if ((!IsUsedForZeroCmp && NumLoadsPerBlock != 1) || NumBlocks != 1) { 1716 BasicBlock *StartBlock = CI->getParent(); 1717 EndBlock = StartBlock->splitBasicBlock(CI, "endblock"); 1718 setupEndBlockPHINodes(); 1719 createResultBlock(); 1720 1721 // If return value of memcmp is not used in a zero equality, we need to 1722 // calculate which source was larger. The calculation requires the 1723 // two loaded source values of each load compare block. 1724 // These will be saved in the phi nodes created by setupResultBlockPHINodes. 1725 if (!IsUsedForZeroCmp) 1726 setupResultBlockPHINodes(); 1727 1728 // Create the number of required load compare basic blocks. 1729 createLoadCmpBlocks(); 1730 1731 // Update the terminator added by splitBasicBlock to branch to the first 1732 // LoadCmpBlock. 1733 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]); 1734 } 1735 1736 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1737 } 1738 1739 void MemCmpExpansion::createLoadCmpBlocks() { 1740 for (unsigned i = 0; i < NumBlocks; i++) { 1741 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb", 1742 EndBlock->getParent(), EndBlock); 1743 LoadCmpBlocks.push_back(BB); 1744 } 1745 } 1746 1747 void MemCmpExpansion::createResultBlock() { 1748 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block", 1749 EndBlock->getParent(), EndBlock); 1750 } 1751 1752 // This function creates the IR instructions for loading and comparing 1 byte. 1753 // It loads 1 byte from each source of the memcmp parameters with the given 1754 // GEPIndex. It then subtracts the two loaded values and adds this result to the 1755 // final phi node for selecting the memcmp result. 1756 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned Index, 1757 unsigned GEPIndex) { 1758 Value *Source1 = CI->getArgOperand(0); 1759 Value *Source2 = CI->getArgOperand(1); 1760 1761 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1762 Type *LoadSizeType = Type::getInt8Ty(CI->getContext()); 1763 // Cast source to LoadSizeType*. 1764 if (Source1->getType() != LoadSizeType) 1765 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1766 if (Source2->getType() != LoadSizeType) 1767 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1768 1769 // Get the base address using the GEPIndex. 1770 if (GEPIndex != 0) { 1771 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1772 ConstantInt::get(LoadSizeType, GEPIndex)); 1773 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1774 ConstantInt::get(LoadSizeType, GEPIndex)); 1775 } 1776 1777 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1778 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1779 1780 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext())); 1781 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext())); 1782 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2); 1783 1784 PhiRes->addIncoming(Diff, LoadCmpBlocks[Index]); 1785 1786 if (Index < (LoadCmpBlocks.size() - 1)) { 1787 // Early exit branch if difference found to EndBlock. Otherwise, continue to 1788 // next LoadCmpBlock, 1789 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 1790 ConstantInt::get(Diff->getType(), 0)); 1791 BranchInst *CmpBr = 1792 BranchInst::Create(EndBlock, LoadCmpBlocks[Index + 1], Cmp); 1793 Builder.Insert(CmpBr); 1794 } else { 1795 // The last block has an unconditional branch to EndBlock. 1796 BranchInst *CmpBr = BranchInst::Create(EndBlock); 1797 Builder.Insert(CmpBr); 1798 } 1799 } 1800 1801 unsigned MemCmpExpansion::getNumLoads(unsigned Size) { 1802 return (Size / MaxLoadSize) + countPopulation(Size % MaxLoadSize); 1803 } 1804 1805 unsigned MemCmpExpansion::getLoadSize(unsigned Size) { 1806 return MinAlign(PowerOf2Floor(Size), MaxLoadSize); 1807 } 1808 1809 /// Generate an equality comparison for one or more pairs of loaded values. 1810 /// This is used in the case where the memcmp() call is compared equal or not 1811 /// equal to zero. 1812 Value *MemCmpExpansion::getCompareLoadPairs(unsigned Index, unsigned Size, 1813 unsigned &NumBytesProcessed) { 1814 std::vector<Value *> XorList, OrList; 1815 Value *Diff; 1816 1817 unsigned RemainingBytes = Size - NumBytesProcessed; 1818 unsigned NumLoadsRemaining = getNumLoads(RemainingBytes); 1819 unsigned NumLoads = std::min(NumLoadsRemaining, NumLoadsPerBlock); 1820 1821 // For a single-block expansion, start inserting before the memcmp call. 1822 if (LoadCmpBlocks.empty()) 1823 Builder.SetInsertPoint(CI); 1824 else 1825 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1826 1827 Value *Cmp = nullptr; 1828 for (unsigned i = 0; i < NumLoads; ++i) { 1829 unsigned LoadSize = getLoadSize(RemainingBytes); 1830 unsigned GEPIndex = NumBytesProcessed / LoadSize; 1831 NumBytesProcessed += LoadSize; 1832 RemainingBytes -= LoadSize; 1833 1834 Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8); 1835 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 1836 assert(LoadSize <= MaxLoadSize && "Unexpected load type"); 1837 1838 Value *Source1 = CI->getArgOperand(0); 1839 Value *Source2 = CI->getArgOperand(1); 1840 1841 // Cast source to LoadSizeType*. 1842 if (Source1->getType() != LoadSizeType) 1843 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1844 if (Source2->getType() != LoadSizeType) 1845 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1846 1847 // Get the base address using the GEPIndex. 1848 if (GEPIndex != 0) { 1849 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1850 ConstantInt::get(LoadSizeType, GEPIndex)); 1851 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1852 ConstantInt::get(LoadSizeType, GEPIndex)); 1853 } 1854 1855 // Get a constant or load a value for each source address. 1856 Value *LoadSrc1 = nullptr; 1857 if (auto *Source1C = dyn_cast<Constant>(Source1)) 1858 LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL); 1859 if (!LoadSrc1) 1860 LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1861 1862 Value *LoadSrc2 = nullptr; 1863 if (auto *Source2C = dyn_cast<Constant>(Source2)) 1864 LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL); 1865 if (!LoadSrc2) 1866 LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1867 1868 if (NumLoads != 1) { 1869 if (LoadSizeType != MaxLoadType) { 1870 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType); 1871 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType); 1872 } 1873 // If we have multiple loads per block, we need to generate a composite 1874 // comparison using xor+or. 1875 Diff = Builder.CreateXor(LoadSrc1, LoadSrc2); 1876 Diff = Builder.CreateZExt(Diff, MaxLoadType); 1877 XorList.push_back(Diff); 1878 } else { 1879 // If there's only one load per block, we just compare the loaded values. 1880 Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2); 1881 } 1882 } 1883 1884 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> { 1885 std::vector<Value *> OutList; 1886 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) { 1887 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]); 1888 OutList.push_back(Or); 1889 } 1890 if (InList.size() % 2 != 0) 1891 OutList.push_back(InList.back()); 1892 return OutList; 1893 }; 1894 1895 if (!Cmp) { 1896 // Pairwise OR the XOR results. 1897 OrList = pairWiseOr(XorList); 1898 1899 // Pairwise OR the OR results until one result left. 1900 while (OrList.size() != 1) { 1901 OrList = pairWiseOr(OrList); 1902 } 1903 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0)); 1904 } 1905 1906 return Cmp; 1907 } 1908 1909 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads( 1910 unsigned Index, unsigned Size, unsigned &NumBytesProcessed) { 1911 Value *Cmp = getCompareLoadPairs(Index, Size, NumBytesProcessed); 1912 1913 BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1)) 1914 ? EndBlock 1915 : LoadCmpBlocks[Index + 1]; 1916 // Early exit branch if difference found to ResultBlock. Otherwise, 1917 // continue to next LoadCmpBlock or EndBlock. 1918 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 1919 Builder.Insert(CmpBr); 1920 1921 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 1922 // since early exit to ResultBlock was not taken (no difference was found in 1923 // any of the bytes). 1924 if (Index == LoadCmpBlocks.size() - 1) { 1925 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 1926 PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]); 1927 } 1928 } 1929 1930 // This function creates the IR intructions for loading and comparing using the 1931 // given LoadSize. It loads the number of bytes specified by LoadSize from each 1932 // source of the memcmp parameters. It then does a subtract to see if there was 1933 // a difference in the loaded values. If a difference is found, it branches 1934 // with an early exit to the ResultBlock for calculating which source was 1935 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or 1936 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with 1937 // a special case through emitLoadCompareByteBlock. The special handling can 1938 // simply subtract the loaded values and add it to the result phi node. 1939 void MemCmpExpansion::emitLoadCompareBlock(unsigned Index, unsigned LoadSize, 1940 unsigned GEPIndex) { 1941 if (LoadSize == 1) { 1942 MemCmpExpansion::emitLoadCompareByteBlock(Index, GEPIndex); 1943 return; 1944 } 1945 1946 Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8); 1947 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 1948 assert(LoadSize <= MaxLoadSize && "Unexpected load type"); 1949 1950 Value *Source1 = CI->getArgOperand(0); 1951 Value *Source2 = CI->getArgOperand(1); 1952 1953 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1954 // Cast source to LoadSizeType*. 1955 if (Source1->getType() != LoadSizeType) 1956 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1957 if (Source2->getType() != LoadSizeType) 1958 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1959 1960 // Get the base address using the GEPIndex. 1961 if (GEPIndex != 0) { 1962 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1963 ConstantInt::get(LoadSizeType, GEPIndex)); 1964 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1965 ConstantInt::get(LoadSizeType, GEPIndex)); 1966 } 1967 1968 // Load LoadSizeType from the base address. 1969 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1970 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1971 1972 if (DL.isLittleEndian()) { 1973 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(), 1974 Intrinsic::bswap, LoadSizeType); 1975 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 1976 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 1977 } 1978 1979 if (LoadSizeType != MaxLoadType) { 1980 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType); 1981 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType); 1982 } 1983 1984 // Add the loaded values to the phi nodes for calculating memcmp result only 1985 // if result is not used in a zero equality. 1986 if (!IsUsedForZeroCmp) { 1987 ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[Index]); 1988 ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[Index]); 1989 } 1990 1991 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2); 1992 BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1)) 1993 ? EndBlock 1994 : LoadCmpBlocks[Index + 1]; 1995 // Early exit branch if difference found to ResultBlock. Otherwise, continue 1996 // to next LoadCmpBlock or EndBlock. 1997 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp); 1998 Builder.Insert(CmpBr); 1999 2000 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 2001 // since early exit to ResultBlock was not taken (no difference was found in 2002 // any of the bytes). 2003 if (Index == LoadCmpBlocks.size() - 1) { 2004 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 2005 PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]); 2006 } 2007 } 2008 2009 // This function populates the ResultBlock with a sequence to calculate the 2010 // memcmp result. It compares the two loaded source values and returns -1 if 2011 // src1 < src2 and 1 if src1 > src2. 2012 void MemCmpExpansion::emitMemCmpResultBlock() { 2013 // Special case: if memcmp result is used in a zero equality, result does not 2014 // need to be calculated and can simply return 1. 2015 if (IsUsedForZeroCmp) { 2016 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 2017 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 2018 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1); 2019 PhiRes->addIncoming(Res, ResBlock.BB); 2020 BranchInst *NewBr = BranchInst::Create(EndBlock); 2021 Builder.Insert(NewBr); 2022 return; 2023 } 2024 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 2025 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 2026 2027 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1, 2028 ResBlock.PhiSrc2); 2029 2030 Value *Res = 2031 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1), 2032 ConstantInt::get(Builder.getInt32Ty(), 1)); 2033 2034 BranchInst *NewBr = BranchInst::Create(EndBlock); 2035 Builder.Insert(NewBr); 2036 PhiRes->addIncoming(Res, ResBlock.BB); 2037 } 2038 2039 unsigned MemCmpExpansion::calculateNumBlocks(unsigned Size) { 2040 unsigned NumBlocks = 0; 2041 bool HaveOneByteLoad = false; 2042 unsigned RemainingSize = Size; 2043 unsigned LoadSize = MaxLoadSize; 2044 while (RemainingSize) { 2045 if (LoadSize == 1) 2046 HaveOneByteLoad = true; 2047 NumBlocks += RemainingSize / LoadSize; 2048 RemainingSize = RemainingSize % LoadSize; 2049 LoadSize = LoadSize / 2; 2050 } 2051 NumBlocksNonOneByte = HaveOneByteLoad ? (NumBlocks - 1) : NumBlocks; 2052 2053 if (IsUsedForZeroCmp) 2054 NumBlocks = NumBlocks / NumLoadsPerBlock + 2055 (NumBlocks % NumLoadsPerBlock != 0 ? 1 : 0); 2056 2057 return NumBlocks; 2058 } 2059 2060 void MemCmpExpansion::setupResultBlockPHINodes() { 2061 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 2062 Builder.SetInsertPoint(ResBlock.BB); 2063 ResBlock.PhiSrc1 = 2064 Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src1"); 2065 ResBlock.PhiSrc2 = 2066 Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src2"); 2067 } 2068 2069 void MemCmpExpansion::setupEndBlockPHINodes() { 2070 Builder.SetInsertPoint(&EndBlock->front()); 2071 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res"); 2072 } 2073 2074 Value *MemCmpExpansion::getMemCmpExpansionZeroCase(unsigned Size) { 2075 unsigned NumBytesProcessed = 0; 2076 // This loop populates each of the LoadCmpBlocks with the IR sequence to 2077 // handle multiple loads per block. 2078 for (unsigned i = 0; i < NumBlocks; ++i) 2079 emitLoadCompareBlockMultipleLoads(i, Size, NumBytesProcessed); 2080 2081 emitMemCmpResultBlock(); 2082 return PhiRes; 2083 } 2084 2085 /// A memcmp expansion that compares equality with 0 and only has one block of 2086 /// load and compare can bypass the compare, branch, and phi IR that is required 2087 /// in the general case. 2088 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock(unsigned Size) { 2089 unsigned NumBytesProcessed = 0; 2090 Value *Cmp = getCompareLoadPairs(0, Size, NumBytesProcessed); 2091 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext())); 2092 } 2093 2094 /// A memcmp expansion that only has one block of load and compare can bypass 2095 /// the compare, branch, and phi IR that is required in the general case. 2096 Value *MemCmpExpansion::getMemCmpOneBlock(unsigned Size) { 2097 assert(NumLoadsPerBlock == 1 && "Only handles one load pair per block"); 2098 2099 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8); 2100 Value *Source1 = CI->getArgOperand(0); 2101 Value *Source2 = CI->getArgOperand(1); 2102 2103 // Cast source to LoadSizeType*. 2104 if (Source1->getType() != LoadSizeType) 2105 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 2106 if (Source2->getType() != LoadSizeType) 2107 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 2108 2109 // Load LoadSizeType from the base address. 2110 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 2111 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 2112 2113 if (DL.isLittleEndian() && Size != 1) { 2114 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(), 2115 Intrinsic::bswap, LoadSizeType); 2116 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 2117 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 2118 } 2119 2120 // TODO: Instead of comparing ULT, just subtract and return the difference? 2121 Value *CmpNE = Builder.CreateICmpNE(LoadSrc1, LoadSrc2); 2122 Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2); 2123 Type *I32 = Builder.getInt32Ty(); 2124 Value *Sel1 = Builder.CreateSelect(CmpULT, ConstantInt::get(I32, -1), 2125 ConstantInt::get(I32, 1)); 2126 return Builder.CreateSelect(CmpNE, Sel1, ConstantInt::get(I32, 0)); 2127 } 2128 2129 // This function expands the memcmp call into an inline expansion and returns 2130 // the memcmp result. 2131 Value *MemCmpExpansion::getMemCmpExpansion(uint64_t Size) { 2132 if (IsUsedForZeroCmp) 2133 return NumBlocks == 1 ? getMemCmpEqZeroOneBlock(Size) : 2134 getMemCmpExpansionZeroCase(Size); 2135 2136 // TODO: Handle more than one load pair per block in getMemCmpOneBlock(). 2137 if (NumBlocks == 1 && NumLoadsPerBlock == 1) 2138 return getMemCmpOneBlock(Size); 2139 2140 // This loop calls emitLoadCompareBlock for comparing Size bytes of the two 2141 // memcmp sources. It starts with loading using the maximum load size set by 2142 // the target. It processes any remaining bytes using a load size which is the 2143 // next smallest power of 2. 2144 unsigned LoadSize = MaxLoadSize; 2145 unsigned NumBytesToBeProcessed = Size; 2146 unsigned Index = 0; 2147 while (NumBytesToBeProcessed) { 2148 // Calculate how many blocks we can create with the current load size. 2149 unsigned NumBlocks = NumBytesToBeProcessed / LoadSize; 2150 unsigned GEPIndex = (Size - NumBytesToBeProcessed) / LoadSize; 2151 NumBytesToBeProcessed = NumBytesToBeProcessed % LoadSize; 2152 2153 // For each NumBlocks, populate the instruction sequence for loading and 2154 // comparing LoadSize bytes. 2155 while (NumBlocks--) { 2156 emitLoadCompareBlock(Index, LoadSize, GEPIndex); 2157 Index++; 2158 GEPIndex++; 2159 } 2160 // Get the next LoadSize to use. 2161 LoadSize = LoadSize / 2; 2162 } 2163 2164 emitMemCmpResultBlock(); 2165 return PhiRes; 2166 } 2167 2168 // This function checks to see if an expansion of memcmp can be generated. 2169 // It checks for constant compare size that is less than the max inline size. 2170 // If an expansion cannot occur, returns false to leave as a library call. 2171 // Otherwise, the library call is replaced with a new IR instruction sequence. 2172 /// We want to transform: 2173 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15) 2174 /// To: 2175 /// loadbb: 2176 /// %0 = bitcast i32* %buffer2 to i8* 2177 /// %1 = bitcast i32* %buffer1 to i8* 2178 /// %2 = bitcast i8* %1 to i64* 2179 /// %3 = bitcast i8* %0 to i64* 2180 /// %4 = load i64, i64* %2 2181 /// %5 = load i64, i64* %3 2182 /// %6 = call i64 @llvm.bswap.i64(i64 %4) 2183 /// %7 = call i64 @llvm.bswap.i64(i64 %5) 2184 /// %8 = sub i64 %6, %7 2185 /// %9 = icmp ne i64 %8, 0 2186 /// br i1 %9, label %res_block, label %loadbb1 2187 /// res_block: ; preds = %loadbb2, 2188 /// %loadbb1, %loadbb 2189 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ] 2190 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ] 2191 /// %10 = icmp ult i64 %phi.src1, %phi.src2 2192 /// %11 = select i1 %10, i32 -1, i32 1 2193 /// br label %endblock 2194 /// loadbb1: ; preds = %loadbb 2195 /// %12 = bitcast i32* %buffer2 to i8* 2196 /// %13 = bitcast i32* %buffer1 to i8* 2197 /// %14 = bitcast i8* %13 to i32* 2198 /// %15 = bitcast i8* %12 to i32* 2199 /// %16 = getelementptr i32, i32* %14, i32 2 2200 /// %17 = getelementptr i32, i32* %15, i32 2 2201 /// %18 = load i32, i32* %16 2202 /// %19 = load i32, i32* %17 2203 /// %20 = call i32 @llvm.bswap.i32(i32 %18) 2204 /// %21 = call i32 @llvm.bswap.i32(i32 %19) 2205 /// %22 = zext i32 %20 to i64 2206 /// %23 = zext i32 %21 to i64 2207 /// %24 = sub i64 %22, %23 2208 /// %25 = icmp ne i64 %24, 0 2209 /// br i1 %25, label %res_block, label %loadbb2 2210 /// loadbb2: ; preds = %loadbb1 2211 /// %26 = bitcast i32* %buffer2 to i8* 2212 /// %27 = bitcast i32* %buffer1 to i8* 2213 /// %28 = bitcast i8* %27 to i16* 2214 /// %29 = bitcast i8* %26 to i16* 2215 /// %30 = getelementptr i16, i16* %28, i16 6 2216 /// %31 = getelementptr i16, i16* %29, i16 6 2217 /// %32 = load i16, i16* %30 2218 /// %33 = load i16, i16* %31 2219 /// %34 = call i16 @llvm.bswap.i16(i16 %32) 2220 /// %35 = call i16 @llvm.bswap.i16(i16 %33) 2221 /// %36 = zext i16 %34 to i64 2222 /// %37 = zext i16 %35 to i64 2223 /// %38 = sub i64 %36, %37 2224 /// %39 = icmp ne i64 %38, 0 2225 /// br i1 %39, label %res_block, label %loadbb3 2226 /// loadbb3: ; preds = %loadbb2 2227 /// %40 = bitcast i32* %buffer2 to i8* 2228 /// %41 = bitcast i32* %buffer1 to i8* 2229 /// %42 = getelementptr i8, i8* %41, i8 14 2230 /// %43 = getelementptr i8, i8* %40, i8 14 2231 /// %44 = load i8, i8* %42 2232 /// %45 = load i8, i8* %43 2233 /// %46 = zext i8 %44 to i32 2234 /// %47 = zext i8 %45 to i32 2235 /// %48 = sub i32 %46, %47 2236 /// br label %endblock 2237 /// endblock: ; preds = %res_block, 2238 /// %loadbb3 2239 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ] 2240 /// ret i32 %phi.res 2241 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI, 2242 const TargetLowering *TLI, const DataLayout *DL) { 2243 NumMemCmpCalls++; 2244 2245 // TTI call to check if target would like to expand memcmp. Also, get the 2246 // MaxLoadSize. 2247 unsigned MaxLoadSize; 2248 if (!TTI->expandMemCmp(CI, MaxLoadSize)) 2249 return false; 2250 2251 // Early exit from expansion if -Oz. 2252 if (CI->getFunction()->optForMinSize()) 2253 return false; 2254 2255 // Early exit from expansion if size is not a constant. 2256 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2257 if (!SizeCast) { 2258 NumMemCmpNotConstant++; 2259 return false; 2260 } 2261 2262 // Early exit from expansion if size greater than max bytes to load. 2263 uint64_t SizeVal = SizeCast->getZExtValue(); 2264 unsigned NumLoads = 0; 2265 unsigned RemainingSize = SizeVal; 2266 unsigned LoadSize = MaxLoadSize; 2267 while (RemainingSize) { 2268 NumLoads += RemainingSize / LoadSize; 2269 RemainingSize = RemainingSize % LoadSize; 2270 LoadSize = LoadSize / 2; 2271 } 2272 2273 if (NumLoads > TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize())) { 2274 NumMemCmpGreaterThanMax++; 2275 return false; 2276 } 2277 2278 NumMemCmpInlined++; 2279 2280 // MemCmpHelper object creates and sets up basic blocks required for 2281 // expanding memcmp with size SizeVal. 2282 unsigned NumLoadsPerBlock = MemCmpNumLoadsPerBlock; 2283 MemCmpExpansion MemCmpHelper(CI, SizeVal, MaxLoadSize, NumLoadsPerBlock, *DL); 2284 2285 Value *Res = MemCmpHelper.getMemCmpExpansion(SizeVal); 2286 2287 // Replace call with result of expansion and erase call. 2288 CI->replaceAllUsesWith(Res); 2289 CI->eraseFromParent(); 2290 2291 return true; 2292 } 2293 2294 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2295 BasicBlock *BB = CI->getParent(); 2296 2297 // Lower inline assembly if we can. 2298 // If we found an inline asm expession, and if the target knows how to 2299 // lower it to normal LLVM code, do so now. 2300 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 2301 if (TLI->ExpandInlineAsm(CI)) { 2302 // Avoid invalidating the iterator. 2303 CurInstIterator = BB->begin(); 2304 // Avoid processing instructions out of order, which could cause 2305 // reuse before a value is defined. 2306 SunkAddrs.clear(); 2307 return true; 2308 } 2309 // Sink address computing for memory operands into the block. 2310 if (optimizeInlineAsmInst(CI)) 2311 return true; 2312 } 2313 2314 // Align the pointer arguments to this call if the target thinks it's a good 2315 // idea 2316 unsigned MinSize, PrefAlign; 2317 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2318 for (auto &Arg : CI->arg_operands()) { 2319 // We want to align both objects whose address is used directly and 2320 // objects whose address is used in casts and GEPs, though it only makes 2321 // sense for GEPs if the offset is a multiple of the desired alignment and 2322 // if size - offset meets the size threshold. 2323 if (!Arg->getType()->isPointerTy()) 2324 continue; 2325 APInt Offset(DL->getPointerSizeInBits( 2326 cast<PointerType>(Arg->getType())->getAddressSpace()), 2327 0); 2328 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2329 uint64_t Offset2 = Offset.getLimitedValue(); 2330 if ((Offset2 & (PrefAlign-1)) != 0) 2331 continue; 2332 AllocaInst *AI; 2333 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2334 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2335 AI->setAlignment(PrefAlign); 2336 // Global variables can only be aligned if they are defined in this 2337 // object (i.e. they are uniquely initialized in this object), and 2338 // over-aligning global variables that have an explicit section is 2339 // forbidden. 2340 GlobalVariable *GV; 2341 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2342 GV->getPointerAlignment(*DL) < PrefAlign && 2343 DL->getTypeAllocSize(GV->getValueType()) >= 2344 MinSize + Offset2) 2345 GV->setAlignment(PrefAlign); 2346 } 2347 // If this is a memcpy (or similar) then we may be able to improve the 2348 // alignment 2349 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2350 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 2351 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 2352 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 2353 if (Align > MI->getAlignment()) 2354 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 2355 } 2356 } 2357 2358 // If we have a cold call site, try to sink addressing computation into the 2359 // cold block. This interacts with our handling for loads and stores to 2360 // ensure that we can fold all uses of a potential addressing computation 2361 // into their uses. TODO: generalize this to work over profiling data 2362 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 2363 for (auto &Arg : CI->arg_operands()) { 2364 if (!Arg->getType()->isPointerTy()) 2365 continue; 2366 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2367 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2368 } 2369 2370 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2371 if (II) { 2372 switch (II->getIntrinsicID()) { 2373 default: break; 2374 case Intrinsic::objectsize: { 2375 // Lower all uses of llvm.objectsize.* 2376 ConstantInt *RetVal = 2377 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 2378 // Substituting this can cause recursive simplifications, which can 2379 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 2380 // this 2381 // happens. 2382 Value *CurValue = &*CurInstIterator; 2383 WeakTrackingVH IterHandle(CurValue); 2384 2385 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2386 2387 // If the iterator instruction was recursively deleted, start over at the 2388 // start of the block. 2389 if (IterHandle != CurValue) { 2390 CurInstIterator = BB->begin(); 2391 SunkAddrs.clear(); 2392 } 2393 return true; 2394 } 2395 case Intrinsic::aarch64_stlxr: 2396 case Intrinsic::aarch64_stxr: { 2397 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2398 if (!ExtVal || !ExtVal->hasOneUse() || 2399 ExtVal->getParent() == CI->getParent()) 2400 return false; 2401 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2402 ExtVal->moveBefore(CI); 2403 // Mark this instruction as "inserted by CGP", so that other 2404 // optimizations don't touch it. 2405 InsertedInsts.insert(ExtVal); 2406 return true; 2407 } 2408 case Intrinsic::invariant_group_barrier: 2409 II->replaceAllUsesWith(II->getArgOperand(0)); 2410 II->eraseFromParent(); 2411 return true; 2412 2413 case Intrinsic::cttz: 2414 case Intrinsic::ctlz: 2415 // If counting zeros is expensive, try to avoid it. 2416 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2417 } 2418 2419 if (TLI) { 2420 SmallVector<Value*, 2> PtrOps; 2421 Type *AccessTy; 2422 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2423 while (!PtrOps.empty()) { 2424 Value *PtrVal = PtrOps.pop_back_val(); 2425 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2426 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2427 return true; 2428 } 2429 } 2430 } 2431 2432 // From here on out we're working with named functions. 2433 if (!CI->getCalledFunction()) return false; 2434 2435 // Lower all default uses of _chk calls. This is very similar 2436 // to what InstCombineCalls does, but here we are only lowering calls 2437 // to fortified library functions (e.g. __memcpy_chk) that have the default 2438 // "don't know" as the objectsize. Anything else should be left alone. 2439 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2440 if (Value *V = Simplifier.optimizeCall(CI)) { 2441 CI->replaceAllUsesWith(V); 2442 CI->eraseFromParent(); 2443 return true; 2444 } 2445 2446 LibFunc Func; 2447 if (TLInfo->getLibFunc(ImmutableCallSite(CI), Func) && 2448 Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TLI, DL)) { 2449 ModifiedDT = true; 2450 return true; 2451 } 2452 return false; 2453 } 2454 2455 /// Look for opportunities to duplicate return instructions to the predecessor 2456 /// to enable tail call optimizations. The case it is currently looking for is: 2457 /// @code 2458 /// bb0: 2459 /// %tmp0 = tail call i32 @f0() 2460 /// br label %return 2461 /// bb1: 2462 /// %tmp1 = tail call i32 @f1() 2463 /// br label %return 2464 /// bb2: 2465 /// %tmp2 = tail call i32 @f2() 2466 /// br label %return 2467 /// return: 2468 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2469 /// ret i32 %retval 2470 /// @endcode 2471 /// 2472 /// => 2473 /// 2474 /// @code 2475 /// bb0: 2476 /// %tmp0 = tail call i32 @f0() 2477 /// ret i32 %tmp0 2478 /// bb1: 2479 /// %tmp1 = tail call i32 @f1() 2480 /// ret i32 %tmp1 2481 /// bb2: 2482 /// %tmp2 = tail call i32 @f2() 2483 /// ret i32 %tmp2 2484 /// @endcode 2485 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 2486 if (!TLI) 2487 return false; 2488 2489 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2490 if (!RetI) 2491 return false; 2492 2493 PHINode *PN = nullptr; 2494 BitCastInst *BCI = nullptr; 2495 Value *V = RetI->getReturnValue(); 2496 if (V) { 2497 BCI = dyn_cast<BitCastInst>(V); 2498 if (BCI) 2499 V = BCI->getOperand(0); 2500 2501 PN = dyn_cast<PHINode>(V); 2502 if (!PN) 2503 return false; 2504 } 2505 2506 if (PN && PN->getParent() != BB) 2507 return false; 2508 2509 // Make sure there are no instructions between the PHI and return, or that the 2510 // return is the first instruction in the block. 2511 if (PN) { 2512 BasicBlock::iterator BI = BB->begin(); 2513 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 2514 if (&*BI == BCI) 2515 // Also skip over the bitcast. 2516 ++BI; 2517 if (&*BI != RetI) 2518 return false; 2519 } else { 2520 BasicBlock::iterator BI = BB->begin(); 2521 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2522 if (&*BI != RetI) 2523 return false; 2524 } 2525 2526 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2527 /// call. 2528 const Function *F = BB->getParent(); 2529 SmallVector<CallInst*, 4> TailCalls; 2530 if (PN) { 2531 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2532 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2533 // Make sure the phi value is indeed produced by the tail call. 2534 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2535 TLI->mayBeEmittedAsTailCall(CI) && 2536 attributesPermitTailCall(F, CI, RetI, *TLI)) 2537 TailCalls.push_back(CI); 2538 } 2539 } else { 2540 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2541 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2542 if (!VisitedBBs.insert(*PI).second) 2543 continue; 2544 2545 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2546 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2547 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2548 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2549 if (RI == RE) 2550 continue; 2551 2552 CallInst *CI = dyn_cast<CallInst>(&*RI); 2553 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2554 attributesPermitTailCall(F, CI, RetI, *TLI)) 2555 TailCalls.push_back(CI); 2556 } 2557 } 2558 2559 bool Changed = false; 2560 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2561 CallInst *CI = TailCalls[i]; 2562 CallSite CS(CI); 2563 2564 // Conservatively require the attributes of the call to match those of the 2565 // return. Ignore noalias because it doesn't affect the call sequence. 2566 AttributeList CalleeAttrs = CS.getAttributes(); 2567 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2568 .removeAttribute(Attribute::NoAlias) != 2569 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2570 .removeAttribute(Attribute::NoAlias)) 2571 continue; 2572 2573 // Make sure the call instruction is followed by an unconditional branch to 2574 // the return block. 2575 BasicBlock *CallBB = CI->getParent(); 2576 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2577 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2578 continue; 2579 2580 // Duplicate the return into CallBB. 2581 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2582 ModifiedDT = Changed = true; 2583 ++NumRetsDup; 2584 } 2585 2586 // If we eliminated all predecessors of the block, delete the block now. 2587 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2588 BB->eraseFromParent(); 2589 2590 return Changed; 2591 } 2592 2593 //===----------------------------------------------------------------------===// 2594 // Memory Optimization 2595 //===----------------------------------------------------------------------===// 2596 2597 namespace { 2598 2599 /// This is an extended version of TargetLowering::AddrMode 2600 /// which holds actual Value*'s for register values. 2601 struct ExtAddrMode : public TargetLowering::AddrMode { 2602 Value *BaseReg; 2603 Value *ScaledReg; 2604 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2605 void print(raw_ostream &OS) const; 2606 void dump() const; 2607 2608 bool operator==(const ExtAddrMode& O) const { 2609 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2610 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2611 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2612 } 2613 }; 2614 2615 #ifndef NDEBUG 2616 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2617 AM.print(OS); 2618 return OS; 2619 } 2620 #endif 2621 2622 void ExtAddrMode::print(raw_ostream &OS) const { 2623 bool NeedPlus = false; 2624 OS << "["; 2625 if (BaseGV) { 2626 OS << (NeedPlus ? " + " : "") 2627 << "GV:"; 2628 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2629 NeedPlus = true; 2630 } 2631 2632 if (BaseOffs) { 2633 OS << (NeedPlus ? " + " : "") 2634 << BaseOffs; 2635 NeedPlus = true; 2636 } 2637 2638 if (BaseReg) { 2639 OS << (NeedPlus ? " + " : "") 2640 << "Base:"; 2641 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2642 NeedPlus = true; 2643 } 2644 if (Scale) { 2645 OS << (NeedPlus ? " + " : "") 2646 << Scale << "*"; 2647 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2648 } 2649 2650 OS << ']'; 2651 } 2652 2653 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2654 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2655 print(dbgs()); 2656 dbgs() << '\n'; 2657 } 2658 #endif 2659 2660 /// \brief This class provides transaction based operation on the IR. 2661 /// Every change made through this class is recorded in the internal state and 2662 /// can be undone (rollback) until commit is called. 2663 class TypePromotionTransaction { 2664 2665 /// \brief This represents the common interface of the individual transaction. 2666 /// Each class implements the logic for doing one specific modification on 2667 /// the IR via the TypePromotionTransaction. 2668 class TypePromotionAction { 2669 protected: 2670 /// The Instruction modified. 2671 Instruction *Inst; 2672 2673 public: 2674 /// \brief Constructor of the action. 2675 /// The constructor performs the related action on the IR. 2676 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2677 2678 virtual ~TypePromotionAction() {} 2679 2680 /// \brief Undo the modification done by this action. 2681 /// When this method is called, the IR must be in the same state as it was 2682 /// before this action was applied. 2683 /// \pre Undoing the action works if and only if the IR is in the exact same 2684 /// state as it was directly after this action was applied. 2685 virtual void undo() = 0; 2686 2687 /// \brief Advocate every change made by this action. 2688 /// When the results on the IR of the action are to be kept, it is important 2689 /// to call this function, otherwise hidden information may be kept forever. 2690 virtual void commit() { 2691 // Nothing to be done, this action is not doing anything. 2692 } 2693 }; 2694 2695 /// \brief Utility to remember the position of an instruction. 2696 class InsertionHandler { 2697 /// Position of an instruction. 2698 /// Either an instruction: 2699 /// - Is the first in a basic block: BB is used. 2700 /// - Has a previous instructon: PrevInst is used. 2701 union { 2702 Instruction *PrevInst; 2703 BasicBlock *BB; 2704 } Point; 2705 /// Remember whether or not the instruction had a previous instruction. 2706 bool HasPrevInstruction; 2707 2708 public: 2709 /// \brief Record the position of \p Inst. 2710 InsertionHandler(Instruction *Inst) { 2711 BasicBlock::iterator It = Inst->getIterator(); 2712 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2713 if (HasPrevInstruction) 2714 Point.PrevInst = &*--It; 2715 else 2716 Point.BB = Inst->getParent(); 2717 } 2718 2719 /// \brief Insert \p Inst at the recorded position. 2720 void insert(Instruction *Inst) { 2721 if (HasPrevInstruction) { 2722 if (Inst->getParent()) 2723 Inst->removeFromParent(); 2724 Inst->insertAfter(Point.PrevInst); 2725 } else { 2726 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2727 if (Inst->getParent()) 2728 Inst->moveBefore(Position); 2729 else 2730 Inst->insertBefore(Position); 2731 } 2732 } 2733 }; 2734 2735 /// \brief Move an instruction before another. 2736 class InstructionMoveBefore : public TypePromotionAction { 2737 /// Original position of the instruction. 2738 InsertionHandler Position; 2739 2740 public: 2741 /// \brief Move \p Inst before \p Before. 2742 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2743 : TypePromotionAction(Inst), Position(Inst) { 2744 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2745 Inst->moveBefore(Before); 2746 } 2747 2748 /// \brief Move the instruction back to its original position. 2749 void undo() override { 2750 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2751 Position.insert(Inst); 2752 } 2753 }; 2754 2755 /// \brief Set the operand of an instruction with a new value. 2756 class OperandSetter : public TypePromotionAction { 2757 /// Original operand of the instruction. 2758 Value *Origin; 2759 /// Index of the modified instruction. 2760 unsigned Idx; 2761 2762 public: 2763 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2764 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2765 : TypePromotionAction(Inst), Idx(Idx) { 2766 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2767 << "for:" << *Inst << "\n" 2768 << "with:" << *NewVal << "\n"); 2769 Origin = Inst->getOperand(Idx); 2770 Inst->setOperand(Idx, NewVal); 2771 } 2772 2773 /// \brief Restore the original value of the instruction. 2774 void undo() override { 2775 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2776 << "for: " << *Inst << "\n" 2777 << "with: " << *Origin << "\n"); 2778 Inst->setOperand(Idx, Origin); 2779 } 2780 }; 2781 2782 /// \brief Hide the operands of an instruction. 2783 /// Do as if this instruction was not using any of its operands. 2784 class OperandsHider : public TypePromotionAction { 2785 /// The list of original operands. 2786 SmallVector<Value *, 4> OriginalValues; 2787 2788 public: 2789 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2790 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2791 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2792 unsigned NumOpnds = Inst->getNumOperands(); 2793 OriginalValues.reserve(NumOpnds); 2794 for (unsigned It = 0; It < NumOpnds; ++It) { 2795 // Save the current operand. 2796 Value *Val = Inst->getOperand(It); 2797 OriginalValues.push_back(Val); 2798 // Set a dummy one. 2799 // We could use OperandSetter here, but that would imply an overhead 2800 // that we are not willing to pay. 2801 Inst->setOperand(It, UndefValue::get(Val->getType())); 2802 } 2803 } 2804 2805 /// \brief Restore the original list of uses. 2806 void undo() override { 2807 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2808 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2809 Inst->setOperand(It, OriginalValues[It]); 2810 } 2811 }; 2812 2813 /// \brief Build a truncate instruction. 2814 class TruncBuilder : public TypePromotionAction { 2815 Value *Val; 2816 public: 2817 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2818 /// result. 2819 /// trunc Opnd to Ty. 2820 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2821 IRBuilder<> Builder(Opnd); 2822 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2823 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2824 } 2825 2826 /// \brief Get the built value. 2827 Value *getBuiltValue() { return Val; } 2828 2829 /// \brief Remove the built instruction. 2830 void undo() override { 2831 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2832 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2833 IVal->eraseFromParent(); 2834 } 2835 }; 2836 2837 /// \brief Build a sign extension instruction. 2838 class SExtBuilder : public TypePromotionAction { 2839 Value *Val; 2840 public: 2841 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2842 /// result. 2843 /// sext Opnd to Ty. 2844 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2845 : TypePromotionAction(InsertPt) { 2846 IRBuilder<> Builder(InsertPt); 2847 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2848 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2849 } 2850 2851 /// \brief Get the built value. 2852 Value *getBuiltValue() { return Val; } 2853 2854 /// \brief Remove the built instruction. 2855 void undo() override { 2856 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2857 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2858 IVal->eraseFromParent(); 2859 } 2860 }; 2861 2862 /// \brief Build a zero extension instruction. 2863 class ZExtBuilder : public TypePromotionAction { 2864 Value *Val; 2865 public: 2866 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2867 /// result. 2868 /// zext Opnd to Ty. 2869 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2870 : TypePromotionAction(InsertPt) { 2871 IRBuilder<> Builder(InsertPt); 2872 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2873 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2874 } 2875 2876 /// \brief Get the built value. 2877 Value *getBuiltValue() { return Val; } 2878 2879 /// \brief Remove the built instruction. 2880 void undo() override { 2881 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2882 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2883 IVal->eraseFromParent(); 2884 } 2885 }; 2886 2887 /// \brief Mutate an instruction to another type. 2888 class TypeMutator : public TypePromotionAction { 2889 /// Record the original type. 2890 Type *OrigTy; 2891 2892 public: 2893 /// \brief Mutate the type of \p Inst into \p NewTy. 2894 TypeMutator(Instruction *Inst, Type *NewTy) 2895 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2896 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2897 << "\n"); 2898 Inst->mutateType(NewTy); 2899 } 2900 2901 /// \brief Mutate the instruction back to its original type. 2902 void undo() override { 2903 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2904 << "\n"); 2905 Inst->mutateType(OrigTy); 2906 } 2907 }; 2908 2909 /// \brief Replace the uses of an instruction by another instruction. 2910 class UsesReplacer : public TypePromotionAction { 2911 /// Helper structure to keep track of the replaced uses. 2912 struct InstructionAndIdx { 2913 /// The instruction using the instruction. 2914 Instruction *Inst; 2915 /// The index where this instruction is used for Inst. 2916 unsigned Idx; 2917 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2918 : Inst(Inst), Idx(Idx) {} 2919 }; 2920 2921 /// Keep track of the original uses (pair Instruction, Index). 2922 SmallVector<InstructionAndIdx, 4> OriginalUses; 2923 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2924 2925 public: 2926 /// \brief Replace all the use of \p Inst by \p New. 2927 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2928 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2929 << "\n"); 2930 // Record the original uses. 2931 for (Use &U : Inst->uses()) { 2932 Instruction *UserI = cast<Instruction>(U.getUser()); 2933 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2934 } 2935 // Now, we can replace the uses. 2936 Inst->replaceAllUsesWith(New); 2937 } 2938 2939 /// \brief Reassign the original uses of Inst to Inst. 2940 void undo() override { 2941 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2942 for (use_iterator UseIt = OriginalUses.begin(), 2943 EndIt = OriginalUses.end(); 2944 UseIt != EndIt; ++UseIt) { 2945 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2946 } 2947 } 2948 }; 2949 2950 /// \brief Remove an instruction from the IR. 2951 class InstructionRemover : public TypePromotionAction { 2952 /// Original position of the instruction. 2953 InsertionHandler Inserter; 2954 /// Helper structure to hide all the link to the instruction. In other 2955 /// words, this helps to do as if the instruction was removed. 2956 OperandsHider Hider; 2957 /// Keep track of the uses replaced, if any. 2958 UsesReplacer *Replacer; 2959 /// Keep track of instructions removed. 2960 SetOfInstrs &RemovedInsts; 2961 2962 public: 2963 /// \brief Remove all reference of \p Inst and optinally replace all its 2964 /// uses with New. 2965 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2966 /// \pre If !Inst->use_empty(), then New != nullptr 2967 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2968 Value *New = nullptr) 2969 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2970 Replacer(nullptr), RemovedInsts(RemovedInsts) { 2971 if (New) 2972 Replacer = new UsesReplacer(Inst, New); 2973 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2974 RemovedInsts.insert(Inst); 2975 /// The instructions removed here will be freed after completing 2976 /// optimizeBlock() for all blocks as we need to keep track of the 2977 /// removed instructions during promotion. 2978 Inst->removeFromParent(); 2979 } 2980 2981 ~InstructionRemover() override { delete Replacer; } 2982 2983 /// \brief Resurrect the instruction and reassign it to the proper uses if 2984 /// new value was provided when build this action. 2985 void undo() override { 2986 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2987 Inserter.insert(Inst); 2988 if (Replacer) 2989 Replacer->undo(); 2990 Hider.undo(); 2991 RemovedInsts.erase(Inst); 2992 } 2993 }; 2994 2995 public: 2996 /// Restoration point. 2997 /// The restoration point is a pointer to an action instead of an iterator 2998 /// because the iterator may be invalidated but not the pointer. 2999 typedef const TypePromotionAction *ConstRestorationPt; 3000 3001 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3002 : RemovedInsts(RemovedInsts) {} 3003 3004 /// Advocate every changes made in that transaction. 3005 void commit(); 3006 /// Undo all the changes made after the given point. 3007 void rollback(ConstRestorationPt Point); 3008 /// Get the current restoration point. 3009 ConstRestorationPt getRestorationPoint() const; 3010 3011 /// \name API for IR modification with state keeping to support rollback. 3012 /// @{ 3013 /// Same as Instruction::setOperand. 3014 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3015 /// Same as Instruction::eraseFromParent. 3016 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3017 /// Same as Value::replaceAllUsesWith. 3018 void replaceAllUsesWith(Instruction *Inst, Value *New); 3019 /// Same as Value::mutateType. 3020 void mutateType(Instruction *Inst, Type *NewTy); 3021 /// Same as IRBuilder::createTrunc. 3022 Value *createTrunc(Instruction *Opnd, Type *Ty); 3023 /// Same as IRBuilder::createSExt. 3024 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3025 /// Same as IRBuilder::createZExt. 3026 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3027 /// Same as Instruction::moveBefore. 3028 void moveBefore(Instruction *Inst, Instruction *Before); 3029 /// @} 3030 3031 private: 3032 /// The ordered list of actions made so far. 3033 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3034 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 3035 SetOfInstrs &RemovedInsts; 3036 }; 3037 3038 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3039 Value *NewVal) { 3040 Actions.push_back( 3041 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 3042 } 3043 3044 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3045 Value *NewVal) { 3046 Actions.push_back( 3047 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, 3048 RemovedInsts, NewVal)); 3049 } 3050 3051 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3052 Value *New) { 3053 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3054 } 3055 3056 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3057 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3058 } 3059 3060 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3061 Type *Ty) { 3062 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3063 Value *Val = Ptr->getBuiltValue(); 3064 Actions.push_back(std::move(Ptr)); 3065 return Val; 3066 } 3067 3068 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3069 Value *Opnd, Type *Ty) { 3070 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3071 Value *Val = Ptr->getBuiltValue(); 3072 Actions.push_back(std::move(Ptr)); 3073 return Val; 3074 } 3075 3076 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3077 Value *Opnd, Type *Ty) { 3078 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3079 Value *Val = Ptr->getBuiltValue(); 3080 Actions.push_back(std::move(Ptr)); 3081 return Val; 3082 } 3083 3084 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3085 Instruction *Before) { 3086 Actions.push_back( 3087 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 3088 } 3089 3090 TypePromotionTransaction::ConstRestorationPt 3091 TypePromotionTransaction::getRestorationPoint() const { 3092 return !Actions.empty() ? Actions.back().get() : nullptr; 3093 } 3094 3095 void TypePromotionTransaction::commit() { 3096 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 3097 ++It) 3098 (*It)->commit(); 3099 Actions.clear(); 3100 } 3101 3102 void TypePromotionTransaction::rollback( 3103 TypePromotionTransaction::ConstRestorationPt Point) { 3104 while (!Actions.empty() && Point != Actions.back().get()) { 3105 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3106 Curr->undo(); 3107 } 3108 } 3109 3110 /// \brief A helper class for matching addressing modes. 3111 /// 3112 /// This encapsulates the logic for matching the target-legal addressing modes. 3113 class AddressingModeMatcher { 3114 SmallVectorImpl<Instruction*> &AddrModeInsts; 3115 const TargetLowering &TLI; 3116 const TargetRegisterInfo &TRI; 3117 const DataLayout &DL; 3118 3119 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3120 /// the memory instruction that we're computing this address for. 3121 Type *AccessTy; 3122 unsigned AddrSpace; 3123 Instruction *MemoryInst; 3124 3125 /// This is the addressing mode that we're building up. This is 3126 /// part of the return value of this addressing mode matching stuff. 3127 ExtAddrMode &AddrMode; 3128 3129 /// The instructions inserted by other CodeGenPrepare optimizations. 3130 const SetOfInstrs &InsertedInsts; 3131 /// A map from the instructions to their type before promotion. 3132 InstrToOrigTy &PromotedInsts; 3133 /// The ongoing transaction where every action should be registered. 3134 TypePromotionTransaction &TPT; 3135 3136 /// This is set to true when we should not do profitability checks. 3137 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3138 bool IgnoreProfitability; 3139 3140 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 3141 const TargetLowering &TLI, 3142 const TargetRegisterInfo &TRI, 3143 Type *AT, unsigned AS, 3144 Instruction *MI, ExtAddrMode &AM, 3145 const SetOfInstrs &InsertedInsts, 3146 InstrToOrigTy &PromotedInsts, 3147 TypePromotionTransaction &TPT) 3148 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3149 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3150 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3151 PromotedInsts(PromotedInsts), TPT(TPT) { 3152 IgnoreProfitability = false; 3153 } 3154 public: 3155 3156 /// Find the maximal addressing mode that a load/store of V can fold, 3157 /// give an access type of AccessTy. This returns a list of involved 3158 /// instructions in AddrModeInsts. 3159 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3160 /// optimizations. 3161 /// \p PromotedInsts maps the instructions to their type before promotion. 3162 /// \p The ongoing transaction where every action should be registered. 3163 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 3164 Instruction *MemoryInst, 3165 SmallVectorImpl<Instruction*> &AddrModeInsts, 3166 const TargetLowering &TLI, 3167 const TargetRegisterInfo &TRI, 3168 const SetOfInstrs &InsertedInsts, 3169 InstrToOrigTy &PromotedInsts, 3170 TypePromotionTransaction &TPT) { 3171 ExtAddrMode Result; 3172 3173 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 3174 AccessTy, AS, 3175 MemoryInst, Result, InsertedInsts, 3176 PromotedInsts, TPT).matchAddr(V, 0); 3177 (void)Success; assert(Success && "Couldn't select *anything*?"); 3178 return Result; 3179 } 3180 private: 3181 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3182 bool matchAddr(Value *V, unsigned Depth); 3183 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 3184 bool *MovedAway = nullptr); 3185 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3186 ExtAddrMode &AMBefore, 3187 ExtAddrMode &AMAfter); 3188 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3189 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3190 Value *PromotedOperand) const; 3191 }; 3192 3193 /// Try adding ScaleReg*Scale to the current addressing mode. 3194 /// Return true and update AddrMode if this addr mode is legal for the target, 3195 /// false if not. 3196 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3197 unsigned Depth) { 3198 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3199 // mode. Just process that directly. 3200 if (Scale == 1) 3201 return matchAddr(ScaleReg, Depth); 3202 3203 // If the scale is 0, it takes nothing to add this. 3204 if (Scale == 0) 3205 return true; 3206 3207 // If we already have a scale of this value, we can add to it, otherwise, we 3208 // need an available scale field. 3209 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3210 return false; 3211 3212 ExtAddrMode TestAddrMode = AddrMode; 3213 3214 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3215 // [A+B + A*7] -> [B+A*8]. 3216 TestAddrMode.Scale += Scale; 3217 TestAddrMode.ScaledReg = ScaleReg; 3218 3219 // If the new address isn't legal, bail out. 3220 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3221 return false; 3222 3223 // It was legal, so commit it. 3224 AddrMode = TestAddrMode; 3225 3226 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3227 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3228 // X*Scale + C*Scale to addr mode. 3229 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3230 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3231 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3232 TestAddrMode.ScaledReg = AddLHS; 3233 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3234 3235 // If this addressing mode is legal, commit it and remember that we folded 3236 // this instruction. 3237 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3238 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3239 AddrMode = TestAddrMode; 3240 return true; 3241 } 3242 } 3243 3244 // Otherwise, not (x+c)*scale, just return what we have. 3245 return true; 3246 } 3247 3248 /// This is a little filter, which returns true if an addressing computation 3249 /// involving I might be folded into a load/store accessing it. 3250 /// This doesn't need to be perfect, but needs to accept at least 3251 /// the set of instructions that MatchOperationAddr can. 3252 static bool MightBeFoldableInst(Instruction *I) { 3253 switch (I->getOpcode()) { 3254 case Instruction::BitCast: 3255 case Instruction::AddrSpaceCast: 3256 // Don't touch identity bitcasts. 3257 if (I->getType() == I->getOperand(0)->getType()) 3258 return false; 3259 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3260 case Instruction::PtrToInt: 3261 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3262 return true; 3263 case Instruction::IntToPtr: 3264 // We know the input is intptr_t, so this is foldable. 3265 return true; 3266 case Instruction::Add: 3267 return true; 3268 case Instruction::Mul: 3269 case Instruction::Shl: 3270 // Can only handle X*C and X << C. 3271 return isa<ConstantInt>(I->getOperand(1)); 3272 case Instruction::GetElementPtr: 3273 return true; 3274 default: 3275 return false; 3276 } 3277 } 3278 3279 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3280 /// \note \p Val is assumed to be the product of some type promotion. 3281 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3282 /// to be legal, as the non-promoted value would have had the same state. 3283 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3284 const DataLayout &DL, Value *Val) { 3285 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3286 if (!PromotedInst) 3287 return false; 3288 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3289 // If the ISDOpcode is undefined, it was undefined before the promotion. 3290 if (!ISDOpcode) 3291 return true; 3292 // Otherwise, check if the promoted instruction is legal or not. 3293 return TLI.isOperationLegalOrCustom( 3294 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3295 } 3296 3297 /// \brief Hepler class to perform type promotion. 3298 class TypePromotionHelper { 3299 /// \brief Utility function to check whether or not a sign or zero extension 3300 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3301 /// either using the operands of \p Inst or promoting \p Inst. 3302 /// The type of the extension is defined by \p IsSExt. 3303 /// In other words, check if: 3304 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3305 /// #1 Promotion applies: 3306 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3307 /// #2 Operand reuses: 3308 /// ext opnd1 to ConsideredExtType. 3309 /// \p PromotedInsts maps the instructions to their type before promotion. 3310 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3311 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3312 3313 /// \brief Utility function to determine if \p OpIdx should be promoted when 3314 /// promoting \p Inst. 3315 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3316 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3317 } 3318 3319 /// \brief Utility function to promote the operand of \p Ext when this 3320 /// operand is a promotable trunc or sext or zext. 3321 /// \p PromotedInsts maps the instructions to their type before promotion. 3322 /// \p CreatedInstsCost[out] contains the cost of all instructions 3323 /// created to promote the operand of Ext. 3324 /// Newly added extensions are inserted in \p Exts. 3325 /// Newly added truncates are inserted in \p Truncs. 3326 /// Should never be called directly. 3327 /// \return The promoted value which is used instead of Ext. 3328 static Value *promoteOperandForTruncAndAnyExt( 3329 Instruction *Ext, TypePromotionTransaction &TPT, 3330 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3331 SmallVectorImpl<Instruction *> *Exts, 3332 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3333 3334 /// \brief Utility function to promote the operand of \p Ext when this 3335 /// operand is promotable and is not a supported trunc or sext. 3336 /// \p PromotedInsts maps the instructions to their type before promotion. 3337 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3338 /// created to promote the operand of Ext. 3339 /// Newly added extensions are inserted in \p Exts. 3340 /// Newly added truncates are inserted in \p Truncs. 3341 /// Should never be called directly. 3342 /// \return The promoted value which is used instead of Ext. 3343 static Value *promoteOperandForOther(Instruction *Ext, 3344 TypePromotionTransaction &TPT, 3345 InstrToOrigTy &PromotedInsts, 3346 unsigned &CreatedInstsCost, 3347 SmallVectorImpl<Instruction *> *Exts, 3348 SmallVectorImpl<Instruction *> *Truncs, 3349 const TargetLowering &TLI, bool IsSExt); 3350 3351 /// \see promoteOperandForOther. 3352 static Value *signExtendOperandForOther( 3353 Instruction *Ext, TypePromotionTransaction &TPT, 3354 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3355 SmallVectorImpl<Instruction *> *Exts, 3356 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3357 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3358 Exts, Truncs, TLI, true); 3359 } 3360 3361 /// \see promoteOperandForOther. 3362 static Value *zeroExtendOperandForOther( 3363 Instruction *Ext, TypePromotionTransaction &TPT, 3364 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3365 SmallVectorImpl<Instruction *> *Exts, 3366 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3367 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3368 Exts, Truncs, TLI, false); 3369 } 3370 3371 public: 3372 /// Type for the utility function that promotes the operand of Ext. 3373 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 3374 InstrToOrigTy &PromotedInsts, 3375 unsigned &CreatedInstsCost, 3376 SmallVectorImpl<Instruction *> *Exts, 3377 SmallVectorImpl<Instruction *> *Truncs, 3378 const TargetLowering &TLI); 3379 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3380 /// action to promote the operand of \p Ext instead of using Ext. 3381 /// \return NULL if no promotable action is possible with the current 3382 /// sign extension. 3383 /// \p InsertedInsts keeps track of all the instructions inserted by the 3384 /// other CodeGenPrepare optimizations. This information is important 3385 /// because we do not want to promote these instructions as CodeGenPrepare 3386 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3387 /// \p PromotedInsts maps the instructions to their type before promotion. 3388 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3389 const TargetLowering &TLI, 3390 const InstrToOrigTy &PromotedInsts); 3391 }; 3392 3393 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3394 Type *ConsideredExtType, 3395 const InstrToOrigTy &PromotedInsts, 3396 bool IsSExt) { 3397 // The promotion helper does not know how to deal with vector types yet. 3398 // To be able to fix that, we would need to fix the places where we 3399 // statically extend, e.g., constants and such. 3400 if (Inst->getType()->isVectorTy()) 3401 return false; 3402 3403 // We can always get through zext. 3404 if (isa<ZExtInst>(Inst)) 3405 return true; 3406 3407 // sext(sext) is ok too. 3408 if (IsSExt && isa<SExtInst>(Inst)) 3409 return true; 3410 3411 // We can get through binary operator, if it is legal. In other words, the 3412 // binary operator must have a nuw or nsw flag. 3413 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3414 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3415 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3416 (IsSExt && BinOp->hasNoSignedWrap()))) 3417 return true; 3418 3419 // Check if we can do the following simplification. 3420 // ext(trunc(opnd)) --> ext(opnd) 3421 if (!isa<TruncInst>(Inst)) 3422 return false; 3423 3424 Value *OpndVal = Inst->getOperand(0); 3425 // Check if we can use this operand in the extension. 3426 // If the type is larger than the result type of the extension, we cannot. 3427 if (!OpndVal->getType()->isIntegerTy() || 3428 OpndVal->getType()->getIntegerBitWidth() > 3429 ConsideredExtType->getIntegerBitWidth()) 3430 return false; 3431 3432 // If the operand of the truncate is not an instruction, we will not have 3433 // any information on the dropped bits. 3434 // (Actually we could for constant but it is not worth the extra logic). 3435 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3436 if (!Opnd) 3437 return false; 3438 3439 // Check if the source of the type is narrow enough. 3440 // I.e., check that trunc just drops extended bits of the same kind of 3441 // the extension. 3442 // #1 get the type of the operand and check the kind of the extended bits. 3443 const Type *OpndType; 3444 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3445 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3446 OpndType = It->second.getPointer(); 3447 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3448 OpndType = Opnd->getOperand(0)->getType(); 3449 else 3450 return false; 3451 3452 // #2 check that the truncate just drops extended bits. 3453 return Inst->getType()->getIntegerBitWidth() >= 3454 OpndType->getIntegerBitWidth(); 3455 } 3456 3457 TypePromotionHelper::Action TypePromotionHelper::getAction( 3458 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3459 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3460 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3461 "Unexpected instruction type"); 3462 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3463 Type *ExtTy = Ext->getType(); 3464 bool IsSExt = isa<SExtInst>(Ext); 3465 // If the operand of the extension is not an instruction, we cannot 3466 // get through. 3467 // If it, check we can get through. 3468 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3469 return nullptr; 3470 3471 // Do not promote if the operand has been added by codegenprepare. 3472 // Otherwise, it means we are undoing an optimization that is likely to be 3473 // redone, thus causing potential infinite loop. 3474 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3475 return nullptr; 3476 3477 // SExt or Trunc instructions. 3478 // Return the related handler. 3479 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3480 isa<ZExtInst>(ExtOpnd)) 3481 return promoteOperandForTruncAndAnyExt; 3482 3483 // Regular instruction. 3484 // Abort early if we will have to insert non-free instructions. 3485 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3486 return nullptr; 3487 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3488 } 3489 3490 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3491 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 3492 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3493 SmallVectorImpl<Instruction *> *Exts, 3494 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3495 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3496 // get through it and this method should not be called. 3497 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3498 Value *ExtVal = SExt; 3499 bool HasMergedNonFreeExt = false; 3500 if (isa<ZExtInst>(SExtOpnd)) { 3501 // Replace s|zext(zext(opnd)) 3502 // => zext(opnd). 3503 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3504 Value *ZExt = 3505 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3506 TPT.replaceAllUsesWith(SExt, ZExt); 3507 TPT.eraseInstruction(SExt); 3508 ExtVal = ZExt; 3509 } else { 3510 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3511 // => z|sext(opnd). 3512 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3513 } 3514 CreatedInstsCost = 0; 3515 3516 // Remove dead code. 3517 if (SExtOpnd->use_empty()) 3518 TPT.eraseInstruction(SExtOpnd); 3519 3520 // Check if the extension is still needed. 3521 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3522 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3523 if (ExtInst) { 3524 if (Exts) 3525 Exts->push_back(ExtInst); 3526 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3527 } 3528 return ExtVal; 3529 } 3530 3531 // At this point we have: ext ty opnd to ty. 3532 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3533 Value *NextVal = ExtInst->getOperand(0); 3534 TPT.eraseInstruction(ExtInst, NextVal); 3535 return NextVal; 3536 } 3537 3538 Value *TypePromotionHelper::promoteOperandForOther( 3539 Instruction *Ext, TypePromotionTransaction &TPT, 3540 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3541 SmallVectorImpl<Instruction *> *Exts, 3542 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3543 bool IsSExt) { 3544 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3545 // get through it and this method should not be called. 3546 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3547 CreatedInstsCost = 0; 3548 if (!ExtOpnd->hasOneUse()) { 3549 // ExtOpnd will be promoted. 3550 // All its uses, but Ext, will need to use a truncated value of the 3551 // promoted version. 3552 // Create the truncate now. 3553 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3554 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3555 ITrunc->removeFromParent(); 3556 // Insert it just after the definition. 3557 ITrunc->insertAfter(ExtOpnd); 3558 if (Truncs) 3559 Truncs->push_back(ITrunc); 3560 } 3561 3562 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3563 // Restore the operand of Ext (which has been replaced by the previous call 3564 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3565 TPT.setOperand(Ext, 0, ExtOpnd); 3566 } 3567 3568 // Get through the Instruction: 3569 // 1. Update its type. 3570 // 2. Replace the uses of Ext by Inst. 3571 // 3. Extend each operand that needs to be extended. 3572 3573 // Remember the original type of the instruction before promotion. 3574 // This is useful to know that the high bits are sign extended bits. 3575 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3576 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3577 // Step #1. 3578 TPT.mutateType(ExtOpnd, Ext->getType()); 3579 // Step #2. 3580 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3581 // Step #3. 3582 Instruction *ExtForOpnd = Ext; 3583 3584 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3585 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3586 ++OpIdx) { 3587 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3588 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3589 !shouldExtOperand(ExtOpnd, OpIdx)) { 3590 DEBUG(dbgs() << "No need to propagate\n"); 3591 continue; 3592 } 3593 // Check if we can statically extend the operand. 3594 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3595 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3596 DEBUG(dbgs() << "Statically extend\n"); 3597 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3598 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3599 : Cst->getValue().zext(BitWidth); 3600 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3601 continue; 3602 } 3603 // UndefValue are typed, so we have to statically sign extend them. 3604 if (isa<UndefValue>(Opnd)) { 3605 DEBUG(dbgs() << "Statically extend\n"); 3606 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3607 continue; 3608 } 3609 3610 // Otherwise we have to explicity sign extend the operand. 3611 // Check if Ext was reused to extend an operand. 3612 if (!ExtForOpnd) { 3613 // If yes, create a new one. 3614 DEBUG(dbgs() << "More operands to ext\n"); 3615 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3616 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3617 if (!isa<Instruction>(ValForExtOpnd)) { 3618 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3619 continue; 3620 } 3621 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3622 } 3623 if (Exts) 3624 Exts->push_back(ExtForOpnd); 3625 TPT.setOperand(ExtForOpnd, 0, Opnd); 3626 3627 // Move the sign extension before the insertion point. 3628 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3629 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3630 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3631 // If more sext are required, new instructions will have to be created. 3632 ExtForOpnd = nullptr; 3633 } 3634 if (ExtForOpnd == Ext) { 3635 DEBUG(dbgs() << "Extension is useless now\n"); 3636 TPT.eraseInstruction(Ext); 3637 } 3638 return ExtOpnd; 3639 } 3640 3641 /// Check whether or not promoting an instruction to a wider type is profitable. 3642 /// \p NewCost gives the cost of extension instructions created by the 3643 /// promotion. 3644 /// \p OldCost gives the cost of extension instructions before the promotion 3645 /// plus the number of instructions that have been 3646 /// matched in the addressing mode the promotion. 3647 /// \p PromotedOperand is the value that has been promoted. 3648 /// \return True if the promotion is profitable, false otherwise. 3649 bool AddressingModeMatcher::isPromotionProfitable( 3650 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3651 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3652 // The cost of the new extensions is greater than the cost of the 3653 // old extension plus what we folded. 3654 // This is not profitable. 3655 if (NewCost > OldCost) 3656 return false; 3657 if (NewCost < OldCost) 3658 return true; 3659 // The promotion is neutral but it may help folding the sign extension in 3660 // loads for instance. 3661 // Check that we did not create an illegal instruction. 3662 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3663 } 3664 3665 /// Given an instruction or constant expr, see if we can fold the operation 3666 /// into the addressing mode. If so, update the addressing mode and return 3667 /// true, otherwise return false without modifying AddrMode. 3668 /// If \p MovedAway is not NULL, it contains the information of whether or 3669 /// not AddrInst has to be folded into the addressing mode on success. 3670 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3671 /// because it has been moved away. 3672 /// Thus AddrInst must not be added in the matched instructions. 3673 /// This state can happen when AddrInst is a sext, since it may be moved away. 3674 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3675 /// not be referenced anymore. 3676 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3677 unsigned Depth, 3678 bool *MovedAway) { 3679 // Avoid exponential behavior on extremely deep expression trees. 3680 if (Depth >= 5) return false; 3681 3682 // By default, all matched instructions stay in place. 3683 if (MovedAway) 3684 *MovedAway = false; 3685 3686 switch (Opcode) { 3687 case Instruction::PtrToInt: 3688 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3689 return matchAddr(AddrInst->getOperand(0), Depth); 3690 case Instruction::IntToPtr: { 3691 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3692 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3693 // This inttoptr is a no-op if the integer type is pointer sized. 3694 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3695 return matchAddr(AddrInst->getOperand(0), Depth); 3696 return false; 3697 } 3698 case Instruction::BitCast: 3699 // BitCast is always a noop, and we can handle it as long as it is 3700 // int->int or pointer->pointer (we don't want int<->fp or something). 3701 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3702 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3703 // Don't touch identity bitcasts. These were probably put here by LSR, 3704 // and we don't want to mess around with them. Assume it knows what it 3705 // is doing. 3706 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3707 return matchAddr(AddrInst->getOperand(0), Depth); 3708 return false; 3709 case Instruction::AddrSpaceCast: { 3710 unsigned SrcAS 3711 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3712 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3713 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3714 return matchAddr(AddrInst->getOperand(0), Depth); 3715 return false; 3716 } 3717 case Instruction::Add: { 3718 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3719 ExtAddrMode BackupAddrMode = AddrMode; 3720 unsigned OldSize = AddrModeInsts.size(); 3721 // Start a transaction at this point. 3722 // The LHS may match but not the RHS. 3723 // Therefore, we need a higher level restoration point to undo partially 3724 // matched operation. 3725 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3726 TPT.getRestorationPoint(); 3727 3728 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3729 matchAddr(AddrInst->getOperand(0), Depth+1)) 3730 return true; 3731 3732 // Restore the old addr mode info. 3733 AddrMode = BackupAddrMode; 3734 AddrModeInsts.resize(OldSize); 3735 TPT.rollback(LastKnownGood); 3736 3737 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3738 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3739 matchAddr(AddrInst->getOperand(1), Depth+1)) 3740 return true; 3741 3742 // Otherwise we definitely can't merge the ADD in. 3743 AddrMode = BackupAddrMode; 3744 AddrModeInsts.resize(OldSize); 3745 TPT.rollback(LastKnownGood); 3746 break; 3747 } 3748 //case Instruction::Or: 3749 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3750 //break; 3751 case Instruction::Mul: 3752 case Instruction::Shl: { 3753 // Can only handle X*C and X << C. 3754 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3755 if (!RHS) 3756 return false; 3757 int64_t Scale = RHS->getSExtValue(); 3758 if (Opcode == Instruction::Shl) 3759 Scale = 1LL << Scale; 3760 3761 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3762 } 3763 case Instruction::GetElementPtr: { 3764 // Scan the GEP. We check it if it contains constant offsets and at most 3765 // one variable offset. 3766 int VariableOperand = -1; 3767 unsigned VariableScale = 0; 3768 3769 int64_t ConstantOffset = 0; 3770 gep_type_iterator GTI = gep_type_begin(AddrInst); 3771 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3772 if (StructType *STy = GTI.getStructTypeOrNull()) { 3773 const StructLayout *SL = DL.getStructLayout(STy); 3774 unsigned Idx = 3775 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3776 ConstantOffset += SL->getElementOffset(Idx); 3777 } else { 3778 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3779 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3780 ConstantOffset += CI->getSExtValue()*TypeSize; 3781 } else if (TypeSize) { // Scales of zero don't do anything. 3782 // We only allow one variable index at the moment. 3783 if (VariableOperand != -1) 3784 return false; 3785 3786 // Remember the variable index. 3787 VariableOperand = i; 3788 VariableScale = TypeSize; 3789 } 3790 } 3791 } 3792 3793 // A common case is for the GEP to only do a constant offset. In this case, 3794 // just add it to the disp field and check validity. 3795 if (VariableOperand == -1) { 3796 AddrMode.BaseOffs += ConstantOffset; 3797 if (ConstantOffset == 0 || 3798 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3799 // Check to see if we can fold the base pointer in too. 3800 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3801 return true; 3802 } 3803 AddrMode.BaseOffs -= ConstantOffset; 3804 return false; 3805 } 3806 3807 // Save the valid addressing mode in case we can't match. 3808 ExtAddrMode BackupAddrMode = AddrMode; 3809 unsigned OldSize = AddrModeInsts.size(); 3810 3811 // See if the scale and offset amount is valid for this target. 3812 AddrMode.BaseOffs += ConstantOffset; 3813 3814 // Match the base operand of the GEP. 3815 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3816 // If it couldn't be matched, just stuff the value in a register. 3817 if (AddrMode.HasBaseReg) { 3818 AddrMode = BackupAddrMode; 3819 AddrModeInsts.resize(OldSize); 3820 return false; 3821 } 3822 AddrMode.HasBaseReg = true; 3823 AddrMode.BaseReg = AddrInst->getOperand(0); 3824 } 3825 3826 // Match the remaining variable portion of the GEP. 3827 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3828 Depth)) { 3829 // If it couldn't be matched, try stuffing the base into a register 3830 // instead of matching it, and retrying the match of the scale. 3831 AddrMode = BackupAddrMode; 3832 AddrModeInsts.resize(OldSize); 3833 if (AddrMode.HasBaseReg) 3834 return false; 3835 AddrMode.HasBaseReg = true; 3836 AddrMode.BaseReg = AddrInst->getOperand(0); 3837 AddrMode.BaseOffs += ConstantOffset; 3838 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3839 VariableScale, Depth)) { 3840 // If even that didn't work, bail. 3841 AddrMode = BackupAddrMode; 3842 AddrModeInsts.resize(OldSize); 3843 return false; 3844 } 3845 } 3846 3847 return true; 3848 } 3849 case Instruction::SExt: 3850 case Instruction::ZExt: { 3851 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3852 if (!Ext) 3853 return false; 3854 3855 // Try to move this ext out of the way of the addressing mode. 3856 // Ask for a method for doing so. 3857 TypePromotionHelper::Action TPH = 3858 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3859 if (!TPH) 3860 return false; 3861 3862 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3863 TPT.getRestorationPoint(); 3864 unsigned CreatedInstsCost = 0; 3865 unsigned ExtCost = !TLI.isExtFree(Ext); 3866 Value *PromotedOperand = 3867 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3868 // SExt has been moved away. 3869 // Thus either it will be rematched later in the recursive calls or it is 3870 // gone. Anyway, we must not fold it into the addressing mode at this point. 3871 // E.g., 3872 // op = add opnd, 1 3873 // idx = ext op 3874 // addr = gep base, idx 3875 // is now: 3876 // promotedOpnd = ext opnd <- no match here 3877 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3878 // addr = gep base, op <- match 3879 if (MovedAway) 3880 *MovedAway = true; 3881 3882 assert(PromotedOperand && 3883 "TypePromotionHelper should have filtered out those cases"); 3884 3885 ExtAddrMode BackupAddrMode = AddrMode; 3886 unsigned OldSize = AddrModeInsts.size(); 3887 3888 if (!matchAddr(PromotedOperand, Depth) || 3889 // The total of the new cost is equal to the cost of the created 3890 // instructions. 3891 // The total of the old cost is equal to the cost of the extension plus 3892 // what we have saved in the addressing mode. 3893 !isPromotionProfitable(CreatedInstsCost, 3894 ExtCost + (AddrModeInsts.size() - OldSize), 3895 PromotedOperand)) { 3896 AddrMode = BackupAddrMode; 3897 AddrModeInsts.resize(OldSize); 3898 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3899 TPT.rollback(LastKnownGood); 3900 return false; 3901 } 3902 return true; 3903 } 3904 } 3905 return false; 3906 } 3907 3908 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3909 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3910 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3911 /// for the target. 3912 /// 3913 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3914 // Start a transaction at this point that we will rollback if the matching 3915 // fails. 3916 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3917 TPT.getRestorationPoint(); 3918 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3919 // Fold in immediates if legal for the target. 3920 AddrMode.BaseOffs += CI->getSExtValue(); 3921 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3922 return true; 3923 AddrMode.BaseOffs -= CI->getSExtValue(); 3924 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3925 // If this is a global variable, try to fold it into the addressing mode. 3926 if (!AddrMode.BaseGV) { 3927 AddrMode.BaseGV = GV; 3928 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3929 return true; 3930 AddrMode.BaseGV = nullptr; 3931 } 3932 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3933 ExtAddrMode BackupAddrMode = AddrMode; 3934 unsigned OldSize = AddrModeInsts.size(); 3935 3936 // Check to see if it is possible to fold this operation. 3937 bool MovedAway = false; 3938 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3939 // This instruction may have been moved away. If so, there is nothing 3940 // to check here. 3941 if (MovedAway) 3942 return true; 3943 // Okay, it's possible to fold this. Check to see if it is actually 3944 // *profitable* to do so. We use a simple cost model to avoid increasing 3945 // register pressure too much. 3946 if (I->hasOneUse() || 3947 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3948 AddrModeInsts.push_back(I); 3949 return true; 3950 } 3951 3952 // It isn't profitable to do this, roll back. 3953 //cerr << "NOT FOLDING: " << *I; 3954 AddrMode = BackupAddrMode; 3955 AddrModeInsts.resize(OldSize); 3956 TPT.rollback(LastKnownGood); 3957 } 3958 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3959 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3960 return true; 3961 TPT.rollback(LastKnownGood); 3962 } else if (isa<ConstantPointerNull>(Addr)) { 3963 // Null pointer gets folded without affecting the addressing mode. 3964 return true; 3965 } 3966 3967 // Worse case, the target should support [reg] addressing modes. :) 3968 if (!AddrMode.HasBaseReg) { 3969 AddrMode.HasBaseReg = true; 3970 AddrMode.BaseReg = Addr; 3971 // Still check for legality in case the target supports [imm] but not [i+r]. 3972 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3973 return true; 3974 AddrMode.HasBaseReg = false; 3975 AddrMode.BaseReg = nullptr; 3976 } 3977 3978 // If the base register is already taken, see if we can do [r+r]. 3979 if (AddrMode.Scale == 0) { 3980 AddrMode.Scale = 1; 3981 AddrMode.ScaledReg = Addr; 3982 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3983 return true; 3984 AddrMode.Scale = 0; 3985 AddrMode.ScaledReg = nullptr; 3986 } 3987 // Couldn't match. 3988 TPT.rollback(LastKnownGood); 3989 return false; 3990 } 3991 3992 /// Check to see if all uses of OpVal by the specified inline asm call are due 3993 /// to memory operands. If so, return true, otherwise return false. 3994 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3995 const TargetLowering &TLI, 3996 const TargetRegisterInfo &TRI) { 3997 const Function *F = CI->getFunction(); 3998 TargetLowering::AsmOperandInfoVector TargetConstraints = 3999 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4000 ImmutableCallSite(CI)); 4001 4002 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4003 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4004 4005 // Compute the constraint code and ConstraintType to use. 4006 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4007 4008 // If this asm operand is our Value*, and if it isn't an indirect memory 4009 // operand, we can't fold it! 4010 if (OpInfo.CallOperandVal == OpVal && 4011 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4012 !OpInfo.isIndirect)) 4013 return false; 4014 } 4015 4016 return true; 4017 } 4018 4019 /// Recursively walk all the uses of I until we find a memory use. 4020 /// If we find an obviously non-foldable instruction, return true. 4021 /// Add the ultimately found memory instructions to MemoryUses. 4022 static bool FindAllMemoryUses( 4023 Instruction *I, 4024 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4025 SmallPtrSetImpl<Instruction *> &ConsideredInsts, 4026 const TargetLowering &TLI, const TargetRegisterInfo &TRI) { 4027 // If we already considered this instruction, we're done. 4028 if (!ConsideredInsts.insert(I).second) 4029 return false; 4030 4031 // If this is an obviously unfoldable instruction, bail out. 4032 if (!MightBeFoldableInst(I)) 4033 return true; 4034 4035 const bool OptSize = I->getFunction()->optForSize(); 4036 4037 // Loop over all the uses, recursively processing them. 4038 for (Use &U : I->uses()) { 4039 Instruction *UserI = cast<Instruction>(U.getUser()); 4040 4041 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4042 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4043 continue; 4044 } 4045 4046 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4047 unsigned opNo = U.getOperandNo(); 4048 if (opNo != StoreInst::getPointerOperandIndex()) 4049 return true; // Storing addr, not into addr. 4050 MemoryUses.push_back(std::make_pair(SI, opNo)); 4051 continue; 4052 } 4053 4054 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4055 unsigned opNo = U.getOperandNo(); 4056 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4057 return true; // Storing addr, not into addr. 4058 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4059 continue; 4060 } 4061 4062 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4063 unsigned opNo = U.getOperandNo(); 4064 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4065 return true; // Storing addr, not into addr. 4066 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4067 continue; 4068 } 4069 4070 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4071 // If this is a cold call, we can sink the addressing calculation into 4072 // the cold path. See optimizeCallInst 4073 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4074 continue; 4075 4076 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4077 if (!IA) return true; 4078 4079 // If this is a memory operand, we're cool, otherwise bail out. 4080 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4081 return true; 4082 continue; 4083 } 4084 4085 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI)) 4086 return true; 4087 } 4088 4089 return false; 4090 } 4091 4092 /// Return true if Val is already known to be live at the use site that we're 4093 /// folding it into. If so, there is no cost to include it in the addressing 4094 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4095 /// instruction already. 4096 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4097 Value *KnownLive2) { 4098 // If Val is either of the known-live values, we know it is live! 4099 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4100 return true; 4101 4102 // All values other than instructions and arguments (e.g. constants) are live. 4103 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4104 4105 // If Val is a constant sized alloca in the entry block, it is live, this is 4106 // true because it is just a reference to the stack/frame pointer, which is 4107 // live for the whole function. 4108 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4109 if (AI->isStaticAlloca()) 4110 return true; 4111 4112 // Check to see if this value is already used in the memory instruction's 4113 // block. If so, it's already live into the block at the very least, so we 4114 // can reasonably fold it. 4115 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4116 } 4117 4118 /// It is possible for the addressing mode of the machine to fold the specified 4119 /// instruction into a load or store that ultimately uses it. 4120 /// However, the specified instruction has multiple uses. 4121 /// Given this, it may actually increase register pressure to fold it 4122 /// into the load. For example, consider this code: 4123 /// 4124 /// X = ... 4125 /// Y = X+1 4126 /// use(Y) -> nonload/store 4127 /// Z = Y+1 4128 /// load Z 4129 /// 4130 /// In this case, Y has multiple uses, and can be folded into the load of Z 4131 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4132 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4133 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4134 /// number of computations either. 4135 /// 4136 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4137 /// X was live across 'load Z' for other reasons, we actually *would* want to 4138 /// fold the addressing mode in the Z case. This would make Y die earlier. 4139 bool AddressingModeMatcher:: 4140 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4141 ExtAddrMode &AMAfter) { 4142 if (IgnoreProfitability) return true; 4143 4144 // AMBefore is the addressing mode before this instruction was folded into it, 4145 // and AMAfter is the addressing mode after the instruction was folded. Get 4146 // the set of registers referenced by AMAfter and subtract out those 4147 // referenced by AMBefore: this is the set of values which folding in this 4148 // address extends the lifetime of. 4149 // 4150 // Note that there are only two potential values being referenced here, 4151 // BaseReg and ScaleReg (global addresses are always available, as are any 4152 // folded immediates). 4153 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4154 4155 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4156 // lifetime wasn't extended by adding this instruction. 4157 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4158 BaseReg = nullptr; 4159 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4160 ScaledReg = nullptr; 4161 4162 // If folding this instruction (and it's subexprs) didn't extend any live 4163 // ranges, we're ok with it. 4164 if (!BaseReg && !ScaledReg) 4165 return true; 4166 4167 // If all uses of this instruction can have the address mode sunk into them, 4168 // we can remove the addressing mode and effectively trade one live register 4169 // for another (at worst.) In this context, folding an addressing mode into 4170 // the use is just a particularly nice way of sinking it. 4171 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4172 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4173 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4174 return false; // Has a non-memory, non-foldable use! 4175 4176 // Now that we know that all uses of this instruction are part of a chain of 4177 // computation involving only operations that could theoretically be folded 4178 // into a memory use, loop over each of these memory operation uses and see 4179 // if they could *actually* fold the instruction. The assumption is that 4180 // addressing modes are cheap and that duplicating the computation involved 4181 // many times is worthwhile, even on a fastpath. For sinking candidates 4182 // (i.e. cold call sites), this serves as a way to prevent excessive code 4183 // growth since most architectures have some reasonable small and fast way to 4184 // compute an effective address. (i.e LEA on x86) 4185 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4186 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4187 Instruction *User = MemoryUses[i].first; 4188 unsigned OpNo = MemoryUses[i].second; 4189 4190 // Get the access type of this use. If the use isn't a pointer, we don't 4191 // know what it accesses. 4192 Value *Address = User->getOperand(OpNo); 4193 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4194 if (!AddrTy) 4195 return false; 4196 Type *AddressAccessTy = AddrTy->getElementType(); 4197 unsigned AS = AddrTy->getAddressSpace(); 4198 4199 // Do a match against the root of this address, ignoring profitability. This 4200 // will tell us if the addressing mode for the memory operation will 4201 // *actually* cover the shared instruction. 4202 ExtAddrMode Result; 4203 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4204 TPT.getRestorationPoint(); 4205 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4206 AddressAccessTy, AS, 4207 MemoryInst, Result, InsertedInsts, 4208 PromotedInsts, TPT); 4209 Matcher.IgnoreProfitability = true; 4210 bool Success = Matcher.matchAddr(Address, 0); 4211 (void)Success; assert(Success && "Couldn't select *anything*?"); 4212 4213 // The match was to check the profitability, the changes made are not 4214 // part of the original matcher. Therefore, they should be dropped 4215 // otherwise the original matcher will not present the right state. 4216 TPT.rollback(LastKnownGood); 4217 4218 // If the match didn't cover I, then it won't be shared by it. 4219 if (!is_contained(MatchedAddrModeInsts, I)) 4220 return false; 4221 4222 MatchedAddrModeInsts.clear(); 4223 } 4224 4225 return true; 4226 } 4227 4228 } // end anonymous namespace 4229 4230 /// Return true if the specified values are defined in a 4231 /// different basic block than BB. 4232 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4233 if (Instruction *I = dyn_cast<Instruction>(V)) 4234 return I->getParent() != BB; 4235 return false; 4236 } 4237 4238 /// Sink addressing mode computation immediate before MemoryInst if doing so 4239 /// can be done without increasing register pressure. The need for the 4240 /// register pressure constraint means this can end up being an all or nothing 4241 /// decision for all uses of the same addressing computation. 4242 /// 4243 /// Load and Store Instructions often have addressing modes that can do 4244 /// significant amounts of computation. As such, instruction selection will try 4245 /// to get the load or store to do as much computation as possible for the 4246 /// program. The problem is that isel can only see within a single block. As 4247 /// such, we sink as much legal addressing mode work into the block as possible. 4248 /// 4249 /// This method is used to optimize both load/store and inline asms with memory 4250 /// operands. It's also used to sink addressing computations feeding into cold 4251 /// call sites into their (cold) basic block. 4252 /// 4253 /// The motivation for handling sinking into cold blocks is that doing so can 4254 /// both enable other address mode sinking (by satisfying the register pressure 4255 /// constraint above), and reduce register pressure globally (by removing the 4256 /// addressing mode computation from the fast path entirely.). 4257 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4258 Type *AccessTy, unsigned AddrSpace) { 4259 Value *Repl = Addr; 4260 4261 // Try to collapse single-value PHI nodes. This is necessary to undo 4262 // unprofitable PRE transformations. 4263 SmallVector<Value*, 8> worklist; 4264 SmallPtrSet<Value*, 16> Visited; 4265 worklist.push_back(Addr); 4266 4267 // Use a worklist to iteratively look through PHI nodes, and ensure that 4268 // the addressing mode obtained from the non-PHI roots of the graph 4269 // are equivalent. 4270 bool AddrModeFound = false; 4271 bool PhiSeen = false; 4272 SmallVector<Instruction*, 16> AddrModeInsts; 4273 ExtAddrMode AddrMode; 4274 TypePromotionTransaction TPT(RemovedInsts); 4275 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4276 TPT.getRestorationPoint(); 4277 while (!worklist.empty()) { 4278 Value *V = worklist.back(); 4279 worklist.pop_back(); 4280 4281 // We allow traversing cyclic Phi nodes. 4282 // In case of success after this loop we ensure that traversing through 4283 // Phi nodes ends up with all cases to compute address of the form 4284 // BaseGV + Base + Scale * Index + Offset 4285 // where Scale and Offset are constans and BaseGV, Base and Index 4286 // are exactly the same Values in all cases. 4287 // It means that BaseGV, Scale and Offset dominate our memory instruction 4288 // and have the same value as they had in address computation represented 4289 // as Phi. So we can safely sink address computation to memory instruction. 4290 if (!Visited.insert(V).second) 4291 continue; 4292 4293 // For a PHI node, push all of its incoming values. 4294 if (PHINode *P = dyn_cast<PHINode>(V)) { 4295 for (Value *IncValue : P->incoming_values()) 4296 worklist.push_back(IncValue); 4297 PhiSeen = true; 4298 continue; 4299 } 4300 4301 // For non-PHIs, determine the addressing mode being computed. Note that 4302 // the result may differ depending on what other uses our candidate 4303 // addressing instructions might have. 4304 AddrModeInsts.clear(); 4305 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4306 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4307 InsertedInsts, PromotedInsts, TPT); 4308 4309 if (!AddrModeFound) { 4310 AddrModeFound = true; 4311 AddrMode = NewAddrMode; 4312 continue; 4313 } 4314 if (NewAddrMode == AddrMode) 4315 continue; 4316 4317 AddrModeFound = false; 4318 break; 4319 } 4320 4321 // If the addressing mode couldn't be determined, or if multiple different 4322 // ones were determined, bail out now. 4323 if (!AddrModeFound) { 4324 TPT.rollback(LastKnownGood); 4325 return false; 4326 } 4327 TPT.commit(); 4328 4329 // If all the instructions matched are already in this BB, don't do anything. 4330 // If we saw Phi node then it is not local definitely. 4331 if (!PhiSeen && none_of(AddrModeInsts, [&](Value *V) { 4332 return IsNonLocalValue(V, MemoryInst->getParent()); 4333 })) { 4334 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4335 return false; 4336 } 4337 4338 // Insert this computation right after this user. Since our caller is 4339 // scanning from the top of the BB to the bottom, reuse of the expr are 4340 // guaranteed to happen later. 4341 IRBuilder<> Builder(MemoryInst); 4342 4343 // Now that we determined the addressing expression we want to use and know 4344 // that we have to sink it into this block. Check to see if we have already 4345 // done this for some other load/store instr in this block. If so, reuse the 4346 // computation. 4347 Value *&SunkAddr = SunkAddrs[Addr]; 4348 if (SunkAddr) { 4349 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4350 << *MemoryInst << "\n"); 4351 if (SunkAddr->getType() != Addr->getType()) 4352 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4353 } else if (AddrSinkUsingGEPs || 4354 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4355 SubtargetInfo->useAA())) { 4356 // By default, we use the GEP-based method when AA is used later. This 4357 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4358 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4359 << *MemoryInst << "\n"); 4360 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4361 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4362 4363 // First, find the pointer. 4364 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4365 ResultPtr = AddrMode.BaseReg; 4366 AddrMode.BaseReg = nullptr; 4367 } 4368 4369 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4370 // We can't add more than one pointer together, nor can we scale a 4371 // pointer (both of which seem meaningless). 4372 if (ResultPtr || AddrMode.Scale != 1) 4373 return false; 4374 4375 ResultPtr = AddrMode.ScaledReg; 4376 AddrMode.Scale = 0; 4377 } 4378 4379 // It is only safe to sign extend the BaseReg if we know that the math 4380 // required to create it did not overflow before we extend it. Since 4381 // the original IR value was tossed in favor of a constant back when 4382 // the AddrMode was created we need to bail out gracefully if widths 4383 // do not match instead of extending it. 4384 // 4385 // (See below for code to add the scale.) 4386 if (AddrMode.Scale) { 4387 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4388 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4389 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4390 return false; 4391 } 4392 4393 if (AddrMode.BaseGV) { 4394 if (ResultPtr) 4395 return false; 4396 4397 ResultPtr = AddrMode.BaseGV; 4398 } 4399 4400 // If the real base value actually came from an inttoptr, then the matcher 4401 // will look through it and provide only the integer value. In that case, 4402 // use it here. 4403 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4404 if (!ResultPtr && AddrMode.BaseReg) { 4405 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4406 "sunkaddr"); 4407 AddrMode.BaseReg = nullptr; 4408 } else if (!ResultPtr && AddrMode.Scale == 1) { 4409 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4410 "sunkaddr"); 4411 AddrMode.Scale = 0; 4412 } 4413 } 4414 4415 if (!ResultPtr && 4416 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4417 SunkAddr = Constant::getNullValue(Addr->getType()); 4418 } else if (!ResultPtr) { 4419 return false; 4420 } else { 4421 Type *I8PtrTy = 4422 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4423 Type *I8Ty = Builder.getInt8Ty(); 4424 4425 // Start with the base register. Do this first so that subsequent address 4426 // matching finds it last, which will prevent it from trying to match it 4427 // as the scaled value in case it happens to be a mul. That would be 4428 // problematic if we've sunk a different mul for the scale, because then 4429 // we'd end up sinking both muls. 4430 if (AddrMode.BaseReg) { 4431 Value *V = AddrMode.BaseReg; 4432 if (V->getType() != IntPtrTy) 4433 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4434 4435 ResultIndex = V; 4436 } 4437 4438 // Add the scale value. 4439 if (AddrMode.Scale) { 4440 Value *V = AddrMode.ScaledReg; 4441 if (V->getType() == IntPtrTy) { 4442 // done. 4443 } else { 4444 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4445 cast<IntegerType>(V->getType())->getBitWidth() && 4446 "We can't transform if ScaledReg is too narrow"); 4447 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4448 } 4449 4450 if (AddrMode.Scale != 1) 4451 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4452 "sunkaddr"); 4453 if (ResultIndex) 4454 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4455 else 4456 ResultIndex = V; 4457 } 4458 4459 // Add in the Base Offset if present. 4460 if (AddrMode.BaseOffs) { 4461 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4462 if (ResultIndex) { 4463 // We need to add this separately from the scale above to help with 4464 // SDAG consecutive load/store merging. 4465 if (ResultPtr->getType() != I8PtrTy) 4466 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4467 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4468 } 4469 4470 ResultIndex = V; 4471 } 4472 4473 if (!ResultIndex) { 4474 SunkAddr = ResultPtr; 4475 } else { 4476 if (ResultPtr->getType() != I8PtrTy) 4477 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4478 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4479 } 4480 4481 if (SunkAddr->getType() != Addr->getType()) 4482 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4483 } 4484 } else { 4485 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4486 // non-integral pointers, so in that case bail out now. 4487 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4488 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4489 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4490 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4491 if (DL->isNonIntegralPointerType(Addr->getType()) || 4492 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4493 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4494 (AddrMode.BaseGV && 4495 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4496 return false; 4497 4498 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4499 << *MemoryInst << "\n"); 4500 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4501 Value *Result = nullptr; 4502 4503 // Start with the base register. Do this first so that subsequent address 4504 // matching finds it last, which will prevent it from trying to match it 4505 // as the scaled value in case it happens to be a mul. That would be 4506 // problematic if we've sunk a different mul for the scale, because then 4507 // we'd end up sinking both muls. 4508 if (AddrMode.BaseReg) { 4509 Value *V = AddrMode.BaseReg; 4510 if (V->getType()->isPointerTy()) 4511 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4512 if (V->getType() != IntPtrTy) 4513 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4514 Result = V; 4515 } 4516 4517 // Add the scale value. 4518 if (AddrMode.Scale) { 4519 Value *V = AddrMode.ScaledReg; 4520 if (V->getType() == IntPtrTy) { 4521 // done. 4522 } else if (V->getType()->isPointerTy()) { 4523 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4524 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4525 cast<IntegerType>(V->getType())->getBitWidth()) { 4526 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4527 } else { 4528 // It is only safe to sign extend the BaseReg if we know that the math 4529 // required to create it did not overflow before we extend it. Since 4530 // the original IR value was tossed in favor of a constant back when 4531 // the AddrMode was created we need to bail out gracefully if widths 4532 // do not match instead of extending it. 4533 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4534 if (I && (Result != AddrMode.BaseReg)) 4535 I->eraseFromParent(); 4536 return false; 4537 } 4538 if (AddrMode.Scale != 1) 4539 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4540 "sunkaddr"); 4541 if (Result) 4542 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4543 else 4544 Result = V; 4545 } 4546 4547 // Add in the BaseGV if present. 4548 if (AddrMode.BaseGV) { 4549 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4550 if (Result) 4551 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4552 else 4553 Result = V; 4554 } 4555 4556 // Add in the Base Offset if present. 4557 if (AddrMode.BaseOffs) { 4558 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4559 if (Result) 4560 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4561 else 4562 Result = V; 4563 } 4564 4565 if (!Result) 4566 SunkAddr = Constant::getNullValue(Addr->getType()); 4567 else 4568 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4569 } 4570 4571 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4572 4573 // If we have no uses, recursively delete the value and all dead instructions 4574 // using it. 4575 if (Repl->use_empty()) { 4576 // This can cause recursive deletion, which can invalidate our iterator. 4577 // Use a WeakTrackingVH to hold onto it in case this happens. 4578 Value *CurValue = &*CurInstIterator; 4579 WeakTrackingVH IterHandle(CurValue); 4580 BasicBlock *BB = CurInstIterator->getParent(); 4581 4582 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4583 4584 if (IterHandle != CurValue) { 4585 // If the iterator instruction was recursively deleted, start over at the 4586 // start of the block. 4587 CurInstIterator = BB->begin(); 4588 SunkAddrs.clear(); 4589 } 4590 } 4591 ++NumMemoryInsts; 4592 return true; 4593 } 4594 4595 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4596 /// address computing into the block when possible / profitable. 4597 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4598 bool MadeChange = false; 4599 4600 const TargetRegisterInfo *TRI = 4601 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4602 TargetLowering::AsmOperandInfoVector TargetConstraints = 4603 TLI->ParseConstraints(*DL, TRI, CS); 4604 unsigned ArgNo = 0; 4605 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4606 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4607 4608 // Compute the constraint code and ConstraintType to use. 4609 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4610 4611 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4612 OpInfo.isIndirect) { 4613 Value *OpVal = CS->getArgOperand(ArgNo++); 4614 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4615 } else if (OpInfo.Type == InlineAsm::isInput) 4616 ArgNo++; 4617 } 4618 4619 return MadeChange; 4620 } 4621 4622 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4623 /// sign extensions. 4624 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4625 assert(!Val->use_empty() && "Input must have at least one use"); 4626 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4627 bool IsSExt = isa<SExtInst>(FirstUser); 4628 Type *ExtTy = FirstUser->getType(); 4629 for (const User *U : Val->users()) { 4630 const Instruction *UI = cast<Instruction>(U); 4631 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4632 return false; 4633 Type *CurTy = UI->getType(); 4634 // Same input and output types: Same instruction after CSE. 4635 if (CurTy == ExtTy) 4636 continue; 4637 4638 // If IsSExt is true, we are in this situation: 4639 // a = Val 4640 // b = sext ty1 a to ty2 4641 // c = sext ty1 a to ty3 4642 // Assuming ty2 is shorter than ty3, this could be turned into: 4643 // a = Val 4644 // b = sext ty1 a to ty2 4645 // c = sext ty2 b to ty3 4646 // However, the last sext is not free. 4647 if (IsSExt) 4648 return false; 4649 4650 // This is a ZExt, maybe this is free to extend from one type to another. 4651 // In that case, we would not account for a different use. 4652 Type *NarrowTy; 4653 Type *LargeTy; 4654 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4655 CurTy->getScalarType()->getIntegerBitWidth()) { 4656 NarrowTy = CurTy; 4657 LargeTy = ExtTy; 4658 } else { 4659 NarrowTy = ExtTy; 4660 LargeTy = CurTy; 4661 } 4662 4663 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4664 return false; 4665 } 4666 // All uses are the same or can be derived from one another for free. 4667 return true; 4668 } 4669 4670 /// \brief Try to speculatively promote extensions in \p Exts and continue 4671 /// promoting through newly promoted operands recursively as far as doing so is 4672 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4673 /// When some promotion happened, \p TPT contains the proper state to revert 4674 /// them. 4675 /// 4676 /// \return true if some promotion happened, false otherwise. 4677 bool CodeGenPrepare::tryToPromoteExts( 4678 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4679 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4680 unsigned CreatedInstsCost) { 4681 bool Promoted = false; 4682 4683 // Iterate over all the extensions to try to promote them. 4684 for (auto I : Exts) { 4685 // Early check if we directly have ext(load). 4686 if (isa<LoadInst>(I->getOperand(0))) { 4687 ProfitablyMovedExts.push_back(I); 4688 continue; 4689 } 4690 4691 // Check whether or not we want to do any promotion. The reason we have 4692 // this check inside the for loop is to catch the case where an extension 4693 // is directly fed by a load because in such case the extension can be moved 4694 // up without any promotion on its operands. 4695 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4696 return false; 4697 4698 // Get the action to perform the promotion. 4699 TypePromotionHelper::Action TPH = 4700 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4701 // Check if we can promote. 4702 if (!TPH) { 4703 // Save the current extension as we cannot move up through its operand. 4704 ProfitablyMovedExts.push_back(I); 4705 continue; 4706 } 4707 4708 // Save the current state. 4709 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4710 TPT.getRestorationPoint(); 4711 SmallVector<Instruction *, 4> NewExts; 4712 unsigned NewCreatedInstsCost = 0; 4713 unsigned ExtCost = !TLI->isExtFree(I); 4714 // Promote. 4715 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4716 &NewExts, nullptr, *TLI); 4717 assert(PromotedVal && 4718 "TypePromotionHelper should have filtered out those cases"); 4719 4720 // We would be able to merge only one extension in a load. 4721 // Therefore, if we have more than 1 new extension we heuristically 4722 // cut this search path, because it means we degrade the code quality. 4723 // With exactly 2, the transformation is neutral, because we will merge 4724 // one extension but leave one. However, we optimistically keep going, 4725 // because the new extension may be removed too. 4726 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4727 // FIXME: It would be possible to propagate a negative value instead of 4728 // conservatively ceiling it to 0. 4729 TotalCreatedInstsCost = 4730 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4731 if (!StressExtLdPromotion && 4732 (TotalCreatedInstsCost > 1 || 4733 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4734 // This promotion is not profitable, rollback to the previous state, and 4735 // save the current extension in ProfitablyMovedExts as the latest 4736 // speculative promotion turned out to be unprofitable. 4737 TPT.rollback(LastKnownGood); 4738 ProfitablyMovedExts.push_back(I); 4739 continue; 4740 } 4741 // Continue promoting NewExts as far as doing so is profitable. 4742 SmallVector<Instruction *, 2> NewlyMovedExts; 4743 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4744 bool NewPromoted = false; 4745 for (auto ExtInst : NewlyMovedExts) { 4746 Instruction *MovedExt = cast<Instruction>(ExtInst); 4747 Value *ExtOperand = MovedExt->getOperand(0); 4748 // If we have reached to a load, we need this extra profitability check 4749 // as it could potentially be merged into an ext(load). 4750 if (isa<LoadInst>(ExtOperand) && 4751 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4752 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4753 continue; 4754 4755 ProfitablyMovedExts.push_back(MovedExt); 4756 NewPromoted = true; 4757 } 4758 4759 // If none of speculative promotions for NewExts is profitable, rollback 4760 // and save the current extension (I) as the last profitable extension. 4761 if (!NewPromoted) { 4762 TPT.rollback(LastKnownGood); 4763 ProfitablyMovedExts.push_back(I); 4764 continue; 4765 } 4766 // The promotion is profitable. 4767 Promoted = true; 4768 } 4769 return Promoted; 4770 } 4771 4772 /// Merging redundant sexts when one is dominating the other. 4773 bool CodeGenPrepare::mergeSExts(Function &F) { 4774 DominatorTree DT(F); 4775 bool Changed = false; 4776 for (auto &Entry : ValToSExtendedUses) { 4777 SExts &Insts = Entry.second; 4778 SExts CurPts; 4779 for (Instruction *Inst : Insts) { 4780 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4781 Inst->getOperand(0) != Entry.first) 4782 continue; 4783 bool inserted = false; 4784 for (auto &Pt : CurPts) { 4785 if (DT.dominates(Inst, Pt)) { 4786 Pt->replaceAllUsesWith(Inst); 4787 RemovedInsts.insert(Pt); 4788 Pt->removeFromParent(); 4789 Pt = Inst; 4790 inserted = true; 4791 Changed = true; 4792 break; 4793 } 4794 if (!DT.dominates(Pt, Inst)) 4795 // Give up if we need to merge in a common dominator as the 4796 // expermients show it is not profitable. 4797 continue; 4798 Inst->replaceAllUsesWith(Pt); 4799 RemovedInsts.insert(Inst); 4800 Inst->removeFromParent(); 4801 inserted = true; 4802 Changed = true; 4803 break; 4804 } 4805 if (!inserted) 4806 CurPts.push_back(Inst); 4807 } 4808 } 4809 return Changed; 4810 } 4811 4812 /// Return true, if an ext(load) can be formed from an extension in 4813 /// \p MovedExts. 4814 bool CodeGenPrepare::canFormExtLd( 4815 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4816 Instruction *&Inst, bool HasPromoted) { 4817 for (auto *MovedExtInst : MovedExts) { 4818 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4819 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4820 Inst = MovedExtInst; 4821 break; 4822 } 4823 } 4824 if (!LI) 4825 return false; 4826 4827 // If they're already in the same block, there's nothing to do. 4828 // Make the cheap checks first if we did not promote. 4829 // If we promoted, we need to check if it is indeed profitable. 4830 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4831 return false; 4832 4833 return TLI->isExtLoad(LI, Inst, *DL); 4834 } 4835 4836 /// Move a zext or sext fed by a load into the same basic block as the load, 4837 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4838 /// extend into the load. 4839 /// 4840 /// E.g., 4841 /// \code 4842 /// %ld = load i32* %addr 4843 /// %add = add nuw i32 %ld, 4 4844 /// %zext = zext i32 %add to i64 4845 // \endcode 4846 /// => 4847 /// \code 4848 /// %ld = load i32* %addr 4849 /// %zext = zext i32 %ld to i64 4850 /// %add = add nuw i64 %zext, 4 4851 /// \encode 4852 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4853 /// allow us to match zext(load i32*) to i64. 4854 /// 4855 /// Also, try to promote the computations used to obtain a sign extended 4856 /// value used into memory accesses. 4857 /// E.g., 4858 /// \code 4859 /// a = add nsw i32 b, 3 4860 /// d = sext i32 a to i64 4861 /// e = getelementptr ..., i64 d 4862 /// \endcode 4863 /// => 4864 /// \code 4865 /// f = sext i32 b to i64 4866 /// a = add nsw i64 f, 3 4867 /// e = getelementptr ..., i64 a 4868 /// \endcode 4869 /// 4870 /// \p Inst[in/out] the extension may be modified during the process if some 4871 /// promotions apply. 4872 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4873 // ExtLoad formation and address type promotion infrastructure requires TLI to 4874 // be effective. 4875 if (!TLI) 4876 return false; 4877 4878 bool AllowPromotionWithoutCommonHeader = false; 4879 /// See if it is an interesting sext operations for the address type 4880 /// promotion before trying to promote it, e.g., the ones with the right 4881 /// type and used in memory accesses. 4882 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4883 *Inst, AllowPromotionWithoutCommonHeader); 4884 TypePromotionTransaction TPT(RemovedInsts); 4885 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4886 TPT.getRestorationPoint(); 4887 SmallVector<Instruction *, 1> Exts; 4888 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4889 Exts.push_back(Inst); 4890 4891 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4892 4893 // Look for a load being extended. 4894 LoadInst *LI = nullptr; 4895 Instruction *ExtFedByLoad; 4896 4897 // Try to promote a chain of computation if it allows to form an extended 4898 // load. 4899 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4900 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4901 TPT.commit(); 4902 // Move the extend into the same block as the load 4903 ExtFedByLoad->removeFromParent(); 4904 ExtFedByLoad->insertAfter(LI); 4905 // CGP does not check if the zext would be speculatively executed when moved 4906 // to the same basic block as the load. Preserving its original location 4907 // would pessimize the debugging experience, as well as negatively impact 4908 // the quality of sample pgo. We don't want to use "line 0" as that has a 4909 // size cost in the line-table section and logically the zext can be seen as 4910 // part of the load. Therefore we conservatively reuse the same debug 4911 // location for the load and the zext. 4912 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4913 ++NumExtsMoved; 4914 Inst = ExtFedByLoad; 4915 return true; 4916 } 4917 4918 // Continue promoting SExts if known as considerable depending on targets. 4919 if (ATPConsiderable && 4920 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4921 HasPromoted, TPT, SpeculativelyMovedExts)) 4922 return true; 4923 4924 TPT.rollback(LastKnownGood); 4925 return false; 4926 } 4927 4928 // Perform address type promotion if doing so is profitable. 4929 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4930 // instructions that sign extended the same initial value. However, if 4931 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4932 // extension is just profitable. 4933 bool CodeGenPrepare::performAddressTypePromotion( 4934 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4935 bool HasPromoted, TypePromotionTransaction &TPT, 4936 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4937 bool Promoted = false; 4938 SmallPtrSet<Instruction *, 1> UnhandledExts; 4939 bool AllSeenFirst = true; 4940 for (auto I : SpeculativelyMovedExts) { 4941 Value *HeadOfChain = I->getOperand(0); 4942 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4943 SeenChainsForSExt.find(HeadOfChain); 4944 // If there is an unhandled SExt which has the same header, try to promote 4945 // it as well. 4946 if (AlreadySeen != SeenChainsForSExt.end()) { 4947 if (AlreadySeen->second != nullptr) 4948 UnhandledExts.insert(AlreadySeen->second); 4949 AllSeenFirst = false; 4950 } 4951 } 4952 4953 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4954 SpeculativelyMovedExts.size() == 1)) { 4955 TPT.commit(); 4956 if (HasPromoted) 4957 Promoted = true; 4958 for (auto I : SpeculativelyMovedExts) { 4959 Value *HeadOfChain = I->getOperand(0); 4960 SeenChainsForSExt[HeadOfChain] = nullptr; 4961 ValToSExtendedUses[HeadOfChain].push_back(I); 4962 } 4963 // Update Inst as promotion happen. 4964 Inst = SpeculativelyMovedExts.pop_back_val(); 4965 } else { 4966 // This is the first chain visited from the header, keep the current chain 4967 // as unhandled. Defer to promote this until we encounter another SExt 4968 // chain derived from the same header. 4969 for (auto I : SpeculativelyMovedExts) { 4970 Value *HeadOfChain = I->getOperand(0); 4971 SeenChainsForSExt[HeadOfChain] = Inst; 4972 } 4973 return false; 4974 } 4975 4976 if (!AllSeenFirst && !UnhandledExts.empty()) 4977 for (auto VisitedSExt : UnhandledExts) { 4978 if (RemovedInsts.count(VisitedSExt)) 4979 continue; 4980 TypePromotionTransaction TPT(RemovedInsts); 4981 SmallVector<Instruction *, 1> Exts; 4982 SmallVector<Instruction *, 2> Chains; 4983 Exts.push_back(VisitedSExt); 4984 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 4985 TPT.commit(); 4986 if (HasPromoted) 4987 Promoted = true; 4988 for (auto I : Chains) { 4989 Value *HeadOfChain = I->getOperand(0); 4990 // Mark this as handled. 4991 SeenChainsForSExt[HeadOfChain] = nullptr; 4992 ValToSExtendedUses[HeadOfChain].push_back(I); 4993 } 4994 } 4995 return Promoted; 4996 } 4997 4998 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4999 BasicBlock *DefBB = I->getParent(); 5000 5001 // If the result of a {s|z}ext and its source are both live out, rewrite all 5002 // other uses of the source with result of extension. 5003 Value *Src = I->getOperand(0); 5004 if (Src->hasOneUse()) 5005 return false; 5006 5007 // Only do this xform if truncating is free. 5008 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5009 return false; 5010 5011 // Only safe to perform the optimization if the source is also defined in 5012 // this block. 5013 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5014 return false; 5015 5016 bool DefIsLiveOut = false; 5017 for (User *U : I->users()) { 5018 Instruction *UI = cast<Instruction>(U); 5019 5020 // Figure out which BB this ext is used in. 5021 BasicBlock *UserBB = UI->getParent(); 5022 if (UserBB == DefBB) continue; 5023 DefIsLiveOut = true; 5024 break; 5025 } 5026 if (!DefIsLiveOut) 5027 return false; 5028 5029 // Make sure none of the uses are PHI nodes. 5030 for (User *U : Src->users()) { 5031 Instruction *UI = cast<Instruction>(U); 5032 BasicBlock *UserBB = UI->getParent(); 5033 if (UserBB == DefBB) continue; 5034 // Be conservative. We don't want this xform to end up introducing 5035 // reloads just before load / store instructions. 5036 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5037 return false; 5038 } 5039 5040 // InsertedTruncs - Only insert one trunc in each block once. 5041 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5042 5043 bool MadeChange = false; 5044 for (Use &U : Src->uses()) { 5045 Instruction *User = cast<Instruction>(U.getUser()); 5046 5047 // Figure out which BB this ext is used in. 5048 BasicBlock *UserBB = User->getParent(); 5049 if (UserBB == DefBB) continue; 5050 5051 // Both src and def are live in this block. Rewrite the use. 5052 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5053 5054 if (!InsertedTrunc) { 5055 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5056 assert(InsertPt != UserBB->end()); 5057 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5058 InsertedInsts.insert(InsertedTrunc); 5059 } 5060 5061 // Replace a use of the {s|z}ext source with a use of the result. 5062 U = InsertedTrunc; 5063 ++NumExtUses; 5064 MadeChange = true; 5065 } 5066 5067 return MadeChange; 5068 } 5069 5070 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5071 // just after the load if the target can fold this into one extload instruction, 5072 // with the hope of eliminating some of the other later "and" instructions using 5073 // the loaded value. "and"s that are made trivially redundant by the insertion 5074 // of the new "and" are removed by this function, while others (e.g. those whose 5075 // path from the load goes through a phi) are left for isel to potentially 5076 // remove. 5077 // 5078 // For example: 5079 // 5080 // b0: 5081 // x = load i32 5082 // ... 5083 // b1: 5084 // y = and x, 0xff 5085 // z = use y 5086 // 5087 // becomes: 5088 // 5089 // b0: 5090 // x = load i32 5091 // x' = and x, 0xff 5092 // ... 5093 // b1: 5094 // z = use x' 5095 // 5096 // whereas: 5097 // 5098 // b0: 5099 // x1 = load i32 5100 // ... 5101 // b1: 5102 // x2 = load i32 5103 // ... 5104 // b2: 5105 // x = phi x1, x2 5106 // y = and x, 0xff 5107 // 5108 // becomes (after a call to optimizeLoadExt for each load): 5109 // 5110 // b0: 5111 // x1 = load i32 5112 // x1' = and x1, 0xff 5113 // ... 5114 // b1: 5115 // x2 = load i32 5116 // x2' = and x2, 0xff 5117 // ... 5118 // b2: 5119 // x = phi x1', x2' 5120 // y = and x, 0xff 5121 // 5122 5123 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5124 5125 if (!Load->isSimple() || 5126 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5127 return false; 5128 5129 // Skip loads we've already transformed. 5130 if (Load->hasOneUse() && 5131 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5132 return false; 5133 5134 // Look at all uses of Load, looking through phis, to determine how many bits 5135 // of the loaded value are needed. 5136 SmallVector<Instruction *, 8> WorkList; 5137 SmallPtrSet<Instruction *, 16> Visited; 5138 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5139 for (auto *U : Load->users()) 5140 WorkList.push_back(cast<Instruction>(U)); 5141 5142 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5143 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5144 APInt DemandBits(BitWidth, 0); 5145 APInt WidestAndBits(BitWidth, 0); 5146 5147 while (!WorkList.empty()) { 5148 Instruction *I = WorkList.back(); 5149 WorkList.pop_back(); 5150 5151 // Break use-def graph loops. 5152 if (!Visited.insert(I).second) 5153 continue; 5154 5155 // For a PHI node, push all of its users. 5156 if (auto *Phi = dyn_cast<PHINode>(I)) { 5157 for (auto *U : Phi->users()) 5158 WorkList.push_back(cast<Instruction>(U)); 5159 continue; 5160 } 5161 5162 switch (I->getOpcode()) { 5163 case llvm::Instruction::And: { 5164 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5165 if (!AndC) 5166 return false; 5167 APInt AndBits = AndC->getValue(); 5168 DemandBits |= AndBits; 5169 // Keep track of the widest and mask we see. 5170 if (AndBits.ugt(WidestAndBits)) 5171 WidestAndBits = AndBits; 5172 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5173 AndsToMaybeRemove.push_back(I); 5174 break; 5175 } 5176 5177 case llvm::Instruction::Shl: { 5178 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5179 if (!ShlC) 5180 return false; 5181 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5182 DemandBits.setLowBits(BitWidth - ShiftAmt); 5183 break; 5184 } 5185 5186 case llvm::Instruction::Trunc: { 5187 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5188 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5189 DemandBits.setLowBits(TruncBitWidth); 5190 break; 5191 } 5192 5193 default: 5194 return false; 5195 } 5196 } 5197 5198 uint32_t ActiveBits = DemandBits.getActiveBits(); 5199 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5200 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5201 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5202 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5203 // followed by an AND. 5204 // TODO: Look into removing this restriction by fixing backends to either 5205 // return false for isLoadExtLegal for i1 or have them select this pattern to 5206 // a single instruction. 5207 // 5208 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5209 // mask, since these are the only ands that will be removed by isel. 5210 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5211 WidestAndBits != DemandBits) 5212 return false; 5213 5214 LLVMContext &Ctx = Load->getType()->getContext(); 5215 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5216 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5217 5218 // Reject cases that won't be matched as extloads. 5219 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5220 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5221 return false; 5222 5223 IRBuilder<> Builder(Load->getNextNode()); 5224 auto *NewAnd = dyn_cast<Instruction>( 5225 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5226 // Mark this instruction as "inserted by CGP", so that other 5227 // optimizations don't touch it. 5228 InsertedInsts.insert(NewAnd); 5229 5230 // Replace all uses of load with new and (except for the use of load in the 5231 // new and itself). 5232 Load->replaceAllUsesWith(NewAnd); 5233 NewAnd->setOperand(0, Load); 5234 5235 // Remove any and instructions that are now redundant. 5236 for (auto *And : AndsToMaybeRemove) 5237 // Check that the and mask is the same as the one we decided to put on the 5238 // new and. 5239 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5240 And->replaceAllUsesWith(NewAnd); 5241 if (&*CurInstIterator == And) 5242 CurInstIterator = std::next(And->getIterator()); 5243 And->eraseFromParent(); 5244 ++NumAndUses; 5245 } 5246 5247 ++NumAndsAdded; 5248 return true; 5249 } 5250 5251 /// Check if V (an operand of a select instruction) is an expensive instruction 5252 /// that is only used once. 5253 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5254 auto *I = dyn_cast<Instruction>(V); 5255 // If it's safe to speculatively execute, then it should not have side 5256 // effects; therefore, it's safe to sink and possibly *not* execute. 5257 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5258 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5259 } 5260 5261 /// Returns true if a SelectInst should be turned into an explicit branch. 5262 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5263 const TargetLowering *TLI, 5264 SelectInst *SI) { 5265 // If even a predictable select is cheap, then a branch can't be cheaper. 5266 if (!TLI->isPredictableSelectExpensive()) 5267 return false; 5268 5269 // FIXME: This should use the same heuristics as IfConversion to determine 5270 // whether a select is better represented as a branch. 5271 5272 // If metadata tells us that the select condition is obviously predictable, 5273 // then we want to replace the select with a branch. 5274 uint64_t TrueWeight, FalseWeight; 5275 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5276 uint64_t Max = std::max(TrueWeight, FalseWeight); 5277 uint64_t Sum = TrueWeight + FalseWeight; 5278 if (Sum != 0) { 5279 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5280 if (Probability > TLI->getPredictableBranchThreshold()) 5281 return true; 5282 } 5283 } 5284 5285 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5286 5287 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5288 // comparison condition. If the compare has more than one use, there's 5289 // probably another cmov or setcc around, so it's not worth emitting a branch. 5290 if (!Cmp || !Cmp->hasOneUse()) 5291 return false; 5292 5293 // If either operand of the select is expensive and only needed on one side 5294 // of the select, we should form a branch. 5295 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5296 sinkSelectOperand(TTI, SI->getFalseValue())) 5297 return true; 5298 5299 return false; 5300 } 5301 5302 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5303 /// false value of \p SI. If the true/false value of \p SI is defined by any 5304 /// select instructions in \p Selects, look through the defining select 5305 /// instruction until the true/false value is not defined in \p Selects. 5306 static Value *getTrueOrFalseValue( 5307 SelectInst *SI, bool isTrue, 5308 const SmallPtrSet<const Instruction *, 2> &Selects) { 5309 Value *V; 5310 5311 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5312 DefSI = dyn_cast<SelectInst>(V)) { 5313 assert(DefSI->getCondition() == SI->getCondition() && 5314 "The condition of DefSI does not match with SI"); 5315 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5316 } 5317 return V; 5318 } 5319 5320 /// If we have a SelectInst that will likely profit from branch prediction, 5321 /// turn it into a branch. 5322 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5323 // Find all consecutive select instructions that share the same condition. 5324 SmallVector<SelectInst *, 2> ASI; 5325 ASI.push_back(SI); 5326 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5327 It != SI->getParent()->end(); ++It) { 5328 SelectInst *I = dyn_cast<SelectInst>(&*It); 5329 if (I && SI->getCondition() == I->getCondition()) { 5330 ASI.push_back(I); 5331 } else { 5332 break; 5333 } 5334 } 5335 5336 SelectInst *LastSI = ASI.back(); 5337 // Increment the current iterator to skip all the rest of select instructions 5338 // because they will be either "not lowered" or "all lowered" to branch. 5339 CurInstIterator = std::next(LastSI->getIterator()); 5340 5341 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5342 5343 // Can we convert the 'select' to CF ? 5344 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5345 SI->getMetadata(LLVMContext::MD_unpredictable)) 5346 return false; 5347 5348 TargetLowering::SelectSupportKind SelectKind; 5349 if (VectorCond) 5350 SelectKind = TargetLowering::VectorMaskSelect; 5351 else if (SI->getType()->isVectorTy()) 5352 SelectKind = TargetLowering::ScalarCondVectorVal; 5353 else 5354 SelectKind = TargetLowering::ScalarValSelect; 5355 5356 if (TLI->isSelectSupported(SelectKind) && 5357 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5358 return false; 5359 5360 ModifiedDT = true; 5361 5362 // Transform a sequence like this: 5363 // start: 5364 // %cmp = cmp uge i32 %a, %b 5365 // %sel = select i1 %cmp, i32 %c, i32 %d 5366 // 5367 // Into: 5368 // start: 5369 // %cmp = cmp uge i32 %a, %b 5370 // br i1 %cmp, label %select.true, label %select.false 5371 // select.true: 5372 // br label %select.end 5373 // select.false: 5374 // br label %select.end 5375 // select.end: 5376 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5377 // 5378 // In addition, we may sink instructions that produce %c or %d from 5379 // the entry block into the destination(s) of the new branch. 5380 // If the true or false blocks do not contain a sunken instruction, that 5381 // block and its branch may be optimized away. In that case, one side of the 5382 // first branch will point directly to select.end, and the corresponding PHI 5383 // predecessor block will be the start block. 5384 5385 // First, we split the block containing the select into 2 blocks. 5386 BasicBlock *StartBlock = SI->getParent(); 5387 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5388 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5389 5390 // Delete the unconditional branch that was just created by the split. 5391 StartBlock->getTerminator()->eraseFromParent(); 5392 5393 // These are the new basic blocks for the conditional branch. 5394 // At least one will become an actual new basic block. 5395 BasicBlock *TrueBlock = nullptr; 5396 BasicBlock *FalseBlock = nullptr; 5397 BranchInst *TrueBranch = nullptr; 5398 BranchInst *FalseBranch = nullptr; 5399 5400 // Sink expensive instructions into the conditional blocks to avoid executing 5401 // them speculatively. 5402 for (SelectInst *SI : ASI) { 5403 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5404 if (TrueBlock == nullptr) { 5405 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5406 EndBlock->getParent(), EndBlock); 5407 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5408 } 5409 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5410 TrueInst->moveBefore(TrueBranch); 5411 } 5412 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5413 if (FalseBlock == nullptr) { 5414 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5415 EndBlock->getParent(), EndBlock); 5416 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5417 } 5418 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5419 FalseInst->moveBefore(FalseBranch); 5420 } 5421 } 5422 5423 // If there was nothing to sink, then arbitrarily choose the 'false' side 5424 // for a new input value to the PHI. 5425 if (TrueBlock == FalseBlock) { 5426 assert(TrueBlock == nullptr && 5427 "Unexpected basic block transform while optimizing select"); 5428 5429 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5430 EndBlock->getParent(), EndBlock); 5431 BranchInst::Create(EndBlock, FalseBlock); 5432 } 5433 5434 // Insert the real conditional branch based on the original condition. 5435 // If we did not create a new block for one of the 'true' or 'false' paths 5436 // of the condition, it means that side of the branch goes to the end block 5437 // directly and the path originates from the start block from the point of 5438 // view of the new PHI. 5439 BasicBlock *TT, *FT; 5440 if (TrueBlock == nullptr) { 5441 TT = EndBlock; 5442 FT = FalseBlock; 5443 TrueBlock = StartBlock; 5444 } else if (FalseBlock == nullptr) { 5445 TT = TrueBlock; 5446 FT = EndBlock; 5447 FalseBlock = StartBlock; 5448 } else { 5449 TT = TrueBlock; 5450 FT = FalseBlock; 5451 } 5452 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5453 5454 SmallPtrSet<const Instruction *, 2> INS; 5455 INS.insert(ASI.begin(), ASI.end()); 5456 // Use reverse iterator because later select may use the value of the 5457 // earlier select, and we need to propagate value through earlier select 5458 // to get the PHI operand. 5459 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5460 SelectInst *SI = *It; 5461 // The select itself is replaced with a PHI Node. 5462 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5463 PN->takeName(SI); 5464 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5465 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5466 5467 SI->replaceAllUsesWith(PN); 5468 SI->eraseFromParent(); 5469 INS.erase(SI); 5470 ++NumSelectsExpanded; 5471 } 5472 5473 // Instruct OptimizeBlock to skip to the next block. 5474 CurInstIterator = StartBlock->end(); 5475 return true; 5476 } 5477 5478 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5479 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5480 int SplatElem = -1; 5481 for (unsigned i = 0; i < Mask.size(); ++i) { 5482 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5483 return false; 5484 SplatElem = Mask[i]; 5485 } 5486 5487 return true; 5488 } 5489 5490 /// Some targets have expensive vector shifts if the lanes aren't all the same 5491 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5492 /// it's often worth sinking a shufflevector splat down to its use so that 5493 /// codegen can spot all lanes are identical. 5494 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5495 BasicBlock *DefBB = SVI->getParent(); 5496 5497 // Only do this xform if variable vector shifts are particularly expensive. 5498 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5499 return false; 5500 5501 // We only expect better codegen by sinking a shuffle if we can recognise a 5502 // constant splat. 5503 if (!isBroadcastShuffle(SVI)) 5504 return false; 5505 5506 // InsertedShuffles - Only insert a shuffle in each block once. 5507 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5508 5509 bool MadeChange = false; 5510 for (User *U : SVI->users()) { 5511 Instruction *UI = cast<Instruction>(U); 5512 5513 // Figure out which BB this ext is used in. 5514 BasicBlock *UserBB = UI->getParent(); 5515 if (UserBB == DefBB) continue; 5516 5517 // For now only apply this when the splat is used by a shift instruction. 5518 if (!UI->isShift()) continue; 5519 5520 // Everything checks out, sink the shuffle if the user's block doesn't 5521 // already have a copy. 5522 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5523 5524 if (!InsertedShuffle) { 5525 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5526 assert(InsertPt != UserBB->end()); 5527 InsertedShuffle = 5528 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5529 SVI->getOperand(2), "", &*InsertPt); 5530 } 5531 5532 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5533 MadeChange = true; 5534 } 5535 5536 // If we removed all uses, nuke the shuffle. 5537 if (SVI->use_empty()) { 5538 SVI->eraseFromParent(); 5539 MadeChange = true; 5540 } 5541 5542 return MadeChange; 5543 } 5544 5545 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5546 if (!TLI || !DL) 5547 return false; 5548 5549 Value *Cond = SI->getCondition(); 5550 Type *OldType = Cond->getType(); 5551 LLVMContext &Context = Cond->getContext(); 5552 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5553 unsigned RegWidth = RegType.getSizeInBits(); 5554 5555 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5556 return false; 5557 5558 // If the register width is greater than the type width, expand the condition 5559 // of the switch instruction and each case constant to the width of the 5560 // register. By widening the type of the switch condition, subsequent 5561 // comparisons (for case comparisons) will not need to be extended to the 5562 // preferred register width, so we will potentially eliminate N-1 extends, 5563 // where N is the number of cases in the switch. 5564 auto *NewType = Type::getIntNTy(Context, RegWidth); 5565 5566 // Zero-extend the switch condition and case constants unless the switch 5567 // condition is a function argument that is already being sign-extended. 5568 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5569 // everything instead. 5570 Instruction::CastOps ExtType = Instruction::ZExt; 5571 if (auto *Arg = dyn_cast<Argument>(Cond)) 5572 if (Arg->hasSExtAttr()) 5573 ExtType = Instruction::SExt; 5574 5575 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5576 ExtInst->insertBefore(SI); 5577 SI->setCondition(ExtInst); 5578 for (auto Case : SI->cases()) { 5579 APInt NarrowConst = Case.getCaseValue()->getValue(); 5580 APInt WideConst = (ExtType == Instruction::ZExt) ? 5581 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5582 Case.setValue(ConstantInt::get(Context, WideConst)); 5583 } 5584 5585 return true; 5586 } 5587 5588 5589 namespace { 5590 /// \brief Helper class to promote a scalar operation to a vector one. 5591 /// This class is used to move downward extractelement transition. 5592 /// E.g., 5593 /// a = vector_op <2 x i32> 5594 /// b = extractelement <2 x i32> a, i32 0 5595 /// c = scalar_op b 5596 /// store c 5597 /// 5598 /// => 5599 /// a = vector_op <2 x i32> 5600 /// c = vector_op a (equivalent to scalar_op on the related lane) 5601 /// * d = extractelement <2 x i32> c, i32 0 5602 /// * store d 5603 /// Assuming both extractelement and store can be combine, we get rid of the 5604 /// transition. 5605 class VectorPromoteHelper { 5606 /// DataLayout associated with the current module. 5607 const DataLayout &DL; 5608 5609 /// Used to perform some checks on the legality of vector operations. 5610 const TargetLowering &TLI; 5611 5612 /// Used to estimated the cost of the promoted chain. 5613 const TargetTransformInfo &TTI; 5614 5615 /// The transition being moved downwards. 5616 Instruction *Transition; 5617 /// The sequence of instructions to be promoted. 5618 SmallVector<Instruction *, 4> InstsToBePromoted; 5619 /// Cost of combining a store and an extract. 5620 unsigned StoreExtractCombineCost; 5621 /// Instruction that will be combined with the transition. 5622 Instruction *CombineInst; 5623 5624 /// \brief The instruction that represents the current end of the transition. 5625 /// Since we are faking the promotion until we reach the end of the chain 5626 /// of computation, we need a way to get the current end of the transition. 5627 Instruction *getEndOfTransition() const { 5628 if (InstsToBePromoted.empty()) 5629 return Transition; 5630 return InstsToBePromoted.back(); 5631 } 5632 5633 /// \brief Return the index of the original value in the transition. 5634 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5635 /// c, is at index 0. 5636 unsigned getTransitionOriginalValueIdx() const { 5637 assert(isa<ExtractElementInst>(Transition) && 5638 "Other kind of transitions are not supported yet"); 5639 return 0; 5640 } 5641 5642 /// \brief Return the index of the index in the transition. 5643 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5644 /// is at index 1. 5645 unsigned getTransitionIdx() const { 5646 assert(isa<ExtractElementInst>(Transition) && 5647 "Other kind of transitions are not supported yet"); 5648 return 1; 5649 } 5650 5651 /// \brief Get the type of the transition. 5652 /// This is the type of the original value. 5653 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5654 /// transition is <2 x i32>. 5655 Type *getTransitionType() const { 5656 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5657 } 5658 5659 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5660 /// I.e., we have the following sequence: 5661 /// Def = Transition <ty1> a to <ty2> 5662 /// b = ToBePromoted <ty2> Def, ... 5663 /// => 5664 /// b = ToBePromoted <ty1> a, ... 5665 /// Def = Transition <ty1> ToBePromoted to <ty2> 5666 void promoteImpl(Instruction *ToBePromoted); 5667 5668 /// \brief Check whether or not it is profitable to promote all the 5669 /// instructions enqueued to be promoted. 5670 bool isProfitableToPromote() { 5671 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5672 unsigned Index = isa<ConstantInt>(ValIdx) 5673 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5674 : -1; 5675 Type *PromotedType = getTransitionType(); 5676 5677 StoreInst *ST = cast<StoreInst>(CombineInst); 5678 unsigned AS = ST->getPointerAddressSpace(); 5679 unsigned Align = ST->getAlignment(); 5680 // Check if this store is supported. 5681 if (!TLI.allowsMisalignedMemoryAccesses( 5682 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5683 Align)) { 5684 // If this is not supported, there is no way we can combine 5685 // the extract with the store. 5686 return false; 5687 } 5688 5689 // The scalar chain of computation has to pay for the transition 5690 // scalar to vector. 5691 // The vector chain has to account for the combining cost. 5692 uint64_t ScalarCost = 5693 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5694 uint64_t VectorCost = StoreExtractCombineCost; 5695 for (const auto &Inst : InstsToBePromoted) { 5696 // Compute the cost. 5697 // By construction, all instructions being promoted are arithmetic ones. 5698 // Moreover, one argument is a constant that can be viewed as a splat 5699 // constant. 5700 Value *Arg0 = Inst->getOperand(0); 5701 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5702 isa<ConstantFP>(Arg0); 5703 TargetTransformInfo::OperandValueKind Arg0OVK = 5704 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5705 : TargetTransformInfo::OK_AnyValue; 5706 TargetTransformInfo::OperandValueKind Arg1OVK = 5707 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5708 : TargetTransformInfo::OK_AnyValue; 5709 ScalarCost += TTI.getArithmeticInstrCost( 5710 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5711 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5712 Arg0OVK, Arg1OVK); 5713 } 5714 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5715 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5716 return ScalarCost > VectorCost; 5717 } 5718 5719 /// \brief Generate a constant vector with \p Val with the same 5720 /// number of elements as the transition. 5721 /// \p UseSplat defines whether or not \p Val should be replicated 5722 /// across the whole vector. 5723 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5724 /// otherwise we generate a vector with as many undef as possible: 5725 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5726 /// used at the index of the extract. 5727 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5728 unsigned ExtractIdx = UINT_MAX; 5729 if (!UseSplat) { 5730 // If we cannot determine where the constant must be, we have to 5731 // use a splat constant. 5732 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5733 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5734 ExtractIdx = CstVal->getSExtValue(); 5735 else 5736 UseSplat = true; 5737 } 5738 5739 unsigned End = getTransitionType()->getVectorNumElements(); 5740 if (UseSplat) 5741 return ConstantVector::getSplat(End, Val); 5742 5743 SmallVector<Constant *, 4> ConstVec; 5744 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5745 for (unsigned Idx = 0; Idx != End; ++Idx) { 5746 if (Idx == ExtractIdx) 5747 ConstVec.push_back(Val); 5748 else 5749 ConstVec.push_back(UndefVal); 5750 } 5751 return ConstantVector::get(ConstVec); 5752 } 5753 5754 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5755 /// in \p Use can trigger undefined behavior. 5756 static bool canCauseUndefinedBehavior(const Instruction *Use, 5757 unsigned OperandIdx) { 5758 // This is not safe to introduce undef when the operand is on 5759 // the right hand side of a division-like instruction. 5760 if (OperandIdx != 1) 5761 return false; 5762 switch (Use->getOpcode()) { 5763 default: 5764 return false; 5765 case Instruction::SDiv: 5766 case Instruction::UDiv: 5767 case Instruction::SRem: 5768 case Instruction::URem: 5769 return true; 5770 case Instruction::FDiv: 5771 case Instruction::FRem: 5772 return !Use->hasNoNaNs(); 5773 } 5774 llvm_unreachable(nullptr); 5775 } 5776 5777 public: 5778 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5779 const TargetTransformInfo &TTI, Instruction *Transition, 5780 unsigned CombineCost) 5781 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5782 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5783 assert(Transition && "Do not know how to promote null"); 5784 } 5785 5786 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5787 bool canPromote(const Instruction *ToBePromoted) const { 5788 // We could support CastInst too. 5789 return isa<BinaryOperator>(ToBePromoted); 5790 } 5791 5792 /// \brief Check if it is profitable to promote \p ToBePromoted 5793 /// by moving downward the transition through. 5794 bool shouldPromote(const Instruction *ToBePromoted) const { 5795 // Promote only if all the operands can be statically expanded. 5796 // Indeed, we do not want to introduce any new kind of transitions. 5797 for (const Use &U : ToBePromoted->operands()) { 5798 const Value *Val = U.get(); 5799 if (Val == getEndOfTransition()) { 5800 // If the use is a division and the transition is on the rhs, 5801 // we cannot promote the operation, otherwise we may create a 5802 // division by zero. 5803 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5804 return false; 5805 continue; 5806 } 5807 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5808 !isa<ConstantFP>(Val)) 5809 return false; 5810 } 5811 // Check that the resulting operation is legal. 5812 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5813 if (!ISDOpcode) 5814 return false; 5815 return StressStoreExtract || 5816 TLI.isOperationLegalOrCustom( 5817 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5818 } 5819 5820 /// \brief Check whether or not \p Use can be combined 5821 /// with the transition. 5822 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5823 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5824 5825 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5826 void enqueueForPromotion(Instruction *ToBePromoted) { 5827 InstsToBePromoted.push_back(ToBePromoted); 5828 } 5829 5830 /// \brief Set the instruction that will be combined with the transition. 5831 void recordCombineInstruction(Instruction *ToBeCombined) { 5832 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5833 CombineInst = ToBeCombined; 5834 } 5835 5836 /// \brief Promote all the instructions enqueued for promotion if it is 5837 /// is profitable. 5838 /// \return True if the promotion happened, false otherwise. 5839 bool promote() { 5840 // Check if there is something to promote. 5841 // Right now, if we do not have anything to combine with, 5842 // we assume the promotion is not profitable. 5843 if (InstsToBePromoted.empty() || !CombineInst) 5844 return false; 5845 5846 // Check cost. 5847 if (!StressStoreExtract && !isProfitableToPromote()) 5848 return false; 5849 5850 // Promote. 5851 for (auto &ToBePromoted : InstsToBePromoted) 5852 promoteImpl(ToBePromoted); 5853 InstsToBePromoted.clear(); 5854 return true; 5855 } 5856 }; 5857 } // End of anonymous namespace. 5858 5859 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5860 // At this point, we know that all the operands of ToBePromoted but Def 5861 // can be statically promoted. 5862 // For Def, we need to use its parameter in ToBePromoted: 5863 // b = ToBePromoted ty1 a 5864 // Def = Transition ty1 b to ty2 5865 // Move the transition down. 5866 // 1. Replace all uses of the promoted operation by the transition. 5867 // = ... b => = ... Def. 5868 assert(ToBePromoted->getType() == Transition->getType() && 5869 "The type of the result of the transition does not match " 5870 "the final type"); 5871 ToBePromoted->replaceAllUsesWith(Transition); 5872 // 2. Update the type of the uses. 5873 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5874 Type *TransitionTy = getTransitionType(); 5875 ToBePromoted->mutateType(TransitionTy); 5876 // 3. Update all the operands of the promoted operation with promoted 5877 // operands. 5878 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5879 for (Use &U : ToBePromoted->operands()) { 5880 Value *Val = U.get(); 5881 Value *NewVal = nullptr; 5882 if (Val == Transition) 5883 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5884 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5885 isa<ConstantFP>(Val)) { 5886 // Use a splat constant if it is not safe to use undef. 5887 NewVal = getConstantVector( 5888 cast<Constant>(Val), 5889 isa<UndefValue>(Val) || 5890 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5891 } else 5892 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5893 "this?"); 5894 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5895 } 5896 Transition->removeFromParent(); 5897 Transition->insertAfter(ToBePromoted); 5898 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5899 } 5900 5901 /// Some targets can do store(extractelement) with one instruction. 5902 /// Try to push the extractelement towards the stores when the target 5903 /// has this feature and this is profitable. 5904 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5905 unsigned CombineCost = UINT_MAX; 5906 if (DisableStoreExtract || !TLI || 5907 (!StressStoreExtract && 5908 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5909 Inst->getOperand(1), CombineCost))) 5910 return false; 5911 5912 // At this point we know that Inst is a vector to scalar transition. 5913 // Try to move it down the def-use chain, until: 5914 // - We can combine the transition with its single use 5915 // => we got rid of the transition. 5916 // - We escape the current basic block 5917 // => we would need to check that we are moving it at a cheaper place and 5918 // we do not do that for now. 5919 BasicBlock *Parent = Inst->getParent(); 5920 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5921 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5922 // If the transition has more than one use, assume this is not going to be 5923 // beneficial. 5924 while (Inst->hasOneUse()) { 5925 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5926 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5927 5928 if (ToBePromoted->getParent() != Parent) { 5929 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5930 << ToBePromoted->getParent()->getName() 5931 << ") than the transition (" << Parent->getName() << ").\n"); 5932 return false; 5933 } 5934 5935 if (VPH.canCombine(ToBePromoted)) { 5936 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5937 << "will be combined with: " << *ToBePromoted << '\n'); 5938 VPH.recordCombineInstruction(ToBePromoted); 5939 bool Changed = VPH.promote(); 5940 NumStoreExtractExposed += Changed; 5941 return Changed; 5942 } 5943 5944 DEBUG(dbgs() << "Try promoting.\n"); 5945 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5946 return false; 5947 5948 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5949 5950 VPH.enqueueForPromotion(ToBePromoted); 5951 Inst = ToBePromoted; 5952 } 5953 return false; 5954 } 5955 5956 /// For the instruction sequence of store below, F and I values 5957 /// are bundled together as an i64 value before being stored into memory. 5958 /// Sometimes it is more efficent to generate separate stores for F and I, 5959 /// which can remove the bitwise instructions or sink them to colder places. 5960 /// 5961 /// (store (or (zext (bitcast F to i32) to i64), 5962 /// (shl (zext I to i64), 32)), addr) --> 5963 /// (store F, addr) and (store I, addr+4) 5964 /// 5965 /// Similarly, splitting for other merged store can also be beneficial, like: 5966 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5967 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5968 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5969 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5970 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5971 /// 5972 /// We allow each target to determine specifically which kind of splitting is 5973 /// supported. 5974 /// 5975 /// The store patterns are commonly seen from the simple code snippet below 5976 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5977 /// void goo(const std::pair<int, float> &); 5978 /// hoo() { 5979 /// ... 5980 /// goo(std::make_pair(tmp, ftmp)); 5981 /// ... 5982 /// } 5983 /// 5984 /// Although we already have similar splitting in DAG Combine, we duplicate 5985 /// it in CodeGenPrepare to catch the case in which pattern is across 5986 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5987 /// during code expansion. 5988 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5989 const TargetLowering &TLI) { 5990 // Handle simple but common cases only. 5991 Type *StoreType = SI.getValueOperand()->getType(); 5992 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5993 DL.getTypeSizeInBits(StoreType) == 0) 5994 return false; 5995 5996 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5997 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5998 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5999 DL.getTypeSizeInBits(SplitStoreType)) 6000 return false; 6001 6002 // Match the following patterns: 6003 // (store (or (zext LValue to i64), 6004 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6005 // or 6006 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6007 // (zext LValue to i64), 6008 // Expect both operands of OR and the first operand of SHL have only 6009 // one use. 6010 Value *LValue, *HValue; 6011 if (!match(SI.getValueOperand(), 6012 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6013 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6014 m_SpecificInt(HalfValBitSize)))))) 6015 return false; 6016 6017 // Check LValue and HValue are int with size less or equal than 32. 6018 if (!LValue->getType()->isIntegerTy() || 6019 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6020 !HValue->getType()->isIntegerTy() || 6021 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6022 return false; 6023 6024 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6025 // as the input of target query. 6026 auto *LBC = dyn_cast<BitCastInst>(LValue); 6027 auto *HBC = dyn_cast<BitCastInst>(HValue); 6028 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6029 : EVT::getEVT(LValue->getType()); 6030 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6031 : EVT::getEVT(HValue->getType()); 6032 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6033 return false; 6034 6035 // Start to split store. 6036 IRBuilder<> Builder(SI.getContext()); 6037 Builder.SetInsertPoint(&SI); 6038 6039 // If LValue/HValue is a bitcast in another BB, create a new one in current 6040 // BB so it may be merged with the splitted stores by dag combiner. 6041 if (LBC && LBC->getParent() != SI.getParent()) 6042 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6043 if (HBC && HBC->getParent() != SI.getParent()) 6044 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6045 6046 auto CreateSplitStore = [&](Value *V, bool Upper) { 6047 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6048 Value *Addr = Builder.CreateBitCast( 6049 SI.getOperand(1), 6050 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6051 if (Upper) 6052 Addr = Builder.CreateGEP( 6053 SplitStoreType, Addr, 6054 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6055 Builder.CreateAlignedStore( 6056 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6057 }; 6058 6059 CreateSplitStore(LValue, false); 6060 CreateSplitStore(HValue, true); 6061 6062 // Delete the old store. 6063 SI.eraseFromParent(); 6064 return true; 6065 } 6066 6067 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6068 // Bail out if we inserted the instruction to prevent optimizations from 6069 // stepping on each other's toes. 6070 if (InsertedInsts.count(I)) 6071 return false; 6072 6073 if (PHINode *P = dyn_cast<PHINode>(I)) { 6074 // It is possible for very late stage optimizations (such as SimplifyCFG) 6075 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6076 // trivial PHI, go ahead and zap it here. 6077 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6078 P->replaceAllUsesWith(V); 6079 P->eraseFromParent(); 6080 ++NumPHIsElim; 6081 return true; 6082 } 6083 return false; 6084 } 6085 6086 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6087 // If the source of the cast is a constant, then this should have 6088 // already been constant folded. The only reason NOT to constant fold 6089 // it is if something (e.g. LSR) was careful to place the constant 6090 // evaluation in a block other than then one that uses it (e.g. to hoist 6091 // the address of globals out of a loop). If this is the case, we don't 6092 // want to forward-subst the cast. 6093 if (isa<Constant>(CI->getOperand(0))) 6094 return false; 6095 6096 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6097 return true; 6098 6099 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6100 /// Sink a zext or sext into its user blocks if the target type doesn't 6101 /// fit in one register 6102 if (TLI && 6103 TLI->getTypeAction(CI->getContext(), 6104 TLI->getValueType(*DL, CI->getType())) == 6105 TargetLowering::TypeExpandInteger) { 6106 return SinkCast(CI); 6107 } else { 6108 bool MadeChange = optimizeExt(I); 6109 return MadeChange | optimizeExtUses(I); 6110 } 6111 } 6112 return false; 6113 } 6114 6115 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6116 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6117 return OptimizeCmpExpression(CI, TLI); 6118 6119 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6120 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6121 if (TLI) { 6122 bool Modified = optimizeLoadExt(LI); 6123 unsigned AS = LI->getPointerAddressSpace(); 6124 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6125 return Modified; 6126 } 6127 return false; 6128 } 6129 6130 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6131 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6132 return true; 6133 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6134 if (TLI) { 6135 unsigned AS = SI->getPointerAddressSpace(); 6136 return optimizeMemoryInst(I, SI->getOperand(1), 6137 SI->getOperand(0)->getType(), AS); 6138 } 6139 return false; 6140 } 6141 6142 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6143 unsigned AS = RMW->getPointerAddressSpace(); 6144 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6145 RMW->getType(), AS); 6146 } 6147 6148 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6149 unsigned AS = CmpX->getPointerAddressSpace(); 6150 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6151 CmpX->getCompareOperand()->getType(), AS); 6152 } 6153 6154 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6155 6156 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6157 EnableAndCmpSinking && TLI) 6158 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6159 6160 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6161 BinOp->getOpcode() == Instruction::LShr)) { 6162 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6163 if (TLI && CI && TLI->hasExtractBitsInsn()) 6164 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6165 6166 return false; 6167 } 6168 6169 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6170 if (GEPI->hasAllZeroIndices()) { 6171 /// The GEP operand must be a pointer, so must its result -> BitCast 6172 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6173 GEPI->getName(), GEPI); 6174 GEPI->replaceAllUsesWith(NC); 6175 GEPI->eraseFromParent(); 6176 ++NumGEPsElim; 6177 optimizeInst(NC, ModifiedDT); 6178 return true; 6179 } 6180 return false; 6181 } 6182 6183 if (CallInst *CI = dyn_cast<CallInst>(I)) 6184 return optimizeCallInst(CI, ModifiedDT); 6185 6186 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6187 return optimizeSelectInst(SI); 6188 6189 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6190 return optimizeShuffleVectorInst(SVI); 6191 6192 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6193 return optimizeSwitchInst(Switch); 6194 6195 if (isa<ExtractElementInst>(I)) 6196 return optimizeExtractElementInst(I); 6197 6198 return false; 6199 } 6200 6201 /// Given an OR instruction, check to see if this is a bitreverse 6202 /// idiom. If so, insert the new intrinsic and return true. 6203 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6204 const TargetLowering &TLI) { 6205 if (!I.getType()->isIntegerTy() || 6206 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6207 TLI.getValueType(DL, I.getType(), true))) 6208 return false; 6209 6210 SmallVector<Instruction*, 4> Insts; 6211 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6212 return false; 6213 Instruction *LastInst = Insts.back(); 6214 I.replaceAllUsesWith(LastInst); 6215 RecursivelyDeleteTriviallyDeadInstructions(&I); 6216 return true; 6217 } 6218 6219 // In this pass we look for GEP and cast instructions that are used 6220 // across basic blocks and rewrite them to improve basic-block-at-a-time 6221 // selection. 6222 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6223 SunkAddrs.clear(); 6224 bool MadeChange = false; 6225 6226 CurInstIterator = BB.begin(); 6227 while (CurInstIterator != BB.end()) { 6228 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6229 if (ModifiedDT) 6230 return true; 6231 } 6232 6233 bool MadeBitReverse = true; 6234 while (TLI && MadeBitReverse) { 6235 MadeBitReverse = false; 6236 for (auto &I : reverse(BB)) { 6237 if (makeBitReverse(I, *DL, *TLI)) { 6238 MadeBitReverse = MadeChange = true; 6239 ModifiedDT = true; 6240 break; 6241 } 6242 } 6243 } 6244 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6245 6246 return MadeChange; 6247 } 6248 6249 // llvm.dbg.value is far away from the value then iSel may not be able 6250 // handle it properly. iSel will drop llvm.dbg.value if it can not 6251 // find a node corresponding to the value. 6252 bool CodeGenPrepare::placeDbgValues(Function &F) { 6253 bool MadeChange = false; 6254 for (BasicBlock &BB : F) { 6255 Instruction *PrevNonDbgInst = nullptr; 6256 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6257 Instruction *Insn = &*BI++; 6258 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6259 // Leave dbg.values that refer to an alloca alone. These 6260 // instrinsics describe the address of a variable (= the alloca) 6261 // being taken. They should not be moved next to the alloca 6262 // (and to the beginning of the scope), but rather stay close to 6263 // where said address is used. 6264 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6265 PrevNonDbgInst = Insn; 6266 continue; 6267 } 6268 6269 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6270 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6271 // If VI is a phi in a block with an EHPad terminator, we can't insert 6272 // after it. 6273 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6274 continue; 6275 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6276 DVI->removeFromParent(); 6277 if (isa<PHINode>(VI)) 6278 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6279 else 6280 DVI->insertAfter(VI); 6281 MadeChange = true; 6282 ++NumDbgValueMoved; 6283 } 6284 } 6285 } 6286 return MadeChange; 6287 } 6288 6289 /// \brief Scale down both weights to fit into uint32_t. 6290 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6291 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6292 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 6293 NewTrue = NewTrue / Scale; 6294 NewFalse = NewFalse / Scale; 6295 } 6296 6297 /// \brief Some targets prefer to split a conditional branch like: 6298 /// \code 6299 /// %0 = icmp ne i32 %a, 0 6300 /// %1 = icmp ne i32 %b, 0 6301 /// %or.cond = or i1 %0, %1 6302 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6303 /// \endcode 6304 /// into multiple branch instructions like: 6305 /// \code 6306 /// bb1: 6307 /// %0 = icmp ne i32 %a, 0 6308 /// br i1 %0, label %TrueBB, label %bb2 6309 /// bb2: 6310 /// %1 = icmp ne i32 %b, 0 6311 /// br i1 %1, label %TrueBB, label %FalseBB 6312 /// \endcode 6313 /// This usually allows instruction selection to do even further optimizations 6314 /// and combine the compare with the branch instruction. Currently this is 6315 /// applied for targets which have "cheap" jump instructions. 6316 /// 6317 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6318 /// 6319 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6320 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6321 return false; 6322 6323 bool MadeChange = false; 6324 for (auto &BB : F) { 6325 // Does this BB end with the following? 6326 // %cond1 = icmp|fcmp|binary instruction ... 6327 // %cond2 = icmp|fcmp|binary instruction ... 6328 // %cond.or = or|and i1 %cond1, cond2 6329 // br i1 %cond.or label %dest1, label %dest2" 6330 BinaryOperator *LogicOp; 6331 BasicBlock *TBB, *FBB; 6332 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6333 continue; 6334 6335 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6336 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6337 continue; 6338 6339 unsigned Opc; 6340 Value *Cond1, *Cond2; 6341 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6342 m_OneUse(m_Value(Cond2))))) 6343 Opc = Instruction::And; 6344 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6345 m_OneUse(m_Value(Cond2))))) 6346 Opc = Instruction::Or; 6347 else 6348 continue; 6349 6350 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6351 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6352 continue; 6353 6354 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6355 6356 // Create a new BB. 6357 auto TmpBB = 6358 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6359 BB.getParent(), BB.getNextNode()); 6360 6361 // Update original basic block by using the first condition directly by the 6362 // branch instruction and removing the no longer needed and/or instruction. 6363 Br1->setCondition(Cond1); 6364 LogicOp->eraseFromParent(); 6365 6366 // Depending on the conditon we have to either replace the true or the false 6367 // successor of the original branch instruction. 6368 if (Opc == Instruction::And) 6369 Br1->setSuccessor(0, TmpBB); 6370 else 6371 Br1->setSuccessor(1, TmpBB); 6372 6373 // Fill in the new basic block. 6374 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6375 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6376 I->removeFromParent(); 6377 I->insertBefore(Br2); 6378 } 6379 6380 // Update PHI nodes in both successors. The original BB needs to be 6381 // replaced in one successor's PHI nodes, because the branch comes now from 6382 // the newly generated BB (NewBB). In the other successor we need to add one 6383 // incoming edge to the PHI nodes, because both branch instructions target 6384 // now the same successor. Depending on the original branch condition 6385 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6386 // we perform the correct update for the PHI nodes. 6387 // This doesn't change the successor order of the just created branch 6388 // instruction (or any other instruction). 6389 if (Opc == Instruction::Or) 6390 std::swap(TBB, FBB); 6391 6392 // Replace the old BB with the new BB. 6393 for (auto &I : *TBB) { 6394 PHINode *PN = dyn_cast<PHINode>(&I); 6395 if (!PN) 6396 break; 6397 int i; 6398 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 6399 PN->setIncomingBlock(i, TmpBB); 6400 } 6401 6402 // Add another incoming edge form the new BB. 6403 for (auto &I : *FBB) { 6404 PHINode *PN = dyn_cast<PHINode>(&I); 6405 if (!PN) 6406 break; 6407 auto *Val = PN->getIncomingValueForBlock(&BB); 6408 PN->addIncoming(Val, TmpBB); 6409 } 6410 6411 // Update the branch weights (from SelectionDAGBuilder:: 6412 // FindMergedConditions). 6413 if (Opc == Instruction::Or) { 6414 // Codegen X | Y as: 6415 // BB1: 6416 // jmp_if_X TBB 6417 // jmp TmpBB 6418 // TmpBB: 6419 // jmp_if_Y TBB 6420 // jmp FBB 6421 // 6422 6423 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6424 // The requirement is that 6425 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6426 // = TrueProb for orignal BB. 6427 // Assuming the orignal weights are A and B, one choice is to set BB1's 6428 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6429 // assumes that 6430 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6431 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6432 // TmpBB, but the math is more complicated. 6433 uint64_t TrueWeight, FalseWeight; 6434 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6435 uint64_t NewTrueWeight = TrueWeight; 6436 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6437 scaleWeights(NewTrueWeight, NewFalseWeight); 6438 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6439 .createBranchWeights(TrueWeight, FalseWeight)); 6440 6441 NewTrueWeight = TrueWeight; 6442 NewFalseWeight = 2 * FalseWeight; 6443 scaleWeights(NewTrueWeight, NewFalseWeight); 6444 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6445 .createBranchWeights(TrueWeight, FalseWeight)); 6446 } 6447 } else { 6448 // Codegen X & Y as: 6449 // BB1: 6450 // jmp_if_X TmpBB 6451 // jmp FBB 6452 // TmpBB: 6453 // jmp_if_Y TBB 6454 // jmp FBB 6455 // 6456 // This requires creation of TmpBB after CurBB. 6457 6458 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6459 // The requirement is that 6460 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6461 // = FalseProb for orignal BB. 6462 // Assuming the orignal weights are A and B, one choice is to set BB1's 6463 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6464 // assumes that 6465 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6466 uint64_t TrueWeight, FalseWeight; 6467 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6468 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6469 uint64_t NewFalseWeight = FalseWeight; 6470 scaleWeights(NewTrueWeight, NewFalseWeight); 6471 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6472 .createBranchWeights(TrueWeight, FalseWeight)); 6473 6474 NewTrueWeight = 2 * TrueWeight; 6475 NewFalseWeight = FalseWeight; 6476 scaleWeights(NewTrueWeight, NewFalseWeight); 6477 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6478 .createBranchWeights(TrueWeight, FalseWeight)); 6479 } 6480 } 6481 6482 // Note: No point in getting fancy here, since the DT info is never 6483 // available to CodeGenPrepare. 6484 ModifiedDT = true; 6485 6486 MadeChange = true; 6487 6488 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6489 TmpBB->dump()); 6490 } 6491 return MadeChange; 6492 } 6493