1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MachineValueType.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 89 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <limits> 96 #include <memory> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define DEBUG_TYPE "codegenprepare" 104 105 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 106 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 107 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 109 "sunken Cmps"); 110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 111 "of sunken Casts"); 112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 113 "computations were sunk"); 114 STATISTIC(NumMemoryInstsPhiCreated, 115 "Number of phis created when address " 116 "computations were sunk to memory instructions"); 117 STATISTIC(NumMemoryInstsSelectCreated, 118 "Number of select created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 121 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 122 STATISTIC(NumAndsAdded, 123 "Number of and mask instructions added to form ext loads"); 124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 125 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 129 130 static cl::opt<bool> DisableBranchOpts( 131 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 132 cl::desc("Disable branch optimizations in CodeGenPrepare")); 133 134 static cl::opt<bool> 135 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable GC optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> DisableSelectToBranch( 139 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 140 cl::desc("Disable select to branch conversion.")); 141 142 static cl::opt<bool> AddrSinkUsingGEPs( 143 "addr-sink-using-gep", cl::Hidden, cl::init(true), 144 cl::desc("Address sinking in CGP using GEPs.")); 145 146 static cl::opt<bool> EnableAndCmpSinking( 147 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 148 cl::desc("Enable sinkinig and/cmp into branches.")); 149 150 static cl::opt<bool> DisableStoreExtract( 151 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 152 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 153 154 static cl::opt<bool> StressStoreExtract( 155 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> DisableExtLdPromotion( 159 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 160 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 161 "CodeGenPrepare")); 162 163 static cl::opt<bool> StressExtLdPromotion( 164 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 166 "optimization in CodeGenPrepare")); 167 168 static cl::opt<bool> DisablePreheaderProtect( 169 "disable-preheader-prot", cl::Hidden, cl::init(false), 170 cl::desc("Disable protection against removing loop preheaders")); 171 172 static cl::opt<bool> ProfileGuidedSectionPrefix( 173 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 174 cl::desc("Use profile info to add section prefix for hot/cold functions")); 175 176 static cl::opt<unsigned> FreqRatioToSkipMerge( 177 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 178 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 179 "(frequency of destination block) is greater than this ratio")); 180 181 static cl::opt<bool> ForceSplitStore( 182 "force-split-store", cl::Hidden, cl::init(false), 183 cl::desc("Force store splitting no matter what the target query says.")); 184 185 static cl::opt<bool> 186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 187 cl::desc("Enable merging of redundant sexts when one is dominating" 188 " the other."), cl::init(true)); 189 190 static cl::opt<bool> DisableComplexAddrModes( 191 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 192 cl::desc("Disables combining addressing modes with different parts " 193 "in optimizeMemoryInst.")); 194 195 static cl::opt<bool> 196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 197 cl::desc("Allow creation of Phis in Address sinking.")); 198 199 static cl::opt<bool> 200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 201 cl::desc("Allow creation of selects in Address sinking.")); 202 203 static cl::opt<bool> AddrSinkCombineBaseReg( 204 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 205 cl::desc("Allow combining of BaseReg field in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseGV( 208 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseGV field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseOffs( 212 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineScaledReg( 216 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 218 219 static cl::opt<bool> 220 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 221 cl::init(true), 222 cl::desc("Enable splitting large offset of GEP.")); 223 224 namespace { 225 226 enum ExtType { 227 ZeroExtension, // Zero extension has been seen. 228 SignExtension, // Sign extension has been seen. 229 BothExtension // This extension type is used if we saw sext after 230 // ZeroExtension had been set, or if we saw zext after 231 // SignExtension had been set. It makes the type 232 // information of a promoted instruction invalid. 233 }; 234 235 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 236 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 237 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 238 using SExts = SmallVector<Instruction *, 16>; 239 using ValueToSExts = DenseMap<Value *, SExts>; 240 241 class TypePromotionTransaction; 242 243 class CodeGenPrepare : public FunctionPass { 244 const TargetMachine *TM = nullptr; 245 const TargetSubtargetInfo *SubtargetInfo; 246 const TargetLowering *TLI = nullptr; 247 const TargetRegisterInfo *TRI; 248 const TargetTransformInfo *TTI = nullptr; 249 const TargetLibraryInfo *TLInfo; 250 const LoopInfo *LI; 251 std::unique_ptr<BlockFrequencyInfo> BFI; 252 std::unique_ptr<BranchProbabilityInfo> BPI; 253 254 /// As we scan instructions optimizing them, this is the next instruction 255 /// to optimize. Transforms that can invalidate this should update it. 256 BasicBlock::iterator CurInstIterator; 257 258 /// Keeps track of non-local addresses that have been sunk into a block. 259 /// This allows us to avoid inserting duplicate code for blocks with 260 /// multiple load/stores of the same address. The usage of WeakTrackingVH 261 /// enables SunkAddrs to be treated as a cache whose entries can be 262 /// invalidated if a sunken address computation has been erased. 263 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 264 265 /// Keeps track of all instructions inserted for the current function. 266 SetOfInstrs InsertedInsts; 267 268 /// Keeps track of the type of the related instruction before their 269 /// promotion for the current function. 270 InstrToOrigTy PromotedInsts; 271 272 /// Keep track of instructions removed during promotion. 273 SetOfInstrs RemovedInsts; 274 275 /// Keep track of sext chains based on their initial value. 276 DenseMap<Value *, Instruction *> SeenChainsForSExt; 277 278 /// Keep track of GEPs accessing the same data structures such as structs or 279 /// arrays that are candidates to be split later because of their large 280 /// size. 281 MapVector< 282 AssertingVH<Value>, 283 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 284 LargeOffsetGEPMap; 285 286 /// Keep track of new GEP base after splitting the GEPs having large offset. 287 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 288 289 /// Map serial numbers to Large offset GEPs. 290 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 291 292 /// Keep track of SExt promoted. 293 ValueToSExts ValToSExtendedUses; 294 295 /// True if CFG is modified in any way. 296 bool ModifiedDT; 297 298 /// True if optimizing for size. 299 bool OptSize; 300 301 /// DataLayout for the Function being processed. 302 const DataLayout *DL = nullptr; 303 304 public: 305 static char ID; // Pass identification, replacement for typeid 306 307 CodeGenPrepare() : FunctionPass(ID) { 308 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 309 } 310 311 bool runOnFunction(Function &F) override; 312 313 StringRef getPassName() const override { return "CodeGen Prepare"; } 314 315 void getAnalysisUsage(AnalysisUsage &AU) const override { 316 // FIXME: When we can selectively preserve passes, preserve the domtree. 317 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 318 AU.addRequired<TargetLibraryInfoWrapperPass>(); 319 AU.addRequired<TargetTransformInfoWrapperPass>(); 320 AU.addRequired<LoopInfoWrapperPass>(); 321 } 322 323 private: 324 template <typename F> 325 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 326 // Substituting can cause recursive simplifications, which can invalidate 327 // our iterator. Use a WeakTrackingVH to hold onto it in case this 328 // happens. 329 Value *CurValue = &*CurInstIterator; 330 WeakTrackingVH IterHandle(CurValue); 331 332 f(); 333 334 // If the iterator instruction was recursively deleted, start over at the 335 // start of the block. 336 if (IterHandle != CurValue) { 337 CurInstIterator = BB->begin(); 338 SunkAddrs.clear(); 339 } 340 } 341 342 bool eliminateFallThrough(Function &F); 343 bool eliminateMostlyEmptyBlocks(Function &F); 344 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 345 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 346 void eliminateMostlyEmptyBlock(BasicBlock *BB); 347 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 348 bool isPreheader); 349 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 350 bool optimizeInst(Instruction *I, bool &ModifiedDT); 351 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 352 Type *AccessTy, unsigned AddrSpace); 353 bool optimizeInlineAsmInst(CallInst *CS); 354 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 355 bool optimizeExt(Instruction *&I); 356 bool optimizeExtUses(Instruction *I); 357 bool optimizeLoadExt(LoadInst *Load); 358 bool optimizeSelectInst(SelectInst *SI); 359 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 360 bool optimizeSwitchInst(SwitchInst *SI); 361 bool optimizeExtractElementInst(Instruction *Inst); 362 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 363 bool placeDbgValues(Function &F); 364 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 365 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 366 bool tryToPromoteExts(TypePromotionTransaction &TPT, 367 const SmallVectorImpl<Instruction *> &Exts, 368 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 369 unsigned CreatedInstsCost = 0); 370 bool mergeSExts(Function &F); 371 bool splitLargeGEPOffsets(); 372 bool performAddressTypePromotion( 373 Instruction *&Inst, 374 bool AllowPromotionWithoutCommonHeader, 375 bool HasPromoted, TypePromotionTransaction &TPT, 376 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 377 bool splitBranchCondition(Function &F); 378 bool simplifyOffsetableRelocate(Instruction &I); 379 }; 380 381 } // end anonymous namespace 382 383 char CodeGenPrepare::ID = 0; 384 385 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 386 "Optimize for code generation", false, false) 387 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 388 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 389 "Optimize for code generation", false, false) 390 391 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 392 393 bool CodeGenPrepare::runOnFunction(Function &F) { 394 if (skipFunction(F)) 395 return false; 396 397 DL = &F.getParent()->getDataLayout(); 398 399 bool EverMadeChange = false; 400 // Clear per function information. 401 InsertedInsts.clear(); 402 PromotedInsts.clear(); 403 404 ModifiedDT = false; 405 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 406 TM = &TPC->getTM<TargetMachine>(); 407 SubtargetInfo = TM->getSubtargetImpl(F); 408 TLI = SubtargetInfo->getTargetLowering(); 409 TRI = SubtargetInfo->getRegisterInfo(); 410 } 411 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 412 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 413 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 414 BPI.reset(new BranchProbabilityInfo(F, *LI)); 415 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 416 OptSize = F.optForSize(); 417 418 ProfileSummaryInfo *PSI = 419 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 420 if (ProfileGuidedSectionPrefix) { 421 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 422 F.setSectionPrefix(".hot"); 423 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 424 F.setSectionPrefix(".unlikely"); 425 } 426 427 /// This optimization identifies DIV instructions that can be 428 /// profitably bypassed and carried out with a shorter, faster divide. 429 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 430 TLI->isSlowDivBypassed()) { 431 const DenseMap<unsigned int, unsigned int> &BypassWidths = 432 TLI->getBypassSlowDivWidths(); 433 BasicBlock* BB = &*F.begin(); 434 while (BB != nullptr) { 435 // bypassSlowDivision may create new BBs, but we don't want to reapply the 436 // optimization to those blocks. 437 BasicBlock* Next = BB->getNextNode(); 438 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 439 BB = Next; 440 } 441 } 442 443 // Eliminate blocks that contain only PHI nodes and an 444 // unconditional branch. 445 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 446 447 if (!DisableBranchOpts) 448 EverMadeChange |= splitBranchCondition(F); 449 450 // Split some critical edges where one of the sources is an indirect branch, 451 // to help generate sane code for PHIs involving such edges. 452 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 453 454 bool MadeChange = true; 455 while (MadeChange) { 456 MadeChange = false; 457 for (Function::iterator I = F.begin(); I != F.end(); ) { 458 BasicBlock *BB = &*I++; 459 bool ModifiedDTOnIteration = false; 460 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 461 462 // Restart BB iteration if the dominator tree of the Function was changed 463 if (ModifiedDTOnIteration) 464 break; 465 } 466 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 467 MadeChange |= mergeSExts(F); 468 if (!LargeOffsetGEPMap.empty()) 469 MadeChange |= splitLargeGEPOffsets(); 470 471 // Really free removed instructions during promotion. 472 for (Instruction *I : RemovedInsts) 473 I->deleteValue(); 474 475 EverMadeChange |= MadeChange; 476 SeenChainsForSExt.clear(); 477 ValToSExtendedUses.clear(); 478 RemovedInsts.clear(); 479 LargeOffsetGEPMap.clear(); 480 LargeOffsetGEPID.clear(); 481 } 482 483 SunkAddrs.clear(); 484 485 if (!DisableBranchOpts) { 486 MadeChange = false; 487 // Use a set vector to get deterministic iteration order. The order the 488 // blocks are removed may affect whether or not PHI nodes in successors 489 // are removed. 490 SmallSetVector<BasicBlock*, 8> WorkList; 491 for (BasicBlock &BB : F) { 492 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 493 MadeChange |= ConstantFoldTerminator(&BB, true); 494 if (!MadeChange) continue; 495 496 for (SmallVectorImpl<BasicBlock*>::iterator 497 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 498 if (pred_begin(*II) == pred_end(*II)) 499 WorkList.insert(*II); 500 } 501 502 // Delete the dead blocks and any of their dead successors. 503 MadeChange |= !WorkList.empty(); 504 while (!WorkList.empty()) { 505 BasicBlock *BB = WorkList.pop_back_val(); 506 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 507 508 DeleteDeadBlock(BB); 509 510 for (SmallVectorImpl<BasicBlock*>::iterator 511 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 512 if (pred_begin(*II) == pred_end(*II)) 513 WorkList.insert(*II); 514 } 515 516 // Merge pairs of basic blocks with unconditional branches, connected by 517 // a single edge. 518 if (EverMadeChange || MadeChange) 519 MadeChange |= eliminateFallThrough(F); 520 521 EverMadeChange |= MadeChange; 522 } 523 524 if (!DisableGCOpts) { 525 SmallVector<Instruction *, 2> Statepoints; 526 for (BasicBlock &BB : F) 527 for (Instruction &I : BB) 528 if (isStatepoint(I)) 529 Statepoints.push_back(&I); 530 for (auto &I : Statepoints) 531 EverMadeChange |= simplifyOffsetableRelocate(*I); 532 } 533 534 // Do this last to clean up use-before-def scenarios introduced by other 535 // preparatory transforms. 536 EverMadeChange |= placeDbgValues(F); 537 538 return EverMadeChange; 539 } 540 541 /// Merge basic blocks which are connected by a single edge, where one of the 542 /// basic blocks has a single successor pointing to the other basic block, 543 /// which has a single predecessor. 544 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 545 bool Changed = false; 546 // Scan all of the blocks in the function, except for the entry block. 547 // Use a temporary array to avoid iterator being invalidated when 548 // deleting blocks. 549 SmallVector<WeakTrackingVH, 16> Blocks; 550 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 551 Blocks.push_back(&Block); 552 553 for (auto &Block : Blocks) { 554 auto *BB = cast_or_null<BasicBlock>(Block); 555 if (!BB) 556 continue; 557 // If the destination block has a single pred, then this is a trivial 558 // edge, just collapse it. 559 BasicBlock *SinglePred = BB->getSinglePredecessor(); 560 561 // Don't merge if BB's address is taken. 562 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 563 564 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 565 if (Term && !Term->isConditional()) { 566 Changed = true; 567 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 568 569 // Merge BB into SinglePred and delete it. 570 MergeBlockIntoPredecessor(BB); 571 } 572 } 573 return Changed; 574 } 575 576 /// Find a destination block from BB if BB is mergeable empty block. 577 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 578 // If this block doesn't end with an uncond branch, ignore it. 579 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 580 if (!BI || !BI->isUnconditional()) 581 return nullptr; 582 583 // If the instruction before the branch (skipping debug info) isn't a phi 584 // node, then other stuff is happening here. 585 BasicBlock::iterator BBI = BI->getIterator(); 586 if (BBI != BB->begin()) { 587 --BBI; 588 while (isa<DbgInfoIntrinsic>(BBI)) { 589 if (BBI == BB->begin()) 590 break; 591 --BBI; 592 } 593 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 594 return nullptr; 595 } 596 597 // Do not break infinite loops. 598 BasicBlock *DestBB = BI->getSuccessor(0); 599 if (DestBB == BB) 600 return nullptr; 601 602 if (!canMergeBlocks(BB, DestBB)) 603 DestBB = nullptr; 604 605 return DestBB; 606 } 607 608 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 609 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 610 /// edges in ways that are non-optimal for isel. Start by eliminating these 611 /// blocks so we can split them the way we want them. 612 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 613 SmallPtrSet<BasicBlock *, 16> Preheaders; 614 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 615 while (!LoopList.empty()) { 616 Loop *L = LoopList.pop_back_val(); 617 LoopList.insert(LoopList.end(), L->begin(), L->end()); 618 if (BasicBlock *Preheader = L->getLoopPreheader()) 619 Preheaders.insert(Preheader); 620 } 621 622 bool MadeChange = false; 623 // Copy blocks into a temporary array to avoid iterator invalidation issues 624 // as we remove them. 625 // Note that this intentionally skips the entry block. 626 SmallVector<WeakTrackingVH, 16> Blocks; 627 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 628 Blocks.push_back(&Block); 629 630 for (auto &Block : Blocks) { 631 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 632 if (!BB) 633 continue; 634 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 635 if (!DestBB || 636 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 637 continue; 638 639 eliminateMostlyEmptyBlock(BB); 640 MadeChange = true; 641 } 642 return MadeChange; 643 } 644 645 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 646 BasicBlock *DestBB, 647 bool isPreheader) { 648 // Do not delete loop preheaders if doing so would create a critical edge. 649 // Loop preheaders can be good locations to spill registers. If the 650 // preheader is deleted and we create a critical edge, registers may be 651 // spilled in the loop body instead. 652 if (!DisablePreheaderProtect && isPreheader && 653 !(BB->getSinglePredecessor() && 654 BB->getSinglePredecessor()->getSingleSuccessor())) 655 return false; 656 657 // Try to skip merging if the unique predecessor of BB is terminated by a 658 // switch or indirect branch instruction, and BB is used as an incoming block 659 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 660 // add COPY instructions in the predecessor of BB instead of BB (if it is not 661 // merged). Note that the critical edge created by merging such blocks wont be 662 // split in MachineSink because the jump table is not analyzable. By keeping 663 // such empty block (BB), ISel will place COPY instructions in BB, not in the 664 // predecessor of BB. 665 BasicBlock *Pred = BB->getUniquePredecessor(); 666 if (!Pred || 667 !(isa<SwitchInst>(Pred->getTerminator()) || 668 isa<IndirectBrInst>(Pred->getTerminator()))) 669 return true; 670 671 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 672 return true; 673 674 // We use a simple cost heuristic which determine skipping merging is 675 // profitable if the cost of skipping merging is less than the cost of 676 // merging : Cost(skipping merging) < Cost(merging BB), where the 677 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 678 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 679 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 680 // Freq(Pred) / Freq(BB) > 2. 681 // Note that if there are multiple empty blocks sharing the same incoming 682 // value for the PHIs in the DestBB, we consider them together. In such 683 // case, Cost(merging BB) will be the sum of their frequencies. 684 685 if (!isa<PHINode>(DestBB->begin())) 686 return true; 687 688 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 689 690 // Find all other incoming blocks from which incoming values of all PHIs in 691 // DestBB are the same as the ones from BB. 692 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 693 ++PI) { 694 BasicBlock *DestBBPred = *PI; 695 if (DestBBPred == BB) 696 continue; 697 698 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 699 return DestPN.getIncomingValueForBlock(BB) == 700 DestPN.getIncomingValueForBlock(DestBBPred); 701 })) 702 SameIncomingValueBBs.insert(DestBBPred); 703 } 704 705 // See if all BB's incoming values are same as the value from Pred. In this 706 // case, no reason to skip merging because COPYs are expected to be place in 707 // Pred already. 708 if (SameIncomingValueBBs.count(Pred)) 709 return true; 710 711 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 712 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 713 714 for (auto SameValueBB : SameIncomingValueBBs) 715 if (SameValueBB->getUniquePredecessor() == Pred && 716 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 717 BBFreq += BFI->getBlockFreq(SameValueBB); 718 719 return PredFreq.getFrequency() <= 720 BBFreq.getFrequency() * FreqRatioToSkipMerge; 721 } 722 723 /// Return true if we can merge BB into DestBB if there is a single 724 /// unconditional branch between them, and BB contains no other non-phi 725 /// instructions. 726 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 727 const BasicBlock *DestBB) const { 728 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 729 // the successor. If there are more complex condition (e.g. preheaders), 730 // don't mess around with them. 731 for (const PHINode &PN : BB->phis()) { 732 for (const User *U : PN.users()) { 733 const Instruction *UI = cast<Instruction>(U); 734 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 735 return false; 736 // If User is inside DestBB block and it is a PHINode then check 737 // incoming value. If incoming value is not from BB then this is 738 // a complex condition (e.g. preheaders) we want to avoid here. 739 if (UI->getParent() == DestBB) { 740 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 741 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 742 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 743 if (Insn && Insn->getParent() == BB && 744 Insn->getParent() != UPN->getIncomingBlock(I)) 745 return false; 746 } 747 } 748 } 749 } 750 751 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 752 // and DestBB may have conflicting incoming values for the block. If so, we 753 // can't merge the block. 754 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 755 if (!DestBBPN) return true; // no conflict. 756 757 // Collect the preds of BB. 758 SmallPtrSet<const BasicBlock*, 16> BBPreds; 759 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 760 // It is faster to get preds from a PHI than with pred_iterator. 761 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 762 BBPreds.insert(BBPN->getIncomingBlock(i)); 763 } else { 764 BBPreds.insert(pred_begin(BB), pred_end(BB)); 765 } 766 767 // Walk the preds of DestBB. 768 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 769 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 770 if (BBPreds.count(Pred)) { // Common predecessor? 771 for (const PHINode &PN : DestBB->phis()) { 772 const Value *V1 = PN.getIncomingValueForBlock(Pred); 773 const Value *V2 = PN.getIncomingValueForBlock(BB); 774 775 // If V2 is a phi node in BB, look up what the mapped value will be. 776 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 777 if (V2PN->getParent() == BB) 778 V2 = V2PN->getIncomingValueForBlock(Pred); 779 780 // If there is a conflict, bail out. 781 if (V1 != V2) return false; 782 } 783 } 784 } 785 786 return true; 787 } 788 789 /// Eliminate a basic block that has only phi's and an unconditional branch in 790 /// it. 791 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 792 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 793 BasicBlock *DestBB = BI->getSuccessor(0); 794 795 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 796 << *BB << *DestBB); 797 798 // If the destination block has a single pred, then this is a trivial edge, 799 // just collapse it. 800 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 801 if (SinglePred != DestBB) { 802 assert(SinglePred == BB && 803 "Single predecessor not the same as predecessor"); 804 // Merge DestBB into SinglePred/BB and delete it. 805 MergeBlockIntoPredecessor(DestBB); 806 // Note: BB(=SinglePred) will not be deleted on this path. 807 // DestBB(=its single successor) is the one that was deleted. 808 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 809 return; 810 } 811 } 812 813 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 814 // to handle the new incoming edges it is about to have. 815 for (PHINode &PN : DestBB->phis()) { 816 // Remove the incoming value for BB, and remember it. 817 Value *InVal = PN.removeIncomingValue(BB, false); 818 819 // Two options: either the InVal is a phi node defined in BB or it is some 820 // value that dominates BB. 821 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 822 if (InValPhi && InValPhi->getParent() == BB) { 823 // Add all of the input values of the input PHI as inputs of this phi. 824 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 825 PN.addIncoming(InValPhi->getIncomingValue(i), 826 InValPhi->getIncomingBlock(i)); 827 } else { 828 // Otherwise, add one instance of the dominating value for each edge that 829 // we will be adding. 830 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 831 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 832 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 833 } else { 834 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 835 PN.addIncoming(InVal, *PI); 836 } 837 } 838 } 839 840 // The PHIs are now updated, change everything that refers to BB to use 841 // DestBB and remove BB. 842 BB->replaceAllUsesWith(DestBB); 843 BB->eraseFromParent(); 844 ++NumBlocksElim; 845 846 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 847 } 848 849 // Computes a map of base pointer relocation instructions to corresponding 850 // derived pointer relocation instructions given a vector of all relocate calls 851 static void computeBaseDerivedRelocateMap( 852 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 853 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 854 &RelocateInstMap) { 855 // Collect information in two maps: one primarily for locating the base object 856 // while filling the second map; the second map is the final structure holding 857 // a mapping between Base and corresponding Derived relocate calls 858 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 859 for (auto *ThisRelocate : AllRelocateCalls) { 860 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 861 ThisRelocate->getDerivedPtrIndex()); 862 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 863 } 864 for (auto &Item : RelocateIdxMap) { 865 std::pair<unsigned, unsigned> Key = Item.first; 866 if (Key.first == Key.second) 867 // Base relocation: nothing to insert 868 continue; 869 870 GCRelocateInst *I = Item.second; 871 auto BaseKey = std::make_pair(Key.first, Key.first); 872 873 // We're iterating over RelocateIdxMap so we cannot modify it. 874 auto MaybeBase = RelocateIdxMap.find(BaseKey); 875 if (MaybeBase == RelocateIdxMap.end()) 876 // TODO: We might want to insert a new base object relocate and gep off 877 // that, if there are enough derived object relocates. 878 continue; 879 880 RelocateInstMap[MaybeBase->second].push_back(I); 881 } 882 } 883 884 // Accepts a GEP and extracts the operands into a vector provided they're all 885 // small integer constants 886 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 887 SmallVectorImpl<Value *> &OffsetV) { 888 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 889 // Only accept small constant integer operands 890 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 891 if (!Op || Op->getZExtValue() > 20) 892 return false; 893 } 894 895 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 896 OffsetV.push_back(GEP->getOperand(i)); 897 return true; 898 } 899 900 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 901 // replace, computes a replacement, and affects it. 902 static bool 903 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 904 const SmallVectorImpl<GCRelocateInst *> &Targets) { 905 bool MadeChange = false; 906 // We must ensure the relocation of derived pointer is defined after 907 // relocation of base pointer. If we find a relocation corresponding to base 908 // defined earlier than relocation of base then we move relocation of base 909 // right before found relocation. We consider only relocation in the same 910 // basic block as relocation of base. Relocations from other basic block will 911 // be skipped by optimization and we do not care about them. 912 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 913 &*R != RelocatedBase; ++R) 914 if (auto RI = dyn_cast<GCRelocateInst>(R)) 915 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 916 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 917 RelocatedBase->moveBefore(RI); 918 break; 919 } 920 921 for (GCRelocateInst *ToReplace : Targets) { 922 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 923 "Not relocating a derived object of the original base object"); 924 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 925 // A duplicate relocate call. TODO: coalesce duplicates. 926 continue; 927 } 928 929 if (RelocatedBase->getParent() != ToReplace->getParent()) { 930 // Base and derived relocates are in different basic blocks. 931 // In this case transform is only valid when base dominates derived 932 // relocate. However it would be too expensive to check dominance 933 // for each such relocate, so we skip the whole transformation. 934 continue; 935 } 936 937 Value *Base = ToReplace->getBasePtr(); 938 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 939 if (!Derived || Derived->getPointerOperand() != Base) 940 continue; 941 942 SmallVector<Value *, 2> OffsetV; 943 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 944 continue; 945 946 // Create a Builder and replace the target callsite with a gep 947 assert(RelocatedBase->getNextNode() && 948 "Should always have one since it's not a terminator"); 949 950 // Insert after RelocatedBase 951 IRBuilder<> Builder(RelocatedBase->getNextNode()); 952 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 953 954 // If gc_relocate does not match the actual type, cast it to the right type. 955 // In theory, there must be a bitcast after gc_relocate if the type does not 956 // match, and we should reuse it to get the derived pointer. But it could be 957 // cases like this: 958 // bb1: 959 // ... 960 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 961 // br label %merge 962 // 963 // bb2: 964 // ... 965 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 966 // br label %merge 967 // 968 // merge: 969 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 970 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 971 // 972 // In this case, we can not find the bitcast any more. So we insert a new bitcast 973 // no matter there is already one or not. In this way, we can handle all cases, and 974 // the extra bitcast should be optimized away in later passes. 975 Value *ActualRelocatedBase = RelocatedBase; 976 if (RelocatedBase->getType() != Base->getType()) { 977 ActualRelocatedBase = 978 Builder.CreateBitCast(RelocatedBase, Base->getType()); 979 } 980 Value *Replacement = Builder.CreateGEP( 981 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 982 Replacement->takeName(ToReplace); 983 // If the newly generated derived pointer's type does not match the original derived 984 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 985 Value *ActualReplacement = Replacement; 986 if (Replacement->getType() != ToReplace->getType()) { 987 ActualReplacement = 988 Builder.CreateBitCast(Replacement, ToReplace->getType()); 989 } 990 ToReplace->replaceAllUsesWith(ActualReplacement); 991 ToReplace->eraseFromParent(); 992 993 MadeChange = true; 994 } 995 return MadeChange; 996 } 997 998 // Turns this: 999 // 1000 // %base = ... 1001 // %ptr = gep %base + 15 1002 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1003 // %base' = relocate(%tok, i32 4, i32 4) 1004 // %ptr' = relocate(%tok, i32 4, i32 5) 1005 // %val = load %ptr' 1006 // 1007 // into this: 1008 // 1009 // %base = ... 1010 // %ptr = gep %base + 15 1011 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1012 // %base' = gc.relocate(%tok, i32 4, i32 4) 1013 // %ptr' = gep %base' + 15 1014 // %val = load %ptr' 1015 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1016 bool MadeChange = false; 1017 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1018 1019 for (auto *U : I.users()) 1020 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1021 // Collect all the relocate calls associated with a statepoint 1022 AllRelocateCalls.push_back(Relocate); 1023 1024 // We need atleast one base pointer relocation + one derived pointer 1025 // relocation to mangle 1026 if (AllRelocateCalls.size() < 2) 1027 return false; 1028 1029 // RelocateInstMap is a mapping from the base relocate instruction to the 1030 // corresponding derived relocate instructions 1031 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1032 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1033 if (RelocateInstMap.empty()) 1034 return false; 1035 1036 for (auto &Item : RelocateInstMap) 1037 // Item.first is the RelocatedBase to offset against 1038 // Item.second is the vector of Targets to replace 1039 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1040 return MadeChange; 1041 } 1042 1043 /// SinkCast - Sink the specified cast instruction into its user blocks 1044 static bool SinkCast(CastInst *CI) { 1045 BasicBlock *DefBB = CI->getParent(); 1046 1047 /// InsertedCasts - Only insert a cast in each block once. 1048 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1049 1050 bool MadeChange = false; 1051 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1052 UI != E; ) { 1053 Use &TheUse = UI.getUse(); 1054 Instruction *User = cast<Instruction>(*UI); 1055 1056 // Figure out which BB this cast is used in. For PHI's this is the 1057 // appropriate predecessor block. 1058 BasicBlock *UserBB = User->getParent(); 1059 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1060 UserBB = PN->getIncomingBlock(TheUse); 1061 } 1062 1063 // Preincrement use iterator so we don't invalidate it. 1064 ++UI; 1065 1066 // The first insertion point of a block containing an EH pad is after the 1067 // pad. If the pad is the user, we cannot sink the cast past the pad. 1068 if (User->isEHPad()) 1069 continue; 1070 1071 // If the block selected to receive the cast is an EH pad that does not 1072 // allow non-PHI instructions before the terminator, we can't sink the 1073 // cast. 1074 if (UserBB->getTerminator()->isEHPad()) 1075 continue; 1076 1077 // If this user is in the same block as the cast, don't change the cast. 1078 if (UserBB == DefBB) continue; 1079 1080 // If we have already inserted a cast into this block, use it. 1081 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1082 1083 if (!InsertedCast) { 1084 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1085 assert(InsertPt != UserBB->end()); 1086 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1087 CI->getType(), "", &*InsertPt); 1088 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1089 } 1090 1091 // Replace a use of the cast with a use of the new cast. 1092 TheUse = InsertedCast; 1093 MadeChange = true; 1094 ++NumCastUses; 1095 } 1096 1097 // If we removed all uses, nuke the cast. 1098 if (CI->use_empty()) { 1099 salvageDebugInfo(*CI); 1100 CI->eraseFromParent(); 1101 MadeChange = true; 1102 } 1103 1104 return MadeChange; 1105 } 1106 1107 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1108 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1109 /// reduce the number of virtual registers that must be created and coalesced. 1110 /// 1111 /// Return true if any changes are made. 1112 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1113 const DataLayout &DL) { 1114 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1115 // than sinking only nop casts, but is helpful on some platforms. 1116 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1117 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1118 ASC->getDestAddressSpace())) 1119 return false; 1120 } 1121 1122 // If this is a noop copy, 1123 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1124 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1125 1126 // This is an fp<->int conversion? 1127 if (SrcVT.isInteger() != DstVT.isInteger()) 1128 return false; 1129 1130 // If this is an extension, it will be a zero or sign extension, which 1131 // isn't a noop. 1132 if (SrcVT.bitsLT(DstVT)) return false; 1133 1134 // If these values will be promoted, find out what they will be promoted 1135 // to. This helps us consider truncates on PPC as noop copies when they 1136 // are. 1137 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1138 TargetLowering::TypePromoteInteger) 1139 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1140 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1141 TargetLowering::TypePromoteInteger) 1142 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1143 1144 // If, after promotion, these are the same types, this is a noop copy. 1145 if (SrcVT != DstVT) 1146 return false; 1147 1148 return SinkCast(CI); 1149 } 1150 1151 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1152 /// possible. 1153 /// 1154 /// Return true if any changes were made. 1155 static bool CombineUAddWithOverflow(CmpInst *CI) { 1156 Value *A, *B; 1157 Instruction *AddI; 1158 if (!match(CI, 1159 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1160 return false; 1161 1162 Type *Ty = AddI->getType(); 1163 if (!isa<IntegerType>(Ty)) 1164 return false; 1165 1166 // We don't want to move around uses of condition values this late, so we we 1167 // check if it is legal to create the call to the intrinsic in the basic 1168 // block containing the icmp: 1169 1170 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1171 return false; 1172 1173 #ifndef NDEBUG 1174 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1175 // for now: 1176 if (AddI->hasOneUse()) 1177 assert(*AddI->user_begin() == CI && "expected!"); 1178 #endif 1179 1180 Module *M = CI->getModule(); 1181 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1182 1183 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1184 1185 DebugLoc Loc = CI->getDebugLoc(); 1186 auto *UAddWithOverflow = 1187 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1188 UAddWithOverflow->setDebugLoc(Loc); 1189 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1190 UAdd->setDebugLoc(Loc); 1191 auto *Overflow = 1192 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1193 Overflow->setDebugLoc(Loc); 1194 1195 CI->replaceAllUsesWith(Overflow); 1196 AddI->replaceAllUsesWith(UAdd); 1197 CI->eraseFromParent(); 1198 AddI->eraseFromParent(); 1199 return true; 1200 } 1201 1202 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1203 /// registers that must be created and coalesced. This is a clear win except on 1204 /// targets with multiple condition code registers (PowerPC), where it might 1205 /// lose; some adjustment may be wanted there. 1206 /// 1207 /// Return true if any changes are made. 1208 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1209 BasicBlock *DefBB = CI->getParent(); 1210 1211 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1212 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1213 return false; 1214 1215 // Only insert a cmp in each block once. 1216 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1217 1218 bool MadeChange = false; 1219 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1220 UI != E; ) { 1221 Use &TheUse = UI.getUse(); 1222 Instruction *User = cast<Instruction>(*UI); 1223 1224 // Preincrement use iterator so we don't invalidate it. 1225 ++UI; 1226 1227 // Don't bother for PHI nodes. 1228 if (isa<PHINode>(User)) 1229 continue; 1230 1231 // Figure out which BB this cmp is used in. 1232 BasicBlock *UserBB = User->getParent(); 1233 1234 // If this user is in the same block as the cmp, don't change the cmp. 1235 if (UserBB == DefBB) continue; 1236 1237 // If we have already inserted a cmp into this block, use it. 1238 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1239 1240 if (!InsertedCmp) { 1241 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1242 assert(InsertPt != UserBB->end()); 1243 InsertedCmp = 1244 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1245 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1246 // Propagate the debug info. 1247 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1248 } 1249 1250 // Replace a use of the cmp with a use of the new cmp. 1251 TheUse = InsertedCmp; 1252 MadeChange = true; 1253 ++NumCmpUses; 1254 } 1255 1256 // If we removed all uses, nuke the cmp. 1257 if (CI->use_empty()) { 1258 CI->eraseFromParent(); 1259 MadeChange = true; 1260 } 1261 1262 return MadeChange; 1263 } 1264 1265 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1266 if (SinkCmpExpression(CI, TLI)) 1267 return true; 1268 1269 if (CombineUAddWithOverflow(CI)) 1270 return true; 1271 1272 return false; 1273 } 1274 1275 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1276 /// used in a compare to allow isel to generate better code for targets where 1277 /// this operation can be combined. 1278 /// 1279 /// Return true if any changes are made. 1280 static bool sinkAndCmp0Expression(Instruction *AndI, 1281 const TargetLowering &TLI, 1282 SetOfInstrs &InsertedInsts) { 1283 // Double-check that we're not trying to optimize an instruction that was 1284 // already optimized by some other part of this pass. 1285 assert(!InsertedInsts.count(AndI) && 1286 "Attempting to optimize already optimized and instruction"); 1287 (void) InsertedInsts; 1288 1289 // Nothing to do for single use in same basic block. 1290 if (AndI->hasOneUse() && 1291 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1292 return false; 1293 1294 // Try to avoid cases where sinking/duplicating is likely to increase register 1295 // pressure. 1296 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1297 !isa<ConstantInt>(AndI->getOperand(1)) && 1298 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1299 return false; 1300 1301 for (auto *U : AndI->users()) { 1302 Instruction *User = cast<Instruction>(U); 1303 1304 // Only sink for and mask feeding icmp with 0. 1305 if (!isa<ICmpInst>(User)) 1306 return false; 1307 1308 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1309 if (!CmpC || !CmpC->isZero()) 1310 return false; 1311 } 1312 1313 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1314 return false; 1315 1316 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1317 LLVM_DEBUG(AndI->getParent()->dump()); 1318 1319 // Push the 'and' into the same block as the icmp 0. There should only be 1320 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1321 // others, so we don't need to keep track of which BBs we insert into. 1322 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1323 UI != E; ) { 1324 Use &TheUse = UI.getUse(); 1325 Instruction *User = cast<Instruction>(*UI); 1326 1327 // Preincrement use iterator so we don't invalidate it. 1328 ++UI; 1329 1330 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1331 1332 // Keep the 'and' in the same place if the use is already in the same block. 1333 Instruction *InsertPt = 1334 User->getParent() == AndI->getParent() ? AndI : User; 1335 Instruction *InsertedAnd = 1336 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1337 AndI->getOperand(1), "", InsertPt); 1338 // Propagate the debug info. 1339 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1340 1341 // Replace a use of the 'and' with a use of the new 'and'. 1342 TheUse = InsertedAnd; 1343 ++NumAndUses; 1344 LLVM_DEBUG(User->getParent()->dump()); 1345 } 1346 1347 // We removed all uses, nuke the and. 1348 AndI->eraseFromParent(); 1349 return true; 1350 } 1351 1352 /// Check if the candidates could be combined with a shift instruction, which 1353 /// includes: 1354 /// 1. Truncate instruction 1355 /// 2. And instruction and the imm is a mask of the low bits: 1356 /// imm & (imm+1) == 0 1357 static bool isExtractBitsCandidateUse(Instruction *User) { 1358 if (!isa<TruncInst>(User)) { 1359 if (User->getOpcode() != Instruction::And || 1360 !isa<ConstantInt>(User->getOperand(1))) 1361 return false; 1362 1363 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1364 1365 if ((Cimm & (Cimm + 1)).getBoolValue()) 1366 return false; 1367 } 1368 return true; 1369 } 1370 1371 /// Sink both shift and truncate instruction to the use of truncate's BB. 1372 static bool 1373 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1374 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1375 const TargetLowering &TLI, const DataLayout &DL) { 1376 BasicBlock *UserBB = User->getParent(); 1377 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1378 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1379 bool MadeChange = false; 1380 1381 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1382 TruncE = TruncI->user_end(); 1383 TruncUI != TruncE;) { 1384 1385 Use &TruncTheUse = TruncUI.getUse(); 1386 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1387 // Preincrement use iterator so we don't invalidate it. 1388 1389 ++TruncUI; 1390 1391 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1392 if (!ISDOpcode) 1393 continue; 1394 1395 // If the use is actually a legal node, there will not be an 1396 // implicit truncate. 1397 // FIXME: always querying the result type is just an 1398 // approximation; some nodes' legality is determined by the 1399 // operand or other means. There's no good way to find out though. 1400 if (TLI.isOperationLegalOrCustom( 1401 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1402 continue; 1403 1404 // Don't bother for PHI nodes. 1405 if (isa<PHINode>(TruncUser)) 1406 continue; 1407 1408 BasicBlock *TruncUserBB = TruncUser->getParent(); 1409 1410 if (UserBB == TruncUserBB) 1411 continue; 1412 1413 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1414 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1415 1416 if (!InsertedShift && !InsertedTrunc) { 1417 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1418 assert(InsertPt != TruncUserBB->end()); 1419 // Sink the shift 1420 if (ShiftI->getOpcode() == Instruction::AShr) 1421 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1422 "", &*InsertPt); 1423 else 1424 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1425 "", &*InsertPt); 1426 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1427 1428 // Sink the trunc 1429 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1430 TruncInsertPt++; 1431 assert(TruncInsertPt != TruncUserBB->end()); 1432 1433 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1434 TruncI->getType(), "", &*TruncInsertPt); 1435 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1436 1437 MadeChange = true; 1438 1439 TruncTheUse = InsertedTrunc; 1440 } 1441 } 1442 return MadeChange; 1443 } 1444 1445 /// Sink the shift *right* instruction into user blocks if the uses could 1446 /// potentially be combined with this shift instruction and generate BitExtract 1447 /// instruction. It will only be applied if the architecture supports BitExtract 1448 /// instruction. Here is an example: 1449 /// BB1: 1450 /// %x.extract.shift = lshr i64 %arg1, 32 1451 /// BB2: 1452 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1453 /// ==> 1454 /// 1455 /// BB2: 1456 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1457 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1458 /// 1459 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1460 /// instruction. 1461 /// Return true if any changes are made. 1462 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1463 const TargetLowering &TLI, 1464 const DataLayout &DL) { 1465 BasicBlock *DefBB = ShiftI->getParent(); 1466 1467 /// Only insert instructions in each block once. 1468 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1469 1470 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1471 1472 bool MadeChange = false; 1473 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1474 UI != E;) { 1475 Use &TheUse = UI.getUse(); 1476 Instruction *User = cast<Instruction>(*UI); 1477 // Preincrement use iterator so we don't invalidate it. 1478 ++UI; 1479 1480 // Don't bother for PHI nodes. 1481 if (isa<PHINode>(User)) 1482 continue; 1483 1484 if (!isExtractBitsCandidateUse(User)) 1485 continue; 1486 1487 BasicBlock *UserBB = User->getParent(); 1488 1489 if (UserBB == DefBB) { 1490 // If the shift and truncate instruction are in the same BB. The use of 1491 // the truncate(TruncUse) may still introduce another truncate if not 1492 // legal. In this case, we would like to sink both shift and truncate 1493 // instruction to the BB of TruncUse. 1494 // for example: 1495 // BB1: 1496 // i64 shift.result = lshr i64 opnd, imm 1497 // trunc.result = trunc shift.result to i16 1498 // 1499 // BB2: 1500 // ----> We will have an implicit truncate here if the architecture does 1501 // not have i16 compare. 1502 // cmp i16 trunc.result, opnd2 1503 // 1504 if (isa<TruncInst>(User) && shiftIsLegal 1505 // If the type of the truncate is legal, no truncate will be 1506 // introduced in other basic blocks. 1507 && 1508 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1509 MadeChange = 1510 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1511 1512 continue; 1513 } 1514 // If we have already inserted a shift into this block, use it. 1515 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1516 1517 if (!InsertedShift) { 1518 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1519 assert(InsertPt != UserBB->end()); 1520 1521 if (ShiftI->getOpcode() == Instruction::AShr) 1522 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1523 "", &*InsertPt); 1524 else 1525 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1526 "", &*InsertPt); 1527 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1528 1529 MadeChange = true; 1530 } 1531 1532 // Replace a use of the shift with a use of the new shift. 1533 TheUse = InsertedShift; 1534 } 1535 1536 // If we removed all uses, nuke the shift. 1537 if (ShiftI->use_empty()) { 1538 salvageDebugInfo(*ShiftI); 1539 ShiftI->eraseFromParent(); 1540 } 1541 1542 return MadeChange; 1543 } 1544 1545 /// If counting leading or trailing zeros is an expensive operation and a zero 1546 /// input is defined, add a check for zero to avoid calling the intrinsic. 1547 /// 1548 /// We want to transform: 1549 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1550 /// 1551 /// into: 1552 /// entry: 1553 /// %cmpz = icmp eq i64 %A, 0 1554 /// br i1 %cmpz, label %cond.end, label %cond.false 1555 /// cond.false: 1556 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1557 /// br label %cond.end 1558 /// cond.end: 1559 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1560 /// 1561 /// If the transform is performed, return true and set ModifiedDT to true. 1562 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1563 const TargetLowering *TLI, 1564 const DataLayout *DL, 1565 bool &ModifiedDT) { 1566 if (!TLI || !DL) 1567 return false; 1568 1569 // If a zero input is undefined, it doesn't make sense to despeculate that. 1570 if (match(CountZeros->getOperand(1), m_One())) 1571 return false; 1572 1573 // If it's cheap to speculate, there's nothing to do. 1574 auto IntrinsicID = CountZeros->getIntrinsicID(); 1575 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1576 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1577 return false; 1578 1579 // Only handle legal scalar cases. Anything else requires too much work. 1580 Type *Ty = CountZeros->getType(); 1581 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1582 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1583 return false; 1584 1585 // The intrinsic will be sunk behind a compare against zero and branch. 1586 BasicBlock *StartBlock = CountZeros->getParent(); 1587 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1588 1589 // Create another block after the count zero intrinsic. A PHI will be added 1590 // in this block to select the result of the intrinsic or the bit-width 1591 // constant if the input to the intrinsic is zero. 1592 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1593 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1594 1595 // Set up a builder to create a compare, conditional branch, and PHI. 1596 IRBuilder<> Builder(CountZeros->getContext()); 1597 Builder.SetInsertPoint(StartBlock->getTerminator()); 1598 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1599 1600 // Replace the unconditional branch that was created by the first split with 1601 // a compare against zero and a conditional branch. 1602 Value *Zero = Constant::getNullValue(Ty); 1603 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1604 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1605 StartBlock->getTerminator()->eraseFromParent(); 1606 1607 // Create a PHI in the end block to select either the output of the intrinsic 1608 // or the bit width of the operand. 1609 Builder.SetInsertPoint(&EndBlock->front()); 1610 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1611 CountZeros->replaceAllUsesWith(PN); 1612 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1613 PN->addIncoming(BitWidth, StartBlock); 1614 PN->addIncoming(CountZeros, CallBlock); 1615 1616 // We are explicitly handling the zero case, so we can set the intrinsic's 1617 // undefined zero argument to 'true'. This will also prevent reprocessing the 1618 // intrinsic; we only despeculate when a zero input is defined. 1619 CountZeros->setArgOperand(1, Builder.getTrue()); 1620 ModifiedDT = true; 1621 return true; 1622 } 1623 1624 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1625 BasicBlock *BB = CI->getParent(); 1626 1627 // Lower inline assembly if we can. 1628 // If we found an inline asm expession, and if the target knows how to 1629 // lower it to normal LLVM code, do so now. 1630 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1631 if (TLI->ExpandInlineAsm(CI)) { 1632 // Avoid invalidating the iterator. 1633 CurInstIterator = BB->begin(); 1634 // Avoid processing instructions out of order, which could cause 1635 // reuse before a value is defined. 1636 SunkAddrs.clear(); 1637 return true; 1638 } 1639 // Sink address computing for memory operands into the block. 1640 if (optimizeInlineAsmInst(CI)) 1641 return true; 1642 } 1643 1644 // Align the pointer arguments to this call if the target thinks it's a good 1645 // idea 1646 unsigned MinSize, PrefAlign; 1647 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1648 for (auto &Arg : CI->arg_operands()) { 1649 // We want to align both objects whose address is used directly and 1650 // objects whose address is used in casts and GEPs, though it only makes 1651 // sense for GEPs if the offset is a multiple of the desired alignment and 1652 // if size - offset meets the size threshold. 1653 if (!Arg->getType()->isPointerTy()) 1654 continue; 1655 APInt Offset(DL->getIndexSizeInBits( 1656 cast<PointerType>(Arg->getType())->getAddressSpace()), 1657 0); 1658 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1659 uint64_t Offset2 = Offset.getLimitedValue(); 1660 if ((Offset2 & (PrefAlign-1)) != 0) 1661 continue; 1662 AllocaInst *AI; 1663 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1664 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1665 AI->setAlignment(PrefAlign); 1666 // Global variables can only be aligned if they are defined in this 1667 // object (i.e. they are uniquely initialized in this object), and 1668 // over-aligning global variables that have an explicit section is 1669 // forbidden. 1670 GlobalVariable *GV; 1671 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1672 GV->getPointerAlignment(*DL) < PrefAlign && 1673 DL->getTypeAllocSize(GV->getValueType()) >= 1674 MinSize + Offset2) 1675 GV->setAlignment(PrefAlign); 1676 } 1677 // If this is a memcpy (or similar) then we may be able to improve the 1678 // alignment 1679 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1680 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1681 if (DestAlign > MI->getDestAlignment()) 1682 MI->setDestAlignment(DestAlign); 1683 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1684 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1685 if (SrcAlign > MTI->getSourceAlignment()) 1686 MTI->setSourceAlignment(SrcAlign); 1687 } 1688 } 1689 } 1690 1691 // If we have a cold call site, try to sink addressing computation into the 1692 // cold block. This interacts with our handling for loads and stores to 1693 // ensure that we can fold all uses of a potential addressing computation 1694 // into their uses. TODO: generalize this to work over profiling data 1695 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1696 for (auto &Arg : CI->arg_operands()) { 1697 if (!Arg->getType()->isPointerTy()) 1698 continue; 1699 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1700 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1701 } 1702 1703 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1704 if (II) { 1705 switch (II->getIntrinsicID()) { 1706 default: break; 1707 case Intrinsic::objectsize: { 1708 // Lower all uses of llvm.objectsize.* 1709 ConstantInt *RetVal = 1710 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1711 1712 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1713 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1714 }); 1715 return true; 1716 } 1717 case Intrinsic::is_constant: { 1718 // If is_constant hasn't folded away yet, lower it to false now. 1719 Constant *RetVal = ConstantInt::get(II->getType(), 0); 1720 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1721 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1722 }); 1723 return true; 1724 } 1725 case Intrinsic::aarch64_stlxr: 1726 case Intrinsic::aarch64_stxr: { 1727 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1728 if (!ExtVal || !ExtVal->hasOneUse() || 1729 ExtVal->getParent() == CI->getParent()) 1730 return false; 1731 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1732 ExtVal->moveBefore(CI); 1733 // Mark this instruction as "inserted by CGP", so that other 1734 // optimizations don't touch it. 1735 InsertedInsts.insert(ExtVal); 1736 return true; 1737 } 1738 case Intrinsic::launder_invariant_group: 1739 case Intrinsic::strip_invariant_group: { 1740 Value *ArgVal = II->getArgOperand(0); 1741 auto it = LargeOffsetGEPMap.find(II); 1742 if (it != LargeOffsetGEPMap.end()) { 1743 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1744 // Make sure not to have to deal with iterator invalidation 1745 // after possibly adding ArgVal to LargeOffsetGEPMap. 1746 auto GEPs = std::move(it->second); 1747 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1748 LargeOffsetGEPMap.erase(II); 1749 } 1750 1751 II->replaceAllUsesWith(ArgVal); 1752 II->eraseFromParent(); 1753 return true; 1754 } 1755 case Intrinsic::cttz: 1756 case Intrinsic::ctlz: 1757 // If counting zeros is expensive, try to avoid it. 1758 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1759 } 1760 1761 if (TLI) { 1762 SmallVector<Value*, 2> PtrOps; 1763 Type *AccessTy; 1764 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1765 while (!PtrOps.empty()) { 1766 Value *PtrVal = PtrOps.pop_back_val(); 1767 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1768 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1769 return true; 1770 } 1771 } 1772 } 1773 1774 // From here on out we're working with named functions. 1775 if (!CI->getCalledFunction()) return false; 1776 1777 // Lower all default uses of _chk calls. This is very similar 1778 // to what InstCombineCalls does, but here we are only lowering calls 1779 // to fortified library functions (e.g. __memcpy_chk) that have the default 1780 // "don't know" as the objectsize. Anything else should be left alone. 1781 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1782 if (Value *V = Simplifier.optimizeCall(CI)) { 1783 CI->replaceAllUsesWith(V); 1784 CI->eraseFromParent(); 1785 return true; 1786 } 1787 1788 return false; 1789 } 1790 1791 /// Look for opportunities to duplicate return instructions to the predecessor 1792 /// to enable tail call optimizations. The case it is currently looking for is: 1793 /// @code 1794 /// bb0: 1795 /// %tmp0 = tail call i32 @f0() 1796 /// br label %return 1797 /// bb1: 1798 /// %tmp1 = tail call i32 @f1() 1799 /// br label %return 1800 /// bb2: 1801 /// %tmp2 = tail call i32 @f2() 1802 /// br label %return 1803 /// return: 1804 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1805 /// ret i32 %retval 1806 /// @endcode 1807 /// 1808 /// => 1809 /// 1810 /// @code 1811 /// bb0: 1812 /// %tmp0 = tail call i32 @f0() 1813 /// ret i32 %tmp0 1814 /// bb1: 1815 /// %tmp1 = tail call i32 @f1() 1816 /// ret i32 %tmp1 1817 /// bb2: 1818 /// %tmp2 = tail call i32 @f2() 1819 /// ret i32 %tmp2 1820 /// @endcode 1821 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1822 if (!TLI) 1823 return false; 1824 1825 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1826 if (!RetI) 1827 return false; 1828 1829 PHINode *PN = nullptr; 1830 BitCastInst *BCI = nullptr; 1831 Value *V = RetI->getReturnValue(); 1832 if (V) { 1833 BCI = dyn_cast<BitCastInst>(V); 1834 if (BCI) 1835 V = BCI->getOperand(0); 1836 1837 PN = dyn_cast<PHINode>(V); 1838 if (!PN) 1839 return false; 1840 } 1841 1842 if (PN && PN->getParent() != BB) 1843 return false; 1844 1845 // Make sure there are no instructions between the PHI and return, or that the 1846 // return is the first instruction in the block. 1847 if (PN) { 1848 BasicBlock::iterator BI = BB->begin(); 1849 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1850 if (&*BI == BCI) 1851 // Also skip over the bitcast. 1852 ++BI; 1853 if (&*BI != RetI) 1854 return false; 1855 } else { 1856 BasicBlock::iterator BI = BB->begin(); 1857 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1858 if (&*BI != RetI) 1859 return false; 1860 } 1861 1862 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1863 /// call. 1864 const Function *F = BB->getParent(); 1865 SmallVector<CallInst*, 4> TailCalls; 1866 if (PN) { 1867 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1868 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1869 // Make sure the phi value is indeed produced by the tail call. 1870 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1871 TLI->mayBeEmittedAsTailCall(CI) && 1872 attributesPermitTailCall(F, CI, RetI, *TLI)) 1873 TailCalls.push_back(CI); 1874 } 1875 } else { 1876 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1877 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1878 if (!VisitedBBs.insert(*PI).second) 1879 continue; 1880 1881 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1882 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1883 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1884 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1885 if (RI == RE) 1886 continue; 1887 1888 CallInst *CI = dyn_cast<CallInst>(&*RI); 1889 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1890 attributesPermitTailCall(F, CI, RetI, *TLI)) 1891 TailCalls.push_back(CI); 1892 } 1893 } 1894 1895 bool Changed = false; 1896 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1897 CallInst *CI = TailCalls[i]; 1898 CallSite CS(CI); 1899 1900 // Make sure the call instruction is followed by an unconditional branch to 1901 // the return block. 1902 BasicBlock *CallBB = CI->getParent(); 1903 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1904 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1905 continue; 1906 1907 // Duplicate the return into CallBB. 1908 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1909 ModifiedDT = Changed = true; 1910 ++NumRetsDup; 1911 } 1912 1913 // If we eliminated all predecessors of the block, delete the block now. 1914 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1915 BB->eraseFromParent(); 1916 1917 return Changed; 1918 } 1919 1920 //===----------------------------------------------------------------------===// 1921 // Memory Optimization 1922 //===----------------------------------------------------------------------===// 1923 1924 namespace { 1925 1926 /// This is an extended version of TargetLowering::AddrMode 1927 /// which holds actual Value*'s for register values. 1928 struct ExtAddrMode : public TargetLowering::AddrMode { 1929 Value *BaseReg = nullptr; 1930 Value *ScaledReg = nullptr; 1931 Value *OriginalValue = nullptr; 1932 1933 enum FieldName { 1934 NoField = 0x00, 1935 BaseRegField = 0x01, 1936 BaseGVField = 0x02, 1937 BaseOffsField = 0x04, 1938 ScaledRegField = 0x08, 1939 ScaleField = 0x10, 1940 MultipleFields = 0xff 1941 }; 1942 1943 ExtAddrMode() = default; 1944 1945 void print(raw_ostream &OS) const; 1946 void dump() const; 1947 1948 FieldName compare(const ExtAddrMode &other) { 1949 // First check that the types are the same on each field, as differing types 1950 // is something we can't cope with later on. 1951 if (BaseReg && other.BaseReg && 1952 BaseReg->getType() != other.BaseReg->getType()) 1953 return MultipleFields; 1954 if (BaseGV && other.BaseGV && 1955 BaseGV->getType() != other.BaseGV->getType()) 1956 return MultipleFields; 1957 if (ScaledReg && other.ScaledReg && 1958 ScaledReg->getType() != other.ScaledReg->getType()) 1959 return MultipleFields; 1960 1961 // Check each field to see if it differs. 1962 unsigned Result = NoField; 1963 if (BaseReg != other.BaseReg) 1964 Result |= BaseRegField; 1965 if (BaseGV != other.BaseGV) 1966 Result |= BaseGVField; 1967 if (BaseOffs != other.BaseOffs) 1968 Result |= BaseOffsField; 1969 if (ScaledReg != other.ScaledReg) 1970 Result |= ScaledRegField; 1971 // Don't count 0 as being a different scale, because that actually means 1972 // unscaled (which will already be counted by having no ScaledReg). 1973 if (Scale && other.Scale && Scale != other.Scale) 1974 Result |= ScaleField; 1975 1976 if (countPopulation(Result) > 1) 1977 return MultipleFields; 1978 else 1979 return static_cast<FieldName>(Result); 1980 } 1981 1982 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1983 // with no offset. 1984 bool isTrivial() { 1985 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1986 // trivial if at most one of these terms is nonzero, except that BaseGV and 1987 // BaseReg both being zero actually means a null pointer value, which we 1988 // consider to be 'non-zero' here. 1989 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1990 } 1991 1992 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1993 switch (Field) { 1994 default: 1995 return nullptr; 1996 case BaseRegField: 1997 return BaseReg; 1998 case BaseGVField: 1999 return BaseGV; 2000 case ScaledRegField: 2001 return ScaledReg; 2002 case BaseOffsField: 2003 return ConstantInt::get(IntPtrTy, BaseOffs); 2004 } 2005 } 2006 2007 void SetCombinedField(FieldName Field, Value *V, 2008 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2009 switch (Field) { 2010 default: 2011 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2012 break; 2013 case ExtAddrMode::BaseRegField: 2014 BaseReg = V; 2015 break; 2016 case ExtAddrMode::BaseGVField: 2017 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2018 // in the BaseReg field. 2019 assert(BaseReg == nullptr); 2020 BaseReg = V; 2021 BaseGV = nullptr; 2022 break; 2023 case ExtAddrMode::ScaledRegField: 2024 ScaledReg = V; 2025 // If we have a mix of scaled and unscaled addrmodes then we want scale 2026 // to be the scale and not zero. 2027 if (!Scale) 2028 for (const ExtAddrMode &AM : AddrModes) 2029 if (AM.Scale) { 2030 Scale = AM.Scale; 2031 break; 2032 } 2033 break; 2034 case ExtAddrMode::BaseOffsField: 2035 // The offset is no longer a constant, so it goes in ScaledReg with a 2036 // scale of 1. 2037 assert(ScaledReg == nullptr); 2038 ScaledReg = V; 2039 Scale = 1; 2040 BaseOffs = 0; 2041 break; 2042 } 2043 } 2044 }; 2045 2046 } // end anonymous namespace 2047 2048 #ifndef NDEBUG 2049 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2050 AM.print(OS); 2051 return OS; 2052 } 2053 #endif 2054 2055 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2056 void ExtAddrMode::print(raw_ostream &OS) const { 2057 bool NeedPlus = false; 2058 OS << "["; 2059 if (BaseGV) { 2060 OS << (NeedPlus ? " + " : "") 2061 << "GV:"; 2062 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2063 NeedPlus = true; 2064 } 2065 2066 if (BaseOffs) { 2067 OS << (NeedPlus ? " + " : "") 2068 << BaseOffs; 2069 NeedPlus = true; 2070 } 2071 2072 if (BaseReg) { 2073 OS << (NeedPlus ? " + " : "") 2074 << "Base:"; 2075 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2076 NeedPlus = true; 2077 } 2078 if (Scale) { 2079 OS << (NeedPlus ? " + " : "") 2080 << Scale << "*"; 2081 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2082 } 2083 2084 OS << ']'; 2085 } 2086 2087 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2088 print(dbgs()); 2089 dbgs() << '\n'; 2090 } 2091 #endif 2092 2093 namespace { 2094 2095 /// This class provides transaction based operation on the IR. 2096 /// Every change made through this class is recorded in the internal state and 2097 /// can be undone (rollback) until commit is called. 2098 class TypePromotionTransaction { 2099 /// This represents the common interface of the individual transaction. 2100 /// Each class implements the logic for doing one specific modification on 2101 /// the IR via the TypePromotionTransaction. 2102 class TypePromotionAction { 2103 protected: 2104 /// The Instruction modified. 2105 Instruction *Inst; 2106 2107 public: 2108 /// Constructor of the action. 2109 /// The constructor performs the related action on the IR. 2110 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2111 2112 virtual ~TypePromotionAction() = default; 2113 2114 /// Undo the modification done by this action. 2115 /// When this method is called, the IR must be in the same state as it was 2116 /// before this action was applied. 2117 /// \pre Undoing the action works if and only if the IR is in the exact same 2118 /// state as it was directly after this action was applied. 2119 virtual void undo() = 0; 2120 2121 /// Advocate every change made by this action. 2122 /// When the results on the IR of the action are to be kept, it is important 2123 /// to call this function, otherwise hidden information may be kept forever. 2124 virtual void commit() { 2125 // Nothing to be done, this action is not doing anything. 2126 } 2127 }; 2128 2129 /// Utility to remember the position of an instruction. 2130 class InsertionHandler { 2131 /// Position of an instruction. 2132 /// Either an instruction: 2133 /// - Is the first in a basic block: BB is used. 2134 /// - Has a previous instruction: PrevInst is used. 2135 union { 2136 Instruction *PrevInst; 2137 BasicBlock *BB; 2138 } Point; 2139 2140 /// Remember whether or not the instruction had a previous instruction. 2141 bool HasPrevInstruction; 2142 2143 public: 2144 /// Record the position of \p Inst. 2145 InsertionHandler(Instruction *Inst) { 2146 BasicBlock::iterator It = Inst->getIterator(); 2147 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2148 if (HasPrevInstruction) 2149 Point.PrevInst = &*--It; 2150 else 2151 Point.BB = Inst->getParent(); 2152 } 2153 2154 /// Insert \p Inst at the recorded position. 2155 void insert(Instruction *Inst) { 2156 if (HasPrevInstruction) { 2157 if (Inst->getParent()) 2158 Inst->removeFromParent(); 2159 Inst->insertAfter(Point.PrevInst); 2160 } else { 2161 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2162 if (Inst->getParent()) 2163 Inst->moveBefore(Position); 2164 else 2165 Inst->insertBefore(Position); 2166 } 2167 } 2168 }; 2169 2170 /// Move an instruction before another. 2171 class InstructionMoveBefore : public TypePromotionAction { 2172 /// Original position of the instruction. 2173 InsertionHandler Position; 2174 2175 public: 2176 /// Move \p Inst before \p Before. 2177 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2178 : TypePromotionAction(Inst), Position(Inst) { 2179 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2180 << "\n"); 2181 Inst->moveBefore(Before); 2182 } 2183 2184 /// Move the instruction back to its original position. 2185 void undo() override { 2186 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2187 Position.insert(Inst); 2188 } 2189 }; 2190 2191 /// Set the operand of an instruction with a new value. 2192 class OperandSetter : public TypePromotionAction { 2193 /// Original operand of the instruction. 2194 Value *Origin; 2195 2196 /// Index of the modified instruction. 2197 unsigned Idx; 2198 2199 public: 2200 /// Set \p Idx operand of \p Inst with \p NewVal. 2201 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2202 : TypePromotionAction(Inst), Idx(Idx) { 2203 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2204 << "for:" << *Inst << "\n" 2205 << "with:" << *NewVal << "\n"); 2206 Origin = Inst->getOperand(Idx); 2207 Inst->setOperand(Idx, NewVal); 2208 } 2209 2210 /// Restore the original value of the instruction. 2211 void undo() override { 2212 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2213 << "for: " << *Inst << "\n" 2214 << "with: " << *Origin << "\n"); 2215 Inst->setOperand(Idx, Origin); 2216 } 2217 }; 2218 2219 /// Hide the operands of an instruction. 2220 /// Do as if this instruction was not using any of its operands. 2221 class OperandsHider : public TypePromotionAction { 2222 /// The list of original operands. 2223 SmallVector<Value *, 4> OriginalValues; 2224 2225 public: 2226 /// Remove \p Inst from the uses of the operands of \p Inst. 2227 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2228 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2229 unsigned NumOpnds = Inst->getNumOperands(); 2230 OriginalValues.reserve(NumOpnds); 2231 for (unsigned It = 0; It < NumOpnds; ++It) { 2232 // Save the current operand. 2233 Value *Val = Inst->getOperand(It); 2234 OriginalValues.push_back(Val); 2235 // Set a dummy one. 2236 // We could use OperandSetter here, but that would imply an overhead 2237 // that we are not willing to pay. 2238 Inst->setOperand(It, UndefValue::get(Val->getType())); 2239 } 2240 } 2241 2242 /// Restore the original list of uses. 2243 void undo() override { 2244 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2245 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2246 Inst->setOperand(It, OriginalValues[It]); 2247 } 2248 }; 2249 2250 /// Build a truncate instruction. 2251 class TruncBuilder : public TypePromotionAction { 2252 Value *Val; 2253 2254 public: 2255 /// Build a truncate instruction of \p Opnd producing a \p Ty 2256 /// result. 2257 /// trunc Opnd to Ty. 2258 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2259 IRBuilder<> Builder(Opnd); 2260 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2261 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2262 } 2263 2264 /// Get the built value. 2265 Value *getBuiltValue() { return Val; } 2266 2267 /// Remove the built instruction. 2268 void undo() override { 2269 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2270 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2271 IVal->eraseFromParent(); 2272 } 2273 }; 2274 2275 /// Build a sign extension instruction. 2276 class SExtBuilder : public TypePromotionAction { 2277 Value *Val; 2278 2279 public: 2280 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2281 /// result. 2282 /// sext Opnd to Ty. 2283 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2284 : TypePromotionAction(InsertPt) { 2285 IRBuilder<> Builder(InsertPt); 2286 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2287 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2288 } 2289 2290 /// Get the built value. 2291 Value *getBuiltValue() { return Val; } 2292 2293 /// Remove the built instruction. 2294 void undo() override { 2295 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2296 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2297 IVal->eraseFromParent(); 2298 } 2299 }; 2300 2301 /// Build a zero extension instruction. 2302 class ZExtBuilder : public TypePromotionAction { 2303 Value *Val; 2304 2305 public: 2306 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2307 /// result. 2308 /// zext Opnd to Ty. 2309 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2310 : TypePromotionAction(InsertPt) { 2311 IRBuilder<> Builder(InsertPt); 2312 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2313 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2314 } 2315 2316 /// Get the built value. 2317 Value *getBuiltValue() { return Val; } 2318 2319 /// Remove the built instruction. 2320 void undo() override { 2321 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2322 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2323 IVal->eraseFromParent(); 2324 } 2325 }; 2326 2327 /// Mutate an instruction to another type. 2328 class TypeMutator : public TypePromotionAction { 2329 /// Record the original type. 2330 Type *OrigTy; 2331 2332 public: 2333 /// Mutate the type of \p Inst into \p NewTy. 2334 TypeMutator(Instruction *Inst, Type *NewTy) 2335 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2336 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2337 << "\n"); 2338 Inst->mutateType(NewTy); 2339 } 2340 2341 /// Mutate the instruction back to its original type. 2342 void undo() override { 2343 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2344 << "\n"); 2345 Inst->mutateType(OrigTy); 2346 } 2347 }; 2348 2349 /// Replace the uses of an instruction by another instruction. 2350 class UsesReplacer : public TypePromotionAction { 2351 /// Helper structure to keep track of the replaced uses. 2352 struct InstructionAndIdx { 2353 /// The instruction using the instruction. 2354 Instruction *Inst; 2355 2356 /// The index where this instruction is used for Inst. 2357 unsigned Idx; 2358 2359 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2360 : Inst(Inst), Idx(Idx) {} 2361 }; 2362 2363 /// Keep track of the original uses (pair Instruction, Index). 2364 SmallVector<InstructionAndIdx, 4> OriginalUses; 2365 /// Keep track of the debug users. 2366 SmallVector<DbgValueInst *, 1> DbgValues; 2367 2368 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2369 2370 public: 2371 /// Replace all the use of \p Inst by \p New. 2372 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2373 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2374 << "\n"); 2375 // Record the original uses. 2376 for (Use &U : Inst->uses()) { 2377 Instruction *UserI = cast<Instruction>(U.getUser()); 2378 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2379 } 2380 // Record the debug uses separately. They are not in the instruction's 2381 // use list, but they are replaced by RAUW. 2382 findDbgValues(DbgValues, Inst); 2383 2384 // Now, we can replace the uses. 2385 Inst->replaceAllUsesWith(New); 2386 } 2387 2388 /// Reassign the original uses of Inst to Inst. 2389 void undo() override { 2390 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2391 for (use_iterator UseIt = OriginalUses.begin(), 2392 EndIt = OriginalUses.end(); 2393 UseIt != EndIt; ++UseIt) { 2394 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2395 } 2396 // RAUW has replaced all original uses with references to the new value, 2397 // including the debug uses. Since we are undoing the replacements, 2398 // the original debug uses must also be reinstated to maintain the 2399 // correctness and utility of debug value instructions. 2400 for (auto *DVI: DbgValues) { 2401 LLVMContext &Ctx = Inst->getType()->getContext(); 2402 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2403 DVI->setOperand(0, MV); 2404 } 2405 } 2406 }; 2407 2408 /// Remove an instruction from the IR. 2409 class InstructionRemover : public TypePromotionAction { 2410 /// Original position of the instruction. 2411 InsertionHandler Inserter; 2412 2413 /// Helper structure to hide all the link to the instruction. In other 2414 /// words, this helps to do as if the instruction was removed. 2415 OperandsHider Hider; 2416 2417 /// Keep track of the uses replaced, if any. 2418 UsesReplacer *Replacer = nullptr; 2419 2420 /// Keep track of instructions removed. 2421 SetOfInstrs &RemovedInsts; 2422 2423 public: 2424 /// Remove all reference of \p Inst and optionally replace all its 2425 /// uses with New. 2426 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2427 /// \pre If !Inst->use_empty(), then New != nullptr 2428 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2429 Value *New = nullptr) 2430 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2431 RemovedInsts(RemovedInsts) { 2432 if (New) 2433 Replacer = new UsesReplacer(Inst, New); 2434 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2435 RemovedInsts.insert(Inst); 2436 /// The instructions removed here will be freed after completing 2437 /// optimizeBlock() for all blocks as we need to keep track of the 2438 /// removed instructions during promotion. 2439 Inst->removeFromParent(); 2440 } 2441 2442 ~InstructionRemover() override { delete Replacer; } 2443 2444 /// Resurrect the instruction and reassign it to the proper uses if 2445 /// new value was provided when build this action. 2446 void undo() override { 2447 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2448 Inserter.insert(Inst); 2449 if (Replacer) 2450 Replacer->undo(); 2451 Hider.undo(); 2452 RemovedInsts.erase(Inst); 2453 } 2454 }; 2455 2456 public: 2457 /// Restoration point. 2458 /// The restoration point is a pointer to an action instead of an iterator 2459 /// because the iterator may be invalidated but not the pointer. 2460 using ConstRestorationPt = const TypePromotionAction *; 2461 2462 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2463 : RemovedInsts(RemovedInsts) {} 2464 2465 /// Advocate every changes made in that transaction. 2466 void commit(); 2467 2468 /// Undo all the changes made after the given point. 2469 void rollback(ConstRestorationPt Point); 2470 2471 /// Get the current restoration point. 2472 ConstRestorationPt getRestorationPoint() const; 2473 2474 /// \name API for IR modification with state keeping to support rollback. 2475 /// @{ 2476 /// Same as Instruction::setOperand. 2477 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2478 2479 /// Same as Instruction::eraseFromParent. 2480 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2481 2482 /// Same as Value::replaceAllUsesWith. 2483 void replaceAllUsesWith(Instruction *Inst, Value *New); 2484 2485 /// Same as Value::mutateType. 2486 void mutateType(Instruction *Inst, Type *NewTy); 2487 2488 /// Same as IRBuilder::createTrunc. 2489 Value *createTrunc(Instruction *Opnd, Type *Ty); 2490 2491 /// Same as IRBuilder::createSExt. 2492 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2493 2494 /// Same as IRBuilder::createZExt. 2495 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2496 2497 /// Same as Instruction::moveBefore. 2498 void moveBefore(Instruction *Inst, Instruction *Before); 2499 /// @} 2500 2501 private: 2502 /// The ordered list of actions made so far. 2503 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2504 2505 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2506 2507 SetOfInstrs &RemovedInsts; 2508 }; 2509 2510 } // end anonymous namespace 2511 2512 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2513 Value *NewVal) { 2514 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2515 Inst, Idx, NewVal)); 2516 } 2517 2518 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2519 Value *NewVal) { 2520 Actions.push_back( 2521 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2522 Inst, RemovedInsts, NewVal)); 2523 } 2524 2525 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2526 Value *New) { 2527 Actions.push_back( 2528 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2529 } 2530 2531 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2532 Actions.push_back( 2533 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2534 } 2535 2536 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2537 Type *Ty) { 2538 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2539 Value *Val = Ptr->getBuiltValue(); 2540 Actions.push_back(std::move(Ptr)); 2541 return Val; 2542 } 2543 2544 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2545 Value *Opnd, Type *Ty) { 2546 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2547 Value *Val = Ptr->getBuiltValue(); 2548 Actions.push_back(std::move(Ptr)); 2549 return Val; 2550 } 2551 2552 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2553 Value *Opnd, Type *Ty) { 2554 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2555 Value *Val = Ptr->getBuiltValue(); 2556 Actions.push_back(std::move(Ptr)); 2557 return Val; 2558 } 2559 2560 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2561 Instruction *Before) { 2562 Actions.push_back( 2563 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2564 Inst, Before)); 2565 } 2566 2567 TypePromotionTransaction::ConstRestorationPt 2568 TypePromotionTransaction::getRestorationPoint() const { 2569 return !Actions.empty() ? Actions.back().get() : nullptr; 2570 } 2571 2572 void TypePromotionTransaction::commit() { 2573 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2574 ++It) 2575 (*It)->commit(); 2576 Actions.clear(); 2577 } 2578 2579 void TypePromotionTransaction::rollback( 2580 TypePromotionTransaction::ConstRestorationPt Point) { 2581 while (!Actions.empty() && Point != Actions.back().get()) { 2582 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2583 Curr->undo(); 2584 } 2585 } 2586 2587 namespace { 2588 2589 /// A helper class for matching addressing modes. 2590 /// 2591 /// This encapsulates the logic for matching the target-legal addressing modes. 2592 class AddressingModeMatcher { 2593 SmallVectorImpl<Instruction*> &AddrModeInsts; 2594 const TargetLowering &TLI; 2595 const TargetRegisterInfo &TRI; 2596 const DataLayout &DL; 2597 2598 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2599 /// the memory instruction that we're computing this address for. 2600 Type *AccessTy; 2601 unsigned AddrSpace; 2602 Instruction *MemoryInst; 2603 2604 /// This is the addressing mode that we're building up. This is 2605 /// part of the return value of this addressing mode matching stuff. 2606 ExtAddrMode &AddrMode; 2607 2608 /// The instructions inserted by other CodeGenPrepare optimizations. 2609 const SetOfInstrs &InsertedInsts; 2610 2611 /// A map from the instructions to their type before promotion. 2612 InstrToOrigTy &PromotedInsts; 2613 2614 /// The ongoing transaction where every action should be registered. 2615 TypePromotionTransaction &TPT; 2616 2617 // A GEP which has too large offset to be folded into the addressing mode. 2618 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2619 2620 /// This is set to true when we should not do profitability checks. 2621 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2622 bool IgnoreProfitability; 2623 2624 AddressingModeMatcher( 2625 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2626 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2627 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2628 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2629 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2630 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2631 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2632 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2633 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2634 IgnoreProfitability = false; 2635 } 2636 2637 public: 2638 /// Find the maximal addressing mode that a load/store of V can fold, 2639 /// give an access type of AccessTy. This returns a list of involved 2640 /// instructions in AddrModeInsts. 2641 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2642 /// optimizations. 2643 /// \p PromotedInsts maps the instructions to their type before promotion. 2644 /// \p The ongoing transaction where every action should be registered. 2645 static ExtAddrMode 2646 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2647 SmallVectorImpl<Instruction *> &AddrModeInsts, 2648 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2649 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2650 TypePromotionTransaction &TPT, 2651 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2652 ExtAddrMode Result; 2653 2654 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2655 MemoryInst, Result, InsertedInsts, 2656 PromotedInsts, TPT, LargeOffsetGEP) 2657 .matchAddr(V, 0); 2658 (void)Success; assert(Success && "Couldn't select *anything*?"); 2659 return Result; 2660 } 2661 2662 private: 2663 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2664 bool matchAddr(Value *Addr, unsigned Depth); 2665 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2666 bool *MovedAway = nullptr); 2667 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2668 ExtAddrMode &AMBefore, 2669 ExtAddrMode &AMAfter); 2670 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2671 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2672 Value *PromotedOperand) const; 2673 }; 2674 2675 class PhiNodeSet; 2676 2677 /// An iterator for PhiNodeSet. 2678 class PhiNodeSetIterator { 2679 PhiNodeSet * const Set; 2680 size_t CurrentIndex = 0; 2681 2682 public: 2683 /// The constructor. Start should point to either a valid element, or be equal 2684 /// to the size of the underlying SmallVector of the PhiNodeSet. 2685 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2686 PHINode * operator*() const; 2687 PhiNodeSetIterator& operator++(); 2688 bool operator==(const PhiNodeSetIterator &RHS) const; 2689 bool operator!=(const PhiNodeSetIterator &RHS) const; 2690 }; 2691 2692 /// Keeps a set of PHINodes. 2693 /// 2694 /// This is a minimal set implementation for a specific use case: 2695 /// It is very fast when there are very few elements, but also provides good 2696 /// performance when there are many. It is similar to SmallPtrSet, but also 2697 /// provides iteration by insertion order, which is deterministic and stable 2698 /// across runs. It is also similar to SmallSetVector, but provides removing 2699 /// elements in O(1) time. This is achieved by not actually removing the element 2700 /// from the underlying vector, so comes at the cost of using more memory, but 2701 /// that is fine, since PhiNodeSets are used as short lived objects. 2702 class PhiNodeSet { 2703 friend class PhiNodeSetIterator; 2704 2705 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2706 using iterator = PhiNodeSetIterator; 2707 2708 /// Keeps the elements in the order of their insertion in the underlying 2709 /// vector. To achieve constant time removal, it never deletes any element. 2710 SmallVector<PHINode *, 32> NodeList; 2711 2712 /// Keeps the elements in the underlying set implementation. This (and not the 2713 /// NodeList defined above) is the source of truth on whether an element 2714 /// is actually in the collection. 2715 MapType NodeMap; 2716 2717 /// Points to the first valid (not deleted) element when the set is not empty 2718 /// and the value is not zero. Equals to the size of the underlying vector 2719 /// when the set is empty. When the value is 0, as in the beginning, the 2720 /// first element may or may not be valid. 2721 size_t FirstValidElement = 0; 2722 2723 public: 2724 /// Inserts a new element to the collection. 2725 /// \returns true if the element is actually added, i.e. was not in the 2726 /// collection before the operation. 2727 bool insert(PHINode *Ptr) { 2728 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2729 NodeList.push_back(Ptr); 2730 return true; 2731 } 2732 return false; 2733 } 2734 2735 /// Removes the element from the collection. 2736 /// \returns whether the element is actually removed, i.e. was in the 2737 /// collection before the operation. 2738 bool erase(PHINode *Ptr) { 2739 auto it = NodeMap.find(Ptr); 2740 if (it != NodeMap.end()) { 2741 NodeMap.erase(Ptr); 2742 SkipRemovedElements(FirstValidElement); 2743 return true; 2744 } 2745 return false; 2746 } 2747 2748 /// Removes all elements and clears the collection. 2749 void clear() { 2750 NodeMap.clear(); 2751 NodeList.clear(); 2752 FirstValidElement = 0; 2753 } 2754 2755 /// \returns an iterator that will iterate the elements in the order of 2756 /// insertion. 2757 iterator begin() { 2758 if (FirstValidElement == 0) 2759 SkipRemovedElements(FirstValidElement); 2760 return PhiNodeSetIterator(this, FirstValidElement); 2761 } 2762 2763 /// \returns an iterator that points to the end of the collection. 2764 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 2765 2766 /// Returns the number of elements in the collection. 2767 size_t size() const { 2768 return NodeMap.size(); 2769 } 2770 2771 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 2772 size_t count(PHINode *Ptr) const { 2773 return NodeMap.count(Ptr); 2774 } 2775 2776 private: 2777 /// Updates the CurrentIndex so that it will point to a valid element. 2778 /// 2779 /// If the element of NodeList at CurrentIndex is valid, it does not 2780 /// change it. If there are no more valid elements, it updates CurrentIndex 2781 /// to point to the end of the NodeList. 2782 void SkipRemovedElements(size_t &CurrentIndex) { 2783 while (CurrentIndex < NodeList.size()) { 2784 auto it = NodeMap.find(NodeList[CurrentIndex]); 2785 // If the element has been deleted and added again later, NodeMap will 2786 // point to a different index, so CurrentIndex will still be invalid. 2787 if (it != NodeMap.end() && it->second == CurrentIndex) 2788 break; 2789 ++CurrentIndex; 2790 } 2791 } 2792 }; 2793 2794 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 2795 : Set(Set), CurrentIndex(Start) {} 2796 2797 PHINode * PhiNodeSetIterator::operator*() const { 2798 assert(CurrentIndex < Set->NodeList.size() && 2799 "PhiNodeSet access out of range"); 2800 return Set->NodeList[CurrentIndex]; 2801 } 2802 2803 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 2804 assert(CurrentIndex < Set->NodeList.size() && 2805 "PhiNodeSet access out of range"); 2806 ++CurrentIndex; 2807 Set->SkipRemovedElements(CurrentIndex); 2808 return *this; 2809 } 2810 2811 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 2812 return CurrentIndex == RHS.CurrentIndex; 2813 } 2814 2815 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 2816 return !((*this) == RHS); 2817 } 2818 2819 /// Keep track of simplification of Phi nodes. 2820 /// Accept the set of all phi nodes and erase phi node from this set 2821 /// if it is simplified. 2822 class SimplificationTracker { 2823 DenseMap<Value *, Value *> Storage; 2824 const SimplifyQuery &SQ; 2825 // Tracks newly created Phi nodes. The elements are iterated by insertion 2826 // order. 2827 PhiNodeSet AllPhiNodes; 2828 // Tracks newly created Select nodes. 2829 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2830 2831 public: 2832 SimplificationTracker(const SimplifyQuery &sq) 2833 : SQ(sq) {} 2834 2835 Value *Get(Value *V) { 2836 do { 2837 auto SV = Storage.find(V); 2838 if (SV == Storage.end()) 2839 return V; 2840 V = SV->second; 2841 } while (true); 2842 } 2843 2844 Value *Simplify(Value *Val) { 2845 SmallVector<Value *, 32> WorkList; 2846 SmallPtrSet<Value *, 32> Visited; 2847 WorkList.push_back(Val); 2848 while (!WorkList.empty()) { 2849 auto P = WorkList.pop_back_val(); 2850 if (!Visited.insert(P).second) 2851 continue; 2852 if (auto *PI = dyn_cast<Instruction>(P)) 2853 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2854 for (auto *U : PI->users()) 2855 WorkList.push_back(cast<Value>(U)); 2856 Put(PI, V); 2857 PI->replaceAllUsesWith(V); 2858 if (auto *PHI = dyn_cast<PHINode>(PI)) 2859 AllPhiNodes.erase(PHI); 2860 if (auto *Select = dyn_cast<SelectInst>(PI)) 2861 AllSelectNodes.erase(Select); 2862 PI->eraseFromParent(); 2863 } 2864 } 2865 return Get(Val); 2866 } 2867 2868 void Put(Value *From, Value *To) { 2869 Storage.insert({ From, To }); 2870 } 2871 2872 void ReplacePhi(PHINode *From, PHINode *To) { 2873 Value* OldReplacement = Get(From); 2874 while (OldReplacement != From) { 2875 From = To; 2876 To = dyn_cast<PHINode>(OldReplacement); 2877 OldReplacement = Get(From); 2878 } 2879 assert(Get(To) == To && "Replacement PHI node is already replaced."); 2880 Put(From, To); 2881 From->replaceAllUsesWith(To); 2882 AllPhiNodes.erase(From); 2883 From->eraseFromParent(); 2884 } 2885 2886 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 2887 2888 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 2889 2890 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 2891 2892 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 2893 2894 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 2895 2896 void destroyNewNodes(Type *CommonType) { 2897 // For safe erasing, replace the uses with dummy value first. 2898 auto Dummy = UndefValue::get(CommonType); 2899 for (auto I : AllPhiNodes) { 2900 I->replaceAllUsesWith(Dummy); 2901 I->eraseFromParent(); 2902 } 2903 AllPhiNodes.clear(); 2904 for (auto I : AllSelectNodes) { 2905 I->replaceAllUsesWith(Dummy); 2906 I->eraseFromParent(); 2907 } 2908 AllSelectNodes.clear(); 2909 } 2910 }; 2911 2912 /// A helper class for combining addressing modes. 2913 class AddressingModeCombiner { 2914 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 2915 typedef std::pair<PHINode *, PHINode *> PHIPair; 2916 2917 private: 2918 /// The addressing modes we've collected. 2919 SmallVector<ExtAddrMode, 16> AddrModes; 2920 2921 /// The field in which the AddrModes differ, when we have more than one. 2922 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2923 2924 /// Are the AddrModes that we have all just equal to their original values? 2925 bool AllAddrModesTrivial = true; 2926 2927 /// Common Type for all different fields in addressing modes. 2928 Type *CommonType; 2929 2930 /// SimplifyQuery for simplifyInstruction utility. 2931 const SimplifyQuery &SQ; 2932 2933 /// Original Address. 2934 Value *Original; 2935 2936 public: 2937 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 2938 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2939 2940 /// Get the combined AddrMode 2941 const ExtAddrMode &getAddrMode() const { 2942 return AddrModes[0]; 2943 } 2944 2945 /// Add a new AddrMode if it's compatible with the AddrModes we already 2946 /// have. 2947 /// \return True iff we succeeded in doing so. 2948 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2949 // Take note of if we have any non-trivial AddrModes, as we need to detect 2950 // when all AddrModes are trivial as then we would introduce a phi or select 2951 // which just duplicates what's already there. 2952 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2953 2954 // If this is the first addrmode then everything is fine. 2955 if (AddrModes.empty()) { 2956 AddrModes.emplace_back(NewAddrMode); 2957 return true; 2958 } 2959 2960 // Figure out how different this is from the other address modes, which we 2961 // can do just by comparing against the first one given that we only care 2962 // about the cumulative difference. 2963 ExtAddrMode::FieldName ThisDifferentField = 2964 AddrModes[0].compare(NewAddrMode); 2965 if (DifferentField == ExtAddrMode::NoField) 2966 DifferentField = ThisDifferentField; 2967 else if (DifferentField != ThisDifferentField) 2968 DifferentField = ExtAddrMode::MultipleFields; 2969 2970 // If NewAddrMode differs in more than one dimension we cannot handle it. 2971 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 2972 2973 // If Scale Field is different then we reject. 2974 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 2975 2976 // We also must reject the case when base offset is different and 2977 // scale reg is not null, we cannot handle this case due to merge of 2978 // different offsets will be used as ScaleReg. 2979 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 2980 !NewAddrMode.ScaledReg); 2981 2982 // We also must reject the case when GV is different and BaseReg installed 2983 // due to we want to use base reg as a merge of GV values. 2984 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 2985 !NewAddrMode.HasBaseReg); 2986 2987 // Even if NewAddMode is the same we still need to collect it due to 2988 // original value is different. And later we will need all original values 2989 // as anchors during finding the common Phi node. 2990 if (CanHandle) 2991 AddrModes.emplace_back(NewAddrMode); 2992 else 2993 AddrModes.clear(); 2994 2995 return CanHandle; 2996 } 2997 2998 /// Combine the addressing modes we've collected into a single 2999 /// addressing mode. 3000 /// \return True iff we successfully combined them or we only had one so 3001 /// didn't need to combine them anyway. 3002 bool combineAddrModes() { 3003 // If we have no AddrModes then they can't be combined. 3004 if (AddrModes.size() == 0) 3005 return false; 3006 3007 // A single AddrMode can trivially be combined. 3008 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3009 return true; 3010 3011 // If the AddrModes we collected are all just equal to the value they are 3012 // derived from then combining them wouldn't do anything useful. 3013 if (AllAddrModesTrivial) 3014 return false; 3015 3016 if (!addrModeCombiningAllowed()) 3017 return false; 3018 3019 // Build a map between <original value, basic block where we saw it> to 3020 // value of base register. 3021 // Bail out if there is no common type. 3022 FoldAddrToValueMapping Map; 3023 if (!initializeMap(Map)) 3024 return false; 3025 3026 Value *CommonValue = findCommon(Map); 3027 if (CommonValue) 3028 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3029 return CommonValue != nullptr; 3030 } 3031 3032 private: 3033 /// Initialize Map with anchor values. For address seen 3034 /// we set the value of different field saw in this address. 3035 /// At the same time we find a common type for different field we will 3036 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3037 /// Return false if there is no common type found. 3038 bool initializeMap(FoldAddrToValueMapping &Map) { 3039 // Keep track of keys where the value is null. We will need to replace it 3040 // with constant null when we know the common type. 3041 SmallVector<Value *, 2> NullValue; 3042 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3043 for (auto &AM : AddrModes) { 3044 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3045 if (DV) { 3046 auto *Type = DV->getType(); 3047 if (CommonType && CommonType != Type) 3048 return false; 3049 CommonType = Type; 3050 Map[AM.OriginalValue] = DV; 3051 } else { 3052 NullValue.push_back(AM.OriginalValue); 3053 } 3054 } 3055 assert(CommonType && "At least one non-null value must be!"); 3056 for (auto *V : NullValue) 3057 Map[V] = Constant::getNullValue(CommonType); 3058 return true; 3059 } 3060 3061 /// We have mapping between value A and other value B where B was a field in 3062 /// addressing mode represented by A. Also we have an original value C 3063 /// representing an address we start with. Traversing from C through phi and 3064 /// selects we ended up with A's in a map. This utility function tries to find 3065 /// a value V which is a field in addressing mode C and traversing through phi 3066 /// nodes and selects we will end up in corresponded values B in a map. 3067 /// The utility will create a new Phi/Selects if needed. 3068 // The simple example looks as follows: 3069 // BB1: 3070 // p1 = b1 + 40 3071 // br cond BB2, BB3 3072 // BB2: 3073 // p2 = b2 + 40 3074 // br BB3 3075 // BB3: 3076 // p = phi [p1, BB1], [p2, BB2] 3077 // v = load p 3078 // Map is 3079 // p1 -> b1 3080 // p2 -> b2 3081 // Request is 3082 // p -> ? 3083 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3084 Value *findCommon(FoldAddrToValueMapping &Map) { 3085 // Tracks the simplification of newly created phi nodes. The reason we use 3086 // this mapping is because we will add new created Phi nodes in AddrToBase. 3087 // Simplification of Phi nodes is recursive, so some Phi node may 3088 // be simplified after we added it to AddrToBase. In reality this 3089 // simplification is possible only if original phi/selects were not 3090 // simplified yet. 3091 // Using this mapping we can find the current value in AddrToBase. 3092 SimplificationTracker ST(SQ); 3093 3094 // First step, DFS to create PHI nodes for all intermediate blocks. 3095 // Also fill traverse order for the second step. 3096 SmallVector<Value *, 32> TraverseOrder; 3097 InsertPlaceholders(Map, TraverseOrder, ST); 3098 3099 // Second Step, fill new nodes by merged values and simplify if possible. 3100 FillPlaceholders(Map, TraverseOrder, ST); 3101 3102 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3103 ST.destroyNewNodes(CommonType); 3104 return nullptr; 3105 } 3106 3107 // Now we'd like to match New Phi nodes to existed ones. 3108 unsigned PhiNotMatchedCount = 0; 3109 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3110 ST.destroyNewNodes(CommonType); 3111 return nullptr; 3112 } 3113 3114 auto *Result = ST.Get(Map.find(Original)->second); 3115 if (Result) { 3116 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3117 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3118 } 3119 return Result; 3120 } 3121 3122 /// Try to match PHI node to Candidate. 3123 /// Matcher tracks the matched Phi nodes. 3124 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3125 SmallSetVector<PHIPair, 8> &Matcher, 3126 PhiNodeSet &PhiNodesToMatch) { 3127 SmallVector<PHIPair, 8> WorkList; 3128 Matcher.insert({ PHI, Candidate }); 3129 WorkList.push_back({ PHI, Candidate }); 3130 SmallSet<PHIPair, 8> Visited; 3131 while (!WorkList.empty()) { 3132 auto Item = WorkList.pop_back_val(); 3133 if (!Visited.insert(Item).second) 3134 continue; 3135 // We iterate over all incoming values to Phi to compare them. 3136 // If values are different and both of them Phi and the first one is a 3137 // Phi we added (subject to match) and both of them is in the same basic 3138 // block then we can match our pair if values match. So we state that 3139 // these values match and add it to work list to verify that. 3140 for (auto B : Item.first->blocks()) { 3141 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3142 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3143 if (FirstValue == SecondValue) 3144 continue; 3145 3146 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3147 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3148 3149 // One of them is not Phi or 3150 // The first one is not Phi node from the set we'd like to match or 3151 // Phi nodes from different basic blocks then 3152 // we will not be able to match. 3153 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3154 FirstPhi->getParent() != SecondPhi->getParent()) 3155 return false; 3156 3157 // If we already matched them then continue. 3158 if (Matcher.count({ FirstPhi, SecondPhi })) 3159 continue; 3160 // So the values are different and does not match. So we need them to 3161 // match. 3162 Matcher.insert({ FirstPhi, SecondPhi }); 3163 // But me must check it. 3164 WorkList.push_back({ FirstPhi, SecondPhi }); 3165 } 3166 } 3167 return true; 3168 } 3169 3170 /// For the given set of PHI nodes (in the SimplificationTracker) try 3171 /// to find their equivalents. 3172 /// Returns false if this matching fails and creation of new Phi is disabled. 3173 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3174 unsigned &PhiNotMatchedCount) { 3175 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3176 // order, so the replacements (ReplacePhi) are also done in a deterministic 3177 // order. 3178 SmallSetVector<PHIPair, 8> Matched; 3179 SmallPtrSet<PHINode *, 8> WillNotMatch; 3180 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3181 while (PhiNodesToMatch.size()) { 3182 PHINode *PHI = *PhiNodesToMatch.begin(); 3183 3184 // Add us, if no Phi nodes in the basic block we do not match. 3185 WillNotMatch.clear(); 3186 WillNotMatch.insert(PHI); 3187 3188 // Traverse all Phis until we found equivalent or fail to do that. 3189 bool IsMatched = false; 3190 for (auto &P : PHI->getParent()->phis()) { 3191 if (&P == PHI) 3192 continue; 3193 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3194 break; 3195 // If it does not match, collect all Phi nodes from matcher. 3196 // if we end up with no match, them all these Phi nodes will not match 3197 // later. 3198 for (auto M : Matched) 3199 WillNotMatch.insert(M.first); 3200 Matched.clear(); 3201 } 3202 if (IsMatched) { 3203 // Replace all matched values and erase them. 3204 for (auto MV : Matched) 3205 ST.ReplacePhi(MV.first, MV.second); 3206 Matched.clear(); 3207 continue; 3208 } 3209 // If we are not allowed to create new nodes then bail out. 3210 if (!AllowNewPhiNodes) 3211 return false; 3212 // Just remove all seen values in matcher. They will not match anything. 3213 PhiNotMatchedCount += WillNotMatch.size(); 3214 for (auto *P : WillNotMatch) 3215 PhiNodesToMatch.erase(P); 3216 } 3217 return true; 3218 } 3219 /// Fill the placeholders with values from predecessors and simplify them. 3220 void FillPlaceholders(FoldAddrToValueMapping &Map, 3221 SmallVectorImpl<Value *> &TraverseOrder, 3222 SimplificationTracker &ST) { 3223 while (!TraverseOrder.empty()) { 3224 Value *Current = TraverseOrder.pop_back_val(); 3225 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3226 Value *V = Map[Current]; 3227 3228 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3229 // CurrentValue also must be Select. 3230 auto *CurrentSelect = cast<SelectInst>(Current); 3231 auto *TrueValue = CurrentSelect->getTrueValue(); 3232 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3233 Select->setTrueValue(ST.Get(Map[TrueValue])); 3234 auto *FalseValue = CurrentSelect->getFalseValue(); 3235 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3236 Select->setFalseValue(ST.Get(Map[FalseValue])); 3237 } else { 3238 // Must be a Phi node then. 3239 PHINode *PHI = cast<PHINode>(V); 3240 auto *CurrentPhi = dyn_cast<PHINode>(Current); 3241 // Fill the Phi node with values from predecessors. 3242 for (auto B : predecessors(PHI->getParent())) { 3243 Value *PV = CurrentPhi->getIncomingValueForBlock(B); 3244 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3245 PHI->addIncoming(ST.Get(Map[PV]), B); 3246 } 3247 } 3248 Map[Current] = ST.Simplify(V); 3249 } 3250 } 3251 3252 /// Starting from original value recursively iterates over def-use chain up to 3253 /// known ending values represented in a map. For each traversed phi/select 3254 /// inserts a placeholder Phi or Select. 3255 /// Reports all new created Phi/Select nodes by adding them to set. 3256 /// Also reports and order in what values have been traversed. 3257 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3258 SmallVectorImpl<Value *> &TraverseOrder, 3259 SimplificationTracker &ST) { 3260 SmallVector<Value *, 32> Worklist; 3261 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3262 "Address must be a Phi or Select node"); 3263 auto *Dummy = UndefValue::get(CommonType); 3264 Worklist.push_back(Original); 3265 while (!Worklist.empty()) { 3266 Value *Current = Worklist.pop_back_val(); 3267 // if it is already visited or it is an ending value then skip it. 3268 if (Map.find(Current) != Map.end()) 3269 continue; 3270 TraverseOrder.push_back(Current); 3271 3272 // CurrentValue must be a Phi node or select. All others must be covered 3273 // by anchors. 3274 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3275 // Is it OK to get metadata from OrigSelect?! 3276 // Create a Select placeholder with dummy value. 3277 SelectInst *Select = SelectInst::Create( 3278 CurrentSelect->getCondition(), Dummy, Dummy, 3279 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3280 Map[Current] = Select; 3281 ST.insertNewSelect(Select); 3282 // We are interested in True and False values. 3283 Worklist.push_back(CurrentSelect->getTrueValue()); 3284 Worklist.push_back(CurrentSelect->getFalseValue()); 3285 } else { 3286 // It must be a Phi node then. 3287 PHINode *CurrentPhi = cast<PHINode>(Current); 3288 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3289 PHINode *PHI = 3290 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3291 Map[Current] = PHI; 3292 ST.insertNewPhi(PHI); 3293 for (Value *P : CurrentPhi->incoming_values()) 3294 Worklist.push_back(P); 3295 } 3296 } 3297 } 3298 3299 bool addrModeCombiningAllowed() { 3300 if (DisableComplexAddrModes) 3301 return false; 3302 switch (DifferentField) { 3303 default: 3304 return false; 3305 case ExtAddrMode::BaseRegField: 3306 return AddrSinkCombineBaseReg; 3307 case ExtAddrMode::BaseGVField: 3308 return AddrSinkCombineBaseGV; 3309 case ExtAddrMode::BaseOffsField: 3310 return AddrSinkCombineBaseOffs; 3311 case ExtAddrMode::ScaledRegField: 3312 return AddrSinkCombineScaledReg; 3313 } 3314 } 3315 }; 3316 } // end anonymous namespace 3317 3318 /// Try adding ScaleReg*Scale to the current addressing mode. 3319 /// Return true and update AddrMode if this addr mode is legal for the target, 3320 /// false if not. 3321 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3322 unsigned Depth) { 3323 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3324 // mode. Just process that directly. 3325 if (Scale == 1) 3326 return matchAddr(ScaleReg, Depth); 3327 3328 // If the scale is 0, it takes nothing to add this. 3329 if (Scale == 0) 3330 return true; 3331 3332 // If we already have a scale of this value, we can add to it, otherwise, we 3333 // need an available scale field. 3334 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3335 return false; 3336 3337 ExtAddrMode TestAddrMode = AddrMode; 3338 3339 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3340 // [A+B + A*7] -> [B+A*8]. 3341 TestAddrMode.Scale += Scale; 3342 TestAddrMode.ScaledReg = ScaleReg; 3343 3344 // If the new address isn't legal, bail out. 3345 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3346 return false; 3347 3348 // It was legal, so commit it. 3349 AddrMode = TestAddrMode; 3350 3351 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3352 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3353 // X*Scale + C*Scale to addr mode. 3354 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3355 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3356 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3357 TestAddrMode.ScaledReg = AddLHS; 3358 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3359 3360 // If this addressing mode is legal, commit it and remember that we folded 3361 // this instruction. 3362 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3363 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3364 AddrMode = TestAddrMode; 3365 return true; 3366 } 3367 } 3368 3369 // Otherwise, not (x+c)*scale, just return what we have. 3370 return true; 3371 } 3372 3373 /// This is a little filter, which returns true if an addressing computation 3374 /// involving I might be folded into a load/store accessing it. 3375 /// This doesn't need to be perfect, but needs to accept at least 3376 /// the set of instructions that MatchOperationAddr can. 3377 static bool MightBeFoldableInst(Instruction *I) { 3378 switch (I->getOpcode()) { 3379 case Instruction::BitCast: 3380 case Instruction::AddrSpaceCast: 3381 // Don't touch identity bitcasts. 3382 if (I->getType() == I->getOperand(0)->getType()) 3383 return false; 3384 return I->getType()->isIntOrPtrTy(); 3385 case Instruction::PtrToInt: 3386 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3387 return true; 3388 case Instruction::IntToPtr: 3389 // We know the input is intptr_t, so this is foldable. 3390 return true; 3391 case Instruction::Add: 3392 return true; 3393 case Instruction::Mul: 3394 case Instruction::Shl: 3395 // Can only handle X*C and X << C. 3396 return isa<ConstantInt>(I->getOperand(1)); 3397 case Instruction::GetElementPtr: 3398 return true; 3399 default: 3400 return false; 3401 } 3402 } 3403 3404 /// Check whether or not \p Val is a legal instruction for \p TLI. 3405 /// \note \p Val is assumed to be the product of some type promotion. 3406 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3407 /// to be legal, as the non-promoted value would have had the same state. 3408 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3409 const DataLayout &DL, Value *Val) { 3410 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3411 if (!PromotedInst) 3412 return false; 3413 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3414 // If the ISDOpcode is undefined, it was undefined before the promotion. 3415 if (!ISDOpcode) 3416 return true; 3417 // Otherwise, check if the promoted instruction is legal or not. 3418 return TLI.isOperationLegalOrCustom( 3419 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3420 } 3421 3422 namespace { 3423 3424 /// Hepler class to perform type promotion. 3425 class TypePromotionHelper { 3426 /// Utility function to add a promoted instruction \p ExtOpnd to 3427 /// \p PromotedInsts and record the type of extension we have seen. 3428 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3429 Instruction *ExtOpnd, 3430 bool IsSExt) { 3431 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3432 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3433 if (It != PromotedInsts.end()) { 3434 // If the new extension is same as original, the information in 3435 // PromotedInsts[ExtOpnd] is still correct. 3436 if (It->second.getInt() == ExtTy) 3437 return; 3438 3439 // Now the new extension is different from old extension, we make 3440 // the type information invalid by setting extension type to 3441 // BothExtension. 3442 ExtTy = BothExtension; 3443 } 3444 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3445 } 3446 3447 /// Utility function to query the original type of instruction \p Opnd 3448 /// with a matched extension type. If the extension doesn't match, we 3449 /// cannot use the information we had on the original type. 3450 /// BothExtension doesn't match any extension type. 3451 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3452 Instruction *Opnd, 3453 bool IsSExt) { 3454 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3455 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3456 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3457 return It->second.getPointer(); 3458 return nullptr; 3459 } 3460 3461 /// Utility function to check whether or not a sign or zero extension 3462 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3463 /// either using the operands of \p Inst or promoting \p Inst. 3464 /// The type of the extension is defined by \p IsSExt. 3465 /// In other words, check if: 3466 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3467 /// #1 Promotion applies: 3468 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3469 /// #2 Operand reuses: 3470 /// ext opnd1 to ConsideredExtType. 3471 /// \p PromotedInsts maps the instructions to their type before promotion. 3472 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3473 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3474 3475 /// Utility function to determine if \p OpIdx should be promoted when 3476 /// promoting \p Inst. 3477 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3478 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3479 } 3480 3481 /// Utility function to promote the operand of \p Ext when this 3482 /// operand is a promotable trunc or sext or zext. 3483 /// \p PromotedInsts maps the instructions to their type before promotion. 3484 /// \p CreatedInstsCost[out] contains the cost of all instructions 3485 /// created to promote the operand of Ext. 3486 /// Newly added extensions are inserted in \p Exts. 3487 /// Newly added truncates are inserted in \p Truncs. 3488 /// Should never be called directly. 3489 /// \return The promoted value which is used instead of Ext. 3490 static Value *promoteOperandForTruncAndAnyExt( 3491 Instruction *Ext, TypePromotionTransaction &TPT, 3492 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3493 SmallVectorImpl<Instruction *> *Exts, 3494 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3495 3496 /// Utility function to promote the operand of \p Ext when this 3497 /// operand is promotable and is not a supported trunc or sext. 3498 /// \p PromotedInsts maps the instructions to their type before promotion. 3499 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3500 /// created to promote the operand of Ext. 3501 /// Newly added extensions are inserted in \p Exts. 3502 /// Newly added truncates are inserted in \p Truncs. 3503 /// Should never be called directly. 3504 /// \return The promoted value which is used instead of Ext. 3505 static Value *promoteOperandForOther(Instruction *Ext, 3506 TypePromotionTransaction &TPT, 3507 InstrToOrigTy &PromotedInsts, 3508 unsigned &CreatedInstsCost, 3509 SmallVectorImpl<Instruction *> *Exts, 3510 SmallVectorImpl<Instruction *> *Truncs, 3511 const TargetLowering &TLI, bool IsSExt); 3512 3513 /// \see promoteOperandForOther. 3514 static Value *signExtendOperandForOther( 3515 Instruction *Ext, TypePromotionTransaction &TPT, 3516 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3517 SmallVectorImpl<Instruction *> *Exts, 3518 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3519 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3520 Exts, Truncs, TLI, true); 3521 } 3522 3523 /// \see promoteOperandForOther. 3524 static Value *zeroExtendOperandForOther( 3525 Instruction *Ext, TypePromotionTransaction &TPT, 3526 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3527 SmallVectorImpl<Instruction *> *Exts, 3528 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3529 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3530 Exts, Truncs, TLI, false); 3531 } 3532 3533 public: 3534 /// Type for the utility function that promotes the operand of Ext. 3535 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3536 InstrToOrigTy &PromotedInsts, 3537 unsigned &CreatedInstsCost, 3538 SmallVectorImpl<Instruction *> *Exts, 3539 SmallVectorImpl<Instruction *> *Truncs, 3540 const TargetLowering &TLI); 3541 3542 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3543 /// action to promote the operand of \p Ext instead of using Ext. 3544 /// \return NULL if no promotable action is possible with the current 3545 /// sign extension. 3546 /// \p InsertedInsts keeps track of all the instructions inserted by the 3547 /// other CodeGenPrepare optimizations. This information is important 3548 /// because we do not want to promote these instructions as CodeGenPrepare 3549 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3550 /// \p PromotedInsts maps the instructions to their type before promotion. 3551 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3552 const TargetLowering &TLI, 3553 const InstrToOrigTy &PromotedInsts); 3554 }; 3555 3556 } // end anonymous namespace 3557 3558 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3559 Type *ConsideredExtType, 3560 const InstrToOrigTy &PromotedInsts, 3561 bool IsSExt) { 3562 // The promotion helper does not know how to deal with vector types yet. 3563 // To be able to fix that, we would need to fix the places where we 3564 // statically extend, e.g., constants and such. 3565 if (Inst->getType()->isVectorTy()) 3566 return false; 3567 3568 // We can always get through zext. 3569 if (isa<ZExtInst>(Inst)) 3570 return true; 3571 3572 // sext(sext) is ok too. 3573 if (IsSExt && isa<SExtInst>(Inst)) 3574 return true; 3575 3576 // We can get through binary operator, if it is legal. In other words, the 3577 // binary operator must have a nuw or nsw flag. 3578 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3579 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3580 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3581 (IsSExt && BinOp->hasNoSignedWrap()))) 3582 return true; 3583 3584 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3585 if ((Inst->getOpcode() == Instruction::And || 3586 Inst->getOpcode() == Instruction::Or)) 3587 return true; 3588 3589 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3590 if (Inst->getOpcode() == Instruction::Xor) { 3591 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3592 // Make sure it is not a NOT. 3593 if (Cst && !Cst->getValue().isAllOnesValue()) 3594 return true; 3595 } 3596 3597 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3598 // It may change a poisoned value into a regular value, like 3599 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3600 // poisoned value regular value 3601 // It should be OK since undef covers valid value. 3602 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3603 return true; 3604 3605 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3606 // It may change a poisoned value into a regular value, like 3607 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3608 // poisoned value regular value 3609 // It should be OK since undef covers valid value. 3610 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3611 const Instruction *ExtInst = 3612 dyn_cast<const Instruction>(*Inst->user_begin()); 3613 if (ExtInst->hasOneUse()) { 3614 const Instruction *AndInst = 3615 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3616 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3617 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3618 if (Cst && 3619 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3620 return true; 3621 } 3622 } 3623 } 3624 3625 // Check if we can do the following simplification. 3626 // ext(trunc(opnd)) --> ext(opnd) 3627 if (!isa<TruncInst>(Inst)) 3628 return false; 3629 3630 Value *OpndVal = Inst->getOperand(0); 3631 // Check if we can use this operand in the extension. 3632 // If the type is larger than the result type of the extension, we cannot. 3633 if (!OpndVal->getType()->isIntegerTy() || 3634 OpndVal->getType()->getIntegerBitWidth() > 3635 ConsideredExtType->getIntegerBitWidth()) 3636 return false; 3637 3638 // If the operand of the truncate is not an instruction, we will not have 3639 // any information on the dropped bits. 3640 // (Actually we could for constant but it is not worth the extra logic). 3641 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3642 if (!Opnd) 3643 return false; 3644 3645 // Check if the source of the type is narrow enough. 3646 // I.e., check that trunc just drops extended bits of the same kind of 3647 // the extension. 3648 // #1 get the type of the operand and check the kind of the extended bits. 3649 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3650 if (OpndType) 3651 ; 3652 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3653 OpndType = Opnd->getOperand(0)->getType(); 3654 else 3655 return false; 3656 3657 // #2 check that the truncate just drops extended bits. 3658 return Inst->getType()->getIntegerBitWidth() >= 3659 OpndType->getIntegerBitWidth(); 3660 } 3661 3662 TypePromotionHelper::Action TypePromotionHelper::getAction( 3663 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3664 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3665 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3666 "Unexpected instruction type"); 3667 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3668 Type *ExtTy = Ext->getType(); 3669 bool IsSExt = isa<SExtInst>(Ext); 3670 // If the operand of the extension is not an instruction, we cannot 3671 // get through. 3672 // If it, check we can get through. 3673 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3674 return nullptr; 3675 3676 // Do not promote if the operand has been added by codegenprepare. 3677 // Otherwise, it means we are undoing an optimization that is likely to be 3678 // redone, thus causing potential infinite loop. 3679 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3680 return nullptr; 3681 3682 // SExt or Trunc instructions. 3683 // Return the related handler. 3684 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3685 isa<ZExtInst>(ExtOpnd)) 3686 return promoteOperandForTruncAndAnyExt; 3687 3688 // Regular instruction. 3689 // Abort early if we will have to insert non-free instructions. 3690 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3691 return nullptr; 3692 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3693 } 3694 3695 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3696 Instruction *SExt, TypePromotionTransaction &TPT, 3697 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3698 SmallVectorImpl<Instruction *> *Exts, 3699 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3700 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3701 // get through it and this method should not be called. 3702 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3703 Value *ExtVal = SExt; 3704 bool HasMergedNonFreeExt = false; 3705 if (isa<ZExtInst>(SExtOpnd)) { 3706 // Replace s|zext(zext(opnd)) 3707 // => zext(opnd). 3708 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3709 Value *ZExt = 3710 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3711 TPT.replaceAllUsesWith(SExt, ZExt); 3712 TPT.eraseInstruction(SExt); 3713 ExtVal = ZExt; 3714 } else { 3715 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3716 // => z|sext(opnd). 3717 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3718 } 3719 CreatedInstsCost = 0; 3720 3721 // Remove dead code. 3722 if (SExtOpnd->use_empty()) 3723 TPT.eraseInstruction(SExtOpnd); 3724 3725 // Check if the extension is still needed. 3726 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3727 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3728 if (ExtInst) { 3729 if (Exts) 3730 Exts->push_back(ExtInst); 3731 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3732 } 3733 return ExtVal; 3734 } 3735 3736 // At this point we have: ext ty opnd to ty. 3737 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3738 Value *NextVal = ExtInst->getOperand(0); 3739 TPT.eraseInstruction(ExtInst, NextVal); 3740 return NextVal; 3741 } 3742 3743 Value *TypePromotionHelper::promoteOperandForOther( 3744 Instruction *Ext, TypePromotionTransaction &TPT, 3745 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3746 SmallVectorImpl<Instruction *> *Exts, 3747 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3748 bool IsSExt) { 3749 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3750 // get through it and this method should not be called. 3751 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3752 CreatedInstsCost = 0; 3753 if (!ExtOpnd->hasOneUse()) { 3754 // ExtOpnd will be promoted. 3755 // All its uses, but Ext, will need to use a truncated value of the 3756 // promoted version. 3757 // Create the truncate now. 3758 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3759 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3760 // Insert it just after the definition. 3761 ITrunc->moveAfter(ExtOpnd); 3762 if (Truncs) 3763 Truncs->push_back(ITrunc); 3764 } 3765 3766 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3767 // Restore the operand of Ext (which has been replaced by the previous call 3768 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3769 TPT.setOperand(Ext, 0, ExtOpnd); 3770 } 3771 3772 // Get through the Instruction: 3773 // 1. Update its type. 3774 // 2. Replace the uses of Ext by Inst. 3775 // 3. Extend each operand that needs to be extended. 3776 3777 // Remember the original type of the instruction before promotion. 3778 // This is useful to know that the high bits are sign extended bits. 3779 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3780 // Step #1. 3781 TPT.mutateType(ExtOpnd, Ext->getType()); 3782 // Step #2. 3783 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3784 // Step #3. 3785 Instruction *ExtForOpnd = Ext; 3786 3787 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3788 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3789 ++OpIdx) { 3790 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3791 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3792 !shouldExtOperand(ExtOpnd, OpIdx)) { 3793 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3794 continue; 3795 } 3796 // Check if we can statically extend the operand. 3797 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3798 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3799 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3800 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3801 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3802 : Cst->getValue().zext(BitWidth); 3803 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3804 continue; 3805 } 3806 // UndefValue are typed, so we have to statically sign extend them. 3807 if (isa<UndefValue>(Opnd)) { 3808 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3809 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3810 continue; 3811 } 3812 3813 // Otherwise we have to explicitly sign extend the operand. 3814 // Check if Ext was reused to extend an operand. 3815 if (!ExtForOpnd) { 3816 // If yes, create a new one. 3817 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3818 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3819 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3820 if (!isa<Instruction>(ValForExtOpnd)) { 3821 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3822 continue; 3823 } 3824 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3825 } 3826 if (Exts) 3827 Exts->push_back(ExtForOpnd); 3828 TPT.setOperand(ExtForOpnd, 0, Opnd); 3829 3830 // Move the sign extension before the insertion point. 3831 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3832 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3833 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3834 // If more sext are required, new instructions will have to be created. 3835 ExtForOpnd = nullptr; 3836 } 3837 if (ExtForOpnd == Ext) { 3838 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 3839 TPT.eraseInstruction(Ext); 3840 } 3841 return ExtOpnd; 3842 } 3843 3844 /// Check whether or not promoting an instruction to a wider type is profitable. 3845 /// \p NewCost gives the cost of extension instructions created by the 3846 /// promotion. 3847 /// \p OldCost gives the cost of extension instructions before the promotion 3848 /// plus the number of instructions that have been 3849 /// matched in the addressing mode the promotion. 3850 /// \p PromotedOperand is the value that has been promoted. 3851 /// \return True if the promotion is profitable, false otherwise. 3852 bool AddressingModeMatcher::isPromotionProfitable( 3853 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3854 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 3855 << '\n'); 3856 // The cost of the new extensions is greater than the cost of the 3857 // old extension plus what we folded. 3858 // This is not profitable. 3859 if (NewCost > OldCost) 3860 return false; 3861 if (NewCost < OldCost) 3862 return true; 3863 // The promotion is neutral but it may help folding the sign extension in 3864 // loads for instance. 3865 // Check that we did not create an illegal instruction. 3866 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3867 } 3868 3869 /// Given an instruction or constant expr, see if we can fold the operation 3870 /// into the addressing mode. If so, update the addressing mode and return 3871 /// true, otherwise return false without modifying AddrMode. 3872 /// If \p MovedAway is not NULL, it contains the information of whether or 3873 /// not AddrInst has to be folded into the addressing mode on success. 3874 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3875 /// because it has been moved away. 3876 /// Thus AddrInst must not be added in the matched instructions. 3877 /// This state can happen when AddrInst is a sext, since it may be moved away. 3878 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3879 /// not be referenced anymore. 3880 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3881 unsigned Depth, 3882 bool *MovedAway) { 3883 // Avoid exponential behavior on extremely deep expression trees. 3884 if (Depth >= 5) return false; 3885 3886 // By default, all matched instructions stay in place. 3887 if (MovedAway) 3888 *MovedAway = false; 3889 3890 switch (Opcode) { 3891 case Instruction::PtrToInt: 3892 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3893 return matchAddr(AddrInst->getOperand(0), Depth); 3894 case Instruction::IntToPtr: { 3895 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3896 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3897 // This inttoptr is a no-op if the integer type is pointer sized. 3898 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3899 return matchAddr(AddrInst->getOperand(0), Depth); 3900 return false; 3901 } 3902 case Instruction::BitCast: 3903 // BitCast is always a noop, and we can handle it as long as it is 3904 // int->int or pointer->pointer (we don't want int<->fp or something). 3905 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 3906 // Don't touch identity bitcasts. These were probably put here by LSR, 3907 // and we don't want to mess around with them. Assume it knows what it 3908 // is doing. 3909 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3910 return matchAddr(AddrInst->getOperand(0), Depth); 3911 return false; 3912 case Instruction::AddrSpaceCast: { 3913 unsigned SrcAS 3914 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3915 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3916 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3917 return matchAddr(AddrInst->getOperand(0), Depth); 3918 return false; 3919 } 3920 case Instruction::Add: { 3921 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3922 ExtAddrMode BackupAddrMode = AddrMode; 3923 unsigned OldSize = AddrModeInsts.size(); 3924 // Start a transaction at this point. 3925 // The LHS may match but not the RHS. 3926 // Therefore, we need a higher level restoration point to undo partially 3927 // matched operation. 3928 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3929 TPT.getRestorationPoint(); 3930 3931 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3932 matchAddr(AddrInst->getOperand(0), Depth+1)) 3933 return true; 3934 3935 // Restore the old addr mode info. 3936 AddrMode = BackupAddrMode; 3937 AddrModeInsts.resize(OldSize); 3938 TPT.rollback(LastKnownGood); 3939 3940 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3941 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3942 matchAddr(AddrInst->getOperand(1), Depth+1)) 3943 return true; 3944 3945 // Otherwise we definitely can't merge the ADD in. 3946 AddrMode = BackupAddrMode; 3947 AddrModeInsts.resize(OldSize); 3948 TPT.rollback(LastKnownGood); 3949 break; 3950 } 3951 //case Instruction::Or: 3952 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3953 //break; 3954 case Instruction::Mul: 3955 case Instruction::Shl: { 3956 // Can only handle X*C and X << C. 3957 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3958 if (!RHS || RHS->getBitWidth() > 64) 3959 return false; 3960 int64_t Scale = RHS->getSExtValue(); 3961 if (Opcode == Instruction::Shl) 3962 Scale = 1LL << Scale; 3963 3964 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3965 } 3966 case Instruction::GetElementPtr: { 3967 // Scan the GEP. We check it if it contains constant offsets and at most 3968 // one variable offset. 3969 int VariableOperand = -1; 3970 unsigned VariableScale = 0; 3971 3972 int64_t ConstantOffset = 0; 3973 gep_type_iterator GTI = gep_type_begin(AddrInst); 3974 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3975 if (StructType *STy = GTI.getStructTypeOrNull()) { 3976 const StructLayout *SL = DL.getStructLayout(STy); 3977 unsigned Idx = 3978 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3979 ConstantOffset += SL->getElementOffset(Idx); 3980 } else { 3981 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3982 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3983 const APInt &CVal = CI->getValue(); 3984 if (CVal.getMinSignedBits() <= 64) { 3985 ConstantOffset += CVal.getSExtValue() * TypeSize; 3986 continue; 3987 } 3988 } 3989 if (TypeSize) { // Scales of zero don't do anything. 3990 // We only allow one variable index at the moment. 3991 if (VariableOperand != -1) 3992 return false; 3993 3994 // Remember the variable index. 3995 VariableOperand = i; 3996 VariableScale = TypeSize; 3997 } 3998 } 3999 } 4000 4001 // A common case is for the GEP to only do a constant offset. In this case, 4002 // just add it to the disp field and check validity. 4003 if (VariableOperand == -1) { 4004 AddrMode.BaseOffs += ConstantOffset; 4005 if (ConstantOffset == 0 || 4006 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4007 // Check to see if we can fold the base pointer in too. 4008 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 4009 return true; 4010 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4011 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4012 ConstantOffset > 0) { 4013 // Record GEPs with non-zero offsets as candidates for splitting in the 4014 // event that the offset cannot fit into the r+i addressing mode. 4015 // Simple and common case that only one GEP is used in calculating the 4016 // address for the memory access. 4017 Value *Base = AddrInst->getOperand(0); 4018 auto *BaseI = dyn_cast<Instruction>(Base); 4019 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4020 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4021 (BaseI && !isa<CastInst>(BaseI) && 4022 !isa<GetElementPtrInst>(BaseI))) { 4023 // If the base is an instruction, make sure the GEP is not in the same 4024 // basic block as the base. If the base is an argument or global 4025 // value, make sure the GEP is not in the entry block. Otherwise, 4026 // instruction selection can undo the split. Also make sure the 4027 // parent block allows inserting non-PHI instructions before the 4028 // terminator. 4029 BasicBlock *Parent = 4030 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4031 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 4032 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4033 } 4034 } 4035 AddrMode.BaseOffs -= ConstantOffset; 4036 return false; 4037 } 4038 4039 // Save the valid addressing mode in case we can't match. 4040 ExtAddrMode BackupAddrMode = AddrMode; 4041 unsigned OldSize = AddrModeInsts.size(); 4042 4043 // See if the scale and offset amount is valid for this target. 4044 AddrMode.BaseOffs += ConstantOffset; 4045 4046 // Match the base operand of the GEP. 4047 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4048 // If it couldn't be matched, just stuff the value in a register. 4049 if (AddrMode.HasBaseReg) { 4050 AddrMode = BackupAddrMode; 4051 AddrModeInsts.resize(OldSize); 4052 return false; 4053 } 4054 AddrMode.HasBaseReg = true; 4055 AddrMode.BaseReg = AddrInst->getOperand(0); 4056 } 4057 4058 // Match the remaining variable portion of the GEP. 4059 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4060 Depth)) { 4061 // If it couldn't be matched, try stuffing the base into a register 4062 // instead of matching it, and retrying the match of the scale. 4063 AddrMode = BackupAddrMode; 4064 AddrModeInsts.resize(OldSize); 4065 if (AddrMode.HasBaseReg) 4066 return false; 4067 AddrMode.HasBaseReg = true; 4068 AddrMode.BaseReg = AddrInst->getOperand(0); 4069 AddrMode.BaseOffs += ConstantOffset; 4070 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4071 VariableScale, Depth)) { 4072 // If even that didn't work, bail. 4073 AddrMode = BackupAddrMode; 4074 AddrModeInsts.resize(OldSize); 4075 return false; 4076 } 4077 } 4078 4079 return true; 4080 } 4081 case Instruction::SExt: 4082 case Instruction::ZExt: { 4083 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4084 if (!Ext) 4085 return false; 4086 4087 // Try to move this ext out of the way of the addressing mode. 4088 // Ask for a method for doing so. 4089 TypePromotionHelper::Action TPH = 4090 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4091 if (!TPH) 4092 return false; 4093 4094 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4095 TPT.getRestorationPoint(); 4096 unsigned CreatedInstsCost = 0; 4097 unsigned ExtCost = !TLI.isExtFree(Ext); 4098 Value *PromotedOperand = 4099 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4100 // SExt has been moved away. 4101 // Thus either it will be rematched later in the recursive calls or it is 4102 // gone. Anyway, we must not fold it into the addressing mode at this point. 4103 // E.g., 4104 // op = add opnd, 1 4105 // idx = ext op 4106 // addr = gep base, idx 4107 // is now: 4108 // promotedOpnd = ext opnd <- no match here 4109 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4110 // addr = gep base, op <- match 4111 if (MovedAway) 4112 *MovedAway = true; 4113 4114 assert(PromotedOperand && 4115 "TypePromotionHelper should have filtered out those cases"); 4116 4117 ExtAddrMode BackupAddrMode = AddrMode; 4118 unsigned OldSize = AddrModeInsts.size(); 4119 4120 if (!matchAddr(PromotedOperand, Depth) || 4121 // The total of the new cost is equal to the cost of the created 4122 // instructions. 4123 // The total of the old cost is equal to the cost of the extension plus 4124 // what we have saved in the addressing mode. 4125 !isPromotionProfitable(CreatedInstsCost, 4126 ExtCost + (AddrModeInsts.size() - OldSize), 4127 PromotedOperand)) { 4128 AddrMode = BackupAddrMode; 4129 AddrModeInsts.resize(OldSize); 4130 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4131 TPT.rollback(LastKnownGood); 4132 return false; 4133 } 4134 return true; 4135 } 4136 } 4137 return false; 4138 } 4139 4140 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4141 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4142 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4143 /// for the target. 4144 /// 4145 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4146 // Start a transaction at this point that we will rollback if the matching 4147 // fails. 4148 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4149 TPT.getRestorationPoint(); 4150 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4151 // Fold in immediates if legal for the target. 4152 AddrMode.BaseOffs += CI->getSExtValue(); 4153 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4154 return true; 4155 AddrMode.BaseOffs -= CI->getSExtValue(); 4156 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4157 // If this is a global variable, try to fold it into the addressing mode. 4158 if (!AddrMode.BaseGV) { 4159 AddrMode.BaseGV = GV; 4160 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4161 return true; 4162 AddrMode.BaseGV = nullptr; 4163 } 4164 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4165 ExtAddrMode BackupAddrMode = AddrMode; 4166 unsigned OldSize = AddrModeInsts.size(); 4167 4168 // Check to see if it is possible to fold this operation. 4169 bool MovedAway = false; 4170 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4171 // This instruction may have been moved away. If so, there is nothing 4172 // to check here. 4173 if (MovedAway) 4174 return true; 4175 // Okay, it's possible to fold this. Check to see if it is actually 4176 // *profitable* to do so. We use a simple cost model to avoid increasing 4177 // register pressure too much. 4178 if (I->hasOneUse() || 4179 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4180 AddrModeInsts.push_back(I); 4181 return true; 4182 } 4183 4184 // It isn't profitable to do this, roll back. 4185 //cerr << "NOT FOLDING: " << *I; 4186 AddrMode = BackupAddrMode; 4187 AddrModeInsts.resize(OldSize); 4188 TPT.rollback(LastKnownGood); 4189 } 4190 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4191 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4192 return true; 4193 TPT.rollback(LastKnownGood); 4194 } else if (isa<ConstantPointerNull>(Addr)) { 4195 // Null pointer gets folded without affecting the addressing mode. 4196 return true; 4197 } 4198 4199 // Worse case, the target should support [reg] addressing modes. :) 4200 if (!AddrMode.HasBaseReg) { 4201 AddrMode.HasBaseReg = true; 4202 AddrMode.BaseReg = Addr; 4203 // Still check for legality in case the target supports [imm] but not [i+r]. 4204 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4205 return true; 4206 AddrMode.HasBaseReg = false; 4207 AddrMode.BaseReg = nullptr; 4208 } 4209 4210 // If the base register is already taken, see if we can do [r+r]. 4211 if (AddrMode.Scale == 0) { 4212 AddrMode.Scale = 1; 4213 AddrMode.ScaledReg = Addr; 4214 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4215 return true; 4216 AddrMode.Scale = 0; 4217 AddrMode.ScaledReg = nullptr; 4218 } 4219 // Couldn't match. 4220 TPT.rollback(LastKnownGood); 4221 return false; 4222 } 4223 4224 /// Check to see if all uses of OpVal by the specified inline asm call are due 4225 /// to memory operands. If so, return true, otherwise return false. 4226 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4227 const TargetLowering &TLI, 4228 const TargetRegisterInfo &TRI) { 4229 const Function *F = CI->getFunction(); 4230 TargetLowering::AsmOperandInfoVector TargetConstraints = 4231 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4232 ImmutableCallSite(CI)); 4233 4234 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4235 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4236 4237 // Compute the constraint code and ConstraintType to use. 4238 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4239 4240 // If this asm operand is our Value*, and if it isn't an indirect memory 4241 // operand, we can't fold it! 4242 if (OpInfo.CallOperandVal == OpVal && 4243 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4244 !OpInfo.isIndirect)) 4245 return false; 4246 } 4247 4248 return true; 4249 } 4250 4251 // Max number of memory uses to look at before aborting the search to conserve 4252 // compile time. 4253 static constexpr int MaxMemoryUsesToScan = 20; 4254 4255 /// Recursively walk all the uses of I until we find a memory use. 4256 /// If we find an obviously non-foldable instruction, return true. 4257 /// Add the ultimately found memory instructions to MemoryUses. 4258 static bool FindAllMemoryUses( 4259 Instruction *I, 4260 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4261 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4262 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4263 // If we already considered this instruction, we're done. 4264 if (!ConsideredInsts.insert(I).second) 4265 return false; 4266 4267 // If this is an obviously unfoldable instruction, bail out. 4268 if (!MightBeFoldableInst(I)) 4269 return true; 4270 4271 const bool OptSize = I->getFunction()->optForSize(); 4272 4273 // Loop over all the uses, recursively processing them. 4274 for (Use &U : I->uses()) { 4275 // Conservatively return true if we're seeing a large number or a deep chain 4276 // of users. This avoids excessive compilation times in pathological cases. 4277 if (SeenInsts++ >= MaxMemoryUsesToScan) 4278 return true; 4279 4280 Instruction *UserI = cast<Instruction>(U.getUser()); 4281 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4282 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4283 continue; 4284 } 4285 4286 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4287 unsigned opNo = U.getOperandNo(); 4288 if (opNo != StoreInst::getPointerOperandIndex()) 4289 return true; // Storing addr, not into addr. 4290 MemoryUses.push_back(std::make_pair(SI, opNo)); 4291 continue; 4292 } 4293 4294 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4295 unsigned opNo = U.getOperandNo(); 4296 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4297 return true; // Storing addr, not into addr. 4298 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4299 continue; 4300 } 4301 4302 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4303 unsigned opNo = U.getOperandNo(); 4304 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4305 return true; // Storing addr, not into addr. 4306 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4307 continue; 4308 } 4309 4310 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4311 // If this is a cold call, we can sink the addressing calculation into 4312 // the cold path. See optimizeCallInst 4313 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4314 continue; 4315 4316 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4317 if (!IA) return true; 4318 4319 // If this is a memory operand, we're cool, otherwise bail out. 4320 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4321 return true; 4322 continue; 4323 } 4324 4325 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4326 SeenInsts)) 4327 return true; 4328 } 4329 4330 return false; 4331 } 4332 4333 /// Return true if Val is already known to be live at the use site that we're 4334 /// folding it into. If so, there is no cost to include it in the addressing 4335 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4336 /// instruction already. 4337 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4338 Value *KnownLive2) { 4339 // If Val is either of the known-live values, we know it is live! 4340 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4341 return true; 4342 4343 // All values other than instructions and arguments (e.g. constants) are live. 4344 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4345 4346 // If Val is a constant sized alloca in the entry block, it is live, this is 4347 // true because it is just a reference to the stack/frame pointer, which is 4348 // live for the whole function. 4349 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4350 if (AI->isStaticAlloca()) 4351 return true; 4352 4353 // Check to see if this value is already used in the memory instruction's 4354 // block. If so, it's already live into the block at the very least, so we 4355 // can reasonably fold it. 4356 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4357 } 4358 4359 /// It is possible for the addressing mode of the machine to fold the specified 4360 /// instruction into a load or store that ultimately uses it. 4361 /// However, the specified instruction has multiple uses. 4362 /// Given this, it may actually increase register pressure to fold it 4363 /// into the load. For example, consider this code: 4364 /// 4365 /// X = ... 4366 /// Y = X+1 4367 /// use(Y) -> nonload/store 4368 /// Z = Y+1 4369 /// load Z 4370 /// 4371 /// In this case, Y has multiple uses, and can be folded into the load of Z 4372 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4373 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4374 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4375 /// number of computations either. 4376 /// 4377 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4378 /// X was live across 'load Z' for other reasons, we actually *would* want to 4379 /// fold the addressing mode in the Z case. This would make Y die earlier. 4380 bool AddressingModeMatcher:: 4381 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4382 ExtAddrMode &AMAfter) { 4383 if (IgnoreProfitability) return true; 4384 4385 // AMBefore is the addressing mode before this instruction was folded into it, 4386 // and AMAfter is the addressing mode after the instruction was folded. Get 4387 // the set of registers referenced by AMAfter and subtract out those 4388 // referenced by AMBefore: this is the set of values which folding in this 4389 // address extends the lifetime of. 4390 // 4391 // Note that there are only two potential values being referenced here, 4392 // BaseReg and ScaleReg (global addresses are always available, as are any 4393 // folded immediates). 4394 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4395 4396 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4397 // lifetime wasn't extended by adding this instruction. 4398 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4399 BaseReg = nullptr; 4400 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4401 ScaledReg = nullptr; 4402 4403 // If folding this instruction (and it's subexprs) didn't extend any live 4404 // ranges, we're ok with it. 4405 if (!BaseReg && !ScaledReg) 4406 return true; 4407 4408 // If all uses of this instruction can have the address mode sunk into them, 4409 // we can remove the addressing mode and effectively trade one live register 4410 // for another (at worst.) In this context, folding an addressing mode into 4411 // the use is just a particularly nice way of sinking it. 4412 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4413 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4414 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4415 return false; // Has a non-memory, non-foldable use! 4416 4417 // Now that we know that all uses of this instruction are part of a chain of 4418 // computation involving only operations that could theoretically be folded 4419 // into a memory use, loop over each of these memory operation uses and see 4420 // if they could *actually* fold the instruction. The assumption is that 4421 // addressing modes are cheap and that duplicating the computation involved 4422 // many times is worthwhile, even on a fastpath. For sinking candidates 4423 // (i.e. cold call sites), this serves as a way to prevent excessive code 4424 // growth since most architectures have some reasonable small and fast way to 4425 // compute an effective address. (i.e LEA on x86) 4426 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4427 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4428 Instruction *User = MemoryUses[i].first; 4429 unsigned OpNo = MemoryUses[i].second; 4430 4431 // Get the access type of this use. If the use isn't a pointer, we don't 4432 // know what it accesses. 4433 Value *Address = User->getOperand(OpNo); 4434 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4435 if (!AddrTy) 4436 return false; 4437 Type *AddressAccessTy = AddrTy->getElementType(); 4438 unsigned AS = AddrTy->getAddressSpace(); 4439 4440 // Do a match against the root of this address, ignoring profitability. This 4441 // will tell us if the addressing mode for the memory operation will 4442 // *actually* cover the shared instruction. 4443 ExtAddrMode Result; 4444 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4445 0); 4446 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4447 TPT.getRestorationPoint(); 4448 AddressingModeMatcher Matcher( 4449 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4450 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4451 Matcher.IgnoreProfitability = true; 4452 bool Success = Matcher.matchAddr(Address, 0); 4453 (void)Success; assert(Success && "Couldn't select *anything*?"); 4454 4455 // The match was to check the profitability, the changes made are not 4456 // part of the original matcher. Therefore, they should be dropped 4457 // otherwise the original matcher will not present the right state. 4458 TPT.rollback(LastKnownGood); 4459 4460 // If the match didn't cover I, then it won't be shared by it. 4461 if (!is_contained(MatchedAddrModeInsts, I)) 4462 return false; 4463 4464 MatchedAddrModeInsts.clear(); 4465 } 4466 4467 return true; 4468 } 4469 4470 /// Return true if the specified values are defined in a 4471 /// different basic block than BB. 4472 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4473 if (Instruction *I = dyn_cast<Instruction>(V)) 4474 return I->getParent() != BB; 4475 return false; 4476 } 4477 4478 /// Sink addressing mode computation immediate before MemoryInst if doing so 4479 /// can be done without increasing register pressure. The need for the 4480 /// register pressure constraint means this can end up being an all or nothing 4481 /// decision for all uses of the same addressing computation. 4482 /// 4483 /// Load and Store Instructions often have addressing modes that can do 4484 /// significant amounts of computation. As such, instruction selection will try 4485 /// to get the load or store to do as much computation as possible for the 4486 /// program. The problem is that isel can only see within a single block. As 4487 /// such, we sink as much legal addressing mode work into the block as possible. 4488 /// 4489 /// This method is used to optimize both load/store and inline asms with memory 4490 /// operands. It's also used to sink addressing computations feeding into cold 4491 /// call sites into their (cold) basic block. 4492 /// 4493 /// The motivation for handling sinking into cold blocks is that doing so can 4494 /// both enable other address mode sinking (by satisfying the register pressure 4495 /// constraint above), and reduce register pressure globally (by removing the 4496 /// addressing mode computation from the fast path entirely.). 4497 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4498 Type *AccessTy, unsigned AddrSpace) { 4499 Value *Repl = Addr; 4500 4501 // Try to collapse single-value PHI nodes. This is necessary to undo 4502 // unprofitable PRE transformations. 4503 SmallVector<Value*, 8> worklist; 4504 SmallPtrSet<Value*, 16> Visited; 4505 worklist.push_back(Addr); 4506 4507 // Use a worklist to iteratively look through PHI and select nodes, and 4508 // ensure that the addressing mode obtained from the non-PHI/select roots of 4509 // the graph are compatible. 4510 bool PhiOrSelectSeen = false; 4511 SmallVector<Instruction*, 16> AddrModeInsts; 4512 const SimplifyQuery SQ(*DL, TLInfo); 4513 AddressingModeCombiner AddrModes(SQ, Addr); 4514 TypePromotionTransaction TPT(RemovedInsts); 4515 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4516 TPT.getRestorationPoint(); 4517 while (!worklist.empty()) { 4518 Value *V = worklist.back(); 4519 worklist.pop_back(); 4520 4521 // We allow traversing cyclic Phi nodes. 4522 // In case of success after this loop we ensure that traversing through 4523 // Phi nodes ends up with all cases to compute address of the form 4524 // BaseGV + Base + Scale * Index + Offset 4525 // where Scale and Offset are constans and BaseGV, Base and Index 4526 // are exactly the same Values in all cases. 4527 // It means that BaseGV, Scale and Offset dominate our memory instruction 4528 // and have the same value as they had in address computation represented 4529 // as Phi. So we can safely sink address computation to memory instruction. 4530 if (!Visited.insert(V).second) 4531 continue; 4532 4533 // For a PHI node, push all of its incoming values. 4534 if (PHINode *P = dyn_cast<PHINode>(V)) { 4535 for (Value *IncValue : P->incoming_values()) 4536 worklist.push_back(IncValue); 4537 PhiOrSelectSeen = true; 4538 continue; 4539 } 4540 // Similar for select. 4541 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4542 worklist.push_back(SI->getFalseValue()); 4543 worklist.push_back(SI->getTrueValue()); 4544 PhiOrSelectSeen = true; 4545 continue; 4546 } 4547 4548 // For non-PHIs, determine the addressing mode being computed. Note that 4549 // the result may differ depending on what other uses our candidate 4550 // addressing instructions might have. 4551 AddrModeInsts.clear(); 4552 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4553 0); 4554 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4555 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4556 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4557 4558 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4559 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4560 !NewGEPBases.count(GEP)) { 4561 // If splitting the underlying data structure can reduce the offset of a 4562 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4563 // previously split data structures. 4564 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4565 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4566 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4567 } 4568 4569 NewAddrMode.OriginalValue = V; 4570 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4571 break; 4572 } 4573 4574 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4575 // or we have multiple but either couldn't combine them or combining them 4576 // wouldn't do anything useful, bail out now. 4577 if (!AddrModes.combineAddrModes()) { 4578 TPT.rollback(LastKnownGood); 4579 return false; 4580 } 4581 TPT.commit(); 4582 4583 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4584 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4585 4586 // If all the instructions matched are already in this BB, don't do anything. 4587 // If we saw a Phi node then it is not local definitely, and if we saw a select 4588 // then we want to push the address calculation past it even if it's already 4589 // in this BB. 4590 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4591 return IsNonLocalValue(V, MemoryInst->getParent()); 4592 })) { 4593 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4594 << "\n"); 4595 return false; 4596 } 4597 4598 // Insert this computation right after this user. Since our caller is 4599 // scanning from the top of the BB to the bottom, reuse of the expr are 4600 // guaranteed to happen later. 4601 IRBuilder<> Builder(MemoryInst); 4602 4603 // Now that we determined the addressing expression we want to use and know 4604 // that we have to sink it into this block. Check to see if we have already 4605 // done this for some other load/store instr in this block. If so, reuse 4606 // the computation. Before attempting reuse, check if the address is valid 4607 // as it may have been erased. 4608 4609 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4610 4611 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4612 if (SunkAddr) { 4613 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4614 << " for " << *MemoryInst << "\n"); 4615 if (SunkAddr->getType() != Addr->getType()) 4616 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4617 } else if (AddrSinkUsingGEPs || 4618 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4619 // By default, we use the GEP-based method when AA is used later. This 4620 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4621 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4622 << " for " << *MemoryInst << "\n"); 4623 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4624 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4625 4626 // First, find the pointer. 4627 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4628 ResultPtr = AddrMode.BaseReg; 4629 AddrMode.BaseReg = nullptr; 4630 } 4631 4632 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4633 // We can't add more than one pointer together, nor can we scale a 4634 // pointer (both of which seem meaningless). 4635 if (ResultPtr || AddrMode.Scale != 1) 4636 return false; 4637 4638 ResultPtr = AddrMode.ScaledReg; 4639 AddrMode.Scale = 0; 4640 } 4641 4642 // It is only safe to sign extend the BaseReg if we know that the math 4643 // required to create it did not overflow before we extend it. Since 4644 // the original IR value was tossed in favor of a constant back when 4645 // the AddrMode was created we need to bail out gracefully if widths 4646 // do not match instead of extending it. 4647 // 4648 // (See below for code to add the scale.) 4649 if (AddrMode.Scale) { 4650 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4651 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4652 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4653 return false; 4654 } 4655 4656 if (AddrMode.BaseGV) { 4657 if (ResultPtr) 4658 return false; 4659 4660 ResultPtr = AddrMode.BaseGV; 4661 } 4662 4663 // If the real base value actually came from an inttoptr, then the matcher 4664 // will look through it and provide only the integer value. In that case, 4665 // use it here. 4666 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4667 if (!ResultPtr && AddrMode.BaseReg) { 4668 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4669 "sunkaddr"); 4670 AddrMode.BaseReg = nullptr; 4671 } else if (!ResultPtr && AddrMode.Scale == 1) { 4672 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4673 "sunkaddr"); 4674 AddrMode.Scale = 0; 4675 } 4676 } 4677 4678 if (!ResultPtr && 4679 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4680 SunkAddr = Constant::getNullValue(Addr->getType()); 4681 } else if (!ResultPtr) { 4682 return false; 4683 } else { 4684 Type *I8PtrTy = 4685 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4686 Type *I8Ty = Builder.getInt8Ty(); 4687 4688 // Start with the base register. Do this first so that subsequent address 4689 // matching finds it last, which will prevent it from trying to match it 4690 // as the scaled value in case it happens to be a mul. That would be 4691 // problematic if we've sunk a different mul for the scale, because then 4692 // we'd end up sinking both muls. 4693 if (AddrMode.BaseReg) { 4694 Value *V = AddrMode.BaseReg; 4695 if (V->getType() != IntPtrTy) 4696 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4697 4698 ResultIndex = V; 4699 } 4700 4701 // Add the scale value. 4702 if (AddrMode.Scale) { 4703 Value *V = AddrMode.ScaledReg; 4704 if (V->getType() == IntPtrTy) { 4705 // done. 4706 } else { 4707 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4708 cast<IntegerType>(V->getType())->getBitWidth() && 4709 "We can't transform if ScaledReg is too narrow"); 4710 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4711 } 4712 4713 if (AddrMode.Scale != 1) 4714 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4715 "sunkaddr"); 4716 if (ResultIndex) 4717 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4718 else 4719 ResultIndex = V; 4720 } 4721 4722 // Add in the Base Offset if present. 4723 if (AddrMode.BaseOffs) { 4724 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4725 if (ResultIndex) { 4726 // We need to add this separately from the scale above to help with 4727 // SDAG consecutive load/store merging. 4728 if (ResultPtr->getType() != I8PtrTy) 4729 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4730 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4731 } 4732 4733 ResultIndex = V; 4734 } 4735 4736 if (!ResultIndex) { 4737 SunkAddr = ResultPtr; 4738 } else { 4739 if (ResultPtr->getType() != I8PtrTy) 4740 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4741 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4742 } 4743 4744 if (SunkAddr->getType() != Addr->getType()) 4745 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4746 } 4747 } else { 4748 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4749 // non-integral pointers, so in that case bail out now. 4750 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4751 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4752 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4753 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4754 if (DL->isNonIntegralPointerType(Addr->getType()) || 4755 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4756 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4757 (AddrMode.BaseGV && 4758 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4759 return false; 4760 4761 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4762 << " for " << *MemoryInst << "\n"); 4763 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4764 Value *Result = nullptr; 4765 4766 // Start with the base register. Do this first so that subsequent address 4767 // matching finds it last, which will prevent it from trying to match it 4768 // as the scaled value in case it happens to be a mul. That would be 4769 // problematic if we've sunk a different mul for the scale, because then 4770 // we'd end up sinking both muls. 4771 if (AddrMode.BaseReg) { 4772 Value *V = AddrMode.BaseReg; 4773 if (V->getType()->isPointerTy()) 4774 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4775 if (V->getType() != IntPtrTy) 4776 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4777 Result = V; 4778 } 4779 4780 // Add the scale value. 4781 if (AddrMode.Scale) { 4782 Value *V = AddrMode.ScaledReg; 4783 if (V->getType() == IntPtrTy) { 4784 // done. 4785 } else if (V->getType()->isPointerTy()) { 4786 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4787 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4788 cast<IntegerType>(V->getType())->getBitWidth()) { 4789 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4790 } else { 4791 // It is only safe to sign extend the BaseReg if we know that the math 4792 // required to create it did not overflow before we extend it. Since 4793 // the original IR value was tossed in favor of a constant back when 4794 // the AddrMode was created we need to bail out gracefully if widths 4795 // do not match instead of extending it. 4796 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4797 if (I && (Result != AddrMode.BaseReg)) 4798 I->eraseFromParent(); 4799 return false; 4800 } 4801 if (AddrMode.Scale != 1) 4802 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4803 "sunkaddr"); 4804 if (Result) 4805 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4806 else 4807 Result = V; 4808 } 4809 4810 // Add in the BaseGV if present. 4811 if (AddrMode.BaseGV) { 4812 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4813 if (Result) 4814 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4815 else 4816 Result = V; 4817 } 4818 4819 // Add in the Base Offset if present. 4820 if (AddrMode.BaseOffs) { 4821 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4822 if (Result) 4823 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4824 else 4825 Result = V; 4826 } 4827 4828 if (!Result) 4829 SunkAddr = Constant::getNullValue(Addr->getType()); 4830 else 4831 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4832 } 4833 4834 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4835 // Store the newly computed address into the cache. In the case we reused a 4836 // value, this should be idempotent. 4837 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4838 4839 // If we have no uses, recursively delete the value and all dead instructions 4840 // using it. 4841 if (Repl->use_empty()) { 4842 // This can cause recursive deletion, which can invalidate our iterator. 4843 // Use a WeakTrackingVH to hold onto it in case this happens. 4844 Value *CurValue = &*CurInstIterator; 4845 WeakTrackingVH IterHandle(CurValue); 4846 BasicBlock *BB = CurInstIterator->getParent(); 4847 4848 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4849 4850 if (IterHandle != CurValue) { 4851 // If the iterator instruction was recursively deleted, start over at the 4852 // start of the block. 4853 CurInstIterator = BB->begin(); 4854 SunkAddrs.clear(); 4855 } 4856 } 4857 ++NumMemoryInsts; 4858 return true; 4859 } 4860 4861 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4862 /// address computing into the block when possible / profitable. 4863 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4864 bool MadeChange = false; 4865 4866 const TargetRegisterInfo *TRI = 4867 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4868 TargetLowering::AsmOperandInfoVector TargetConstraints = 4869 TLI->ParseConstraints(*DL, TRI, CS); 4870 unsigned ArgNo = 0; 4871 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4872 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4873 4874 // Compute the constraint code and ConstraintType to use. 4875 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4876 4877 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4878 OpInfo.isIndirect) { 4879 Value *OpVal = CS->getArgOperand(ArgNo++); 4880 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4881 } else if (OpInfo.Type == InlineAsm::isInput) 4882 ArgNo++; 4883 } 4884 4885 return MadeChange; 4886 } 4887 4888 /// Check if all the uses of \p Val are equivalent (or free) zero or 4889 /// sign extensions. 4890 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4891 assert(!Val->use_empty() && "Input must have at least one use"); 4892 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4893 bool IsSExt = isa<SExtInst>(FirstUser); 4894 Type *ExtTy = FirstUser->getType(); 4895 for (const User *U : Val->users()) { 4896 const Instruction *UI = cast<Instruction>(U); 4897 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4898 return false; 4899 Type *CurTy = UI->getType(); 4900 // Same input and output types: Same instruction after CSE. 4901 if (CurTy == ExtTy) 4902 continue; 4903 4904 // If IsSExt is true, we are in this situation: 4905 // a = Val 4906 // b = sext ty1 a to ty2 4907 // c = sext ty1 a to ty3 4908 // Assuming ty2 is shorter than ty3, this could be turned into: 4909 // a = Val 4910 // b = sext ty1 a to ty2 4911 // c = sext ty2 b to ty3 4912 // However, the last sext is not free. 4913 if (IsSExt) 4914 return false; 4915 4916 // This is a ZExt, maybe this is free to extend from one type to another. 4917 // In that case, we would not account for a different use. 4918 Type *NarrowTy; 4919 Type *LargeTy; 4920 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4921 CurTy->getScalarType()->getIntegerBitWidth()) { 4922 NarrowTy = CurTy; 4923 LargeTy = ExtTy; 4924 } else { 4925 NarrowTy = ExtTy; 4926 LargeTy = CurTy; 4927 } 4928 4929 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4930 return false; 4931 } 4932 // All uses are the same or can be derived from one another for free. 4933 return true; 4934 } 4935 4936 /// Try to speculatively promote extensions in \p Exts and continue 4937 /// promoting through newly promoted operands recursively as far as doing so is 4938 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4939 /// When some promotion happened, \p TPT contains the proper state to revert 4940 /// them. 4941 /// 4942 /// \return true if some promotion happened, false otherwise. 4943 bool CodeGenPrepare::tryToPromoteExts( 4944 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4945 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4946 unsigned CreatedInstsCost) { 4947 bool Promoted = false; 4948 4949 // Iterate over all the extensions to try to promote them. 4950 for (auto I : Exts) { 4951 // Early check if we directly have ext(load). 4952 if (isa<LoadInst>(I->getOperand(0))) { 4953 ProfitablyMovedExts.push_back(I); 4954 continue; 4955 } 4956 4957 // Check whether or not we want to do any promotion. The reason we have 4958 // this check inside the for loop is to catch the case where an extension 4959 // is directly fed by a load because in such case the extension can be moved 4960 // up without any promotion on its operands. 4961 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4962 return false; 4963 4964 // Get the action to perform the promotion. 4965 TypePromotionHelper::Action TPH = 4966 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4967 // Check if we can promote. 4968 if (!TPH) { 4969 // Save the current extension as we cannot move up through its operand. 4970 ProfitablyMovedExts.push_back(I); 4971 continue; 4972 } 4973 4974 // Save the current state. 4975 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4976 TPT.getRestorationPoint(); 4977 SmallVector<Instruction *, 4> NewExts; 4978 unsigned NewCreatedInstsCost = 0; 4979 unsigned ExtCost = !TLI->isExtFree(I); 4980 // Promote. 4981 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4982 &NewExts, nullptr, *TLI); 4983 assert(PromotedVal && 4984 "TypePromotionHelper should have filtered out those cases"); 4985 4986 // We would be able to merge only one extension in a load. 4987 // Therefore, if we have more than 1 new extension we heuristically 4988 // cut this search path, because it means we degrade the code quality. 4989 // With exactly 2, the transformation is neutral, because we will merge 4990 // one extension but leave one. However, we optimistically keep going, 4991 // because the new extension may be removed too. 4992 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4993 // FIXME: It would be possible to propagate a negative value instead of 4994 // conservatively ceiling it to 0. 4995 TotalCreatedInstsCost = 4996 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4997 if (!StressExtLdPromotion && 4998 (TotalCreatedInstsCost > 1 || 4999 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5000 // This promotion is not profitable, rollback to the previous state, and 5001 // save the current extension in ProfitablyMovedExts as the latest 5002 // speculative promotion turned out to be unprofitable. 5003 TPT.rollback(LastKnownGood); 5004 ProfitablyMovedExts.push_back(I); 5005 continue; 5006 } 5007 // Continue promoting NewExts as far as doing so is profitable. 5008 SmallVector<Instruction *, 2> NewlyMovedExts; 5009 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5010 bool NewPromoted = false; 5011 for (auto ExtInst : NewlyMovedExts) { 5012 Instruction *MovedExt = cast<Instruction>(ExtInst); 5013 Value *ExtOperand = MovedExt->getOperand(0); 5014 // If we have reached to a load, we need this extra profitability check 5015 // as it could potentially be merged into an ext(load). 5016 if (isa<LoadInst>(ExtOperand) && 5017 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5018 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5019 continue; 5020 5021 ProfitablyMovedExts.push_back(MovedExt); 5022 NewPromoted = true; 5023 } 5024 5025 // If none of speculative promotions for NewExts is profitable, rollback 5026 // and save the current extension (I) as the last profitable extension. 5027 if (!NewPromoted) { 5028 TPT.rollback(LastKnownGood); 5029 ProfitablyMovedExts.push_back(I); 5030 continue; 5031 } 5032 // The promotion is profitable. 5033 Promoted = true; 5034 } 5035 return Promoted; 5036 } 5037 5038 /// Merging redundant sexts when one is dominating the other. 5039 bool CodeGenPrepare::mergeSExts(Function &F) { 5040 DominatorTree DT(F); 5041 bool Changed = false; 5042 for (auto &Entry : ValToSExtendedUses) { 5043 SExts &Insts = Entry.second; 5044 SExts CurPts; 5045 for (Instruction *Inst : Insts) { 5046 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5047 Inst->getOperand(0) != Entry.first) 5048 continue; 5049 bool inserted = false; 5050 for (auto &Pt : CurPts) { 5051 if (DT.dominates(Inst, Pt)) { 5052 Pt->replaceAllUsesWith(Inst); 5053 RemovedInsts.insert(Pt); 5054 Pt->removeFromParent(); 5055 Pt = Inst; 5056 inserted = true; 5057 Changed = true; 5058 break; 5059 } 5060 if (!DT.dominates(Pt, Inst)) 5061 // Give up if we need to merge in a common dominator as the 5062 // experiments show it is not profitable. 5063 continue; 5064 Inst->replaceAllUsesWith(Pt); 5065 RemovedInsts.insert(Inst); 5066 Inst->removeFromParent(); 5067 inserted = true; 5068 Changed = true; 5069 break; 5070 } 5071 if (!inserted) 5072 CurPts.push_back(Inst); 5073 } 5074 } 5075 return Changed; 5076 } 5077 5078 // Spliting large data structures so that the GEPs accessing them can have 5079 // smaller offsets so that they can be sunk to the same blocks as their users. 5080 // For example, a large struct starting from %base is splitted into two parts 5081 // where the second part starts from %new_base. 5082 // 5083 // Before: 5084 // BB0: 5085 // %base = 5086 // 5087 // BB1: 5088 // %gep0 = gep %base, off0 5089 // %gep1 = gep %base, off1 5090 // %gep2 = gep %base, off2 5091 // 5092 // BB2: 5093 // %load1 = load %gep0 5094 // %load2 = load %gep1 5095 // %load3 = load %gep2 5096 // 5097 // After: 5098 // BB0: 5099 // %base = 5100 // %new_base = gep %base, off0 5101 // 5102 // BB1: 5103 // %new_gep0 = %new_base 5104 // %new_gep1 = gep %new_base, off1 - off0 5105 // %new_gep2 = gep %new_base, off2 - off0 5106 // 5107 // BB2: 5108 // %load1 = load i32, i32* %new_gep0 5109 // %load2 = load i32, i32* %new_gep1 5110 // %load3 = load i32, i32* %new_gep2 5111 // 5112 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5113 // their offsets are smaller enough to fit into the addressing mode. 5114 bool CodeGenPrepare::splitLargeGEPOffsets() { 5115 bool Changed = false; 5116 for (auto &Entry : LargeOffsetGEPMap) { 5117 Value *OldBase = Entry.first; 5118 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5119 &LargeOffsetGEPs = Entry.second; 5120 auto compareGEPOffset = 5121 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5122 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5123 if (LHS.first == RHS.first) 5124 return false; 5125 if (LHS.second != RHS.second) 5126 return LHS.second < RHS.second; 5127 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5128 }; 5129 // Sorting all the GEPs of the same data structures based on the offsets. 5130 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5131 LargeOffsetGEPs.erase( 5132 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5133 LargeOffsetGEPs.end()); 5134 // Skip if all the GEPs have the same offsets. 5135 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5136 continue; 5137 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5138 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5139 Value *NewBaseGEP = nullptr; 5140 5141 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5142 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5143 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5144 int64_t Offset = LargeOffsetGEP->second; 5145 if (Offset != BaseOffset) { 5146 TargetLowering::AddrMode AddrMode; 5147 AddrMode.BaseOffs = Offset - BaseOffset; 5148 // The result type of the GEP might not be the type of the memory 5149 // access. 5150 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5151 GEP->getResultElementType(), 5152 GEP->getAddressSpace())) { 5153 // We need to create a new base if the offset to the current base is 5154 // too large to fit into the addressing mode. So, a very large struct 5155 // may be splitted into several parts. 5156 BaseGEP = GEP; 5157 BaseOffset = Offset; 5158 NewBaseGEP = nullptr; 5159 } 5160 } 5161 5162 // Generate a new GEP to replace the current one. 5163 LLVMContext &Ctx = GEP->getContext(); 5164 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5165 Type *I8PtrTy = 5166 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5167 Type *I8Ty = Type::getInt8Ty(Ctx); 5168 5169 if (!NewBaseGEP) { 5170 // Create a new base if we don't have one yet. Find the insertion 5171 // pointer for the new base first. 5172 BasicBlock::iterator NewBaseInsertPt; 5173 BasicBlock *NewBaseInsertBB; 5174 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5175 // If the base of the struct is an instruction, the new base will be 5176 // inserted close to it. 5177 NewBaseInsertBB = BaseI->getParent(); 5178 if (isa<PHINode>(BaseI)) 5179 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5180 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5181 NewBaseInsertBB = 5182 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5183 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5184 } else 5185 NewBaseInsertPt = std::next(BaseI->getIterator()); 5186 } else { 5187 // If the current base is an argument or global value, the new base 5188 // will be inserted to the entry block. 5189 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5190 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5191 } 5192 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5193 // Create a new base. 5194 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5195 NewBaseGEP = OldBase; 5196 if (NewBaseGEP->getType() != I8PtrTy) 5197 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5198 NewBaseGEP = 5199 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5200 NewGEPBases.insert(NewBaseGEP); 5201 } 5202 5203 IRBuilder<> Builder(GEP); 5204 Value *NewGEP = NewBaseGEP; 5205 if (Offset == BaseOffset) { 5206 if (GEP->getType() != I8PtrTy) 5207 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5208 } else { 5209 // Calculate the new offset for the new GEP. 5210 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5211 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5212 5213 if (GEP->getType() != I8PtrTy) 5214 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5215 } 5216 GEP->replaceAllUsesWith(NewGEP); 5217 LargeOffsetGEPID.erase(GEP); 5218 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5219 GEP->eraseFromParent(); 5220 Changed = true; 5221 } 5222 } 5223 return Changed; 5224 } 5225 5226 /// Return true, if an ext(load) can be formed from an extension in 5227 /// \p MovedExts. 5228 bool CodeGenPrepare::canFormExtLd( 5229 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5230 Instruction *&Inst, bool HasPromoted) { 5231 for (auto *MovedExtInst : MovedExts) { 5232 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5233 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5234 Inst = MovedExtInst; 5235 break; 5236 } 5237 } 5238 if (!LI) 5239 return false; 5240 5241 // If they're already in the same block, there's nothing to do. 5242 // Make the cheap checks first if we did not promote. 5243 // If we promoted, we need to check if it is indeed profitable. 5244 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5245 return false; 5246 5247 return TLI->isExtLoad(LI, Inst, *DL); 5248 } 5249 5250 /// Move a zext or sext fed by a load into the same basic block as the load, 5251 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5252 /// extend into the load. 5253 /// 5254 /// E.g., 5255 /// \code 5256 /// %ld = load i32* %addr 5257 /// %add = add nuw i32 %ld, 4 5258 /// %zext = zext i32 %add to i64 5259 // \endcode 5260 /// => 5261 /// \code 5262 /// %ld = load i32* %addr 5263 /// %zext = zext i32 %ld to i64 5264 /// %add = add nuw i64 %zext, 4 5265 /// \encode 5266 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5267 /// allow us to match zext(load i32*) to i64. 5268 /// 5269 /// Also, try to promote the computations used to obtain a sign extended 5270 /// value used into memory accesses. 5271 /// E.g., 5272 /// \code 5273 /// a = add nsw i32 b, 3 5274 /// d = sext i32 a to i64 5275 /// e = getelementptr ..., i64 d 5276 /// \endcode 5277 /// => 5278 /// \code 5279 /// f = sext i32 b to i64 5280 /// a = add nsw i64 f, 3 5281 /// e = getelementptr ..., i64 a 5282 /// \endcode 5283 /// 5284 /// \p Inst[in/out] the extension may be modified during the process if some 5285 /// promotions apply. 5286 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5287 // ExtLoad formation and address type promotion infrastructure requires TLI to 5288 // be effective. 5289 if (!TLI) 5290 return false; 5291 5292 bool AllowPromotionWithoutCommonHeader = false; 5293 /// See if it is an interesting sext operations for the address type 5294 /// promotion before trying to promote it, e.g., the ones with the right 5295 /// type and used in memory accesses. 5296 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5297 *Inst, AllowPromotionWithoutCommonHeader); 5298 TypePromotionTransaction TPT(RemovedInsts); 5299 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5300 TPT.getRestorationPoint(); 5301 SmallVector<Instruction *, 1> Exts; 5302 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5303 Exts.push_back(Inst); 5304 5305 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5306 5307 // Look for a load being extended. 5308 LoadInst *LI = nullptr; 5309 Instruction *ExtFedByLoad; 5310 5311 // Try to promote a chain of computation if it allows to form an extended 5312 // load. 5313 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5314 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5315 TPT.commit(); 5316 // Move the extend into the same block as the load 5317 ExtFedByLoad->moveAfter(LI); 5318 // CGP does not check if the zext would be speculatively executed when moved 5319 // to the same basic block as the load. Preserving its original location 5320 // would pessimize the debugging experience, as well as negatively impact 5321 // the quality of sample pgo. We don't want to use "line 0" as that has a 5322 // size cost in the line-table section and logically the zext can be seen as 5323 // part of the load. Therefore we conservatively reuse the same debug 5324 // location for the load and the zext. 5325 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5326 ++NumExtsMoved; 5327 Inst = ExtFedByLoad; 5328 return true; 5329 } 5330 5331 // Continue promoting SExts if known as considerable depending on targets. 5332 if (ATPConsiderable && 5333 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5334 HasPromoted, TPT, SpeculativelyMovedExts)) 5335 return true; 5336 5337 TPT.rollback(LastKnownGood); 5338 return false; 5339 } 5340 5341 // Perform address type promotion if doing so is profitable. 5342 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5343 // instructions that sign extended the same initial value. However, if 5344 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5345 // extension is just profitable. 5346 bool CodeGenPrepare::performAddressTypePromotion( 5347 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5348 bool HasPromoted, TypePromotionTransaction &TPT, 5349 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5350 bool Promoted = false; 5351 SmallPtrSet<Instruction *, 1> UnhandledExts; 5352 bool AllSeenFirst = true; 5353 for (auto I : SpeculativelyMovedExts) { 5354 Value *HeadOfChain = I->getOperand(0); 5355 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5356 SeenChainsForSExt.find(HeadOfChain); 5357 // If there is an unhandled SExt which has the same header, try to promote 5358 // it as well. 5359 if (AlreadySeen != SeenChainsForSExt.end()) { 5360 if (AlreadySeen->second != nullptr) 5361 UnhandledExts.insert(AlreadySeen->second); 5362 AllSeenFirst = false; 5363 } 5364 } 5365 5366 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5367 SpeculativelyMovedExts.size() == 1)) { 5368 TPT.commit(); 5369 if (HasPromoted) 5370 Promoted = true; 5371 for (auto I : SpeculativelyMovedExts) { 5372 Value *HeadOfChain = I->getOperand(0); 5373 SeenChainsForSExt[HeadOfChain] = nullptr; 5374 ValToSExtendedUses[HeadOfChain].push_back(I); 5375 } 5376 // Update Inst as promotion happen. 5377 Inst = SpeculativelyMovedExts.pop_back_val(); 5378 } else { 5379 // This is the first chain visited from the header, keep the current chain 5380 // as unhandled. Defer to promote this until we encounter another SExt 5381 // chain derived from the same header. 5382 for (auto I : SpeculativelyMovedExts) { 5383 Value *HeadOfChain = I->getOperand(0); 5384 SeenChainsForSExt[HeadOfChain] = Inst; 5385 } 5386 return false; 5387 } 5388 5389 if (!AllSeenFirst && !UnhandledExts.empty()) 5390 for (auto VisitedSExt : UnhandledExts) { 5391 if (RemovedInsts.count(VisitedSExt)) 5392 continue; 5393 TypePromotionTransaction TPT(RemovedInsts); 5394 SmallVector<Instruction *, 1> Exts; 5395 SmallVector<Instruction *, 2> Chains; 5396 Exts.push_back(VisitedSExt); 5397 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5398 TPT.commit(); 5399 if (HasPromoted) 5400 Promoted = true; 5401 for (auto I : Chains) { 5402 Value *HeadOfChain = I->getOperand(0); 5403 // Mark this as handled. 5404 SeenChainsForSExt[HeadOfChain] = nullptr; 5405 ValToSExtendedUses[HeadOfChain].push_back(I); 5406 } 5407 } 5408 return Promoted; 5409 } 5410 5411 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5412 BasicBlock *DefBB = I->getParent(); 5413 5414 // If the result of a {s|z}ext and its source are both live out, rewrite all 5415 // other uses of the source with result of extension. 5416 Value *Src = I->getOperand(0); 5417 if (Src->hasOneUse()) 5418 return false; 5419 5420 // Only do this xform if truncating is free. 5421 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5422 return false; 5423 5424 // Only safe to perform the optimization if the source is also defined in 5425 // this block. 5426 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5427 return false; 5428 5429 bool DefIsLiveOut = false; 5430 for (User *U : I->users()) { 5431 Instruction *UI = cast<Instruction>(U); 5432 5433 // Figure out which BB this ext is used in. 5434 BasicBlock *UserBB = UI->getParent(); 5435 if (UserBB == DefBB) continue; 5436 DefIsLiveOut = true; 5437 break; 5438 } 5439 if (!DefIsLiveOut) 5440 return false; 5441 5442 // Make sure none of the uses are PHI nodes. 5443 for (User *U : Src->users()) { 5444 Instruction *UI = cast<Instruction>(U); 5445 BasicBlock *UserBB = UI->getParent(); 5446 if (UserBB == DefBB) continue; 5447 // Be conservative. We don't want this xform to end up introducing 5448 // reloads just before load / store instructions. 5449 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5450 return false; 5451 } 5452 5453 // InsertedTruncs - Only insert one trunc in each block once. 5454 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5455 5456 bool MadeChange = false; 5457 for (Use &U : Src->uses()) { 5458 Instruction *User = cast<Instruction>(U.getUser()); 5459 5460 // Figure out which BB this ext is used in. 5461 BasicBlock *UserBB = User->getParent(); 5462 if (UserBB == DefBB) continue; 5463 5464 // Both src and def are live in this block. Rewrite the use. 5465 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5466 5467 if (!InsertedTrunc) { 5468 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5469 assert(InsertPt != UserBB->end()); 5470 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5471 InsertedInsts.insert(InsertedTrunc); 5472 } 5473 5474 // Replace a use of the {s|z}ext source with a use of the result. 5475 U = InsertedTrunc; 5476 ++NumExtUses; 5477 MadeChange = true; 5478 } 5479 5480 return MadeChange; 5481 } 5482 5483 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5484 // just after the load if the target can fold this into one extload instruction, 5485 // with the hope of eliminating some of the other later "and" instructions using 5486 // the loaded value. "and"s that are made trivially redundant by the insertion 5487 // of the new "and" are removed by this function, while others (e.g. those whose 5488 // path from the load goes through a phi) are left for isel to potentially 5489 // remove. 5490 // 5491 // For example: 5492 // 5493 // b0: 5494 // x = load i32 5495 // ... 5496 // b1: 5497 // y = and x, 0xff 5498 // z = use y 5499 // 5500 // becomes: 5501 // 5502 // b0: 5503 // x = load i32 5504 // x' = and x, 0xff 5505 // ... 5506 // b1: 5507 // z = use x' 5508 // 5509 // whereas: 5510 // 5511 // b0: 5512 // x1 = load i32 5513 // ... 5514 // b1: 5515 // x2 = load i32 5516 // ... 5517 // b2: 5518 // x = phi x1, x2 5519 // y = and x, 0xff 5520 // 5521 // becomes (after a call to optimizeLoadExt for each load): 5522 // 5523 // b0: 5524 // x1 = load i32 5525 // x1' = and x1, 0xff 5526 // ... 5527 // b1: 5528 // x2 = load i32 5529 // x2' = and x2, 0xff 5530 // ... 5531 // b2: 5532 // x = phi x1', x2' 5533 // y = and x, 0xff 5534 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5535 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5536 return false; 5537 5538 // Skip loads we've already transformed. 5539 if (Load->hasOneUse() && 5540 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5541 return false; 5542 5543 // Look at all uses of Load, looking through phis, to determine how many bits 5544 // of the loaded value are needed. 5545 SmallVector<Instruction *, 8> WorkList; 5546 SmallPtrSet<Instruction *, 16> Visited; 5547 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5548 for (auto *U : Load->users()) 5549 WorkList.push_back(cast<Instruction>(U)); 5550 5551 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5552 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5553 APInt DemandBits(BitWidth, 0); 5554 APInt WidestAndBits(BitWidth, 0); 5555 5556 while (!WorkList.empty()) { 5557 Instruction *I = WorkList.back(); 5558 WorkList.pop_back(); 5559 5560 // Break use-def graph loops. 5561 if (!Visited.insert(I).second) 5562 continue; 5563 5564 // For a PHI node, push all of its users. 5565 if (auto *Phi = dyn_cast<PHINode>(I)) { 5566 for (auto *U : Phi->users()) 5567 WorkList.push_back(cast<Instruction>(U)); 5568 continue; 5569 } 5570 5571 switch (I->getOpcode()) { 5572 case Instruction::And: { 5573 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5574 if (!AndC) 5575 return false; 5576 APInt AndBits = AndC->getValue(); 5577 DemandBits |= AndBits; 5578 // Keep track of the widest and mask we see. 5579 if (AndBits.ugt(WidestAndBits)) 5580 WidestAndBits = AndBits; 5581 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5582 AndsToMaybeRemove.push_back(I); 5583 break; 5584 } 5585 5586 case Instruction::Shl: { 5587 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5588 if (!ShlC) 5589 return false; 5590 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5591 DemandBits.setLowBits(BitWidth - ShiftAmt); 5592 break; 5593 } 5594 5595 case Instruction::Trunc: { 5596 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5597 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5598 DemandBits.setLowBits(TruncBitWidth); 5599 break; 5600 } 5601 5602 default: 5603 return false; 5604 } 5605 } 5606 5607 uint32_t ActiveBits = DemandBits.getActiveBits(); 5608 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5609 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5610 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5611 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5612 // followed by an AND. 5613 // TODO: Look into removing this restriction by fixing backends to either 5614 // return false for isLoadExtLegal for i1 or have them select this pattern to 5615 // a single instruction. 5616 // 5617 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5618 // mask, since these are the only ands that will be removed by isel. 5619 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5620 WidestAndBits != DemandBits) 5621 return false; 5622 5623 LLVMContext &Ctx = Load->getType()->getContext(); 5624 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5625 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5626 5627 // Reject cases that won't be matched as extloads. 5628 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5629 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5630 return false; 5631 5632 IRBuilder<> Builder(Load->getNextNode()); 5633 auto *NewAnd = dyn_cast<Instruction>( 5634 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5635 // Mark this instruction as "inserted by CGP", so that other 5636 // optimizations don't touch it. 5637 InsertedInsts.insert(NewAnd); 5638 5639 // Replace all uses of load with new and (except for the use of load in the 5640 // new and itself). 5641 Load->replaceAllUsesWith(NewAnd); 5642 NewAnd->setOperand(0, Load); 5643 5644 // Remove any and instructions that are now redundant. 5645 for (auto *And : AndsToMaybeRemove) 5646 // Check that the and mask is the same as the one we decided to put on the 5647 // new and. 5648 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5649 And->replaceAllUsesWith(NewAnd); 5650 if (&*CurInstIterator == And) 5651 CurInstIterator = std::next(And->getIterator()); 5652 And->eraseFromParent(); 5653 ++NumAndUses; 5654 } 5655 5656 ++NumAndsAdded; 5657 return true; 5658 } 5659 5660 /// Check if V (an operand of a select instruction) is an expensive instruction 5661 /// that is only used once. 5662 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5663 auto *I = dyn_cast<Instruction>(V); 5664 // If it's safe to speculatively execute, then it should not have side 5665 // effects; therefore, it's safe to sink and possibly *not* execute. 5666 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5667 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5668 } 5669 5670 /// Returns true if a SelectInst should be turned into an explicit branch. 5671 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5672 const TargetLowering *TLI, 5673 SelectInst *SI) { 5674 // If even a predictable select is cheap, then a branch can't be cheaper. 5675 if (!TLI->isPredictableSelectExpensive()) 5676 return false; 5677 5678 // FIXME: This should use the same heuristics as IfConversion to determine 5679 // whether a select is better represented as a branch. 5680 5681 // If metadata tells us that the select condition is obviously predictable, 5682 // then we want to replace the select with a branch. 5683 uint64_t TrueWeight, FalseWeight; 5684 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5685 uint64_t Max = std::max(TrueWeight, FalseWeight); 5686 uint64_t Sum = TrueWeight + FalseWeight; 5687 if (Sum != 0) { 5688 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5689 if (Probability > TLI->getPredictableBranchThreshold()) 5690 return true; 5691 } 5692 } 5693 5694 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5695 5696 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5697 // comparison condition. If the compare has more than one use, there's 5698 // probably another cmov or setcc around, so it's not worth emitting a branch. 5699 if (!Cmp || !Cmp->hasOneUse()) 5700 return false; 5701 5702 // If either operand of the select is expensive and only needed on one side 5703 // of the select, we should form a branch. 5704 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5705 sinkSelectOperand(TTI, SI->getFalseValue())) 5706 return true; 5707 5708 return false; 5709 } 5710 5711 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5712 /// false value of \p SI. If the true/false value of \p SI is defined by any 5713 /// select instructions in \p Selects, look through the defining select 5714 /// instruction until the true/false value is not defined in \p Selects. 5715 static Value *getTrueOrFalseValue( 5716 SelectInst *SI, bool isTrue, 5717 const SmallPtrSet<const Instruction *, 2> &Selects) { 5718 Value *V; 5719 5720 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5721 DefSI = dyn_cast<SelectInst>(V)) { 5722 assert(DefSI->getCondition() == SI->getCondition() && 5723 "The condition of DefSI does not match with SI"); 5724 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5725 } 5726 return V; 5727 } 5728 5729 /// If we have a SelectInst that will likely profit from branch prediction, 5730 /// turn it into a branch. 5731 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5732 // If branch conversion isn't desirable, exit early. 5733 if (DisableSelectToBranch || OptSize || !TLI) 5734 return false; 5735 5736 // Find all consecutive select instructions that share the same condition. 5737 SmallVector<SelectInst *, 2> ASI; 5738 ASI.push_back(SI); 5739 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5740 It != SI->getParent()->end(); ++It) { 5741 SelectInst *I = dyn_cast<SelectInst>(&*It); 5742 if (I && SI->getCondition() == I->getCondition()) { 5743 ASI.push_back(I); 5744 } else { 5745 break; 5746 } 5747 } 5748 5749 SelectInst *LastSI = ASI.back(); 5750 // Increment the current iterator to skip all the rest of select instructions 5751 // because they will be either "not lowered" or "all lowered" to branch. 5752 CurInstIterator = std::next(LastSI->getIterator()); 5753 5754 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5755 5756 // Can we convert the 'select' to CF ? 5757 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5758 return false; 5759 5760 TargetLowering::SelectSupportKind SelectKind; 5761 if (VectorCond) 5762 SelectKind = TargetLowering::VectorMaskSelect; 5763 else if (SI->getType()->isVectorTy()) 5764 SelectKind = TargetLowering::ScalarCondVectorVal; 5765 else 5766 SelectKind = TargetLowering::ScalarValSelect; 5767 5768 if (TLI->isSelectSupported(SelectKind) && 5769 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5770 return false; 5771 5772 ModifiedDT = true; 5773 5774 // Transform a sequence like this: 5775 // start: 5776 // %cmp = cmp uge i32 %a, %b 5777 // %sel = select i1 %cmp, i32 %c, i32 %d 5778 // 5779 // Into: 5780 // start: 5781 // %cmp = cmp uge i32 %a, %b 5782 // br i1 %cmp, label %select.true, label %select.false 5783 // select.true: 5784 // br label %select.end 5785 // select.false: 5786 // br label %select.end 5787 // select.end: 5788 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5789 // 5790 // In addition, we may sink instructions that produce %c or %d from 5791 // the entry block into the destination(s) of the new branch. 5792 // If the true or false blocks do not contain a sunken instruction, that 5793 // block and its branch may be optimized away. In that case, one side of the 5794 // first branch will point directly to select.end, and the corresponding PHI 5795 // predecessor block will be the start block. 5796 5797 // First, we split the block containing the select into 2 blocks. 5798 BasicBlock *StartBlock = SI->getParent(); 5799 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5800 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5801 5802 // Delete the unconditional branch that was just created by the split. 5803 StartBlock->getTerminator()->eraseFromParent(); 5804 5805 // These are the new basic blocks for the conditional branch. 5806 // At least one will become an actual new basic block. 5807 BasicBlock *TrueBlock = nullptr; 5808 BasicBlock *FalseBlock = nullptr; 5809 BranchInst *TrueBranch = nullptr; 5810 BranchInst *FalseBranch = nullptr; 5811 5812 // Sink expensive instructions into the conditional blocks to avoid executing 5813 // them speculatively. 5814 for (SelectInst *SI : ASI) { 5815 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5816 if (TrueBlock == nullptr) { 5817 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5818 EndBlock->getParent(), EndBlock); 5819 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5820 TrueBranch->setDebugLoc(SI->getDebugLoc()); 5821 } 5822 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5823 TrueInst->moveBefore(TrueBranch); 5824 } 5825 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5826 if (FalseBlock == nullptr) { 5827 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5828 EndBlock->getParent(), EndBlock); 5829 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5830 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5831 } 5832 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5833 FalseInst->moveBefore(FalseBranch); 5834 } 5835 } 5836 5837 // If there was nothing to sink, then arbitrarily choose the 'false' side 5838 // for a new input value to the PHI. 5839 if (TrueBlock == FalseBlock) { 5840 assert(TrueBlock == nullptr && 5841 "Unexpected basic block transform while optimizing select"); 5842 5843 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5844 EndBlock->getParent(), EndBlock); 5845 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5846 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5847 } 5848 5849 // Insert the real conditional branch based on the original condition. 5850 // If we did not create a new block for one of the 'true' or 'false' paths 5851 // of the condition, it means that side of the branch goes to the end block 5852 // directly and the path originates from the start block from the point of 5853 // view of the new PHI. 5854 BasicBlock *TT, *FT; 5855 if (TrueBlock == nullptr) { 5856 TT = EndBlock; 5857 FT = FalseBlock; 5858 TrueBlock = StartBlock; 5859 } else if (FalseBlock == nullptr) { 5860 TT = TrueBlock; 5861 FT = EndBlock; 5862 FalseBlock = StartBlock; 5863 } else { 5864 TT = TrueBlock; 5865 FT = FalseBlock; 5866 } 5867 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5868 5869 SmallPtrSet<const Instruction *, 2> INS; 5870 INS.insert(ASI.begin(), ASI.end()); 5871 // Use reverse iterator because later select may use the value of the 5872 // earlier select, and we need to propagate value through earlier select 5873 // to get the PHI operand. 5874 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5875 SelectInst *SI = *It; 5876 // The select itself is replaced with a PHI Node. 5877 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5878 PN->takeName(SI); 5879 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5880 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5881 PN->setDebugLoc(SI->getDebugLoc()); 5882 5883 SI->replaceAllUsesWith(PN); 5884 SI->eraseFromParent(); 5885 INS.erase(SI); 5886 ++NumSelectsExpanded; 5887 } 5888 5889 // Instruct OptimizeBlock to skip to the next block. 5890 CurInstIterator = StartBlock->end(); 5891 return true; 5892 } 5893 5894 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5895 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5896 int SplatElem = -1; 5897 for (unsigned i = 0; i < Mask.size(); ++i) { 5898 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5899 return false; 5900 SplatElem = Mask[i]; 5901 } 5902 5903 return true; 5904 } 5905 5906 /// Some targets have expensive vector shifts if the lanes aren't all the same 5907 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5908 /// it's often worth sinking a shufflevector splat down to its use so that 5909 /// codegen can spot all lanes are identical. 5910 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5911 BasicBlock *DefBB = SVI->getParent(); 5912 5913 // Only do this xform if variable vector shifts are particularly expensive. 5914 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5915 return false; 5916 5917 // We only expect better codegen by sinking a shuffle if we can recognise a 5918 // constant splat. 5919 if (!isBroadcastShuffle(SVI)) 5920 return false; 5921 5922 // InsertedShuffles - Only insert a shuffle in each block once. 5923 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5924 5925 bool MadeChange = false; 5926 for (User *U : SVI->users()) { 5927 Instruction *UI = cast<Instruction>(U); 5928 5929 // Figure out which BB this ext is used in. 5930 BasicBlock *UserBB = UI->getParent(); 5931 if (UserBB == DefBB) continue; 5932 5933 // For now only apply this when the splat is used by a shift instruction. 5934 if (!UI->isShift()) continue; 5935 5936 // Everything checks out, sink the shuffle if the user's block doesn't 5937 // already have a copy. 5938 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5939 5940 if (!InsertedShuffle) { 5941 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5942 assert(InsertPt != UserBB->end()); 5943 InsertedShuffle = 5944 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5945 SVI->getOperand(2), "", &*InsertPt); 5946 } 5947 5948 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5949 MadeChange = true; 5950 } 5951 5952 // If we removed all uses, nuke the shuffle. 5953 if (SVI->use_empty()) { 5954 SVI->eraseFromParent(); 5955 MadeChange = true; 5956 } 5957 5958 return MadeChange; 5959 } 5960 5961 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5962 if (!TLI || !DL) 5963 return false; 5964 5965 Value *Cond = SI->getCondition(); 5966 Type *OldType = Cond->getType(); 5967 LLVMContext &Context = Cond->getContext(); 5968 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5969 unsigned RegWidth = RegType.getSizeInBits(); 5970 5971 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5972 return false; 5973 5974 // If the register width is greater than the type width, expand the condition 5975 // of the switch instruction and each case constant to the width of the 5976 // register. By widening the type of the switch condition, subsequent 5977 // comparisons (for case comparisons) will not need to be extended to the 5978 // preferred register width, so we will potentially eliminate N-1 extends, 5979 // where N is the number of cases in the switch. 5980 auto *NewType = Type::getIntNTy(Context, RegWidth); 5981 5982 // Zero-extend the switch condition and case constants unless the switch 5983 // condition is a function argument that is already being sign-extended. 5984 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5985 // everything instead. 5986 Instruction::CastOps ExtType = Instruction::ZExt; 5987 if (auto *Arg = dyn_cast<Argument>(Cond)) 5988 if (Arg->hasSExtAttr()) 5989 ExtType = Instruction::SExt; 5990 5991 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5992 ExtInst->insertBefore(SI); 5993 ExtInst->setDebugLoc(SI->getDebugLoc()); 5994 SI->setCondition(ExtInst); 5995 for (auto Case : SI->cases()) { 5996 APInt NarrowConst = Case.getCaseValue()->getValue(); 5997 APInt WideConst = (ExtType == Instruction::ZExt) ? 5998 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5999 Case.setValue(ConstantInt::get(Context, WideConst)); 6000 } 6001 6002 return true; 6003 } 6004 6005 6006 namespace { 6007 6008 /// Helper class to promote a scalar operation to a vector one. 6009 /// This class is used to move downward extractelement transition. 6010 /// E.g., 6011 /// a = vector_op <2 x i32> 6012 /// b = extractelement <2 x i32> a, i32 0 6013 /// c = scalar_op b 6014 /// store c 6015 /// 6016 /// => 6017 /// a = vector_op <2 x i32> 6018 /// c = vector_op a (equivalent to scalar_op on the related lane) 6019 /// * d = extractelement <2 x i32> c, i32 0 6020 /// * store d 6021 /// Assuming both extractelement and store can be combine, we get rid of the 6022 /// transition. 6023 class VectorPromoteHelper { 6024 /// DataLayout associated with the current module. 6025 const DataLayout &DL; 6026 6027 /// Used to perform some checks on the legality of vector operations. 6028 const TargetLowering &TLI; 6029 6030 /// Used to estimated the cost of the promoted chain. 6031 const TargetTransformInfo &TTI; 6032 6033 /// The transition being moved downwards. 6034 Instruction *Transition; 6035 6036 /// The sequence of instructions to be promoted. 6037 SmallVector<Instruction *, 4> InstsToBePromoted; 6038 6039 /// Cost of combining a store and an extract. 6040 unsigned StoreExtractCombineCost; 6041 6042 /// Instruction that will be combined with the transition. 6043 Instruction *CombineInst = nullptr; 6044 6045 /// The instruction that represents the current end of the transition. 6046 /// Since we are faking the promotion until we reach the end of the chain 6047 /// of computation, we need a way to get the current end of the transition. 6048 Instruction *getEndOfTransition() const { 6049 if (InstsToBePromoted.empty()) 6050 return Transition; 6051 return InstsToBePromoted.back(); 6052 } 6053 6054 /// Return the index of the original value in the transition. 6055 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6056 /// c, is at index 0. 6057 unsigned getTransitionOriginalValueIdx() const { 6058 assert(isa<ExtractElementInst>(Transition) && 6059 "Other kind of transitions are not supported yet"); 6060 return 0; 6061 } 6062 6063 /// Return the index of the index in the transition. 6064 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6065 /// is at index 1. 6066 unsigned getTransitionIdx() const { 6067 assert(isa<ExtractElementInst>(Transition) && 6068 "Other kind of transitions are not supported yet"); 6069 return 1; 6070 } 6071 6072 /// Get the type of the transition. 6073 /// This is the type of the original value. 6074 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6075 /// transition is <2 x i32>. 6076 Type *getTransitionType() const { 6077 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6078 } 6079 6080 /// Promote \p ToBePromoted by moving \p Def downward through. 6081 /// I.e., we have the following sequence: 6082 /// Def = Transition <ty1> a to <ty2> 6083 /// b = ToBePromoted <ty2> Def, ... 6084 /// => 6085 /// b = ToBePromoted <ty1> a, ... 6086 /// Def = Transition <ty1> ToBePromoted to <ty2> 6087 void promoteImpl(Instruction *ToBePromoted); 6088 6089 /// Check whether or not it is profitable to promote all the 6090 /// instructions enqueued to be promoted. 6091 bool isProfitableToPromote() { 6092 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6093 unsigned Index = isa<ConstantInt>(ValIdx) 6094 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6095 : -1; 6096 Type *PromotedType = getTransitionType(); 6097 6098 StoreInst *ST = cast<StoreInst>(CombineInst); 6099 unsigned AS = ST->getPointerAddressSpace(); 6100 unsigned Align = ST->getAlignment(); 6101 // Check if this store is supported. 6102 if (!TLI.allowsMisalignedMemoryAccesses( 6103 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6104 Align)) { 6105 // If this is not supported, there is no way we can combine 6106 // the extract with the store. 6107 return false; 6108 } 6109 6110 // The scalar chain of computation has to pay for the transition 6111 // scalar to vector. 6112 // The vector chain has to account for the combining cost. 6113 uint64_t ScalarCost = 6114 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6115 uint64_t VectorCost = StoreExtractCombineCost; 6116 for (const auto &Inst : InstsToBePromoted) { 6117 // Compute the cost. 6118 // By construction, all instructions being promoted are arithmetic ones. 6119 // Moreover, one argument is a constant that can be viewed as a splat 6120 // constant. 6121 Value *Arg0 = Inst->getOperand(0); 6122 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6123 isa<ConstantFP>(Arg0); 6124 TargetTransformInfo::OperandValueKind Arg0OVK = 6125 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6126 : TargetTransformInfo::OK_AnyValue; 6127 TargetTransformInfo::OperandValueKind Arg1OVK = 6128 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6129 : TargetTransformInfo::OK_AnyValue; 6130 ScalarCost += TTI.getArithmeticInstrCost( 6131 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6132 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6133 Arg0OVK, Arg1OVK); 6134 } 6135 LLVM_DEBUG( 6136 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6137 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6138 return ScalarCost > VectorCost; 6139 } 6140 6141 /// Generate a constant vector with \p Val with the same 6142 /// number of elements as the transition. 6143 /// \p UseSplat defines whether or not \p Val should be replicated 6144 /// across the whole vector. 6145 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6146 /// otherwise we generate a vector with as many undef as possible: 6147 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6148 /// used at the index of the extract. 6149 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6150 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6151 if (!UseSplat) { 6152 // If we cannot determine where the constant must be, we have to 6153 // use a splat constant. 6154 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6155 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6156 ExtractIdx = CstVal->getSExtValue(); 6157 else 6158 UseSplat = true; 6159 } 6160 6161 unsigned End = getTransitionType()->getVectorNumElements(); 6162 if (UseSplat) 6163 return ConstantVector::getSplat(End, Val); 6164 6165 SmallVector<Constant *, 4> ConstVec; 6166 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6167 for (unsigned Idx = 0; Idx != End; ++Idx) { 6168 if (Idx == ExtractIdx) 6169 ConstVec.push_back(Val); 6170 else 6171 ConstVec.push_back(UndefVal); 6172 } 6173 return ConstantVector::get(ConstVec); 6174 } 6175 6176 /// Check if promoting to a vector type an operand at \p OperandIdx 6177 /// in \p Use can trigger undefined behavior. 6178 static bool canCauseUndefinedBehavior(const Instruction *Use, 6179 unsigned OperandIdx) { 6180 // This is not safe to introduce undef when the operand is on 6181 // the right hand side of a division-like instruction. 6182 if (OperandIdx != 1) 6183 return false; 6184 switch (Use->getOpcode()) { 6185 default: 6186 return false; 6187 case Instruction::SDiv: 6188 case Instruction::UDiv: 6189 case Instruction::SRem: 6190 case Instruction::URem: 6191 return true; 6192 case Instruction::FDiv: 6193 case Instruction::FRem: 6194 return !Use->hasNoNaNs(); 6195 } 6196 llvm_unreachable(nullptr); 6197 } 6198 6199 public: 6200 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6201 const TargetTransformInfo &TTI, Instruction *Transition, 6202 unsigned CombineCost) 6203 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6204 StoreExtractCombineCost(CombineCost) { 6205 assert(Transition && "Do not know how to promote null"); 6206 } 6207 6208 /// Check if we can promote \p ToBePromoted to \p Type. 6209 bool canPromote(const Instruction *ToBePromoted) const { 6210 // We could support CastInst too. 6211 return isa<BinaryOperator>(ToBePromoted); 6212 } 6213 6214 /// Check if it is profitable to promote \p ToBePromoted 6215 /// by moving downward the transition through. 6216 bool shouldPromote(const Instruction *ToBePromoted) const { 6217 // Promote only if all the operands can be statically expanded. 6218 // Indeed, we do not want to introduce any new kind of transitions. 6219 for (const Use &U : ToBePromoted->operands()) { 6220 const Value *Val = U.get(); 6221 if (Val == getEndOfTransition()) { 6222 // If the use is a division and the transition is on the rhs, 6223 // we cannot promote the operation, otherwise we may create a 6224 // division by zero. 6225 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6226 return false; 6227 continue; 6228 } 6229 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6230 !isa<ConstantFP>(Val)) 6231 return false; 6232 } 6233 // Check that the resulting operation is legal. 6234 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6235 if (!ISDOpcode) 6236 return false; 6237 return StressStoreExtract || 6238 TLI.isOperationLegalOrCustom( 6239 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6240 } 6241 6242 /// Check whether or not \p Use can be combined 6243 /// with the transition. 6244 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6245 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6246 6247 /// Record \p ToBePromoted as part of the chain to be promoted. 6248 void enqueueForPromotion(Instruction *ToBePromoted) { 6249 InstsToBePromoted.push_back(ToBePromoted); 6250 } 6251 6252 /// Set the instruction that will be combined with the transition. 6253 void recordCombineInstruction(Instruction *ToBeCombined) { 6254 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6255 CombineInst = ToBeCombined; 6256 } 6257 6258 /// Promote all the instructions enqueued for promotion if it is 6259 /// is profitable. 6260 /// \return True if the promotion happened, false otherwise. 6261 bool promote() { 6262 // Check if there is something to promote. 6263 // Right now, if we do not have anything to combine with, 6264 // we assume the promotion is not profitable. 6265 if (InstsToBePromoted.empty() || !CombineInst) 6266 return false; 6267 6268 // Check cost. 6269 if (!StressStoreExtract && !isProfitableToPromote()) 6270 return false; 6271 6272 // Promote. 6273 for (auto &ToBePromoted : InstsToBePromoted) 6274 promoteImpl(ToBePromoted); 6275 InstsToBePromoted.clear(); 6276 return true; 6277 } 6278 }; 6279 6280 } // end anonymous namespace 6281 6282 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6283 // At this point, we know that all the operands of ToBePromoted but Def 6284 // can be statically promoted. 6285 // For Def, we need to use its parameter in ToBePromoted: 6286 // b = ToBePromoted ty1 a 6287 // Def = Transition ty1 b to ty2 6288 // Move the transition down. 6289 // 1. Replace all uses of the promoted operation by the transition. 6290 // = ... b => = ... Def. 6291 assert(ToBePromoted->getType() == Transition->getType() && 6292 "The type of the result of the transition does not match " 6293 "the final type"); 6294 ToBePromoted->replaceAllUsesWith(Transition); 6295 // 2. Update the type of the uses. 6296 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6297 Type *TransitionTy = getTransitionType(); 6298 ToBePromoted->mutateType(TransitionTy); 6299 // 3. Update all the operands of the promoted operation with promoted 6300 // operands. 6301 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6302 for (Use &U : ToBePromoted->operands()) { 6303 Value *Val = U.get(); 6304 Value *NewVal = nullptr; 6305 if (Val == Transition) 6306 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6307 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6308 isa<ConstantFP>(Val)) { 6309 // Use a splat constant if it is not safe to use undef. 6310 NewVal = getConstantVector( 6311 cast<Constant>(Val), 6312 isa<UndefValue>(Val) || 6313 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6314 } else 6315 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6316 "this?"); 6317 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6318 } 6319 Transition->moveAfter(ToBePromoted); 6320 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6321 } 6322 6323 /// Some targets can do store(extractelement) with one instruction. 6324 /// Try to push the extractelement towards the stores when the target 6325 /// has this feature and this is profitable. 6326 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6327 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6328 if (DisableStoreExtract || !TLI || 6329 (!StressStoreExtract && 6330 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6331 Inst->getOperand(1), CombineCost))) 6332 return false; 6333 6334 // At this point we know that Inst is a vector to scalar transition. 6335 // Try to move it down the def-use chain, until: 6336 // - We can combine the transition with its single use 6337 // => we got rid of the transition. 6338 // - We escape the current basic block 6339 // => we would need to check that we are moving it at a cheaper place and 6340 // we do not do that for now. 6341 BasicBlock *Parent = Inst->getParent(); 6342 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6343 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6344 // If the transition has more than one use, assume this is not going to be 6345 // beneficial. 6346 while (Inst->hasOneUse()) { 6347 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6348 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6349 6350 if (ToBePromoted->getParent() != Parent) { 6351 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6352 << ToBePromoted->getParent()->getName() 6353 << ") than the transition (" << Parent->getName() 6354 << ").\n"); 6355 return false; 6356 } 6357 6358 if (VPH.canCombine(ToBePromoted)) { 6359 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6360 << "will be combined with: " << *ToBePromoted << '\n'); 6361 VPH.recordCombineInstruction(ToBePromoted); 6362 bool Changed = VPH.promote(); 6363 NumStoreExtractExposed += Changed; 6364 return Changed; 6365 } 6366 6367 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6368 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6369 return false; 6370 6371 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6372 6373 VPH.enqueueForPromotion(ToBePromoted); 6374 Inst = ToBePromoted; 6375 } 6376 return false; 6377 } 6378 6379 /// For the instruction sequence of store below, F and I values 6380 /// are bundled together as an i64 value before being stored into memory. 6381 /// Sometimes it is more efficient to generate separate stores for F and I, 6382 /// which can remove the bitwise instructions or sink them to colder places. 6383 /// 6384 /// (store (or (zext (bitcast F to i32) to i64), 6385 /// (shl (zext I to i64), 32)), addr) --> 6386 /// (store F, addr) and (store I, addr+4) 6387 /// 6388 /// Similarly, splitting for other merged store can also be beneficial, like: 6389 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6390 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6391 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6392 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6393 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6394 /// 6395 /// We allow each target to determine specifically which kind of splitting is 6396 /// supported. 6397 /// 6398 /// The store patterns are commonly seen from the simple code snippet below 6399 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6400 /// void goo(const std::pair<int, float> &); 6401 /// hoo() { 6402 /// ... 6403 /// goo(std::make_pair(tmp, ftmp)); 6404 /// ... 6405 /// } 6406 /// 6407 /// Although we already have similar splitting in DAG Combine, we duplicate 6408 /// it in CodeGenPrepare to catch the case in which pattern is across 6409 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6410 /// during code expansion. 6411 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6412 const TargetLowering &TLI) { 6413 // Handle simple but common cases only. 6414 Type *StoreType = SI.getValueOperand()->getType(); 6415 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6416 DL.getTypeSizeInBits(StoreType) == 0) 6417 return false; 6418 6419 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6420 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6421 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6422 DL.getTypeSizeInBits(SplitStoreType)) 6423 return false; 6424 6425 // Match the following patterns: 6426 // (store (or (zext LValue to i64), 6427 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6428 // or 6429 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6430 // (zext LValue to i64), 6431 // Expect both operands of OR and the first operand of SHL have only 6432 // one use. 6433 Value *LValue, *HValue; 6434 if (!match(SI.getValueOperand(), 6435 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6436 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6437 m_SpecificInt(HalfValBitSize)))))) 6438 return false; 6439 6440 // Check LValue and HValue are int with size less or equal than 32. 6441 if (!LValue->getType()->isIntegerTy() || 6442 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6443 !HValue->getType()->isIntegerTy() || 6444 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6445 return false; 6446 6447 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6448 // as the input of target query. 6449 auto *LBC = dyn_cast<BitCastInst>(LValue); 6450 auto *HBC = dyn_cast<BitCastInst>(HValue); 6451 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6452 : EVT::getEVT(LValue->getType()); 6453 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6454 : EVT::getEVT(HValue->getType()); 6455 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6456 return false; 6457 6458 // Start to split store. 6459 IRBuilder<> Builder(SI.getContext()); 6460 Builder.SetInsertPoint(&SI); 6461 6462 // If LValue/HValue is a bitcast in another BB, create a new one in current 6463 // BB so it may be merged with the splitted stores by dag combiner. 6464 if (LBC && LBC->getParent() != SI.getParent()) 6465 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6466 if (HBC && HBC->getParent() != SI.getParent()) 6467 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6468 6469 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6470 auto CreateSplitStore = [&](Value *V, bool Upper) { 6471 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6472 Value *Addr = Builder.CreateBitCast( 6473 SI.getOperand(1), 6474 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6475 if ((IsLE && Upper) || (!IsLE && !Upper)) 6476 Addr = Builder.CreateGEP( 6477 SplitStoreType, Addr, 6478 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6479 Builder.CreateAlignedStore( 6480 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6481 }; 6482 6483 CreateSplitStore(LValue, false); 6484 CreateSplitStore(HValue, true); 6485 6486 // Delete the old store. 6487 SI.eraseFromParent(); 6488 return true; 6489 } 6490 6491 // Return true if the GEP has two operands, the first operand is of a sequential 6492 // type, and the second operand is a constant. 6493 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6494 gep_type_iterator I = gep_type_begin(*GEP); 6495 return GEP->getNumOperands() == 2 && 6496 I.isSequential() && 6497 isa<ConstantInt>(GEP->getOperand(1)); 6498 } 6499 6500 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6501 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6502 // reducing liveness interference across those edges benefits global register 6503 // allocation. Currently handles only certain cases. 6504 // 6505 // For example, unmerge %GEPI and %UGEPI as below. 6506 // 6507 // ---------- BEFORE ---------- 6508 // SrcBlock: 6509 // ... 6510 // %GEPIOp = ... 6511 // ... 6512 // %GEPI = gep %GEPIOp, Idx 6513 // ... 6514 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6515 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6516 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6517 // %UGEPI) 6518 // 6519 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6520 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6521 // ... 6522 // 6523 // DstBi: 6524 // ... 6525 // %UGEPI = gep %GEPIOp, UIdx 6526 // ... 6527 // --------------------------- 6528 // 6529 // ---------- AFTER ---------- 6530 // SrcBlock: 6531 // ... (same as above) 6532 // (* %GEPI is still alive on the indirectbr edges) 6533 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6534 // unmerging) 6535 // ... 6536 // 6537 // DstBi: 6538 // ... 6539 // %UGEPI = gep %GEPI, (UIdx-Idx) 6540 // ... 6541 // --------------------------- 6542 // 6543 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6544 // no longer alive on them. 6545 // 6546 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6547 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6548 // not to disable further simplications and optimizations as a result of GEP 6549 // merging. 6550 // 6551 // Note this unmerging may increase the length of the data flow critical path 6552 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6553 // between the register pressure and the length of data-flow critical 6554 // path. Restricting this to the uncommon IndirectBr case would minimize the 6555 // impact of potentially longer critical path, if any, and the impact on compile 6556 // time. 6557 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6558 const TargetTransformInfo *TTI) { 6559 BasicBlock *SrcBlock = GEPI->getParent(); 6560 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6561 // (non-IndirectBr) cases exit early here. 6562 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6563 return false; 6564 // Check that GEPI is a simple gep with a single constant index. 6565 if (!GEPSequentialConstIndexed(GEPI)) 6566 return false; 6567 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6568 // Check that GEPI is a cheap one. 6569 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6570 > TargetTransformInfo::TCC_Basic) 6571 return false; 6572 Value *GEPIOp = GEPI->getOperand(0); 6573 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6574 if (!isa<Instruction>(GEPIOp)) 6575 return false; 6576 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6577 if (GEPIOpI->getParent() != SrcBlock) 6578 return false; 6579 // Check that GEP is used outside the block, meaning it's alive on the 6580 // IndirectBr edge(s). 6581 if (find_if(GEPI->users(), [&](User *Usr) { 6582 if (auto *I = dyn_cast<Instruction>(Usr)) { 6583 if (I->getParent() != SrcBlock) { 6584 return true; 6585 } 6586 } 6587 return false; 6588 }) == GEPI->users().end()) 6589 return false; 6590 // The second elements of the GEP chains to be unmerged. 6591 std::vector<GetElementPtrInst *> UGEPIs; 6592 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6593 // on IndirectBr edges. 6594 for (User *Usr : GEPIOp->users()) { 6595 if (Usr == GEPI) continue; 6596 // Check if Usr is an Instruction. If not, give up. 6597 if (!isa<Instruction>(Usr)) 6598 return false; 6599 auto *UI = cast<Instruction>(Usr); 6600 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6601 if (UI->getParent() == SrcBlock) 6602 continue; 6603 // Check if Usr is a GEP. If not, give up. 6604 if (!isa<GetElementPtrInst>(Usr)) 6605 return false; 6606 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6607 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6608 // the pointer operand to it. If so, record it in the vector. If not, give 6609 // up. 6610 if (!GEPSequentialConstIndexed(UGEPI)) 6611 return false; 6612 if (UGEPI->getOperand(0) != GEPIOp) 6613 return false; 6614 if (GEPIIdx->getType() != 6615 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6616 return false; 6617 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6618 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6619 > TargetTransformInfo::TCC_Basic) 6620 return false; 6621 UGEPIs.push_back(UGEPI); 6622 } 6623 if (UGEPIs.size() == 0) 6624 return false; 6625 // Check the materializing cost of (Uidx-Idx). 6626 for (GetElementPtrInst *UGEPI : UGEPIs) { 6627 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6628 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6629 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6630 if (ImmCost > TargetTransformInfo::TCC_Basic) 6631 return false; 6632 } 6633 // Now unmerge between GEPI and UGEPIs. 6634 for (GetElementPtrInst *UGEPI : UGEPIs) { 6635 UGEPI->setOperand(0, GEPI); 6636 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6637 Constant *NewUGEPIIdx = 6638 ConstantInt::get(GEPIIdx->getType(), 6639 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6640 UGEPI->setOperand(1, NewUGEPIIdx); 6641 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6642 // inbounds to avoid UB. 6643 if (!GEPI->isInBounds()) { 6644 UGEPI->setIsInBounds(false); 6645 } 6646 } 6647 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6648 // alive on IndirectBr edges). 6649 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6650 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6651 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6652 return true; 6653 } 6654 6655 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6656 // Bail out if we inserted the instruction to prevent optimizations from 6657 // stepping on each other's toes. 6658 if (InsertedInsts.count(I)) 6659 return false; 6660 6661 if (PHINode *P = dyn_cast<PHINode>(I)) { 6662 // It is possible for very late stage optimizations (such as SimplifyCFG) 6663 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6664 // trivial PHI, go ahead and zap it here. 6665 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6666 P->replaceAllUsesWith(V); 6667 P->eraseFromParent(); 6668 ++NumPHIsElim; 6669 return true; 6670 } 6671 return false; 6672 } 6673 6674 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6675 // If the source of the cast is a constant, then this should have 6676 // already been constant folded. The only reason NOT to constant fold 6677 // it is if something (e.g. LSR) was careful to place the constant 6678 // evaluation in a block other than then one that uses it (e.g. to hoist 6679 // the address of globals out of a loop). If this is the case, we don't 6680 // want to forward-subst the cast. 6681 if (isa<Constant>(CI->getOperand(0))) 6682 return false; 6683 6684 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6685 return true; 6686 6687 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6688 /// Sink a zext or sext into its user blocks if the target type doesn't 6689 /// fit in one register 6690 if (TLI && 6691 TLI->getTypeAction(CI->getContext(), 6692 TLI->getValueType(*DL, CI->getType())) == 6693 TargetLowering::TypeExpandInteger) { 6694 return SinkCast(CI); 6695 } else { 6696 bool MadeChange = optimizeExt(I); 6697 return MadeChange | optimizeExtUses(I); 6698 } 6699 } 6700 return false; 6701 } 6702 6703 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6704 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6705 return OptimizeCmpExpression(CI, TLI); 6706 6707 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6708 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6709 if (TLI) { 6710 bool Modified = optimizeLoadExt(LI); 6711 unsigned AS = LI->getPointerAddressSpace(); 6712 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6713 return Modified; 6714 } 6715 return false; 6716 } 6717 6718 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6719 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6720 return true; 6721 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6722 if (TLI) { 6723 unsigned AS = SI->getPointerAddressSpace(); 6724 return optimizeMemoryInst(I, SI->getOperand(1), 6725 SI->getOperand(0)->getType(), AS); 6726 } 6727 return false; 6728 } 6729 6730 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6731 unsigned AS = RMW->getPointerAddressSpace(); 6732 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6733 RMW->getType(), AS); 6734 } 6735 6736 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6737 unsigned AS = CmpX->getPointerAddressSpace(); 6738 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6739 CmpX->getCompareOperand()->getType(), AS); 6740 } 6741 6742 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6743 6744 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6745 EnableAndCmpSinking && TLI) 6746 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6747 6748 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6749 BinOp->getOpcode() == Instruction::LShr)) { 6750 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6751 if (TLI && CI && TLI->hasExtractBitsInsn()) 6752 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6753 6754 return false; 6755 } 6756 6757 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6758 if (GEPI->hasAllZeroIndices()) { 6759 /// The GEP operand must be a pointer, so must its result -> BitCast 6760 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6761 GEPI->getName(), GEPI); 6762 NC->setDebugLoc(GEPI->getDebugLoc()); 6763 GEPI->replaceAllUsesWith(NC); 6764 GEPI->eraseFromParent(); 6765 ++NumGEPsElim; 6766 optimizeInst(NC, ModifiedDT); 6767 return true; 6768 } 6769 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6770 return true; 6771 } 6772 return false; 6773 } 6774 6775 if (CallInst *CI = dyn_cast<CallInst>(I)) 6776 return optimizeCallInst(CI, ModifiedDT); 6777 6778 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6779 return optimizeSelectInst(SI); 6780 6781 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6782 return optimizeShuffleVectorInst(SVI); 6783 6784 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6785 return optimizeSwitchInst(Switch); 6786 6787 if (isa<ExtractElementInst>(I)) 6788 return optimizeExtractElementInst(I); 6789 6790 return false; 6791 } 6792 6793 /// Given an OR instruction, check to see if this is a bitreverse 6794 /// idiom. If so, insert the new intrinsic and return true. 6795 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6796 const TargetLowering &TLI) { 6797 if (!I.getType()->isIntegerTy() || 6798 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6799 TLI.getValueType(DL, I.getType(), true))) 6800 return false; 6801 6802 SmallVector<Instruction*, 4> Insts; 6803 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6804 return false; 6805 Instruction *LastInst = Insts.back(); 6806 I.replaceAllUsesWith(LastInst); 6807 RecursivelyDeleteTriviallyDeadInstructions(&I); 6808 return true; 6809 } 6810 6811 // In this pass we look for GEP and cast instructions that are used 6812 // across basic blocks and rewrite them to improve basic-block-at-a-time 6813 // selection. 6814 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6815 SunkAddrs.clear(); 6816 bool MadeChange = false; 6817 6818 CurInstIterator = BB.begin(); 6819 while (CurInstIterator != BB.end()) { 6820 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6821 if (ModifiedDT) 6822 return true; 6823 } 6824 6825 bool MadeBitReverse = true; 6826 while (TLI && MadeBitReverse) { 6827 MadeBitReverse = false; 6828 for (auto &I : reverse(BB)) { 6829 if (makeBitReverse(I, *DL, *TLI)) { 6830 MadeBitReverse = MadeChange = true; 6831 ModifiedDT = true; 6832 break; 6833 } 6834 } 6835 } 6836 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6837 6838 return MadeChange; 6839 } 6840 6841 // llvm.dbg.value is far away from the value then iSel may not be able 6842 // handle it properly. iSel will drop llvm.dbg.value if it can not 6843 // find a node corresponding to the value. 6844 bool CodeGenPrepare::placeDbgValues(Function &F) { 6845 bool MadeChange = false; 6846 for (BasicBlock &BB : F) { 6847 Instruction *PrevNonDbgInst = nullptr; 6848 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6849 Instruction *Insn = &*BI++; 6850 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6851 // Leave dbg.values that refer to an alloca alone. These 6852 // intrinsics describe the address of a variable (= the alloca) 6853 // being taken. They should not be moved next to the alloca 6854 // (and to the beginning of the scope), but rather stay close to 6855 // where said address is used. 6856 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6857 PrevNonDbgInst = Insn; 6858 continue; 6859 } 6860 6861 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6862 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6863 // If VI is a phi in a block with an EHPad terminator, we can't insert 6864 // after it. 6865 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6866 continue; 6867 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 6868 << *DVI << ' ' << *VI); 6869 DVI->removeFromParent(); 6870 if (isa<PHINode>(VI)) 6871 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6872 else 6873 DVI->insertAfter(VI); 6874 MadeChange = true; 6875 ++NumDbgValueMoved; 6876 } 6877 } 6878 } 6879 return MadeChange; 6880 } 6881 6882 /// Scale down both weights to fit into uint32_t. 6883 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6884 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6885 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6886 NewTrue = NewTrue / Scale; 6887 NewFalse = NewFalse / Scale; 6888 } 6889 6890 /// Some targets prefer to split a conditional branch like: 6891 /// \code 6892 /// %0 = icmp ne i32 %a, 0 6893 /// %1 = icmp ne i32 %b, 0 6894 /// %or.cond = or i1 %0, %1 6895 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6896 /// \endcode 6897 /// into multiple branch instructions like: 6898 /// \code 6899 /// bb1: 6900 /// %0 = icmp ne i32 %a, 0 6901 /// br i1 %0, label %TrueBB, label %bb2 6902 /// bb2: 6903 /// %1 = icmp ne i32 %b, 0 6904 /// br i1 %1, label %TrueBB, label %FalseBB 6905 /// \endcode 6906 /// This usually allows instruction selection to do even further optimizations 6907 /// and combine the compare with the branch instruction. Currently this is 6908 /// applied for targets which have "cheap" jump instructions. 6909 /// 6910 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6911 /// 6912 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6913 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6914 return false; 6915 6916 bool MadeChange = false; 6917 for (auto &BB : F) { 6918 // Does this BB end with the following? 6919 // %cond1 = icmp|fcmp|binary instruction ... 6920 // %cond2 = icmp|fcmp|binary instruction ... 6921 // %cond.or = or|and i1 %cond1, cond2 6922 // br i1 %cond.or label %dest1, label %dest2" 6923 BinaryOperator *LogicOp; 6924 BasicBlock *TBB, *FBB; 6925 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6926 continue; 6927 6928 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6929 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6930 continue; 6931 6932 unsigned Opc; 6933 Value *Cond1, *Cond2; 6934 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6935 m_OneUse(m_Value(Cond2))))) 6936 Opc = Instruction::And; 6937 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6938 m_OneUse(m_Value(Cond2))))) 6939 Opc = Instruction::Or; 6940 else 6941 continue; 6942 6943 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6944 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6945 continue; 6946 6947 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6948 6949 // Create a new BB. 6950 auto TmpBB = 6951 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6952 BB.getParent(), BB.getNextNode()); 6953 6954 // Update original basic block by using the first condition directly by the 6955 // branch instruction and removing the no longer needed and/or instruction. 6956 Br1->setCondition(Cond1); 6957 LogicOp->eraseFromParent(); 6958 6959 // Depending on the condition we have to either replace the true or the 6960 // false successor of the original branch instruction. 6961 if (Opc == Instruction::And) 6962 Br1->setSuccessor(0, TmpBB); 6963 else 6964 Br1->setSuccessor(1, TmpBB); 6965 6966 // Fill in the new basic block. 6967 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6968 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6969 I->removeFromParent(); 6970 I->insertBefore(Br2); 6971 } 6972 6973 // Update PHI nodes in both successors. The original BB needs to be 6974 // replaced in one successor's PHI nodes, because the branch comes now from 6975 // the newly generated BB (NewBB). In the other successor we need to add one 6976 // incoming edge to the PHI nodes, because both branch instructions target 6977 // now the same successor. Depending on the original branch condition 6978 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6979 // we perform the correct update for the PHI nodes. 6980 // This doesn't change the successor order of the just created branch 6981 // instruction (or any other instruction). 6982 if (Opc == Instruction::Or) 6983 std::swap(TBB, FBB); 6984 6985 // Replace the old BB with the new BB. 6986 for (PHINode &PN : TBB->phis()) { 6987 int i; 6988 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 6989 PN.setIncomingBlock(i, TmpBB); 6990 } 6991 6992 // Add another incoming edge form the new BB. 6993 for (PHINode &PN : FBB->phis()) { 6994 auto *Val = PN.getIncomingValueForBlock(&BB); 6995 PN.addIncoming(Val, TmpBB); 6996 } 6997 6998 // Update the branch weights (from SelectionDAGBuilder:: 6999 // FindMergedConditions). 7000 if (Opc == Instruction::Or) { 7001 // Codegen X | Y as: 7002 // BB1: 7003 // jmp_if_X TBB 7004 // jmp TmpBB 7005 // TmpBB: 7006 // jmp_if_Y TBB 7007 // jmp FBB 7008 // 7009 7010 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7011 // The requirement is that 7012 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7013 // = TrueProb for original BB. 7014 // Assuming the original weights are A and B, one choice is to set BB1's 7015 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7016 // assumes that 7017 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7018 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7019 // TmpBB, but the math is more complicated. 7020 uint64_t TrueWeight, FalseWeight; 7021 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7022 uint64_t NewTrueWeight = TrueWeight; 7023 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7024 scaleWeights(NewTrueWeight, NewFalseWeight); 7025 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7026 .createBranchWeights(TrueWeight, FalseWeight)); 7027 7028 NewTrueWeight = TrueWeight; 7029 NewFalseWeight = 2 * FalseWeight; 7030 scaleWeights(NewTrueWeight, NewFalseWeight); 7031 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7032 .createBranchWeights(TrueWeight, FalseWeight)); 7033 } 7034 } else { 7035 // Codegen X & Y as: 7036 // BB1: 7037 // jmp_if_X TmpBB 7038 // jmp FBB 7039 // TmpBB: 7040 // jmp_if_Y TBB 7041 // jmp FBB 7042 // 7043 // This requires creation of TmpBB after CurBB. 7044 7045 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7046 // The requirement is that 7047 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7048 // = FalseProb for original BB. 7049 // Assuming the original weights are A and B, one choice is to set BB1's 7050 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7051 // assumes that 7052 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7053 uint64_t TrueWeight, FalseWeight; 7054 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7055 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7056 uint64_t NewFalseWeight = FalseWeight; 7057 scaleWeights(NewTrueWeight, NewFalseWeight); 7058 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7059 .createBranchWeights(TrueWeight, FalseWeight)); 7060 7061 NewTrueWeight = 2 * TrueWeight; 7062 NewFalseWeight = FalseWeight; 7063 scaleWeights(NewTrueWeight, NewFalseWeight); 7064 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7065 .createBranchWeights(TrueWeight, FalseWeight)); 7066 } 7067 } 7068 7069 // Note: No point in getting fancy here, since the DT info is never 7070 // available to CodeGenPrepare. 7071 ModifiedDT = true; 7072 7073 MadeChange = true; 7074 7075 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7076 TmpBB->dump()); 7077 } 7078 return MadeChange; 7079 } 7080