1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/CodeGen/Analysis.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/CodeGen/TargetPassConfig.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/MDBuilder.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/Statepoint.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/IR/ValueMap.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetLowering.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 57 #include "llvm/Transforms/Utils/BuildLibCalls.h" 58 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 59 #include "llvm/Transforms/Utils/Cloning.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 62 #include "llvm/Transforms/Utils/ValueMapper.h" 63 64 using namespace llvm; 65 using namespace llvm::PatternMatch; 66 67 #define DEBUG_TYPE "codegenprepare" 68 69 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 70 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 71 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 72 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 73 "sunken Cmps"); 74 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 75 "of sunken Casts"); 76 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 77 "computations were sunk"); 78 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 79 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 80 STATISTIC(NumAndsAdded, 81 "Number of and mask instructions added to form ext loads"); 82 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 83 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 84 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 85 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 86 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 87 88 STATISTIC(NumMemCmpCalls, "Number of memcmp calls"); 89 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size"); 90 STATISTIC(NumMemCmpGreaterThanMax, 91 "Number of memcmp calls with size greater than max size"); 92 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls"); 93 94 static cl::opt<bool> DisableBranchOpts( 95 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 96 cl::desc("Disable branch optimizations in CodeGenPrepare")); 97 98 static cl::opt<bool> 99 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 100 cl::desc("Disable GC optimizations in CodeGenPrepare")); 101 102 static cl::opt<bool> DisableSelectToBranch( 103 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 104 cl::desc("Disable select to branch conversion.")); 105 106 static cl::opt<bool> AddrSinkUsingGEPs( 107 "addr-sink-using-gep", cl::Hidden, cl::init(true), 108 cl::desc("Address sinking in CGP using GEPs.")); 109 110 static cl::opt<bool> EnableAndCmpSinking( 111 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 112 cl::desc("Enable sinkinig and/cmp into branches.")); 113 114 static cl::opt<bool> DisableStoreExtract( 115 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 116 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 117 118 static cl::opt<bool> StressStoreExtract( 119 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 120 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 121 122 static cl::opt<bool> DisableExtLdPromotion( 123 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 124 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 125 "CodeGenPrepare")); 126 127 static cl::opt<bool> StressExtLdPromotion( 128 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 129 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 130 "optimization in CodeGenPrepare")); 131 132 static cl::opt<bool> DisablePreheaderProtect( 133 "disable-preheader-prot", cl::Hidden, cl::init(false), 134 cl::desc("Disable protection against removing loop preheaders")); 135 136 static cl::opt<bool> ProfileGuidedSectionPrefix( 137 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 138 cl::desc("Use profile info to add section prefix for hot/cold functions")); 139 140 static cl::opt<unsigned> FreqRatioToSkipMerge( 141 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 142 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 143 "(frequency of destination block) is greater than this ratio")); 144 145 static cl::opt<bool> ForceSplitStore( 146 "force-split-store", cl::Hidden, cl::init(false), 147 cl::desc("Force store splitting no matter what the target query says.")); 148 149 static cl::opt<bool> 150 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 151 cl::desc("Enable merging of redundant sexts when one is dominating" 152 " the other."), cl::init(true)); 153 154 static cl::opt<unsigned> MemCmpNumLoadsPerBlock( 155 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1), 156 cl::desc("The number of loads per basic block for inline expansion of " 157 "memcmp that is only being compared against zero.")); 158 159 namespace { 160 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 161 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 162 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 163 typedef SmallVector<Instruction *, 16> SExts; 164 typedef DenseMap<Value *, SExts> ValueToSExts; 165 class TypePromotionTransaction; 166 167 class CodeGenPrepare : public FunctionPass { 168 const TargetMachine *TM; 169 const TargetSubtargetInfo *SubtargetInfo; 170 const TargetLowering *TLI; 171 const TargetRegisterInfo *TRI; 172 const TargetTransformInfo *TTI; 173 const TargetLibraryInfo *TLInfo; 174 const LoopInfo *LI; 175 std::unique_ptr<BlockFrequencyInfo> BFI; 176 std::unique_ptr<BranchProbabilityInfo> BPI; 177 178 /// As we scan instructions optimizing them, this is the next instruction 179 /// to optimize. Transforms that can invalidate this should update it. 180 BasicBlock::iterator CurInstIterator; 181 182 /// Keeps track of non-local addresses that have been sunk into a block. 183 /// This allows us to avoid inserting duplicate code for blocks with 184 /// multiple load/stores of the same address. 185 ValueMap<Value*, Value*> SunkAddrs; 186 187 /// Keeps track of all instructions inserted for the current function. 188 SetOfInstrs InsertedInsts; 189 /// Keeps track of the type of the related instruction before their 190 /// promotion for the current function. 191 InstrToOrigTy PromotedInsts; 192 193 /// Keep track of instructions removed during promotion. 194 SetOfInstrs RemovedInsts; 195 196 /// Keep track of sext chains based on their initial value. 197 DenseMap<Value *, Instruction *> SeenChainsForSExt; 198 199 /// Keep track of SExt promoted. 200 ValueToSExts ValToSExtendedUses; 201 202 /// True if CFG is modified in any way. 203 bool ModifiedDT; 204 205 /// True if optimizing for size. 206 bool OptSize; 207 208 /// DataLayout for the Function being processed. 209 const DataLayout *DL; 210 211 public: 212 static char ID; // Pass identification, replacement for typeid 213 CodeGenPrepare() 214 : FunctionPass(ID), TM(nullptr), TLI(nullptr), TTI(nullptr), 215 DL(nullptr) { 216 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 217 } 218 bool runOnFunction(Function &F) override; 219 220 StringRef getPassName() const override { return "CodeGen Prepare"; } 221 222 void getAnalysisUsage(AnalysisUsage &AU) const override { 223 // FIXME: When we can selectively preserve passes, preserve the domtree. 224 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 225 AU.addRequired<TargetLibraryInfoWrapperPass>(); 226 AU.addRequired<TargetTransformInfoWrapperPass>(); 227 AU.addRequired<LoopInfoWrapperPass>(); 228 } 229 230 private: 231 bool eliminateFallThrough(Function &F); 232 bool eliminateMostlyEmptyBlocks(Function &F); 233 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 234 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 235 void eliminateMostlyEmptyBlock(BasicBlock *BB); 236 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 237 bool isPreheader); 238 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 239 bool optimizeInst(Instruction *I, bool &ModifiedDT); 240 bool optimizeMemoryInst(Instruction *I, Value *Addr, 241 Type *AccessTy, unsigned AS); 242 bool optimizeInlineAsmInst(CallInst *CS); 243 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 244 bool optimizeExt(Instruction *&I); 245 bool optimizeExtUses(Instruction *I); 246 bool optimizeLoadExt(LoadInst *I); 247 bool optimizeSelectInst(SelectInst *SI); 248 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 249 bool optimizeSwitchInst(SwitchInst *CI); 250 bool optimizeExtractElementInst(Instruction *Inst); 251 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 252 bool placeDbgValues(Function &F); 253 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 254 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 255 bool tryToPromoteExts(TypePromotionTransaction &TPT, 256 const SmallVectorImpl<Instruction *> &Exts, 257 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 258 unsigned CreatedInstsCost = 0); 259 bool mergeSExts(Function &F); 260 bool performAddressTypePromotion( 261 Instruction *&Inst, 262 bool AllowPromotionWithoutCommonHeader, 263 bool HasPromoted, TypePromotionTransaction &TPT, 264 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 265 bool splitBranchCondition(Function &F); 266 bool simplifyOffsetableRelocate(Instruction &I); 267 bool splitIndirectCriticalEdges(Function &F); 268 }; 269 } 270 271 char CodeGenPrepare::ID = 0; 272 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 273 "Optimize for code generation", false, false) 274 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 275 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 276 "Optimize for code generation", false, false) 277 278 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 279 280 bool CodeGenPrepare::runOnFunction(Function &F) { 281 if (skipFunction(F)) 282 return false; 283 284 DL = &F.getParent()->getDataLayout(); 285 286 bool EverMadeChange = false; 287 // Clear per function information. 288 InsertedInsts.clear(); 289 PromotedInsts.clear(); 290 BFI.reset(); 291 BPI.reset(); 292 293 ModifiedDT = false; 294 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 295 TM = &TPC->getTM<TargetMachine>(); 296 SubtargetInfo = TM->getSubtargetImpl(F); 297 TLI = SubtargetInfo->getTargetLowering(); 298 TRI = SubtargetInfo->getRegisterInfo(); 299 } 300 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 301 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 302 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 303 OptSize = F.optForSize(); 304 305 if (ProfileGuidedSectionPrefix) { 306 ProfileSummaryInfo *PSI = 307 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 308 if (PSI->isFunctionHotInCallGraph(&F)) 309 F.setSectionPrefix(".hot"); 310 else if (PSI->isFunctionColdInCallGraph(&F)) 311 F.setSectionPrefix(".unlikely"); 312 } 313 314 /// This optimization identifies DIV instructions that can be 315 /// profitably bypassed and carried out with a shorter, faster divide. 316 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 317 const DenseMap<unsigned int, unsigned int> &BypassWidths = 318 TLI->getBypassSlowDivWidths(); 319 BasicBlock* BB = &*F.begin(); 320 while (BB != nullptr) { 321 // bypassSlowDivision may create new BBs, but we don't want to reapply the 322 // optimization to those blocks. 323 BasicBlock* Next = BB->getNextNode(); 324 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 325 BB = Next; 326 } 327 } 328 329 // Eliminate blocks that contain only PHI nodes and an 330 // unconditional branch. 331 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 332 333 // llvm.dbg.value is far away from the value then iSel may not be able 334 // handle it properly. iSel will drop llvm.dbg.value if it can not 335 // find a node corresponding to the value. 336 EverMadeChange |= placeDbgValues(F); 337 338 if (!DisableBranchOpts) 339 EverMadeChange |= splitBranchCondition(F); 340 341 // Split some critical edges where one of the sources is an indirect branch, 342 // to help generate sane code for PHIs involving such edges. 343 EverMadeChange |= splitIndirectCriticalEdges(F); 344 345 bool MadeChange = true; 346 while (MadeChange) { 347 MadeChange = false; 348 SeenChainsForSExt.clear(); 349 ValToSExtendedUses.clear(); 350 RemovedInsts.clear(); 351 for (Function::iterator I = F.begin(); I != F.end(); ) { 352 BasicBlock *BB = &*I++; 353 bool ModifiedDTOnIteration = false; 354 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 355 356 // Restart BB iteration if the dominator tree of the Function was changed 357 if (ModifiedDTOnIteration) 358 break; 359 } 360 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 361 MadeChange |= mergeSExts(F); 362 363 // Really free removed instructions during promotion. 364 for (Instruction *I : RemovedInsts) 365 I->deleteValue(); 366 367 EverMadeChange |= MadeChange; 368 } 369 370 SunkAddrs.clear(); 371 372 if (!DisableBranchOpts) { 373 MadeChange = false; 374 SmallPtrSet<BasicBlock*, 8> WorkList; 375 for (BasicBlock &BB : F) { 376 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 377 MadeChange |= ConstantFoldTerminator(&BB, true); 378 if (!MadeChange) continue; 379 380 for (SmallVectorImpl<BasicBlock*>::iterator 381 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 382 if (pred_begin(*II) == pred_end(*II)) 383 WorkList.insert(*II); 384 } 385 386 // Delete the dead blocks and any of their dead successors. 387 MadeChange |= !WorkList.empty(); 388 while (!WorkList.empty()) { 389 BasicBlock *BB = *WorkList.begin(); 390 WorkList.erase(BB); 391 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 392 393 DeleteDeadBlock(BB); 394 395 for (SmallVectorImpl<BasicBlock*>::iterator 396 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 397 if (pred_begin(*II) == pred_end(*II)) 398 WorkList.insert(*II); 399 } 400 401 // Merge pairs of basic blocks with unconditional branches, connected by 402 // a single edge. 403 if (EverMadeChange || MadeChange) 404 MadeChange |= eliminateFallThrough(F); 405 406 EverMadeChange |= MadeChange; 407 } 408 409 if (!DisableGCOpts) { 410 SmallVector<Instruction *, 2> Statepoints; 411 for (BasicBlock &BB : F) 412 for (Instruction &I : BB) 413 if (isStatepoint(I)) 414 Statepoints.push_back(&I); 415 for (auto &I : Statepoints) 416 EverMadeChange |= simplifyOffsetableRelocate(*I); 417 } 418 419 return EverMadeChange; 420 } 421 422 /// Merge basic blocks which are connected by a single edge, where one of the 423 /// basic blocks has a single successor pointing to the other basic block, 424 /// which has a single predecessor. 425 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 426 bool Changed = false; 427 // Scan all of the blocks in the function, except for the entry block. 428 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 429 BasicBlock *BB = &*I++; 430 // If the destination block has a single pred, then this is a trivial 431 // edge, just collapse it. 432 BasicBlock *SinglePred = BB->getSinglePredecessor(); 433 434 // Don't merge if BB's address is taken. 435 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 436 437 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 438 if (Term && !Term->isConditional()) { 439 Changed = true; 440 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 441 // Remember if SinglePred was the entry block of the function. 442 // If so, we will need to move BB back to the entry position. 443 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 444 MergeBasicBlockIntoOnlyPred(BB, nullptr); 445 446 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 447 BB->moveBefore(&BB->getParent()->getEntryBlock()); 448 449 // We have erased a block. Update the iterator. 450 I = BB->getIterator(); 451 } 452 } 453 return Changed; 454 } 455 456 /// Find a destination block from BB if BB is mergeable empty block. 457 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 458 // If this block doesn't end with an uncond branch, ignore it. 459 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 460 if (!BI || !BI->isUnconditional()) 461 return nullptr; 462 463 // If the instruction before the branch (skipping debug info) isn't a phi 464 // node, then other stuff is happening here. 465 BasicBlock::iterator BBI = BI->getIterator(); 466 if (BBI != BB->begin()) { 467 --BBI; 468 while (isa<DbgInfoIntrinsic>(BBI)) { 469 if (BBI == BB->begin()) 470 break; 471 --BBI; 472 } 473 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 474 return nullptr; 475 } 476 477 // Do not break infinite loops. 478 BasicBlock *DestBB = BI->getSuccessor(0); 479 if (DestBB == BB) 480 return nullptr; 481 482 if (!canMergeBlocks(BB, DestBB)) 483 DestBB = nullptr; 484 485 return DestBB; 486 } 487 488 // Return the unique indirectbr predecessor of a block. This may return null 489 // even if such a predecessor exists, if it's not useful for splitting. 490 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 491 // predecessors of BB. 492 static BasicBlock * 493 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 494 // If the block doesn't have any PHIs, we don't care about it, since there's 495 // no point in splitting it. 496 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 497 if (!PN) 498 return nullptr; 499 500 // Verify we have exactly one IBR predecessor. 501 // Conservatively bail out if one of the other predecessors is not a "regular" 502 // terminator (that is, not a switch or a br). 503 BasicBlock *IBB = nullptr; 504 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 505 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 506 TerminatorInst *PredTerm = PredBB->getTerminator(); 507 switch (PredTerm->getOpcode()) { 508 case Instruction::IndirectBr: 509 if (IBB) 510 return nullptr; 511 IBB = PredBB; 512 break; 513 case Instruction::Br: 514 case Instruction::Switch: 515 OtherPreds.push_back(PredBB); 516 continue; 517 default: 518 return nullptr; 519 } 520 } 521 522 return IBB; 523 } 524 525 // Split critical edges where the source of the edge is an indirectbr 526 // instruction. This isn't always possible, but we can handle some easy cases. 527 // This is useful because MI is unable to split such critical edges, 528 // which means it will not be able to sink instructions along those edges. 529 // This is especially painful for indirect branches with many successors, where 530 // we end up having to prepare all outgoing values in the origin block. 531 // 532 // Our normal algorithm for splitting critical edges requires us to update 533 // the outgoing edges of the edge origin block, but for an indirectbr this 534 // is hard, since it would require finding and updating the block addresses 535 // the indirect branch uses. But if a block only has a single indirectbr 536 // predecessor, with the others being regular branches, we can do it in a 537 // different way. 538 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr. 539 // We can split D into D0 and D1, where D0 contains only the PHIs from D, 540 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and 541 // create the following structure: 542 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1 543 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) { 544 // Check whether the function has any indirectbrs, and collect which blocks 545 // they may jump to. Since most functions don't have indirect branches, 546 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 547 SmallSetVector<BasicBlock *, 16> Targets; 548 for (auto &BB : F) { 549 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 550 if (!IBI) 551 continue; 552 553 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 554 Targets.insert(IBI->getSuccessor(Succ)); 555 } 556 557 if (Targets.empty()) 558 return false; 559 560 bool Changed = false; 561 for (BasicBlock *Target : Targets) { 562 SmallVector<BasicBlock *, 16> OtherPreds; 563 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 564 // If we did not found an indirectbr, or the indirectbr is the only 565 // incoming edge, this isn't the kind of edge we're looking for. 566 if (!IBRPred || OtherPreds.empty()) 567 continue; 568 569 // Don't even think about ehpads/landingpads. 570 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 571 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 572 continue; 573 574 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 575 // It's possible Target was its own successor through an indirectbr. 576 // In this case, the indirectbr now comes from BodyBlock. 577 if (IBRPred == Target) 578 IBRPred = BodyBlock; 579 580 // At this point Target only has PHIs, and BodyBlock has the rest of the 581 // block's body. Create a copy of Target that will be used by the "direct" 582 // preds. 583 ValueToValueMapTy VMap; 584 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 585 586 for (BasicBlock *Pred : OtherPreds) { 587 // If the target is a loop to itself, then the terminator of the split 588 // block needs to be updated. 589 if (Pred == Target) 590 BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 591 else 592 Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 593 } 594 595 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 596 // they are clones, so the number of PHIs are the same. 597 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 598 // (b) Leave that as the only edge in the "Indirect" PHI. 599 // (c) Merge the two in the body block. 600 BasicBlock::iterator Indirect = Target->begin(), 601 End = Target->getFirstNonPHI()->getIterator(); 602 BasicBlock::iterator Direct = DirectSucc->begin(); 603 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 604 605 assert(&*End == Target->getTerminator() && 606 "Block was expected to only contain PHIs"); 607 608 while (Indirect != End) { 609 PHINode *DirPHI = cast<PHINode>(Direct); 610 PHINode *IndPHI = cast<PHINode>(Indirect); 611 612 // Now, clean up - the direct block shouldn't get the indirect value, 613 // and vice versa. 614 DirPHI->removeIncomingValue(IBRPred); 615 Direct++; 616 617 // Advance the pointer here, to avoid invalidation issues when the old 618 // PHI is erased. 619 Indirect++; 620 621 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 622 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 623 IBRPred); 624 625 // Create a PHI in the body block, to merge the direct and indirect 626 // predecessors. 627 PHINode *MergePHI = 628 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 629 MergePHI->addIncoming(NewIndPHI, Target); 630 MergePHI->addIncoming(DirPHI, DirectSucc); 631 632 IndPHI->replaceAllUsesWith(MergePHI); 633 IndPHI->eraseFromParent(); 634 } 635 636 Changed = true; 637 } 638 639 return Changed; 640 } 641 642 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 643 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 644 /// edges in ways that are non-optimal for isel. Start by eliminating these 645 /// blocks so we can split them the way we want them. 646 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 647 SmallPtrSet<BasicBlock *, 16> Preheaders; 648 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 649 while (!LoopList.empty()) { 650 Loop *L = LoopList.pop_back_val(); 651 LoopList.insert(LoopList.end(), L->begin(), L->end()); 652 if (BasicBlock *Preheader = L->getLoopPreheader()) 653 Preheaders.insert(Preheader); 654 } 655 656 bool MadeChange = false; 657 // Note that this intentionally skips the entry block. 658 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 659 BasicBlock *BB = &*I++; 660 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 661 if (!DestBB || 662 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 663 continue; 664 665 eliminateMostlyEmptyBlock(BB); 666 MadeChange = true; 667 } 668 return MadeChange; 669 } 670 671 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 672 BasicBlock *DestBB, 673 bool isPreheader) { 674 // Do not delete loop preheaders if doing so would create a critical edge. 675 // Loop preheaders can be good locations to spill registers. If the 676 // preheader is deleted and we create a critical edge, registers may be 677 // spilled in the loop body instead. 678 if (!DisablePreheaderProtect && isPreheader && 679 !(BB->getSinglePredecessor() && 680 BB->getSinglePredecessor()->getSingleSuccessor())) 681 return false; 682 683 // Try to skip merging if the unique predecessor of BB is terminated by a 684 // switch or indirect branch instruction, and BB is used as an incoming block 685 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 686 // add COPY instructions in the predecessor of BB instead of BB (if it is not 687 // merged). Note that the critical edge created by merging such blocks wont be 688 // split in MachineSink because the jump table is not analyzable. By keeping 689 // such empty block (BB), ISel will place COPY instructions in BB, not in the 690 // predecessor of BB. 691 BasicBlock *Pred = BB->getUniquePredecessor(); 692 if (!Pred || 693 !(isa<SwitchInst>(Pred->getTerminator()) || 694 isa<IndirectBrInst>(Pred->getTerminator()))) 695 return true; 696 697 if (BB->getTerminator() != BB->getFirstNonPHI()) 698 return true; 699 700 // We use a simple cost heuristic which determine skipping merging is 701 // profitable if the cost of skipping merging is less than the cost of 702 // merging : Cost(skipping merging) < Cost(merging BB), where the 703 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 704 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 705 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 706 // Freq(Pred) / Freq(BB) > 2. 707 // Note that if there are multiple empty blocks sharing the same incoming 708 // value for the PHIs in the DestBB, we consider them together. In such 709 // case, Cost(merging BB) will be the sum of their frequencies. 710 711 if (!isa<PHINode>(DestBB->begin())) 712 return true; 713 714 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 715 716 // Find all other incoming blocks from which incoming values of all PHIs in 717 // DestBB are the same as the ones from BB. 718 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 719 ++PI) { 720 BasicBlock *DestBBPred = *PI; 721 if (DestBBPred == BB) 722 continue; 723 724 bool HasAllSameValue = true; 725 BasicBlock::const_iterator DestBBI = DestBB->begin(); 726 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 727 if (DestPN->getIncomingValueForBlock(BB) != 728 DestPN->getIncomingValueForBlock(DestBBPred)) { 729 HasAllSameValue = false; 730 break; 731 } 732 } 733 if (HasAllSameValue) 734 SameIncomingValueBBs.insert(DestBBPred); 735 } 736 737 // See if all BB's incoming values are same as the value from Pred. In this 738 // case, no reason to skip merging because COPYs are expected to be place in 739 // Pred already. 740 if (SameIncomingValueBBs.count(Pred)) 741 return true; 742 743 if (!BFI) { 744 Function &F = *BB->getParent(); 745 LoopInfo LI{DominatorTree(F)}; 746 BPI.reset(new BranchProbabilityInfo(F, LI)); 747 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 748 } 749 750 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 751 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 752 753 for (auto SameValueBB : SameIncomingValueBBs) 754 if (SameValueBB->getUniquePredecessor() == Pred && 755 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 756 BBFreq += BFI->getBlockFreq(SameValueBB); 757 758 return PredFreq.getFrequency() <= 759 BBFreq.getFrequency() * FreqRatioToSkipMerge; 760 } 761 762 /// Return true if we can merge BB into DestBB if there is a single 763 /// unconditional branch between them, and BB contains no other non-phi 764 /// instructions. 765 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 766 const BasicBlock *DestBB) const { 767 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 768 // the successor. If there are more complex condition (e.g. preheaders), 769 // don't mess around with them. 770 BasicBlock::const_iterator BBI = BB->begin(); 771 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 772 for (const User *U : PN->users()) { 773 const Instruction *UI = cast<Instruction>(U); 774 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 775 return false; 776 // If User is inside DestBB block and it is a PHINode then check 777 // incoming value. If incoming value is not from BB then this is 778 // a complex condition (e.g. preheaders) we want to avoid here. 779 if (UI->getParent() == DestBB) { 780 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 781 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 782 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 783 if (Insn && Insn->getParent() == BB && 784 Insn->getParent() != UPN->getIncomingBlock(I)) 785 return false; 786 } 787 } 788 } 789 } 790 791 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 792 // and DestBB may have conflicting incoming values for the block. If so, we 793 // can't merge the block. 794 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 795 if (!DestBBPN) return true; // no conflict. 796 797 // Collect the preds of BB. 798 SmallPtrSet<const BasicBlock*, 16> BBPreds; 799 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 800 // It is faster to get preds from a PHI than with pred_iterator. 801 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 802 BBPreds.insert(BBPN->getIncomingBlock(i)); 803 } else { 804 BBPreds.insert(pred_begin(BB), pred_end(BB)); 805 } 806 807 // Walk the preds of DestBB. 808 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 809 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 810 if (BBPreds.count(Pred)) { // Common predecessor? 811 BBI = DestBB->begin(); 812 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 813 const Value *V1 = PN->getIncomingValueForBlock(Pred); 814 const Value *V2 = PN->getIncomingValueForBlock(BB); 815 816 // If V2 is a phi node in BB, look up what the mapped value will be. 817 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 818 if (V2PN->getParent() == BB) 819 V2 = V2PN->getIncomingValueForBlock(Pred); 820 821 // If there is a conflict, bail out. 822 if (V1 != V2) return false; 823 } 824 } 825 } 826 827 return true; 828 } 829 830 831 /// Eliminate a basic block that has only phi's and an unconditional branch in 832 /// it. 833 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 834 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 835 BasicBlock *DestBB = BI->getSuccessor(0); 836 837 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 838 839 // If the destination block has a single pred, then this is a trivial edge, 840 // just collapse it. 841 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 842 if (SinglePred != DestBB) { 843 // Remember if SinglePred was the entry block of the function. If so, we 844 // will need to move BB back to the entry position. 845 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 846 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 847 848 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 849 BB->moveBefore(&BB->getParent()->getEntryBlock()); 850 851 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 852 return; 853 } 854 } 855 856 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 857 // to handle the new incoming edges it is about to have. 858 PHINode *PN; 859 for (BasicBlock::iterator BBI = DestBB->begin(); 860 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 861 // Remove the incoming value for BB, and remember it. 862 Value *InVal = PN->removeIncomingValue(BB, false); 863 864 // Two options: either the InVal is a phi node defined in BB or it is some 865 // value that dominates BB. 866 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 867 if (InValPhi && InValPhi->getParent() == BB) { 868 // Add all of the input values of the input PHI as inputs of this phi. 869 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 870 PN->addIncoming(InValPhi->getIncomingValue(i), 871 InValPhi->getIncomingBlock(i)); 872 } else { 873 // Otherwise, add one instance of the dominating value for each edge that 874 // we will be adding. 875 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 876 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 877 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 878 } else { 879 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 880 PN->addIncoming(InVal, *PI); 881 } 882 } 883 } 884 885 // The PHIs are now updated, change everything that refers to BB to use 886 // DestBB and remove BB. 887 BB->replaceAllUsesWith(DestBB); 888 BB->eraseFromParent(); 889 ++NumBlocksElim; 890 891 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 892 } 893 894 // Computes a map of base pointer relocation instructions to corresponding 895 // derived pointer relocation instructions given a vector of all relocate calls 896 static void computeBaseDerivedRelocateMap( 897 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 898 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 899 &RelocateInstMap) { 900 // Collect information in two maps: one primarily for locating the base object 901 // while filling the second map; the second map is the final structure holding 902 // a mapping between Base and corresponding Derived relocate calls 903 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 904 for (auto *ThisRelocate : AllRelocateCalls) { 905 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 906 ThisRelocate->getDerivedPtrIndex()); 907 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 908 } 909 for (auto &Item : RelocateIdxMap) { 910 std::pair<unsigned, unsigned> Key = Item.first; 911 if (Key.first == Key.second) 912 // Base relocation: nothing to insert 913 continue; 914 915 GCRelocateInst *I = Item.second; 916 auto BaseKey = std::make_pair(Key.first, Key.first); 917 918 // We're iterating over RelocateIdxMap so we cannot modify it. 919 auto MaybeBase = RelocateIdxMap.find(BaseKey); 920 if (MaybeBase == RelocateIdxMap.end()) 921 // TODO: We might want to insert a new base object relocate and gep off 922 // that, if there are enough derived object relocates. 923 continue; 924 925 RelocateInstMap[MaybeBase->second].push_back(I); 926 } 927 } 928 929 // Accepts a GEP and extracts the operands into a vector provided they're all 930 // small integer constants 931 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 932 SmallVectorImpl<Value *> &OffsetV) { 933 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 934 // Only accept small constant integer operands 935 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 936 if (!Op || Op->getZExtValue() > 20) 937 return false; 938 } 939 940 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 941 OffsetV.push_back(GEP->getOperand(i)); 942 return true; 943 } 944 945 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 946 // replace, computes a replacement, and affects it. 947 static bool 948 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 949 const SmallVectorImpl<GCRelocateInst *> &Targets) { 950 bool MadeChange = false; 951 for (GCRelocateInst *ToReplace : Targets) { 952 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 953 "Not relocating a derived object of the original base object"); 954 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 955 // A duplicate relocate call. TODO: coalesce duplicates. 956 continue; 957 } 958 959 if (RelocatedBase->getParent() != ToReplace->getParent()) { 960 // Base and derived relocates are in different basic blocks. 961 // In this case transform is only valid when base dominates derived 962 // relocate. However it would be too expensive to check dominance 963 // for each such relocate, so we skip the whole transformation. 964 continue; 965 } 966 967 Value *Base = ToReplace->getBasePtr(); 968 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 969 if (!Derived || Derived->getPointerOperand() != Base) 970 continue; 971 972 SmallVector<Value *, 2> OffsetV; 973 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 974 continue; 975 976 // Create a Builder and replace the target callsite with a gep 977 assert(RelocatedBase->getNextNode() && 978 "Should always have one since it's not a terminator"); 979 980 // Insert after RelocatedBase 981 IRBuilder<> Builder(RelocatedBase->getNextNode()); 982 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 983 984 // If gc_relocate does not match the actual type, cast it to the right type. 985 // In theory, there must be a bitcast after gc_relocate if the type does not 986 // match, and we should reuse it to get the derived pointer. But it could be 987 // cases like this: 988 // bb1: 989 // ... 990 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 991 // br label %merge 992 // 993 // bb2: 994 // ... 995 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 996 // br label %merge 997 // 998 // merge: 999 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1000 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1001 // 1002 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1003 // no matter there is already one or not. In this way, we can handle all cases, and 1004 // the extra bitcast should be optimized away in later passes. 1005 Value *ActualRelocatedBase = RelocatedBase; 1006 if (RelocatedBase->getType() != Base->getType()) { 1007 ActualRelocatedBase = 1008 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1009 } 1010 Value *Replacement = Builder.CreateGEP( 1011 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1012 Replacement->takeName(ToReplace); 1013 // If the newly generated derived pointer's type does not match the original derived 1014 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1015 Value *ActualReplacement = Replacement; 1016 if (Replacement->getType() != ToReplace->getType()) { 1017 ActualReplacement = 1018 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1019 } 1020 ToReplace->replaceAllUsesWith(ActualReplacement); 1021 ToReplace->eraseFromParent(); 1022 1023 MadeChange = true; 1024 } 1025 return MadeChange; 1026 } 1027 1028 // Turns this: 1029 // 1030 // %base = ... 1031 // %ptr = gep %base + 15 1032 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1033 // %base' = relocate(%tok, i32 4, i32 4) 1034 // %ptr' = relocate(%tok, i32 4, i32 5) 1035 // %val = load %ptr' 1036 // 1037 // into this: 1038 // 1039 // %base = ... 1040 // %ptr = gep %base + 15 1041 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1042 // %base' = gc.relocate(%tok, i32 4, i32 4) 1043 // %ptr' = gep %base' + 15 1044 // %val = load %ptr' 1045 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1046 bool MadeChange = false; 1047 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1048 1049 for (auto *U : I.users()) 1050 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1051 // Collect all the relocate calls associated with a statepoint 1052 AllRelocateCalls.push_back(Relocate); 1053 1054 // We need atleast one base pointer relocation + one derived pointer 1055 // relocation to mangle 1056 if (AllRelocateCalls.size() < 2) 1057 return false; 1058 1059 // RelocateInstMap is a mapping from the base relocate instruction to the 1060 // corresponding derived relocate instructions 1061 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1062 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1063 if (RelocateInstMap.empty()) 1064 return false; 1065 1066 for (auto &Item : RelocateInstMap) 1067 // Item.first is the RelocatedBase to offset against 1068 // Item.second is the vector of Targets to replace 1069 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1070 return MadeChange; 1071 } 1072 1073 /// SinkCast - Sink the specified cast instruction into its user blocks 1074 static bool SinkCast(CastInst *CI) { 1075 BasicBlock *DefBB = CI->getParent(); 1076 1077 /// InsertedCasts - Only insert a cast in each block once. 1078 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1079 1080 bool MadeChange = false; 1081 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1082 UI != E; ) { 1083 Use &TheUse = UI.getUse(); 1084 Instruction *User = cast<Instruction>(*UI); 1085 1086 // Figure out which BB this cast is used in. For PHI's this is the 1087 // appropriate predecessor block. 1088 BasicBlock *UserBB = User->getParent(); 1089 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1090 UserBB = PN->getIncomingBlock(TheUse); 1091 } 1092 1093 // Preincrement use iterator so we don't invalidate it. 1094 ++UI; 1095 1096 // The first insertion point of a block containing an EH pad is after the 1097 // pad. If the pad is the user, we cannot sink the cast past the pad. 1098 if (User->isEHPad()) 1099 continue; 1100 1101 // If the block selected to receive the cast is an EH pad that does not 1102 // allow non-PHI instructions before the terminator, we can't sink the 1103 // cast. 1104 if (UserBB->getTerminator()->isEHPad()) 1105 continue; 1106 1107 // If this user is in the same block as the cast, don't change the cast. 1108 if (UserBB == DefBB) continue; 1109 1110 // If we have already inserted a cast into this block, use it. 1111 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1112 1113 if (!InsertedCast) { 1114 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1115 assert(InsertPt != UserBB->end()); 1116 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1117 CI->getType(), "", &*InsertPt); 1118 } 1119 1120 // Replace a use of the cast with a use of the new cast. 1121 TheUse = InsertedCast; 1122 MadeChange = true; 1123 ++NumCastUses; 1124 } 1125 1126 // If we removed all uses, nuke the cast. 1127 if (CI->use_empty()) { 1128 CI->eraseFromParent(); 1129 MadeChange = true; 1130 } 1131 1132 return MadeChange; 1133 } 1134 1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1137 /// reduce the number of virtual registers that must be created and coalesced. 1138 /// 1139 /// Return true if any changes are made. 1140 /// 1141 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1142 const DataLayout &DL) { 1143 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1144 // than sinking only nop casts, but is helpful on some platforms. 1145 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1146 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1147 ASC->getDestAddressSpace())) 1148 return false; 1149 } 1150 1151 // If this is a noop copy, 1152 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1153 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1154 1155 // This is an fp<->int conversion? 1156 if (SrcVT.isInteger() != DstVT.isInteger()) 1157 return false; 1158 1159 // If this is an extension, it will be a zero or sign extension, which 1160 // isn't a noop. 1161 if (SrcVT.bitsLT(DstVT)) return false; 1162 1163 // If these values will be promoted, find out what they will be promoted 1164 // to. This helps us consider truncates on PPC as noop copies when they 1165 // are. 1166 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1167 TargetLowering::TypePromoteInteger) 1168 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1169 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1170 TargetLowering::TypePromoteInteger) 1171 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1172 1173 // If, after promotion, these are the same types, this is a noop copy. 1174 if (SrcVT != DstVT) 1175 return false; 1176 1177 return SinkCast(CI); 1178 } 1179 1180 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1181 /// possible. 1182 /// 1183 /// Return true if any changes were made. 1184 static bool CombineUAddWithOverflow(CmpInst *CI) { 1185 Value *A, *B; 1186 Instruction *AddI; 1187 if (!match(CI, 1188 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1189 return false; 1190 1191 Type *Ty = AddI->getType(); 1192 if (!isa<IntegerType>(Ty)) 1193 return false; 1194 1195 // We don't want to move around uses of condition values this late, so we we 1196 // check if it is legal to create the call to the intrinsic in the basic 1197 // block containing the icmp: 1198 1199 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1200 return false; 1201 1202 #ifndef NDEBUG 1203 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1204 // for now: 1205 if (AddI->hasOneUse()) 1206 assert(*AddI->user_begin() == CI && "expected!"); 1207 #endif 1208 1209 Module *M = CI->getModule(); 1210 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1211 1212 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1213 1214 auto *UAddWithOverflow = 1215 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1216 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1217 auto *Overflow = 1218 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1219 1220 CI->replaceAllUsesWith(Overflow); 1221 AddI->replaceAllUsesWith(UAdd); 1222 CI->eraseFromParent(); 1223 AddI->eraseFromParent(); 1224 return true; 1225 } 1226 1227 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1228 /// registers that must be created and coalesced. This is a clear win except on 1229 /// targets with multiple condition code registers (PowerPC), where it might 1230 /// lose; some adjustment may be wanted there. 1231 /// 1232 /// Return true if any changes are made. 1233 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1234 BasicBlock *DefBB = CI->getParent(); 1235 1236 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1237 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1238 return false; 1239 1240 // Only insert a cmp in each block once. 1241 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1242 1243 bool MadeChange = false; 1244 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1245 UI != E; ) { 1246 Use &TheUse = UI.getUse(); 1247 Instruction *User = cast<Instruction>(*UI); 1248 1249 // Preincrement use iterator so we don't invalidate it. 1250 ++UI; 1251 1252 // Don't bother for PHI nodes. 1253 if (isa<PHINode>(User)) 1254 continue; 1255 1256 // Figure out which BB this cmp is used in. 1257 BasicBlock *UserBB = User->getParent(); 1258 1259 // If this user is in the same block as the cmp, don't change the cmp. 1260 if (UserBB == DefBB) continue; 1261 1262 // If we have already inserted a cmp into this block, use it. 1263 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1264 1265 if (!InsertedCmp) { 1266 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1267 assert(InsertPt != UserBB->end()); 1268 InsertedCmp = 1269 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1270 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1271 // Propagate the debug info. 1272 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1273 } 1274 1275 // Replace a use of the cmp with a use of the new cmp. 1276 TheUse = InsertedCmp; 1277 MadeChange = true; 1278 ++NumCmpUses; 1279 } 1280 1281 // If we removed all uses, nuke the cmp. 1282 if (CI->use_empty()) { 1283 CI->eraseFromParent(); 1284 MadeChange = true; 1285 } 1286 1287 return MadeChange; 1288 } 1289 1290 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1291 if (SinkCmpExpression(CI, TLI)) 1292 return true; 1293 1294 if (CombineUAddWithOverflow(CI)) 1295 return true; 1296 1297 return false; 1298 } 1299 1300 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1301 /// used in a compare to allow isel to generate better code for targets where 1302 /// this operation can be combined. 1303 /// 1304 /// Return true if any changes are made. 1305 static bool sinkAndCmp0Expression(Instruction *AndI, 1306 const TargetLowering &TLI, 1307 SetOfInstrs &InsertedInsts) { 1308 // Double-check that we're not trying to optimize an instruction that was 1309 // already optimized by some other part of this pass. 1310 assert(!InsertedInsts.count(AndI) && 1311 "Attempting to optimize already optimized and instruction"); 1312 (void) InsertedInsts; 1313 1314 // Nothing to do for single use in same basic block. 1315 if (AndI->hasOneUse() && 1316 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1317 return false; 1318 1319 // Try to avoid cases where sinking/duplicating is likely to increase register 1320 // pressure. 1321 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1322 !isa<ConstantInt>(AndI->getOperand(1)) && 1323 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1324 return false; 1325 1326 for (auto *U : AndI->users()) { 1327 Instruction *User = cast<Instruction>(U); 1328 1329 // Only sink for and mask feeding icmp with 0. 1330 if (!isa<ICmpInst>(User)) 1331 return false; 1332 1333 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1334 if (!CmpC || !CmpC->isZero()) 1335 return false; 1336 } 1337 1338 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1339 return false; 1340 1341 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1342 DEBUG(AndI->getParent()->dump()); 1343 1344 // Push the 'and' into the same block as the icmp 0. There should only be 1345 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1346 // others, so we don't need to keep track of which BBs we insert into. 1347 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1348 UI != E; ) { 1349 Use &TheUse = UI.getUse(); 1350 Instruction *User = cast<Instruction>(*UI); 1351 1352 // Preincrement use iterator so we don't invalidate it. 1353 ++UI; 1354 1355 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1356 1357 // Keep the 'and' in the same place if the use is already in the same block. 1358 Instruction *InsertPt = 1359 User->getParent() == AndI->getParent() ? AndI : User; 1360 Instruction *InsertedAnd = 1361 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1362 AndI->getOperand(1), "", InsertPt); 1363 // Propagate the debug info. 1364 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1365 1366 // Replace a use of the 'and' with a use of the new 'and'. 1367 TheUse = InsertedAnd; 1368 ++NumAndUses; 1369 DEBUG(User->getParent()->dump()); 1370 } 1371 1372 // We removed all uses, nuke the and. 1373 AndI->eraseFromParent(); 1374 return true; 1375 } 1376 1377 /// Check if the candidates could be combined with a shift instruction, which 1378 /// includes: 1379 /// 1. Truncate instruction 1380 /// 2. And instruction and the imm is a mask of the low bits: 1381 /// imm & (imm+1) == 0 1382 static bool isExtractBitsCandidateUse(Instruction *User) { 1383 if (!isa<TruncInst>(User)) { 1384 if (User->getOpcode() != Instruction::And || 1385 !isa<ConstantInt>(User->getOperand(1))) 1386 return false; 1387 1388 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1389 1390 if ((Cimm & (Cimm + 1)).getBoolValue()) 1391 return false; 1392 } 1393 return true; 1394 } 1395 1396 /// Sink both shift and truncate instruction to the use of truncate's BB. 1397 static bool 1398 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1399 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1400 const TargetLowering &TLI, const DataLayout &DL) { 1401 BasicBlock *UserBB = User->getParent(); 1402 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1403 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1404 bool MadeChange = false; 1405 1406 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1407 TruncE = TruncI->user_end(); 1408 TruncUI != TruncE;) { 1409 1410 Use &TruncTheUse = TruncUI.getUse(); 1411 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1412 // Preincrement use iterator so we don't invalidate it. 1413 1414 ++TruncUI; 1415 1416 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1417 if (!ISDOpcode) 1418 continue; 1419 1420 // If the use is actually a legal node, there will not be an 1421 // implicit truncate. 1422 // FIXME: always querying the result type is just an 1423 // approximation; some nodes' legality is determined by the 1424 // operand or other means. There's no good way to find out though. 1425 if (TLI.isOperationLegalOrCustom( 1426 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1427 continue; 1428 1429 // Don't bother for PHI nodes. 1430 if (isa<PHINode>(TruncUser)) 1431 continue; 1432 1433 BasicBlock *TruncUserBB = TruncUser->getParent(); 1434 1435 if (UserBB == TruncUserBB) 1436 continue; 1437 1438 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1439 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1440 1441 if (!InsertedShift && !InsertedTrunc) { 1442 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1443 assert(InsertPt != TruncUserBB->end()); 1444 // Sink the shift 1445 if (ShiftI->getOpcode() == Instruction::AShr) 1446 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1447 "", &*InsertPt); 1448 else 1449 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1450 "", &*InsertPt); 1451 1452 // Sink the trunc 1453 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1454 TruncInsertPt++; 1455 assert(TruncInsertPt != TruncUserBB->end()); 1456 1457 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1458 TruncI->getType(), "", &*TruncInsertPt); 1459 1460 MadeChange = true; 1461 1462 TruncTheUse = InsertedTrunc; 1463 } 1464 } 1465 return MadeChange; 1466 } 1467 1468 /// Sink the shift *right* instruction into user blocks if the uses could 1469 /// potentially be combined with this shift instruction and generate BitExtract 1470 /// instruction. It will only be applied if the architecture supports BitExtract 1471 /// instruction. Here is an example: 1472 /// BB1: 1473 /// %x.extract.shift = lshr i64 %arg1, 32 1474 /// BB2: 1475 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1476 /// ==> 1477 /// 1478 /// BB2: 1479 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1480 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1481 /// 1482 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1483 /// instruction. 1484 /// Return true if any changes are made. 1485 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1486 const TargetLowering &TLI, 1487 const DataLayout &DL) { 1488 BasicBlock *DefBB = ShiftI->getParent(); 1489 1490 /// Only insert instructions in each block once. 1491 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1492 1493 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1494 1495 bool MadeChange = false; 1496 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1497 UI != E;) { 1498 Use &TheUse = UI.getUse(); 1499 Instruction *User = cast<Instruction>(*UI); 1500 // Preincrement use iterator so we don't invalidate it. 1501 ++UI; 1502 1503 // Don't bother for PHI nodes. 1504 if (isa<PHINode>(User)) 1505 continue; 1506 1507 if (!isExtractBitsCandidateUse(User)) 1508 continue; 1509 1510 BasicBlock *UserBB = User->getParent(); 1511 1512 if (UserBB == DefBB) { 1513 // If the shift and truncate instruction are in the same BB. The use of 1514 // the truncate(TruncUse) may still introduce another truncate if not 1515 // legal. In this case, we would like to sink both shift and truncate 1516 // instruction to the BB of TruncUse. 1517 // for example: 1518 // BB1: 1519 // i64 shift.result = lshr i64 opnd, imm 1520 // trunc.result = trunc shift.result to i16 1521 // 1522 // BB2: 1523 // ----> We will have an implicit truncate here if the architecture does 1524 // not have i16 compare. 1525 // cmp i16 trunc.result, opnd2 1526 // 1527 if (isa<TruncInst>(User) && shiftIsLegal 1528 // If the type of the truncate is legal, no trucate will be 1529 // introduced in other basic blocks. 1530 && 1531 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1532 MadeChange = 1533 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1534 1535 continue; 1536 } 1537 // If we have already inserted a shift into this block, use it. 1538 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1539 1540 if (!InsertedShift) { 1541 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1542 assert(InsertPt != UserBB->end()); 1543 1544 if (ShiftI->getOpcode() == Instruction::AShr) 1545 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1546 "", &*InsertPt); 1547 else 1548 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1549 "", &*InsertPt); 1550 1551 MadeChange = true; 1552 } 1553 1554 // Replace a use of the shift with a use of the new shift. 1555 TheUse = InsertedShift; 1556 } 1557 1558 // If we removed all uses, nuke the shift. 1559 if (ShiftI->use_empty()) 1560 ShiftI->eraseFromParent(); 1561 1562 return MadeChange; 1563 } 1564 1565 /// If counting leading or trailing zeros is an expensive operation and a zero 1566 /// input is defined, add a check for zero to avoid calling the intrinsic. 1567 /// 1568 /// We want to transform: 1569 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1570 /// 1571 /// into: 1572 /// entry: 1573 /// %cmpz = icmp eq i64 %A, 0 1574 /// br i1 %cmpz, label %cond.end, label %cond.false 1575 /// cond.false: 1576 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1577 /// br label %cond.end 1578 /// cond.end: 1579 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1580 /// 1581 /// If the transform is performed, return true and set ModifiedDT to true. 1582 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1583 const TargetLowering *TLI, 1584 const DataLayout *DL, 1585 bool &ModifiedDT) { 1586 if (!TLI || !DL) 1587 return false; 1588 1589 // If a zero input is undefined, it doesn't make sense to despeculate that. 1590 if (match(CountZeros->getOperand(1), m_One())) 1591 return false; 1592 1593 // If it's cheap to speculate, there's nothing to do. 1594 auto IntrinsicID = CountZeros->getIntrinsicID(); 1595 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1596 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1597 return false; 1598 1599 // Only handle legal scalar cases. Anything else requires too much work. 1600 Type *Ty = CountZeros->getType(); 1601 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1602 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1603 return false; 1604 1605 // The intrinsic will be sunk behind a compare against zero and branch. 1606 BasicBlock *StartBlock = CountZeros->getParent(); 1607 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1608 1609 // Create another block after the count zero intrinsic. A PHI will be added 1610 // in this block to select the result of the intrinsic or the bit-width 1611 // constant if the input to the intrinsic is zero. 1612 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1613 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1614 1615 // Set up a builder to create a compare, conditional branch, and PHI. 1616 IRBuilder<> Builder(CountZeros->getContext()); 1617 Builder.SetInsertPoint(StartBlock->getTerminator()); 1618 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1619 1620 // Replace the unconditional branch that was created by the first split with 1621 // a compare against zero and a conditional branch. 1622 Value *Zero = Constant::getNullValue(Ty); 1623 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1624 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1625 StartBlock->getTerminator()->eraseFromParent(); 1626 1627 // Create a PHI in the end block to select either the output of the intrinsic 1628 // or the bit width of the operand. 1629 Builder.SetInsertPoint(&EndBlock->front()); 1630 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1631 CountZeros->replaceAllUsesWith(PN); 1632 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1633 PN->addIncoming(BitWidth, StartBlock); 1634 PN->addIncoming(CountZeros, CallBlock); 1635 1636 // We are explicitly handling the zero case, so we can set the intrinsic's 1637 // undefined zero argument to 'true'. This will also prevent reprocessing the 1638 // intrinsic; we only despeculate when a zero input is defined. 1639 CountZeros->setArgOperand(1, Builder.getTrue()); 1640 ModifiedDT = true; 1641 return true; 1642 } 1643 1644 // This class provides helper functions to expand a memcmp library call into an 1645 // inline expansion. 1646 class MemCmpExpansion { 1647 struct ResultBlock { 1648 BasicBlock *BB; 1649 PHINode *PhiSrc1; 1650 PHINode *PhiSrc2; 1651 ResultBlock(); 1652 }; 1653 1654 CallInst *CI; 1655 ResultBlock ResBlock; 1656 unsigned MaxLoadSize; 1657 unsigned NumBlocks; 1658 unsigned NumBlocksNonOneByte; 1659 unsigned NumLoadsPerBlock; 1660 std::vector<BasicBlock *> LoadCmpBlocks; 1661 BasicBlock *EndBlock; 1662 PHINode *PhiRes; 1663 bool IsUsedForZeroCmp; 1664 const DataLayout &DL; 1665 1666 int calculateNumBlocks(unsigned Size); 1667 void createLoadCmpBlocks(); 1668 void createResultBlock(); 1669 void setupResultBlockPHINodes(); 1670 void setupEndBlockPHINodes(); 1671 void emitLoadCompareBlock(unsigned Index, int LoadSize, int GEPIndex); 1672 Value *getCompareLoadPairs(unsigned Index, unsigned Size, 1673 unsigned &NumBytesProcessed, IRBuilder<> &Builder); 1674 void emitLoadCompareBlockMultipleLoads(unsigned Index, unsigned Size, 1675 unsigned &NumBytesProcessed); 1676 void emitLoadCompareByteBlock(unsigned Index, int GEPIndex); 1677 void emitMemCmpResultBlock(); 1678 Value *getMemCmpExpansionZeroCase(unsigned Size); 1679 Value *getMemCmpEqZeroOneBlock(unsigned Size); 1680 unsigned getLoadSize(unsigned Size); 1681 unsigned getNumLoads(unsigned Size); 1682 1683 public: 1684 MemCmpExpansion(CallInst *CI, uint64_t Size, unsigned MaxLoadSize, 1685 unsigned NumLoadsPerBlock, const DataLayout &DL); 1686 Value *getMemCmpExpansion(uint64_t Size); 1687 }; 1688 1689 MemCmpExpansion::ResultBlock::ResultBlock() 1690 : BB(nullptr), PhiSrc1(nullptr), PhiSrc2(nullptr) {} 1691 1692 // Initialize the basic block structure required for expansion of memcmp call 1693 // with given maximum load size and memcmp size parameter. 1694 // This structure includes: 1695 // 1. A list of load compare blocks - LoadCmpBlocks. 1696 // 2. An EndBlock, split from original instruction point, which is the block to 1697 // return from. 1698 // 3. ResultBlock, block to branch to for early exit when a 1699 // LoadCmpBlock finds a difference. 1700 MemCmpExpansion::MemCmpExpansion(CallInst *CI, uint64_t Size, 1701 unsigned MaxLoadSize, unsigned LoadsPerBlock, 1702 const DataLayout &TheDataLayout) 1703 : CI(CI), MaxLoadSize(MaxLoadSize), NumLoadsPerBlock(LoadsPerBlock), 1704 DL(TheDataLayout) { 1705 1706 // A memcmp with zero-comparison with only one block of load and compare does 1707 // not need to set up any extra blocks. This case could be handled in the DAG, 1708 // but since we have all of the machinery to flexibly expand any memcpy here, 1709 // we choose to handle this case too to avoid fragmented lowering. 1710 IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI); 1711 NumBlocks = calculateNumBlocks(Size); 1712 if (!IsUsedForZeroCmp || NumBlocks != 1) { 1713 BasicBlock *StartBlock = CI->getParent(); 1714 EndBlock = StartBlock->splitBasicBlock(CI, "endblock"); 1715 setupEndBlockPHINodes(); 1716 createResultBlock(); 1717 1718 // If return value of memcmp is not used in a zero equality, we need to 1719 // calculate which source was larger. The calculation requires the 1720 // two loaded source values of each load compare block. 1721 // These will be saved in the phi nodes created by setupResultBlockPHINodes. 1722 if (!IsUsedForZeroCmp) 1723 setupResultBlockPHINodes(); 1724 1725 // Create the number of required load compare basic blocks. 1726 createLoadCmpBlocks(); 1727 1728 // Update the terminator added by splitBasicBlock to branch to the first 1729 // LoadCmpBlock. 1730 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]); 1731 } 1732 1733 IRBuilder<> Builder(CI->getContext()); 1734 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1735 } 1736 1737 void MemCmpExpansion::createLoadCmpBlocks() { 1738 for (unsigned i = 0; i < NumBlocks; i++) { 1739 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb", 1740 EndBlock->getParent(), EndBlock); 1741 LoadCmpBlocks.push_back(BB); 1742 } 1743 } 1744 1745 void MemCmpExpansion::createResultBlock() { 1746 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block", 1747 EndBlock->getParent(), EndBlock); 1748 } 1749 1750 // This function creates the IR instructions for loading and comparing 1 byte. 1751 // It loads 1 byte from each source of the memcmp parameters with the given 1752 // GEPIndex. It then subtracts the two loaded values and adds this result to the 1753 // final phi node for selecting the memcmp result. 1754 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned Index, int GEPIndex) { 1755 IRBuilder<> Builder(CI->getContext()); 1756 1757 Value *Source1 = CI->getArgOperand(0); 1758 Value *Source2 = CI->getArgOperand(1); 1759 1760 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1761 Type *LoadSizeType = Type::getInt8Ty(CI->getContext()); 1762 // Cast source to LoadSizeType*. 1763 if (Source1->getType() != LoadSizeType) 1764 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1765 if (Source2->getType() != LoadSizeType) 1766 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1767 1768 // Get the base address using the GEPIndex. 1769 if (GEPIndex != 0) { 1770 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1771 ConstantInt::get(LoadSizeType, GEPIndex)); 1772 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1773 ConstantInt::get(LoadSizeType, GEPIndex)); 1774 } 1775 1776 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1777 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1778 1779 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext())); 1780 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext())); 1781 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2); 1782 1783 PhiRes->addIncoming(Diff, LoadCmpBlocks[Index]); 1784 1785 if (Index < (LoadCmpBlocks.size() - 1)) { 1786 // Early exit branch if difference found to EndBlock. Otherwise, continue to 1787 // next LoadCmpBlock, 1788 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 1789 ConstantInt::get(Diff->getType(), 0)); 1790 BranchInst *CmpBr = 1791 BranchInst::Create(EndBlock, LoadCmpBlocks[Index + 1], Cmp); 1792 Builder.Insert(CmpBr); 1793 } else { 1794 // The last block has an unconditional branch to EndBlock. 1795 BranchInst *CmpBr = BranchInst::Create(EndBlock); 1796 Builder.Insert(CmpBr); 1797 } 1798 } 1799 1800 unsigned MemCmpExpansion::getNumLoads(unsigned Size) { 1801 return (Size / MaxLoadSize) + countPopulation(Size % MaxLoadSize); 1802 } 1803 1804 unsigned MemCmpExpansion::getLoadSize(unsigned Size) { 1805 return MinAlign(PowerOf2Floor(Size), MaxLoadSize); 1806 } 1807 1808 /// Generate an equality comparison for one or more pairs of loaded values. 1809 /// This is used in the case where the memcmp() call is compared equal or not 1810 /// equal to zero. 1811 Value *MemCmpExpansion::getCompareLoadPairs(unsigned Index, unsigned Size, 1812 unsigned &NumBytesProcessed, 1813 IRBuilder<> &Builder) { 1814 std::vector<Value *> XorList, OrList; 1815 Value *Diff; 1816 1817 unsigned RemainingBytes = Size - NumBytesProcessed; 1818 unsigned NumLoadsRemaining = getNumLoads(RemainingBytes); 1819 unsigned NumLoads = std::min(NumLoadsRemaining, NumLoadsPerBlock); 1820 1821 // For a single-block expansion, start inserting before the memcmp call. 1822 if (LoadCmpBlocks.empty()) 1823 Builder.SetInsertPoint(CI); 1824 else 1825 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1826 1827 Value *Cmp = nullptr; 1828 for (unsigned i = 0; i < NumLoads; ++i) { 1829 unsigned LoadSize = getLoadSize(RemainingBytes); 1830 unsigned GEPIndex = NumBytesProcessed / LoadSize; 1831 NumBytesProcessed += LoadSize; 1832 RemainingBytes -= LoadSize; 1833 1834 Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8); 1835 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 1836 1837 Value *Source1 = CI->getArgOperand(0); 1838 Value *Source2 = CI->getArgOperand(1); 1839 1840 // Cast source to LoadSizeType*. 1841 if (Source1->getType() != LoadSizeType) 1842 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1843 if (Source2->getType() != LoadSizeType) 1844 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1845 1846 // Get the base address using the GEPIndex. 1847 if (GEPIndex != 0) { 1848 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1849 ConstantInt::get(LoadSizeType, GEPIndex)); 1850 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1851 ConstantInt::get(LoadSizeType, GEPIndex)); 1852 } 1853 1854 // Load LoadSizeType from the base address. 1855 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1856 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1857 if (NumLoads != 1) { 1858 if (LoadSizeType != MaxLoadType) { 1859 LoadSrc1 = Builder.CreateZExtOrTrunc(LoadSrc1, MaxLoadType); 1860 LoadSrc2 = Builder.CreateZExtOrTrunc(LoadSrc2, MaxLoadType); 1861 } 1862 // If we have multiple loads per block, we need to generate a composite 1863 // comparison using xor+or. 1864 Diff = Builder.CreateXor(LoadSrc1, LoadSrc2); 1865 Diff = Builder.CreateZExtOrTrunc(Diff, MaxLoadType); 1866 XorList.push_back(Diff); 1867 } else { 1868 // If there's only one load per block, we just compare the loaded values. 1869 Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2); 1870 } 1871 } 1872 1873 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> { 1874 std::vector<Value *> OutList; 1875 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) { 1876 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]); 1877 OutList.push_back(Or); 1878 } 1879 if (InList.size() % 2 != 0) 1880 OutList.push_back(InList.back()); 1881 return OutList; 1882 }; 1883 1884 if (!Cmp) { 1885 // Pairwise OR the XOR results. 1886 OrList = pairWiseOr(XorList); 1887 1888 // Pairwise OR the OR results until one result left. 1889 while (OrList.size() != 1) { 1890 OrList = pairWiseOr(OrList); 1891 } 1892 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0)); 1893 } 1894 1895 return Cmp; 1896 } 1897 1898 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads( 1899 unsigned Index, unsigned Size, unsigned &NumBytesProcessed) { 1900 IRBuilder<> Builder(CI->getContext()); 1901 Value *Cmp = getCompareLoadPairs(Index, Size, NumBytesProcessed, Builder); 1902 1903 BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1)) 1904 ? EndBlock 1905 : LoadCmpBlocks[Index + 1]; 1906 // Early exit branch if difference found to ResultBlock. Otherwise, 1907 // continue to next LoadCmpBlock or EndBlock. 1908 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 1909 Builder.Insert(CmpBr); 1910 1911 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 1912 // since early exit to ResultBlock was not taken (no difference was found in 1913 // any of the bytes). 1914 if (Index == LoadCmpBlocks.size() - 1) { 1915 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 1916 PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]); 1917 } 1918 } 1919 1920 // This function creates the IR intructions for loading and comparing using the 1921 // given LoadSize. It loads the number of bytes specified by LoadSize from each 1922 // source of the memcmp parameters. It then does a subtract to see if there was 1923 // a difference in the loaded values. If a difference is found, it branches 1924 // with an early exit to the ResultBlock for calculating which source was 1925 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or 1926 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with 1927 // a special case through emitLoadCompareByteBlock. The special handling can 1928 // simply subtract the loaded values and add it to the result phi node. 1929 void MemCmpExpansion::emitLoadCompareBlock(unsigned Index, int LoadSize, 1930 int GEPIndex) { 1931 if (LoadSize == 1) { 1932 MemCmpExpansion::emitLoadCompareByteBlock(Index, GEPIndex); 1933 return; 1934 } 1935 1936 IRBuilder<> Builder(CI->getContext()); 1937 1938 Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8); 1939 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 1940 1941 Value *Source1 = CI->getArgOperand(0); 1942 Value *Source2 = CI->getArgOperand(1); 1943 1944 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1945 // Cast source to LoadSizeType*. 1946 if (Source1->getType() != LoadSizeType) 1947 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1948 if (Source2->getType() != LoadSizeType) 1949 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1950 1951 // Get the base address using the GEPIndex. 1952 if (GEPIndex != 0) { 1953 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1954 ConstantInt::get(LoadSizeType, GEPIndex)); 1955 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1956 ConstantInt::get(LoadSizeType, GEPIndex)); 1957 } 1958 1959 // Load LoadSizeType from the base address. 1960 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1961 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1962 1963 if (DL.isLittleEndian()) { 1964 Function *F = LoadCmpBlocks[Index]->getParent(); 1965 1966 Function *Bswap = Intrinsic::getDeclaration(F->getParent(), 1967 Intrinsic::bswap, LoadSizeType); 1968 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 1969 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 1970 } 1971 1972 if (LoadSizeType != MaxLoadType) { 1973 LoadSrc1 = Builder.CreateZExtOrTrunc(LoadSrc1, MaxLoadType); 1974 LoadSrc2 = Builder.CreateZExtOrTrunc(LoadSrc2, MaxLoadType); 1975 } 1976 1977 // Add the loaded values to the phi nodes for calculating memcmp result only 1978 // if result is not used in a zero equality. 1979 if (!IsUsedForZeroCmp) { 1980 ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[Index]); 1981 ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[Index]); 1982 } 1983 1984 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2); 1985 1986 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 1987 ConstantInt::get(Diff->getType(), 0)); 1988 BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1)) 1989 ? EndBlock 1990 : LoadCmpBlocks[Index + 1]; 1991 // Early exit branch if difference found to ResultBlock. Otherwise, continue 1992 // to next LoadCmpBlock or EndBlock. 1993 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 1994 Builder.Insert(CmpBr); 1995 1996 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 1997 // since early exit to ResultBlock was not taken (no difference was found in 1998 // any of the bytes). 1999 if (Index == LoadCmpBlocks.size() - 1) { 2000 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 2001 PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]); 2002 } 2003 } 2004 2005 // This function populates the ResultBlock with a sequence to calculate the 2006 // memcmp result. It compares the two loaded source values and returns -1 if 2007 // src1 < src2 and 1 if src1 > src2. 2008 void MemCmpExpansion::emitMemCmpResultBlock() { 2009 IRBuilder<> Builder(CI->getContext()); 2010 2011 // Special case: if memcmp result is used in a zero equality, result does not 2012 // need to be calculated and can simply return 1. 2013 if (IsUsedForZeroCmp) { 2014 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 2015 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 2016 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1); 2017 PhiRes->addIncoming(Res, ResBlock.BB); 2018 BranchInst *NewBr = BranchInst::Create(EndBlock); 2019 Builder.Insert(NewBr); 2020 return; 2021 } 2022 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 2023 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 2024 2025 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1, 2026 ResBlock.PhiSrc2); 2027 2028 Value *Res = 2029 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1), 2030 ConstantInt::get(Builder.getInt32Ty(), 1)); 2031 2032 BranchInst *NewBr = BranchInst::Create(EndBlock); 2033 Builder.Insert(NewBr); 2034 PhiRes->addIncoming(Res, ResBlock.BB); 2035 } 2036 2037 int MemCmpExpansion::calculateNumBlocks(unsigned Size) { 2038 int NumBlocks = 0; 2039 bool HaveOneByteLoad = false; 2040 unsigned RemainingSize = Size; 2041 unsigned LoadSize = MaxLoadSize; 2042 while (RemainingSize) { 2043 if (LoadSize == 1) 2044 HaveOneByteLoad = true; 2045 NumBlocks += RemainingSize / LoadSize; 2046 RemainingSize = RemainingSize % LoadSize; 2047 LoadSize = LoadSize / 2; 2048 } 2049 NumBlocksNonOneByte = HaveOneByteLoad ? (NumBlocks - 1) : NumBlocks; 2050 2051 if (IsUsedForZeroCmp) 2052 NumBlocks = NumBlocks / NumLoadsPerBlock + 2053 (NumBlocks % NumLoadsPerBlock != 0 ? 1 : 0); 2054 2055 return NumBlocks; 2056 } 2057 2058 void MemCmpExpansion::setupResultBlockPHINodes() { 2059 IRBuilder<> Builder(CI->getContext()); 2060 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 2061 Builder.SetInsertPoint(ResBlock.BB); 2062 ResBlock.PhiSrc1 = 2063 Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src1"); 2064 ResBlock.PhiSrc2 = 2065 Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src2"); 2066 } 2067 2068 void MemCmpExpansion::setupEndBlockPHINodes() { 2069 IRBuilder<> Builder(CI->getContext()); 2070 2071 Builder.SetInsertPoint(&EndBlock->front()); 2072 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res"); 2073 } 2074 2075 Value *MemCmpExpansion::getMemCmpExpansionZeroCase(unsigned Size) { 2076 unsigned NumBytesProcessed = 0; 2077 // This loop populates each of the LoadCmpBlocks with the IR sequence to 2078 // handle multiple loads per block. 2079 for (unsigned i = 0; i < NumBlocks; ++i) 2080 emitLoadCompareBlockMultipleLoads(i, Size, NumBytesProcessed); 2081 2082 emitMemCmpResultBlock(); 2083 return PhiRes; 2084 } 2085 2086 /// A memcmp expansion that compares equality with 0 and only has one block of 2087 /// load and compare can bypass the compare, branch, and phi IR that is required 2088 /// in the general case. 2089 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock(unsigned Size) { 2090 unsigned NumBytesProcessed = 0; 2091 IRBuilder<> Builder(CI->getContext()); 2092 Value *Cmp = getCompareLoadPairs(0, Size, NumBytesProcessed, Builder); 2093 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext())); 2094 } 2095 2096 // This function expands the memcmp call into an inline expansion and returns 2097 // the memcmp result. 2098 Value *MemCmpExpansion::getMemCmpExpansion(uint64_t Size) { 2099 if (IsUsedForZeroCmp) 2100 return NumBlocks == 1 ? getMemCmpEqZeroOneBlock(Size) : 2101 getMemCmpExpansionZeroCase(Size); 2102 2103 // This loop calls emitLoadCompareBlock for comparing Size bytes of the two 2104 // memcmp sources. It starts with loading using the maximum load size set by 2105 // the target. It processes any remaining bytes using a load size which is the 2106 // next smallest power of 2. 2107 int LoadSize = MaxLoadSize; 2108 int NumBytesToBeProcessed = Size; 2109 unsigned Index = 0; 2110 while (NumBytesToBeProcessed) { 2111 // Calculate how many blocks we can create with the current load size. 2112 int NumBlocks = NumBytesToBeProcessed / LoadSize; 2113 int GEPIndex = (Size - NumBytesToBeProcessed) / LoadSize; 2114 NumBytesToBeProcessed = NumBytesToBeProcessed % LoadSize; 2115 2116 // For each NumBlocks, populate the instruction sequence for loading and 2117 // comparing LoadSize bytes. 2118 while (NumBlocks--) { 2119 emitLoadCompareBlock(Index, LoadSize, GEPIndex); 2120 Index++; 2121 GEPIndex++; 2122 } 2123 // Get the next LoadSize to use. 2124 LoadSize = LoadSize / 2; 2125 } 2126 2127 emitMemCmpResultBlock(); 2128 return PhiRes; 2129 } 2130 2131 // This function checks to see if an expansion of memcmp can be generated. 2132 // It checks for constant compare size that is less than the max inline size. 2133 // If an expansion cannot occur, returns false to leave as a library call. 2134 // Otherwise, the library call is replaced with a new IR instruction sequence. 2135 /// We want to transform: 2136 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15) 2137 /// To: 2138 /// loadbb: 2139 /// %0 = bitcast i32* %buffer2 to i8* 2140 /// %1 = bitcast i32* %buffer1 to i8* 2141 /// %2 = bitcast i8* %1 to i64* 2142 /// %3 = bitcast i8* %0 to i64* 2143 /// %4 = load i64, i64* %2 2144 /// %5 = load i64, i64* %3 2145 /// %6 = call i64 @llvm.bswap.i64(i64 %4) 2146 /// %7 = call i64 @llvm.bswap.i64(i64 %5) 2147 /// %8 = sub i64 %6, %7 2148 /// %9 = icmp ne i64 %8, 0 2149 /// br i1 %9, label %res_block, label %loadbb1 2150 /// res_block: ; preds = %loadbb2, 2151 /// %loadbb1, %loadbb 2152 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ] 2153 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ] 2154 /// %10 = icmp ult i64 %phi.src1, %phi.src2 2155 /// %11 = select i1 %10, i32 -1, i32 1 2156 /// br label %endblock 2157 /// loadbb1: ; preds = %loadbb 2158 /// %12 = bitcast i32* %buffer2 to i8* 2159 /// %13 = bitcast i32* %buffer1 to i8* 2160 /// %14 = bitcast i8* %13 to i32* 2161 /// %15 = bitcast i8* %12 to i32* 2162 /// %16 = getelementptr i32, i32* %14, i32 2 2163 /// %17 = getelementptr i32, i32* %15, i32 2 2164 /// %18 = load i32, i32* %16 2165 /// %19 = load i32, i32* %17 2166 /// %20 = call i32 @llvm.bswap.i32(i32 %18) 2167 /// %21 = call i32 @llvm.bswap.i32(i32 %19) 2168 /// %22 = zext i32 %20 to i64 2169 /// %23 = zext i32 %21 to i64 2170 /// %24 = sub i64 %22, %23 2171 /// %25 = icmp ne i64 %24, 0 2172 /// br i1 %25, label %res_block, label %loadbb2 2173 /// loadbb2: ; preds = %loadbb1 2174 /// %26 = bitcast i32* %buffer2 to i8* 2175 /// %27 = bitcast i32* %buffer1 to i8* 2176 /// %28 = bitcast i8* %27 to i16* 2177 /// %29 = bitcast i8* %26 to i16* 2178 /// %30 = getelementptr i16, i16* %28, i16 6 2179 /// %31 = getelementptr i16, i16* %29, i16 6 2180 /// %32 = load i16, i16* %30 2181 /// %33 = load i16, i16* %31 2182 /// %34 = call i16 @llvm.bswap.i16(i16 %32) 2183 /// %35 = call i16 @llvm.bswap.i16(i16 %33) 2184 /// %36 = zext i16 %34 to i64 2185 /// %37 = zext i16 %35 to i64 2186 /// %38 = sub i64 %36, %37 2187 /// %39 = icmp ne i64 %38, 0 2188 /// br i1 %39, label %res_block, label %loadbb3 2189 /// loadbb3: ; preds = %loadbb2 2190 /// %40 = bitcast i32* %buffer2 to i8* 2191 /// %41 = bitcast i32* %buffer1 to i8* 2192 /// %42 = getelementptr i8, i8* %41, i8 14 2193 /// %43 = getelementptr i8, i8* %40, i8 14 2194 /// %44 = load i8, i8* %42 2195 /// %45 = load i8, i8* %43 2196 /// %46 = zext i8 %44 to i32 2197 /// %47 = zext i8 %45 to i32 2198 /// %48 = sub i32 %46, %47 2199 /// br label %endblock 2200 /// endblock: ; preds = %res_block, 2201 /// %loadbb3 2202 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ] 2203 /// ret i32 %phi.res 2204 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI, 2205 const TargetLowering *TLI, const DataLayout *DL) { 2206 NumMemCmpCalls++; 2207 IRBuilder<> Builder(CI->getContext()); 2208 2209 // TTI call to check if target would like to expand memcmp. Also, get the 2210 // MaxLoadSize. 2211 unsigned MaxLoadSize; 2212 if (!TTI->expandMemCmp(CI, MaxLoadSize)) 2213 return false; 2214 2215 // Early exit from expansion if -Oz. 2216 if (CI->getFunction()->optForMinSize()) 2217 return false; 2218 2219 // Early exit from expansion if size is not a constant. 2220 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2221 if (!SizeCast) { 2222 NumMemCmpNotConstant++; 2223 return false; 2224 } 2225 2226 // Early exit from expansion if size greater than max bytes to load. 2227 uint64_t SizeVal = SizeCast->getZExtValue(); 2228 unsigned NumLoads = 0; 2229 unsigned RemainingSize = SizeVal; 2230 unsigned LoadSize = MaxLoadSize; 2231 while (RemainingSize) { 2232 NumLoads += RemainingSize / LoadSize; 2233 RemainingSize = RemainingSize % LoadSize; 2234 LoadSize = LoadSize / 2; 2235 } 2236 2237 if (NumLoads > TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize())) { 2238 NumMemCmpGreaterThanMax++; 2239 return false; 2240 } 2241 2242 NumMemCmpInlined++; 2243 2244 // MemCmpHelper object creates and sets up basic blocks required for 2245 // expanding memcmp with size SizeVal. 2246 unsigned NumLoadsPerBlock = MemCmpNumLoadsPerBlock; 2247 MemCmpExpansion MemCmpHelper(CI, SizeVal, MaxLoadSize, NumLoadsPerBlock, *DL); 2248 2249 Value *Res = MemCmpHelper.getMemCmpExpansion(SizeVal); 2250 2251 // Replace call with result of expansion and erase call. 2252 CI->replaceAllUsesWith(Res); 2253 CI->eraseFromParent(); 2254 2255 return true; 2256 } 2257 2258 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2259 BasicBlock *BB = CI->getParent(); 2260 2261 // Lower inline assembly if we can. 2262 // If we found an inline asm expession, and if the target knows how to 2263 // lower it to normal LLVM code, do so now. 2264 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 2265 if (TLI->ExpandInlineAsm(CI)) { 2266 // Avoid invalidating the iterator. 2267 CurInstIterator = BB->begin(); 2268 // Avoid processing instructions out of order, which could cause 2269 // reuse before a value is defined. 2270 SunkAddrs.clear(); 2271 return true; 2272 } 2273 // Sink address computing for memory operands into the block. 2274 if (optimizeInlineAsmInst(CI)) 2275 return true; 2276 } 2277 2278 // Align the pointer arguments to this call if the target thinks it's a good 2279 // idea 2280 unsigned MinSize, PrefAlign; 2281 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2282 for (auto &Arg : CI->arg_operands()) { 2283 // We want to align both objects whose address is used directly and 2284 // objects whose address is used in casts and GEPs, though it only makes 2285 // sense for GEPs if the offset is a multiple of the desired alignment and 2286 // if size - offset meets the size threshold. 2287 if (!Arg->getType()->isPointerTy()) 2288 continue; 2289 APInt Offset(DL->getPointerSizeInBits( 2290 cast<PointerType>(Arg->getType())->getAddressSpace()), 2291 0); 2292 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2293 uint64_t Offset2 = Offset.getLimitedValue(); 2294 if ((Offset2 & (PrefAlign-1)) != 0) 2295 continue; 2296 AllocaInst *AI; 2297 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2298 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2299 AI->setAlignment(PrefAlign); 2300 // Global variables can only be aligned if they are defined in this 2301 // object (i.e. they are uniquely initialized in this object), and 2302 // over-aligning global variables that have an explicit section is 2303 // forbidden. 2304 GlobalVariable *GV; 2305 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2306 GV->getPointerAlignment(*DL) < PrefAlign && 2307 DL->getTypeAllocSize(GV->getValueType()) >= 2308 MinSize + Offset2) 2309 GV->setAlignment(PrefAlign); 2310 } 2311 // If this is a memcpy (or similar) then we may be able to improve the 2312 // alignment 2313 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2314 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 2315 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 2316 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 2317 if (Align > MI->getAlignment()) 2318 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 2319 } 2320 } 2321 2322 // If we have a cold call site, try to sink addressing computation into the 2323 // cold block. This interacts with our handling for loads and stores to 2324 // ensure that we can fold all uses of a potential addressing computation 2325 // into their uses. TODO: generalize this to work over profiling data 2326 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 2327 for (auto &Arg : CI->arg_operands()) { 2328 if (!Arg->getType()->isPointerTy()) 2329 continue; 2330 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2331 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2332 } 2333 2334 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2335 if (II) { 2336 switch (II->getIntrinsicID()) { 2337 default: break; 2338 case Intrinsic::objectsize: { 2339 // Lower all uses of llvm.objectsize.* 2340 ConstantInt *RetVal = 2341 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 2342 // Substituting this can cause recursive simplifications, which can 2343 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 2344 // this 2345 // happens. 2346 Value *CurValue = &*CurInstIterator; 2347 WeakTrackingVH IterHandle(CurValue); 2348 2349 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2350 2351 // If the iterator instruction was recursively deleted, start over at the 2352 // start of the block. 2353 if (IterHandle != CurValue) { 2354 CurInstIterator = BB->begin(); 2355 SunkAddrs.clear(); 2356 } 2357 return true; 2358 } 2359 case Intrinsic::aarch64_stlxr: 2360 case Intrinsic::aarch64_stxr: { 2361 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2362 if (!ExtVal || !ExtVal->hasOneUse() || 2363 ExtVal->getParent() == CI->getParent()) 2364 return false; 2365 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2366 ExtVal->moveBefore(CI); 2367 // Mark this instruction as "inserted by CGP", so that other 2368 // optimizations don't touch it. 2369 InsertedInsts.insert(ExtVal); 2370 return true; 2371 } 2372 case Intrinsic::invariant_group_barrier: 2373 II->replaceAllUsesWith(II->getArgOperand(0)); 2374 II->eraseFromParent(); 2375 return true; 2376 2377 case Intrinsic::cttz: 2378 case Intrinsic::ctlz: 2379 // If counting zeros is expensive, try to avoid it. 2380 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2381 } 2382 2383 if (TLI) { 2384 SmallVector<Value*, 2> PtrOps; 2385 Type *AccessTy; 2386 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2387 while (!PtrOps.empty()) { 2388 Value *PtrVal = PtrOps.pop_back_val(); 2389 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2390 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2391 return true; 2392 } 2393 } 2394 } 2395 2396 // From here on out we're working with named functions. 2397 if (!CI->getCalledFunction()) return false; 2398 2399 // Lower all default uses of _chk calls. This is very similar 2400 // to what InstCombineCalls does, but here we are only lowering calls 2401 // to fortified library functions (e.g. __memcpy_chk) that have the default 2402 // "don't know" as the objectsize. Anything else should be left alone. 2403 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2404 if (Value *V = Simplifier.optimizeCall(CI)) { 2405 CI->replaceAllUsesWith(V); 2406 CI->eraseFromParent(); 2407 return true; 2408 } 2409 2410 LibFunc Func; 2411 if (TLInfo->getLibFunc(ImmutableCallSite(CI), Func) && 2412 Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TLI, DL)) { 2413 ModifiedDT = true; 2414 return true; 2415 } 2416 return false; 2417 } 2418 2419 /// Look for opportunities to duplicate return instructions to the predecessor 2420 /// to enable tail call optimizations. The case it is currently looking for is: 2421 /// @code 2422 /// bb0: 2423 /// %tmp0 = tail call i32 @f0() 2424 /// br label %return 2425 /// bb1: 2426 /// %tmp1 = tail call i32 @f1() 2427 /// br label %return 2428 /// bb2: 2429 /// %tmp2 = tail call i32 @f2() 2430 /// br label %return 2431 /// return: 2432 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2433 /// ret i32 %retval 2434 /// @endcode 2435 /// 2436 /// => 2437 /// 2438 /// @code 2439 /// bb0: 2440 /// %tmp0 = tail call i32 @f0() 2441 /// ret i32 %tmp0 2442 /// bb1: 2443 /// %tmp1 = tail call i32 @f1() 2444 /// ret i32 %tmp1 2445 /// bb2: 2446 /// %tmp2 = tail call i32 @f2() 2447 /// ret i32 %tmp2 2448 /// @endcode 2449 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 2450 if (!TLI) 2451 return false; 2452 2453 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2454 if (!RetI) 2455 return false; 2456 2457 PHINode *PN = nullptr; 2458 BitCastInst *BCI = nullptr; 2459 Value *V = RetI->getReturnValue(); 2460 if (V) { 2461 BCI = dyn_cast<BitCastInst>(V); 2462 if (BCI) 2463 V = BCI->getOperand(0); 2464 2465 PN = dyn_cast<PHINode>(V); 2466 if (!PN) 2467 return false; 2468 } 2469 2470 if (PN && PN->getParent() != BB) 2471 return false; 2472 2473 // Make sure there are no instructions between the PHI and return, or that the 2474 // return is the first instruction in the block. 2475 if (PN) { 2476 BasicBlock::iterator BI = BB->begin(); 2477 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 2478 if (&*BI == BCI) 2479 // Also skip over the bitcast. 2480 ++BI; 2481 if (&*BI != RetI) 2482 return false; 2483 } else { 2484 BasicBlock::iterator BI = BB->begin(); 2485 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2486 if (&*BI != RetI) 2487 return false; 2488 } 2489 2490 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2491 /// call. 2492 const Function *F = BB->getParent(); 2493 SmallVector<CallInst*, 4> TailCalls; 2494 if (PN) { 2495 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2496 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2497 // Make sure the phi value is indeed produced by the tail call. 2498 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2499 TLI->mayBeEmittedAsTailCall(CI) && 2500 attributesPermitTailCall(F, CI, RetI, *TLI)) 2501 TailCalls.push_back(CI); 2502 } 2503 } else { 2504 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2505 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2506 if (!VisitedBBs.insert(*PI).second) 2507 continue; 2508 2509 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2510 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2511 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2512 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2513 if (RI == RE) 2514 continue; 2515 2516 CallInst *CI = dyn_cast<CallInst>(&*RI); 2517 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2518 attributesPermitTailCall(F, CI, RetI, *TLI)) 2519 TailCalls.push_back(CI); 2520 } 2521 } 2522 2523 bool Changed = false; 2524 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2525 CallInst *CI = TailCalls[i]; 2526 CallSite CS(CI); 2527 2528 // Conservatively require the attributes of the call to match those of the 2529 // return. Ignore noalias because it doesn't affect the call sequence. 2530 AttributeList CalleeAttrs = CS.getAttributes(); 2531 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2532 .removeAttribute(Attribute::NoAlias) != 2533 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2534 .removeAttribute(Attribute::NoAlias)) 2535 continue; 2536 2537 // Make sure the call instruction is followed by an unconditional branch to 2538 // the return block. 2539 BasicBlock *CallBB = CI->getParent(); 2540 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2541 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2542 continue; 2543 2544 // Duplicate the return into CallBB. 2545 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2546 ModifiedDT = Changed = true; 2547 ++NumRetsDup; 2548 } 2549 2550 // If we eliminated all predecessors of the block, delete the block now. 2551 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2552 BB->eraseFromParent(); 2553 2554 return Changed; 2555 } 2556 2557 //===----------------------------------------------------------------------===// 2558 // Memory Optimization 2559 //===----------------------------------------------------------------------===// 2560 2561 namespace { 2562 2563 /// This is an extended version of TargetLowering::AddrMode 2564 /// which holds actual Value*'s for register values. 2565 struct ExtAddrMode : public TargetLowering::AddrMode { 2566 Value *BaseReg; 2567 Value *ScaledReg; 2568 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2569 void print(raw_ostream &OS) const; 2570 void dump() const; 2571 2572 bool operator==(const ExtAddrMode& O) const { 2573 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2574 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2575 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2576 } 2577 }; 2578 2579 #ifndef NDEBUG 2580 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2581 AM.print(OS); 2582 return OS; 2583 } 2584 #endif 2585 2586 void ExtAddrMode::print(raw_ostream &OS) const { 2587 bool NeedPlus = false; 2588 OS << "["; 2589 if (BaseGV) { 2590 OS << (NeedPlus ? " + " : "") 2591 << "GV:"; 2592 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2593 NeedPlus = true; 2594 } 2595 2596 if (BaseOffs) { 2597 OS << (NeedPlus ? " + " : "") 2598 << BaseOffs; 2599 NeedPlus = true; 2600 } 2601 2602 if (BaseReg) { 2603 OS << (NeedPlus ? " + " : "") 2604 << "Base:"; 2605 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2606 NeedPlus = true; 2607 } 2608 if (Scale) { 2609 OS << (NeedPlus ? " + " : "") 2610 << Scale << "*"; 2611 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2612 } 2613 2614 OS << ']'; 2615 } 2616 2617 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2618 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2619 print(dbgs()); 2620 dbgs() << '\n'; 2621 } 2622 #endif 2623 2624 /// \brief This class provides transaction based operation on the IR. 2625 /// Every change made through this class is recorded in the internal state and 2626 /// can be undone (rollback) until commit is called. 2627 class TypePromotionTransaction { 2628 2629 /// \brief This represents the common interface of the individual transaction. 2630 /// Each class implements the logic for doing one specific modification on 2631 /// the IR via the TypePromotionTransaction. 2632 class TypePromotionAction { 2633 protected: 2634 /// The Instruction modified. 2635 Instruction *Inst; 2636 2637 public: 2638 /// \brief Constructor of the action. 2639 /// The constructor performs the related action on the IR. 2640 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2641 2642 virtual ~TypePromotionAction() {} 2643 2644 /// \brief Undo the modification done by this action. 2645 /// When this method is called, the IR must be in the same state as it was 2646 /// before this action was applied. 2647 /// \pre Undoing the action works if and only if the IR is in the exact same 2648 /// state as it was directly after this action was applied. 2649 virtual void undo() = 0; 2650 2651 /// \brief Advocate every change made by this action. 2652 /// When the results on the IR of the action are to be kept, it is important 2653 /// to call this function, otherwise hidden information may be kept forever. 2654 virtual void commit() { 2655 // Nothing to be done, this action is not doing anything. 2656 } 2657 }; 2658 2659 /// \brief Utility to remember the position of an instruction. 2660 class InsertionHandler { 2661 /// Position of an instruction. 2662 /// Either an instruction: 2663 /// - Is the first in a basic block: BB is used. 2664 /// - Has a previous instructon: PrevInst is used. 2665 union { 2666 Instruction *PrevInst; 2667 BasicBlock *BB; 2668 } Point; 2669 /// Remember whether or not the instruction had a previous instruction. 2670 bool HasPrevInstruction; 2671 2672 public: 2673 /// \brief Record the position of \p Inst. 2674 InsertionHandler(Instruction *Inst) { 2675 BasicBlock::iterator It = Inst->getIterator(); 2676 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2677 if (HasPrevInstruction) 2678 Point.PrevInst = &*--It; 2679 else 2680 Point.BB = Inst->getParent(); 2681 } 2682 2683 /// \brief Insert \p Inst at the recorded position. 2684 void insert(Instruction *Inst) { 2685 if (HasPrevInstruction) { 2686 if (Inst->getParent()) 2687 Inst->removeFromParent(); 2688 Inst->insertAfter(Point.PrevInst); 2689 } else { 2690 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2691 if (Inst->getParent()) 2692 Inst->moveBefore(Position); 2693 else 2694 Inst->insertBefore(Position); 2695 } 2696 } 2697 }; 2698 2699 /// \brief Move an instruction before another. 2700 class InstructionMoveBefore : public TypePromotionAction { 2701 /// Original position of the instruction. 2702 InsertionHandler Position; 2703 2704 public: 2705 /// \brief Move \p Inst before \p Before. 2706 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2707 : TypePromotionAction(Inst), Position(Inst) { 2708 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2709 Inst->moveBefore(Before); 2710 } 2711 2712 /// \brief Move the instruction back to its original position. 2713 void undo() override { 2714 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2715 Position.insert(Inst); 2716 } 2717 }; 2718 2719 /// \brief Set the operand of an instruction with a new value. 2720 class OperandSetter : public TypePromotionAction { 2721 /// Original operand of the instruction. 2722 Value *Origin; 2723 /// Index of the modified instruction. 2724 unsigned Idx; 2725 2726 public: 2727 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2728 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2729 : TypePromotionAction(Inst), Idx(Idx) { 2730 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2731 << "for:" << *Inst << "\n" 2732 << "with:" << *NewVal << "\n"); 2733 Origin = Inst->getOperand(Idx); 2734 Inst->setOperand(Idx, NewVal); 2735 } 2736 2737 /// \brief Restore the original value of the instruction. 2738 void undo() override { 2739 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2740 << "for: " << *Inst << "\n" 2741 << "with: " << *Origin << "\n"); 2742 Inst->setOperand(Idx, Origin); 2743 } 2744 }; 2745 2746 /// \brief Hide the operands of an instruction. 2747 /// Do as if this instruction was not using any of its operands. 2748 class OperandsHider : public TypePromotionAction { 2749 /// The list of original operands. 2750 SmallVector<Value *, 4> OriginalValues; 2751 2752 public: 2753 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2754 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2755 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2756 unsigned NumOpnds = Inst->getNumOperands(); 2757 OriginalValues.reserve(NumOpnds); 2758 for (unsigned It = 0; It < NumOpnds; ++It) { 2759 // Save the current operand. 2760 Value *Val = Inst->getOperand(It); 2761 OriginalValues.push_back(Val); 2762 // Set a dummy one. 2763 // We could use OperandSetter here, but that would imply an overhead 2764 // that we are not willing to pay. 2765 Inst->setOperand(It, UndefValue::get(Val->getType())); 2766 } 2767 } 2768 2769 /// \brief Restore the original list of uses. 2770 void undo() override { 2771 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2772 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2773 Inst->setOperand(It, OriginalValues[It]); 2774 } 2775 }; 2776 2777 /// \brief Build a truncate instruction. 2778 class TruncBuilder : public TypePromotionAction { 2779 Value *Val; 2780 public: 2781 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2782 /// result. 2783 /// trunc Opnd to Ty. 2784 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2785 IRBuilder<> Builder(Opnd); 2786 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2787 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2788 } 2789 2790 /// \brief Get the built value. 2791 Value *getBuiltValue() { return Val; } 2792 2793 /// \brief Remove the built instruction. 2794 void undo() override { 2795 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2796 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2797 IVal->eraseFromParent(); 2798 } 2799 }; 2800 2801 /// \brief Build a sign extension instruction. 2802 class SExtBuilder : public TypePromotionAction { 2803 Value *Val; 2804 public: 2805 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2806 /// result. 2807 /// sext Opnd to Ty. 2808 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2809 : TypePromotionAction(InsertPt) { 2810 IRBuilder<> Builder(InsertPt); 2811 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2812 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2813 } 2814 2815 /// \brief Get the built value. 2816 Value *getBuiltValue() { return Val; } 2817 2818 /// \brief Remove the built instruction. 2819 void undo() override { 2820 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2821 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2822 IVal->eraseFromParent(); 2823 } 2824 }; 2825 2826 /// \brief Build a zero extension instruction. 2827 class ZExtBuilder : public TypePromotionAction { 2828 Value *Val; 2829 public: 2830 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2831 /// result. 2832 /// zext Opnd to Ty. 2833 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2834 : TypePromotionAction(InsertPt) { 2835 IRBuilder<> Builder(InsertPt); 2836 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2837 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2838 } 2839 2840 /// \brief Get the built value. 2841 Value *getBuiltValue() { return Val; } 2842 2843 /// \brief Remove the built instruction. 2844 void undo() override { 2845 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2846 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2847 IVal->eraseFromParent(); 2848 } 2849 }; 2850 2851 /// \brief Mutate an instruction to another type. 2852 class TypeMutator : public TypePromotionAction { 2853 /// Record the original type. 2854 Type *OrigTy; 2855 2856 public: 2857 /// \brief Mutate the type of \p Inst into \p NewTy. 2858 TypeMutator(Instruction *Inst, Type *NewTy) 2859 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2860 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2861 << "\n"); 2862 Inst->mutateType(NewTy); 2863 } 2864 2865 /// \brief Mutate the instruction back to its original type. 2866 void undo() override { 2867 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2868 << "\n"); 2869 Inst->mutateType(OrigTy); 2870 } 2871 }; 2872 2873 /// \brief Replace the uses of an instruction by another instruction. 2874 class UsesReplacer : public TypePromotionAction { 2875 /// Helper structure to keep track of the replaced uses. 2876 struct InstructionAndIdx { 2877 /// The instruction using the instruction. 2878 Instruction *Inst; 2879 /// The index where this instruction is used for Inst. 2880 unsigned Idx; 2881 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2882 : Inst(Inst), Idx(Idx) {} 2883 }; 2884 2885 /// Keep track of the original uses (pair Instruction, Index). 2886 SmallVector<InstructionAndIdx, 4> OriginalUses; 2887 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2888 2889 public: 2890 /// \brief Replace all the use of \p Inst by \p New. 2891 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2892 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2893 << "\n"); 2894 // Record the original uses. 2895 for (Use &U : Inst->uses()) { 2896 Instruction *UserI = cast<Instruction>(U.getUser()); 2897 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2898 } 2899 // Now, we can replace the uses. 2900 Inst->replaceAllUsesWith(New); 2901 } 2902 2903 /// \brief Reassign the original uses of Inst to Inst. 2904 void undo() override { 2905 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2906 for (use_iterator UseIt = OriginalUses.begin(), 2907 EndIt = OriginalUses.end(); 2908 UseIt != EndIt; ++UseIt) { 2909 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2910 } 2911 } 2912 }; 2913 2914 /// \brief Remove an instruction from the IR. 2915 class InstructionRemover : public TypePromotionAction { 2916 /// Original position of the instruction. 2917 InsertionHandler Inserter; 2918 /// Helper structure to hide all the link to the instruction. In other 2919 /// words, this helps to do as if the instruction was removed. 2920 OperandsHider Hider; 2921 /// Keep track of the uses replaced, if any. 2922 UsesReplacer *Replacer; 2923 /// Keep track of instructions removed. 2924 SetOfInstrs &RemovedInsts; 2925 2926 public: 2927 /// \brief Remove all reference of \p Inst and optinally replace all its 2928 /// uses with New. 2929 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2930 /// \pre If !Inst->use_empty(), then New != nullptr 2931 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2932 Value *New = nullptr) 2933 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2934 Replacer(nullptr), RemovedInsts(RemovedInsts) { 2935 if (New) 2936 Replacer = new UsesReplacer(Inst, New); 2937 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2938 RemovedInsts.insert(Inst); 2939 /// The instructions removed here will be freed after completing 2940 /// optimizeBlock() for all blocks as we need to keep track of the 2941 /// removed instructions during promotion. 2942 Inst->removeFromParent(); 2943 } 2944 2945 ~InstructionRemover() override { delete Replacer; } 2946 2947 /// \brief Resurrect the instruction and reassign it to the proper uses if 2948 /// new value was provided when build this action. 2949 void undo() override { 2950 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2951 Inserter.insert(Inst); 2952 if (Replacer) 2953 Replacer->undo(); 2954 Hider.undo(); 2955 RemovedInsts.erase(Inst); 2956 } 2957 }; 2958 2959 public: 2960 /// Restoration point. 2961 /// The restoration point is a pointer to an action instead of an iterator 2962 /// because the iterator may be invalidated but not the pointer. 2963 typedef const TypePromotionAction *ConstRestorationPt; 2964 2965 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2966 : RemovedInsts(RemovedInsts) {} 2967 2968 /// Advocate every changes made in that transaction. 2969 void commit(); 2970 /// Undo all the changes made after the given point. 2971 void rollback(ConstRestorationPt Point); 2972 /// Get the current restoration point. 2973 ConstRestorationPt getRestorationPoint() const; 2974 2975 /// \name API for IR modification with state keeping to support rollback. 2976 /// @{ 2977 /// Same as Instruction::setOperand. 2978 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2979 /// Same as Instruction::eraseFromParent. 2980 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2981 /// Same as Value::replaceAllUsesWith. 2982 void replaceAllUsesWith(Instruction *Inst, Value *New); 2983 /// Same as Value::mutateType. 2984 void mutateType(Instruction *Inst, Type *NewTy); 2985 /// Same as IRBuilder::createTrunc. 2986 Value *createTrunc(Instruction *Opnd, Type *Ty); 2987 /// Same as IRBuilder::createSExt. 2988 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2989 /// Same as IRBuilder::createZExt. 2990 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2991 /// Same as Instruction::moveBefore. 2992 void moveBefore(Instruction *Inst, Instruction *Before); 2993 /// @} 2994 2995 private: 2996 /// The ordered list of actions made so far. 2997 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2998 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2999 SetOfInstrs &RemovedInsts; 3000 }; 3001 3002 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3003 Value *NewVal) { 3004 Actions.push_back( 3005 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 3006 } 3007 3008 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3009 Value *NewVal) { 3010 Actions.push_back( 3011 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, 3012 RemovedInsts, NewVal)); 3013 } 3014 3015 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3016 Value *New) { 3017 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3018 } 3019 3020 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3021 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3022 } 3023 3024 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3025 Type *Ty) { 3026 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3027 Value *Val = Ptr->getBuiltValue(); 3028 Actions.push_back(std::move(Ptr)); 3029 return Val; 3030 } 3031 3032 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3033 Value *Opnd, Type *Ty) { 3034 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3035 Value *Val = Ptr->getBuiltValue(); 3036 Actions.push_back(std::move(Ptr)); 3037 return Val; 3038 } 3039 3040 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3041 Value *Opnd, Type *Ty) { 3042 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3043 Value *Val = Ptr->getBuiltValue(); 3044 Actions.push_back(std::move(Ptr)); 3045 return Val; 3046 } 3047 3048 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3049 Instruction *Before) { 3050 Actions.push_back( 3051 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 3052 } 3053 3054 TypePromotionTransaction::ConstRestorationPt 3055 TypePromotionTransaction::getRestorationPoint() const { 3056 return !Actions.empty() ? Actions.back().get() : nullptr; 3057 } 3058 3059 void TypePromotionTransaction::commit() { 3060 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 3061 ++It) 3062 (*It)->commit(); 3063 Actions.clear(); 3064 } 3065 3066 void TypePromotionTransaction::rollback( 3067 TypePromotionTransaction::ConstRestorationPt Point) { 3068 while (!Actions.empty() && Point != Actions.back().get()) { 3069 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3070 Curr->undo(); 3071 } 3072 } 3073 3074 /// \brief A helper class for matching addressing modes. 3075 /// 3076 /// This encapsulates the logic for matching the target-legal addressing modes. 3077 class AddressingModeMatcher { 3078 SmallVectorImpl<Instruction*> &AddrModeInsts; 3079 const TargetLowering &TLI; 3080 const TargetRegisterInfo &TRI; 3081 const DataLayout &DL; 3082 3083 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3084 /// the memory instruction that we're computing this address for. 3085 Type *AccessTy; 3086 unsigned AddrSpace; 3087 Instruction *MemoryInst; 3088 3089 /// This is the addressing mode that we're building up. This is 3090 /// part of the return value of this addressing mode matching stuff. 3091 ExtAddrMode &AddrMode; 3092 3093 /// The instructions inserted by other CodeGenPrepare optimizations. 3094 const SetOfInstrs &InsertedInsts; 3095 /// A map from the instructions to their type before promotion. 3096 InstrToOrigTy &PromotedInsts; 3097 /// The ongoing transaction where every action should be registered. 3098 TypePromotionTransaction &TPT; 3099 3100 /// This is set to true when we should not do profitability checks. 3101 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3102 bool IgnoreProfitability; 3103 3104 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 3105 const TargetLowering &TLI, 3106 const TargetRegisterInfo &TRI, 3107 Type *AT, unsigned AS, 3108 Instruction *MI, ExtAddrMode &AM, 3109 const SetOfInstrs &InsertedInsts, 3110 InstrToOrigTy &PromotedInsts, 3111 TypePromotionTransaction &TPT) 3112 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3113 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3114 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3115 PromotedInsts(PromotedInsts), TPT(TPT) { 3116 IgnoreProfitability = false; 3117 } 3118 public: 3119 3120 /// Find the maximal addressing mode that a load/store of V can fold, 3121 /// give an access type of AccessTy. This returns a list of involved 3122 /// instructions in AddrModeInsts. 3123 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3124 /// optimizations. 3125 /// \p PromotedInsts maps the instructions to their type before promotion. 3126 /// \p The ongoing transaction where every action should be registered. 3127 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 3128 Instruction *MemoryInst, 3129 SmallVectorImpl<Instruction*> &AddrModeInsts, 3130 const TargetLowering &TLI, 3131 const TargetRegisterInfo &TRI, 3132 const SetOfInstrs &InsertedInsts, 3133 InstrToOrigTy &PromotedInsts, 3134 TypePromotionTransaction &TPT) { 3135 ExtAddrMode Result; 3136 3137 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 3138 AccessTy, AS, 3139 MemoryInst, Result, InsertedInsts, 3140 PromotedInsts, TPT).matchAddr(V, 0); 3141 (void)Success; assert(Success && "Couldn't select *anything*?"); 3142 return Result; 3143 } 3144 private: 3145 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3146 bool matchAddr(Value *V, unsigned Depth); 3147 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 3148 bool *MovedAway = nullptr); 3149 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3150 ExtAddrMode &AMBefore, 3151 ExtAddrMode &AMAfter); 3152 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3153 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3154 Value *PromotedOperand) const; 3155 }; 3156 3157 /// Try adding ScaleReg*Scale to the current addressing mode. 3158 /// Return true and update AddrMode if this addr mode is legal for the target, 3159 /// false if not. 3160 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3161 unsigned Depth) { 3162 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3163 // mode. Just process that directly. 3164 if (Scale == 1) 3165 return matchAddr(ScaleReg, Depth); 3166 3167 // If the scale is 0, it takes nothing to add this. 3168 if (Scale == 0) 3169 return true; 3170 3171 // If we already have a scale of this value, we can add to it, otherwise, we 3172 // need an available scale field. 3173 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3174 return false; 3175 3176 ExtAddrMode TestAddrMode = AddrMode; 3177 3178 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3179 // [A+B + A*7] -> [B+A*8]. 3180 TestAddrMode.Scale += Scale; 3181 TestAddrMode.ScaledReg = ScaleReg; 3182 3183 // If the new address isn't legal, bail out. 3184 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3185 return false; 3186 3187 // It was legal, so commit it. 3188 AddrMode = TestAddrMode; 3189 3190 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3191 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3192 // X*Scale + C*Scale to addr mode. 3193 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3194 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3195 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3196 TestAddrMode.ScaledReg = AddLHS; 3197 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3198 3199 // If this addressing mode is legal, commit it and remember that we folded 3200 // this instruction. 3201 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3202 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3203 AddrMode = TestAddrMode; 3204 return true; 3205 } 3206 } 3207 3208 // Otherwise, not (x+c)*scale, just return what we have. 3209 return true; 3210 } 3211 3212 /// This is a little filter, which returns true if an addressing computation 3213 /// involving I might be folded into a load/store accessing it. 3214 /// This doesn't need to be perfect, but needs to accept at least 3215 /// the set of instructions that MatchOperationAddr can. 3216 static bool MightBeFoldableInst(Instruction *I) { 3217 switch (I->getOpcode()) { 3218 case Instruction::BitCast: 3219 case Instruction::AddrSpaceCast: 3220 // Don't touch identity bitcasts. 3221 if (I->getType() == I->getOperand(0)->getType()) 3222 return false; 3223 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3224 case Instruction::PtrToInt: 3225 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3226 return true; 3227 case Instruction::IntToPtr: 3228 // We know the input is intptr_t, so this is foldable. 3229 return true; 3230 case Instruction::Add: 3231 return true; 3232 case Instruction::Mul: 3233 case Instruction::Shl: 3234 // Can only handle X*C and X << C. 3235 return isa<ConstantInt>(I->getOperand(1)); 3236 case Instruction::GetElementPtr: 3237 return true; 3238 default: 3239 return false; 3240 } 3241 } 3242 3243 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3244 /// \note \p Val is assumed to be the product of some type promotion. 3245 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3246 /// to be legal, as the non-promoted value would have had the same state. 3247 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3248 const DataLayout &DL, Value *Val) { 3249 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3250 if (!PromotedInst) 3251 return false; 3252 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3253 // If the ISDOpcode is undefined, it was undefined before the promotion. 3254 if (!ISDOpcode) 3255 return true; 3256 // Otherwise, check if the promoted instruction is legal or not. 3257 return TLI.isOperationLegalOrCustom( 3258 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3259 } 3260 3261 /// \brief Hepler class to perform type promotion. 3262 class TypePromotionHelper { 3263 /// \brief Utility function to check whether or not a sign or zero extension 3264 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3265 /// either using the operands of \p Inst or promoting \p Inst. 3266 /// The type of the extension is defined by \p IsSExt. 3267 /// In other words, check if: 3268 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3269 /// #1 Promotion applies: 3270 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3271 /// #2 Operand reuses: 3272 /// ext opnd1 to ConsideredExtType. 3273 /// \p PromotedInsts maps the instructions to their type before promotion. 3274 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3275 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3276 3277 /// \brief Utility function to determine if \p OpIdx should be promoted when 3278 /// promoting \p Inst. 3279 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3280 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3281 } 3282 3283 /// \brief Utility function to promote the operand of \p Ext when this 3284 /// operand is a promotable trunc or sext or zext. 3285 /// \p PromotedInsts maps the instructions to their type before promotion. 3286 /// \p CreatedInstsCost[out] contains the cost of all instructions 3287 /// created to promote the operand of Ext. 3288 /// Newly added extensions are inserted in \p Exts. 3289 /// Newly added truncates are inserted in \p Truncs. 3290 /// Should never be called directly. 3291 /// \return The promoted value which is used instead of Ext. 3292 static Value *promoteOperandForTruncAndAnyExt( 3293 Instruction *Ext, TypePromotionTransaction &TPT, 3294 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3295 SmallVectorImpl<Instruction *> *Exts, 3296 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3297 3298 /// \brief Utility function to promote the operand of \p Ext when this 3299 /// operand is promotable and is not a supported trunc or sext. 3300 /// \p PromotedInsts maps the instructions to their type before promotion. 3301 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3302 /// created to promote the operand of Ext. 3303 /// Newly added extensions are inserted in \p Exts. 3304 /// Newly added truncates are inserted in \p Truncs. 3305 /// Should never be called directly. 3306 /// \return The promoted value which is used instead of Ext. 3307 static Value *promoteOperandForOther(Instruction *Ext, 3308 TypePromotionTransaction &TPT, 3309 InstrToOrigTy &PromotedInsts, 3310 unsigned &CreatedInstsCost, 3311 SmallVectorImpl<Instruction *> *Exts, 3312 SmallVectorImpl<Instruction *> *Truncs, 3313 const TargetLowering &TLI, bool IsSExt); 3314 3315 /// \see promoteOperandForOther. 3316 static Value *signExtendOperandForOther( 3317 Instruction *Ext, TypePromotionTransaction &TPT, 3318 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3319 SmallVectorImpl<Instruction *> *Exts, 3320 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3321 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3322 Exts, Truncs, TLI, true); 3323 } 3324 3325 /// \see promoteOperandForOther. 3326 static Value *zeroExtendOperandForOther( 3327 Instruction *Ext, TypePromotionTransaction &TPT, 3328 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3329 SmallVectorImpl<Instruction *> *Exts, 3330 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3331 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3332 Exts, Truncs, TLI, false); 3333 } 3334 3335 public: 3336 /// Type for the utility function that promotes the operand of Ext. 3337 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 3338 InstrToOrigTy &PromotedInsts, 3339 unsigned &CreatedInstsCost, 3340 SmallVectorImpl<Instruction *> *Exts, 3341 SmallVectorImpl<Instruction *> *Truncs, 3342 const TargetLowering &TLI); 3343 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3344 /// action to promote the operand of \p Ext instead of using Ext. 3345 /// \return NULL if no promotable action is possible with the current 3346 /// sign extension. 3347 /// \p InsertedInsts keeps track of all the instructions inserted by the 3348 /// other CodeGenPrepare optimizations. This information is important 3349 /// because we do not want to promote these instructions as CodeGenPrepare 3350 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3351 /// \p PromotedInsts maps the instructions to their type before promotion. 3352 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3353 const TargetLowering &TLI, 3354 const InstrToOrigTy &PromotedInsts); 3355 }; 3356 3357 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3358 Type *ConsideredExtType, 3359 const InstrToOrigTy &PromotedInsts, 3360 bool IsSExt) { 3361 // The promotion helper does not know how to deal with vector types yet. 3362 // To be able to fix that, we would need to fix the places where we 3363 // statically extend, e.g., constants and such. 3364 if (Inst->getType()->isVectorTy()) 3365 return false; 3366 3367 // We can always get through zext. 3368 if (isa<ZExtInst>(Inst)) 3369 return true; 3370 3371 // sext(sext) is ok too. 3372 if (IsSExt && isa<SExtInst>(Inst)) 3373 return true; 3374 3375 // We can get through binary operator, if it is legal. In other words, the 3376 // binary operator must have a nuw or nsw flag. 3377 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3378 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3379 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3380 (IsSExt && BinOp->hasNoSignedWrap()))) 3381 return true; 3382 3383 // Check if we can do the following simplification. 3384 // ext(trunc(opnd)) --> ext(opnd) 3385 if (!isa<TruncInst>(Inst)) 3386 return false; 3387 3388 Value *OpndVal = Inst->getOperand(0); 3389 // Check if we can use this operand in the extension. 3390 // If the type is larger than the result type of the extension, we cannot. 3391 if (!OpndVal->getType()->isIntegerTy() || 3392 OpndVal->getType()->getIntegerBitWidth() > 3393 ConsideredExtType->getIntegerBitWidth()) 3394 return false; 3395 3396 // If the operand of the truncate is not an instruction, we will not have 3397 // any information on the dropped bits. 3398 // (Actually we could for constant but it is not worth the extra logic). 3399 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3400 if (!Opnd) 3401 return false; 3402 3403 // Check if the source of the type is narrow enough. 3404 // I.e., check that trunc just drops extended bits of the same kind of 3405 // the extension. 3406 // #1 get the type of the operand and check the kind of the extended bits. 3407 const Type *OpndType; 3408 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3409 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3410 OpndType = It->second.getPointer(); 3411 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3412 OpndType = Opnd->getOperand(0)->getType(); 3413 else 3414 return false; 3415 3416 // #2 check that the truncate just drops extended bits. 3417 return Inst->getType()->getIntegerBitWidth() >= 3418 OpndType->getIntegerBitWidth(); 3419 } 3420 3421 TypePromotionHelper::Action TypePromotionHelper::getAction( 3422 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3423 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3424 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3425 "Unexpected instruction type"); 3426 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3427 Type *ExtTy = Ext->getType(); 3428 bool IsSExt = isa<SExtInst>(Ext); 3429 // If the operand of the extension is not an instruction, we cannot 3430 // get through. 3431 // If it, check we can get through. 3432 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3433 return nullptr; 3434 3435 // Do not promote if the operand has been added by codegenprepare. 3436 // Otherwise, it means we are undoing an optimization that is likely to be 3437 // redone, thus causing potential infinite loop. 3438 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3439 return nullptr; 3440 3441 // SExt or Trunc instructions. 3442 // Return the related handler. 3443 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3444 isa<ZExtInst>(ExtOpnd)) 3445 return promoteOperandForTruncAndAnyExt; 3446 3447 // Regular instruction. 3448 // Abort early if we will have to insert non-free instructions. 3449 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3450 return nullptr; 3451 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3452 } 3453 3454 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3455 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 3456 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3457 SmallVectorImpl<Instruction *> *Exts, 3458 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3459 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3460 // get through it and this method should not be called. 3461 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3462 Value *ExtVal = SExt; 3463 bool HasMergedNonFreeExt = false; 3464 if (isa<ZExtInst>(SExtOpnd)) { 3465 // Replace s|zext(zext(opnd)) 3466 // => zext(opnd). 3467 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3468 Value *ZExt = 3469 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3470 TPT.replaceAllUsesWith(SExt, ZExt); 3471 TPT.eraseInstruction(SExt); 3472 ExtVal = ZExt; 3473 } else { 3474 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3475 // => z|sext(opnd). 3476 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3477 } 3478 CreatedInstsCost = 0; 3479 3480 // Remove dead code. 3481 if (SExtOpnd->use_empty()) 3482 TPT.eraseInstruction(SExtOpnd); 3483 3484 // Check if the extension is still needed. 3485 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3486 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3487 if (ExtInst) { 3488 if (Exts) 3489 Exts->push_back(ExtInst); 3490 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3491 } 3492 return ExtVal; 3493 } 3494 3495 // At this point we have: ext ty opnd to ty. 3496 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3497 Value *NextVal = ExtInst->getOperand(0); 3498 TPT.eraseInstruction(ExtInst, NextVal); 3499 return NextVal; 3500 } 3501 3502 Value *TypePromotionHelper::promoteOperandForOther( 3503 Instruction *Ext, TypePromotionTransaction &TPT, 3504 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3505 SmallVectorImpl<Instruction *> *Exts, 3506 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3507 bool IsSExt) { 3508 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3509 // get through it and this method should not be called. 3510 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3511 CreatedInstsCost = 0; 3512 if (!ExtOpnd->hasOneUse()) { 3513 // ExtOpnd will be promoted. 3514 // All its uses, but Ext, will need to use a truncated value of the 3515 // promoted version. 3516 // Create the truncate now. 3517 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3518 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3519 ITrunc->removeFromParent(); 3520 // Insert it just after the definition. 3521 ITrunc->insertAfter(ExtOpnd); 3522 if (Truncs) 3523 Truncs->push_back(ITrunc); 3524 } 3525 3526 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3527 // Restore the operand of Ext (which has been replaced by the previous call 3528 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3529 TPT.setOperand(Ext, 0, ExtOpnd); 3530 } 3531 3532 // Get through the Instruction: 3533 // 1. Update its type. 3534 // 2. Replace the uses of Ext by Inst. 3535 // 3. Extend each operand that needs to be extended. 3536 3537 // Remember the original type of the instruction before promotion. 3538 // This is useful to know that the high bits are sign extended bits. 3539 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3540 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3541 // Step #1. 3542 TPT.mutateType(ExtOpnd, Ext->getType()); 3543 // Step #2. 3544 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3545 // Step #3. 3546 Instruction *ExtForOpnd = Ext; 3547 3548 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3549 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3550 ++OpIdx) { 3551 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3552 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3553 !shouldExtOperand(ExtOpnd, OpIdx)) { 3554 DEBUG(dbgs() << "No need to propagate\n"); 3555 continue; 3556 } 3557 // Check if we can statically extend the operand. 3558 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3559 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3560 DEBUG(dbgs() << "Statically extend\n"); 3561 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3562 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3563 : Cst->getValue().zext(BitWidth); 3564 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3565 continue; 3566 } 3567 // UndefValue are typed, so we have to statically sign extend them. 3568 if (isa<UndefValue>(Opnd)) { 3569 DEBUG(dbgs() << "Statically extend\n"); 3570 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3571 continue; 3572 } 3573 3574 // Otherwise we have to explicity sign extend the operand. 3575 // Check if Ext was reused to extend an operand. 3576 if (!ExtForOpnd) { 3577 // If yes, create a new one. 3578 DEBUG(dbgs() << "More operands to ext\n"); 3579 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3580 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3581 if (!isa<Instruction>(ValForExtOpnd)) { 3582 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3583 continue; 3584 } 3585 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3586 } 3587 if (Exts) 3588 Exts->push_back(ExtForOpnd); 3589 TPT.setOperand(ExtForOpnd, 0, Opnd); 3590 3591 // Move the sign extension before the insertion point. 3592 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3593 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3594 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3595 // If more sext are required, new instructions will have to be created. 3596 ExtForOpnd = nullptr; 3597 } 3598 if (ExtForOpnd == Ext) { 3599 DEBUG(dbgs() << "Extension is useless now\n"); 3600 TPT.eraseInstruction(Ext); 3601 } 3602 return ExtOpnd; 3603 } 3604 3605 /// Check whether or not promoting an instruction to a wider type is profitable. 3606 /// \p NewCost gives the cost of extension instructions created by the 3607 /// promotion. 3608 /// \p OldCost gives the cost of extension instructions before the promotion 3609 /// plus the number of instructions that have been 3610 /// matched in the addressing mode the promotion. 3611 /// \p PromotedOperand is the value that has been promoted. 3612 /// \return True if the promotion is profitable, false otherwise. 3613 bool AddressingModeMatcher::isPromotionProfitable( 3614 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3615 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3616 // The cost of the new extensions is greater than the cost of the 3617 // old extension plus what we folded. 3618 // This is not profitable. 3619 if (NewCost > OldCost) 3620 return false; 3621 if (NewCost < OldCost) 3622 return true; 3623 // The promotion is neutral but it may help folding the sign extension in 3624 // loads for instance. 3625 // Check that we did not create an illegal instruction. 3626 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3627 } 3628 3629 /// Given an instruction or constant expr, see if we can fold the operation 3630 /// into the addressing mode. If so, update the addressing mode and return 3631 /// true, otherwise return false without modifying AddrMode. 3632 /// If \p MovedAway is not NULL, it contains the information of whether or 3633 /// not AddrInst has to be folded into the addressing mode on success. 3634 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3635 /// because it has been moved away. 3636 /// Thus AddrInst must not be added in the matched instructions. 3637 /// This state can happen when AddrInst is a sext, since it may be moved away. 3638 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3639 /// not be referenced anymore. 3640 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3641 unsigned Depth, 3642 bool *MovedAway) { 3643 // Avoid exponential behavior on extremely deep expression trees. 3644 if (Depth >= 5) return false; 3645 3646 // By default, all matched instructions stay in place. 3647 if (MovedAway) 3648 *MovedAway = false; 3649 3650 switch (Opcode) { 3651 case Instruction::PtrToInt: 3652 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3653 return matchAddr(AddrInst->getOperand(0), Depth); 3654 case Instruction::IntToPtr: { 3655 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3656 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3657 // This inttoptr is a no-op if the integer type is pointer sized. 3658 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3659 return matchAddr(AddrInst->getOperand(0), Depth); 3660 return false; 3661 } 3662 case Instruction::BitCast: 3663 // BitCast is always a noop, and we can handle it as long as it is 3664 // int->int or pointer->pointer (we don't want int<->fp or something). 3665 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3666 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3667 // Don't touch identity bitcasts. These were probably put here by LSR, 3668 // and we don't want to mess around with them. Assume it knows what it 3669 // is doing. 3670 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3671 return matchAddr(AddrInst->getOperand(0), Depth); 3672 return false; 3673 case Instruction::AddrSpaceCast: { 3674 unsigned SrcAS 3675 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3676 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3677 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3678 return matchAddr(AddrInst->getOperand(0), Depth); 3679 return false; 3680 } 3681 case Instruction::Add: { 3682 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3683 ExtAddrMode BackupAddrMode = AddrMode; 3684 unsigned OldSize = AddrModeInsts.size(); 3685 // Start a transaction at this point. 3686 // The LHS may match but not the RHS. 3687 // Therefore, we need a higher level restoration point to undo partially 3688 // matched operation. 3689 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3690 TPT.getRestorationPoint(); 3691 3692 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3693 matchAddr(AddrInst->getOperand(0), Depth+1)) 3694 return true; 3695 3696 // Restore the old addr mode info. 3697 AddrMode = BackupAddrMode; 3698 AddrModeInsts.resize(OldSize); 3699 TPT.rollback(LastKnownGood); 3700 3701 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3702 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3703 matchAddr(AddrInst->getOperand(1), Depth+1)) 3704 return true; 3705 3706 // Otherwise we definitely can't merge the ADD in. 3707 AddrMode = BackupAddrMode; 3708 AddrModeInsts.resize(OldSize); 3709 TPT.rollback(LastKnownGood); 3710 break; 3711 } 3712 //case Instruction::Or: 3713 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3714 //break; 3715 case Instruction::Mul: 3716 case Instruction::Shl: { 3717 // Can only handle X*C and X << C. 3718 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3719 if (!RHS) 3720 return false; 3721 int64_t Scale = RHS->getSExtValue(); 3722 if (Opcode == Instruction::Shl) 3723 Scale = 1LL << Scale; 3724 3725 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3726 } 3727 case Instruction::GetElementPtr: { 3728 // Scan the GEP. We check it if it contains constant offsets and at most 3729 // one variable offset. 3730 int VariableOperand = -1; 3731 unsigned VariableScale = 0; 3732 3733 int64_t ConstantOffset = 0; 3734 gep_type_iterator GTI = gep_type_begin(AddrInst); 3735 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3736 if (StructType *STy = GTI.getStructTypeOrNull()) { 3737 const StructLayout *SL = DL.getStructLayout(STy); 3738 unsigned Idx = 3739 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3740 ConstantOffset += SL->getElementOffset(Idx); 3741 } else { 3742 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3743 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3744 ConstantOffset += CI->getSExtValue()*TypeSize; 3745 } else if (TypeSize) { // Scales of zero don't do anything. 3746 // We only allow one variable index at the moment. 3747 if (VariableOperand != -1) 3748 return false; 3749 3750 // Remember the variable index. 3751 VariableOperand = i; 3752 VariableScale = TypeSize; 3753 } 3754 } 3755 } 3756 3757 // A common case is for the GEP to only do a constant offset. In this case, 3758 // just add it to the disp field and check validity. 3759 if (VariableOperand == -1) { 3760 AddrMode.BaseOffs += ConstantOffset; 3761 if (ConstantOffset == 0 || 3762 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3763 // Check to see if we can fold the base pointer in too. 3764 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3765 return true; 3766 } 3767 AddrMode.BaseOffs -= ConstantOffset; 3768 return false; 3769 } 3770 3771 // Save the valid addressing mode in case we can't match. 3772 ExtAddrMode BackupAddrMode = AddrMode; 3773 unsigned OldSize = AddrModeInsts.size(); 3774 3775 // See if the scale and offset amount is valid for this target. 3776 AddrMode.BaseOffs += ConstantOffset; 3777 3778 // Match the base operand of the GEP. 3779 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3780 // If it couldn't be matched, just stuff the value in a register. 3781 if (AddrMode.HasBaseReg) { 3782 AddrMode = BackupAddrMode; 3783 AddrModeInsts.resize(OldSize); 3784 return false; 3785 } 3786 AddrMode.HasBaseReg = true; 3787 AddrMode.BaseReg = AddrInst->getOperand(0); 3788 } 3789 3790 // Match the remaining variable portion of the GEP. 3791 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3792 Depth)) { 3793 // If it couldn't be matched, try stuffing the base into a register 3794 // instead of matching it, and retrying the match of the scale. 3795 AddrMode = BackupAddrMode; 3796 AddrModeInsts.resize(OldSize); 3797 if (AddrMode.HasBaseReg) 3798 return false; 3799 AddrMode.HasBaseReg = true; 3800 AddrMode.BaseReg = AddrInst->getOperand(0); 3801 AddrMode.BaseOffs += ConstantOffset; 3802 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3803 VariableScale, Depth)) { 3804 // If even that didn't work, bail. 3805 AddrMode = BackupAddrMode; 3806 AddrModeInsts.resize(OldSize); 3807 return false; 3808 } 3809 } 3810 3811 return true; 3812 } 3813 case Instruction::SExt: 3814 case Instruction::ZExt: { 3815 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3816 if (!Ext) 3817 return false; 3818 3819 // Try to move this ext out of the way of the addressing mode. 3820 // Ask for a method for doing so. 3821 TypePromotionHelper::Action TPH = 3822 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3823 if (!TPH) 3824 return false; 3825 3826 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3827 TPT.getRestorationPoint(); 3828 unsigned CreatedInstsCost = 0; 3829 unsigned ExtCost = !TLI.isExtFree(Ext); 3830 Value *PromotedOperand = 3831 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3832 // SExt has been moved away. 3833 // Thus either it will be rematched later in the recursive calls or it is 3834 // gone. Anyway, we must not fold it into the addressing mode at this point. 3835 // E.g., 3836 // op = add opnd, 1 3837 // idx = ext op 3838 // addr = gep base, idx 3839 // is now: 3840 // promotedOpnd = ext opnd <- no match here 3841 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3842 // addr = gep base, op <- match 3843 if (MovedAway) 3844 *MovedAway = true; 3845 3846 assert(PromotedOperand && 3847 "TypePromotionHelper should have filtered out those cases"); 3848 3849 ExtAddrMode BackupAddrMode = AddrMode; 3850 unsigned OldSize = AddrModeInsts.size(); 3851 3852 if (!matchAddr(PromotedOperand, Depth) || 3853 // The total of the new cost is equal to the cost of the created 3854 // instructions. 3855 // The total of the old cost is equal to the cost of the extension plus 3856 // what we have saved in the addressing mode. 3857 !isPromotionProfitable(CreatedInstsCost, 3858 ExtCost + (AddrModeInsts.size() - OldSize), 3859 PromotedOperand)) { 3860 AddrMode = BackupAddrMode; 3861 AddrModeInsts.resize(OldSize); 3862 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3863 TPT.rollback(LastKnownGood); 3864 return false; 3865 } 3866 return true; 3867 } 3868 } 3869 return false; 3870 } 3871 3872 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3873 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3874 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3875 /// for the target. 3876 /// 3877 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3878 // Start a transaction at this point that we will rollback if the matching 3879 // fails. 3880 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3881 TPT.getRestorationPoint(); 3882 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3883 // Fold in immediates if legal for the target. 3884 AddrMode.BaseOffs += CI->getSExtValue(); 3885 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3886 return true; 3887 AddrMode.BaseOffs -= CI->getSExtValue(); 3888 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3889 // If this is a global variable, try to fold it into the addressing mode. 3890 if (!AddrMode.BaseGV) { 3891 AddrMode.BaseGV = GV; 3892 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3893 return true; 3894 AddrMode.BaseGV = nullptr; 3895 } 3896 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3897 ExtAddrMode BackupAddrMode = AddrMode; 3898 unsigned OldSize = AddrModeInsts.size(); 3899 3900 // Check to see if it is possible to fold this operation. 3901 bool MovedAway = false; 3902 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3903 // This instruction may have been moved away. If so, there is nothing 3904 // to check here. 3905 if (MovedAway) 3906 return true; 3907 // Okay, it's possible to fold this. Check to see if it is actually 3908 // *profitable* to do so. We use a simple cost model to avoid increasing 3909 // register pressure too much. 3910 if (I->hasOneUse() || 3911 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3912 AddrModeInsts.push_back(I); 3913 return true; 3914 } 3915 3916 // It isn't profitable to do this, roll back. 3917 //cerr << "NOT FOLDING: " << *I; 3918 AddrMode = BackupAddrMode; 3919 AddrModeInsts.resize(OldSize); 3920 TPT.rollback(LastKnownGood); 3921 } 3922 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3923 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3924 return true; 3925 TPT.rollback(LastKnownGood); 3926 } else if (isa<ConstantPointerNull>(Addr)) { 3927 // Null pointer gets folded without affecting the addressing mode. 3928 return true; 3929 } 3930 3931 // Worse case, the target should support [reg] addressing modes. :) 3932 if (!AddrMode.HasBaseReg) { 3933 AddrMode.HasBaseReg = true; 3934 AddrMode.BaseReg = Addr; 3935 // Still check for legality in case the target supports [imm] but not [i+r]. 3936 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3937 return true; 3938 AddrMode.HasBaseReg = false; 3939 AddrMode.BaseReg = nullptr; 3940 } 3941 3942 // If the base register is already taken, see if we can do [r+r]. 3943 if (AddrMode.Scale == 0) { 3944 AddrMode.Scale = 1; 3945 AddrMode.ScaledReg = Addr; 3946 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3947 return true; 3948 AddrMode.Scale = 0; 3949 AddrMode.ScaledReg = nullptr; 3950 } 3951 // Couldn't match. 3952 TPT.rollback(LastKnownGood); 3953 return false; 3954 } 3955 3956 /// Check to see if all uses of OpVal by the specified inline asm call are due 3957 /// to memory operands. If so, return true, otherwise return false. 3958 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3959 const TargetLowering &TLI, 3960 const TargetRegisterInfo &TRI) { 3961 const Function *F = CI->getFunction(); 3962 TargetLowering::AsmOperandInfoVector TargetConstraints = 3963 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3964 ImmutableCallSite(CI)); 3965 3966 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3967 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3968 3969 // Compute the constraint code and ConstraintType to use. 3970 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3971 3972 // If this asm operand is our Value*, and if it isn't an indirect memory 3973 // operand, we can't fold it! 3974 if (OpInfo.CallOperandVal == OpVal && 3975 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3976 !OpInfo.isIndirect)) 3977 return false; 3978 } 3979 3980 return true; 3981 } 3982 3983 /// Recursively walk all the uses of I until we find a memory use. 3984 /// If we find an obviously non-foldable instruction, return true. 3985 /// Add the ultimately found memory instructions to MemoryUses. 3986 static bool FindAllMemoryUses( 3987 Instruction *I, 3988 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3989 SmallPtrSetImpl<Instruction *> &ConsideredInsts, 3990 const TargetLowering &TLI, const TargetRegisterInfo &TRI) { 3991 // If we already considered this instruction, we're done. 3992 if (!ConsideredInsts.insert(I).second) 3993 return false; 3994 3995 // If this is an obviously unfoldable instruction, bail out. 3996 if (!MightBeFoldableInst(I)) 3997 return true; 3998 3999 const bool OptSize = I->getFunction()->optForSize(); 4000 4001 // Loop over all the uses, recursively processing them. 4002 for (Use &U : I->uses()) { 4003 Instruction *UserI = cast<Instruction>(U.getUser()); 4004 4005 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4006 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4007 continue; 4008 } 4009 4010 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4011 unsigned opNo = U.getOperandNo(); 4012 if (opNo != StoreInst::getPointerOperandIndex()) 4013 return true; // Storing addr, not into addr. 4014 MemoryUses.push_back(std::make_pair(SI, opNo)); 4015 continue; 4016 } 4017 4018 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4019 unsigned opNo = U.getOperandNo(); 4020 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4021 return true; // Storing addr, not into addr. 4022 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4023 continue; 4024 } 4025 4026 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4027 unsigned opNo = U.getOperandNo(); 4028 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4029 return true; // Storing addr, not into addr. 4030 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4031 continue; 4032 } 4033 4034 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4035 // If this is a cold call, we can sink the addressing calculation into 4036 // the cold path. See optimizeCallInst 4037 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4038 continue; 4039 4040 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4041 if (!IA) return true; 4042 4043 // If this is a memory operand, we're cool, otherwise bail out. 4044 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4045 return true; 4046 continue; 4047 } 4048 4049 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI)) 4050 return true; 4051 } 4052 4053 return false; 4054 } 4055 4056 /// Return true if Val is already known to be live at the use site that we're 4057 /// folding it into. If so, there is no cost to include it in the addressing 4058 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4059 /// instruction already. 4060 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4061 Value *KnownLive2) { 4062 // If Val is either of the known-live values, we know it is live! 4063 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4064 return true; 4065 4066 // All values other than instructions and arguments (e.g. constants) are live. 4067 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4068 4069 // If Val is a constant sized alloca in the entry block, it is live, this is 4070 // true because it is just a reference to the stack/frame pointer, which is 4071 // live for the whole function. 4072 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4073 if (AI->isStaticAlloca()) 4074 return true; 4075 4076 // Check to see if this value is already used in the memory instruction's 4077 // block. If so, it's already live into the block at the very least, so we 4078 // can reasonably fold it. 4079 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4080 } 4081 4082 /// It is possible for the addressing mode of the machine to fold the specified 4083 /// instruction into a load or store that ultimately uses it. 4084 /// However, the specified instruction has multiple uses. 4085 /// Given this, it may actually increase register pressure to fold it 4086 /// into the load. For example, consider this code: 4087 /// 4088 /// X = ... 4089 /// Y = X+1 4090 /// use(Y) -> nonload/store 4091 /// Z = Y+1 4092 /// load Z 4093 /// 4094 /// In this case, Y has multiple uses, and can be folded into the load of Z 4095 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4096 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4097 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4098 /// number of computations either. 4099 /// 4100 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4101 /// X was live across 'load Z' for other reasons, we actually *would* want to 4102 /// fold the addressing mode in the Z case. This would make Y die earlier. 4103 bool AddressingModeMatcher:: 4104 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4105 ExtAddrMode &AMAfter) { 4106 if (IgnoreProfitability) return true; 4107 4108 // AMBefore is the addressing mode before this instruction was folded into it, 4109 // and AMAfter is the addressing mode after the instruction was folded. Get 4110 // the set of registers referenced by AMAfter and subtract out those 4111 // referenced by AMBefore: this is the set of values which folding in this 4112 // address extends the lifetime of. 4113 // 4114 // Note that there are only two potential values being referenced here, 4115 // BaseReg and ScaleReg (global addresses are always available, as are any 4116 // folded immediates). 4117 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4118 4119 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4120 // lifetime wasn't extended by adding this instruction. 4121 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4122 BaseReg = nullptr; 4123 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4124 ScaledReg = nullptr; 4125 4126 // If folding this instruction (and it's subexprs) didn't extend any live 4127 // ranges, we're ok with it. 4128 if (!BaseReg && !ScaledReg) 4129 return true; 4130 4131 // If all uses of this instruction can have the address mode sunk into them, 4132 // we can remove the addressing mode and effectively trade one live register 4133 // for another (at worst.) In this context, folding an addressing mode into 4134 // the use is just a particularly nice way of sinking it. 4135 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4136 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4137 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4138 return false; // Has a non-memory, non-foldable use! 4139 4140 // Now that we know that all uses of this instruction are part of a chain of 4141 // computation involving only operations that could theoretically be folded 4142 // into a memory use, loop over each of these memory operation uses and see 4143 // if they could *actually* fold the instruction. The assumption is that 4144 // addressing modes are cheap and that duplicating the computation involved 4145 // many times is worthwhile, even on a fastpath. For sinking candidates 4146 // (i.e. cold call sites), this serves as a way to prevent excessive code 4147 // growth since most architectures have some reasonable small and fast way to 4148 // compute an effective address. (i.e LEA on x86) 4149 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4150 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4151 Instruction *User = MemoryUses[i].first; 4152 unsigned OpNo = MemoryUses[i].second; 4153 4154 // Get the access type of this use. If the use isn't a pointer, we don't 4155 // know what it accesses. 4156 Value *Address = User->getOperand(OpNo); 4157 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4158 if (!AddrTy) 4159 return false; 4160 Type *AddressAccessTy = AddrTy->getElementType(); 4161 unsigned AS = AddrTy->getAddressSpace(); 4162 4163 // Do a match against the root of this address, ignoring profitability. This 4164 // will tell us if the addressing mode for the memory operation will 4165 // *actually* cover the shared instruction. 4166 ExtAddrMode Result; 4167 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4168 TPT.getRestorationPoint(); 4169 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4170 AddressAccessTy, AS, 4171 MemoryInst, Result, InsertedInsts, 4172 PromotedInsts, TPT); 4173 Matcher.IgnoreProfitability = true; 4174 bool Success = Matcher.matchAddr(Address, 0); 4175 (void)Success; assert(Success && "Couldn't select *anything*?"); 4176 4177 // The match was to check the profitability, the changes made are not 4178 // part of the original matcher. Therefore, they should be dropped 4179 // otherwise the original matcher will not present the right state. 4180 TPT.rollback(LastKnownGood); 4181 4182 // If the match didn't cover I, then it won't be shared by it. 4183 if (!is_contained(MatchedAddrModeInsts, I)) 4184 return false; 4185 4186 MatchedAddrModeInsts.clear(); 4187 } 4188 4189 return true; 4190 } 4191 4192 } // end anonymous namespace 4193 4194 /// Return true if the specified values are defined in a 4195 /// different basic block than BB. 4196 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4197 if (Instruction *I = dyn_cast<Instruction>(V)) 4198 return I->getParent() != BB; 4199 return false; 4200 } 4201 4202 /// Sink addressing mode computation immediate before MemoryInst if doing so 4203 /// can be done without increasing register pressure. The need for the 4204 /// register pressure constraint means this can end up being an all or nothing 4205 /// decision for all uses of the same addressing computation. 4206 /// 4207 /// Load and Store Instructions often have addressing modes that can do 4208 /// significant amounts of computation. As such, instruction selection will try 4209 /// to get the load or store to do as much computation as possible for the 4210 /// program. The problem is that isel can only see within a single block. As 4211 /// such, we sink as much legal addressing mode work into the block as possible. 4212 /// 4213 /// This method is used to optimize both load/store and inline asms with memory 4214 /// operands. It's also used to sink addressing computations feeding into cold 4215 /// call sites into their (cold) basic block. 4216 /// 4217 /// The motivation for handling sinking into cold blocks is that doing so can 4218 /// both enable other address mode sinking (by satisfying the register pressure 4219 /// constraint above), and reduce register pressure globally (by removing the 4220 /// addressing mode computation from the fast path entirely.). 4221 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4222 Type *AccessTy, unsigned AddrSpace) { 4223 Value *Repl = Addr; 4224 4225 // Try to collapse single-value PHI nodes. This is necessary to undo 4226 // unprofitable PRE transformations. 4227 SmallVector<Value*, 8> worklist; 4228 SmallPtrSet<Value*, 16> Visited; 4229 worklist.push_back(Addr); 4230 4231 // Use a worklist to iteratively look through PHI nodes, and ensure that 4232 // the addressing mode obtained from the non-PHI roots of the graph 4233 // are equivalent. 4234 Value *Consensus = nullptr; 4235 unsigned NumUsesConsensus = 0; 4236 bool IsNumUsesConsensusValid = false; 4237 SmallVector<Instruction*, 16> AddrModeInsts; 4238 ExtAddrMode AddrMode; 4239 TypePromotionTransaction TPT(RemovedInsts); 4240 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4241 TPT.getRestorationPoint(); 4242 while (!worklist.empty()) { 4243 Value *V = worklist.back(); 4244 worklist.pop_back(); 4245 4246 // Break use-def graph loops. 4247 if (!Visited.insert(V).second) { 4248 Consensus = nullptr; 4249 break; 4250 } 4251 4252 // For a PHI node, push all of its incoming values. 4253 if (PHINode *P = dyn_cast<PHINode>(V)) { 4254 for (Value *IncValue : P->incoming_values()) 4255 worklist.push_back(IncValue); 4256 continue; 4257 } 4258 4259 // For non-PHIs, determine the addressing mode being computed. Note that 4260 // the result may differ depending on what other uses our candidate 4261 // addressing instructions might have. 4262 SmallVector<Instruction*, 16> NewAddrModeInsts; 4263 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4264 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TLI, *TRI, 4265 InsertedInsts, PromotedInsts, TPT); 4266 4267 // This check is broken into two cases with very similar code to avoid using 4268 // getNumUses() as much as possible. Some values have a lot of uses, so 4269 // calling getNumUses() unconditionally caused a significant compile-time 4270 // regression. 4271 if (!Consensus) { 4272 Consensus = V; 4273 AddrMode = NewAddrMode; 4274 AddrModeInsts = NewAddrModeInsts; 4275 continue; 4276 } else if (NewAddrMode == AddrMode) { 4277 if (!IsNumUsesConsensusValid) { 4278 NumUsesConsensus = Consensus->getNumUses(); 4279 IsNumUsesConsensusValid = true; 4280 } 4281 4282 // Ensure that the obtained addressing mode is equivalent to that obtained 4283 // for all other roots of the PHI traversal. Also, when choosing one 4284 // such root as representative, select the one with the most uses in order 4285 // to keep the cost modeling heuristics in AddressingModeMatcher 4286 // applicable. 4287 unsigned NumUses = V->getNumUses(); 4288 if (NumUses > NumUsesConsensus) { 4289 Consensus = V; 4290 NumUsesConsensus = NumUses; 4291 AddrModeInsts = NewAddrModeInsts; 4292 } 4293 continue; 4294 } 4295 4296 Consensus = nullptr; 4297 break; 4298 } 4299 4300 // If the addressing mode couldn't be determined, or if multiple different 4301 // ones were determined, bail out now. 4302 if (!Consensus) { 4303 TPT.rollback(LastKnownGood); 4304 return false; 4305 } 4306 TPT.commit(); 4307 4308 // If all the instructions matched are already in this BB, don't do anything. 4309 if (none_of(AddrModeInsts, [&](Value *V) { 4310 return IsNonLocalValue(V, MemoryInst->getParent()); 4311 })) { 4312 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4313 return false; 4314 } 4315 4316 // Insert this computation right after this user. Since our caller is 4317 // scanning from the top of the BB to the bottom, reuse of the expr are 4318 // guaranteed to happen later. 4319 IRBuilder<> Builder(MemoryInst); 4320 4321 // Now that we determined the addressing expression we want to use and know 4322 // that we have to sink it into this block. Check to see if we have already 4323 // done this for some other load/store instr in this block. If so, reuse the 4324 // computation. 4325 Value *&SunkAddr = SunkAddrs[Addr]; 4326 if (SunkAddr) { 4327 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4328 << *MemoryInst << "\n"); 4329 if (SunkAddr->getType() != Addr->getType()) 4330 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4331 } else if (AddrSinkUsingGEPs || 4332 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4333 SubtargetInfo->useAA())) { 4334 // By default, we use the GEP-based method when AA is used later. This 4335 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4336 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4337 << *MemoryInst << "\n"); 4338 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4339 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4340 4341 // First, find the pointer. 4342 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4343 ResultPtr = AddrMode.BaseReg; 4344 AddrMode.BaseReg = nullptr; 4345 } 4346 4347 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4348 // We can't add more than one pointer together, nor can we scale a 4349 // pointer (both of which seem meaningless). 4350 if (ResultPtr || AddrMode.Scale != 1) 4351 return false; 4352 4353 ResultPtr = AddrMode.ScaledReg; 4354 AddrMode.Scale = 0; 4355 } 4356 4357 if (AddrMode.BaseGV) { 4358 if (ResultPtr) 4359 return false; 4360 4361 ResultPtr = AddrMode.BaseGV; 4362 } 4363 4364 // If the real base value actually came from an inttoptr, then the matcher 4365 // will look through it and provide only the integer value. In that case, 4366 // use it here. 4367 if (!ResultPtr && AddrMode.BaseReg) { 4368 ResultPtr = 4369 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 4370 AddrMode.BaseReg = nullptr; 4371 } else if (!ResultPtr && AddrMode.Scale == 1) { 4372 ResultPtr = 4373 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 4374 AddrMode.Scale = 0; 4375 } 4376 4377 if (!ResultPtr && 4378 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4379 SunkAddr = Constant::getNullValue(Addr->getType()); 4380 } else if (!ResultPtr) { 4381 return false; 4382 } else { 4383 Type *I8PtrTy = 4384 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4385 Type *I8Ty = Builder.getInt8Ty(); 4386 4387 // Start with the base register. Do this first so that subsequent address 4388 // matching finds it last, which will prevent it from trying to match it 4389 // as the scaled value in case it happens to be a mul. That would be 4390 // problematic if we've sunk a different mul for the scale, because then 4391 // we'd end up sinking both muls. 4392 if (AddrMode.BaseReg) { 4393 Value *V = AddrMode.BaseReg; 4394 if (V->getType() != IntPtrTy) 4395 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4396 4397 ResultIndex = V; 4398 } 4399 4400 // Add the scale value. 4401 if (AddrMode.Scale) { 4402 Value *V = AddrMode.ScaledReg; 4403 if (V->getType() == IntPtrTy) { 4404 // done. 4405 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4406 cast<IntegerType>(V->getType())->getBitWidth()) { 4407 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4408 } else { 4409 // It is only safe to sign extend the BaseReg if we know that the math 4410 // required to create it did not overflow before we extend it. Since 4411 // the original IR value was tossed in favor of a constant back when 4412 // the AddrMode was created we need to bail out gracefully if widths 4413 // do not match instead of extending it. 4414 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 4415 if (I && (ResultIndex != AddrMode.BaseReg)) 4416 I->eraseFromParent(); 4417 return false; 4418 } 4419 4420 if (AddrMode.Scale != 1) 4421 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4422 "sunkaddr"); 4423 if (ResultIndex) 4424 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4425 else 4426 ResultIndex = V; 4427 } 4428 4429 // Add in the Base Offset if present. 4430 if (AddrMode.BaseOffs) { 4431 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4432 if (ResultIndex) { 4433 // We need to add this separately from the scale above to help with 4434 // SDAG consecutive load/store merging. 4435 if (ResultPtr->getType() != I8PtrTy) 4436 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4437 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4438 } 4439 4440 ResultIndex = V; 4441 } 4442 4443 if (!ResultIndex) { 4444 SunkAddr = ResultPtr; 4445 } else { 4446 if (ResultPtr->getType() != I8PtrTy) 4447 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4448 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4449 } 4450 4451 if (SunkAddr->getType() != Addr->getType()) 4452 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4453 } 4454 } else { 4455 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4456 << *MemoryInst << "\n"); 4457 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4458 Value *Result = nullptr; 4459 4460 // Start with the base register. Do this first so that subsequent address 4461 // matching finds it last, which will prevent it from trying to match it 4462 // as the scaled value in case it happens to be a mul. That would be 4463 // problematic if we've sunk a different mul for the scale, because then 4464 // we'd end up sinking both muls. 4465 if (AddrMode.BaseReg) { 4466 Value *V = AddrMode.BaseReg; 4467 if (V->getType()->isPointerTy()) 4468 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4469 if (V->getType() != IntPtrTy) 4470 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4471 Result = V; 4472 } 4473 4474 // Add the scale value. 4475 if (AddrMode.Scale) { 4476 Value *V = AddrMode.ScaledReg; 4477 if (V->getType() == IntPtrTy) { 4478 // done. 4479 } else if (V->getType()->isPointerTy()) { 4480 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4481 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4482 cast<IntegerType>(V->getType())->getBitWidth()) { 4483 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4484 } else { 4485 // It is only safe to sign extend the BaseReg if we know that the math 4486 // required to create it did not overflow before we extend it. Since 4487 // the original IR value was tossed in favor of a constant back when 4488 // the AddrMode was created we need to bail out gracefully if widths 4489 // do not match instead of extending it. 4490 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4491 if (I && (Result != AddrMode.BaseReg)) 4492 I->eraseFromParent(); 4493 return false; 4494 } 4495 if (AddrMode.Scale != 1) 4496 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4497 "sunkaddr"); 4498 if (Result) 4499 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4500 else 4501 Result = V; 4502 } 4503 4504 // Add in the BaseGV if present. 4505 if (AddrMode.BaseGV) { 4506 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4507 if (Result) 4508 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4509 else 4510 Result = V; 4511 } 4512 4513 // Add in the Base Offset if present. 4514 if (AddrMode.BaseOffs) { 4515 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4516 if (Result) 4517 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4518 else 4519 Result = V; 4520 } 4521 4522 if (!Result) 4523 SunkAddr = Constant::getNullValue(Addr->getType()); 4524 else 4525 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4526 } 4527 4528 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4529 4530 // If we have no uses, recursively delete the value and all dead instructions 4531 // using it. 4532 if (Repl->use_empty()) { 4533 // This can cause recursive deletion, which can invalidate our iterator. 4534 // Use a WeakTrackingVH to hold onto it in case this happens. 4535 Value *CurValue = &*CurInstIterator; 4536 WeakTrackingVH IterHandle(CurValue); 4537 BasicBlock *BB = CurInstIterator->getParent(); 4538 4539 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4540 4541 if (IterHandle != CurValue) { 4542 // If the iterator instruction was recursively deleted, start over at the 4543 // start of the block. 4544 CurInstIterator = BB->begin(); 4545 SunkAddrs.clear(); 4546 } 4547 } 4548 ++NumMemoryInsts; 4549 return true; 4550 } 4551 4552 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4553 /// address computing into the block when possible / profitable. 4554 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4555 bool MadeChange = false; 4556 4557 const TargetRegisterInfo *TRI = 4558 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4559 TargetLowering::AsmOperandInfoVector TargetConstraints = 4560 TLI->ParseConstraints(*DL, TRI, CS); 4561 unsigned ArgNo = 0; 4562 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4563 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4564 4565 // Compute the constraint code and ConstraintType to use. 4566 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4567 4568 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4569 OpInfo.isIndirect) { 4570 Value *OpVal = CS->getArgOperand(ArgNo++); 4571 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4572 } else if (OpInfo.Type == InlineAsm::isInput) 4573 ArgNo++; 4574 } 4575 4576 return MadeChange; 4577 } 4578 4579 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4580 /// sign extensions. 4581 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4582 assert(!Val->use_empty() && "Input must have at least one use"); 4583 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4584 bool IsSExt = isa<SExtInst>(FirstUser); 4585 Type *ExtTy = FirstUser->getType(); 4586 for (const User *U : Val->users()) { 4587 const Instruction *UI = cast<Instruction>(U); 4588 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4589 return false; 4590 Type *CurTy = UI->getType(); 4591 // Same input and output types: Same instruction after CSE. 4592 if (CurTy == ExtTy) 4593 continue; 4594 4595 // If IsSExt is true, we are in this situation: 4596 // a = Val 4597 // b = sext ty1 a to ty2 4598 // c = sext ty1 a to ty3 4599 // Assuming ty2 is shorter than ty3, this could be turned into: 4600 // a = Val 4601 // b = sext ty1 a to ty2 4602 // c = sext ty2 b to ty3 4603 // However, the last sext is not free. 4604 if (IsSExt) 4605 return false; 4606 4607 // This is a ZExt, maybe this is free to extend from one type to another. 4608 // In that case, we would not account for a different use. 4609 Type *NarrowTy; 4610 Type *LargeTy; 4611 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4612 CurTy->getScalarType()->getIntegerBitWidth()) { 4613 NarrowTy = CurTy; 4614 LargeTy = ExtTy; 4615 } else { 4616 NarrowTy = ExtTy; 4617 LargeTy = CurTy; 4618 } 4619 4620 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4621 return false; 4622 } 4623 // All uses are the same or can be derived from one another for free. 4624 return true; 4625 } 4626 4627 /// \brief Try to speculatively promote extensions in \p Exts and continue 4628 /// promoting through newly promoted operands recursively as far as doing so is 4629 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4630 /// When some promotion happened, \p TPT contains the proper state to revert 4631 /// them. 4632 /// 4633 /// \return true if some promotion happened, false otherwise. 4634 bool CodeGenPrepare::tryToPromoteExts( 4635 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4636 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4637 unsigned CreatedInstsCost) { 4638 bool Promoted = false; 4639 4640 // Iterate over all the extensions to try to promote them. 4641 for (auto I : Exts) { 4642 // Early check if we directly have ext(load). 4643 if (isa<LoadInst>(I->getOperand(0))) { 4644 ProfitablyMovedExts.push_back(I); 4645 continue; 4646 } 4647 4648 // Check whether or not we want to do any promotion. The reason we have 4649 // this check inside the for loop is to catch the case where an extension 4650 // is directly fed by a load because in such case the extension can be moved 4651 // up without any promotion on its operands. 4652 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4653 return false; 4654 4655 // Get the action to perform the promotion. 4656 TypePromotionHelper::Action TPH = 4657 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4658 // Check if we can promote. 4659 if (!TPH) { 4660 // Save the current extension as we cannot move up through its operand. 4661 ProfitablyMovedExts.push_back(I); 4662 continue; 4663 } 4664 4665 // Save the current state. 4666 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4667 TPT.getRestorationPoint(); 4668 SmallVector<Instruction *, 4> NewExts; 4669 unsigned NewCreatedInstsCost = 0; 4670 unsigned ExtCost = !TLI->isExtFree(I); 4671 // Promote. 4672 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4673 &NewExts, nullptr, *TLI); 4674 assert(PromotedVal && 4675 "TypePromotionHelper should have filtered out those cases"); 4676 4677 // We would be able to merge only one extension in a load. 4678 // Therefore, if we have more than 1 new extension we heuristically 4679 // cut this search path, because it means we degrade the code quality. 4680 // With exactly 2, the transformation is neutral, because we will merge 4681 // one extension but leave one. However, we optimistically keep going, 4682 // because the new extension may be removed too. 4683 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4684 // FIXME: It would be possible to propagate a negative value instead of 4685 // conservatively ceiling it to 0. 4686 TotalCreatedInstsCost = 4687 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4688 if (!StressExtLdPromotion && 4689 (TotalCreatedInstsCost > 1 || 4690 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4691 // This promotion is not profitable, rollback to the previous state, and 4692 // save the current extension in ProfitablyMovedExts as the latest 4693 // speculative promotion turned out to be unprofitable. 4694 TPT.rollback(LastKnownGood); 4695 ProfitablyMovedExts.push_back(I); 4696 continue; 4697 } 4698 // Continue promoting NewExts as far as doing so is profitable. 4699 SmallVector<Instruction *, 2> NewlyMovedExts; 4700 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4701 bool NewPromoted = false; 4702 for (auto ExtInst : NewlyMovedExts) { 4703 Instruction *MovedExt = cast<Instruction>(ExtInst); 4704 Value *ExtOperand = MovedExt->getOperand(0); 4705 // If we have reached to a load, we need this extra profitability check 4706 // as it could potentially be merged into an ext(load). 4707 if (isa<LoadInst>(ExtOperand) && 4708 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4709 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4710 continue; 4711 4712 ProfitablyMovedExts.push_back(MovedExt); 4713 NewPromoted = true; 4714 } 4715 4716 // If none of speculative promotions for NewExts is profitable, rollback 4717 // and save the current extension (I) as the last profitable extension. 4718 if (!NewPromoted) { 4719 TPT.rollback(LastKnownGood); 4720 ProfitablyMovedExts.push_back(I); 4721 continue; 4722 } 4723 // The promotion is profitable. 4724 Promoted = true; 4725 } 4726 return Promoted; 4727 } 4728 4729 /// Merging redundant sexts when one is dominating the other. 4730 bool CodeGenPrepare::mergeSExts(Function &F) { 4731 DominatorTree DT(F); 4732 bool Changed = false; 4733 for (auto &Entry : ValToSExtendedUses) { 4734 SExts &Insts = Entry.second; 4735 SExts CurPts; 4736 for (Instruction *Inst : Insts) { 4737 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4738 Inst->getOperand(0) != Entry.first) 4739 continue; 4740 bool inserted = false; 4741 for (auto &Pt : CurPts) { 4742 if (DT.dominates(Inst, Pt)) { 4743 Pt->replaceAllUsesWith(Inst); 4744 RemovedInsts.insert(Pt); 4745 Pt->removeFromParent(); 4746 Pt = Inst; 4747 inserted = true; 4748 Changed = true; 4749 break; 4750 } 4751 if (!DT.dominates(Pt, Inst)) 4752 // Give up if we need to merge in a common dominator as the 4753 // expermients show it is not profitable. 4754 continue; 4755 Inst->replaceAllUsesWith(Pt); 4756 RemovedInsts.insert(Inst); 4757 Inst->removeFromParent(); 4758 inserted = true; 4759 Changed = true; 4760 break; 4761 } 4762 if (!inserted) 4763 CurPts.push_back(Inst); 4764 } 4765 } 4766 return Changed; 4767 } 4768 4769 /// Return true, if an ext(load) can be formed from an extension in 4770 /// \p MovedExts. 4771 bool CodeGenPrepare::canFormExtLd( 4772 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4773 Instruction *&Inst, bool HasPromoted) { 4774 for (auto *MovedExtInst : MovedExts) { 4775 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4776 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4777 Inst = MovedExtInst; 4778 break; 4779 } 4780 } 4781 if (!LI) 4782 return false; 4783 4784 // If they're already in the same block, there's nothing to do. 4785 // Make the cheap checks first if we did not promote. 4786 // If we promoted, we need to check if it is indeed profitable. 4787 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4788 return false; 4789 4790 EVT VT = TLI->getValueType(*DL, Inst->getType()); 4791 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4792 4793 // If the load has other users and the truncate is not free, this probably 4794 // isn't worthwhile. 4795 if (!LI->hasOneUse() && (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4796 !TLI->isTruncateFree(Inst->getType(), LI->getType())) 4797 return false; 4798 4799 // Check whether the target supports casts folded into loads. 4800 unsigned LType; 4801 if (isa<ZExtInst>(Inst)) 4802 LType = ISD::ZEXTLOAD; 4803 else { 4804 assert(isa<SExtInst>(Inst) && "Unexpected ext type!"); 4805 LType = ISD::SEXTLOAD; 4806 } 4807 4808 return TLI->isLoadExtLegal(LType, VT, LoadVT); 4809 } 4810 4811 /// Move a zext or sext fed by a load into the same basic block as the load, 4812 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4813 /// extend into the load. 4814 /// 4815 /// E.g., 4816 /// \code 4817 /// %ld = load i32* %addr 4818 /// %add = add nuw i32 %ld, 4 4819 /// %zext = zext i32 %add to i64 4820 // \endcode 4821 /// => 4822 /// \code 4823 /// %ld = load i32* %addr 4824 /// %zext = zext i32 %ld to i64 4825 /// %add = add nuw i64 %zext, 4 4826 /// \encode 4827 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4828 /// allow us to match zext(load i32*) to i64. 4829 /// 4830 /// Also, try to promote the computations used to obtain a sign extended 4831 /// value used into memory accesses. 4832 /// E.g., 4833 /// \code 4834 /// a = add nsw i32 b, 3 4835 /// d = sext i32 a to i64 4836 /// e = getelementptr ..., i64 d 4837 /// \endcode 4838 /// => 4839 /// \code 4840 /// f = sext i32 b to i64 4841 /// a = add nsw i64 f, 3 4842 /// e = getelementptr ..., i64 a 4843 /// \endcode 4844 /// 4845 /// \p Inst[in/out] the extension may be modified during the process if some 4846 /// promotions apply. 4847 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4848 // ExtLoad formation and address type promotion infrastructure requires TLI to 4849 // be effective. 4850 if (!TLI) 4851 return false; 4852 4853 bool AllowPromotionWithoutCommonHeader = false; 4854 /// See if it is an interesting sext operations for the address type 4855 /// promotion before trying to promote it, e.g., the ones with the right 4856 /// type and used in memory accesses. 4857 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4858 *Inst, AllowPromotionWithoutCommonHeader); 4859 TypePromotionTransaction TPT(RemovedInsts); 4860 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4861 TPT.getRestorationPoint(); 4862 SmallVector<Instruction *, 1> Exts; 4863 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4864 Exts.push_back(Inst); 4865 4866 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4867 4868 // Look for a load being extended. 4869 LoadInst *LI = nullptr; 4870 Instruction *ExtFedByLoad; 4871 4872 // Try to promote a chain of computation if it allows to form an extended 4873 // load. 4874 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4875 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4876 TPT.commit(); 4877 // Move the extend into the same block as the load 4878 ExtFedByLoad->removeFromParent(); 4879 ExtFedByLoad->insertAfter(LI); 4880 // CGP does not check if the zext would be speculatively executed when moved 4881 // to the same basic block as the load. Preserving its original location 4882 // would pessimize the debugging experience, as well as negatively impact 4883 // the quality of sample pgo. We don't want to use "line 0" as that has a 4884 // size cost in the line-table section and logically the zext can be seen as 4885 // part of the load. Therefore we conservatively reuse the same debug 4886 // location for the load and the zext. 4887 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4888 ++NumExtsMoved; 4889 Inst = ExtFedByLoad; 4890 return true; 4891 } 4892 4893 // Continue promoting SExts if known as considerable depending on targets. 4894 if (ATPConsiderable && 4895 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4896 HasPromoted, TPT, SpeculativelyMovedExts)) 4897 return true; 4898 4899 TPT.rollback(LastKnownGood); 4900 return false; 4901 } 4902 4903 // Perform address type promotion if doing so is profitable. 4904 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4905 // instructions that sign extended the same initial value. However, if 4906 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4907 // extension is just profitable. 4908 bool CodeGenPrepare::performAddressTypePromotion( 4909 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4910 bool HasPromoted, TypePromotionTransaction &TPT, 4911 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4912 bool Promoted = false; 4913 SmallPtrSet<Instruction *, 1> UnhandledExts; 4914 bool AllSeenFirst = true; 4915 for (auto I : SpeculativelyMovedExts) { 4916 Value *HeadOfChain = I->getOperand(0); 4917 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4918 SeenChainsForSExt.find(HeadOfChain); 4919 // If there is an unhandled SExt which has the same header, try to promote 4920 // it as well. 4921 if (AlreadySeen != SeenChainsForSExt.end()) { 4922 if (AlreadySeen->second != nullptr) 4923 UnhandledExts.insert(AlreadySeen->second); 4924 AllSeenFirst = false; 4925 } 4926 } 4927 4928 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4929 SpeculativelyMovedExts.size() == 1)) { 4930 TPT.commit(); 4931 if (HasPromoted) 4932 Promoted = true; 4933 for (auto I : SpeculativelyMovedExts) { 4934 Value *HeadOfChain = I->getOperand(0); 4935 SeenChainsForSExt[HeadOfChain] = nullptr; 4936 ValToSExtendedUses[HeadOfChain].push_back(I); 4937 } 4938 // Update Inst as promotion happen. 4939 Inst = SpeculativelyMovedExts.pop_back_val(); 4940 } else { 4941 // This is the first chain visited from the header, keep the current chain 4942 // as unhandled. Defer to promote this until we encounter another SExt 4943 // chain derived from the same header. 4944 for (auto I : SpeculativelyMovedExts) { 4945 Value *HeadOfChain = I->getOperand(0); 4946 SeenChainsForSExt[HeadOfChain] = Inst; 4947 } 4948 return false; 4949 } 4950 4951 if (!AllSeenFirst && !UnhandledExts.empty()) 4952 for (auto VisitedSExt : UnhandledExts) { 4953 if (RemovedInsts.count(VisitedSExt)) 4954 continue; 4955 TypePromotionTransaction TPT(RemovedInsts); 4956 SmallVector<Instruction *, 1> Exts; 4957 SmallVector<Instruction *, 2> Chains; 4958 Exts.push_back(VisitedSExt); 4959 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 4960 TPT.commit(); 4961 if (HasPromoted) 4962 Promoted = true; 4963 for (auto I : Chains) { 4964 Value *HeadOfChain = I->getOperand(0); 4965 // Mark this as handled. 4966 SeenChainsForSExt[HeadOfChain] = nullptr; 4967 ValToSExtendedUses[HeadOfChain].push_back(I); 4968 } 4969 } 4970 return Promoted; 4971 } 4972 4973 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4974 BasicBlock *DefBB = I->getParent(); 4975 4976 // If the result of a {s|z}ext and its source are both live out, rewrite all 4977 // other uses of the source with result of extension. 4978 Value *Src = I->getOperand(0); 4979 if (Src->hasOneUse()) 4980 return false; 4981 4982 // Only do this xform if truncating is free. 4983 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4984 return false; 4985 4986 // Only safe to perform the optimization if the source is also defined in 4987 // this block. 4988 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4989 return false; 4990 4991 bool DefIsLiveOut = false; 4992 for (User *U : I->users()) { 4993 Instruction *UI = cast<Instruction>(U); 4994 4995 // Figure out which BB this ext is used in. 4996 BasicBlock *UserBB = UI->getParent(); 4997 if (UserBB == DefBB) continue; 4998 DefIsLiveOut = true; 4999 break; 5000 } 5001 if (!DefIsLiveOut) 5002 return false; 5003 5004 // Make sure none of the uses are PHI nodes. 5005 for (User *U : Src->users()) { 5006 Instruction *UI = cast<Instruction>(U); 5007 BasicBlock *UserBB = UI->getParent(); 5008 if (UserBB == DefBB) continue; 5009 // Be conservative. We don't want this xform to end up introducing 5010 // reloads just before load / store instructions. 5011 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5012 return false; 5013 } 5014 5015 // InsertedTruncs - Only insert one trunc in each block once. 5016 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5017 5018 bool MadeChange = false; 5019 for (Use &U : Src->uses()) { 5020 Instruction *User = cast<Instruction>(U.getUser()); 5021 5022 // Figure out which BB this ext is used in. 5023 BasicBlock *UserBB = User->getParent(); 5024 if (UserBB == DefBB) continue; 5025 5026 // Both src and def are live in this block. Rewrite the use. 5027 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5028 5029 if (!InsertedTrunc) { 5030 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5031 assert(InsertPt != UserBB->end()); 5032 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5033 InsertedInsts.insert(InsertedTrunc); 5034 } 5035 5036 // Replace a use of the {s|z}ext source with a use of the result. 5037 U = InsertedTrunc; 5038 ++NumExtUses; 5039 MadeChange = true; 5040 } 5041 5042 return MadeChange; 5043 } 5044 5045 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5046 // just after the load if the target can fold this into one extload instruction, 5047 // with the hope of eliminating some of the other later "and" instructions using 5048 // the loaded value. "and"s that are made trivially redundant by the insertion 5049 // of the new "and" are removed by this function, while others (e.g. those whose 5050 // path from the load goes through a phi) are left for isel to potentially 5051 // remove. 5052 // 5053 // For example: 5054 // 5055 // b0: 5056 // x = load i32 5057 // ... 5058 // b1: 5059 // y = and x, 0xff 5060 // z = use y 5061 // 5062 // becomes: 5063 // 5064 // b0: 5065 // x = load i32 5066 // x' = and x, 0xff 5067 // ... 5068 // b1: 5069 // z = use x' 5070 // 5071 // whereas: 5072 // 5073 // b0: 5074 // x1 = load i32 5075 // ... 5076 // b1: 5077 // x2 = load i32 5078 // ... 5079 // b2: 5080 // x = phi x1, x2 5081 // y = and x, 0xff 5082 // 5083 // becomes (after a call to optimizeLoadExt for each load): 5084 // 5085 // b0: 5086 // x1 = load i32 5087 // x1' = and x1, 0xff 5088 // ... 5089 // b1: 5090 // x2 = load i32 5091 // x2' = and x2, 0xff 5092 // ... 5093 // b2: 5094 // x = phi x1', x2' 5095 // y = and x, 0xff 5096 // 5097 5098 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5099 5100 if (!Load->isSimple() || 5101 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5102 return false; 5103 5104 // Skip loads we've already transformed. 5105 if (Load->hasOneUse() && 5106 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5107 return false; 5108 5109 // Look at all uses of Load, looking through phis, to determine how many bits 5110 // of the loaded value are needed. 5111 SmallVector<Instruction *, 8> WorkList; 5112 SmallPtrSet<Instruction *, 16> Visited; 5113 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5114 for (auto *U : Load->users()) 5115 WorkList.push_back(cast<Instruction>(U)); 5116 5117 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5118 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5119 APInt DemandBits(BitWidth, 0); 5120 APInt WidestAndBits(BitWidth, 0); 5121 5122 while (!WorkList.empty()) { 5123 Instruction *I = WorkList.back(); 5124 WorkList.pop_back(); 5125 5126 // Break use-def graph loops. 5127 if (!Visited.insert(I).second) 5128 continue; 5129 5130 // For a PHI node, push all of its users. 5131 if (auto *Phi = dyn_cast<PHINode>(I)) { 5132 for (auto *U : Phi->users()) 5133 WorkList.push_back(cast<Instruction>(U)); 5134 continue; 5135 } 5136 5137 switch (I->getOpcode()) { 5138 case llvm::Instruction::And: { 5139 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5140 if (!AndC) 5141 return false; 5142 APInt AndBits = AndC->getValue(); 5143 DemandBits |= AndBits; 5144 // Keep track of the widest and mask we see. 5145 if (AndBits.ugt(WidestAndBits)) 5146 WidestAndBits = AndBits; 5147 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5148 AndsToMaybeRemove.push_back(I); 5149 break; 5150 } 5151 5152 case llvm::Instruction::Shl: { 5153 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5154 if (!ShlC) 5155 return false; 5156 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5157 DemandBits.setLowBits(BitWidth - ShiftAmt); 5158 break; 5159 } 5160 5161 case llvm::Instruction::Trunc: { 5162 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5163 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5164 DemandBits.setLowBits(TruncBitWidth); 5165 break; 5166 } 5167 5168 default: 5169 return false; 5170 } 5171 } 5172 5173 uint32_t ActiveBits = DemandBits.getActiveBits(); 5174 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5175 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5176 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5177 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5178 // followed by an AND. 5179 // TODO: Look into removing this restriction by fixing backends to either 5180 // return false for isLoadExtLegal for i1 or have them select this pattern to 5181 // a single instruction. 5182 // 5183 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5184 // mask, since these are the only ands that will be removed by isel. 5185 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5186 WidestAndBits != DemandBits) 5187 return false; 5188 5189 LLVMContext &Ctx = Load->getType()->getContext(); 5190 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5191 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5192 5193 // Reject cases that won't be matched as extloads. 5194 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5195 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5196 return false; 5197 5198 IRBuilder<> Builder(Load->getNextNode()); 5199 auto *NewAnd = dyn_cast<Instruction>( 5200 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5201 // Mark this instruction as "inserted by CGP", so that other 5202 // optimizations don't touch it. 5203 InsertedInsts.insert(NewAnd); 5204 5205 // Replace all uses of load with new and (except for the use of load in the 5206 // new and itself). 5207 Load->replaceAllUsesWith(NewAnd); 5208 NewAnd->setOperand(0, Load); 5209 5210 // Remove any and instructions that are now redundant. 5211 for (auto *And : AndsToMaybeRemove) 5212 // Check that the and mask is the same as the one we decided to put on the 5213 // new and. 5214 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5215 And->replaceAllUsesWith(NewAnd); 5216 if (&*CurInstIterator == And) 5217 CurInstIterator = std::next(And->getIterator()); 5218 And->eraseFromParent(); 5219 ++NumAndUses; 5220 } 5221 5222 ++NumAndsAdded; 5223 return true; 5224 } 5225 5226 /// Check if V (an operand of a select instruction) is an expensive instruction 5227 /// that is only used once. 5228 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5229 auto *I = dyn_cast<Instruction>(V); 5230 // If it's safe to speculatively execute, then it should not have side 5231 // effects; therefore, it's safe to sink and possibly *not* execute. 5232 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5233 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5234 } 5235 5236 /// Returns true if a SelectInst should be turned into an explicit branch. 5237 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5238 const TargetLowering *TLI, 5239 SelectInst *SI) { 5240 // If even a predictable select is cheap, then a branch can't be cheaper. 5241 if (!TLI->isPredictableSelectExpensive()) 5242 return false; 5243 5244 // FIXME: This should use the same heuristics as IfConversion to determine 5245 // whether a select is better represented as a branch. 5246 5247 // If metadata tells us that the select condition is obviously predictable, 5248 // then we want to replace the select with a branch. 5249 uint64_t TrueWeight, FalseWeight; 5250 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5251 uint64_t Max = std::max(TrueWeight, FalseWeight); 5252 uint64_t Sum = TrueWeight + FalseWeight; 5253 if (Sum != 0) { 5254 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5255 if (Probability > TLI->getPredictableBranchThreshold()) 5256 return true; 5257 } 5258 } 5259 5260 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5261 5262 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5263 // comparison condition. If the compare has more than one use, there's 5264 // probably another cmov or setcc around, so it's not worth emitting a branch. 5265 if (!Cmp || !Cmp->hasOneUse()) 5266 return false; 5267 5268 // If either operand of the select is expensive and only needed on one side 5269 // of the select, we should form a branch. 5270 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5271 sinkSelectOperand(TTI, SI->getFalseValue())) 5272 return true; 5273 5274 return false; 5275 } 5276 5277 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5278 /// false value of \p SI. If the true/false value of \p SI is defined by any 5279 /// select instructions in \p Selects, look through the defining select 5280 /// instruction until the true/false value is not defined in \p Selects. 5281 static Value *getTrueOrFalseValue( 5282 SelectInst *SI, bool isTrue, 5283 const SmallPtrSet<const Instruction *, 2> &Selects) { 5284 Value *V; 5285 5286 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5287 DefSI = dyn_cast<SelectInst>(V)) { 5288 assert(DefSI->getCondition() == SI->getCondition() && 5289 "The condition of DefSI does not match with SI"); 5290 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5291 } 5292 return V; 5293 } 5294 5295 /// If we have a SelectInst that will likely profit from branch prediction, 5296 /// turn it into a branch. 5297 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5298 // Find all consecutive select instructions that share the same condition. 5299 SmallVector<SelectInst *, 2> ASI; 5300 ASI.push_back(SI); 5301 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5302 It != SI->getParent()->end(); ++It) { 5303 SelectInst *I = dyn_cast<SelectInst>(&*It); 5304 if (I && SI->getCondition() == I->getCondition()) { 5305 ASI.push_back(I); 5306 } else { 5307 break; 5308 } 5309 } 5310 5311 SelectInst *LastSI = ASI.back(); 5312 // Increment the current iterator to skip all the rest of select instructions 5313 // because they will be either "not lowered" or "all lowered" to branch. 5314 CurInstIterator = std::next(LastSI->getIterator()); 5315 5316 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5317 5318 // Can we convert the 'select' to CF ? 5319 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5320 SI->getMetadata(LLVMContext::MD_unpredictable)) 5321 return false; 5322 5323 TargetLowering::SelectSupportKind SelectKind; 5324 if (VectorCond) 5325 SelectKind = TargetLowering::VectorMaskSelect; 5326 else if (SI->getType()->isVectorTy()) 5327 SelectKind = TargetLowering::ScalarCondVectorVal; 5328 else 5329 SelectKind = TargetLowering::ScalarValSelect; 5330 5331 if (TLI->isSelectSupported(SelectKind) && 5332 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5333 return false; 5334 5335 ModifiedDT = true; 5336 5337 // Transform a sequence like this: 5338 // start: 5339 // %cmp = cmp uge i32 %a, %b 5340 // %sel = select i1 %cmp, i32 %c, i32 %d 5341 // 5342 // Into: 5343 // start: 5344 // %cmp = cmp uge i32 %a, %b 5345 // br i1 %cmp, label %select.true, label %select.false 5346 // select.true: 5347 // br label %select.end 5348 // select.false: 5349 // br label %select.end 5350 // select.end: 5351 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5352 // 5353 // In addition, we may sink instructions that produce %c or %d from 5354 // the entry block into the destination(s) of the new branch. 5355 // If the true or false blocks do not contain a sunken instruction, that 5356 // block and its branch may be optimized away. In that case, one side of the 5357 // first branch will point directly to select.end, and the corresponding PHI 5358 // predecessor block will be the start block. 5359 5360 // First, we split the block containing the select into 2 blocks. 5361 BasicBlock *StartBlock = SI->getParent(); 5362 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5363 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5364 5365 // Delete the unconditional branch that was just created by the split. 5366 StartBlock->getTerminator()->eraseFromParent(); 5367 5368 // These are the new basic blocks for the conditional branch. 5369 // At least one will become an actual new basic block. 5370 BasicBlock *TrueBlock = nullptr; 5371 BasicBlock *FalseBlock = nullptr; 5372 BranchInst *TrueBranch = nullptr; 5373 BranchInst *FalseBranch = nullptr; 5374 5375 // Sink expensive instructions into the conditional blocks to avoid executing 5376 // them speculatively. 5377 for (SelectInst *SI : ASI) { 5378 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5379 if (TrueBlock == nullptr) { 5380 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5381 EndBlock->getParent(), EndBlock); 5382 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5383 } 5384 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5385 TrueInst->moveBefore(TrueBranch); 5386 } 5387 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5388 if (FalseBlock == nullptr) { 5389 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5390 EndBlock->getParent(), EndBlock); 5391 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5392 } 5393 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5394 FalseInst->moveBefore(FalseBranch); 5395 } 5396 } 5397 5398 // If there was nothing to sink, then arbitrarily choose the 'false' side 5399 // for a new input value to the PHI. 5400 if (TrueBlock == FalseBlock) { 5401 assert(TrueBlock == nullptr && 5402 "Unexpected basic block transform while optimizing select"); 5403 5404 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5405 EndBlock->getParent(), EndBlock); 5406 BranchInst::Create(EndBlock, FalseBlock); 5407 } 5408 5409 // Insert the real conditional branch based on the original condition. 5410 // If we did not create a new block for one of the 'true' or 'false' paths 5411 // of the condition, it means that side of the branch goes to the end block 5412 // directly and the path originates from the start block from the point of 5413 // view of the new PHI. 5414 BasicBlock *TT, *FT; 5415 if (TrueBlock == nullptr) { 5416 TT = EndBlock; 5417 FT = FalseBlock; 5418 TrueBlock = StartBlock; 5419 } else if (FalseBlock == nullptr) { 5420 TT = TrueBlock; 5421 FT = EndBlock; 5422 FalseBlock = StartBlock; 5423 } else { 5424 TT = TrueBlock; 5425 FT = FalseBlock; 5426 } 5427 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5428 5429 SmallPtrSet<const Instruction *, 2> INS; 5430 INS.insert(ASI.begin(), ASI.end()); 5431 // Use reverse iterator because later select may use the value of the 5432 // earlier select, and we need to propagate value through earlier select 5433 // to get the PHI operand. 5434 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5435 SelectInst *SI = *It; 5436 // The select itself is replaced with a PHI Node. 5437 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5438 PN->takeName(SI); 5439 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5440 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5441 5442 SI->replaceAllUsesWith(PN); 5443 SI->eraseFromParent(); 5444 INS.erase(SI); 5445 ++NumSelectsExpanded; 5446 } 5447 5448 // Instruct OptimizeBlock to skip to the next block. 5449 CurInstIterator = StartBlock->end(); 5450 return true; 5451 } 5452 5453 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5454 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5455 int SplatElem = -1; 5456 for (unsigned i = 0; i < Mask.size(); ++i) { 5457 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5458 return false; 5459 SplatElem = Mask[i]; 5460 } 5461 5462 return true; 5463 } 5464 5465 /// Some targets have expensive vector shifts if the lanes aren't all the same 5466 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5467 /// it's often worth sinking a shufflevector splat down to its use so that 5468 /// codegen can spot all lanes are identical. 5469 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5470 BasicBlock *DefBB = SVI->getParent(); 5471 5472 // Only do this xform if variable vector shifts are particularly expensive. 5473 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5474 return false; 5475 5476 // We only expect better codegen by sinking a shuffle if we can recognise a 5477 // constant splat. 5478 if (!isBroadcastShuffle(SVI)) 5479 return false; 5480 5481 // InsertedShuffles - Only insert a shuffle in each block once. 5482 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5483 5484 bool MadeChange = false; 5485 for (User *U : SVI->users()) { 5486 Instruction *UI = cast<Instruction>(U); 5487 5488 // Figure out which BB this ext is used in. 5489 BasicBlock *UserBB = UI->getParent(); 5490 if (UserBB == DefBB) continue; 5491 5492 // For now only apply this when the splat is used by a shift instruction. 5493 if (!UI->isShift()) continue; 5494 5495 // Everything checks out, sink the shuffle if the user's block doesn't 5496 // already have a copy. 5497 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5498 5499 if (!InsertedShuffle) { 5500 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5501 assert(InsertPt != UserBB->end()); 5502 InsertedShuffle = 5503 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5504 SVI->getOperand(2), "", &*InsertPt); 5505 } 5506 5507 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5508 MadeChange = true; 5509 } 5510 5511 // If we removed all uses, nuke the shuffle. 5512 if (SVI->use_empty()) { 5513 SVI->eraseFromParent(); 5514 MadeChange = true; 5515 } 5516 5517 return MadeChange; 5518 } 5519 5520 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5521 if (!TLI || !DL) 5522 return false; 5523 5524 Value *Cond = SI->getCondition(); 5525 Type *OldType = Cond->getType(); 5526 LLVMContext &Context = Cond->getContext(); 5527 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5528 unsigned RegWidth = RegType.getSizeInBits(); 5529 5530 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5531 return false; 5532 5533 // If the register width is greater than the type width, expand the condition 5534 // of the switch instruction and each case constant to the width of the 5535 // register. By widening the type of the switch condition, subsequent 5536 // comparisons (for case comparisons) will not need to be extended to the 5537 // preferred register width, so we will potentially eliminate N-1 extends, 5538 // where N is the number of cases in the switch. 5539 auto *NewType = Type::getIntNTy(Context, RegWidth); 5540 5541 // Zero-extend the switch condition and case constants unless the switch 5542 // condition is a function argument that is already being sign-extended. 5543 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5544 // everything instead. 5545 Instruction::CastOps ExtType = Instruction::ZExt; 5546 if (auto *Arg = dyn_cast<Argument>(Cond)) 5547 if (Arg->hasSExtAttr()) 5548 ExtType = Instruction::SExt; 5549 5550 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5551 ExtInst->insertBefore(SI); 5552 SI->setCondition(ExtInst); 5553 for (auto Case : SI->cases()) { 5554 APInt NarrowConst = Case.getCaseValue()->getValue(); 5555 APInt WideConst = (ExtType == Instruction::ZExt) ? 5556 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5557 Case.setValue(ConstantInt::get(Context, WideConst)); 5558 } 5559 5560 return true; 5561 } 5562 5563 5564 namespace { 5565 /// \brief Helper class to promote a scalar operation to a vector one. 5566 /// This class is used to move downward extractelement transition. 5567 /// E.g., 5568 /// a = vector_op <2 x i32> 5569 /// b = extractelement <2 x i32> a, i32 0 5570 /// c = scalar_op b 5571 /// store c 5572 /// 5573 /// => 5574 /// a = vector_op <2 x i32> 5575 /// c = vector_op a (equivalent to scalar_op on the related lane) 5576 /// * d = extractelement <2 x i32> c, i32 0 5577 /// * store d 5578 /// Assuming both extractelement and store can be combine, we get rid of the 5579 /// transition. 5580 class VectorPromoteHelper { 5581 /// DataLayout associated with the current module. 5582 const DataLayout &DL; 5583 5584 /// Used to perform some checks on the legality of vector operations. 5585 const TargetLowering &TLI; 5586 5587 /// Used to estimated the cost of the promoted chain. 5588 const TargetTransformInfo &TTI; 5589 5590 /// The transition being moved downwards. 5591 Instruction *Transition; 5592 /// The sequence of instructions to be promoted. 5593 SmallVector<Instruction *, 4> InstsToBePromoted; 5594 /// Cost of combining a store and an extract. 5595 unsigned StoreExtractCombineCost; 5596 /// Instruction that will be combined with the transition. 5597 Instruction *CombineInst; 5598 5599 /// \brief The instruction that represents the current end of the transition. 5600 /// Since we are faking the promotion until we reach the end of the chain 5601 /// of computation, we need a way to get the current end of the transition. 5602 Instruction *getEndOfTransition() const { 5603 if (InstsToBePromoted.empty()) 5604 return Transition; 5605 return InstsToBePromoted.back(); 5606 } 5607 5608 /// \brief Return the index of the original value in the transition. 5609 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5610 /// c, is at index 0. 5611 unsigned getTransitionOriginalValueIdx() const { 5612 assert(isa<ExtractElementInst>(Transition) && 5613 "Other kind of transitions are not supported yet"); 5614 return 0; 5615 } 5616 5617 /// \brief Return the index of the index in the transition. 5618 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5619 /// is at index 1. 5620 unsigned getTransitionIdx() const { 5621 assert(isa<ExtractElementInst>(Transition) && 5622 "Other kind of transitions are not supported yet"); 5623 return 1; 5624 } 5625 5626 /// \brief Get the type of the transition. 5627 /// This is the type of the original value. 5628 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5629 /// transition is <2 x i32>. 5630 Type *getTransitionType() const { 5631 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5632 } 5633 5634 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5635 /// I.e., we have the following sequence: 5636 /// Def = Transition <ty1> a to <ty2> 5637 /// b = ToBePromoted <ty2> Def, ... 5638 /// => 5639 /// b = ToBePromoted <ty1> a, ... 5640 /// Def = Transition <ty1> ToBePromoted to <ty2> 5641 void promoteImpl(Instruction *ToBePromoted); 5642 5643 /// \brief Check whether or not it is profitable to promote all the 5644 /// instructions enqueued to be promoted. 5645 bool isProfitableToPromote() { 5646 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5647 unsigned Index = isa<ConstantInt>(ValIdx) 5648 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5649 : -1; 5650 Type *PromotedType = getTransitionType(); 5651 5652 StoreInst *ST = cast<StoreInst>(CombineInst); 5653 unsigned AS = ST->getPointerAddressSpace(); 5654 unsigned Align = ST->getAlignment(); 5655 // Check if this store is supported. 5656 if (!TLI.allowsMisalignedMemoryAccesses( 5657 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5658 Align)) { 5659 // If this is not supported, there is no way we can combine 5660 // the extract with the store. 5661 return false; 5662 } 5663 5664 // The scalar chain of computation has to pay for the transition 5665 // scalar to vector. 5666 // The vector chain has to account for the combining cost. 5667 uint64_t ScalarCost = 5668 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5669 uint64_t VectorCost = StoreExtractCombineCost; 5670 for (const auto &Inst : InstsToBePromoted) { 5671 // Compute the cost. 5672 // By construction, all instructions being promoted are arithmetic ones. 5673 // Moreover, one argument is a constant that can be viewed as a splat 5674 // constant. 5675 Value *Arg0 = Inst->getOperand(0); 5676 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5677 isa<ConstantFP>(Arg0); 5678 TargetTransformInfo::OperandValueKind Arg0OVK = 5679 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5680 : TargetTransformInfo::OK_AnyValue; 5681 TargetTransformInfo::OperandValueKind Arg1OVK = 5682 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5683 : TargetTransformInfo::OK_AnyValue; 5684 ScalarCost += TTI.getArithmeticInstrCost( 5685 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5686 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5687 Arg0OVK, Arg1OVK); 5688 } 5689 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5690 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5691 return ScalarCost > VectorCost; 5692 } 5693 5694 /// \brief Generate a constant vector with \p Val with the same 5695 /// number of elements as the transition. 5696 /// \p UseSplat defines whether or not \p Val should be replicated 5697 /// across the whole vector. 5698 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5699 /// otherwise we generate a vector with as many undef as possible: 5700 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5701 /// used at the index of the extract. 5702 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5703 unsigned ExtractIdx = UINT_MAX; 5704 if (!UseSplat) { 5705 // If we cannot determine where the constant must be, we have to 5706 // use a splat constant. 5707 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5708 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5709 ExtractIdx = CstVal->getSExtValue(); 5710 else 5711 UseSplat = true; 5712 } 5713 5714 unsigned End = getTransitionType()->getVectorNumElements(); 5715 if (UseSplat) 5716 return ConstantVector::getSplat(End, Val); 5717 5718 SmallVector<Constant *, 4> ConstVec; 5719 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5720 for (unsigned Idx = 0; Idx != End; ++Idx) { 5721 if (Idx == ExtractIdx) 5722 ConstVec.push_back(Val); 5723 else 5724 ConstVec.push_back(UndefVal); 5725 } 5726 return ConstantVector::get(ConstVec); 5727 } 5728 5729 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5730 /// in \p Use can trigger undefined behavior. 5731 static bool canCauseUndefinedBehavior(const Instruction *Use, 5732 unsigned OperandIdx) { 5733 // This is not safe to introduce undef when the operand is on 5734 // the right hand side of a division-like instruction. 5735 if (OperandIdx != 1) 5736 return false; 5737 switch (Use->getOpcode()) { 5738 default: 5739 return false; 5740 case Instruction::SDiv: 5741 case Instruction::UDiv: 5742 case Instruction::SRem: 5743 case Instruction::URem: 5744 return true; 5745 case Instruction::FDiv: 5746 case Instruction::FRem: 5747 return !Use->hasNoNaNs(); 5748 } 5749 llvm_unreachable(nullptr); 5750 } 5751 5752 public: 5753 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5754 const TargetTransformInfo &TTI, Instruction *Transition, 5755 unsigned CombineCost) 5756 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5757 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5758 assert(Transition && "Do not know how to promote null"); 5759 } 5760 5761 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5762 bool canPromote(const Instruction *ToBePromoted) const { 5763 // We could support CastInst too. 5764 return isa<BinaryOperator>(ToBePromoted); 5765 } 5766 5767 /// \brief Check if it is profitable to promote \p ToBePromoted 5768 /// by moving downward the transition through. 5769 bool shouldPromote(const Instruction *ToBePromoted) const { 5770 // Promote only if all the operands can be statically expanded. 5771 // Indeed, we do not want to introduce any new kind of transitions. 5772 for (const Use &U : ToBePromoted->operands()) { 5773 const Value *Val = U.get(); 5774 if (Val == getEndOfTransition()) { 5775 // If the use is a division and the transition is on the rhs, 5776 // we cannot promote the operation, otherwise we may create a 5777 // division by zero. 5778 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5779 return false; 5780 continue; 5781 } 5782 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5783 !isa<ConstantFP>(Val)) 5784 return false; 5785 } 5786 // Check that the resulting operation is legal. 5787 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5788 if (!ISDOpcode) 5789 return false; 5790 return StressStoreExtract || 5791 TLI.isOperationLegalOrCustom( 5792 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5793 } 5794 5795 /// \brief Check whether or not \p Use can be combined 5796 /// with the transition. 5797 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5798 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5799 5800 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5801 void enqueueForPromotion(Instruction *ToBePromoted) { 5802 InstsToBePromoted.push_back(ToBePromoted); 5803 } 5804 5805 /// \brief Set the instruction that will be combined with the transition. 5806 void recordCombineInstruction(Instruction *ToBeCombined) { 5807 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5808 CombineInst = ToBeCombined; 5809 } 5810 5811 /// \brief Promote all the instructions enqueued for promotion if it is 5812 /// is profitable. 5813 /// \return True if the promotion happened, false otherwise. 5814 bool promote() { 5815 // Check if there is something to promote. 5816 // Right now, if we do not have anything to combine with, 5817 // we assume the promotion is not profitable. 5818 if (InstsToBePromoted.empty() || !CombineInst) 5819 return false; 5820 5821 // Check cost. 5822 if (!StressStoreExtract && !isProfitableToPromote()) 5823 return false; 5824 5825 // Promote. 5826 for (auto &ToBePromoted : InstsToBePromoted) 5827 promoteImpl(ToBePromoted); 5828 InstsToBePromoted.clear(); 5829 return true; 5830 } 5831 }; 5832 } // End of anonymous namespace. 5833 5834 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5835 // At this point, we know that all the operands of ToBePromoted but Def 5836 // can be statically promoted. 5837 // For Def, we need to use its parameter in ToBePromoted: 5838 // b = ToBePromoted ty1 a 5839 // Def = Transition ty1 b to ty2 5840 // Move the transition down. 5841 // 1. Replace all uses of the promoted operation by the transition. 5842 // = ... b => = ... Def. 5843 assert(ToBePromoted->getType() == Transition->getType() && 5844 "The type of the result of the transition does not match " 5845 "the final type"); 5846 ToBePromoted->replaceAllUsesWith(Transition); 5847 // 2. Update the type of the uses. 5848 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5849 Type *TransitionTy = getTransitionType(); 5850 ToBePromoted->mutateType(TransitionTy); 5851 // 3. Update all the operands of the promoted operation with promoted 5852 // operands. 5853 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5854 for (Use &U : ToBePromoted->operands()) { 5855 Value *Val = U.get(); 5856 Value *NewVal = nullptr; 5857 if (Val == Transition) 5858 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5859 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5860 isa<ConstantFP>(Val)) { 5861 // Use a splat constant if it is not safe to use undef. 5862 NewVal = getConstantVector( 5863 cast<Constant>(Val), 5864 isa<UndefValue>(Val) || 5865 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5866 } else 5867 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5868 "this?"); 5869 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5870 } 5871 Transition->removeFromParent(); 5872 Transition->insertAfter(ToBePromoted); 5873 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5874 } 5875 5876 /// Some targets can do store(extractelement) with one instruction. 5877 /// Try to push the extractelement towards the stores when the target 5878 /// has this feature and this is profitable. 5879 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5880 unsigned CombineCost = UINT_MAX; 5881 if (DisableStoreExtract || !TLI || 5882 (!StressStoreExtract && 5883 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5884 Inst->getOperand(1), CombineCost))) 5885 return false; 5886 5887 // At this point we know that Inst is a vector to scalar transition. 5888 // Try to move it down the def-use chain, until: 5889 // - We can combine the transition with its single use 5890 // => we got rid of the transition. 5891 // - We escape the current basic block 5892 // => we would need to check that we are moving it at a cheaper place and 5893 // we do not do that for now. 5894 BasicBlock *Parent = Inst->getParent(); 5895 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5896 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5897 // If the transition has more than one use, assume this is not going to be 5898 // beneficial. 5899 while (Inst->hasOneUse()) { 5900 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5901 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5902 5903 if (ToBePromoted->getParent() != Parent) { 5904 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5905 << ToBePromoted->getParent()->getName() 5906 << ") than the transition (" << Parent->getName() << ").\n"); 5907 return false; 5908 } 5909 5910 if (VPH.canCombine(ToBePromoted)) { 5911 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5912 << "will be combined with: " << *ToBePromoted << '\n'); 5913 VPH.recordCombineInstruction(ToBePromoted); 5914 bool Changed = VPH.promote(); 5915 NumStoreExtractExposed += Changed; 5916 return Changed; 5917 } 5918 5919 DEBUG(dbgs() << "Try promoting.\n"); 5920 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5921 return false; 5922 5923 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5924 5925 VPH.enqueueForPromotion(ToBePromoted); 5926 Inst = ToBePromoted; 5927 } 5928 return false; 5929 } 5930 5931 /// For the instruction sequence of store below, F and I values 5932 /// are bundled together as an i64 value before being stored into memory. 5933 /// Sometimes it is more efficent to generate separate stores for F and I, 5934 /// which can remove the bitwise instructions or sink them to colder places. 5935 /// 5936 /// (store (or (zext (bitcast F to i32) to i64), 5937 /// (shl (zext I to i64), 32)), addr) --> 5938 /// (store F, addr) and (store I, addr+4) 5939 /// 5940 /// Similarly, splitting for other merged store can also be beneficial, like: 5941 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5942 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5943 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5944 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5945 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5946 /// 5947 /// We allow each target to determine specifically which kind of splitting is 5948 /// supported. 5949 /// 5950 /// The store patterns are commonly seen from the simple code snippet below 5951 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5952 /// void goo(const std::pair<int, float> &); 5953 /// hoo() { 5954 /// ... 5955 /// goo(std::make_pair(tmp, ftmp)); 5956 /// ... 5957 /// } 5958 /// 5959 /// Although we already have similar splitting in DAG Combine, we duplicate 5960 /// it in CodeGenPrepare to catch the case in which pattern is across 5961 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5962 /// during code expansion. 5963 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5964 const TargetLowering &TLI) { 5965 // Handle simple but common cases only. 5966 Type *StoreType = SI.getValueOperand()->getType(); 5967 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5968 DL.getTypeSizeInBits(StoreType) == 0) 5969 return false; 5970 5971 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5972 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5973 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5974 DL.getTypeSizeInBits(SplitStoreType)) 5975 return false; 5976 5977 // Match the following patterns: 5978 // (store (or (zext LValue to i64), 5979 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5980 // or 5981 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5982 // (zext LValue to i64), 5983 // Expect both operands of OR and the first operand of SHL have only 5984 // one use. 5985 Value *LValue, *HValue; 5986 if (!match(SI.getValueOperand(), 5987 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 5988 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 5989 m_SpecificInt(HalfValBitSize)))))) 5990 return false; 5991 5992 // Check LValue and HValue are int with size less or equal than 32. 5993 if (!LValue->getType()->isIntegerTy() || 5994 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 5995 !HValue->getType()->isIntegerTy() || 5996 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 5997 return false; 5998 5999 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6000 // as the input of target query. 6001 auto *LBC = dyn_cast<BitCastInst>(LValue); 6002 auto *HBC = dyn_cast<BitCastInst>(HValue); 6003 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6004 : EVT::getEVT(LValue->getType()); 6005 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6006 : EVT::getEVT(HValue->getType()); 6007 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6008 return false; 6009 6010 // Start to split store. 6011 IRBuilder<> Builder(SI.getContext()); 6012 Builder.SetInsertPoint(&SI); 6013 6014 // If LValue/HValue is a bitcast in another BB, create a new one in current 6015 // BB so it may be merged with the splitted stores by dag combiner. 6016 if (LBC && LBC->getParent() != SI.getParent()) 6017 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6018 if (HBC && HBC->getParent() != SI.getParent()) 6019 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6020 6021 auto CreateSplitStore = [&](Value *V, bool Upper) { 6022 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6023 Value *Addr = Builder.CreateBitCast( 6024 SI.getOperand(1), 6025 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6026 if (Upper) 6027 Addr = Builder.CreateGEP( 6028 SplitStoreType, Addr, 6029 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6030 Builder.CreateAlignedStore( 6031 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6032 }; 6033 6034 CreateSplitStore(LValue, false); 6035 CreateSplitStore(HValue, true); 6036 6037 // Delete the old store. 6038 SI.eraseFromParent(); 6039 return true; 6040 } 6041 6042 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6043 // Bail out if we inserted the instruction to prevent optimizations from 6044 // stepping on each other's toes. 6045 if (InsertedInsts.count(I)) 6046 return false; 6047 6048 if (PHINode *P = dyn_cast<PHINode>(I)) { 6049 // It is possible for very late stage optimizations (such as SimplifyCFG) 6050 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6051 // trivial PHI, go ahead and zap it here. 6052 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6053 P->replaceAllUsesWith(V); 6054 P->eraseFromParent(); 6055 ++NumPHIsElim; 6056 return true; 6057 } 6058 return false; 6059 } 6060 6061 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6062 // If the source of the cast is a constant, then this should have 6063 // already been constant folded. The only reason NOT to constant fold 6064 // it is if something (e.g. LSR) was careful to place the constant 6065 // evaluation in a block other than then one that uses it (e.g. to hoist 6066 // the address of globals out of a loop). If this is the case, we don't 6067 // want to forward-subst the cast. 6068 if (isa<Constant>(CI->getOperand(0))) 6069 return false; 6070 6071 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6072 return true; 6073 6074 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6075 /// Sink a zext or sext into its user blocks if the target type doesn't 6076 /// fit in one register 6077 if (TLI && 6078 TLI->getTypeAction(CI->getContext(), 6079 TLI->getValueType(*DL, CI->getType())) == 6080 TargetLowering::TypeExpandInteger) { 6081 return SinkCast(CI); 6082 } else { 6083 bool MadeChange = optimizeExt(I); 6084 return MadeChange | optimizeExtUses(I); 6085 } 6086 } 6087 return false; 6088 } 6089 6090 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6091 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6092 return OptimizeCmpExpression(CI, TLI); 6093 6094 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6095 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6096 if (TLI) { 6097 bool Modified = optimizeLoadExt(LI); 6098 unsigned AS = LI->getPointerAddressSpace(); 6099 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6100 return Modified; 6101 } 6102 return false; 6103 } 6104 6105 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6106 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6107 return true; 6108 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6109 if (TLI) { 6110 unsigned AS = SI->getPointerAddressSpace(); 6111 return optimizeMemoryInst(I, SI->getOperand(1), 6112 SI->getOperand(0)->getType(), AS); 6113 } 6114 return false; 6115 } 6116 6117 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6118 unsigned AS = RMW->getPointerAddressSpace(); 6119 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6120 RMW->getType(), AS); 6121 } 6122 6123 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6124 unsigned AS = CmpX->getPointerAddressSpace(); 6125 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6126 CmpX->getCompareOperand()->getType(), AS); 6127 } 6128 6129 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6130 6131 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6132 EnableAndCmpSinking && TLI) 6133 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6134 6135 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6136 BinOp->getOpcode() == Instruction::LShr)) { 6137 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6138 if (TLI && CI && TLI->hasExtractBitsInsn()) 6139 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6140 6141 return false; 6142 } 6143 6144 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6145 if (GEPI->hasAllZeroIndices()) { 6146 /// The GEP operand must be a pointer, so must its result -> BitCast 6147 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6148 GEPI->getName(), GEPI); 6149 GEPI->replaceAllUsesWith(NC); 6150 GEPI->eraseFromParent(); 6151 ++NumGEPsElim; 6152 optimizeInst(NC, ModifiedDT); 6153 return true; 6154 } 6155 return false; 6156 } 6157 6158 if (CallInst *CI = dyn_cast<CallInst>(I)) 6159 return optimizeCallInst(CI, ModifiedDT); 6160 6161 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6162 return optimizeSelectInst(SI); 6163 6164 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6165 return optimizeShuffleVectorInst(SVI); 6166 6167 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6168 return optimizeSwitchInst(Switch); 6169 6170 if (isa<ExtractElementInst>(I)) 6171 return optimizeExtractElementInst(I); 6172 6173 return false; 6174 } 6175 6176 /// Given an OR instruction, check to see if this is a bitreverse 6177 /// idiom. If so, insert the new intrinsic and return true. 6178 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6179 const TargetLowering &TLI) { 6180 if (!I.getType()->isIntegerTy() || 6181 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6182 TLI.getValueType(DL, I.getType(), true))) 6183 return false; 6184 6185 SmallVector<Instruction*, 4> Insts; 6186 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6187 return false; 6188 Instruction *LastInst = Insts.back(); 6189 I.replaceAllUsesWith(LastInst); 6190 RecursivelyDeleteTriviallyDeadInstructions(&I); 6191 return true; 6192 } 6193 6194 // In this pass we look for GEP and cast instructions that are used 6195 // across basic blocks and rewrite them to improve basic-block-at-a-time 6196 // selection. 6197 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6198 SunkAddrs.clear(); 6199 bool MadeChange = false; 6200 6201 CurInstIterator = BB.begin(); 6202 while (CurInstIterator != BB.end()) { 6203 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6204 if (ModifiedDT) 6205 return true; 6206 } 6207 6208 bool MadeBitReverse = true; 6209 while (TLI && MadeBitReverse) { 6210 MadeBitReverse = false; 6211 for (auto &I : reverse(BB)) { 6212 if (makeBitReverse(I, *DL, *TLI)) { 6213 MadeBitReverse = MadeChange = true; 6214 ModifiedDT = true; 6215 break; 6216 } 6217 } 6218 } 6219 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6220 6221 return MadeChange; 6222 } 6223 6224 // llvm.dbg.value is far away from the value then iSel may not be able 6225 // handle it properly. iSel will drop llvm.dbg.value if it can not 6226 // find a node corresponding to the value. 6227 bool CodeGenPrepare::placeDbgValues(Function &F) { 6228 bool MadeChange = false; 6229 for (BasicBlock &BB : F) { 6230 Instruction *PrevNonDbgInst = nullptr; 6231 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6232 Instruction *Insn = &*BI++; 6233 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6234 // Leave dbg.values that refer to an alloca alone. These 6235 // instrinsics describe the address of a variable (= the alloca) 6236 // being taken. They should not be moved next to the alloca 6237 // (and to the beginning of the scope), but rather stay close to 6238 // where said address is used. 6239 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6240 PrevNonDbgInst = Insn; 6241 continue; 6242 } 6243 6244 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6245 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6246 // If VI is a phi in a block with an EHPad terminator, we can't insert 6247 // after it. 6248 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6249 continue; 6250 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6251 DVI->removeFromParent(); 6252 if (isa<PHINode>(VI)) 6253 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6254 else 6255 DVI->insertAfter(VI); 6256 MadeChange = true; 6257 ++NumDbgValueMoved; 6258 } 6259 } 6260 } 6261 return MadeChange; 6262 } 6263 6264 /// \brief Scale down both weights to fit into uint32_t. 6265 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6266 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6267 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 6268 NewTrue = NewTrue / Scale; 6269 NewFalse = NewFalse / Scale; 6270 } 6271 6272 /// \brief Some targets prefer to split a conditional branch like: 6273 /// \code 6274 /// %0 = icmp ne i32 %a, 0 6275 /// %1 = icmp ne i32 %b, 0 6276 /// %or.cond = or i1 %0, %1 6277 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6278 /// \endcode 6279 /// into multiple branch instructions like: 6280 /// \code 6281 /// bb1: 6282 /// %0 = icmp ne i32 %a, 0 6283 /// br i1 %0, label %TrueBB, label %bb2 6284 /// bb2: 6285 /// %1 = icmp ne i32 %b, 0 6286 /// br i1 %1, label %TrueBB, label %FalseBB 6287 /// \endcode 6288 /// This usually allows instruction selection to do even further optimizations 6289 /// and combine the compare with the branch instruction. Currently this is 6290 /// applied for targets which have "cheap" jump instructions. 6291 /// 6292 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6293 /// 6294 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6295 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6296 return false; 6297 6298 bool MadeChange = false; 6299 for (auto &BB : F) { 6300 // Does this BB end with the following? 6301 // %cond1 = icmp|fcmp|binary instruction ... 6302 // %cond2 = icmp|fcmp|binary instruction ... 6303 // %cond.or = or|and i1 %cond1, cond2 6304 // br i1 %cond.or label %dest1, label %dest2" 6305 BinaryOperator *LogicOp; 6306 BasicBlock *TBB, *FBB; 6307 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6308 continue; 6309 6310 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6311 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6312 continue; 6313 6314 unsigned Opc; 6315 Value *Cond1, *Cond2; 6316 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6317 m_OneUse(m_Value(Cond2))))) 6318 Opc = Instruction::And; 6319 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6320 m_OneUse(m_Value(Cond2))))) 6321 Opc = Instruction::Or; 6322 else 6323 continue; 6324 6325 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6326 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6327 continue; 6328 6329 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6330 6331 // Create a new BB. 6332 auto TmpBB = 6333 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6334 BB.getParent(), BB.getNextNode()); 6335 6336 // Update original basic block by using the first condition directly by the 6337 // branch instruction and removing the no longer needed and/or instruction. 6338 Br1->setCondition(Cond1); 6339 LogicOp->eraseFromParent(); 6340 6341 // Depending on the conditon we have to either replace the true or the false 6342 // successor of the original branch instruction. 6343 if (Opc == Instruction::And) 6344 Br1->setSuccessor(0, TmpBB); 6345 else 6346 Br1->setSuccessor(1, TmpBB); 6347 6348 // Fill in the new basic block. 6349 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6350 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6351 I->removeFromParent(); 6352 I->insertBefore(Br2); 6353 } 6354 6355 // Update PHI nodes in both successors. The original BB needs to be 6356 // replaced in one succesor's PHI nodes, because the branch comes now from 6357 // the newly generated BB (NewBB). In the other successor we need to add one 6358 // incoming edge to the PHI nodes, because both branch instructions target 6359 // now the same successor. Depending on the original branch condition 6360 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6361 // we perform the correct update for the PHI nodes. 6362 // This doesn't change the successor order of the just created branch 6363 // instruction (or any other instruction). 6364 if (Opc == Instruction::Or) 6365 std::swap(TBB, FBB); 6366 6367 // Replace the old BB with the new BB. 6368 for (auto &I : *TBB) { 6369 PHINode *PN = dyn_cast<PHINode>(&I); 6370 if (!PN) 6371 break; 6372 int i; 6373 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 6374 PN->setIncomingBlock(i, TmpBB); 6375 } 6376 6377 // Add another incoming edge form the new BB. 6378 for (auto &I : *FBB) { 6379 PHINode *PN = dyn_cast<PHINode>(&I); 6380 if (!PN) 6381 break; 6382 auto *Val = PN->getIncomingValueForBlock(&BB); 6383 PN->addIncoming(Val, TmpBB); 6384 } 6385 6386 // Update the branch weights (from SelectionDAGBuilder:: 6387 // FindMergedConditions). 6388 if (Opc == Instruction::Or) { 6389 // Codegen X | Y as: 6390 // BB1: 6391 // jmp_if_X TBB 6392 // jmp TmpBB 6393 // TmpBB: 6394 // jmp_if_Y TBB 6395 // jmp FBB 6396 // 6397 6398 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6399 // The requirement is that 6400 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6401 // = TrueProb for orignal BB. 6402 // Assuming the orignal weights are A and B, one choice is to set BB1's 6403 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6404 // assumes that 6405 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6406 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6407 // TmpBB, but the math is more complicated. 6408 uint64_t TrueWeight, FalseWeight; 6409 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6410 uint64_t NewTrueWeight = TrueWeight; 6411 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6412 scaleWeights(NewTrueWeight, NewFalseWeight); 6413 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6414 .createBranchWeights(TrueWeight, FalseWeight)); 6415 6416 NewTrueWeight = TrueWeight; 6417 NewFalseWeight = 2 * FalseWeight; 6418 scaleWeights(NewTrueWeight, NewFalseWeight); 6419 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6420 .createBranchWeights(TrueWeight, FalseWeight)); 6421 } 6422 } else { 6423 // Codegen X & Y as: 6424 // BB1: 6425 // jmp_if_X TmpBB 6426 // jmp FBB 6427 // TmpBB: 6428 // jmp_if_Y TBB 6429 // jmp FBB 6430 // 6431 // This requires creation of TmpBB after CurBB. 6432 6433 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6434 // The requirement is that 6435 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6436 // = FalseProb for orignal BB. 6437 // Assuming the orignal weights are A and B, one choice is to set BB1's 6438 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6439 // assumes that 6440 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6441 uint64_t TrueWeight, FalseWeight; 6442 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6443 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6444 uint64_t NewFalseWeight = FalseWeight; 6445 scaleWeights(NewTrueWeight, NewFalseWeight); 6446 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6447 .createBranchWeights(TrueWeight, FalseWeight)); 6448 6449 NewTrueWeight = 2 * TrueWeight; 6450 NewFalseWeight = FalseWeight; 6451 scaleWeights(NewTrueWeight, NewFalseWeight); 6452 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6453 .createBranchWeights(TrueWeight, FalseWeight)); 6454 } 6455 } 6456 6457 // Note: No point in getting fancy here, since the DT info is never 6458 // available to CodeGenPrepare. 6459 ModifiedDT = true; 6460 6461 MadeChange = true; 6462 6463 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6464 TmpBB->dump()); 6465 } 6466 return MadeChange; 6467 } 6468