1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/MachineValueType.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/IR/Argument.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Statepoint.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/ValueMap.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/BlockFrequency.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Target/TargetMachine.h" 85 #include "llvm/Target/TargetOptions.h" 86 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 87 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 88 #include "llvm/Transforms/Utils/Local.h" 89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <limits> 95 #include <memory> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define DEBUG_TYPE "codegenprepare" 103 104 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 105 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 106 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 108 "sunken Cmps"); 109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 110 "of sunken Casts"); 111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 112 "computations were sunk"); 113 STATISTIC(NumMemoryInstsPhiCreated, 114 "Number of phis created when address " 115 "computations were sunk to memory instructions"); 116 STATISTIC(NumMemoryInstsSelectCreated, 117 "Number of select created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 120 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 121 STATISTIC(NumAndsAdded, 122 "Number of and mask instructions added to form ext loads"); 123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 124 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 128 129 static cl::opt<bool> DisableBranchOpts( 130 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 131 cl::desc("Disable branch optimizations in CodeGenPrepare")); 132 133 static cl::opt<bool> 134 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable GC optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> DisableSelectToBranch( 138 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 139 cl::desc("Disable select to branch conversion.")); 140 141 static cl::opt<bool> AddrSinkUsingGEPs( 142 "addr-sink-using-gep", cl::Hidden, cl::init(true), 143 cl::desc("Address sinking in CGP using GEPs.")); 144 145 static cl::opt<bool> EnableAndCmpSinking( 146 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 147 cl::desc("Enable sinkinig and/cmp into branches.")); 148 149 static cl::opt<bool> DisableStoreExtract( 150 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 151 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 152 153 static cl::opt<bool> StressStoreExtract( 154 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> DisableExtLdPromotion( 158 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 159 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 160 "CodeGenPrepare")); 161 162 static cl::opt<bool> StressExtLdPromotion( 163 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 165 "optimization in CodeGenPrepare")); 166 167 static cl::opt<bool> DisablePreheaderProtect( 168 "disable-preheader-prot", cl::Hidden, cl::init(false), 169 cl::desc("Disable protection against removing loop preheaders")); 170 171 static cl::opt<bool> ProfileGuidedSectionPrefix( 172 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 173 cl::desc("Use profile info to add section prefix for hot/cold functions")); 174 175 static cl::opt<unsigned> FreqRatioToSkipMerge( 176 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 177 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 178 "(frequency of destination block) is greater than this ratio")); 179 180 static cl::opt<bool> ForceSplitStore( 181 "force-split-store", cl::Hidden, cl::init(false), 182 cl::desc("Force store splitting no matter what the target query says.")); 183 184 static cl::opt<bool> 185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 186 cl::desc("Enable merging of redundant sexts when one is dominating" 187 " the other."), cl::init(true)); 188 189 static cl::opt<bool> DisableComplexAddrModes( 190 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 191 cl::desc("Disables combining addressing modes with different parts " 192 "in optimizeMemoryInst.")); 193 194 static cl::opt<bool> 195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 196 cl::desc("Allow creation of Phis in Address sinking.")); 197 198 static cl::opt<bool> 199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(false), 200 cl::desc("Allow creation of selects in Address sinking.")); 201 202 static cl::opt<bool> AddrSinkCombineBaseReg( 203 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 204 cl::desc("Allow combining of BaseReg field in Address sinking.")); 205 206 static cl::opt<bool> AddrSinkCombineBaseGV( 207 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 208 cl::desc("Allow combining of BaseGV field in Address sinking.")); 209 210 static cl::opt<bool> AddrSinkCombineBaseOffs( 211 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 212 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 213 214 static cl::opt<bool> AddrSinkCombineScaledReg( 215 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 216 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 217 218 namespace { 219 220 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 221 using TypeIsSExt = PointerIntPair<Type *, 1, bool>; 222 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 223 using SExts = SmallVector<Instruction *, 16>; 224 using ValueToSExts = DenseMap<Value *, SExts>; 225 226 class TypePromotionTransaction; 227 228 class CodeGenPrepare : public FunctionPass { 229 const TargetMachine *TM = nullptr; 230 const TargetSubtargetInfo *SubtargetInfo; 231 const TargetLowering *TLI = nullptr; 232 const TargetRegisterInfo *TRI; 233 const TargetTransformInfo *TTI = nullptr; 234 const TargetLibraryInfo *TLInfo; 235 const LoopInfo *LI; 236 std::unique_ptr<BlockFrequencyInfo> BFI; 237 std::unique_ptr<BranchProbabilityInfo> BPI; 238 239 /// As we scan instructions optimizing them, this is the next instruction 240 /// to optimize. Transforms that can invalidate this should update it. 241 BasicBlock::iterator CurInstIterator; 242 243 /// Keeps track of non-local addresses that have been sunk into a block. 244 /// This allows us to avoid inserting duplicate code for blocks with 245 /// multiple load/stores of the same address. The usage of WeakTrackingVH 246 /// enables SunkAddrs to be treated as a cache whose entries can be 247 /// invalidated if a sunken address computation has been erased. 248 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 249 250 /// Keeps track of all instructions inserted for the current function. 251 SetOfInstrs InsertedInsts; 252 253 /// Keeps track of the type of the related instruction before their 254 /// promotion for the current function. 255 InstrToOrigTy PromotedInsts; 256 257 /// Keep track of instructions removed during promotion. 258 SetOfInstrs RemovedInsts; 259 260 /// Keep track of sext chains based on their initial value. 261 DenseMap<Value *, Instruction *> SeenChainsForSExt; 262 263 /// Keep track of SExt promoted. 264 ValueToSExts ValToSExtendedUses; 265 266 /// True if CFG is modified in any way. 267 bool ModifiedDT; 268 269 /// True if optimizing for size. 270 bool OptSize; 271 272 /// DataLayout for the Function being processed. 273 const DataLayout *DL = nullptr; 274 275 public: 276 static char ID; // Pass identification, replacement for typeid 277 278 CodeGenPrepare() : FunctionPass(ID) { 279 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 280 } 281 282 bool runOnFunction(Function &F) override; 283 284 StringRef getPassName() const override { return "CodeGen Prepare"; } 285 286 void getAnalysisUsage(AnalysisUsage &AU) const override { 287 // FIXME: When we can selectively preserve passes, preserve the domtree. 288 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 289 AU.addRequired<TargetLibraryInfoWrapperPass>(); 290 AU.addRequired<TargetTransformInfoWrapperPass>(); 291 AU.addRequired<LoopInfoWrapperPass>(); 292 } 293 294 private: 295 bool eliminateFallThrough(Function &F); 296 bool eliminateMostlyEmptyBlocks(Function &F); 297 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 298 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 299 void eliminateMostlyEmptyBlock(BasicBlock *BB); 300 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 301 bool isPreheader); 302 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 303 bool optimizeInst(Instruction *I, bool &ModifiedDT); 304 bool optimizeMemoryInst(Instruction *I, Value *Addr, 305 Type *AccessTy, unsigned AS); 306 bool optimizeInlineAsmInst(CallInst *CS); 307 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 308 bool optimizeExt(Instruction *&I); 309 bool optimizeExtUses(Instruction *I); 310 bool optimizeLoadExt(LoadInst *I); 311 bool optimizeSelectInst(SelectInst *SI); 312 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 313 bool optimizeSwitchInst(SwitchInst *CI); 314 bool optimizeExtractElementInst(Instruction *Inst); 315 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 316 bool placeDbgValues(Function &F); 317 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 318 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 319 bool tryToPromoteExts(TypePromotionTransaction &TPT, 320 const SmallVectorImpl<Instruction *> &Exts, 321 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 322 unsigned CreatedInstsCost = 0); 323 bool mergeSExts(Function &F); 324 bool performAddressTypePromotion( 325 Instruction *&Inst, 326 bool AllowPromotionWithoutCommonHeader, 327 bool HasPromoted, TypePromotionTransaction &TPT, 328 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 329 bool splitBranchCondition(Function &F); 330 bool simplifyOffsetableRelocate(Instruction &I); 331 }; 332 333 } // end anonymous namespace 334 335 char CodeGenPrepare::ID = 0; 336 337 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 338 "Optimize for code generation", false, false) 339 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 340 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 341 "Optimize for code generation", false, false) 342 343 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 344 345 bool CodeGenPrepare::runOnFunction(Function &F) { 346 if (skipFunction(F)) 347 return false; 348 349 DL = &F.getParent()->getDataLayout(); 350 351 bool EverMadeChange = false; 352 // Clear per function information. 353 InsertedInsts.clear(); 354 PromotedInsts.clear(); 355 356 ModifiedDT = false; 357 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 358 TM = &TPC->getTM<TargetMachine>(); 359 SubtargetInfo = TM->getSubtargetImpl(F); 360 TLI = SubtargetInfo->getTargetLowering(); 361 TRI = SubtargetInfo->getRegisterInfo(); 362 } 363 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 364 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 365 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 366 BPI.reset(new BranchProbabilityInfo(F, *LI)); 367 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 368 OptSize = F.optForSize(); 369 370 ProfileSummaryInfo *PSI = 371 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 372 if (ProfileGuidedSectionPrefix) { 373 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 374 F.setSectionPrefix(".hot"); 375 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 376 F.setSectionPrefix(".unlikely"); 377 } 378 379 /// This optimization identifies DIV instructions that can be 380 /// profitably bypassed and carried out with a shorter, faster divide. 381 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 382 TLI->isSlowDivBypassed()) { 383 const DenseMap<unsigned int, unsigned int> &BypassWidths = 384 TLI->getBypassSlowDivWidths(); 385 BasicBlock* BB = &*F.begin(); 386 while (BB != nullptr) { 387 // bypassSlowDivision may create new BBs, but we don't want to reapply the 388 // optimization to those blocks. 389 BasicBlock* Next = BB->getNextNode(); 390 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 391 BB = Next; 392 } 393 } 394 395 // Eliminate blocks that contain only PHI nodes and an 396 // unconditional branch. 397 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 398 399 // llvm.dbg.value is far away from the value then iSel may not be able 400 // handle it properly. iSel will drop llvm.dbg.value if it can not 401 // find a node corresponding to the value. 402 EverMadeChange |= placeDbgValues(F); 403 404 if (!DisableBranchOpts) 405 EverMadeChange |= splitBranchCondition(F); 406 407 // Split some critical edges where one of the sources is an indirect branch, 408 // to help generate sane code for PHIs involving such edges. 409 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 410 411 bool MadeChange = true; 412 while (MadeChange) { 413 MadeChange = false; 414 SeenChainsForSExt.clear(); 415 ValToSExtendedUses.clear(); 416 RemovedInsts.clear(); 417 for (Function::iterator I = F.begin(); I != F.end(); ) { 418 BasicBlock *BB = &*I++; 419 bool ModifiedDTOnIteration = false; 420 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 421 422 // Restart BB iteration if the dominator tree of the Function was changed 423 if (ModifiedDTOnIteration) 424 break; 425 } 426 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 427 MadeChange |= mergeSExts(F); 428 429 // Really free removed instructions during promotion. 430 for (Instruction *I : RemovedInsts) 431 I->deleteValue(); 432 433 EverMadeChange |= MadeChange; 434 } 435 436 SunkAddrs.clear(); 437 438 if (!DisableBranchOpts) { 439 MadeChange = false; 440 SmallPtrSet<BasicBlock*, 8> WorkList; 441 for (BasicBlock &BB : F) { 442 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 443 MadeChange |= ConstantFoldTerminator(&BB, true); 444 if (!MadeChange) continue; 445 446 for (SmallVectorImpl<BasicBlock*>::iterator 447 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 448 if (pred_begin(*II) == pred_end(*II)) 449 WorkList.insert(*II); 450 } 451 452 // Delete the dead blocks and any of their dead successors. 453 MadeChange |= !WorkList.empty(); 454 while (!WorkList.empty()) { 455 BasicBlock *BB = *WorkList.begin(); 456 WorkList.erase(BB); 457 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 458 459 DeleteDeadBlock(BB); 460 461 for (SmallVectorImpl<BasicBlock*>::iterator 462 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 463 if (pred_begin(*II) == pred_end(*II)) 464 WorkList.insert(*II); 465 } 466 467 // Merge pairs of basic blocks with unconditional branches, connected by 468 // a single edge. 469 if (EverMadeChange || MadeChange) 470 MadeChange |= eliminateFallThrough(F); 471 472 EverMadeChange |= MadeChange; 473 } 474 475 if (!DisableGCOpts) { 476 SmallVector<Instruction *, 2> Statepoints; 477 for (BasicBlock &BB : F) 478 for (Instruction &I : BB) 479 if (isStatepoint(I)) 480 Statepoints.push_back(&I); 481 for (auto &I : Statepoints) 482 EverMadeChange |= simplifyOffsetableRelocate(*I); 483 } 484 485 return EverMadeChange; 486 } 487 488 /// Merge basic blocks which are connected by a single edge, where one of the 489 /// basic blocks has a single successor pointing to the other basic block, 490 /// which has a single predecessor. 491 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 492 bool Changed = false; 493 // Scan all of the blocks in the function, except for the entry block. 494 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 495 BasicBlock *BB = &*I++; 496 // If the destination block has a single pred, then this is a trivial 497 // edge, just collapse it. 498 BasicBlock *SinglePred = BB->getSinglePredecessor(); 499 500 // Don't merge if BB's address is taken. 501 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 502 503 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 504 if (Term && !Term->isConditional()) { 505 Changed = true; 506 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 507 // Remember if SinglePred was the entry block of the function. 508 // If so, we will need to move BB back to the entry position. 509 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 510 MergeBasicBlockIntoOnlyPred(BB, nullptr); 511 512 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 513 BB->moveBefore(&BB->getParent()->getEntryBlock()); 514 515 // We have erased a block. Update the iterator. 516 I = BB->getIterator(); 517 } 518 } 519 return Changed; 520 } 521 522 /// Find a destination block from BB if BB is mergeable empty block. 523 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 524 // If this block doesn't end with an uncond branch, ignore it. 525 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 526 if (!BI || !BI->isUnconditional()) 527 return nullptr; 528 529 // If the instruction before the branch (skipping debug info) isn't a phi 530 // node, then other stuff is happening here. 531 BasicBlock::iterator BBI = BI->getIterator(); 532 if (BBI != BB->begin()) { 533 --BBI; 534 while (isa<DbgInfoIntrinsic>(BBI)) { 535 if (BBI == BB->begin()) 536 break; 537 --BBI; 538 } 539 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 540 return nullptr; 541 } 542 543 // Do not break infinite loops. 544 BasicBlock *DestBB = BI->getSuccessor(0); 545 if (DestBB == BB) 546 return nullptr; 547 548 if (!canMergeBlocks(BB, DestBB)) 549 DestBB = nullptr; 550 551 return DestBB; 552 } 553 554 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 555 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 556 /// edges in ways that are non-optimal for isel. Start by eliminating these 557 /// blocks so we can split them the way we want them. 558 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 559 SmallPtrSet<BasicBlock *, 16> Preheaders; 560 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 561 while (!LoopList.empty()) { 562 Loop *L = LoopList.pop_back_val(); 563 LoopList.insert(LoopList.end(), L->begin(), L->end()); 564 if (BasicBlock *Preheader = L->getLoopPreheader()) 565 Preheaders.insert(Preheader); 566 } 567 568 bool MadeChange = false; 569 // Note that this intentionally skips the entry block. 570 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 571 BasicBlock *BB = &*I++; 572 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 573 if (!DestBB || 574 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 575 continue; 576 577 eliminateMostlyEmptyBlock(BB); 578 MadeChange = true; 579 } 580 return MadeChange; 581 } 582 583 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 584 BasicBlock *DestBB, 585 bool isPreheader) { 586 // Do not delete loop preheaders if doing so would create a critical edge. 587 // Loop preheaders can be good locations to spill registers. If the 588 // preheader is deleted and we create a critical edge, registers may be 589 // spilled in the loop body instead. 590 if (!DisablePreheaderProtect && isPreheader && 591 !(BB->getSinglePredecessor() && 592 BB->getSinglePredecessor()->getSingleSuccessor())) 593 return false; 594 595 // Try to skip merging if the unique predecessor of BB is terminated by a 596 // switch or indirect branch instruction, and BB is used as an incoming block 597 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 598 // add COPY instructions in the predecessor of BB instead of BB (if it is not 599 // merged). Note that the critical edge created by merging such blocks wont be 600 // split in MachineSink because the jump table is not analyzable. By keeping 601 // such empty block (BB), ISel will place COPY instructions in BB, not in the 602 // predecessor of BB. 603 BasicBlock *Pred = BB->getUniquePredecessor(); 604 if (!Pred || 605 !(isa<SwitchInst>(Pred->getTerminator()) || 606 isa<IndirectBrInst>(Pred->getTerminator()))) 607 return true; 608 609 if (BB->getTerminator() != BB->getFirstNonPHI()) 610 return true; 611 612 // We use a simple cost heuristic which determine skipping merging is 613 // profitable if the cost of skipping merging is less than the cost of 614 // merging : Cost(skipping merging) < Cost(merging BB), where the 615 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 616 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 617 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 618 // Freq(Pred) / Freq(BB) > 2. 619 // Note that if there are multiple empty blocks sharing the same incoming 620 // value for the PHIs in the DestBB, we consider them together. In such 621 // case, Cost(merging BB) will be the sum of their frequencies. 622 623 if (!isa<PHINode>(DestBB->begin())) 624 return true; 625 626 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 627 628 // Find all other incoming blocks from which incoming values of all PHIs in 629 // DestBB are the same as the ones from BB. 630 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 631 ++PI) { 632 BasicBlock *DestBBPred = *PI; 633 if (DestBBPred == BB) 634 continue; 635 636 bool HasAllSameValue = true; 637 BasicBlock::const_iterator DestBBI = DestBB->begin(); 638 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 639 if (DestPN->getIncomingValueForBlock(BB) != 640 DestPN->getIncomingValueForBlock(DestBBPred)) { 641 HasAllSameValue = false; 642 break; 643 } 644 } 645 if (HasAllSameValue) 646 SameIncomingValueBBs.insert(DestBBPred); 647 } 648 649 // See if all BB's incoming values are same as the value from Pred. In this 650 // case, no reason to skip merging because COPYs are expected to be place in 651 // Pred already. 652 if (SameIncomingValueBBs.count(Pred)) 653 return true; 654 655 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 656 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 657 658 for (auto SameValueBB : SameIncomingValueBBs) 659 if (SameValueBB->getUniquePredecessor() == Pred && 660 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 661 BBFreq += BFI->getBlockFreq(SameValueBB); 662 663 return PredFreq.getFrequency() <= 664 BBFreq.getFrequency() * FreqRatioToSkipMerge; 665 } 666 667 /// Return true if we can merge BB into DestBB if there is a single 668 /// unconditional branch between them, and BB contains no other non-phi 669 /// instructions. 670 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 671 const BasicBlock *DestBB) const { 672 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 673 // the successor. If there are more complex condition (e.g. preheaders), 674 // don't mess around with them. 675 BasicBlock::const_iterator BBI = BB->begin(); 676 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 677 for (const User *U : PN->users()) { 678 const Instruction *UI = cast<Instruction>(U); 679 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 680 return false; 681 // If User is inside DestBB block and it is a PHINode then check 682 // incoming value. If incoming value is not from BB then this is 683 // a complex condition (e.g. preheaders) we want to avoid here. 684 if (UI->getParent() == DestBB) { 685 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 686 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 687 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 688 if (Insn && Insn->getParent() == BB && 689 Insn->getParent() != UPN->getIncomingBlock(I)) 690 return false; 691 } 692 } 693 } 694 } 695 696 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 697 // and DestBB may have conflicting incoming values for the block. If so, we 698 // can't merge the block. 699 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 700 if (!DestBBPN) return true; // no conflict. 701 702 // Collect the preds of BB. 703 SmallPtrSet<const BasicBlock*, 16> BBPreds; 704 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 705 // It is faster to get preds from a PHI than with pred_iterator. 706 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 707 BBPreds.insert(BBPN->getIncomingBlock(i)); 708 } else { 709 BBPreds.insert(pred_begin(BB), pred_end(BB)); 710 } 711 712 // Walk the preds of DestBB. 713 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 714 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 715 if (BBPreds.count(Pred)) { // Common predecessor? 716 BBI = DestBB->begin(); 717 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 718 const Value *V1 = PN->getIncomingValueForBlock(Pred); 719 const Value *V2 = PN->getIncomingValueForBlock(BB); 720 721 // If V2 is a phi node in BB, look up what the mapped value will be. 722 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 723 if (V2PN->getParent() == BB) 724 V2 = V2PN->getIncomingValueForBlock(Pred); 725 726 // If there is a conflict, bail out. 727 if (V1 != V2) return false; 728 } 729 } 730 } 731 732 return true; 733 } 734 735 /// Eliminate a basic block that has only phi's and an unconditional branch in 736 /// it. 737 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 738 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 739 BasicBlock *DestBB = BI->getSuccessor(0); 740 741 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 742 743 // If the destination block has a single pred, then this is a trivial edge, 744 // just collapse it. 745 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 746 if (SinglePred != DestBB) { 747 // Remember if SinglePred was the entry block of the function. If so, we 748 // will need to move BB back to the entry position. 749 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 750 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 751 752 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 753 BB->moveBefore(&BB->getParent()->getEntryBlock()); 754 755 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 756 return; 757 } 758 } 759 760 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 761 // to handle the new incoming edges it is about to have. 762 PHINode *PN; 763 for (BasicBlock::iterator BBI = DestBB->begin(); 764 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 765 // Remove the incoming value for BB, and remember it. 766 Value *InVal = PN->removeIncomingValue(BB, false); 767 768 // Two options: either the InVal is a phi node defined in BB or it is some 769 // value that dominates BB. 770 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 771 if (InValPhi && InValPhi->getParent() == BB) { 772 // Add all of the input values of the input PHI as inputs of this phi. 773 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 774 PN->addIncoming(InValPhi->getIncomingValue(i), 775 InValPhi->getIncomingBlock(i)); 776 } else { 777 // Otherwise, add one instance of the dominating value for each edge that 778 // we will be adding. 779 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 780 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 781 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 782 } else { 783 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 784 PN->addIncoming(InVal, *PI); 785 } 786 } 787 } 788 789 // The PHIs are now updated, change everything that refers to BB to use 790 // DestBB and remove BB. 791 BB->replaceAllUsesWith(DestBB); 792 BB->eraseFromParent(); 793 ++NumBlocksElim; 794 795 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 796 } 797 798 // Computes a map of base pointer relocation instructions to corresponding 799 // derived pointer relocation instructions given a vector of all relocate calls 800 static void computeBaseDerivedRelocateMap( 801 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 802 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 803 &RelocateInstMap) { 804 // Collect information in two maps: one primarily for locating the base object 805 // while filling the second map; the second map is the final structure holding 806 // a mapping between Base and corresponding Derived relocate calls 807 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 808 for (auto *ThisRelocate : AllRelocateCalls) { 809 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 810 ThisRelocate->getDerivedPtrIndex()); 811 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 812 } 813 for (auto &Item : RelocateIdxMap) { 814 std::pair<unsigned, unsigned> Key = Item.first; 815 if (Key.first == Key.second) 816 // Base relocation: nothing to insert 817 continue; 818 819 GCRelocateInst *I = Item.second; 820 auto BaseKey = std::make_pair(Key.first, Key.first); 821 822 // We're iterating over RelocateIdxMap so we cannot modify it. 823 auto MaybeBase = RelocateIdxMap.find(BaseKey); 824 if (MaybeBase == RelocateIdxMap.end()) 825 // TODO: We might want to insert a new base object relocate and gep off 826 // that, if there are enough derived object relocates. 827 continue; 828 829 RelocateInstMap[MaybeBase->second].push_back(I); 830 } 831 } 832 833 // Accepts a GEP and extracts the operands into a vector provided they're all 834 // small integer constants 835 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 836 SmallVectorImpl<Value *> &OffsetV) { 837 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 838 // Only accept small constant integer operands 839 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 840 if (!Op || Op->getZExtValue() > 20) 841 return false; 842 } 843 844 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 845 OffsetV.push_back(GEP->getOperand(i)); 846 return true; 847 } 848 849 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 850 // replace, computes a replacement, and affects it. 851 static bool 852 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 853 const SmallVectorImpl<GCRelocateInst *> &Targets) { 854 bool MadeChange = false; 855 // We must ensure the relocation of derived pointer is defined after 856 // relocation of base pointer. If we find a relocation corresponding to base 857 // defined earlier than relocation of base then we move relocation of base 858 // right before found relocation. We consider only relocation in the same 859 // basic block as relocation of base. Relocations from other basic block will 860 // be skipped by optimization and we do not care about them. 861 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 862 &*R != RelocatedBase; ++R) 863 if (auto RI = dyn_cast<GCRelocateInst>(R)) 864 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 865 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 866 RelocatedBase->moveBefore(RI); 867 break; 868 } 869 870 for (GCRelocateInst *ToReplace : Targets) { 871 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 872 "Not relocating a derived object of the original base object"); 873 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 874 // A duplicate relocate call. TODO: coalesce duplicates. 875 continue; 876 } 877 878 if (RelocatedBase->getParent() != ToReplace->getParent()) { 879 // Base and derived relocates are in different basic blocks. 880 // In this case transform is only valid when base dominates derived 881 // relocate. However it would be too expensive to check dominance 882 // for each such relocate, so we skip the whole transformation. 883 continue; 884 } 885 886 Value *Base = ToReplace->getBasePtr(); 887 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 888 if (!Derived || Derived->getPointerOperand() != Base) 889 continue; 890 891 SmallVector<Value *, 2> OffsetV; 892 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 893 continue; 894 895 // Create a Builder and replace the target callsite with a gep 896 assert(RelocatedBase->getNextNode() && 897 "Should always have one since it's not a terminator"); 898 899 // Insert after RelocatedBase 900 IRBuilder<> Builder(RelocatedBase->getNextNode()); 901 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 902 903 // If gc_relocate does not match the actual type, cast it to the right type. 904 // In theory, there must be a bitcast after gc_relocate if the type does not 905 // match, and we should reuse it to get the derived pointer. But it could be 906 // cases like this: 907 // bb1: 908 // ... 909 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 910 // br label %merge 911 // 912 // bb2: 913 // ... 914 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 915 // br label %merge 916 // 917 // merge: 918 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 919 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 920 // 921 // In this case, we can not find the bitcast any more. So we insert a new bitcast 922 // no matter there is already one or not. In this way, we can handle all cases, and 923 // the extra bitcast should be optimized away in later passes. 924 Value *ActualRelocatedBase = RelocatedBase; 925 if (RelocatedBase->getType() != Base->getType()) { 926 ActualRelocatedBase = 927 Builder.CreateBitCast(RelocatedBase, Base->getType()); 928 } 929 Value *Replacement = Builder.CreateGEP( 930 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 931 Replacement->takeName(ToReplace); 932 // If the newly generated derived pointer's type does not match the original derived 933 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 934 Value *ActualReplacement = Replacement; 935 if (Replacement->getType() != ToReplace->getType()) { 936 ActualReplacement = 937 Builder.CreateBitCast(Replacement, ToReplace->getType()); 938 } 939 ToReplace->replaceAllUsesWith(ActualReplacement); 940 ToReplace->eraseFromParent(); 941 942 MadeChange = true; 943 } 944 return MadeChange; 945 } 946 947 // Turns this: 948 // 949 // %base = ... 950 // %ptr = gep %base + 15 951 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 952 // %base' = relocate(%tok, i32 4, i32 4) 953 // %ptr' = relocate(%tok, i32 4, i32 5) 954 // %val = load %ptr' 955 // 956 // into this: 957 // 958 // %base = ... 959 // %ptr = gep %base + 15 960 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 961 // %base' = gc.relocate(%tok, i32 4, i32 4) 962 // %ptr' = gep %base' + 15 963 // %val = load %ptr' 964 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 965 bool MadeChange = false; 966 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 967 968 for (auto *U : I.users()) 969 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 970 // Collect all the relocate calls associated with a statepoint 971 AllRelocateCalls.push_back(Relocate); 972 973 // We need atleast one base pointer relocation + one derived pointer 974 // relocation to mangle 975 if (AllRelocateCalls.size() < 2) 976 return false; 977 978 // RelocateInstMap is a mapping from the base relocate instruction to the 979 // corresponding derived relocate instructions 980 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 981 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 982 if (RelocateInstMap.empty()) 983 return false; 984 985 for (auto &Item : RelocateInstMap) 986 // Item.first is the RelocatedBase to offset against 987 // Item.second is the vector of Targets to replace 988 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 989 return MadeChange; 990 } 991 992 /// SinkCast - Sink the specified cast instruction into its user blocks 993 static bool SinkCast(CastInst *CI) { 994 BasicBlock *DefBB = CI->getParent(); 995 996 /// InsertedCasts - Only insert a cast in each block once. 997 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 998 999 bool MadeChange = false; 1000 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1001 UI != E; ) { 1002 Use &TheUse = UI.getUse(); 1003 Instruction *User = cast<Instruction>(*UI); 1004 1005 // Figure out which BB this cast is used in. For PHI's this is the 1006 // appropriate predecessor block. 1007 BasicBlock *UserBB = User->getParent(); 1008 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1009 UserBB = PN->getIncomingBlock(TheUse); 1010 } 1011 1012 // Preincrement use iterator so we don't invalidate it. 1013 ++UI; 1014 1015 // The first insertion point of a block containing an EH pad is after the 1016 // pad. If the pad is the user, we cannot sink the cast past the pad. 1017 if (User->isEHPad()) 1018 continue; 1019 1020 // If the block selected to receive the cast is an EH pad that does not 1021 // allow non-PHI instructions before the terminator, we can't sink the 1022 // cast. 1023 if (UserBB->getTerminator()->isEHPad()) 1024 continue; 1025 1026 // If this user is in the same block as the cast, don't change the cast. 1027 if (UserBB == DefBB) continue; 1028 1029 // If we have already inserted a cast into this block, use it. 1030 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1031 1032 if (!InsertedCast) { 1033 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1034 assert(InsertPt != UserBB->end()); 1035 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1036 CI->getType(), "", &*InsertPt); 1037 } 1038 1039 // Replace a use of the cast with a use of the new cast. 1040 TheUse = InsertedCast; 1041 MadeChange = true; 1042 ++NumCastUses; 1043 } 1044 1045 // If we removed all uses, nuke the cast. 1046 if (CI->use_empty()) { 1047 salvageDebugInfo(*CI); 1048 CI->eraseFromParent(); 1049 MadeChange = true; 1050 } 1051 1052 return MadeChange; 1053 } 1054 1055 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1056 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1057 /// reduce the number of virtual registers that must be created and coalesced. 1058 /// 1059 /// Return true if any changes are made. 1060 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1061 const DataLayout &DL) { 1062 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1063 // than sinking only nop casts, but is helpful on some platforms. 1064 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1065 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1066 ASC->getDestAddressSpace())) 1067 return false; 1068 } 1069 1070 // If this is a noop copy, 1071 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1072 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1073 1074 // This is an fp<->int conversion? 1075 if (SrcVT.isInteger() != DstVT.isInteger()) 1076 return false; 1077 1078 // If this is an extension, it will be a zero or sign extension, which 1079 // isn't a noop. 1080 if (SrcVT.bitsLT(DstVT)) return false; 1081 1082 // If these values will be promoted, find out what they will be promoted 1083 // to. This helps us consider truncates on PPC as noop copies when they 1084 // are. 1085 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1086 TargetLowering::TypePromoteInteger) 1087 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1088 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1089 TargetLowering::TypePromoteInteger) 1090 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1091 1092 // If, after promotion, these are the same types, this is a noop copy. 1093 if (SrcVT != DstVT) 1094 return false; 1095 1096 return SinkCast(CI); 1097 } 1098 1099 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1100 /// possible. 1101 /// 1102 /// Return true if any changes were made. 1103 static bool CombineUAddWithOverflow(CmpInst *CI) { 1104 Value *A, *B; 1105 Instruction *AddI; 1106 if (!match(CI, 1107 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1108 return false; 1109 1110 Type *Ty = AddI->getType(); 1111 if (!isa<IntegerType>(Ty)) 1112 return false; 1113 1114 // We don't want to move around uses of condition values this late, so we we 1115 // check if it is legal to create the call to the intrinsic in the basic 1116 // block containing the icmp: 1117 1118 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1119 return false; 1120 1121 #ifndef NDEBUG 1122 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1123 // for now: 1124 if (AddI->hasOneUse()) 1125 assert(*AddI->user_begin() == CI && "expected!"); 1126 #endif 1127 1128 Module *M = CI->getModule(); 1129 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1130 1131 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1132 1133 auto *UAddWithOverflow = 1134 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1135 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1136 auto *Overflow = 1137 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1138 1139 CI->replaceAllUsesWith(Overflow); 1140 AddI->replaceAllUsesWith(UAdd); 1141 CI->eraseFromParent(); 1142 AddI->eraseFromParent(); 1143 return true; 1144 } 1145 1146 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1147 /// registers that must be created and coalesced. This is a clear win except on 1148 /// targets with multiple condition code registers (PowerPC), where it might 1149 /// lose; some adjustment may be wanted there. 1150 /// 1151 /// Return true if any changes are made. 1152 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1153 BasicBlock *DefBB = CI->getParent(); 1154 1155 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1156 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1157 return false; 1158 1159 // Only insert a cmp in each block once. 1160 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1161 1162 bool MadeChange = false; 1163 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1164 UI != E; ) { 1165 Use &TheUse = UI.getUse(); 1166 Instruction *User = cast<Instruction>(*UI); 1167 1168 // Preincrement use iterator so we don't invalidate it. 1169 ++UI; 1170 1171 // Don't bother for PHI nodes. 1172 if (isa<PHINode>(User)) 1173 continue; 1174 1175 // Figure out which BB this cmp is used in. 1176 BasicBlock *UserBB = User->getParent(); 1177 1178 // If this user is in the same block as the cmp, don't change the cmp. 1179 if (UserBB == DefBB) continue; 1180 1181 // If we have already inserted a cmp into this block, use it. 1182 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1183 1184 if (!InsertedCmp) { 1185 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1186 assert(InsertPt != UserBB->end()); 1187 InsertedCmp = 1188 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1189 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1190 // Propagate the debug info. 1191 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1192 } 1193 1194 // Replace a use of the cmp with a use of the new cmp. 1195 TheUse = InsertedCmp; 1196 MadeChange = true; 1197 ++NumCmpUses; 1198 } 1199 1200 // If we removed all uses, nuke the cmp. 1201 if (CI->use_empty()) { 1202 CI->eraseFromParent(); 1203 MadeChange = true; 1204 } 1205 1206 return MadeChange; 1207 } 1208 1209 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1210 if (SinkCmpExpression(CI, TLI)) 1211 return true; 1212 1213 if (CombineUAddWithOverflow(CI)) 1214 return true; 1215 1216 return false; 1217 } 1218 1219 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1220 /// used in a compare to allow isel to generate better code for targets where 1221 /// this operation can be combined. 1222 /// 1223 /// Return true if any changes are made. 1224 static bool sinkAndCmp0Expression(Instruction *AndI, 1225 const TargetLowering &TLI, 1226 SetOfInstrs &InsertedInsts) { 1227 // Double-check that we're not trying to optimize an instruction that was 1228 // already optimized by some other part of this pass. 1229 assert(!InsertedInsts.count(AndI) && 1230 "Attempting to optimize already optimized and instruction"); 1231 (void) InsertedInsts; 1232 1233 // Nothing to do for single use in same basic block. 1234 if (AndI->hasOneUse() && 1235 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1236 return false; 1237 1238 // Try to avoid cases where sinking/duplicating is likely to increase register 1239 // pressure. 1240 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1241 !isa<ConstantInt>(AndI->getOperand(1)) && 1242 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1243 return false; 1244 1245 for (auto *U : AndI->users()) { 1246 Instruction *User = cast<Instruction>(U); 1247 1248 // Only sink for and mask feeding icmp with 0. 1249 if (!isa<ICmpInst>(User)) 1250 return false; 1251 1252 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1253 if (!CmpC || !CmpC->isZero()) 1254 return false; 1255 } 1256 1257 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1258 return false; 1259 1260 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1261 DEBUG(AndI->getParent()->dump()); 1262 1263 // Push the 'and' into the same block as the icmp 0. There should only be 1264 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1265 // others, so we don't need to keep track of which BBs we insert into. 1266 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1267 UI != E; ) { 1268 Use &TheUse = UI.getUse(); 1269 Instruction *User = cast<Instruction>(*UI); 1270 1271 // Preincrement use iterator so we don't invalidate it. 1272 ++UI; 1273 1274 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1275 1276 // Keep the 'and' in the same place if the use is already in the same block. 1277 Instruction *InsertPt = 1278 User->getParent() == AndI->getParent() ? AndI : User; 1279 Instruction *InsertedAnd = 1280 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1281 AndI->getOperand(1), "", InsertPt); 1282 // Propagate the debug info. 1283 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1284 1285 // Replace a use of the 'and' with a use of the new 'and'. 1286 TheUse = InsertedAnd; 1287 ++NumAndUses; 1288 DEBUG(User->getParent()->dump()); 1289 } 1290 1291 // We removed all uses, nuke the and. 1292 AndI->eraseFromParent(); 1293 return true; 1294 } 1295 1296 /// Check if the candidates could be combined with a shift instruction, which 1297 /// includes: 1298 /// 1. Truncate instruction 1299 /// 2. And instruction and the imm is a mask of the low bits: 1300 /// imm & (imm+1) == 0 1301 static bool isExtractBitsCandidateUse(Instruction *User) { 1302 if (!isa<TruncInst>(User)) { 1303 if (User->getOpcode() != Instruction::And || 1304 !isa<ConstantInt>(User->getOperand(1))) 1305 return false; 1306 1307 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1308 1309 if ((Cimm & (Cimm + 1)).getBoolValue()) 1310 return false; 1311 } 1312 return true; 1313 } 1314 1315 /// Sink both shift and truncate instruction to the use of truncate's BB. 1316 static bool 1317 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1318 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1319 const TargetLowering &TLI, const DataLayout &DL) { 1320 BasicBlock *UserBB = User->getParent(); 1321 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1322 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1323 bool MadeChange = false; 1324 1325 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1326 TruncE = TruncI->user_end(); 1327 TruncUI != TruncE;) { 1328 1329 Use &TruncTheUse = TruncUI.getUse(); 1330 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1331 // Preincrement use iterator so we don't invalidate it. 1332 1333 ++TruncUI; 1334 1335 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1336 if (!ISDOpcode) 1337 continue; 1338 1339 // If the use is actually a legal node, there will not be an 1340 // implicit truncate. 1341 // FIXME: always querying the result type is just an 1342 // approximation; some nodes' legality is determined by the 1343 // operand or other means. There's no good way to find out though. 1344 if (TLI.isOperationLegalOrCustom( 1345 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1346 continue; 1347 1348 // Don't bother for PHI nodes. 1349 if (isa<PHINode>(TruncUser)) 1350 continue; 1351 1352 BasicBlock *TruncUserBB = TruncUser->getParent(); 1353 1354 if (UserBB == TruncUserBB) 1355 continue; 1356 1357 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1358 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1359 1360 if (!InsertedShift && !InsertedTrunc) { 1361 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1362 assert(InsertPt != TruncUserBB->end()); 1363 // Sink the shift 1364 if (ShiftI->getOpcode() == Instruction::AShr) 1365 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1366 "", &*InsertPt); 1367 else 1368 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1369 "", &*InsertPt); 1370 1371 // Sink the trunc 1372 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1373 TruncInsertPt++; 1374 assert(TruncInsertPt != TruncUserBB->end()); 1375 1376 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1377 TruncI->getType(), "", &*TruncInsertPt); 1378 1379 MadeChange = true; 1380 1381 TruncTheUse = InsertedTrunc; 1382 } 1383 } 1384 return MadeChange; 1385 } 1386 1387 /// Sink the shift *right* instruction into user blocks if the uses could 1388 /// potentially be combined with this shift instruction and generate BitExtract 1389 /// instruction. It will only be applied if the architecture supports BitExtract 1390 /// instruction. Here is an example: 1391 /// BB1: 1392 /// %x.extract.shift = lshr i64 %arg1, 32 1393 /// BB2: 1394 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1395 /// ==> 1396 /// 1397 /// BB2: 1398 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1399 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1400 /// 1401 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1402 /// instruction. 1403 /// Return true if any changes are made. 1404 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1405 const TargetLowering &TLI, 1406 const DataLayout &DL) { 1407 BasicBlock *DefBB = ShiftI->getParent(); 1408 1409 /// Only insert instructions in each block once. 1410 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1411 1412 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1413 1414 bool MadeChange = false; 1415 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1416 UI != E;) { 1417 Use &TheUse = UI.getUse(); 1418 Instruction *User = cast<Instruction>(*UI); 1419 // Preincrement use iterator so we don't invalidate it. 1420 ++UI; 1421 1422 // Don't bother for PHI nodes. 1423 if (isa<PHINode>(User)) 1424 continue; 1425 1426 if (!isExtractBitsCandidateUse(User)) 1427 continue; 1428 1429 BasicBlock *UserBB = User->getParent(); 1430 1431 if (UserBB == DefBB) { 1432 // If the shift and truncate instruction are in the same BB. The use of 1433 // the truncate(TruncUse) may still introduce another truncate if not 1434 // legal. In this case, we would like to sink both shift and truncate 1435 // instruction to the BB of TruncUse. 1436 // for example: 1437 // BB1: 1438 // i64 shift.result = lshr i64 opnd, imm 1439 // trunc.result = trunc shift.result to i16 1440 // 1441 // BB2: 1442 // ----> We will have an implicit truncate here if the architecture does 1443 // not have i16 compare. 1444 // cmp i16 trunc.result, opnd2 1445 // 1446 if (isa<TruncInst>(User) && shiftIsLegal 1447 // If the type of the truncate is legal, no trucate will be 1448 // introduced in other basic blocks. 1449 && 1450 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1451 MadeChange = 1452 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1453 1454 continue; 1455 } 1456 // If we have already inserted a shift into this block, use it. 1457 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1458 1459 if (!InsertedShift) { 1460 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1461 assert(InsertPt != UserBB->end()); 1462 1463 if (ShiftI->getOpcode() == Instruction::AShr) 1464 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1465 "", &*InsertPt); 1466 else 1467 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1468 "", &*InsertPt); 1469 1470 MadeChange = true; 1471 } 1472 1473 // Replace a use of the shift with a use of the new shift. 1474 TheUse = InsertedShift; 1475 } 1476 1477 // If we removed all uses, nuke the shift. 1478 if (ShiftI->use_empty()) 1479 ShiftI->eraseFromParent(); 1480 1481 return MadeChange; 1482 } 1483 1484 /// If counting leading or trailing zeros is an expensive operation and a zero 1485 /// input is defined, add a check for zero to avoid calling the intrinsic. 1486 /// 1487 /// We want to transform: 1488 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1489 /// 1490 /// into: 1491 /// entry: 1492 /// %cmpz = icmp eq i64 %A, 0 1493 /// br i1 %cmpz, label %cond.end, label %cond.false 1494 /// cond.false: 1495 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1496 /// br label %cond.end 1497 /// cond.end: 1498 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1499 /// 1500 /// If the transform is performed, return true and set ModifiedDT to true. 1501 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1502 const TargetLowering *TLI, 1503 const DataLayout *DL, 1504 bool &ModifiedDT) { 1505 if (!TLI || !DL) 1506 return false; 1507 1508 // If a zero input is undefined, it doesn't make sense to despeculate that. 1509 if (match(CountZeros->getOperand(1), m_One())) 1510 return false; 1511 1512 // If it's cheap to speculate, there's nothing to do. 1513 auto IntrinsicID = CountZeros->getIntrinsicID(); 1514 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1515 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1516 return false; 1517 1518 // Only handle legal scalar cases. Anything else requires too much work. 1519 Type *Ty = CountZeros->getType(); 1520 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1521 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1522 return false; 1523 1524 // The intrinsic will be sunk behind a compare against zero and branch. 1525 BasicBlock *StartBlock = CountZeros->getParent(); 1526 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1527 1528 // Create another block after the count zero intrinsic. A PHI will be added 1529 // in this block to select the result of the intrinsic or the bit-width 1530 // constant if the input to the intrinsic is zero. 1531 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1532 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1533 1534 // Set up a builder to create a compare, conditional branch, and PHI. 1535 IRBuilder<> Builder(CountZeros->getContext()); 1536 Builder.SetInsertPoint(StartBlock->getTerminator()); 1537 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1538 1539 // Replace the unconditional branch that was created by the first split with 1540 // a compare against zero and a conditional branch. 1541 Value *Zero = Constant::getNullValue(Ty); 1542 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1543 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1544 StartBlock->getTerminator()->eraseFromParent(); 1545 1546 // Create a PHI in the end block to select either the output of the intrinsic 1547 // or the bit width of the operand. 1548 Builder.SetInsertPoint(&EndBlock->front()); 1549 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1550 CountZeros->replaceAllUsesWith(PN); 1551 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1552 PN->addIncoming(BitWidth, StartBlock); 1553 PN->addIncoming(CountZeros, CallBlock); 1554 1555 // We are explicitly handling the zero case, so we can set the intrinsic's 1556 // undefined zero argument to 'true'. This will also prevent reprocessing the 1557 // intrinsic; we only despeculate when a zero input is defined. 1558 CountZeros->setArgOperand(1, Builder.getTrue()); 1559 ModifiedDT = true; 1560 return true; 1561 } 1562 1563 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1564 BasicBlock *BB = CI->getParent(); 1565 1566 // Lower inline assembly if we can. 1567 // If we found an inline asm expession, and if the target knows how to 1568 // lower it to normal LLVM code, do so now. 1569 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1570 if (TLI->ExpandInlineAsm(CI)) { 1571 // Avoid invalidating the iterator. 1572 CurInstIterator = BB->begin(); 1573 // Avoid processing instructions out of order, which could cause 1574 // reuse before a value is defined. 1575 SunkAddrs.clear(); 1576 return true; 1577 } 1578 // Sink address computing for memory operands into the block. 1579 if (optimizeInlineAsmInst(CI)) 1580 return true; 1581 } 1582 1583 // Align the pointer arguments to this call if the target thinks it's a good 1584 // idea 1585 unsigned MinSize, PrefAlign; 1586 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1587 for (auto &Arg : CI->arg_operands()) { 1588 // We want to align both objects whose address is used directly and 1589 // objects whose address is used in casts and GEPs, though it only makes 1590 // sense for GEPs if the offset is a multiple of the desired alignment and 1591 // if size - offset meets the size threshold. 1592 if (!Arg->getType()->isPointerTy()) 1593 continue; 1594 APInt Offset(DL->getPointerSizeInBits( 1595 cast<PointerType>(Arg->getType())->getAddressSpace()), 1596 0); 1597 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1598 uint64_t Offset2 = Offset.getLimitedValue(); 1599 if ((Offset2 & (PrefAlign-1)) != 0) 1600 continue; 1601 AllocaInst *AI; 1602 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1603 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1604 AI->setAlignment(PrefAlign); 1605 // Global variables can only be aligned if they are defined in this 1606 // object (i.e. they are uniquely initialized in this object), and 1607 // over-aligning global variables that have an explicit section is 1608 // forbidden. 1609 GlobalVariable *GV; 1610 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1611 GV->getPointerAlignment(*DL) < PrefAlign && 1612 DL->getTypeAllocSize(GV->getValueType()) >= 1613 MinSize + Offset2) 1614 GV->setAlignment(PrefAlign); 1615 } 1616 // If this is a memcpy (or similar) then we may be able to improve the 1617 // alignment 1618 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1619 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1620 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1621 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1622 if (Align > MI->getAlignment()) 1623 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1624 } 1625 } 1626 1627 // If we have a cold call site, try to sink addressing computation into the 1628 // cold block. This interacts with our handling for loads and stores to 1629 // ensure that we can fold all uses of a potential addressing computation 1630 // into their uses. TODO: generalize this to work over profiling data 1631 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1632 for (auto &Arg : CI->arg_operands()) { 1633 if (!Arg->getType()->isPointerTy()) 1634 continue; 1635 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1636 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1637 } 1638 1639 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1640 if (II) { 1641 switch (II->getIntrinsicID()) { 1642 default: break; 1643 case Intrinsic::objectsize: { 1644 // Lower all uses of llvm.objectsize.* 1645 ConstantInt *RetVal = 1646 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1647 // Substituting this can cause recursive simplifications, which can 1648 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1649 // this 1650 // happens. 1651 Value *CurValue = &*CurInstIterator; 1652 WeakTrackingVH IterHandle(CurValue); 1653 1654 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1655 1656 // If the iterator instruction was recursively deleted, start over at the 1657 // start of the block. 1658 if (IterHandle != CurValue) { 1659 CurInstIterator = BB->begin(); 1660 SunkAddrs.clear(); 1661 } 1662 return true; 1663 } 1664 case Intrinsic::aarch64_stlxr: 1665 case Intrinsic::aarch64_stxr: { 1666 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1667 if (!ExtVal || !ExtVal->hasOneUse() || 1668 ExtVal->getParent() == CI->getParent()) 1669 return false; 1670 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1671 ExtVal->moveBefore(CI); 1672 // Mark this instruction as "inserted by CGP", so that other 1673 // optimizations don't touch it. 1674 InsertedInsts.insert(ExtVal); 1675 return true; 1676 } 1677 case Intrinsic::invariant_group_barrier: 1678 II->replaceAllUsesWith(II->getArgOperand(0)); 1679 II->eraseFromParent(); 1680 return true; 1681 1682 case Intrinsic::cttz: 1683 case Intrinsic::ctlz: 1684 // If counting zeros is expensive, try to avoid it. 1685 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1686 } 1687 1688 if (TLI) { 1689 SmallVector<Value*, 2> PtrOps; 1690 Type *AccessTy; 1691 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1692 while (!PtrOps.empty()) { 1693 Value *PtrVal = PtrOps.pop_back_val(); 1694 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1695 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1696 return true; 1697 } 1698 } 1699 } 1700 1701 // From here on out we're working with named functions. 1702 if (!CI->getCalledFunction()) return false; 1703 1704 // Lower all default uses of _chk calls. This is very similar 1705 // to what InstCombineCalls does, but here we are only lowering calls 1706 // to fortified library functions (e.g. __memcpy_chk) that have the default 1707 // "don't know" as the objectsize. Anything else should be left alone. 1708 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1709 if (Value *V = Simplifier.optimizeCall(CI)) { 1710 CI->replaceAllUsesWith(V); 1711 CI->eraseFromParent(); 1712 return true; 1713 } 1714 1715 return false; 1716 } 1717 1718 /// Look for opportunities to duplicate return instructions to the predecessor 1719 /// to enable tail call optimizations. The case it is currently looking for is: 1720 /// @code 1721 /// bb0: 1722 /// %tmp0 = tail call i32 @f0() 1723 /// br label %return 1724 /// bb1: 1725 /// %tmp1 = tail call i32 @f1() 1726 /// br label %return 1727 /// bb2: 1728 /// %tmp2 = tail call i32 @f2() 1729 /// br label %return 1730 /// return: 1731 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1732 /// ret i32 %retval 1733 /// @endcode 1734 /// 1735 /// => 1736 /// 1737 /// @code 1738 /// bb0: 1739 /// %tmp0 = tail call i32 @f0() 1740 /// ret i32 %tmp0 1741 /// bb1: 1742 /// %tmp1 = tail call i32 @f1() 1743 /// ret i32 %tmp1 1744 /// bb2: 1745 /// %tmp2 = tail call i32 @f2() 1746 /// ret i32 %tmp2 1747 /// @endcode 1748 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1749 if (!TLI) 1750 return false; 1751 1752 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1753 if (!RetI) 1754 return false; 1755 1756 PHINode *PN = nullptr; 1757 BitCastInst *BCI = nullptr; 1758 Value *V = RetI->getReturnValue(); 1759 if (V) { 1760 BCI = dyn_cast<BitCastInst>(V); 1761 if (BCI) 1762 V = BCI->getOperand(0); 1763 1764 PN = dyn_cast<PHINode>(V); 1765 if (!PN) 1766 return false; 1767 } 1768 1769 if (PN && PN->getParent() != BB) 1770 return false; 1771 1772 // Make sure there are no instructions between the PHI and return, or that the 1773 // return is the first instruction in the block. 1774 if (PN) { 1775 BasicBlock::iterator BI = BB->begin(); 1776 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1777 if (&*BI == BCI) 1778 // Also skip over the bitcast. 1779 ++BI; 1780 if (&*BI != RetI) 1781 return false; 1782 } else { 1783 BasicBlock::iterator BI = BB->begin(); 1784 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1785 if (&*BI != RetI) 1786 return false; 1787 } 1788 1789 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1790 /// call. 1791 const Function *F = BB->getParent(); 1792 SmallVector<CallInst*, 4> TailCalls; 1793 if (PN) { 1794 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1795 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1796 // Make sure the phi value is indeed produced by the tail call. 1797 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1798 TLI->mayBeEmittedAsTailCall(CI) && 1799 attributesPermitTailCall(F, CI, RetI, *TLI)) 1800 TailCalls.push_back(CI); 1801 } 1802 } else { 1803 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1804 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1805 if (!VisitedBBs.insert(*PI).second) 1806 continue; 1807 1808 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1809 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1810 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1811 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1812 if (RI == RE) 1813 continue; 1814 1815 CallInst *CI = dyn_cast<CallInst>(&*RI); 1816 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1817 attributesPermitTailCall(F, CI, RetI, *TLI)) 1818 TailCalls.push_back(CI); 1819 } 1820 } 1821 1822 bool Changed = false; 1823 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1824 CallInst *CI = TailCalls[i]; 1825 CallSite CS(CI); 1826 1827 // Conservatively require the attributes of the call to match those of the 1828 // return. Ignore noalias because it doesn't affect the call sequence. 1829 AttributeList CalleeAttrs = CS.getAttributes(); 1830 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1831 .removeAttribute(Attribute::NoAlias) != 1832 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1833 .removeAttribute(Attribute::NoAlias)) 1834 continue; 1835 1836 // Make sure the call instruction is followed by an unconditional branch to 1837 // the return block. 1838 BasicBlock *CallBB = CI->getParent(); 1839 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1840 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1841 continue; 1842 1843 // Duplicate the return into CallBB. 1844 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1845 ModifiedDT = Changed = true; 1846 ++NumRetsDup; 1847 } 1848 1849 // If we eliminated all predecessors of the block, delete the block now. 1850 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1851 BB->eraseFromParent(); 1852 1853 return Changed; 1854 } 1855 1856 //===----------------------------------------------------------------------===// 1857 // Memory Optimization 1858 //===----------------------------------------------------------------------===// 1859 1860 namespace { 1861 1862 /// This is an extended version of TargetLowering::AddrMode 1863 /// which holds actual Value*'s for register values. 1864 struct ExtAddrMode : public TargetLowering::AddrMode { 1865 Value *BaseReg = nullptr; 1866 Value *ScaledReg = nullptr; 1867 Value *OriginalValue = nullptr; 1868 1869 enum FieldName { 1870 NoField = 0x00, 1871 BaseRegField = 0x01, 1872 BaseGVField = 0x02, 1873 BaseOffsField = 0x04, 1874 ScaledRegField = 0x08, 1875 ScaleField = 0x10, 1876 MultipleFields = 0xff 1877 }; 1878 1879 ExtAddrMode() = default; 1880 1881 void print(raw_ostream &OS) const; 1882 void dump() const; 1883 1884 FieldName compare(const ExtAddrMode &other) { 1885 // First check that the types are the same on each field, as differing types 1886 // is something we can't cope with later on. 1887 if (BaseReg && other.BaseReg && 1888 BaseReg->getType() != other.BaseReg->getType()) 1889 return MultipleFields; 1890 if (BaseGV && other.BaseGV && 1891 BaseGV->getType() != other.BaseGV->getType()) 1892 return MultipleFields; 1893 if (ScaledReg && other.ScaledReg && 1894 ScaledReg->getType() != other.ScaledReg->getType()) 1895 return MultipleFields; 1896 1897 // Check each field to see if it differs. 1898 unsigned Result = NoField; 1899 if (BaseReg != other.BaseReg) 1900 Result |= BaseRegField; 1901 if (BaseGV != other.BaseGV) 1902 Result |= BaseGVField; 1903 if (BaseOffs != other.BaseOffs) 1904 Result |= BaseOffsField; 1905 if (ScaledReg != other.ScaledReg) 1906 Result |= ScaledRegField; 1907 // Don't count 0 as being a different scale, because that actually means 1908 // unscaled (which will already be counted by having no ScaledReg). 1909 if (Scale && other.Scale && Scale != other.Scale) 1910 Result |= ScaleField; 1911 1912 if (countPopulation(Result) > 1) 1913 return MultipleFields; 1914 else 1915 return static_cast<FieldName>(Result); 1916 } 1917 1918 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1919 // with no offset. 1920 bool isTrivial() { 1921 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1922 // trivial if at most one of these terms is nonzero, except that BaseGV and 1923 // BaseReg both being zero actually means a null pointer value, which we 1924 // consider to be 'non-zero' here. 1925 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1926 } 1927 1928 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1929 switch (Field) { 1930 default: 1931 return nullptr; 1932 case BaseRegField: 1933 return BaseReg; 1934 case BaseGVField: 1935 return BaseGV; 1936 case ScaledRegField: 1937 return ScaledReg; 1938 case BaseOffsField: 1939 return ConstantInt::get(IntPtrTy, BaseOffs); 1940 } 1941 } 1942 1943 void SetCombinedField(FieldName Field, Value *V, 1944 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 1945 switch (Field) { 1946 default: 1947 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 1948 break; 1949 case ExtAddrMode::BaseRegField: 1950 BaseReg = V; 1951 break; 1952 case ExtAddrMode::BaseGVField: 1953 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 1954 // in the BaseReg field. 1955 assert(BaseReg == nullptr); 1956 BaseReg = V; 1957 BaseGV = nullptr; 1958 break; 1959 case ExtAddrMode::ScaledRegField: 1960 ScaledReg = V; 1961 // If we have a mix of scaled and unscaled addrmodes then we want scale 1962 // to be the scale and not zero. 1963 if (!Scale) 1964 for (const ExtAddrMode &AM : AddrModes) 1965 if (AM.Scale) { 1966 Scale = AM.Scale; 1967 break; 1968 } 1969 break; 1970 case ExtAddrMode::BaseOffsField: 1971 // The offset is no longer a constant, so it goes in ScaledReg with a 1972 // scale of 1. 1973 assert(ScaledReg == nullptr); 1974 ScaledReg = V; 1975 Scale = 1; 1976 BaseOffs = 0; 1977 break; 1978 } 1979 } 1980 }; 1981 1982 } // end anonymous namespace 1983 1984 #ifndef NDEBUG 1985 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1986 AM.print(OS); 1987 return OS; 1988 } 1989 #endif 1990 1991 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1992 void ExtAddrMode::print(raw_ostream &OS) const { 1993 bool NeedPlus = false; 1994 OS << "["; 1995 if (BaseGV) { 1996 OS << (NeedPlus ? " + " : "") 1997 << "GV:"; 1998 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1999 NeedPlus = true; 2000 } 2001 2002 if (BaseOffs) { 2003 OS << (NeedPlus ? " + " : "") 2004 << BaseOffs; 2005 NeedPlus = true; 2006 } 2007 2008 if (BaseReg) { 2009 OS << (NeedPlus ? " + " : "") 2010 << "Base:"; 2011 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2012 NeedPlus = true; 2013 } 2014 if (Scale) { 2015 OS << (NeedPlus ? " + " : "") 2016 << Scale << "*"; 2017 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2018 } 2019 2020 OS << ']'; 2021 } 2022 2023 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2024 print(dbgs()); 2025 dbgs() << '\n'; 2026 } 2027 #endif 2028 2029 namespace { 2030 2031 /// \brief This class provides transaction based operation on the IR. 2032 /// Every change made through this class is recorded in the internal state and 2033 /// can be undone (rollback) until commit is called. 2034 class TypePromotionTransaction { 2035 /// \brief This represents the common interface of the individual transaction. 2036 /// Each class implements the logic for doing one specific modification on 2037 /// the IR via the TypePromotionTransaction. 2038 class TypePromotionAction { 2039 protected: 2040 /// The Instruction modified. 2041 Instruction *Inst; 2042 2043 public: 2044 /// \brief Constructor of the action. 2045 /// The constructor performs the related action on the IR. 2046 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2047 2048 virtual ~TypePromotionAction() = default; 2049 2050 /// \brief Undo the modification done by this action. 2051 /// When this method is called, the IR must be in the same state as it was 2052 /// before this action was applied. 2053 /// \pre Undoing the action works if and only if the IR is in the exact same 2054 /// state as it was directly after this action was applied. 2055 virtual void undo() = 0; 2056 2057 /// \brief Advocate every change made by this action. 2058 /// When the results on the IR of the action are to be kept, it is important 2059 /// to call this function, otherwise hidden information may be kept forever. 2060 virtual void commit() { 2061 // Nothing to be done, this action is not doing anything. 2062 } 2063 }; 2064 2065 /// \brief Utility to remember the position of an instruction. 2066 class InsertionHandler { 2067 /// Position of an instruction. 2068 /// Either an instruction: 2069 /// - Is the first in a basic block: BB is used. 2070 /// - Has a previous instructon: PrevInst is used. 2071 union { 2072 Instruction *PrevInst; 2073 BasicBlock *BB; 2074 } Point; 2075 2076 /// Remember whether or not the instruction had a previous instruction. 2077 bool HasPrevInstruction; 2078 2079 public: 2080 /// \brief Record the position of \p Inst. 2081 InsertionHandler(Instruction *Inst) { 2082 BasicBlock::iterator It = Inst->getIterator(); 2083 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2084 if (HasPrevInstruction) 2085 Point.PrevInst = &*--It; 2086 else 2087 Point.BB = Inst->getParent(); 2088 } 2089 2090 /// \brief Insert \p Inst at the recorded position. 2091 void insert(Instruction *Inst) { 2092 if (HasPrevInstruction) { 2093 if (Inst->getParent()) 2094 Inst->removeFromParent(); 2095 Inst->insertAfter(Point.PrevInst); 2096 } else { 2097 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2098 if (Inst->getParent()) 2099 Inst->moveBefore(Position); 2100 else 2101 Inst->insertBefore(Position); 2102 } 2103 } 2104 }; 2105 2106 /// \brief Move an instruction before another. 2107 class InstructionMoveBefore : public TypePromotionAction { 2108 /// Original position of the instruction. 2109 InsertionHandler Position; 2110 2111 public: 2112 /// \brief Move \p Inst before \p Before. 2113 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2114 : TypePromotionAction(Inst), Position(Inst) { 2115 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2116 Inst->moveBefore(Before); 2117 } 2118 2119 /// \brief Move the instruction back to its original position. 2120 void undo() override { 2121 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2122 Position.insert(Inst); 2123 } 2124 }; 2125 2126 /// \brief Set the operand of an instruction with a new value. 2127 class OperandSetter : public TypePromotionAction { 2128 /// Original operand of the instruction. 2129 Value *Origin; 2130 2131 /// Index of the modified instruction. 2132 unsigned Idx; 2133 2134 public: 2135 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2136 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2137 : TypePromotionAction(Inst), Idx(Idx) { 2138 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2139 << "for:" << *Inst << "\n" 2140 << "with:" << *NewVal << "\n"); 2141 Origin = Inst->getOperand(Idx); 2142 Inst->setOperand(Idx, NewVal); 2143 } 2144 2145 /// \brief Restore the original value of the instruction. 2146 void undo() override { 2147 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2148 << "for: " << *Inst << "\n" 2149 << "with: " << *Origin << "\n"); 2150 Inst->setOperand(Idx, Origin); 2151 } 2152 }; 2153 2154 /// \brief Hide the operands of an instruction. 2155 /// Do as if this instruction was not using any of its operands. 2156 class OperandsHider : public TypePromotionAction { 2157 /// The list of original operands. 2158 SmallVector<Value *, 4> OriginalValues; 2159 2160 public: 2161 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2162 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2163 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2164 unsigned NumOpnds = Inst->getNumOperands(); 2165 OriginalValues.reserve(NumOpnds); 2166 for (unsigned It = 0; It < NumOpnds; ++It) { 2167 // Save the current operand. 2168 Value *Val = Inst->getOperand(It); 2169 OriginalValues.push_back(Val); 2170 // Set a dummy one. 2171 // We could use OperandSetter here, but that would imply an overhead 2172 // that we are not willing to pay. 2173 Inst->setOperand(It, UndefValue::get(Val->getType())); 2174 } 2175 } 2176 2177 /// \brief Restore the original list of uses. 2178 void undo() override { 2179 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2180 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2181 Inst->setOperand(It, OriginalValues[It]); 2182 } 2183 }; 2184 2185 /// \brief Build a truncate instruction. 2186 class TruncBuilder : public TypePromotionAction { 2187 Value *Val; 2188 2189 public: 2190 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2191 /// result. 2192 /// trunc Opnd to Ty. 2193 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2194 IRBuilder<> Builder(Opnd); 2195 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2196 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2197 } 2198 2199 /// \brief Get the built value. 2200 Value *getBuiltValue() { return Val; } 2201 2202 /// \brief Remove the built instruction. 2203 void undo() override { 2204 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2205 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2206 IVal->eraseFromParent(); 2207 } 2208 }; 2209 2210 /// \brief Build a sign extension instruction. 2211 class SExtBuilder : public TypePromotionAction { 2212 Value *Val; 2213 2214 public: 2215 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2216 /// result. 2217 /// sext Opnd to Ty. 2218 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2219 : TypePromotionAction(InsertPt) { 2220 IRBuilder<> Builder(InsertPt); 2221 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2222 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2223 } 2224 2225 /// \brief Get the built value. 2226 Value *getBuiltValue() { return Val; } 2227 2228 /// \brief Remove the built instruction. 2229 void undo() override { 2230 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2231 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2232 IVal->eraseFromParent(); 2233 } 2234 }; 2235 2236 /// \brief Build a zero extension instruction. 2237 class ZExtBuilder : public TypePromotionAction { 2238 Value *Val; 2239 2240 public: 2241 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2242 /// result. 2243 /// zext Opnd to Ty. 2244 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2245 : TypePromotionAction(InsertPt) { 2246 IRBuilder<> Builder(InsertPt); 2247 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2248 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2249 } 2250 2251 /// \brief Get the built value. 2252 Value *getBuiltValue() { return Val; } 2253 2254 /// \brief Remove the built instruction. 2255 void undo() override { 2256 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2257 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2258 IVal->eraseFromParent(); 2259 } 2260 }; 2261 2262 /// \brief Mutate an instruction to another type. 2263 class TypeMutator : public TypePromotionAction { 2264 /// Record the original type. 2265 Type *OrigTy; 2266 2267 public: 2268 /// \brief Mutate the type of \p Inst into \p NewTy. 2269 TypeMutator(Instruction *Inst, Type *NewTy) 2270 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2271 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2272 << "\n"); 2273 Inst->mutateType(NewTy); 2274 } 2275 2276 /// \brief Mutate the instruction back to its original type. 2277 void undo() override { 2278 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2279 << "\n"); 2280 Inst->mutateType(OrigTy); 2281 } 2282 }; 2283 2284 /// \brief Replace the uses of an instruction by another instruction. 2285 class UsesReplacer : public TypePromotionAction { 2286 /// Helper structure to keep track of the replaced uses. 2287 struct InstructionAndIdx { 2288 /// The instruction using the instruction. 2289 Instruction *Inst; 2290 2291 /// The index where this instruction is used for Inst. 2292 unsigned Idx; 2293 2294 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2295 : Inst(Inst), Idx(Idx) {} 2296 }; 2297 2298 /// Keep track of the original uses (pair Instruction, Index). 2299 SmallVector<InstructionAndIdx, 4> OriginalUses; 2300 2301 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2302 2303 public: 2304 /// \brief Replace all the use of \p Inst by \p New. 2305 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2306 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2307 << "\n"); 2308 // Record the original uses. 2309 for (Use &U : Inst->uses()) { 2310 Instruction *UserI = cast<Instruction>(U.getUser()); 2311 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2312 } 2313 // Now, we can replace the uses. 2314 Inst->replaceAllUsesWith(New); 2315 } 2316 2317 /// \brief Reassign the original uses of Inst to Inst. 2318 void undo() override { 2319 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2320 for (use_iterator UseIt = OriginalUses.begin(), 2321 EndIt = OriginalUses.end(); 2322 UseIt != EndIt; ++UseIt) { 2323 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2324 } 2325 } 2326 }; 2327 2328 /// \brief Remove an instruction from the IR. 2329 class InstructionRemover : public TypePromotionAction { 2330 /// Original position of the instruction. 2331 InsertionHandler Inserter; 2332 2333 /// Helper structure to hide all the link to the instruction. In other 2334 /// words, this helps to do as if the instruction was removed. 2335 OperandsHider Hider; 2336 2337 /// Keep track of the uses replaced, if any. 2338 UsesReplacer *Replacer = nullptr; 2339 2340 /// Keep track of instructions removed. 2341 SetOfInstrs &RemovedInsts; 2342 2343 public: 2344 /// \brief Remove all reference of \p Inst and optinally replace all its 2345 /// uses with New. 2346 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2347 /// \pre If !Inst->use_empty(), then New != nullptr 2348 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2349 Value *New = nullptr) 2350 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2351 RemovedInsts(RemovedInsts) { 2352 if (New) 2353 Replacer = new UsesReplacer(Inst, New); 2354 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2355 RemovedInsts.insert(Inst); 2356 /// The instructions removed here will be freed after completing 2357 /// optimizeBlock() for all blocks as we need to keep track of the 2358 /// removed instructions during promotion. 2359 Inst->removeFromParent(); 2360 } 2361 2362 ~InstructionRemover() override { delete Replacer; } 2363 2364 /// \brief Resurrect the instruction and reassign it to the proper uses if 2365 /// new value was provided when build this action. 2366 void undo() override { 2367 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2368 Inserter.insert(Inst); 2369 if (Replacer) 2370 Replacer->undo(); 2371 Hider.undo(); 2372 RemovedInsts.erase(Inst); 2373 } 2374 }; 2375 2376 public: 2377 /// Restoration point. 2378 /// The restoration point is a pointer to an action instead of an iterator 2379 /// because the iterator may be invalidated but not the pointer. 2380 using ConstRestorationPt = const TypePromotionAction *; 2381 2382 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2383 : RemovedInsts(RemovedInsts) {} 2384 2385 /// Advocate every changes made in that transaction. 2386 void commit(); 2387 2388 /// Undo all the changes made after the given point. 2389 void rollback(ConstRestorationPt Point); 2390 2391 /// Get the current restoration point. 2392 ConstRestorationPt getRestorationPoint() const; 2393 2394 /// \name API for IR modification with state keeping to support rollback. 2395 /// @{ 2396 /// Same as Instruction::setOperand. 2397 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2398 2399 /// Same as Instruction::eraseFromParent. 2400 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2401 2402 /// Same as Value::replaceAllUsesWith. 2403 void replaceAllUsesWith(Instruction *Inst, Value *New); 2404 2405 /// Same as Value::mutateType. 2406 void mutateType(Instruction *Inst, Type *NewTy); 2407 2408 /// Same as IRBuilder::createTrunc. 2409 Value *createTrunc(Instruction *Opnd, Type *Ty); 2410 2411 /// Same as IRBuilder::createSExt. 2412 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2413 2414 /// Same as IRBuilder::createZExt. 2415 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2416 2417 /// Same as Instruction::moveBefore. 2418 void moveBefore(Instruction *Inst, Instruction *Before); 2419 /// @} 2420 2421 private: 2422 /// The ordered list of actions made so far. 2423 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2424 2425 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2426 2427 SetOfInstrs &RemovedInsts; 2428 }; 2429 2430 } // end anonymous namespace 2431 2432 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2433 Value *NewVal) { 2434 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2435 Inst, Idx, NewVal)); 2436 } 2437 2438 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2439 Value *NewVal) { 2440 Actions.push_back( 2441 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2442 Inst, RemovedInsts, NewVal)); 2443 } 2444 2445 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2446 Value *New) { 2447 Actions.push_back( 2448 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2449 } 2450 2451 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2452 Actions.push_back( 2453 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2454 } 2455 2456 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2457 Type *Ty) { 2458 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2459 Value *Val = Ptr->getBuiltValue(); 2460 Actions.push_back(std::move(Ptr)); 2461 return Val; 2462 } 2463 2464 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2465 Value *Opnd, Type *Ty) { 2466 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2467 Value *Val = Ptr->getBuiltValue(); 2468 Actions.push_back(std::move(Ptr)); 2469 return Val; 2470 } 2471 2472 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2473 Value *Opnd, Type *Ty) { 2474 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2475 Value *Val = Ptr->getBuiltValue(); 2476 Actions.push_back(std::move(Ptr)); 2477 return Val; 2478 } 2479 2480 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2481 Instruction *Before) { 2482 Actions.push_back( 2483 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2484 Inst, Before)); 2485 } 2486 2487 TypePromotionTransaction::ConstRestorationPt 2488 TypePromotionTransaction::getRestorationPoint() const { 2489 return !Actions.empty() ? Actions.back().get() : nullptr; 2490 } 2491 2492 void TypePromotionTransaction::commit() { 2493 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2494 ++It) 2495 (*It)->commit(); 2496 Actions.clear(); 2497 } 2498 2499 void TypePromotionTransaction::rollback( 2500 TypePromotionTransaction::ConstRestorationPt Point) { 2501 while (!Actions.empty() && Point != Actions.back().get()) { 2502 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2503 Curr->undo(); 2504 } 2505 } 2506 2507 namespace { 2508 2509 /// \brief A helper class for matching addressing modes. 2510 /// 2511 /// This encapsulates the logic for matching the target-legal addressing modes. 2512 class AddressingModeMatcher { 2513 SmallVectorImpl<Instruction*> &AddrModeInsts; 2514 const TargetLowering &TLI; 2515 const TargetRegisterInfo &TRI; 2516 const DataLayout &DL; 2517 2518 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2519 /// the memory instruction that we're computing this address for. 2520 Type *AccessTy; 2521 unsigned AddrSpace; 2522 Instruction *MemoryInst; 2523 2524 /// This is the addressing mode that we're building up. This is 2525 /// part of the return value of this addressing mode matching stuff. 2526 ExtAddrMode &AddrMode; 2527 2528 /// The instructions inserted by other CodeGenPrepare optimizations. 2529 const SetOfInstrs &InsertedInsts; 2530 2531 /// A map from the instructions to their type before promotion. 2532 InstrToOrigTy &PromotedInsts; 2533 2534 /// The ongoing transaction where every action should be registered. 2535 TypePromotionTransaction &TPT; 2536 2537 /// This is set to true when we should not do profitability checks. 2538 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2539 bool IgnoreProfitability; 2540 2541 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2542 const TargetLowering &TLI, 2543 const TargetRegisterInfo &TRI, 2544 Type *AT, unsigned AS, 2545 Instruction *MI, ExtAddrMode &AM, 2546 const SetOfInstrs &InsertedInsts, 2547 InstrToOrigTy &PromotedInsts, 2548 TypePromotionTransaction &TPT) 2549 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2550 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2551 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2552 PromotedInsts(PromotedInsts), TPT(TPT) { 2553 IgnoreProfitability = false; 2554 } 2555 2556 public: 2557 /// Find the maximal addressing mode that a load/store of V can fold, 2558 /// give an access type of AccessTy. This returns a list of involved 2559 /// instructions in AddrModeInsts. 2560 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2561 /// optimizations. 2562 /// \p PromotedInsts maps the instructions to their type before promotion. 2563 /// \p The ongoing transaction where every action should be registered. 2564 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2565 Instruction *MemoryInst, 2566 SmallVectorImpl<Instruction*> &AddrModeInsts, 2567 const TargetLowering &TLI, 2568 const TargetRegisterInfo &TRI, 2569 const SetOfInstrs &InsertedInsts, 2570 InstrToOrigTy &PromotedInsts, 2571 TypePromotionTransaction &TPT) { 2572 ExtAddrMode Result; 2573 2574 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 2575 AccessTy, AS, 2576 MemoryInst, Result, InsertedInsts, 2577 PromotedInsts, TPT).matchAddr(V, 0); 2578 (void)Success; assert(Success && "Couldn't select *anything*?"); 2579 return Result; 2580 } 2581 2582 private: 2583 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2584 bool matchAddr(Value *V, unsigned Depth); 2585 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2586 bool *MovedAway = nullptr); 2587 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2588 ExtAddrMode &AMBefore, 2589 ExtAddrMode &AMAfter); 2590 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2591 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2592 Value *PromotedOperand) const; 2593 }; 2594 2595 /// \brief Keep track of simplification of Phi nodes. 2596 /// Accept the set of all phi nodes and erase phi node from this set 2597 /// if it is simplified. 2598 class SimplificationTracker { 2599 DenseMap<Value *, Value *> Storage; 2600 const SimplifyQuery &SQ; 2601 SmallPtrSetImpl<PHINode *> &AllPhiNodes; 2602 SmallPtrSetImpl<SelectInst *> &AllSelectNodes; 2603 2604 public: 2605 SimplificationTracker(const SimplifyQuery &sq, 2606 SmallPtrSetImpl<PHINode *> &APN, 2607 SmallPtrSetImpl<SelectInst *> &ASN) 2608 : SQ(sq), AllPhiNodes(APN), AllSelectNodes(ASN) {} 2609 2610 Value *Get(Value *V) { 2611 do { 2612 auto SV = Storage.find(V); 2613 if (SV == Storage.end()) 2614 return V; 2615 V = SV->second; 2616 } while (true); 2617 } 2618 2619 Value *Simplify(Value *Val) { 2620 SmallVector<Value *, 32> WorkList; 2621 SmallPtrSet<Value *, 32> Visited; 2622 WorkList.push_back(Val); 2623 while (!WorkList.empty()) { 2624 auto P = WorkList.pop_back_val(); 2625 if (!Visited.insert(P).second) 2626 continue; 2627 if (auto *PI = dyn_cast<Instruction>(P)) 2628 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2629 for (auto *U : PI->users()) 2630 WorkList.push_back(cast<Value>(U)); 2631 Put(PI, V); 2632 PI->replaceAllUsesWith(V); 2633 if (auto *PHI = dyn_cast<PHINode>(PI)) 2634 AllPhiNodes.erase(PHI); 2635 if (auto *Select = dyn_cast<SelectInst>(PI)) 2636 AllSelectNodes.erase(Select); 2637 PI->eraseFromParent(); 2638 } 2639 } 2640 return Get(Val); 2641 } 2642 2643 void Put(Value *From, Value *To) { 2644 Storage.insert({ From, To }); 2645 } 2646 }; 2647 2648 /// \brief A helper class for combining addressing modes. 2649 class AddressingModeCombiner { 2650 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2651 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2652 typedef std::pair<PHINode *, PHINode *> PHIPair; 2653 2654 private: 2655 /// The addressing modes we've collected. 2656 SmallVector<ExtAddrMode, 16> AddrModes; 2657 2658 /// The field in which the AddrModes differ, when we have more than one. 2659 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2660 2661 /// Are the AddrModes that we have all just equal to their original values? 2662 bool AllAddrModesTrivial = true; 2663 2664 /// Common Type for all different fields in addressing modes. 2665 Type *CommonType; 2666 2667 /// SimplifyQuery for simplifyInstruction utility. 2668 const SimplifyQuery &SQ; 2669 2670 /// Original Address. 2671 ValueInBB Original; 2672 2673 public: 2674 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2675 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2676 2677 /// \brief Get the combined AddrMode 2678 const ExtAddrMode &getAddrMode() const { 2679 return AddrModes[0]; 2680 } 2681 2682 /// \brief Add a new AddrMode if it's compatible with the AddrModes we already 2683 /// have. 2684 /// \return True iff we succeeded in doing so. 2685 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2686 // Take note of if we have any non-trivial AddrModes, as we need to detect 2687 // when all AddrModes are trivial as then we would introduce a phi or select 2688 // which just duplicates what's already there. 2689 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2690 2691 // If this is the first addrmode then everything is fine. 2692 if (AddrModes.empty()) { 2693 AddrModes.emplace_back(NewAddrMode); 2694 return true; 2695 } 2696 2697 // Figure out how different this is from the other address modes, which we 2698 // can do just by comparing against the first one given that we only care 2699 // about the cumulative difference. 2700 ExtAddrMode::FieldName ThisDifferentField = 2701 AddrModes[0].compare(NewAddrMode); 2702 if (DifferentField == ExtAddrMode::NoField) 2703 DifferentField = ThisDifferentField; 2704 else if (DifferentField != ThisDifferentField) 2705 DifferentField = ExtAddrMode::MultipleFields; 2706 2707 // If NewAddrMode differs in only one dimension, and that dimension isn't 2708 // the amount that ScaledReg is scaled by, then we can handle it by 2709 // inserting a phi/select later on. Even if NewAddMode is the same 2710 // we still need to collect it due to original value is different. 2711 // And later we will need all original values as anchors during 2712 // finding the common Phi node. 2713 if (DifferentField != ExtAddrMode::MultipleFields && 2714 DifferentField != ExtAddrMode::ScaleField) { 2715 AddrModes.emplace_back(NewAddrMode); 2716 return true; 2717 } 2718 2719 // We couldn't combine NewAddrMode with the rest, so return failure. 2720 AddrModes.clear(); 2721 return false; 2722 } 2723 2724 /// \brief Combine the addressing modes we've collected into a single 2725 /// addressing mode. 2726 /// \return True iff we successfully combined them or we only had one so 2727 /// didn't need to combine them anyway. 2728 bool combineAddrModes() { 2729 // If we have no AddrModes then they can't be combined. 2730 if (AddrModes.size() == 0) 2731 return false; 2732 2733 // A single AddrMode can trivially be combined. 2734 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2735 return true; 2736 2737 // If the AddrModes we collected are all just equal to the value they are 2738 // derived from then combining them wouldn't do anything useful. 2739 if (AllAddrModesTrivial) 2740 return false; 2741 2742 if (!addrModeCombiningAllowed()) 2743 return false; 2744 2745 // Build a map between <original value, basic block where we saw it> to 2746 // value of base register. 2747 // Bail out if there is no common type. 2748 FoldAddrToValueMapping Map; 2749 if (!initializeMap(Map)) 2750 return false; 2751 2752 Value *CommonValue = findCommon(Map); 2753 if (CommonValue) 2754 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 2755 return CommonValue != nullptr; 2756 } 2757 2758 private: 2759 /// \brief Initialize Map with anchor values. For address seen in some BB 2760 /// we set the value of different field saw in this address. 2761 /// If address is not an instruction than basic block is set to null. 2762 /// At the same time we find a common type for different field we will 2763 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2764 /// Return false if there is no common type found. 2765 bool initializeMap(FoldAddrToValueMapping &Map) { 2766 // Keep track of keys where the value is null. We will need to replace it 2767 // with constant null when we know the common type. 2768 SmallVector<ValueInBB, 2> NullValue; 2769 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 2770 for (auto &AM : AddrModes) { 2771 BasicBlock *BB = nullptr; 2772 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2773 BB = I->getParent(); 2774 2775 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 2776 if (DV) { 2777 auto *Type = DV->getType(); 2778 if (CommonType && CommonType != Type) 2779 return false; 2780 CommonType = Type; 2781 Map[{ AM.OriginalValue, BB }] = DV; 2782 } else { 2783 NullValue.push_back({ AM.OriginalValue, BB }); 2784 } 2785 } 2786 assert(CommonType && "At least one non-null value must be!"); 2787 for (auto VIBB : NullValue) 2788 Map[VIBB] = Constant::getNullValue(CommonType); 2789 return true; 2790 } 2791 2792 /// \brief We have mapping between value A and basic block where value A 2793 /// seen to other value B where B was a field in addressing mode represented 2794 /// by A. Also we have an original value C representin an address in some 2795 /// basic block. Traversing from C through phi and selects we ended up with 2796 /// A's in a map. This utility function tries to find a value V which is a 2797 /// field in addressing mode C and traversing through phi nodes and selects 2798 /// we will end up in corresponded values B in a map. 2799 /// The utility will create a new Phi/Selects if needed. 2800 // The simple example looks as follows: 2801 // BB1: 2802 // p1 = b1 + 40 2803 // br cond BB2, BB3 2804 // BB2: 2805 // p2 = b2 + 40 2806 // br BB3 2807 // BB3: 2808 // p = phi [p1, BB1], [p2, BB2] 2809 // v = load p 2810 // Map is 2811 // <p1, BB1> -> b1 2812 // <p2, BB2> -> b2 2813 // Request is 2814 // <p, BB3> -> ? 2815 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2816 Value *findCommon(FoldAddrToValueMapping &Map) { 2817 // Tracks of new created Phi nodes. 2818 SmallPtrSet<PHINode *, 32> NewPhiNodes; 2819 // Tracks of new created Select nodes. 2820 SmallPtrSet<SelectInst *, 32> NewSelectNodes; 2821 // Tracks the simplification of new created phi nodes. The reason we use 2822 // this mapping is because we will add new created Phi nodes in AddrToBase. 2823 // Simplification of Phi nodes is recursive, so some Phi node may 2824 // be simplified after we added it to AddrToBase. 2825 // Using this mapping we can find the current value in AddrToBase. 2826 SimplificationTracker ST(SQ, NewPhiNodes, NewSelectNodes); 2827 2828 // First step, DFS to create PHI nodes for all intermediate blocks. 2829 // Also fill traverse order for the second step. 2830 SmallVector<ValueInBB, 32> TraverseOrder; 2831 InsertPlaceholders(Map, TraverseOrder, NewPhiNodes, NewSelectNodes); 2832 2833 // Second Step, fill new nodes by merged values and simplify if possible. 2834 FillPlaceholders(Map, TraverseOrder, ST); 2835 2836 if (!AddrSinkNewSelects && NewSelectNodes.size() > 0) { 2837 DestroyNodes(NewPhiNodes); 2838 DestroyNodes(NewSelectNodes); 2839 return nullptr; 2840 } 2841 2842 // Now we'd like to match New Phi nodes to existed ones. 2843 unsigned PhiNotMatchedCount = 0; 2844 if (!MatchPhiSet(NewPhiNodes, ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2845 DestroyNodes(NewPhiNodes); 2846 DestroyNodes(NewSelectNodes); 2847 return nullptr; 2848 } 2849 2850 auto *Result = ST.Get(Map.find(Original)->second); 2851 if (Result) { 2852 NumMemoryInstsPhiCreated += NewPhiNodes.size() + PhiNotMatchedCount; 2853 NumMemoryInstsSelectCreated += NewSelectNodes.size(); 2854 } 2855 return Result; 2856 } 2857 2858 /// \brief Destroy nodes from a set. 2859 template <typename T> void DestroyNodes(SmallPtrSetImpl<T *> &Instructions) { 2860 // For safe erasing, replace the Phi with dummy value first. 2861 auto Dummy = UndefValue::get(CommonType); 2862 for (auto I : Instructions) { 2863 I->replaceAllUsesWith(Dummy); 2864 I->eraseFromParent(); 2865 } 2866 } 2867 2868 /// \brief Try to match PHI node to Candidate. 2869 /// Matcher tracks the matched Phi nodes. 2870 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2871 DenseSet<PHIPair> &Matcher, 2872 SmallPtrSetImpl<PHINode *> &PhiNodesToMatch) { 2873 SmallVector<PHIPair, 8> WorkList; 2874 Matcher.insert({ PHI, Candidate }); 2875 WorkList.push_back({ PHI, Candidate }); 2876 SmallSet<PHIPair, 8> Visited; 2877 while (!WorkList.empty()) { 2878 auto Item = WorkList.pop_back_val(); 2879 if (!Visited.insert(Item).second) 2880 continue; 2881 // We iterate over all incoming values to Phi to compare them. 2882 // If values are different and both of them Phi and the first one is a 2883 // Phi we added (subject to match) and both of them is in the same basic 2884 // block then we can match our pair if values match. So we state that 2885 // these values match and add it to work list to verify that. 2886 for (auto B : Item.first->blocks()) { 2887 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2888 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2889 if (FirstValue == SecondValue) 2890 continue; 2891 2892 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2893 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2894 2895 // One of them is not Phi or 2896 // The first one is not Phi node from the set we'd like to match or 2897 // Phi nodes from different basic blocks then 2898 // we will not be able to match. 2899 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2900 FirstPhi->getParent() != SecondPhi->getParent()) 2901 return false; 2902 2903 // If we already matched them then continue. 2904 if (Matcher.count({ FirstPhi, SecondPhi })) 2905 continue; 2906 // So the values are different and does not match. So we need them to 2907 // match. 2908 Matcher.insert({ FirstPhi, SecondPhi }); 2909 // But me must check it. 2910 WorkList.push_back({ FirstPhi, SecondPhi }); 2911 } 2912 } 2913 return true; 2914 } 2915 2916 /// \brief For the given set of PHI nodes try to find their equivalents. 2917 /// Returns false if this matching fails and creation of new Phi is disabled. 2918 bool MatchPhiSet(SmallPtrSetImpl<PHINode *> &PhiNodesToMatch, 2919 SimplificationTracker &ST, bool AllowNewPhiNodes, 2920 unsigned &PhiNotMatchedCount) { 2921 DenseSet<PHIPair> Matched; 2922 SmallPtrSet<PHINode *, 8> WillNotMatch; 2923 while (PhiNodesToMatch.size()) { 2924 PHINode *PHI = *PhiNodesToMatch.begin(); 2925 2926 // Add us, if no Phi nodes in the basic block we do not match. 2927 WillNotMatch.clear(); 2928 WillNotMatch.insert(PHI); 2929 2930 // Traverse all Phis until we found equivalent or fail to do that. 2931 bool IsMatched = false; 2932 for (auto &P : PHI->getParent()->phis()) { 2933 if (&P == PHI) 2934 continue; 2935 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 2936 break; 2937 // If it does not match, collect all Phi nodes from matcher. 2938 // if we end up with no match, them all these Phi nodes will not match 2939 // later. 2940 for (auto M : Matched) 2941 WillNotMatch.insert(M.first); 2942 Matched.clear(); 2943 } 2944 if (IsMatched) { 2945 // Replace all matched values and erase them. 2946 for (auto MV : Matched) { 2947 MV.first->replaceAllUsesWith(MV.second); 2948 PhiNodesToMatch.erase(MV.first); 2949 ST.Put(MV.first, MV.second); 2950 MV.first->eraseFromParent(); 2951 } 2952 Matched.clear(); 2953 continue; 2954 } 2955 // If we are not allowed to create new nodes then bail out. 2956 if (!AllowNewPhiNodes) 2957 return false; 2958 // Just remove all seen values in matcher. They will not match anything. 2959 PhiNotMatchedCount += WillNotMatch.size(); 2960 for (auto *P : WillNotMatch) 2961 PhiNodesToMatch.erase(P); 2962 } 2963 return true; 2964 } 2965 /// \brief Fill the placeholder with values from predecessors and simplify it. 2966 void FillPlaceholders(FoldAddrToValueMapping &Map, 2967 SmallVectorImpl<ValueInBB> &TraverseOrder, 2968 SimplificationTracker &ST) { 2969 while (!TraverseOrder.empty()) { 2970 auto Current = TraverseOrder.pop_back_val(); 2971 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 2972 Value *CurrentValue = Current.first; 2973 BasicBlock *CurrentBlock = Current.second; 2974 Value *V = Map[Current]; 2975 2976 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 2977 // CurrentValue also must be Select. 2978 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 2979 auto *TrueValue = CurrentSelect->getTrueValue(); 2980 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 2981 ? CurrentBlock 2982 : nullptr }; 2983 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 2984 Select->setTrueValue(ST.Get(Map[TrueItem])); 2985 auto *FalseValue = CurrentSelect->getFalseValue(); 2986 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 2987 ? CurrentBlock 2988 : nullptr }; 2989 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 2990 Select->setFalseValue(ST.Get(Map[FalseItem])); 2991 } else { 2992 // Must be a Phi node then. 2993 PHINode *PHI = cast<PHINode>(V); 2994 // Fill the Phi node with values from predecessors. 2995 bool IsDefinedInThisBB = 2996 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 2997 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 2998 for (auto B : predecessors(CurrentBlock)) { 2999 Value *PV = IsDefinedInThisBB 3000 ? CurrentPhi->getIncomingValueForBlock(B) 3001 : CurrentValue; 3002 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3003 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3004 PHI->addIncoming(ST.Get(Map[item]), B); 3005 } 3006 } 3007 // Simplify if possible. 3008 Map[Current] = ST.Simplify(V); 3009 } 3010 } 3011 3012 /// Starting from value recursively iterates over predecessors up to known 3013 /// ending values represented in a map. For each traversed block inserts 3014 /// a placeholder Phi or Select. 3015 /// Reports all new created Phi/Select nodes by adding them to set. 3016 /// Also reports and order in what basic blocks have been traversed. 3017 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3018 SmallVectorImpl<ValueInBB> &TraverseOrder, 3019 SmallPtrSetImpl<PHINode *> &NewPhiNodes, 3020 SmallPtrSetImpl<SelectInst *> &NewSelectNodes) { 3021 SmallVector<ValueInBB, 32> Worklist; 3022 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3023 "Address must be a Phi or Select node"); 3024 auto *Dummy = UndefValue::get(CommonType); 3025 Worklist.push_back(Original); 3026 while (!Worklist.empty()) { 3027 auto Current = Worklist.pop_back_val(); 3028 // If value is not an instruction it is something global, constant, 3029 // parameter and we can say that this value is observable in any block. 3030 // Set block to null to denote it. 3031 // Also please take into account that it is how we build anchors. 3032 if (!isa<Instruction>(Current.first)) 3033 Current.second = nullptr; 3034 // if it is already visited or it is an ending value then skip it. 3035 if (Map.find(Current) != Map.end()) 3036 continue; 3037 TraverseOrder.push_back(Current); 3038 3039 Value *CurrentValue = Current.first; 3040 BasicBlock *CurrentBlock = Current.second; 3041 // CurrentValue must be a Phi node or select. All others must be covered 3042 // by anchors. 3043 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3044 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3045 3046 unsigned PredCount = 3047 std::distance(pred_begin(CurrentBlock), pred_end(CurrentBlock)); 3048 // if Current Value is not defined in this basic block we are interested 3049 // in values in predecessors. 3050 if (!IsDefinedInThisBB) { 3051 assert(PredCount && "Unreachable block?!"); 3052 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3053 &CurrentBlock->front()); 3054 Map[Current] = PHI; 3055 NewPhiNodes.insert(PHI); 3056 // Add all predecessors in work list. 3057 for (auto B : predecessors(CurrentBlock)) 3058 Worklist.push_back({ CurrentValue, B }); 3059 continue; 3060 } 3061 // Value is defined in this basic block. 3062 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3063 // Is it OK to get metadata from OrigSelect?! 3064 // Create a Select placeholder with dummy value. 3065 SelectInst *Select = 3066 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3067 OrigSelect->getName(), OrigSelect, OrigSelect); 3068 Map[Current] = Select; 3069 NewSelectNodes.insert(Select); 3070 // We are interested in True and False value in this basic block. 3071 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3072 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3073 } else { 3074 // It must be a Phi node then. 3075 auto *CurrentPhi = cast<PHINode>(CurrentI); 3076 // Create new Phi node for merge of bases. 3077 assert(PredCount && "Unreachable block?!"); 3078 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3079 &CurrentBlock->front()); 3080 Map[Current] = PHI; 3081 NewPhiNodes.insert(PHI); 3082 3083 // Add all predecessors in work list. 3084 for (auto B : predecessors(CurrentBlock)) 3085 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3086 } 3087 } 3088 } 3089 3090 bool addrModeCombiningAllowed() { 3091 if (DisableComplexAddrModes) 3092 return false; 3093 switch (DifferentField) { 3094 default: 3095 return false; 3096 case ExtAddrMode::BaseRegField: 3097 return AddrSinkCombineBaseReg; 3098 case ExtAddrMode::BaseGVField: 3099 return AddrSinkCombineBaseGV; 3100 case ExtAddrMode::BaseOffsField: 3101 return AddrSinkCombineBaseOffs; 3102 case ExtAddrMode::ScaledRegField: 3103 return AddrSinkCombineScaledReg; 3104 } 3105 } 3106 }; 3107 } // end anonymous namespace 3108 3109 /// Try adding ScaleReg*Scale to the current addressing mode. 3110 /// Return true and update AddrMode if this addr mode is legal for the target, 3111 /// false if not. 3112 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3113 unsigned Depth) { 3114 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3115 // mode. Just process that directly. 3116 if (Scale == 1) 3117 return matchAddr(ScaleReg, Depth); 3118 3119 // If the scale is 0, it takes nothing to add this. 3120 if (Scale == 0) 3121 return true; 3122 3123 // If we already have a scale of this value, we can add to it, otherwise, we 3124 // need an available scale field. 3125 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3126 return false; 3127 3128 ExtAddrMode TestAddrMode = AddrMode; 3129 3130 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3131 // [A+B + A*7] -> [B+A*8]. 3132 TestAddrMode.Scale += Scale; 3133 TestAddrMode.ScaledReg = ScaleReg; 3134 3135 // If the new address isn't legal, bail out. 3136 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3137 return false; 3138 3139 // It was legal, so commit it. 3140 AddrMode = TestAddrMode; 3141 3142 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3143 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3144 // X*Scale + C*Scale to addr mode. 3145 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3146 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3147 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3148 TestAddrMode.ScaledReg = AddLHS; 3149 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3150 3151 // If this addressing mode is legal, commit it and remember that we folded 3152 // this instruction. 3153 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3154 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3155 AddrMode = TestAddrMode; 3156 return true; 3157 } 3158 } 3159 3160 // Otherwise, not (x+c)*scale, just return what we have. 3161 return true; 3162 } 3163 3164 /// This is a little filter, which returns true if an addressing computation 3165 /// involving I might be folded into a load/store accessing it. 3166 /// This doesn't need to be perfect, but needs to accept at least 3167 /// the set of instructions that MatchOperationAddr can. 3168 static bool MightBeFoldableInst(Instruction *I) { 3169 switch (I->getOpcode()) { 3170 case Instruction::BitCast: 3171 case Instruction::AddrSpaceCast: 3172 // Don't touch identity bitcasts. 3173 if (I->getType() == I->getOperand(0)->getType()) 3174 return false; 3175 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3176 case Instruction::PtrToInt: 3177 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3178 return true; 3179 case Instruction::IntToPtr: 3180 // We know the input is intptr_t, so this is foldable. 3181 return true; 3182 case Instruction::Add: 3183 return true; 3184 case Instruction::Mul: 3185 case Instruction::Shl: 3186 // Can only handle X*C and X << C. 3187 return isa<ConstantInt>(I->getOperand(1)); 3188 case Instruction::GetElementPtr: 3189 return true; 3190 default: 3191 return false; 3192 } 3193 } 3194 3195 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3196 /// \note \p Val is assumed to be the product of some type promotion. 3197 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3198 /// to be legal, as the non-promoted value would have had the same state. 3199 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3200 const DataLayout &DL, Value *Val) { 3201 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3202 if (!PromotedInst) 3203 return false; 3204 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3205 // If the ISDOpcode is undefined, it was undefined before the promotion. 3206 if (!ISDOpcode) 3207 return true; 3208 // Otherwise, check if the promoted instruction is legal or not. 3209 return TLI.isOperationLegalOrCustom( 3210 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3211 } 3212 3213 namespace { 3214 3215 /// \brief Hepler class to perform type promotion. 3216 class TypePromotionHelper { 3217 /// \brief Utility function to check whether or not a sign or zero extension 3218 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3219 /// either using the operands of \p Inst or promoting \p Inst. 3220 /// The type of the extension is defined by \p IsSExt. 3221 /// In other words, check if: 3222 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3223 /// #1 Promotion applies: 3224 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3225 /// #2 Operand reuses: 3226 /// ext opnd1 to ConsideredExtType. 3227 /// \p PromotedInsts maps the instructions to their type before promotion. 3228 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3229 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3230 3231 /// \brief Utility function to determine if \p OpIdx should be promoted when 3232 /// promoting \p Inst. 3233 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3234 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3235 } 3236 3237 /// \brief Utility function to promote the operand of \p Ext when this 3238 /// operand is a promotable trunc or sext or zext. 3239 /// \p PromotedInsts maps the instructions to their type before promotion. 3240 /// \p CreatedInstsCost[out] contains the cost of all instructions 3241 /// created to promote the operand of Ext. 3242 /// Newly added extensions are inserted in \p Exts. 3243 /// Newly added truncates are inserted in \p Truncs. 3244 /// Should never be called directly. 3245 /// \return The promoted value which is used instead of Ext. 3246 static Value *promoteOperandForTruncAndAnyExt( 3247 Instruction *Ext, TypePromotionTransaction &TPT, 3248 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3249 SmallVectorImpl<Instruction *> *Exts, 3250 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3251 3252 /// \brief Utility function to promote the operand of \p Ext when this 3253 /// operand is promotable and is not a supported trunc or sext. 3254 /// \p PromotedInsts maps the instructions to their type before promotion. 3255 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3256 /// created to promote the operand of Ext. 3257 /// Newly added extensions are inserted in \p Exts. 3258 /// Newly added truncates are inserted in \p Truncs. 3259 /// Should never be called directly. 3260 /// \return The promoted value which is used instead of Ext. 3261 static Value *promoteOperandForOther(Instruction *Ext, 3262 TypePromotionTransaction &TPT, 3263 InstrToOrigTy &PromotedInsts, 3264 unsigned &CreatedInstsCost, 3265 SmallVectorImpl<Instruction *> *Exts, 3266 SmallVectorImpl<Instruction *> *Truncs, 3267 const TargetLowering &TLI, bool IsSExt); 3268 3269 /// \see promoteOperandForOther. 3270 static Value *signExtendOperandForOther( 3271 Instruction *Ext, TypePromotionTransaction &TPT, 3272 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3273 SmallVectorImpl<Instruction *> *Exts, 3274 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3275 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3276 Exts, Truncs, TLI, true); 3277 } 3278 3279 /// \see promoteOperandForOther. 3280 static Value *zeroExtendOperandForOther( 3281 Instruction *Ext, TypePromotionTransaction &TPT, 3282 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3283 SmallVectorImpl<Instruction *> *Exts, 3284 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3285 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3286 Exts, Truncs, TLI, false); 3287 } 3288 3289 public: 3290 /// Type for the utility function that promotes the operand of Ext. 3291 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3292 InstrToOrigTy &PromotedInsts, 3293 unsigned &CreatedInstsCost, 3294 SmallVectorImpl<Instruction *> *Exts, 3295 SmallVectorImpl<Instruction *> *Truncs, 3296 const TargetLowering &TLI); 3297 3298 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3299 /// action to promote the operand of \p Ext instead of using Ext. 3300 /// \return NULL if no promotable action is possible with the current 3301 /// sign extension. 3302 /// \p InsertedInsts keeps track of all the instructions inserted by the 3303 /// other CodeGenPrepare optimizations. This information is important 3304 /// because we do not want to promote these instructions as CodeGenPrepare 3305 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3306 /// \p PromotedInsts maps the instructions to their type before promotion. 3307 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3308 const TargetLowering &TLI, 3309 const InstrToOrigTy &PromotedInsts); 3310 }; 3311 3312 } // end anonymous namespace 3313 3314 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3315 Type *ConsideredExtType, 3316 const InstrToOrigTy &PromotedInsts, 3317 bool IsSExt) { 3318 // The promotion helper does not know how to deal with vector types yet. 3319 // To be able to fix that, we would need to fix the places where we 3320 // statically extend, e.g., constants and such. 3321 if (Inst->getType()->isVectorTy()) 3322 return false; 3323 3324 // We can always get through zext. 3325 if (isa<ZExtInst>(Inst)) 3326 return true; 3327 3328 // sext(sext) is ok too. 3329 if (IsSExt && isa<SExtInst>(Inst)) 3330 return true; 3331 3332 // We can get through binary operator, if it is legal. In other words, the 3333 // binary operator must have a nuw or nsw flag. 3334 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3335 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3336 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3337 (IsSExt && BinOp->hasNoSignedWrap()))) 3338 return true; 3339 3340 // Check if we can do the following simplification. 3341 // ext(trunc(opnd)) --> ext(opnd) 3342 if (!isa<TruncInst>(Inst)) 3343 return false; 3344 3345 Value *OpndVal = Inst->getOperand(0); 3346 // Check if we can use this operand in the extension. 3347 // If the type is larger than the result type of the extension, we cannot. 3348 if (!OpndVal->getType()->isIntegerTy() || 3349 OpndVal->getType()->getIntegerBitWidth() > 3350 ConsideredExtType->getIntegerBitWidth()) 3351 return false; 3352 3353 // If the operand of the truncate is not an instruction, we will not have 3354 // any information on the dropped bits. 3355 // (Actually we could for constant but it is not worth the extra logic). 3356 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3357 if (!Opnd) 3358 return false; 3359 3360 // Check if the source of the type is narrow enough. 3361 // I.e., check that trunc just drops extended bits of the same kind of 3362 // the extension. 3363 // #1 get the type of the operand and check the kind of the extended bits. 3364 const Type *OpndType; 3365 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3366 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3367 OpndType = It->second.getPointer(); 3368 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3369 OpndType = Opnd->getOperand(0)->getType(); 3370 else 3371 return false; 3372 3373 // #2 check that the truncate just drops extended bits. 3374 return Inst->getType()->getIntegerBitWidth() >= 3375 OpndType->getIntegerBitWidth(); 3376 } 3377 3378 TypePromotionHelper::Action TypePromotionHelper::getAction( 3379 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3380 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3381 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3382 "Unexpected instruction type"); 3383 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3384 Type *ExtTy = Ext->getType(); 3385 bool IsSExt = isa<SExtInst>(Ext); 3386 // If the operand of the extension is not an instruction, we cannot 3387 // get through. 3388 // If it, check we can get through. 3389 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3390 return nullptr; 3391 3392 // Do not promote if the operand has been added by codegenprepare. 3393 // Otherwise, it means we are undoing an optimization that is likely to be 3394 // redone, thus causing potential infinite loop. 3395 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3396 return nullptr; 3397 3398 // SExt or Trunc instructions. 3399 // Return the related handler. 3400 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3401 isa<ZExtInst>(ExtOpnd)) 3402 return promoteOperandForTruncAndAnyExt; 3403 3404 // Regular instruction. 3405 // Abort early if we will have to insert non-free instructions. 3406 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3407 return nullptr; 3408 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3409 } 3410 3411 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3412 Instruction *SExt, TypePromotionTransaction &TPT, 3413 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3414 SmallVectorImpl<Instruction *> *Exts, 3415 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3416 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3417 // get through it and this method should not be called. 3418 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3419 Value *ExtVal = SExt; 3420 bool HasMergedNonFreeExt = false; 3421 if (isa<ZExtInst>(SExtOpnd)) { 3422 // Replace s|zext(zext(opnd)) 3423 // => zext(opnd). 3424 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3425 Value *ZExt = 3426 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3427 TPT.replaceAllUsesWith(SExt, ZExt); 3428 TPT.eraseInstruction(SExt); 3429 ExtVal = ZExt; 3430 } else { 3431 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3432 // => z|sext(opnd). 3433 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3434 } 3435 CreatedInstsCost = 0; 3436 3437 // Remove dead code. 3438 if (SExtOpnd->use_empty()) 3439 TPT.eraseInstruction(SExtOpnd); 3440 3441 // Check if the extension is still needed. 3442 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3443 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3444 if (ExtInst) { 3445 if (Exts) 3446 Exts->push_back(ExtInst); 3447 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3448 } 3449 return ExtVal; 3450 } 3451 3452 // At this point we have: ext ty opnd to ty. 3453 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3454 Value *NextVal = ExtInst->getOperand(0); 3455 TPT.eraseInstruction(ExtInst, NextVal); 3456 return NextVal; 3457 } 3458 3459 Value *TypePromotionHelper::promoteOperandForOther( 3460 Instruction *Ext, TypePromotionTransaction &TPT, 3461 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3462 SmallVectorImpl<Instruction *> *Exts, 3463 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3464 bool IsSExt) { 3465 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3466 // get through it and this method should not be called. 3467 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3468 CreatedInstsCost = 0; 3469 if (!ExtOpnd->hasOneUse()) { 3470 // ExtOpnd will be promoted. 3471 // All its uses, but Ext, will need to use a truncated value of the 3472 // promoted version. 3473 // Create the truncate now. 3474 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3475 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3476 // Insert it just after the definition. 3477 ITrunc->moveAfter(ExtOpnd); 3478 if (Truncs) 3479 Truncs->push_back(ITrunc); 3480 } 3481 3482 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3483 // Restore the operand of Ext (which has been replaced by the previous call 3484 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3485 TPT.setOperand(Ext, 0, ExtOpnd); 3486 } 3487 3488 // Get through the Instruction: 3489 // 1. Update its type. 3490 // 2. Replace the uses of Ext by Inst. 3491 // 3. Extend each operand that needs to be extended. 3492 3493 // Remember the original type of the instruction before promotion. 3494 // This is useful to know that the high bits are sign extended bits. 3495 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3496 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3497 // Step #1. 3498 TPT.mutateType(ExtOpnd, Ext->getType()); 3499 // Step #2. 3500 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3501 // Step #3. 3502 Instruction *ExtForOpnd = Ext; 3503 3504 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3505 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3506 ++OpIdx) { 3507 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3508 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3509 !shouldExtOperand(ExtOpnd, OpIdx)) { 3510 DEBUG(dbgs() << "No need to propagate\n"); 3511 continue; 3512 } 3513 // Check if we can statically extend the operand. 3514 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3515 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3516 DEBUG(dbgs() << "Statically extend\n"); 3517 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3518 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3519 : Cst->getValue().zext(BitWidth); 3520 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3521 continue; 3522 } 3523 // UndefValue are typed, so we have to statically sign extend them. 3524 if (isa<UndefValue>(Opnd)) { 3525 DEBUG(dbgs() << "Statically extend\n"); 3526 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3527 continue; 3528 } 3529 3530 // Otherwise we have to explicity sign extend the operand. 3531 // Check if Ext was reused to extend an operand. 3532 if (!ExtForOpnd) { 3533 // If yes, create a new one. 3534 DEBUG(dbgs() << "More operands to ext\n"); 3535 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3536 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3537 if (!isa<Instruction>(ValForExtOpnd)) { 3538 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3539 continue; 3540 } 3541 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3542 } 3543 if (Exts) 3544 Exts->push_back(ExtForOpnd); 3545 TPT.setOperand(ExtForOpnd, 0, Opnd); 3546 3547 // Move the sign extension before the insertion point. 3548 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3549 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3550 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3551 // If more sext are required, new instructions will have to be created. 3552 ExtForOpnd = nullptr; 3553 } 3554 if (ExtForOpnd == Ext) { 3555 DEBUG(dbgs() << "Extension is useless now\n"); 3556 TPT.eraseInstruction(Ext); 3557 } 3558 return ExtOpnd; 3559 } 3560 3561 /// Check whether or not promoting an instruction to a wider type is profitable. 3562 /// \p NewCost gives the cost of extension instructions created by the 3563 /// promotion. 3564 /// \p OldCost gives the cost of extension instructions before the promotion 3565 /// plus the number of instructions that have been 3566 /// matched in the addressing mode the promotion. 3567 /// \p PromotedOperand is the value that has been promoted. 3568 /// \return True if the promotion is profitable, false otherwise. 3569 bool AddressingModeMatcher::isPromotionProfitable( 3570 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3571 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3572 // The cost of the new extensions is greater than the cost of the 3573 // old extension plus what we folded. 3574 // This is not profitable. 3575 if (NewCost > OldCost) 3576 return false; 3577 if (NewCost < OldCost) 3578 return true; 3579 // The promotion is neutral but it may help folding the sign extension in 3580 // loads for instance. 3581 // Check that we did not create an illegal instruction. 3582 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3583 } 3584 3585 /// Given an instruction or constant expr, see if we can fold the operation 3586 /// into the addressing mode. If so, update the addressing mode and return 3587 /// true, otherwise return false without modifying AddrMode. 3588 /// If \p MovedAway is not NULL, it contains the information of whether or 3589 /// not AddrInst has to be folded into the addressing mode on success. 3590 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3591 /// because it has been moved away. 3592 /// Thus AddrInst must not be added in the matched instructions. 3593 /// This state can happen when AddrInst is a sext, since it may be moved away. 3594 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3595 /// not be referenced anymore. 3596 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3597 unsigned Depth, 3598 bool *MovedAway) { 3599 // Avoid exponential behavior on extremely deep expression trees. 3600 if (Depth >= 5) return false; 3601 3602 // By default, all matched instructions stay in place. 3603 if (MovedAway) 3604 *MovedAway = false; 3605 3606 switch (Opcode) { 3607 case Instruction::PtrToInt: 3608 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3609 return matchAddr(AddrInst->getOperand(0), Depth); 3610 case Instruction::IntToPtr: { 3611 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3612 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3613 // This inttoptr is a no-op if the integer type is pointer sized. 3614 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3615 return matchAddr(AddrInst->getOperand(0), Depth); 3616 return false; 3617 } 3618 case Instruction::BitCast: 3619 // BitCast is always a noop, and we can handle it as long as it is 3620 // int->int or pointer->pointer (we don't want int<->fp or something). 3621 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3622 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3623 // Don't touch identity bitcasts. These were probably put here by LSR, 3624 // and we don't want to mess around with them. Assume it knows what it 3625 // is doing. 3626 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3627 return matchAddr(AddrInst->getOperand(0), Depth); 3628 return false; 3629 case Instruction::AddrSpaceCast: { 3630 unsigned SrcAS 3631 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3632 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3633 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3634 return matchAddr(AddrInst->getOperand(0), Depth); 3635 return false; 3636 } 3637 case Instruction::Add: { 3638 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3639 ExtAddrMode BackupAddrMode = AddrMode; 3640 unsigned OldSize = AddrModeInsts.size(); 3641 // Start a transaction at this point. 3642 // The LHS may match but not the RHS. 3643 // Therefore, we need a higher level restoration point to undo partially 3644 // matched operation. 3645 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3646 TPT.getRestorationPoint(); 3647 3648 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3649 matchAddr(AddrInst->getOperand(0), Depth+1)) 3650 return true; 3651 3652 // Restore the old addr mode info. 3653 AddrMode = BackupAddrMode; 3654 AddrModeInsts.resize(OldSize); 3655 TPT.rollback(LastKnownGood); 3656 3657 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3658 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3659 matchAddr(AddrInst->getOperand(1), Depth+1)) 3660 return true; 3661 3662 // Otherwise we definitely can't merge the ADD in. 3663 AddrMode = BackupAddrMode; 3664 AddrModeInsts.resize(OldSize); 3665 TPT.rollback(LastKnownGood); 3666 break; 3667 } 3668 //case Instruction::Or: 3669 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3670 //break; 3671 case Instruction::Mul: 3672 case Instruction::Shl: { 3673 // Can only handle X*C and X << C. 3674 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3675 if (!RHS || RHS->getBitWidth() > 64) 3676 return false; 3677 int64_t Scale = RHS->getSExtValue(); 3678 if (Opcode == Instruction::Shl) 3679 Scale = 1LL << Scale; 3680 3681 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3682 } 3683 case Instruction::GetElementPtr: { 3684 // Scan the GEP. We check it if it contains constant offsets and at most 3685 // one variable offset. 3686 int VariableOperand = -1; 3687 unsigned VariableScale = 0; 3688 3689 int64_t ConstantOffset = 0; 3690 gep_type_iterator GTI = gep_type_begin(AddrInst); 3691 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3692 if (StructType *STy = GTI.getStructTypeOrNull()) { 3693 const StructLayout *SL = DL.getStructLayout(STy); 3694 unsigned Idx = 3695 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3696 ConstantOffset += SL->getElementOffset(Idx); 3697 } else { 3698 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3699 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3700 ConstantOffset += CI->getSExtValue() * TypeSize; 3701 } else if (TypeSize) { // Scales of zero don't do anything. 3702 // We only allow one variable index at the moment. 3703 if (VariableOperand != -1) 3704 return false; 3705 3706 // Remember the variable index. 3707 VariableOperand = i; 3708 VariableScale = TypeSize; 3709 } 3710 } 3711 } 3712 3713 // A common case is for the GEP to only do a constant offset. In this case, 3714 // just add it to the disp field and check validity. 3715 if (VariableOperand == -1) { 3716 AddrMode.BaseOffs += ConstantOffset; 3717 if (ConstantOffset == 0 || 3718 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3719 // Check to see if we can fold the base pointer in too. 3720 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3721 return true; 3722 } 3723 AddrMode.BaseOffs -= ConstantOffset; 3724 return false; 3725 } 3726 3727 // Save the valid addressing mode in case we can't match. 3728 ExtAddrMode BackupAddrMode = AddrMode; 3729 unsigned OldSize = AddrModeInsts.size(); 3730 3731 // See if the scale and offset amount is valid for this target. 3732 AddrMode.BaseOffs += ConstantOffset; 3733 3734 // Match the base operand of the GEP. 3735 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3736 // If it couldn't be matched, just stuff the value in a register. 3737 if (AddrMode.HasBaseReg) { 3738 AddrMode = BackupAddrMode; 3739 AddrModeInsts.resize(OldSize); 3740 return false; 3741 } 3742 AddrMode.HasBaseReg = true; 3743 AddrMode.BaseReg = AddrInst->getOperand(0); 3744 } 3745 3746 // Match the remaining variable portion of the GEP. 3747 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3748 Depth)) { 3749 // If it couldn't be matched, try stuffing the base into a register 3750 // instead of matching it, and retrying the match of the scale. 3751 AddrMode = BackupAddrMode; 3752 AddrModeInsts.resize(OldSize); 3753 if (AddrMode.HasBaseReg) 3754 return false; 3755 AddrMode.HasBaseReg = true; 3756 AddrMode.BaseReg = AddrInst->getOperand(0); 3757 AddrMode.BaseOffs += ConstantOffset; 3758 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3759 VariableScale, Depth)) { 3760 // If even that didn't work, bail. 3761 AddrMode = BackupAddrMode; 3762 AddrModeInsts.resize(OldSize); 3763 return false; 3764 } 3765 } 3766 3767 return true; 3768 } 3769 case Instruction::SExt: 3770 case Instruction::ZExt: { 3771 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3772 if (!Ext) 3773 return false; 3774 3775 // Try to move this ext out of the way of the addressing mode. 3776 // Ask for a method for doing so. 3777 TypePromotionHelper::Action TPH = 3778 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3779 if (!TPH) 3780 return false; 3781 3782 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3783 TPT.getRestorationPoint(); 3784 unsigned CreatedInstsCost = 0; 3785 unsigned ExtCost = !TLI.isExtFree(Ext); 3786 Value *PromotedOperand = 3787 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3788 // SExt has been moved away. 3789 // Thus either it will be rematched later in the recursive calls or it is 3790 // gone. Anyway, we must not fold it into the addressing mode at this point. 3791 // E.g., 3792 // op = add opnd, 1 3793 // idx = ext op 3794 // addr = gep base, idx 3795 // is now: 3796 // promotedOpnd = ext opnd <- no match here 3797 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3798 // addr = gep base, op <- match 3799 if (MovedAway) 3800 *MovedAway = true; 3801 3802 assert(PromotedOperand && 3803 "TypePromotionHelper should have filtered out those cases"); 3804 3805 ExtAddrMode BackupAddrMode = AddrMode; 3806 unsigned OldSize = AddrModeInsts.size(); 3807 3808 if (!matchAddr(PromotedOperand, Depth) || 3809 // The total of the new cost is equal to the cost of the created 3810 // instructions. 3811 // The total of the old cost is equal to the cost of the extension plus 3812 // what we have saved in the addressing mode. 3813 !isPromotionProfitable(CreatedInstsCost, 3814 ExtCost + (AddrModeInsts.size() - OldSize), 3815 PromotedOperand)) { 3816 AddrMode = BackupAddrMode; 3817 AddrModeInsts.resize(OldSize); 3818 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3819 TPT.rollback(LastKnownGood); 3820 return false; 3821 } 3822 return true; 3823 } 3824 } 3825 return false; 3826 } 3827 3828 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3829 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3830 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3831 /// for the target. 3832 /// 3833 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3834 // Start a transaction at this point that we will rollback if the matching 3835 // fails. 3836 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3837 TPT.getRestorationPoint(); 3838 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3839 // Fold in immediates if legal for the target. 3840 AddrMode.BaseOffs += CI->getSExtValue(); 3841 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3842 return true; 3843 AddrMode.BaseOffs -= CI->getSExtValue(); 3844 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3845 // If this is a global variable, try to fold it into the addressing mode. 3846 if (!AddrMode.BaseGV) { 3847 AddrMode.BaseGV = GV; 3848 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3849 return true; 3850 AddrMode.BaseGV = nullptr; 3851 } 3852 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3853 ExtAddrMode BackupAddrMode = AddrMode; 3854 unsigned OldSize = AddrModeInsts.size(); 3855 3856 // Check to see if it is possible to fold this operation. 3857 bool MovedAway = false; 3858 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3859 // This instruction may have been moved away. If so, there is nothing 3860 // to check here. 3861 if (MovedAway) 3862 return true; 3863 // Okay, it's possible to fold this. Check to see if it is actually 3864 // *profitable* to do so. We use a simple cost model to avoid increasing 3865 // register pressure too much. 3866 if (I->hasOneUse() || 3867 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3868 AddrModeInsts.push_back(I); 3869 return true; 3870 } 3871 3872 // It isn't profitable to do this, roll back. 3873 //cerr << "NOT FOLDING: " << *I; 3874 AddrMode = BackupAddrMode; 3875 AddrModeInsts.resize(OldSize); 3876 TPT.rollback(LastKnownGood); 3877 } 3878 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3879 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3880 return true; 3881 TPT.rollback(LastKnownGood); 3882 } else if (isa<ConstantPointerNull>(Addr)) { 3883 // Null pointer gets folded without affecting the addressing mode. 3884 return true; 3885 } 3886 3887 // Worse case, the target should support [reg] addressing modes. :) 3888 if (!AddrMode.HasBaseReg) { 3889 AddrMode.HasBaseReg = true; 3890 AddrMode.BaseReg = Addr; 3891 // Still check for legality in case the target supports [imm] but not [i+r]. 3892 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3893 return true; 3894 AddrMode.HasBaseReg = false; 3895 AddrMode.BaseReg = nullptr; 3896 } 3897 3898 // If the base register is already taken, see if we can do [r+r]. 3899 if (AddrMode.Scale == 0) { 3900 AddrMode.Scale = 1; 3901 AddrMode.ScaledReg = Addr; 3902 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3903 return true; 3904 AddrMode.Scale = 0; 3905 AddrMode.ScaledReg = nullptr; 3906 } 3907 // Couldn't match. 3908 TPT.rollback(LastKnownGood); 3909 return false; 3910 } 3911 3912 /// Check to see if all uses of OpVal by the specified inline asm call are due 3913 /// to memory operands. If so, return true, otherwise return false. 3914 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3915 const TargetLowering &TLI, 3916 const TargetRegisterInfo &TRI) { 3917 const Function *F = CI->getFunction(); 3918 TargetLowering::AsmOperandInfoVector TargetConstraints = 3919 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3920 ImmutableCallSite(CI)); 3921 3922 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3923 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3924 3925 // Compute the constraint code and ConstraintType to use. 3926 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3927 3928 // If this asm operand is our Value*, and if it isn't an indirect memory 3929 // operand, we can't fold it! 3930 if (OpInfo.CallOperandVal == OpVal && 3931 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3932 !OpInfo.isIndirect)) 3933 return false; 3934 } 3935 3936 return true; 3937 } 3938 3939 // Max number of memory uses to look at before aborting the search to conserve 3940 // compile time. 3941 static constexpr int MaxMemoryUsesToScan = 20; 3942 3943 /// Recursively walk all the uses of I until we find a memory use. 3944 /// If we find an obviously non-foldable instruction, return true. 3945 /// Add the ultimately found memory instructions to MemoryUses. 3946 static bool FindAllMemoryUses( 3947 Instruction *I, 3948 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3949 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 3950 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 3951 // If we already considered this instruction, we're done. 3952 if (!ConsideredInsts.insert(I).second) 3953 return false; 3954 3955 // If this is an obviously unfoldable instruction, bail out. 3956 if (!MightBeFoldableInst(I)) 3957 return true; 3958 3959 const bool OptSize = I->getFunction()->optForSize(); 3960 3961 // Loop over all the uses, recursively processing them. 3962 for (Use &U : I->uses()) { 3963 // Conservatively return true if we're seeing a large number or a deep chain 3964 // of users. This avoids excessive compilation times in pathological cases. 3965 if (SeenInsts++ >= MaxMemoryUsesToScan) 3966 return true; 3967 3968 Instruction *UserI = cast<Instruction>(U.getUser()); 3969 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3970 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3971 continue; 3972 } 3973 3974 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3975 unsigned opNo = U.getOperandNo(); 3976 if (opNo != StoreInst::getPointerOperandIndex()) 3977 return true; // Storing addr, not into addr. 3978 MemoryUses.push_back(std::make_pair(SI, opNo)); 3979 continue; 3980 } 3981 3982 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 3983 unsigned opNo = U.getOperandNo(); 3984 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 3985 return true; // Storing addr, not into addr. 3986 MemoryUses.push_back(std::make_pair(RMW, opNo)); 3987 continue; 3988 } 3989 3990 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 3991 unsigned opNo = U.getOperandNo(); 3992 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 3993 return true; // Storing addr, not into addr. 3994 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 3995 continue; 3996 } 3997 3998 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3999 // If this is a cold call, we can sink the addressing calculation into 4000 // the cold path. See optimizeCallInst 4001 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4002 continue; 4003 4004 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4005 if (!IA) return true; 4006 4007 // If this is a memory operand, we're cool, otherwise bail out. 4008 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4009 return true; 4010 continue; 4011 } 4012 4013 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4014 SeenInsts)) 4015 return true; 4016 } 4017 4018 return false; 4019 } 4020 4021 /// Return true if Val is already known to be live at the use site that we're 4022 /// folding it into. If so, there is no cost to include it in the addressing 4023 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4024 /// instruction already. 4025 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4026 Value *KnownLive2) { 4027 // If Val is either of the known-live values, we know it is live! 4028 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4029 return true; 4030 4031 // All values other than instructions and arguments (e.g. constants) are live. 4032 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4033 4034 // If Val is a constant sized alloca in the entry block, it is live, this is 4035 // true because it is just a reference to the stack/frame pointer, which is 4036 // live for the whole function. 4037 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4038 if (AI->isStaticAlloca()) 4039 return true; 4040 4041 // Check to see if this value is already used in the memory instruction's 4042 // block. If so, it's already live into the block at the very least, so we 4043 // can reasonably fold it. 4044 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4045 } 4046 4047 /// It is possible for the addressing mode of the machine to fold the specified 4048 /// instruction into a load or store that ultimately uses it. 4049 /// However, the specified instruction has multiple uses. 4050 /// Given this, it may actually increase register pressure to fold it 4051 /// into the load. For example, consider this code: 4052 /// 4053 /// X = ... 4054 /// Y = X+1 4055 /// use(Y) -> nonload/store 4056 /// Z = Y+1 4057 /// load Z 4058 /// 4059 /// In this case, Y has multiple uses, and can be folded into the load of Z 4060 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4061 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4062 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4063 /// number of computations either. 4064 /// 4065 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4066 /// X was live across 'load Z' for other reasons, we actually *would* want to 4067 /// fold the addressing mode in the Z case. This would make Y die earlier. 4068 bool AddressingModeMatcher:: 4069 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4070 ExtAddrMode &AMAfter) { 4071 if (IgnoreProfitability) return true; 4072 4073 // AMBefore is the addressing mode before this instruction was folded into it, 4074 // and AMAfter is the addressing mode after the instruction was folded. Get 4075 // the set of registers referenced by AMAfter and subtract out those 4076 // referenced by AMBefore: this is the set of values which folding in this 4077 // address extends the lifetime of. 4078 // 4079 // Note that there are only two potential values being referenced here, 4080 // BaseReg and ScaleReg (global addresses are always available, as are any 4081 // folded immediates). 4082 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4083 4084 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4085 // lifetime wasn't extended by adding this instruction. 4086 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4087 BaseReg = nullptr; 4088 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4089 ScaledReg = nullptr; 4090 4091 // If folding this instruction (and it's subexprs) didn't extend any live 4092 // ranges, we're ok with it. 4093 if (!BaseReg && !ScaledReg) 4094 return true; 4095 4096 // If all uses of this instruction can have the address mode sunk into them, 4097 // we can remove the addressing mode and effectively trade one live register 4098 // for another (at worst.) In this context, folding an addressing mode into 4099 // the use is just a particularly nice way of sinking it. 4100 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4101 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4102 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4103 return false; // Has a non-memory, non-foldable use! 4104 4105 // Now that we know that all uses of this instruction are part of a chain of 4106 // computation involving only operations that could theoretically be folded 4107 // into a memory use, loop over each of these memory operation uses and see 4108 // if they could *actually* fold the instruction. The assumption is that 4109 // addressing modes are cheap and that duplicating the computation involved 4110 // many times is worthwhile, even on a fastpath. For sinking candidates 4111 // (i.e. cold call sites), this serves as a way to prevent excessive code 4112 // growth since most architectures have some reasonable small and fast way to 4113 // compute an effective address. (i.e LEA on x86) 4114 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4115 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4116 Instruction *User = MemoryUses[i].first; 4117 unsigned OpNo = MemoryUses[i].second; 4118 4119 // Get the access type of this use. If the use isn't a pointer, we don't 4120 // know what it accesses. 4121 Value *Address = User->getOperand(OpNo); 4122 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4123 if (!AddrTy) 4124 return false; 4125 Type *AddressAccessTy = AddrTy->getElementType(); 4126 unsigned AS = AddrTy->getAddressSpace(); 4127 4128 // Do a match against the root of this address, ignoring profitability. This 4129 // will tell us if the addressing mode for the memory operation will 4130 // *actually* cover the shared instruction. 4131 ExtAddrMode Result; 4132 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4133 TPT.getRestorationPoint(); 4134 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4135 AddressAccessTy, AS, 4136 MemoryInst, Result, InsertedInsts, 4137 PromotedInsts, TPT); 4138 Matcher.IgnoreProfitability = true; 4139 bool Success = Matcher.matchAddr(Address, 0); 4140 (void)Success; assert(Success && "Couldn't select *anything*?"); 4141 4142 // The match was to check the profitability, the changes made are not 4143 // part of the original matcher. Therefore, they should be dropped 4144 // otherwise the original matcher will not present the right state. 4145 TPT.rollback(LastKnownGood); 4146 4147 // If the match didn't cover I, then it won't be shared by it. 4148 if (!is_contained(MatchedAddrModeInsts, I)) 4149 return false; 4150 4151 MatchedAddrModeInsts.clear(); 4152 } 4153 4154 return true; 4155 } 4156 4157 /// Return true if the specified values are defined in a 4158 /// different basic block than BB. 4159 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4160 if (Instruction *I = dyn_cast<Instruction>(V)) 4161 return I->getParent() != BB; 4162 return false; 4163 } 4164 4165 /// Sink addressing mode computation immediate before MemoryInst if doing so 4166 /// can be done without increasing register pressure. The need for the 4167 /// register pressure constraint means this can end up being an all or nothing 4168 /// decision for all uses of the same addressing computation. 4169 /// 4170 /// Load and Store Instructions often have addressing modes that can do 4171 /// significant amounts of computation. As such, instruction selection will try 4172 /// to get the load or store to do as much computation as possible for the 4173 /// program. The problem is that isel can only see within a single block. As 4174 /// such, we sink as much legal addressing mode work into the block as possible. 4175 /// 4176 /// This method is used to optimize both load/store and inline asms with memory 4177 /// operands. It's also used to sink addressing computations feeding into cold 4178 /// call sites into their (cold) basic block. 4179 /// 4180 /// The motivation for handling sinking into cold blocks is that doing so can 4181 /// both enable other address mode sinking (by satisfying the register pressure 4182 /// constraint above), and reduce register pressure globally (by removing the 4183 /// addressing mode computation from the fast path entirely.). 4184 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4185 Type *AccessTy, unsigned AddrSpace) { 4186 Value *Repl = Addr; 4187 4188 // Try to collapse single-value PHI nodes. This is necessary to undo 4189 // unprofitable PRE transformations. 4190 SmallVector<Value*, 8> worklist; 4191 SmallPtrSet<Value*, 16> Visited; 4192 worklist.push_back(Addr); 4193 4194 // Use a worklist to iteratively look through PHI and select nodes, and 4195 // ensure that the addressing mode obtained from the non-PHI/select roots of 4196 // the graph are compatible. 4197 bool PhiOrSelectSeen = false; 4198 SmallVector<Instruction*, 16> AddrModeInsts; 4199 const SimplifyQuery SQ(*DL, TLInfo); 4200 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4201 TypePromotionTransaction TPT(RemovedInsts); 4202 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4203 TPT.getRestorationPoint(); 4204 while (!worklist.empty()) { 4205 Value *V = worklist.back(); 4206 worklist.pop_back(); 4207 4208 // We allow traversing cyclic Phi nodes. 4209 // In case of success after this loop we ensure that traversing through 4210 // Phi nodes ends up with all cases to compute address of the form 4211 // BaseGV + Base + Scale * Index + Offset 4212 // where Scale and Offset are constans and BaseGV, Base and Index 4213 // are exactly the same Values in all cases. 4214 // It means that BaseGV, Scale and Offset dominate our memory instruction 4215 // and have the same value as they had in address computation represented 4216 // as Phi. So we can safely sink address computation to memory instruction. 4217 if (!Visited.insert(V).second) 4218 continue; 4219 4220 // For a PHI node, push all of its incoming values. 4221 if (PHINode *P = dyn_cast<PHINode>(V)) { 4222 for (Value *IncValue : P->incoming_values()) 4223 worklist.push_back(IncValue); 4224 PhiOrSelectSeen = true; 4225 continue; 4226 } 4227 // Similar for select. 4228 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4229 worklist.push_back(SI->getFalseValue()); 4230 worklist.push_back(SI->getTrueValue()); 4231 PhiOrSelectSeen = true; 4232 continue; 4233 } 4234 4235 // For non-PHIs, determine the addressing mode being computed. Note that 4236 // the result may differ depending on what other uses our candidate 4237 // addressing instructions might have. 4238 AddrModeInsts.clear(); 4239 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4240 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4241 InsertedInsts, PromotedInsts, TPT); 4242 NewAddrMode.OriginalValue = V; 4243 4244 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4245 break; 4246 } 4247 4248 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4249 // or we have multiple but either couldn't combine them or combining them 4250 // wouldn't do anything useful, bail out now. 4251 if (!AddrModes.combineAddrModes()) { 4252 TPT.rollback(LastKnownGood); 4253 return false; 4254 } 4255 TPT.commit(); 4256 4257 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4258 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4259 4260 // If all the instructions matched are already in this BB, don't do anything. 4261 // If we saw a Phi node then it is not local definitely, and if we saw a select 4262 // then we want to push the address calculation past it even if it's already 4263 // in this BB. 4264 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4265 return IsNonLocalValue(V, MemoryInst->getParent()); 4266 })) { 4267 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4268 return false; 4269 } 4270 4271 // Insert this computation right after this user. Since our caller is 4272 // scanning from the top of the BB to the bottom, reuse of the expr are 4273 // guaranteed to happen later. 4274 IRBuilder<> Builder(MemoryInst); 4275 4276 // Now that we determined the addressing expression we want to use and know 4277 // that we have to sink it into this block. Check to see if we have already 4278 // done this for some other load/store instr in this block. If so, reuse 4279 // the computation. Before attempting reuse, check if the address is valid 4280 // as it may have been erased. 4281 4282 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4283 4284 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4285 if (SunkAddr) { 4286 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4287 << *MemoryInst << "\n"); 4288 if (SunkAddr->getType() != Addr->getType()) 4289 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4290 } else if (AddrSinkUsingGEPs || 4291 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4292 SubtargetInfo->useAA())) { 4293 // By default, we use the GEP-based method when AA is used later. This 4294 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4295 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4296 << *MemoryInst << "\n"); 4297 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4298 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4299 4300 // First, find the pointer. 4301 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4302 ResultPtr = AddrMode.BaseReg; 4303 AddrMode.BaseReg = nullptr; 4304 } 4305 4306 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4307 // We can't add more than one pointer together, nor can we scale a 4308 // pointer (both of which seem meaningless). 4309 if (ResultPtr || AddrMode.Scale != 1) 4310 return false; 4311 4312 ResultPtr = AddrMode.ScaledReg; 4313 AddrMode.Scale = 0; 4314 } 4315 4316 // It is only safe to sign extend the BaseReg if we know that the math 4317 // required to create it did not overflow before we extend it. Since 4318 // the original IR value was tossed in favor of a constant back when 4319 // the AddrMode was created we need to bail out gracefully if widths 4320 // do not match instead of extending it. 4321 // 4322 // (See below for code to add the scale.) 4323 if (AddrMode.Scale) { 4324 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4325 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4326 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4327 return false; 4328 } 4329 4330 if (AddrMode.BaseGV) { 4331 if (ResultPtr) 4332 return false; 4333 4334 ResultPtr = AddrMode.BaseGV; 4335 } 4336 4337 // If the real base value actually came from an inttoptr, then the matcher 4338 // will look through it and provide only the integer value. In that case, 4339 // use it here. 4340 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4341 if (!ResultPtr && AddrMode.BaseReg) { 4342 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4343 "sunkaddr"); 4344 AddrMode.BaseReg = nullptr; 4345 } else if (!ResultPtr && AddrMode.Scale == 1) { 4346 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4347 "sunkaddr"); 4348 AddrMode.Scale = 0; 4349 } 4350 } 4351 4352 if (!ResultPtr && 4353 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4354 SunkAddr = Constant::getNullValue(Addr->getType()); 4355 } else if (!ResultPtr) { 4356 return false; 4357 } else { 4358 Type *I8PtrTy = 4359 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4360 Type *I8Ty = Builder.getInt8Ty(); 4361 4362 // Start with the base register. Do this first so that subsequent address 4363 // matching finds it last, which will prevent it from trying to match it 4364 // as the scaled value in case it happens to be a mul. That would be 4365 // problematic if we've sunk a different mul for the scale, because then 4366 // we'd end up sinking both muls. 4367 if (AddrMode.BaseReg) { 4368 Value *V = AddrMode.BaseReg; 4369 if (V->getType() != IntPtrTy) 4370 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4371 4372 ResultIndex = V; 4373 } 4374 4375 // Add the scale value. 4376 if (AddrMode.Scale) { 4377 Value *V = AddrMode.ScaledReg; 4378 if (V->getType() == IntPtrTy) { 4379 // done. 4380 } else { 4381 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4382 cast<IntegerType>(V->getType())->getBitWidth() && 4383 "We can't transform if ScaledReg is too narrow"); 4384 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4385 } 4386 4387 if (AddrMode.Scale != 1) 4388 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4389 "sunkaddr"); 4390 if (ResultIndex) 4391 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4392 else 4393 ResultIndex = V; 4394 } 4395 4396 // Add in the Base Offset if present. 4397 if (AddrMode.BaseOffs) { 4398 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4399 if (ResultIndex) { 4400 // We need to add this separately from the scale above to help with 4401 // SDAG consecutive load/store merging. 4402 if (ResultPtr->getType() != I8PtrTy) 4403 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4404 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4405 } 4406 4407 ResultIndex = V; 4408 } 4409 4410 if (!ResultIndex) { 4411 SunkAddr = ResultPtr; 4412 } else { 4413 if (ResultPtr->getType() != I8PtrTy) 4414 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4415 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4416 } 4417 4418 if (SunkAddr->getType() != Addr->getType()) 4419 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4420 } 4421 } else { 4422 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4423 // non-integral pointers, so in that case bail out now. 4424 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4425 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4426 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4427 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4428 if (DL->isNonIntegralPointerType(Addr->getType()) || 4429 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4430 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4431 (AddrMode.BaseGV && 4432 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4433 return false; 4434 4435 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4436 << *MemoryInst << "\n"); 4437 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4438 Value *Result = nullptr; 4439 4440 // Start with the base register. Do this first so that subsequent address 4441 // matching finds it last, which will prevent it from trying to match it 4442 // as the scaled value in case it happens to be a mul. That would be 4443 // problematic if we've sunk a different mul for the scale, because then 4444 // we'd end up sinking both muls. 4445 if (AddrMode.BaseReg) { 4446 Value *V = AddrMode.BaseReg; 4447 if (V->getType()->isPointerTy()) 4448 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4449 if (V->getType() != IntPtrTy) 4450 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4451 Result = V; 4452 } 4453 4454 // Add the scale value. 4455 if (AddrMode.Scale) { 4456 Value *V = AddrMode.ScaledReg; 4457 if (V->getType() == IntPtrTy) { 4458 // done. 4459 } else if (V->getType()->isPointerTy()) { 4460 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4461 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4462 cast<IntegerType>(V->getType())->getBitWidth()) { 4463 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4464 } else { 4465 // It is only safe to sign extend the BaseReg if we know that the math 4466 // required to create it did not overflow before we extend it. Since 4467 // the original IR value was tossed in favor of a constant back when 4468 // the AddrMode was created we need to bail out gracefully if widths 4469 // do not match instead of extending it. 4470 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4471 if (I && (Result != AddrMode.BaseReg)) 4472 I->eraseFromParent(); 4473 return false; 4474 } 4475 if (AddrMode.Scale != 1) 4476 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4477 "sunkaddr"); 4478 if (Result) 4479 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4480 else 4481 Result = V; 4482 } 4483 4484 // Add in the BaseGV if present. 4485 if (AddrMode.BaseGV) { 4486 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4487 if (Result) 4488 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4489 else 4490 Result = V; 4491 } 4492 4493 // Add in the Base Offset if present. 4494 if (AddrMode.BaseOffs) { 4495 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4496 if (Result) 4497 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4498 else 4499 Result = V; 4500 } 4501 4502 if (!Result) 4503 SunkAddr = Constant::getNullValue(Addr->getType()); 4504 else 4505 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4506 } 4507 4508 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4509 // Store the newly computed address into the cache. In the case we reused a 4510 // value, this should be idempotent. 4511 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4512 4513 // If we have no uses, recursively delete the value and all dead instructions 4514 // using it. 4515 if (Repl->use_empty()) { 4516 // This can cause recursive deletion, which can invalidate our iterator. 4517 // Use a WeakTrackingVH to hold onto it in case this happens. 4518 Value *CurValue = &*CurInstIterator; 4519 WeakTrackingVH IterHandle(CurValue); 4520 BasicBlock *BB = CurInstIterator->getParent(); 4521 4522 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4523 4524 if (IterHandle != CurValue) { 4525 // If the iterator instruction was recursively deleted, start over at the 4526 // start of the block. 4527 CurInstIterator = BB->begin(); 4528 SunkAddrs.clear(); 4529 } 4530 } 4531 ++NumMemoryInsts; 4532 return true; 4533 } 4534 4535 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4536 /// address computing into the block when possible / profitable. 4537 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4538 bool MadeChange = false; 4539 4540 const TargetRegisterInfo *TRI = 4541 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4542 TargetLowering::AsmOperandInfoVector TargetConstraints = 4543 TLI->ParseConstraints(*DL, TRI, CS); 4544 unsigned ArgNo = 0; 4545 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4546 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4547 4548 // Compute the constraint code and ConstraintType to use. 4549 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4550 4551 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4552 OpInfo.isIndirect) { 4553 Value *OpVal = CS->getArgOperand(ArgNo++); 4554 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4555 } else if (OpInfo.Type == InlineAsm::isInput) 4556 ArgNo++; 4557 } 4558 4559 return MadeChange; 4560 } 4561 4562 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4563 /// sign extensions. 4564 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4565 assert(!Val->use_empty() && "Input must have at least one use"); 4566 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4567 bool IsSExt = isa<SExtInst>(FirstUser); 4568 Type *ExtTy = FirstUser->getType(); 4569 for (const User *U : Val->users()) { 4570 const Instruction *UI = cast<Instruction>(U); 4571 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4572 return false; 4573 Type *CurTy = UI->getType(); 4574 // Same input and output types: Same instruction after CSE. 4575 if (CurTy == ExtTy) 4576 continue; 4577 4578 // If IsSExt is true, we are in this situation: 4579 // a = Val 4580 // b = sext ty1 a to ty2 4581 // c = sext ty1 a to ty3 4582 // Assuming ty2 is shorter than ty3, this could be turned into: 4583 // a = Val 4584 // b = sext ty1 a to ty2 4585 // c = sext ty2 b to ty3 4586 // However, the last sext is not free. 4587 if (IsSExt) 4588 return false; 4589 4590 // This is a ZExt, maybe this is free to extend from one type to another. 4591 // In that case, we would not account for a different use. 4592 Type *NarrowTy; 4593 Type *LargeTy; 4594 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4595 CurTy->getScalarType()->getIntegerBitWidth()) { 4596 NarrowTy = CurTy; 4597 LargeTy = ExtTy; 4598 } else { 4599 NarrowTy = ExtTy; 4600 LargeTy = CurTy; 4601 } 4602 4603 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4604 return false; 4605 } 4606 // All uses are the same or can be derived from one another for free. 4607 return true; 4608 } 4609 4610 /// \brief Try to speculatively promote extensions in \p Exts and continue 4611 /// promoting through newly promoted operands recursively as far as doing so is 4612 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4613 /// When some promotion happened, \p TPT contains the proper state to revert 4614 /// them. 4615 /// 4616 /// \return true if some promotion happened, false otherwise. 4617 bool CodeGenPrepare::tryToPromoteExts( 4618 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4619 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4620 unsigned CreatedInstsCost) { 4621 bool Promoted = false; 4622 4623 // Iterate over all the extensions to try to promote them. 4624 for (auto I : Exts) { 4625 // Early check if we directly have ext(load). 4626 if (isa<LoadInst>(I->getOperand(0))) { 4627 ProfitablyMovedExts.push_back(I); 4628 continue; 4629 } 4630 4631 // Check whether or not we want to do any promotion. The reason we have 4632 // this check inside the for loop is to catch the case where an extension 4633 // is directly fed by a load because in such case the extension can be moved 4634 // up without any promotion on its operands. 4635 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4636 return false; 4637 4638 // Get the action to perform the promotion. 4639 TypePromotionHelper::Action TPH = 4640 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4641 // Check if we can promote. 4642 if (!TPH) { 4643 // Save the current extension as we cannot move up through its operand. 4644 ProfitablyMovedExts.push_back(I); 4645 continue; 4646 } 4647 4648 // Save the current state. 4649 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4650 TPT.getRestorationPoint(); 4651 SmallVector<Instruction *, 4> NewExts; 4652 unsigned NewCreatedInstsCost = 0; 4653 unsigned ExtCost = !TLI->isExtFree(I); 4654 // Promote. 4655 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4656 &NewExts, nullptr, *TLI); 4657 assert(PromotedVal && 4658 "TypePromotionHelper should have filtered out those cases"); 4659 4660 // We would be able to merge only one extension in a load. 4661 // Therefore, if we have more than 1 new extension we heuristically 4662 // cut this search path, because it means we degrade the code quality. 4663 // With exactly 2, the transformation is neutral, because we will merge 4664 // one extension but leave one. However, we optimistically keep going, 4665 // because the new extension may be removed too. 4666 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4667 // FIXME: It would be possible to propagate a negative value instead of 4668 // conservatively ceiling it to 0. 4669 TotalCreatedInstsCost = 4670 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4671 if (!StressExtLdPromotion && 4672 (TotalCreatedInstsCost > 1 || 4673 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4674 // This promotion is not profitable, rollback to the previous state, and 4675 // save the current extension in ProfitablyMovedExts as the latest 4676 // speculative promotion turned out to be unprofitable. 4677 TPT.rollback(LastKnownGood); 4678 ProfitablyMovedExts.push_back(I); 4679 continue; 4680 } 4681 // Continue promoting NewExts as far as doing so is profitable. 4682 SmallVector<Instruction *, 2> NewlyMovedExts; 4683 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4684 bool NewPromoted = false; 4685 for (auto ExtInst : NewlyMovedExts) { 4686 Instruction *MovedExt = cast<Instruction>(ExtInst); 4687 Value *ExtOperand = MovedExt->getOperand(0); 4688 // If we have reached to a load, we need this extra profitability check 4689 // as it could potentially be merged into an ext(load). 4690 if (isa<LoadInst>(ExtOperand) && 4691 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4692 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4693 continue; 4694 4695 ProfitablyMovedExts.push_back(MovedExt); 4696 NewPromoted = true; 4697 } 4698 4699 // If none of speculative promotions for NewExts is profitable, rollback 4700 // and save the current extension (I) as the last profitable extension. 4701 if (!NewPromoted) { 4702 TPT.rollback(LastKnownGood); 4703 ProfitablyMovedExts.push_back(I); 4704 continue; 4705 } 4706 // The promotion is profitable. 4707 Promoted = true; 4708 } 4709 return Promoted; 4710 } 4711 4712 /// Merging redundant sexts when one is dominating the other. 4713 bool CodeGenPrepare::mergeSExts(Function &F) { 4714 DominatorTree DT(F); 4715 bool Changed = false; 4716 for (auto &Entry : ValToSExtendedUses) { 4717 SExts &Insts = Entry.second; 4718 SExts CurPts; 4719 for (Instruction *Inst : Insts) { 4720 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4721 Inst->getOperand(0) != Entry.first) 4722 continue; 4723 bool inserted = false; 4724 for (auto &Pt : CurPts) { 4725 if (DT.dominates(Inst, Pt)) { 4726 Pt->replaceAllUsesWith(Inst); 4727 RemovedInsts.insert(Pt); 4728 Pt->removeFromParent(); 4729 Pt = Inst; 4730 inserted = true; 4731 Changed = true; 4732 break; 4733 } 4734 if (!DT.dominates(Pt, Inst)) 4735 // Give up if we need to merge in a common dominator as the 4736 // expermients show it is not profitable. 4737 continue; 4738 Inst->replaceAllUsesWith(Pt); 4739 RemovedInsts.insert(Inst); 4740 Inst->removeFromParent(); 4741 inserted = true; 4742 Changed = true; 4743 break; 4744 } 4745 if (!inserted) 4746 CurPts.push_back(Inst); 4747 } 4748 } 4749 return Changed; 4750 } 4751 4752 /// Return true, if an ext(load) can be formed from an extension in 4753 /// \p MovedExts. 4754 bool CodeGenPrepare::canFormExtLd( 4755 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4756 Instruction *&Inst, bool HasPromoted) { 4757 for (auto *MovedExtInst : MovedExts) { 4758 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4759 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4760 Inst = MovedExtInst; 4761 break; 4762 } 4763 } 4764 if (!LI) 4765 return false; 4766 4767 // If they're already in the same block, there's nothing to do. 4768 // Make the cheap checks first if we did not promote. 4769 // If we promoted, we need to check if it is indeed profitable. 4770 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4771 return false; 4772 4773 return TLI->isExtLoad(LI, Inst, *DL); 4774 } 4775 4776 /// Move a zext or sext fed by a load into the same basic block as the load, 4777 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4778 /// extend into the load. 4779 /// 4780 /// E.g., 4781 /// \code 4782 /// %ld = load i32* %addr 4783 /// %add = add nuw i32 %ld, 4 4784 /// %zext = zext i32 %add to i64 4785 // \endcode 4786 /// => 4787 /// \code 4788 /// %ld = load i32* %addr 4789 /// %zext = zext i32 %ld to i64 4790 /// %add = add nuw i64 %zext, 4 4791 /// \encode 4792 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4793 /// allow us to match zext(load i32*) to i64. 4794 /// 4795 /// Also, try to promote the computations used to obtain a sign extended 4796 /// value used into memory accesses. 4797 /// E.g., 4798 /// \code 4799 /// a = add nsw i32 b, 3 4800 /// d = sext i32 a to i64 4801 /// e = getelementptr ..., i64 d 4802 /// \endcode 4803 /// => 4804 /// \code 4805 /// f = sext i32 b to i64 4806 /// a = add nsw i64 f, 3 4807 /// e = getelementptr ..., i64 a 4808 /// \endcode 4809 /// 4810 /// \p Inst[in/out] the extension may be modified during the process if some 4811 /// promotions apply. 4812 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4813 // ExtLoad formation and address type promotion infrastructure requires TLI to 4814 // be effective. 4815 if (!TLI) 4816 return false; 4817 4818 bool AllowPromotionWithoutCommonHeader = false; 4819 /// See if it is an interesting sext operations for the address type 4820 /// promotion before trying to promote it, e.g., the ones with the right 4821 /// type and used in memory accesses. 4822 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4823 *Inst, AllowPromotionWithoutCommonHeader); 4824 TypePromotionTransaction TPT(RemovedInsts); 4825 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4826 TPT.getRestorationPoint(); 4827 SmallVector<Instruction *, 1> Exts; 4828 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4829 Exts.push_back(Inst); 4830 4831 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4832 4833 // Look for a load being extended. 4834 LoadInst *LI = nullptr; 4835 Instruction *ExtFedByLoad; 4836 4837 // Try to promote a chain of computation if it allows to form an extended 4838 // load. 4839 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4840 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4841 TPT.commit(); 4842 // Move the extend into the same block as the load 4843 ExtFedByLoad->moveAfter(LI); 4844 // CGP does not check if the zext would be speculatively executed when moved 4845 // to the same basic block as the load. Preserving its original location 4846 // would pessimize the debugging experience, as well as negatively impact 4847 // the quality of sample pgo. We don't want to use "line 0" as that has a 4848 // size cost in the line-table section and logically the zext can be seen as 4849 // part of the load. Therefore we conservatively reuse the same debug 4850 // location for the load and the zext. 4851 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4852 ++NumExtsMoved; 4853 Inst = ExtFedByLoad; 4854 return true; 4855 } 4856 4857 // Continue promoting SExts if known as considerable depending on targets. 4858 if (ATPConsiderable && 4859 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4860 HasPromoted, TPT, SpeculativelyMovedExts)) 4861 return true; 4862 4863 TPT.rollback(LastKnownGood); 4864 return false; 4865 } 4866 4867 // Perform address type promotion if doing so is profitable. 4868 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4869 // instructions that sign extended the same initial value. However, if 4870 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4871 // extension is just profitable. 4872 bool CodeGenPrepare::performAddressTypePromotion( 4873 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4874 bool HasPromoted, TypePromotionTransaction &TPT, 4875 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4876 bool Promoted = false; 4877 SmallPtrSet<Instruction *, 1> UnhandledExts; 4878 bool AllSeenFirst = true; 4879 for (auto I : SpeculativelyMovedExts) { 4880 Value *HeadOfChain = I->getOperand(0); 4881 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4882 SeenChainsForSExt.find(HeadOfChain); 4883 // If there is an unhandled SExt which has the same header, try to promote 4884 // it as well. 4885 if (AlreadySeen != SeenChainsForSExt.end()) { 4886 if (AlreadySeen->second != nullptr) 4887 UnhandledExts.insert(AlreadySeen->second); 4888 AllSeenFirst = false; 4889 } 4890 } 4891 4892 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4893 SpeculativelyMovedExts.size() == 1)) { 4894 TPT.commit(); 4895 if (HasPromoted) 4896 Promoted = true; 4897 for (auto I : SpeculativelyMovedExts) { 4898 Value *HeadOfChain = I->getOperand(0); 4899 SeenChainsForSExt[HeadOfChain] = nullptr; 4900 ValToSExtendedUses[HeadOfChain].push_back(I); 4901 } 4902 // Update Inst as promotion happen. 4903 Inst = SpeculativelyMovedExts.pop_back_val(); 4904 } else { 4905 // This is the first chain visited from the header, keep the current chain 4906 // as unhandled. Defer to promote this until we encounter another SExt 4907 // chain derived from the same header. 4908 for (auto I : SpeculativelyMovedExts) { 4909 Value *HeadOfChain = I->getOperand(0); 4910 SeenChainsForSExt[HeadOfChain] = Inst; 4911 } 4912 return false; 4913 } 4914 4915 if (!AllSeenFirst && !UnhandledExts.empty()) 4916 for (auto VisitedSExt : UnhandledExts) { 4917 if (RemovedInsts.count(VisitedSExt)) 4918 continue; 4919 TypePromotionTransaction TPT(RemovedInsts); 4920 SmallVector<Instruction *, 1> Exts; 4921 SmallVector<Instruction *, 2> Chains; 4922 Exts.push_back(VisitedSExt); 4923 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 4924 TPT.commit(); 4925 if (HasPromoted) 4926 Promoted = true; 4927 for (auto I : Chains) { 4928 Value *HeadOfChain = I->getOperand(0); 4929 // Mark this as handled. 4930 SeenChainsForSExt[HeadOfChain] = nullptr; 4931 ValToSExtendedUses[HeadOfChain].push_back(I); 4932 } 4933 } 4934 return Promoted; 4935 } 4936 4937 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4938 BasicBlock *DefBB = I->getParent(); 4939 4940 // If the result of a {s|z}ext and its source are both live out, rewrite all 4941 // other uses of the source with result of extension. 4942 Value *Src = I->getOperand(0); 4943 if (Src->hasOneUse()) 4944 return false; 4945 4946 // Only do this xform if truncating is free. 4947 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4948 return false; 4949 4950 // Only safe to perform the optimization if the source is also defined in 4951 // this block. 4952 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4953 return false; 4954 4955 bool DefIsLiveOut = false; 4956 for (User *U : I->users()) { 4957 Instruction *UI = cast<Instruction>(U); 4958 4959 // Figure out which BB this ext is used in. 4960 BasicBlock *UserBB = UI->getParent(); 4961 if (UserBB == DefBB) continue; 4962 DefIsLiveOut = true; 4963 break; 4964 } 4965 if (!DefIsLiveOut) 4966 return false; 4967 4968 // Make sure none of the uses are PHI nodes. 4969 for (User *U : Src->users()) { 4970 Instruction *UI = cast<Instruction>(U); 4971 BasicBlock *UserBB = UI->getParent(); 4972 if (UserBB == DefBB) continue; 4973 // Be conservative. We don't want this xform to end up introducing 4974 // reloads just before load / store instructions. 4975 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4976 return false; 4977 } 4978 4979 // InsertedTruncs - Only insert one trunc in each block once. 4980 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4981 4982 bool MadeChange = false; 4983 for (Use &U : Src->uses()) { 4984 Instruction *User = cast<Instruction>(U.getUser()); 4985 4986 // Figure out which BB this ext is used in. 4987 BasicBlock *UserBB = User->getParent(); 4988 if (UserBB == DefBB) continue; 4989 4990 // Both src and def are live in this block. Rewrite the use. 4991 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4992 4993 if (!InsertedTrunc) { 4994 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4995 assert(InsertPt != UserBB->end()); 4996 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4997 InsertedInsts.insert(InsertedTrunc); 4998 } 4999 5000 // Replace a use of the {s|z}ext source with a use of the result. 5001 U = InsertedTrunc; 5002 ++NumExtUses; 5003 MadeChange = true; 5004 } 5005 5006 return MadeChange; 5007 } 5008 5009 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5010 // just after the load if the target can fold this into one extload instruction, 5011 // with the hope of eliminating some of the other later "and" instructions using 5012 // the loaded value. "and"s that are made trivially redundant by the insertion 5013 // of the new "and" are removed by this function, while others (e.g. those whose 5014 // path from the load goes through a phi) are left for isel to potentially 5015 // remove. 5016 // 5017 // For example: 5018 // 5019 // b0: 5020 // x = load i32 5021 // ... 5022 // b1: 5023 // y = and x, 0xff 5024 // z = use y 5025 // 5026 // becomes: 5027 // 5028 // b0: 5029 // x = load i32 5030 // x' = and x, 0xff 5031 // ... 5032 // b1: 5033 // z = use x' 5034 // 5035 // whereas: 5036 // 5037 // b0: 5038 // x1 = load i32 5039 // ... 5040 // b1: 5041 // x2 = load i32 5042 // ... 5043 // b2: 5044 // x = phi x1, x2 5045 // y = and x, 0xff 5046 // 5047 // becomes (after a call to optimizeLoadExt for each load): 5048 // 5049 // b0: 5050 // x1 = load i32 5051 // x1' = and x1, 0xff 5052 // ... 5053 // b1: 5054 // x2 = load i32 5055 // x2' = and x2, 0xff 5056 // ... 5057 // b2: 5058 // x = phi x1', x2' 5059 // y = and x, 0xff 5060 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5061 if (!Load->isSimple() || 5062 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5063 return false; 5064 5065 // Skip loads we've already transformed. 5066 if (Load->hasOneUse() && 5067 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5068 return false; 5069 5070 // Look at all uses of Load, looking through phis, to determine how many bits 5071 // of the loaded value are needed. 5072 SmallVector<Instruction *, 8> WorkList; 5073 SmallPtrSet<Instruction *, 16> Visited; 5074 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5075 for (auto *U : Load->users()) 5076 WorkList.push_back(cast<Instruction>(U)); 5077 5078 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5079 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5080 APInt DemandBits(BitWidth, 0); 5081 APInt WidestAndBits(BitWidth, 0); 5082 5083 while (!WorkList.empty()) { 5084 Instruction *I = WorkList.back(); 5085 WorkList.pop_back(); 5086 5087 // Break use-def graph loops. 5088 if (!Visited.insert(I).second) 5089 continue; 5090 5091 // For a PHI node, push all of its users. 5092 if (auto *Phi = dyn_cast<PHINode>(I)) { 5093 for (auto *U : Phi->users()) 5094 WorkList.push_back(cast<Instruction>(U)); 5095 continue; 5096 } 5097 5098 switch (I->getOpcode()) { 5099 case Instruction::And: { 5100 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5101 if (!AndC) 5102 return false; 5103 APInt AndBits = AndC->getValue(); 5104 DemandBits |= AndBits; 5105 // Keep track of the widest and mask we see. 5106 if (AndBits.ugt(WidestAndBits)) 5107 WidestAndBits = AndBits; 5108 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5109 AndsToMaybeRemove.push_back(I); 5110 break; 5111 } 5112 5113 case Instruction::Shl: { 5114 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5115 if (!ShlC) 5116 return false; 5117 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5118 DemandBits.setLowBits(BitWidth - ShiftAmt); 5119 break; 5120 } 5121 5122 case Instruction::Trunc: { 5123 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5124 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5125 DemandBits.setLowBits(TruncBitWidth); 5126 break; 5127 } 5128 5129 default: 5130 return false; 5131 } 5132 } 5133 5134 uint32_t ActiveBits = DemandBits.getActiveBits(); 5135 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5136 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5137 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5138 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5139 // followed by an AND. 5140 // TODO: Look into removing this restriction by fixing backends to either 5141 // return false for isLoadExtLegal for i1 or have them select this pattern to 5142 // a single instruction. 5143 // 5144 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5145 // mask, since these are the only ands that will be removed by isel. 5146 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5147 WidestAndBits != DemandBits) 5148 return false; 5149 5150 LLVMContext &Ctx = Load->getType()->getContext(); 5151 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5152 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5153 5154 // Reject cases that won't be matched as extloads. 5155 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5156 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5157 return false; 5158 5159 IRBuilder<> Builder(Load->getNextNode()); 5160 auto *NewAnd = dyn_cast<Instruction>( 5161 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5162 // Mark this instruction as "inserted by CGP", so that other 5163 // optimizations don't touch it. 5164 InsertedInsts.insert(NewAnd); 5165 5166 // Replace all uses of load with new and (except for the use of load in the 5167 // new and itself). 5168 Load->replaceAllUsesWith(NewAnd); 5169 NewAnd->setOperand(0, Load); 5170 5171 // Remove any and instructions that are now redundant. 5172 for (auto *And : AndsToMaybeRemove) 5173 // Check that the and mask is the same as the one we decided to put on the 5174 // new and. 5175 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5176 And->replaceAllUsesWith(NewAnd); 5177 if (&*CurInstIterator == And) 5178 CurInstIterator = std::next(And->getIterator()); 5179 And->eraseFromParent(); 5180 ++NumAndUses; 5181 } 5182 5183 ++NumAndsAdded; 5184 return true; 5185 } 5186 5187 /// Check if V (an operand of a select instruction) is an expensive instruction 5188 /// that is only used once. 5189 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5190 auto *I = dyn_cast<Instruction>(V); 5191 // If it's safe to speculatively execute, then it should not have side 5192 // effects; therefore, it's safe to sink and possibly *not* execute. 5193 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5194 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5195 } 5196 5197 /// Returns true if a SelectInst should be turned into an explicit branch. 5198 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5199 const TargetLowering *TLI, 5200 SelectInst *SI) { 5201 // If even a predictable select is cheap, then a branch can't be cheaper. 5202 if (!TLI->isPredictableSelectExpensive()) 5203 return false; 5204 5205 // FIXME: This should use the same heuristics as IfConversion to determine 5206 // whether a select is better represented as a branch. 5207 5208 // If metadata tells us that the select condition is obviously predictable, 5209 // then we want to replace the select with a branch. 5210 uint64_t TrueWeight, FalseWeight; 5211 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5212 uint64_t Max = std::max(TrueWeight, FalseWeight); 5213 uint64_t Sum = TrueWeight + FalseWeight; 5214 if (Sum != 0) { 5215 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5216 if (Probability > TLI->getPredictableBranchThreshold()) 5217 return true; 5218 } 5219 } 5220 5221 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5222 5223 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5224 // comparison condition. If the compare has more than one use, there's 5225 // probably another cmov or setcc around, so it's not worth emitting a branch. 5226 if (!Cmp || !Cmp->hasOneUse()) 5227 return false; 5228 5229 // If either operand of the select is expensive and only needed on one side 5230 // of the select, we should form a branch. 5231 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5232 sinkSelectOperand(TTI, SI->getFalseValue())) 5233 return true; 5234 5235 return false; 5236 } 5237 5238 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5239 /// false value of \p SI. If the true/false value of \p SI is defined by any 5240 /// select instructions in \p Selects, look through the defining select 5241 /// instruction until the true/false value is not defined in \p Selects. 5242 static Value *getTrueOrFalseValue( 5243 SelectInst *SI, bool isTrue, 5244 const SmallPtrSet<const Instruction *, 2> &Selects) { 5245 Value *V; 5246 5247 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5248 DefSI = dyn_cast<SelectInst>(V)) { 5249 assert(DefSI->getCondition() == SI->getCondition() && 5250 "The condition of DefSI does not match with SI"); 5251 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5252 } 5253 return V; 5254 } 5255 5256 /// If we have a SelectInst that will likely profit from branch prediction, 5257 /// turn it into a branch. 5258 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5259 // Find all consecutive select instructions that share the same condition. 5260 SmallVector<SelectInst *, 2> ASI; 5261 ASI.push_back(SI); 5262 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5263 It != SI->getParent()->end(); ++It) { 5264 SelectInst *I = dyn_cast<SelectInst>(&*It); 5265 if (I && SI->getCondition() == I->getCondition()) { 5266 ASI.push_back(I); 5267 } else { 5268 break; 5269 } 5270 } 5271 5272 SelectInst *LastSI = ASI.back(); 5273 // Increment the current iterator to skip all the rest of select instructions 5274 // because they will be either "not lowered" or "all lowered" to branch. 5275 CurInstIterator = std::next(LastSI->getIterator()); 5276 5277 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5278 5279 // Can we convert the 'select' to CF ? 5280 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5281 SI->getMetadata(LLVMContext::MD_unpredictable)) 5282 return false; 5283 5284 TargetLowering::SelectSupportKind SelectKind; 5285 if (VectorCond) 5286 SelectKind = TargetLowering::VectorMaskSelect; 5287 else if (SI->getType()->isVectorTy()) 5288 SelectKind = TargetLowering::ScalarCondVectorVal; 5289 else 5290 SelectKind = TargetLowering::ScalarValSelect; 5291 5292 if (TLI->isSelectSupported(SelectKind) && 5293 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5294 return false; 5295 5296 ModifiedDT = true; 5297 5298 // Transform a sequence like this: 5299 // start: 5300 // %cmp = cmp uge i32 %a, %b 5301 // %sel = select i1 %cmp, i32 %c, i32 %d 5302 // 5303 // Into: 5304 // start: 5305 // %cmp = cmp uge i32 %a, %b 5306 // br i1 %cmp, label %select.true, label %select.false 5307 // select.true: 5308 // br label %select.end 5309 // select.false: 5310 // br label %select.end 5311 // select.end: 5312 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5313 // 5314 // In addition, we may sink instructions that produce %c or %d from 5315 // the entry block into the destination(s) of the new branch. 5316 // If the true or false blocks do not contain a sunken instruction, that 5317 // block and its branch may be optimized away. In that case, one side of the 5318 // first branch will point directly to select.end, and the corresponding PHI 5319 // predecessor block will be the start block. 5320 5321 // First, we split the block containing the select into 2 blocks. 5322 BasicBlock *StartBlock = SI->getParent(); 5323 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5324 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5325 5326 // Delete the unconditional branch that was just created by the split. 5327 StartBlock->getTerminator()->eraseFromParent(); 5328 5329 // These are the new basic blocks for the conditional branch. 5330 // At least one will become an actual new basic block. 5331 BasicBlock *TrueBlock = nullptr; 5332 BasicBlock *FalseBlock = nullptr; 5333 BranchInst *TrueBranch = nullptr; 5334 BranchInst *FalseBranch = nullptr; 5335 5336 // Sink expensive instructions into the conditional blocks to avoid executing 5337 // them speculatively. 5338 for (SelectInst *SI : ASI) { 5339 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5340 if (TrueBlock == nullptr) { 5341 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5342 EndBlock->getParent(), EndBlock); 5343 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5344 } 5345 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5346 TrueInst->moveBefore(TrueBranch); 5347 } 5348 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5349 if (FalseBlock == nullptr) { 5350 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5351 EndBlock->getParent(), EndBlock); 5352 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5353 } 5354 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5355 FalseInst->moveBefore(FalseBranch); 5356 } 5357 } 5358 5359 // If there was nothing to sink, then arbitrarily choose the 'false' side 5360 // for a new input value to the PHI. 5361 if (TrueBlock == FalseBlock) { 5362 assert(TrueBlock == nullptr && 5363 "Unexpected basic block transform while optimizing select"); 5364 5365 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5366 EndBlock->getParent(), EndBlock); 5367 BranchInst::Create(EndBlock, FalseBlock); 5368 } 5369 5370 // Insert the real conditional branch based on the original condition. 5371 // If we did not create a new block for one of the 'true' or 'false' paths 5372 // of the condition, it means that side of the branch goes to the end block 5373 // directly and the path originates from the start block from the point of 5374 // view of the new PHI. 5375 BasicBlock *TT, *FT; 5376 if (TrueBlock == nullptr) { 5377 TT = EndBlock; 5378 FT = FalseBlock; 5379 TrueBlock = StartBlock; 5380 } else if (FalseBlock == nullptr) { 5381 TT = TrueBlock; 5382 FT = EndBlock; 5383 FalseBlock = StartBlock; 5384 } else { 5385 TT = TrueBlock; 5386 FT = FalseBlock; 5387 } 5388 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5389 5390 SmallPtrSet<const Instruction *, 2> INS; 5391 INS.insert(ASI.begin(), ASI.end()); 5392 // Use reverse iterator because later select may use the value of the 5393 // earlier select, and we need to propagate value through earlier select 5394 // to get the PHI operand. 5395 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5396 SelectInst *SI = *It; 5397 // The select itself is replaced with a PHI Node. 5398 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5399 PN->takeName(SI); 5400 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5401 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5402 5403 SI->replaceAllUsesWith(PN); 5404 SI->eraseFromParent(); 5405 INS.erase(SI); 5406 ++NumSelectsExpanded; 5407 } 5408 5409 // Instruct OptimizeBlock to skip to the next block. 5410 CurInstIterator = StartBlock->end(); 5411 return true; 5412 } 5413 5414 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5415 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5416 int SplatElem = -1; 5417 for (unsigned i = 0; i < Mask.size(); ++i) { 5418 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5419 return false; 5420 SplatElem = Mask[i]; 5421 } 5422 5423 return true; 5424 } 5425 5426 /// Some targets have expensive vector shifts if the lanes aren't all the same 5427 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5428 /// it's often worth sinking a shufflevector splat down to its use so that 5429 /// codegen can spot all lanes are identical. 5430 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5431 BasicBlock *DefBB = SVI->getParent(); 5432 5433 // Only do this xform if variable vector shifts are particularly expensive. 5434 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5435 return false; 5436 5437 // We only expect better codegen by sinking a shuffle if we can recognise a 5438 // constant splat. 5439 if (!isBroadcastShuffle(SVI)) 5440 return false; 5441 5442 // InsertedShuffles - Only insert a shuffle in each block once. 5443 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5444 5445 bool MadeChange = false; 5446 for (User *U : SVI->users()) { 5447 Instruction *UI = cast<Instruction>(U); 5448 5449 // Figure out which BB this ext is used in. 5450 BasicBlock *UserBB = UI->getParent(); 5451 if (UserBB == DefBB) continue; 5452 5453 // For now only apply this when the splat is used by a shift instruction. 5454 if (!UI->isShift()) continue; 5455 5456 // Everything checks out, sink the shuffle if the user's block doesn't 5457 // already have a copy. 5458 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5459 5460 if (!InsertedShuffle) { 5461 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5462 assert(InsertPt != UserBB->end()); 5463 InsertedShuffle = 5464 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5465 SVI->getOperand(2), "", &*InsertPt); 5466 } 5467 5468 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5469 MadeChange = true; 5470 } 5471 5472 // If we removed all uses, nuke the shuffle. 5473 if (SVI->use_empty()) { 5474 SVI->eraseFromParent(); 5475 MadeChange = true; 5476 } 5477 5478 return MadeChange; 5479 } 5480 5481 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5482 if (!TLI || !DL) 5483 return false; 5484 5485 Value *Cond = SI->getCondition(); 5486 Type *OldType = Cond->getType(); 5487 LLVMContext &Context = Cond->getContext(); 5488 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5489 unsigned RegWidth = RegType.getSizeInBits(); 5490 5491 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5492 return false; 5493 5494 // If the register width is greater than the type width, expand the condition 5495 // of the switch instruction and each case constant to the width of the 5496 // register. By widening the type of the switch condition, subsequent 5497 // comparisons (for case comparisons) will not need to be extended to the 5498 // preferred register width, so we will potentially eliminate N-1 extends, 5499 // where N is the number of cases in the switch. 5500 auto *NewType = Type::getIntNTy(Context, RegWidth); 5501 5502 // Zero-extend the switch condition and case constants unless the switch 5503 // condition is a function argument that is already being sign-extended. 5504 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5505 // everything instead. 5506 Instruction::CastOps ExtType = Instruction::ZExt; 5507 if (auto *Arg = dyn_cast<Argument>(Cond)) 5508 if (Arg->hasSExtAttr()) 5509 ExtType = Instruction::SExt; 5510 5511 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5512 ExtInst->insertBefore(SI); 5513 SI->setCondition(ExtInst); 5514 for (auto Case : SI->cases()) { 5515 APInt NarrowConst = Case.getCaseValue()->getValue(); 5516 APInt WideConst = (ExtType == Instruction::ZExt) ? 5517 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5518 Case.setValue(ConstantInt::get(Context, WideConst)); 5519 } 5520 5521 return true; 5522 } 5523 5524 5525 namespace { 5526 5527 /// \brief Helper class to promote a scalar operation to a vector one. 5528 /// This class is used to move downward extractelement transition. 5529 /// E.g., 5530 /// a = vector_op <2 x i32> 5531 /// b = extractelement <2 x i32> a, i32 0 5532 /// c = scalar_op b 5533 /// store c 5534 /// 5535 /// => 5536 /// a = vector_op <2 x i32> 5537 /// c = vector_op a (equivalent to scalar_op on the related lane) 5538 /// * d = extractelement <2 x i32> c, i32 0 5539 /// * store d 5540 /// Assuming both extractelement and store can be combine, we get rid of the 5541 /// transition. 5542 class VectorPromoteHelper { 5543 /// DataLayout associated with the current module. 5544 const DataLayout &DL; 5545 5546 /// Used to perform some checks on the legality of vector operations. 5547 const TargetLowering &TLI; 5548 5549 /// Used to estimated the cost of the promoted chain. 5550 const TargetTransformInfo &TTI; 5551 5552 /// The transition being moved downwards. 5553 Instruction *Transition; 5554 5555 /// The sequence of instructions to be promoted. 5556 SmallVector<Instruction *, 4> InstsToBePromoted; 5557 5558 /// Cost of combining a store and an extract. 5559 unsigned StoreExtractCombineCost; 5560 5561 /// Instruction that will be combined with the transition. 5562 Instruction *CombineInst = nullptr; 5563 5564 /// \brief The instruction that represents the current end of the transition. 5565 /// Since we are faking the promotion until we reach the end of the chain 5566 /// of computation, we need a way to get the current end of the transition. 5567 Instruction *getEndOfTransition() const { 5568 if (InstsToBePromoted.empty()) 5569 return Transition; 5570 return InstsToBePromoted.back(); 5571 } 5572 5573 /// \brief Return the index of the original value in the transition. 5574 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5575 /// c, is at index 0. 5576 unsigned getTransitionOriginalValueIdx() const { 5577 assert(isa<ExtractElementInst>(Transition) && 5578 "Other kind of transitions are not supported yet"); 5579 return 0; 5580 } 5581 5582 /// \brief Return the index of the index in the transition. 5583 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5584 /// is at index 1. 5585 unsigned getTransitionIdx() const { 5586 assert(isa<ExtractElementInst>(Transition) && 5587 "Other kind of transitions are not supported yet"); 5588 return 1; 5589 } 5590 5591 /// \brief Get the type of the transition. 5592 /// This is the type of the original value. 5593 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5594 /// transition is <2 x i32>. 5595 Type *getTransitionType() const { 5596 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5597 } 5598 5599 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5600 /// I.e., we have the following sequence: 5601 /// Def = Transition <ty1> a to <ty2> 5602 /// b = ToBePromoted <ty2> Def, ... 5603 /// => 5604 /// b = ToBePromoted <ty1> a, ... 5605 /// Def = Transition <ty1> ToBePromoted to <ty2> 5606 void promoteImpl(Instruction *ToBePromoted); 5607 5608 /// \brief Check whether or not it is profitable to promote all the 5609 /// instructions enqueued to be promoted. 5610 bool isProfitableToPromote() { 5611 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5612 unsigned Index = isa<ConstantInt>(ValIdx) 5613 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5614 : -1; 5615 Type *PromotedType = getTransitionType(); 5616 5617 StoreInst *ST = cast<StoreInst>(CombineInst); 5618 unsigned AS = ST->getPointerAddressSpace(); 5619 unsigned Align = ST->getAlignment(); 5620 // Check if this store is supported. 5621 if (!TLI.allowsMisalignedMemoryAccesses( 5622 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5623 Align)) { 5624 // If this is not supported, there is no way we can combine 5625 // the extract with the store. 5626 return false; 5627 } 5628 5629 // The scalar chain of computation has to pay for the transition 5630 // scalar to vector. 5631 // The vector chain has to account for the combining cost. 5632 uint64_t ScalarCost = 5633 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5634 uint64_t VectorCost = StoreExtractCombineCost; 5635 for (const auto &Inst : InstsToBePromoted) { 5636 // Compute the cost. 5637 // By construction, all instructions being promoted are arithmetic ones. 5638 // Moreover, one argument is a constant that can be viewed as a splat 5639 // constant. 5640 Value *Arg0 = Inst->getOperand(0); 5641 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5642 isa<ConstantFP>(Arg0); 5643 TargetTransformInfo::OperandValueKind Arg0OVK = 5644 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5645 : TargetTransformInfo::OK_AnyValue; 5646 TargetTransformInfo::OperandValueKind Arg1OVK = 5647 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5648 : TargetTransformInfo::OK_AnyValue; 5649 ScalarCost += TTI.getArithmeticInstrCost( 5650 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5651 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5652 Arg0OVK, Arg1OVK); 5653 } 5654 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5655 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5656 return ScalarCost > VectorCost; 5657 } 5658 5659 /// \brief Generate a constant vector with \p Val with the same 5660 /// number of elements as the transition. 5661 /// \p UseSplat defines whether or not \p Val should be replicated 5662 /// across the whole vector. 5663 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5664 /// otherwise we generate a vector with as many undef as possible: 5665 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5666 /// used at the index of the extract. 5667 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5668 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 5669 if (!UseSplat) { 5670 // If we cannot determine where the constant must be, we have to 5671 // use a splat constant. 5672 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5673 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5674 ExtractIdx = CstVal->getSExtValue(); 5675 else 5676 UseSplat = true; 5677 } 5678 5679 unsigned End = getTransitionType()->getVectorNumElements(); 5680 if (UseSplat) 5681 return ConstantVector::getSplat(End, Val); 5682 5683 SmallVector<Constant *, 4> ConstVec; 5684 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5685 for (unsigned Idx = 0; Idx != End; ++Idx) { 5686 if (Idx == ExtractIdx) 5687 ConstVec.push_back(Val); 5688 else 5689 ConstVec.push_back(UndefVal); 5690 } 5691 return ConstantVector::get(ConstVec); 5692 } 5693 5694 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5695 /// in \p Use can trigger undefined behavior. 5696 static bool canCauseUndefinedBehavior(const Instruction *Use, 5697 unsigned OperandIdx) { 5698 // This is not safe to introduce undef when the operand is on 5699 // the right hand side of a division-like instruction. 5700 if (OperandIdx != 1) 5701 return false; 5702 switch (Use->getOpcode()) { 5703 default: 5704 return false; 5705 case Instruction::SDiv: 5706 case Instruction::UDiv: 5707 case Instruction::SRem: 5708 case Instruction::URem: 5709 return true; 5710 case Instruction::FDiv: 5711 case Instruction::FRem: 5712 return !Use->hasNoNaNs(); 5713 } 5714 llvm_unreachable(nullptr); 5715 } 5716 5717 public: 5718 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5719 const TargetTransformInfo &TTI, Instruction *Transition, 5720 unsigned CombineCost) 5721 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5722 StoreExtractCombineCost(CombineCost) { 5723 assert(Transition && "Do not know how to promote null"); 5724 } 5725 5726 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5727 bool canPromote(const Instruction *ToBePromoted) const { 5728 // We could support CastInst too. 5729 return isa<BinaryOperator>(ToBePromoted); 5730 } 5731 5732 /// \brief Check if it is profitable to promote \p ToBePromoted 5733 /// by moving downward the transition through. 5734 bool shouldPromote(const Instruction *ToBePromoted) const { 5735 // Promote only if all the operands can be statically expanded. 5736 // Indeed, we do not want to introduce any new kind of transitions. 5737 for (const Use &U : ToBePromoted->operands()) { 5738 const Value *Val = U.get(); 5739 if (Val == getEndOfTransition()) { 5740 // If the use is a division and the transition is on the rhs, 5741 // we cannot promote the operation, otherwise we may create a 5742 // division by zero. 5743 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5744 return false; 5745 continue; 5746 } 5747 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5748 !isa<ConstantFP>(Val)) 5749 return false; 5750 } 5751 // Check that the resulting operation is legal. 5752 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5753 if (!ISDOpcode) 5754 return false; 5755 return StressStoreExtract || 5756 TLI.isOperationLegalOrCustom( 5757 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5758 } 5759 5760 /// \brief Check whether or not \p Use can be combined 5761 /// with the transition. 5762 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5763 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5764 5765 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5766 void enqueueForPromotion(Instruction *ToBePromoted) { 5767 InstsToBePromoted.push_back(ToBePromoted); 5768 } 5769 5770 /// \brief Set the instruction that will be combined with the transition. 5771 void recordCombineInstruction(Instruction *ToBeCombined) { 5772 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5773 CombineInst = ToBeCombined; 5774 } 5775 5776 /// \brief Promote all the instructions enqueued for promotion if it is 5777 /// is profitable. 5778 /// \return True if the promotion happened, false otherwise. 5779 bool promote() { 5780 // Check if there is something to promote. 5781 // Right now, if we do not have anything to combine with, 5782 // we assume the promotion is not profitable. 5783 if (InstsToBePromoted.empty() || !CombineInst) 5784 return false; 5785 5786 // Check cost. 5787 if (!StressStoreExtract && !isProfitableToPromote()) 5788 return false; 5789 5790 // Promote. 5791 for (auto &ToBePromoted : InstsToBePromoted) 5792 promoteImpl(ToBePromoted); 5793 InstsToBePromoted.clear(); 5794 return true; 5795 } 5796 }; 5797 5798 } // end anonymous namespace 5799 5800 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5801 // At this point, we know that all the operands of ToBePromoted but Def 5802 // can be statically promoted. 5803 // For Def, we need to use its parameter in ToBePromoted: 5804 // b = ToBePromoted ty1 a 5805 // Def = Transition ty1 b to ty2 5806 // Move the transition down. 5807 // 1. Replace all uses of the promoted operation by the transition. 5808 // = ... b => = ... Def. 5809 assert(ToBePromoted->getType() == Transition->getType() && 5810 "The type of the result of the transition does not match " 5811 "the final type"); 5812 ToBePromoted->replaceAllUsesWith(Transition); 5813 // 2. Update the type of the uses. 5814 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5815 Type *TransitionTy = getTransitionType(); 5816 ToBePromoted->mutateType(TransitionTy); 5817 // 3. Update all the operands of the promoted operation with promoted 5818 // operands. 5819 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5820 for (Use &U : ToBePromoted->operands()) { 5821 Value *Val = U.get(); 5822 Value *NewVal = nullptr; 5823 if (Val == Transition) 5824 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5825 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5826 isa<ConstantFP>(Val)) { 5827 // Use a splat constant if it is not safe to use undef. 5828 NewVal = getConstantVector( 5829 cast<Constant>(Val), 5830 isa<UndefValue>(Val) || 5831 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5832 } else 5833 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5834 "this?"); 5835 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5836 } 5837 Transition->moveAfter(ToBePromoted); 5838 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5839 } 5840 5841 /// Some targets can do store(extractelement) with one instruction. 5842 /// Try to push the extractelement towards the stores when the target 5843 /// has this feature and this is profitable. 5844 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5845 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 5846 if (DisableStoreExtract || !TLI || 5847 (!StressStoreExtract && 5848 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5849 Inst->getOperand(1), CombineCost))) 5850 return false; 5851 5852 // At this point we know that Inst is a vector to scalar transition. 5853 // Try to move it down the def-use chain, until: 5854 // - We can combine the transition with its single use 5855 // => we got rid of the transition. 5856 // - We escape the current basic block 5857 // => we would need to check that we are moving it at a cheaper place and 5858 // we do not do that for now. 5859 BasicBlock *Parent = Inst->getParent(); 5860 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5861 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5862 // If the transition has more than one use, assume this is not going to be 5863 // beneficial. 5864 while (Inst->hasOneUse()) { 5865 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5866 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5867 5868 if (ToBePromoted->getParent() != Parent) { 5869 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5870 << ToBePromoted->getParent()->getName() 5871 << ") than the transition (" << Parent->getName() << ").\n"); 5872 return false; 5873 } 5874 5875 if (VPH.canCombine(ToBePromoted)) { 5876 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5877 << "will be combined with: " << *ToBePromoted << '\n'); 5878 VPH.recordCombineInstruction(ToBePromoted); 5879 bool Changed = VPH.promote(); 5880 NumStoreExtractExposed += Changed; 5881 return Changed; 5882 } 5883 5884 DEBUG(dbgs() << "Try promoting.\n"); 5885 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5886 return false; 5887 5888 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5889 5890 VPH.enqueueForPromotion(ToBePromoted); 5891 Inst = ToBePromoted; 5892 } 5893 return false; 5894 } 5895 5896 /// For the instruction sequence of store below, F and I values 5897 /// are bundled together as an i64 value before being stored into memory. 5898 /// Sometimes it is more efficent to generate separate stores for F and I, 5899 /// which can remove the bitwise instructions or sink them to colder places. 5900 /// 5901 /// (store (or (zext (bitcast F to i32) to i64), 5902 /// (shl (zext I to i64), 32)), addr) --> 5903 /// (store F, addr) and (store I, addr+4) 5904 /// 5905 /// Similarly, splitting for other merged store can also be beneficial, like: 5906 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5907 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5908 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5909 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5910 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5911 /// 5912 /// We allow each target to determine specifically which kind of splitting is 5913 /// supported. 5914 /// 5915 /// The store patterns are commonly seen from the simple code snippet below 5916 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5917 /// void goo(const std::pair<int, float> &); 5918 /// hoo() { 5919 /// ... 5920 /// goo(std::make_pair(tmp, ftmp)); 5921 /// ... 5922 /// } 5923 /// 5924 /// Although we already have similar splitting in DAG Combine, we duplicate 5925 /// it in CodeGenPrepare to catch the case in which pattern is across 5926 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5927 /// during code expansion. 5928 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5929 const TargetLowering &TLI) { 5930 // Handle simple but common cases only. 5931 Type *StoreType = SI.getValueOperand()->getType(); 5932 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5933 DL.getTypeSizeInBits(StoreType) == 0) 5934 return false; 5935 5936 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5937 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5938 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5939 DL.getTypeSizeInBits(SplitStoreType)) 5940 return false; 5941 5942 // Match the following patterns: 5943 // (store (or (zext LValue to i64), 5944 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5945 // or 5946 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5947 // (zext LValue to i64), 5948 // Expect both operands of OR and the first operand of SHL have only 5949 // one use. 5950 Value *LValue, *HValue; 5951 if (!match(SI.getValueOperand(), 5952 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 5953 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 5954 m_SpecificInt(HalfValBitSize)))))) 5955 return false; 5956 5957 // Check LValue and HValue are int with size less or equal than 32. 5958 if (!LValue->getType()->isIntegerTy() || 5959 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 5960 !HValue->getType()->isIntegerTy() || 5961 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 5962 return false; 5963 5964 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 5965 // as the input of target query. 5966 auto *LBC = dyn_cast<BitCastInst>(LValue); 5967 auto *HBC = dyn_cast<BitCastInst>(HValue); 5968 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 5969 : EVT::getEVT(LValue->getType()); 5970 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 5971 : EVT::getEVT(HValue->getType()); 5972 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 5973 return false; 5974 5975 // Start to split store. 5976 IRBuilder<> Builder(SI.getContext()); 5977 Builder.SetInsertPoint(&SI); 5978 5979 // If LValue/HValue is a bitcast in another BB, create a new one in current 5980 // BB so it may be merged with the splitted stores by dag combiner. 5981 if (LBC && LBC->getParent() != SI.getParent()) 5982 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 5983 if (HBC && HBC->getParent() != SI.getParent()) 5984 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 5985 5986 auto CreateSplitStore = [&](Value *V, bool Upper) { 5987 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 5988 Value *Addr = Builder.CreateBitCast( 5989 SI.getOperand(1), 5990 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 5991 if (Upper) 5992 Addr = Builder.CreateGEP( 5993 SplitStoreType, Addr, 5994 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 5995 Builder.CreateAlignedStore( 5996 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 5997 }; 5998 5999 CreateSplitStore(LValue, false); 6000 CreateSplitStore(HValue, true); 6001 6002 // Delete the old store. 6003 SI.eraseFromParent(); 6004 return true; 6005 } 6006 6007 // Return true if the GEP has two operands, the first operand is of a sequential 6008 // type, and the second operand is a constant. 6009 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6010 gep_type_iterator I = gep_type_begin(*GEP); 6011 return GEP->getNumOperands() == 2 && 6012 I.isSequential() && 6013 isa<ConstantInt>(GEP->getOperand(1)); 6014 } 6015 6016 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6017 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6018 // reducing liveness interference across those edges benefits global register 6019 // allocation. Currently handles only certain cases. 6020 // 6021 // For example, unmerge %GEPI and %UGEPI as below. 6022 // 6023 // ---------- BEFORE ---------- 6024 // SrcBlock: 6025 // ... 6026 // %GEPIOp = ... 6027 // ... 6028 // %GEPI = gep %GEPIOp, Idx 6029 // ... 6030 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6031 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6032 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6033 // %UGEPI) 6034 // 6035 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6036 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6037 // ... 6038 // 6039 // DstBi: 6040 // ... 6041 // %UGEPI = gep %GEPIOp, UIdx 6042 // ... 6043 // --------------------------- 6044 // 6045 // ---------- AFTER ---------- 6046 // SrcBlock: 6047 // ... (same as above) 6048 // (* %GEPI is still alive on the indirectbr edges) 6049 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6050 // unmerging) 6051 // ... 6052 // 6053 // DstBi: 6054 // ... 6055 // %UGEPI = gep %GEPI, (UIdx-Idx) 6056 // ... 6057 // --------------------------- 6058 // 6059 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6060 // no longer alive on them. 6061 // 6062 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6063 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6064 // not to disable further simplications and optimizations as a result of GEP 6065 // merging. 6066 // 6067 // Note this unmerging may increase the length of the data flow critical path 6068 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6069 // between the register pressure and the length of data-flow critical 6070 // path. Restricting this to the uncommon IndirectBr case would minimize the 6071 // impact of potentially longer critical path, if any, and the impact on compile 6072 // time. 6073 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6074 const TargetTransformInfo *TTI) { 6075 BasicBlock *SrcBlock = GEPI->getParent(); 6076 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6077 // (non-IndirectBr) cases exit early here. 6078 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6079 return false; 6080 // Check that GEPI is a simple gep with a single constant index. 6081 if (!GEPSequentialConstIndexed(GEPI)) 6082 return false; 6083 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6084 // Check that GEPI is a cheap one. 6085 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6086 > TargetTransformInfo::TCC_Basic) 6087 return false; 6088 Value *GEPIOp = GEPI->getOperand(0); 6089 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6090 if (!isa<Instruction>(GEPIOp)) 6091 return false; 6092 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6093 if (GEPIOpI->getParent() != SrcBlock) 6094 return false; 6095 // Check that GEP is used outside the block, meaning it's alive on the 6096 // IndirectBr edge(s). 6097 if (find_if(GEPI->users(), [&](User *Usr) { 6098 if (auto *I = dyn_cast<Instruction>(Usr)) { 6099 if (I->getParent() != SrcBlock) { 6100 return true; 6101 } 6102 } 6103 return false; 6104 }) == GEPI->users().end()) 6105 return false; 6106 // The second elements of the GEP chains to be unmerged. 6107 std::vector<GetElementPtrInst *> UGEPIs; 6108 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6109 // on IndirectBr edges. 6110 for (User *Usr : GEPIOp->users()) { 6111 if (Usr == GEPI) continue; 6112 // Check if Usr is an Instruction. If not, give up. 6113 if (!isa<Instruction>(Usr)) 6114 return false; 6115 auto *UI = cast<Instruction>(Usr); 6116 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6117 if (UI->getParent() == SrcBlock) 6118 continue; 6119 // Check if Usr is a GEP. If not, give up. 6120 if (!isa<GetElementPtrInst>(Usr)) 6121 return false; 6122 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6123 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6124 // the pointer operand to it. If so, record it in the vector. If not, give 6125 // up. 6126 if (!GEPSequentialConstIndexed(UGEPI)) 6127 return false; 6128 if (UGEPI->getOperand(0) != GEPIOp) 6129 return false; 6130 if (GEPIIdx->getType() != 6131 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6132 return false; 6133 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6134 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6135 > TargetTransformInfo::TCC_Basic) 6136 return false; 6137 UGEPIs.push_back(UGEPI); 6138 } 6139 if (UGEPIs.size() == 0) 6140 return false; 6141 // Check the materializing cost of (Uidx-Idx). 6142 for (GetElementPtrInst *UGEPI : UGEPIs) { 6143 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6144 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6145 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6146 if (ImmCost > TargetTransformInfo::TCC_Basic) 6147 return false; 6148 } 6149 // Now unmerge between GEPI and UGEPIs. 6150 for (GetElementPtrInst *UGEPI : UGEPIs) { 6151 UGEPI->setOperand(0, GEPI); 6152 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6153 Constant *NewUGEPIIdx = 6154 ConstantInt::get(GEPIIdx->getType(), 6155 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6156 UGEPI->setOperand(1, NewUGEPIIdx); 6157 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6158 // inbounds to avoid UB. 6159 if (!GEPI->isInBounds()) { 6160 UGEPI->setIsInBounds(false); 6161 } 6162 } 6163 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6164 // alive on IndirectBr edges). 6165 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6166 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6167 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6168 return true; 6169 } 6170 6171 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6172 // Bail out if we inserted the instruction to prevent optimizations from 6173 // stepping on each other's toes. 6174 if (InsertedInsts.count(I)) 6175 return false; 6176 6177 if (PHINode *P = dyn_cast<PHINode>(I)) { 6178 // It is possible for very late stage optimizations (such as SimplifyCFG) 6179 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6180 // trivial PHI, go ahead and zap it here. 6181 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6182 P->replaceAllUsesWith(V); 6183 P->eraseFromParent(); 6184 ++NumPHIsElim; 6185 return true; 6186 } 6187 return false; 6188 } 6189 6190 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6191 // If the source of the cast is a constant, then this should have 6192 // already been constant folded. The only reason NOT to constant fold 6193 // it is if something (e.g. LSR) was careful to place the constant 6194 // evaluation in a block other than then one that uses it (e.g. to hoist 6195 // the address of globals out of a loop). If this is the case, we don't 6196 // want to forward-subst the cast. 6197 if (isa<Constant>(CI->getOperand(0))) 6198 return false; 6199 6200 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6201 return true; 6202 6203 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6204 /// Sink a zext or sext into its user blocks if the target type doesn't 6205 /// fit in one register 6206 if (TLI && 6207 TLI->getTypeAction(CI->getContext(), 6208 TLI->getValueType(*DL, CI->getType())) == 6209 TargetLowering::TypeExpandInteger) { 6210 return SinkCast(CI); 6211 } else { 6212 bool MadeChange = optimizeExt(I); 6213 return MadeChange | optimizeExtUses(I); 6214 } 6215 } 6216 return false; 6217 } 6218 6219 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6220 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6221 return OptimizeCmpExpression(CI, TLI); 6222 6223 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6224 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6225 if (TLI) { 6226 bool Modified = optimizeLoadExt(LI); 6227 unsigned AS = LI->getPointerAddressSpace(); 6228 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6229 return Modified; 6230 } 6231 return false; 6232 } 6233 6234 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6235 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6236 return true; 6237 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6238 if (TLI) { 6239 unsigned AS = SI->getPointerAddressSpace(); 6240 return optimizeMemoryInst(I, SI->getOperand(1), 6241 SI->getOperand(0)->getType(), AS); 6242 } 6243 return false; 6244 } 6245 6246 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6247 unsigned AS = RMW->getPointerAddressSpace(); 6248 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6249 RMW->getType(), AS); 6250 } 6251 6252 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6253 unsigned AS = CmpX->getPointerAddressSpace(); 6254 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6255 CmpX->getCompareOperand()->getType(), AS); 6256 } 6257 6258 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6259 6260 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6261 EnableAndCmpSinking && TLI) 6262 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6263 6264 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6265 BinOp->getOpcode() == Instruction::LShr)) { 6266 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6267 if (TLI && CI && TLI->hasExtractBitsInsn()) 6268 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6269 6270 return false; 6271 } 6272 6273 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6274 if (GEPI->hasAllZeroIndices()) { 6275 /// The GEP operand must be a pointer, so must its result -> BitCast 6276 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6277 GEPI->getName(), GEPI); 6278 GEPI->replaceAllUsesWith(NC); 6279 GEPI->eraseFromParent(); 6280 ++NumGEPsElim; 6281 optimizeInst(NC, ModifiedDT); 6282 return true; 6283 } 6284 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6285 return true; 6286 } 6287 return false; 6288 } 6289 6290 if (CallInst *CI = dyn_cast<CallInst>(I)) 6291 return optimizeCallInst(CI, ModifiedDT); 6292 6293 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6294 return optimizeSelectInst(SI); 6295 6296 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6297 return optimizeShuffleVectorInst(SVI); 6298 6299 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6300 return optimizeSwitchInst(Switch); 6301 6302 if (isa<ExtractElementInst>(I)) 6303 return optimizeExtractElementInst(I); 6304 6305 return false; 6306 } 6307 6308 /// Given an OR instruction, check to see if this is a bitreverse 6309 /// idiom. If so, insert the new intrinsic and return true. 6310 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6311 const TargetLowering &TLI) { 6312 if (!I.getType()->isIntegerTy() || 6313 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6314 TLI.getValueType(DL, I.getType(), true))) 6315 return false; 6316 6317 SmallVector<Instruction*, 4> Insts; 6318 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6319 return false; 6320 Instruction *LastInst = Insts.back(); 6321 I.replaceAllUsesWith(LastInst); 6322 RecursivelyDeleteTriviallyDeadInstructions(&I); 6323 return true; 6324 } 6325 6326 // In this pass we look for GEP and cast instructions that are used 6327 // across basic blocks and rewrite them to improve basic-block-at-a-time 6328 // selection. 6329 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6330 SunkAddrs.clear(); 6331 bool MadeChange = false; 6332 6333 CurInstIterator = BB.begin(); 6334 while (CurInstIterator != BB.end()) { 6335 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6336 if (ModifiedDT) 6337 return true; 6338 } 6339 6340 bool MadeBitReverse = true; 6341 while (TLI && MadeBitReverse) { 6342 MadeBitReverse = false; 6343 for (auto &I : reverse(BB)) { 6344 if (makeBitReverse(I, *DL, *TLI)) { 6345 MadeBitReverse = MadeChange = true; 6346 ModifiedDT = true; 6347 break; 6348 } 6349 } 6350 } 6351 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6352 6353 return MadeChange; 6354 } 6355 6356 // llvm.dbg.value is far away from the value then iSel may not be able 6357 // handle it properly. iSel will drop llvm.dbg.value if it can not 6358 // find a node corresponding to the value. 6359 bool CodeGenPrepare::placeDbgValues(Function &F) { 6360 bool MadeChange = false; 6361 for (BasicBlock &BB : F) { 6362 Instruction *PrevNonDbgInst = nullptr; 6363 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6364 Instruction *Insn = &*BI++; 6365 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6366 // Leave dbg.values that refer to an alloca alone. These 6367 // intrinsics describe the address of a variable (= the alloca) 6368 // being taken. They should not be moved next to the alloca 6369 // (and to the beginning of the scope), but rather stay close to 6370 // where said address is used. 6371 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6372 PrevNonDbgInst = Insn; 6373 continue; 6374 } 6375 6376 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6377 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6378 // If VI is a phi in a block with an EHPad terminator, we can't insert 6379 // after it. 6380 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6381 continue; 6382 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6383 DVI->removeFromParent(); 6384 if (isa<PHINode>(VI)) 6385 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6386 else 6387 DVI->insertAfter(VI); 6388 MadeChange = true; 6389 ++NumDbgValueMoved; 6390 } 6391 } 6392 } 6393 return MadeChange; 6394 } 6395 6396 /// \brief Scale down both weights to fit into uint32_t. 6397 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6398 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6399 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6400 NewTrue = NewTrue / Scale; 6401 NewFalse = NewFalse / Scale; 6402 } 6403 6404 /// \brief Some targets prefer to split a conditional branch like: 6405 /// \code 6406 /// %0 = icmp ne i32 %a, 0 6407 /// %1 = icmp ne i32 %b, 0 6408 /// %or.cond = or i1 %0, %1 6409 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6410 /// \endcode 6411 /// into multiple branch instructions like: 6412 /// \code 6413 /// bb1: 6414 /// %0 = icmp ne i32 %a, 0 6415 /// br i1 %0, label %TrueBB, label %bb2 6416 /// bb2: 6417 /// %1 = icmp ne i32 %b, 0 6418 /// br i1 %1, label %TrueBB, label %FalseBB 6419 /// \endcode 6420 /// This usually allows instruction selection to do even further optimizations 6421 /// and combine the compare with the branch instruction. Currently this is 6422 /// applied for targets which have "cheap" jump instructions. 6423 /// 6424 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6425 /// 6426 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6427 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6428 return false; 6429 6430 bool MadeChange = false; 6431 for (auto &BB : F) { 6432 // Does this BB end with the following? 6433 // %cond1 = icmp|fcmp|binary instruction ... 6434 // %cond2 = icmp|fcmp|binary instruction ... 6435 // %cond.or = or|and i1 %cond1, cond2 6436 // br i1 %cond.or label %dest1, label %dest2" 6437 BinaryOperator *LogicOp; 6438 BasicBlock *TBB, *FBB; 6439 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6440 continue; 6441 6442 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6443 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6444 continue; 6445 6446 unsigned Opc; 6447 Value *Cond1, *Cond2; 6448 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6449 m_OneUse(m_Value(Cond2))))) 6450 Opc = Instruction::And; 6451 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6452 m_OneUse(m_Value(Cond2))))) 6453 Opc = Instruction::Or; 6454 else 6455 continue; 6456 6457 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6458 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6459 continue; 6460 6461 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6462 6463 // Create a new BB. 6464 auto TmpBB = 6465 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6466 BB.getParent(), BB.getNextNode()); 6467 6468 // Update original basic block by using the first condition directly by the 6469 // branch instruction and removing the no longer needed and/or instruction. 6470 Br1->setCondition(Cond1); 6471 LogicOp->eraseFromParent(); 6472 6473 // Depending on the conditon we have to either replace the true or the false 6474 // successor of the original branch instruction. 6475 if (Opc == Instruction::And) 6476 Br1->setSuccessor(0, TmpBB); 6477 else 6478 Br1->setSuccessor(1, TmpBB); 6479 6480 // Fill in the new basic block. 6481 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6482 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6483 I->removeFromParent(); 6484 I->insertBefore(Br2); 6485 } 6486 6487 // Update PHI nodes in both successors. The original BB needs to be 6488 // replaced in one successor's PHI nodes, because the branch comes now from 6489 // the newly generated BB (NewBB). In the other successor we need to add one 6490 // incoming edge to the PHI nodes, because both branch instructions target 6491 // now the same successor. Depending on the original branch condition 6492 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6493 // we perform the correct update for the PHI nodes. 6494 // This doesn't change the successor order of the just created branch 6495 // instruction (or any other instruction). 6496 if (Opc == Instruction::Or) 6497 std::swap(TBB, FBB); 6498 6499 // Replace the old BB with the new BB. 6500 for (auto &I : *TBB) { 6501 PHINode *PN = dyn_cast<PHINode>(&I); 6502 if (!PN) 6503 break; 6504 int i; 6505 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 6506 PN->setIncomingBlock(i, TmpBB); 6507 } 6508 6509 // Add another incoming edge form the new BB. 6510 for (auto &I : *FBB) { 6511 PHINode *PN = dyn_cast<PHINode>(&I); 6512 if (!PN) 6513 break; 6514 auto *Val = PN->getIncomingValueForBlock(&BB); 6515 PN->addIncoming(Val, TmpBB); 6516 } 6517 6518 // Update the branch weights (from SelectionDAGBuilder:: 6519 // FindMergedConditions). 6520 if (Opc == Instruction::Or) { 6521 // Codegen X | Y as: 6522 // BB1: 6523 // jmp_if_X TBB 6524 // jmp TmpBB 6525 // TmpBB: 6526 // jmp_if_Y TBB 6527 // jmp FBB 6528 // 6529 6530 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6531 // The requirement is that 6532 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6533 // = TrueProb for orignal BB. 6534 // Assuming the orignal weights are A and B, one choice is to set BB1's 6535 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6536 // assumes that 6537 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6538 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6539 // TmpBB, but the math is more complicated. 6540 uint64_t TrueWeight, FalseWeight; 6541 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6542 uint64_t NewTrueWeight = TrueWeight; 6543 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6544 scaleWeights(NewTrueWeight, NewFalseWeight); 6545 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6546 .createBranchWeights(TrueWeight, FalseWeight)); 6547 6548 NewTrueWeight = TrueWeight; 6549 NewFalseWeight = 2 * FalseWeight; 6550 scaleWeights(NewTrueWeight, NewFalseWeight); 6551 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6552 .createBranchWeights(TrueWeight, FalseWeight)); 6553 } 6554 } else { 6555 // Codegen X & Y as: 6556 // BB1: 6557 // jmp_if_X TmpBB 6558 // jmp FBB 6559 // TmpBB: 6560 // jmp_if_Y TBB 6561 // jmp FBB 6562 // 6563 // This requires creation of TmpBB after CurBB. 6564 6565 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6566 // The requirement is that 6567 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6568 // = FalseProb for orignal BB. 6569 // Assuming the orignal weights are A and B, one choice is to set BB1's 6570 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6571 // assumes that 6572 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6573 uint64_t TrueWeight, FalseWeight; 6574 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6575 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6576 uint64_t NewFalseWeight = FalseWeight; 6577 scaleWeights(NewTrueWeight, NewFalseWeight); 6578 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6579 .createBranchWeights(TrueWeight, FalseWeight)); 6580 6581 NewTrueWeight = 2 * TrueWeight; 6582 NewFalseWeight = FalseWeight; 6583 scaleWeights(NewTrueWeight, NewFalseWeight); 6584 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6585 .createBranchWeights(TrueWeight, FalseWeight)); 6586 } 6587 } 6588 6589 // Note: No point in getting fancy here, since the DT info is never 6590 // available to CodeGenPrepare. 6591 ModifiedDT = true; 6592 6593 MadeChange = true; 6594 6595 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6596 TmpBB->dump()); 6597 } 6598 return MadeChange; 6599 } 6600