1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/BlockFrequencyInfo.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/ProfileSummaryInfo.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/CodeGen/Analysis.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/CodeGen/TargetPassConfig.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/MDBuilder.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/Statepoint.h"
47 #include "llvm/IR/ValueHandle.h"
48 #include "llvm/IR/ValueMap.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetLowering.h"
55 #include "llvm/Target/TargetSubtargetInfo.h"
56 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
57 #include "llvm/Transforms/Utils/BuildLibCalls.h"
58 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
59 #include "llvm/Transforms/Utils/Cloning.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
62 #include "llvm/Transforms/Utils/ValueMapper.h"
63 
64 using namespace llvm;
65 using namespace llvm::PatternMatch;
66 
67 #define DEBUG_TYPE "codegenprepare"
68 
69 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
70 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
71 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
72 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
73                       "sunken Cmps");
74 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
75                        "of sunken Casts");
76 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
77                           "computations were sunk");
78 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
79 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
80 STATISTIC(NumAndsAdded,
81           "Number of and mask instructions added to form ext loads");
82 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
83 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
84 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
85 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
86 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
87 
88 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
89 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
90 STATISTIC(NumMemCmpGreaterThanMax,
91           "Number of memcmp calls with size greater than max size");
92 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
93 
94 static cl::opt<bool> DisableBranchOpts(
95   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
96   cl::desc("Disable branch optimizations in CodeGenPrepare"));
97 
98 static cl::opt<bool>
99     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
100                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
101 
102 static cl::opt<bool> DisableSelectToBranch(
103   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
104   cl::desc("Disable select to branch conversion."));
105 
106 static cl::opt<bool> AddrSinkUsingGEPs(
107   "addr-sink-using-gep", cl::Hidden, cl::init(true),
108   cl::desc("Address sinking in CGP using GEPs."));
109 
110 static cl::opt<bool> EnableAndCmpSinking(
111    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
112    cl::desc("Enable sinkinig and/cmp into branches."));
113 
114 static cl::opt<bool> DisableStoreExtract(
115     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
116     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
117 
118 static cl::opt<bool> StressStoreExtract(
119     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
120     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
121 
122 static cl::opt<bool> DisableExtLdPromotion(
123     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
124     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
125              "CodeGenPrepare"));
126 
127 static cl::opt<bool> StressExtLdPromotion(
128     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
129     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
130              "optimization in CodeGenPrepare"));
131 
132 static cl::opt<bool> DisablePreheaderProtect(
133     "disable-preheader-prot", cl::Hidden, cl::init(false),
134     cl::desc("Disable protection against removing loop preheaders"));
135 
136 static cl::opt<bool> ProfileGuidedSectionPrefix(
137     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
138     cl::desc("Use profile info to add section prefix for hot/cold functions"));
139 
140 static cl::opt<unsigned> FreqRatioToSkipMerge(
141     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
142     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
143              "(frequency of destination block) is greater than this ratio"));
144 
145 static cl::opt<bool> ForceSplitStore(
146     "force-split-store", cl::Hidden, cl::init(false),
147     cl::desc("Force store splitting no matter what the target query says."));
148 
149 static cl::opt<bool>
150 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
151     cl::desc("Enable merging of redundant sexts when one is dominating"
152     " the other."), cl::init(true));
153 
154 static cl::opt<unsigned> MemCmpNumLoadsPerBlock(
155     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
156     cl::desc("The number of loads per basic block for inline expansion of "
157              "memcmp that is only being compared against zero."));
158 
159 namespace {
160 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
161 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt;
162 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy;
163 typedef SmallVector<Instruction *, 16> SExts;
164 typedef DenseMap<Value *, SExts> ValueToSExts;
165 class TypePromotionTransaction;
166 
167   class CodeGenPrepare : public FunctionPass {
168     const TargetMachine *TM;
169     const TargetSubtargetInfo *SubtargetInfo;
170     const TargetLowering *TLI;
171     const TargetRegisterInfo *TRI;
172     const TargetTransformInfo *TTI;
173     const TargetLibraryInfo *TLInfo;
174     const LoopInfo *LI;
175     std::unique_ptr<BlockFrequencyInfo> BFI;
176     std::unique_ptr<BranchProbabilityInfo> BPI;
177 
178     /// As we scan instructions optimizing them, this is the next instruction
179     /// to optimize. Transforms that can invalidate this should update it.
180     BasicBlock::iterator CurInstIterator;
181 
182     /// Keeps track of non-local addresses that have been sunk into a block.
183     /// This allows us to avoid inserting duplicate code for blocks with
184     /// multiple load/stores of the same address.
185     ValueMap<Value*, Value*> SunkAddrs;
186 
187     /// Keeps track of all instructions inserted for the current function.
188     SetOfInstrs InsertedInsts;
189     /// Keeps track of the type of the related instruction before their
190     /// promotion for the current function.
191     InstrToOrigTy PromotedInsts;
192 
193     /// Keep track of instructions removed during promotion.
194     SetOfInstrs RemovedInsts;
195 
196     /// Keep track of sext chains based on their initial value.
197     DenseMap<Value *, Instruction *> SeenChainsForSExt;
198 
199     /// Keep track of SExt promoted.
200     ValueToSExts ValToSExtendedUses;
201 
202     /// True if CFG is modified in any way.
203     bool ModifiedDT;
204 
205     /// True if optimizing for size.
206     bool OptSize;
207 
208     /// DataLayout for the Function being processed.
209     const DataLayout *DL;
210 
211   public:
212     static char ID; // Pass identification, replacement for typeid
213     CodeGenPrepare()
214         : FunctionPass(ID), TM(nullptr), TLI(nullptr), TTI(nullptr),
215           DL(nullptr) {
216       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
217     }
218     bool runOnFunction(Function &F) override;
219 
220     StringRef getPassName() const override { return "CodeGen Prepare"; }
221 
222     void getAnalysisUsage(AnalysisUsage &AU) const override {
223       // FIXME: When we can selectively preserve passes, preserve the domtree.
224       AU.addRequired<ProfileSummaryInfoWrapperPass>();
225       AU.addRequired<TargetLibraryInfoWrapperPass>();
226       AU.addRequired<TargetTransformInfoWrapperPass>();
227       AU.addRequired<LoopInfoWrapperPass>();
228     }
229 
230   private:
231     bool eliminateFallThrough(Function &F);
232     bool eliminateMostlyEmptyBlocks(Function &F);
233     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
234     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
235     void eliminateMostlyEmptyBlock(BasicBlock *BB);
236     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
237                                        bool isPreheader);
238     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
239     bool optimizeInst(Instruction *I, bool &ModifiedDT);
240     bool optimizeMemoryInst(Instruction *I, Value *Addr,
241                             Type *AccessTy, unsigned AS);
242     bool optimizeInlineAsmInst(CallInst *CS);
243     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
244     bool optimizeExt(Instruction *&I);
245     bool optimizeExtUses(Instruction *I);
246     bool optimizeLoadExt(LoadInst *I);
247     bool optimizeSelectInst(SelectInst *SI);
248     bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
249     bool optimizeSwitchInst(SwitchInst *CI);
250     bool optimizeExtractElementInst(Instruction *Inst);
251     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
252     bool placeDbgValues(Function &F);
253     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
254                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
255     bool tryToPromoteExts(TypePromotionTransaction &TPT,
256                           const SmallVectorImpl<Instruction *> &Exts,
257                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
258                           unsigned CreatedInstsCost = 0);
259     bool mergeSExts(Function &F);
260     bool performAddressTypePromotion(
261         Instruction *&Inst,
262         bool AllowPromotionWithoutCommonHeader,
263         bool HasPromoted, TypePromotionTransaction &TPT,
264         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
265     bool splitBranchCondition(Function &F);
266     bool simplifyOffsetableRelocate(Instruction &I);
267     bool splitIndirectCriticalEdges(Function &F);
268   };
269 }
270 
271 char CodeGenPrepare::ID = 0;
272 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
273                       "Optimize for code generation", false, false)
274 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
275 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
276                     "Optimize for code generation", false, false)
277 
278 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
279 
280 bool CodeGenPrepare::runOnFunction(Function &F) {
281   if (skipFunction(F))
282     return false;
283 
284   DL = &F.getParent()->getDataLayout();
285 
286   bool EverMadeChange = false;
287   // Clear per function information.
288   InsertedInsts.clear();
289   PromotedInsts.clear();
290   BFI.reset();
291   BPI.reset();
292 
293   ModifiedDT = false;
294   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
295     TM = &TPC->getTM<TargetMachine>();
296     SubtargetInfo = TM->getSubtargetImpl(F);
297     TLI = SubtargetInfo->getTargetLowering();
298     TRI = SubtargetInfo->getRegisterInfo();
299   }
300   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
301   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
302   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
303   OptSize = F.optForSize();
304 
305   if (ProfileGuidedSectionPrefix) {
306     ProfileSummaryInfo *PSI =
307         getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
308     if (PSI->isFunctionHotInCallGraph(&F))
309       F.setSectionPrefix(".hot");
310     else if (PSI->isFunctionColdInCallGraph(&F))
311       F.setSectionPrefix(".unlikely");
312   }
313 
314   /// This optimization identifies DIV instructions that can be
315   /// profitably bypassed and carried out with a shorter, faster divide.
316   if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
317     const DenseMap<unsigned int, unsigned int> &BypassWidths =
318        TLI->getBypassSlowDivWidths();
319     BasicBlock* BB = &*F.begin();
320     while (BB != nullptr) {
321       // bypassSlowDivision may create new BBs, but we don't want to reapply the
322       // optimization to those blocks.
323       BasicBlock* Next = BB->getNextNode();
324       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
325       BB = Next;
326     }
327   }
328 
329   // Eliminate blocks that contain only PHI nodes and an
330   // unconditional branch.
331   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
332 
333   // llvm.dbg.value is far away from the value then iSel may not be able
334   // handle it properly. iSel will drop llvm.dbg.value if it can not
335   // find a node corresponding to the value.
336   EverMadeChange |= placeDbgValues(F);
337 
338   if (!DisableBranchOpts)
339     EverMadeChange |= splitBranchCondition(F);
340 
341   // Split some critical edges where one of the sources is an indirect branch,
342   // to help generate sane code for PHIs involving such edges.
343   EverMadeChange |= splitIndirectCriticalEdges(F);
344 
345   bool MadeChange = true;
346   while (MadeChange) {
347     MadeChange = false;
348     SeenChainsForSExt.clear();
349     ValToSExtendedUses.clear();
350     RemovedInsts.clear();
351     for (Function::iterator I = F.begin(); I != F.end(); ) {
352       BasicBlock *BB = &*I++;
353       bool ModifiedDTOnIteration = false;
354       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
355 
356       // Restart BB iteration if the dominator tree of the Function was changed
357       if (ModifiedDTOnIteration)
358         break;
359     }
360     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
361       MadeChange |= mergeSExts(F);
362 
363     // Really free removed instructions during promotion.
364     for (Instruction *I : RemovedInsts)
365       I->deleteValue();
366 
367     EverMadeChange |= MadeChange;
368   }
369 
370   SunkAddrs.clear();
371 
372   if (!DisableBranchOpts) {
373     MadeChange = false;
374     SmallPtrSet<BasicBlock*, 8> WorkList;
375     for (BasicBlock &BB : F) {
376       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
377       MadeChange |= ConstantFoldTerminator(&BB, true);
378       if (!MadeChange) continue;
379 
380       for (SmallVectorImpl<BasicBlock*>::iterator
381              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
382         if (pred_begin(*II) == pred_end(*II))
383           WorkList.insert(*II);
384     }
385 
386     // Delete the dead blocks and any of their dead successors.
387     MadeChange |= !WorkList.empty();
388     while (!WorkList.empty()) {
389       BasicBlock *BB = *WorkList.begin();
390       WorkList.erase(BB);
391       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
392 
393       DeleteDeadBlock(BB);
394 
395       for (SmallVectorImpl<BasicBlock*>::iterator
396              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
397         if (pred_begin(*II) == pred_end(*II))
398           WorkList.insert(*II);
399     }
400 
401     // Merge pairs of basic blocks with unconditional branches, connected by
402     // a single edge.
403     if (EverMadeChange || MadeChange)
404       MadeChange |= eliminateFallThrough(F);
405 
406     EverMadeChange |= MadeChange;
407   }
408 
409   if (!DisableGCOpts) {
410     SmallVector<Instruction *, 2> Statepoints;
411     for (BasicBlock &BB : F)
412       for (Instruction &I : BB)
413         if (isStatepoint(I))
414           Statepoints.push_back(&I);
415     for (auto &I : Statepoints)
416       EverMadeChange |= simplifyOffsetableRelocate(*I);
417   }
418 
419   return EverMadeChange;
420 }
421 
422 /// Merge basic blocks which are connected by a single edge, where one of the
423 /// basic blocks has a single successor pointing to the other basic block,
424 /// which has a single predecessor.
425 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
426   bool Changed = false;
427   // Scan all of the blocks in the function, except for the entry block.
428   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
429     BasicBlock *BB = &*I++;
430     // If the destination block has a single pred, then this is a trivial
431     // edge, just collapse it.
432     BasicBlock *SinglePred = BB->getSinglePredecessor();
433 
434     // Don't merge if BB's address is taken.
435     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
436 
437     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
438     if (Term && !Term->isConditional()) {
439       Changed = true;
440       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
441       // Remember if SinglePred was the entry block of the function.
442       // If so, we will need to move BB back to the entry position.
443       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
444       MergeBasicBlockIntoOnlyPred(BB, nullptr);
445 
446       if (isEntry && BB != &BB->getParent()->getEntryBlock())
447         BB->moveBefore(&BB->getParent()->getEntryBlock());
448 
449       // We have erased a block. Update the iterator.
450       I = BB->getIterator();
451     }
452   }
453   return Changed;
454 }
455 
456 /// Find a destination block from BB if BB is mergeable empty block.
457 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
458   // If this block doesn't end with an uncond branch, ignore it.
459   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
460   if (!BI || !BI->isUnconditional())
461     return nullptr;
462 
463   // If the instruction before the branch (skipping debug info) isn't a phi
464   // node, then other stuff is happening here.
465   BasicBlock::iterator BBI = BI->getIterator();
466   if (BBI != BB->begin()) {
467     --BBI;
468     while (isa<DbgInfoIntrinsic>(BBI)) {
469       if (BBI == BB->begin())
470         break;
471       --BBI;
472     }
473     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
474       return nullptr;
475   }
476 
477   // Do not break infinite loops.
478   BasicBlock *DestBB = BI->getSuccessor(0);
479   if (DestBB == BB)
480     return nullptr;
481 
482   if (!canMergeBlocks(BB, DestBB))
483     DestBB = nullptr;
484 
485   return DestBB;
486 }
487 
488 // Return the unique indirectbr predecessor of a block. This may return null
489 // even if such a predecessor exists, if it's not useful for splitting.
490 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
491 // predecessors of BB.
492 static BasicBlock *
493 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
494   // If the block doesn't have any PHIs, we don't care about it, since there's
495   // no point in splitting it.
496   PHINode *PN = dyn_cast<PHINode>(BB->begin());
497   if (!PN)
498     return nullptr;
499 
500   // Verify we have exactly one IBR predecessor.
501   // Conservatively bail out if one of the other predecessors is not a "regular"
502   // terminator (that is, not a switch or a br).
503   BasicBlock *IBB = nullptr;
504   for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
505     BasicBlock *PredBB = PN->getIncomingBlock(Pred);
506     TerminatorInst *PredTerm = PredBB->getTerminator();
507     switch (PredTerm->getOpcode()) {
508     case Instruction::IndirectBr:
509       if (IBB)
510         return nullptr;
511       IBB = PredBB;
512       break;
513     case Instruction::Br:
514     case Instruction::Switch:
515       OtherPreds.push_back(PredBB);
516       continue;
517     default:
518       return nullptr;
519     }
520   }
521 
522   return IBB;
523 }
524 
525 // Split critical edges where the source of the edge is an indirectbr
526 // instruction. This isn't always possible, but we can handle some easy cases.
527 // This is useful because MI is unable to split such critical edges,
528 // which means it will not be able to sink instructions along those edges.
529 // This is especially painful for indirect branches with many successors, where
530 // we end up having to prepare all outgoing values in the origin block.
531 //
532 // Our normal algorithm for splitting critical edges requires us to update
533 // the outgoing edges of the edge origin block, but for an indirectbr this
534 // is hard, since it would require finding and updating the block addresses
535 // the indirect branch uses. But if a block only has a single indirectbr
536 // predecessor, with the others being regular branches, we can do it in a
537 // different way.
538 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr.
539 // We can split D into D0 and D1, where D0 contains only the PHIs from D,
540 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and
541 // create the following structure:
542 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1
543 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) {
544   // Check whether the function has any indirectbrs, and collect which blocks
545   // they may jump to. Since most functions don't have indirect branches,
546   // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
547   SmallSetVector<BasicBlock *, 16> Targets;
548   for (auto &BB : F) {
549     auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
550     if (!IBI)
551       continue;
552 
553     for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
554       Targets.insert(IBI->getSuccessor(Succ));
555   }
556 
557   if (Targets.empty())
558     return false;
559 
560   bool Changed = false;
561   for (BasicBlock *Target : Targets) {
562     SmallVector<BasicBlock *, 16> OtherPreds;
563     BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
564     // If we did not found an indirectbr, or the indirectbr is the only
565     // incoming edge, this isn't the kind of edge we're looking for.
566     if (!IBRPred || OtherPreds.empty())
567       continue;
568 
569     // Don't even think about ehpads/landingpads.
570     Instruction *FirstNonPHI = Target->getFirstNonPHI();
571     if (FirstNonPHI->isEHPad() || Target->isLandingPad())
572       continue;
573 
574     BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
575     // It's possible Target was its own successor through an indirectbr.
576     // In this case, the indirectbr now comes from BodyBlock.
577     if (IBRPred == Target)
578       IBRPred = BodyBlock;
579 
580     // At this point Target only has PHIs, and BodyBlock has the rest of the
581     // block's body. Create a copy of Target that will be used by the "direct"
582     // preds.
583     ValueToValueMapTy VMap;
584     BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
585 
586     for (BasicBlock *Pred : OtherPreds) {
587       // If the target is a loop to itself, then the terminator of the split
588       // block needs to be updated.
589       if (Pred == Target)
590         BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
591       else
592         Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
593     }
594 
595     // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
596     // they are clones, so the number of PHIs are the same.
597     // (a) Remove the edge coming from IBRPred from the "Direct" PHI
598     // (b) Leave that as the only edge in the "Indirect" PHI.
599     // (c) Merge the two in the body block.
600     BasicBlock::iterator Indirect = Target->begin(),
601                          End = Target->getFirstNonPHI()->getIterator();
602     BasicBlock::iterator Direct = DirectSucc->begin();
603     BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
604 
605     assert(&*End == Target->getTerminator() &&
606            "Block was expected to only contain PHIs");
607 
608     while (Indirect != End) {
609       PHINode *DirPHI = cast<PHINode>(Direct);
610       PHINode *IndPHI = cast<PHINode>(Indirect);
611 
612       // Now, clean up - the direct block shouldn't get the indirect value,
613       // and vice versa.
614       DirPHI->removeIncomingValue(IBRPred);
615       Direct++;
616 
617       // Advance the pointer here, to avoid invalidation issues when the old
618       // PHI is erased.
619       Indirect++;
620 
621       PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
622       NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
623                              IBRPred);
624 
625       // Create a PHI in the body block, to merge the direct and indirect
626       // predecessors.
627       PHINode *MergePHI =
628           PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
629       MergePHI->addIncoming(NewIndPHI, Target);
630       MergePHI->addIncoming(DirPHI, DirectSucc);
631 
632       IndPHI->replaceAllUsesWith(MergePHI);
633       IndPHI->eraseFromParent();
634     }
635 
636     Changed = true;
637   }
638 
639   return Changed;
640 }
641 
642 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
643 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
644 /// edges in ways that are non-optimal for isel. Start by eliminating these
645 /// blocks so we can split them the way we want them.
646 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
647   SmallPtrSet<BasicBlock *, 16> Preheaders;
648   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
649   while (!LoopList.empty()) {
650     Loop *L = LoopList.pop_back_val();
651     LoopList.insert(LoopList.end(), L->begin(), L->end());
652     if (BasicBlock *Preheader = L->getLoopPreheader())
653       Preheaders.insert(Preheader);
654   }
655 
656   bool MadeChange = false;
657   // Note that this intentionally skips the entry block.
658   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
659     BasicBlock *BB = &*I++;
660     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
661     if (!DestBB ||
662         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
663       continue;
664 
665     eliminateMostlyEmptyBlock(BB);
666     MadeChange = true;
667   }
668   return MadeChange;
669 }
670 
671 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
672                                                    BasicBlock *DestBB,
673                                                    bool isPreheader) {
674   // Do not delete loop preheaders if doing so would create a critical edge.
675   // Loop preheaders can be good locations to spill registers. If the
676   // preheader is deleted and we create a critical edge, registers may be
677   // spilled in the loop body instead.
678   if (!DisablePreheaderProtect && isPreheader &&
679       !(BB->getSinglePredecessor() &&
680         BB->getSinglePredecessor()->getSingleSuccessor()))
681     return false;
682 
683   // Try to skip merging if the unique predecessor of BB is terminated by a
684   // switch or indirect branch instruction, and BB is used as an incoming block
685   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
686   // add COPY instructions in the predecessor of BB instead of BB (if it is not
687   // merged). Note that the critical edge created by merging such blocks wont be
688   // split in MachineSink because the jump table is not analyzable. By keeping
689   // such empty block (BB), ISel will place COPY instructions in BB, not in the
690   // predecessor of BB.
691   BasicBlock *Pred = BB->getUniquePredecessor();
692   if (!Pred ||
693       !(isa<SwitchInst>(Pred->getTerminator()) ||
694         isa<IndirectBrInst>(Pred->getTerminator())))
695     return true;
696 
697   if (BB->getTerminator() != BB->getFirstNonPHI())
698     return true;
699 
700   // We use a simple cost heuristic which determine skipping merging is
701   // profitable if the cost of skipping merging is less than the cost of
702   // merging : Cost(skipping merging) < Cost(merging BB), where the
703   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
704   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
705   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
706   //   Freq(Pred) / Freq(BB) > 2.
707   // Note that if there are multiple empty blocks sharing the same incoming
708   // value for the PHIs in the DestBB, we consider them together. In such
709   // case, Cost(merging BB) will be the sum of their frequencies.
710 
711   if (!isa<PHINode>(DestBB->begin()))
712     return true;
713 
714   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
715 
716   // Find all other incoming blocks from which incoming values of all PHIs in
717   // DestBB are the same as the ones from BB.
718   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
719        ++PI) {
720     BasicBlock *DestBBPred = *PI;
721     if (DestBBPred == BB)
722       continue;
723 
724     bool HasAllSameValue = true;
725     BasicBlock::const_iterator DestBBI = DestBB->begin();
726     while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) {
727       if (DestPN->getIncomingValueForBlock(BB) !=
728           DestPN->getIncomingValueForBlock(DestBBPred)) {
729         HasAllSameValue = false;
730         break;
731       }
732     }
733     if (HasAllSameValue)
734       SameIncomingValueBBs.insert(DestBBPred);
735   }
736 
737   // See if all BB's incoming values are same as the value from Pred. In this
738   // case, no reason to skip merging because COPYs are expected to be place in
739   // Pred already.
740   if (SameIncomingValueBBs.count(Pred))
741     return true;
742 
743   if (!BFI) {
744     Function &F = *BB->getParent();
745     LoopInfo LI{DominatorTree(F)};
746     BPI.reset(new BranchProbabilityInfo(F, LI));
747     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
748   }
749 
750   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
751   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
752 
753   for (auto SameValueBB : SameIncomingValueBBs)
754     if (SameValueBB->getUniquePredecessor() == Pred &&
755         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
756       BBFreq += BFI->getBlockFreq(SameValueBB);
757 
758   return PredFreq.getFrequency() <=
759          BBFreq.getFrequency() * FreqRatioToSkipMerge;
760 }
761 
762 /// Return true if we can merge BB into DestBB if there is a single
763 /// unconditional branch between them, and BB contains no other non-phi
764 /// instructions.
765 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
766                                     const BasicBlock *DestBB) const {
767   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
768   // the successor.  If there are more complex condition (e.g. preheaders),
769   // don't mess around with them.
770   BasicBlock::const_iterator BBI = BB->begin();
771   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
772     for (const User *U : PN->users()) {
773       const Instruction *UI = cast<Instruction>(U);
774       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
775         return false;
776       // If User is inside DestBB block and it is a PHINode then check
777       // incoming value. If incoming value is not from BB then this is
778       // a complex condition (e.g. preheaders) we want to avoid here.
779       if (UI->getParent() == DestBB) {
780         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
781           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
782             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
783             if (Insn && Insn->getParent() == BB &&
784                 Insn->getParent() != UPN->getIncomingBlock(I))
785               return false;
786           }
787       }
788     }
789   }
790 
791   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
792   // and DestBB may have conflicting incoming values for the block.  If so, we
793   // can't merge the block.
794   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
795   if (!DestBBPN) return true;  // no conflict.
796 
797   // Collect the preds of BB.
798   SmallPtrSet<const BasicBlock*, 16> BBPreds;
799   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
800     // It is faster to get preds from a PHI than with pred_iterator.
801     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
802       BBPreds.insert(BBPN->getIncomingBlock(i));
803   } else {
804     BBPreds.insert(pred_begin(BB), pred_end(BB));
805   }
806 
807   // Walk the preds of DestBB.
808   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
809     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
810     if (BBPreds.count(Pred)) {   // Common predecessor?
811       BBI = DestBB->begin();
812       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
813         const Value *V1 = PN->getIncomingValueForBlock(Pred);
814         const Value *V2 = PN->getIncomingValueForBlock(BB);
815 
816         // If V2 is a phi node in BB, look up what the mapped value will be.
817         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
818           if (V2PN->getParent() == BB)
819             V2 = V2PN->getIncomingValueForBlock(Pred);
820 
821         // If there is a conflict, bail out.
822         if (V1 != V2) return false;
823       }
824     }
825   }
826 
827   return true;
828 }
829 
830 
831 /// Eliminate a basic block that has only phi's and an unconditional branch in
832 /// it.
833 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
834   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
835   BasicBlock *DestBB = BI->getSuccessor(0);
836 
837   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
838 
839   // If the destination block has a single pred, then this is a trivial edge,
840   // just collapse it.
841   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
842     if (SinglePred != DestBB) {
843       // Remember if SinglePred was the entry block of the function.  If so, we
844       // will need to move BB back to the entry position.
845       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
846       MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
847 
848       if (isEntry && BB != &BB->getParent()->getEntryBlock())
849         BB->moveBefore(&BB->getParent()->getEntryBlock());
850 
851       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
852       return;
853     }
854   }
855 
856   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
857   // to handle the new incoming edges it is about to have.
858   PHINode *PN;
859   for (BasicBlock::iterator BBI = DestBB->begin();
860        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
861     // Remove the incoming value for BB, and remember it.
862     Value *InVal = PN->removeIncomingValue(BB, false);
863 
864     // Two options: either the InVal is a phi node defined in BB or it is some
865     // value that dominates BB.
866     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
867     if (InValPhi && InValPhi->getParent() == BB) {
868       // Add all of the input values of the input PHI as inputs of this phi.
869       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
870         PN->addIncoming(InValPhi->getIncomingValue(i),
871                         InValPhi->getIncomingBlock(i));
872     } else {
873       // Otherwise, add one instance of the dominating value for each edge that
874       // we will be adding.
875       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
876         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
877           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
878       } else {
879         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
880           PN->addIncoming(InVal, *PI);
881       }
882     }
883   }
884 
885   // The PHIs are now updated, change everything that refers to BB to use
886   // DestBB and remove BB.
887   BB->replaceAllUsesWith(DestBB);
888   BB->eraseFromParent();
889   ++NumBlocksElim;
890 
891   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
892 }
893 
894 // Computes a map of base pointer relocation instructions to corresponding
895 // derived pointer relocation instructions given a vector of all relocate calls
896 static void computeBaseDerivedRelocateMap(
897     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
898     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
899         &RelocateInstMap) {
900   // Collect information in two maps: one primarily for locating the base object
901   // while filling the second map; the second map is the final structure holding
902   // a mapping between Base and corresponding Derived relocate calls
903   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
904   for (auto *ThisRelocate : AllRelocateCalls) {
905     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
906                             ThisRelocate->getDerivedPtrIndex());
907     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
908   }
909   for (auto &Item : RelocateIdxMap) {
910     std::pair<unsigned, unsigned> Key = Item.first;
911     if (Key.first == Key.second)
912       // Base relocation: nothing to insert
913       continue;
914 
915     GCRelocateInst *I = Item.second;
916     auto BaseKey = std::make_pair(Key.first, Key.first);
917 
918     // We're iterating over RelocateIdxMap so we cannot modify it.
919     auto MaybeBase = RelocateIdxMap.find(BaseKey);
920     if (MaybeBase == RelocateIdxMap.end())
921       // TODO: We might want to insert a new base object relocate and gep off
922       // that, if there are enough derived object relocates.
923       continue;
924 
925     RelocateInstMap[MaybeBase->second].push_back(I);
926   }
927 }
928 
929 // Accepts a GEP and extracts the operands into a vector provided they're all
930 // small integer constants
931 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
932                                           SmallVectorImpl<Value *> &OffsetV) {
933   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
934     // Only accept small constant integer operands
935     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
936     if (!Op || Op->getZExtValue() > 20)
937       return false;
938   }
939 
940   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
941     OffsetV.push_back(GEP->getOperand(i));
942   return true;
943 }
944 
945 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
946 // replace, computes a replacement, and affects it.
947 static bool
948 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
949                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
950   bool MadeChange = false;
951   for (GCRelocateInst *ToReplace : Targets) {
952     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
953            "Not relocating a derived object of the original base object");
954     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
955       // A duplicate relocate call. TODO: coalesce duplicates.
956       continue;
957     }
958 
959     if (RelocatedBase->getParent() != ToReplace->getParent()) {
960       // Base and derived relocates are in different basic blocks.
961       // In this case transform is only valid when base dominates derived
962       // relocate. However it would be too expensive to check dominance
963       // for each such relocate, so we skip the whole transformation.
964       continue;
965     }
966 
967     Value *Base = ToReplace->getBasePtr();
968     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
969     if (!Derived || Derived->getPointerOperand() != Base)
970       continue;
971 
972     SmallVector<Value *, 2> OffsetV;
973     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
974       continue;
975 
976     // Create a Builder and replace the target callsite with a gep
977     assert(RelocatedBase->getNextNode() &&
978            "Should always have one since it's not a terminator");
979 
980     // Insert after RelocatedBase
981     IRBuilder<> Builder(RelocatedBase->getNextNode());
982     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
983 
984     // If gc_relocate does not match the actual type, cast it to the right type.
985     // In theory, there must be a bitcast after gc_relocate if the type does not
986     // match, and we should reuse it to get the derived pointer. But it could be
987     // cases like this:
988     // bb1:
989     //  ...
990     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
991     //  br label %merge
992     //
993     // bb2:
994     //  ...
995     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
996     //  br label %merge
997     //
998     // merge:
999     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1000     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1001     //
1002     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1003     // no matter there is already one or not. In this way, we can handle all cases, and
1004     // the extra bitcast should be optimized away in later passes.
1005     Value *ActualRelocatedBase = RelocatedBase;
1006     if (RelocatedBase->getType() != Base->getType()) {
1007       ActualRelocatedBase =
1008           Builder.CreateBitCast(RelocatedBase, Base->getType());
1009     }
1010     Value *Replacement = Builder.CreateGEP(
1011         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1012     Replacement->takeName(ToReplace);
1013     // If the newly generated derived pointer's type does not match the original derived
1014     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1015     Value *ActualReplacement = Replacement;
1016     if (Replacement->getType() != ToReplace->getType()) {
1017       ActualReplacement =
1018           Builder.CreateBitCast(Replacement, ToReplace->getType());
1019     }
1020     ToReplace->replaceAllUsesWith(ActualReplacement);
1021     ToReplace->eraseFromParent();
1022 
1023     MadeChange = true;
1024   }
1025   return MadeChange;
1026 }
1027 
1028 // Turns this:
1029 //
1030 // %base = ...
1031 // %ptr = gep %base + 15
1032 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1033 // %base' = relocate(%tok, i32 4, i32 4)
1034 // %ptr' = relocate(%tok, i32 4, i32 5)
1035 // %val = load %ptr'
1036 //
1037 // into this:
1038 //
1039 // %base = ...
1040 // %ptr = gep %base + 15
1041 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1042 // %base' = gc.relocate(%tok, i32 4, i32 4)
1043 // %ptr' = gep %base' + 15
1044 // %val = load %ptr'
1045 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1046   bool MadeChange = false;
1047   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1048 
1049   for (auto *U : I.users())
1050     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1051       // Collect all the relocate calls associated with a statepoint
1052       AllRelocateCalls.push_back(Relocate);
1053 
1054   // We need atleast one base pointer relocation + one derived pointer
1055   // relocation to mangle
1056   if (AllRelocateCalls.size() < 2)
1057     return false;
1058 
1059   // RelocateInstMap is a mapping from the base relocate instruction to the
1060   // corresponding derived relocate instructions
1061   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1062   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1063   if (RelocateInstMap.empty())
1064     return false;
1065 
1066   for (auto &Item : RelocateInstMap)
1067     // Item.first is the RelocatedBase to offset against
1068     // Item.second is the vector of Targets to replace
1069     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1070   return MadeChange;
1071 }
1072 
1073 /// SinkCast - Sink the specified cast instruction into its user blocks
1074 static bool SinkCast(CastInst *CI) {
1075   BasicBlock *DefBB = CI->getParent();
1076 
1077   /// InsertedCasts - Only insert a cast in each block once.
1078   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1079 
1080   bool MadeChange = false;
1081   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1082        UI != E; ) {
1083     Use &TheUse = UI.getUse();
1084     Instruction *User = cast<Instruction>(*UI);
1085 
1086     // Figure out which BB this cast is used in.  For PHI's this is the
1087     // appropriate predecessor block.
1088     BasicBlock *UserBB = User->getParent();
1089     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1090       UserBB = PN->getIncomingBlock(TheUse);
1091     }
1092 
1093     // Preincrement use iterator so we don't invalidate it.
1094     ++UI;
1095 
1096     // The first insertion point of a block containing an EH pad is after the
1097     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1098     if (User->isEHPad())
1099       continue;
1100 
1101     // If the block selected to receive the cast is an EH pad that does not
1102     // allow non-PHI instructions before the terminator, we can't sink the
1103     // cast.
1104     if (UserBB->getTerminator()->isEHPad())
1105       continue;
1106 
1107     // If this user is in the same block as the cast, don't change the cast.
1108     if (UserBB == DefBB) continue;
1109 
1110     // If we have already inserted a cast into this block, use it.
1111     CastInst *&InsertedCast = InsertedCasts[UserBB];
1112 
1113     if (!InsertedCast) {
1114       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1115       assert(InsertPt != UserBB->end());
1116       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1117                                       CI->getType(), "", &*InsertPt);
1118     }
1119 
1120     // Replace a use of the cast with a use of the new cast.
1121     TheUse = InsertedCast;
1122     MadeChange = true;
1123     ++NumCastUses;
1124   }
1125 
1126   // If we removed all uses, nuke the cast.
1127   if (CI->use_empty()) {
1128     CI->eraseFromParent();
1129     MadeChange = true;
1130   }
1131 
1132   return MadeChange;
1133 }
1134 
1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1137 /// reduce the number of virtual registers that must be created and coalesced.
1138 ///
1139 /// Return true if any changes are made.
1140 ///
1141 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1142                                        const DataLayout &DL) {
1143   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1144   // than sinking only nop casts, but is helpful on some platforms.
1145   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1146     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1147                                   ASC->getDestAddressSpace()))
1148       return false;
1149   }
1150 
1151   // If this is a noop copy,
1152   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1153   EVT DstVT = TLI.getValueType(DL, CI->getType());
1154 
1155   // This is an fp<->int conversion?
1156   if (SrcVT.isInteger() != DstVT.isInteger())
1157     return false;
1158 
1159   // If this is an extension, it will be a zero or sign extension, which
1160   // isn't a noop.
1161   if (SrcVT.bitsLT(DstVT)) return false;
1162 
1163   // If these values will be promoted, find out what they will be promoted
1164   // to.  This helps us consider truncates on PPC as noop copies when they
1165   // are.
1166   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1167       TargetLowering::TypePromoteInteger)
1168     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1169   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1170       TargetLowering::TypePromoteInteger)
1171     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1172 
1173   // If, after promotion, these are the same types, this is a noop copy.
1174   if (SrcVT != DstVT)
1175     return false;
1176 
1177   return SinkCast(CI);
1178 }
1179 
1180 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1181 /// possible.
1182 ///
1183 /// Return true if any changes were made.
1184 static bool CombineUAddWithOverflow(CmpInst *CI) {
1185   Value *A, *B;
1186   Instruction *AddI;
1187   if (!match(CI,
1188              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
1189     return false;
1190 
1191   Type *Ty = AddI->getType();
1192   if (!isa<IntegerType>(Ty))
1193     return false;
1194 
1195   // We don't want to move around uses of condition values this late, so we we
1196   // check if it is legal to create the call to the intrinsic in the basic
1197   // block containing the icmp:
1198 
1199   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
1200     return false;
1201 
1202 #ifndef NDEBUG
1203   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1204   // for now:
1205   if (AddI->hasOneUse())
1206     assert(*AddI->user_begin() == CI && "expected!");
1207 #endif
1208 
1209   Module *M = CI->getModule();
1210   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1211 
1212   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
1213 
1214   auto *UAddWithOverflow =
1215       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
1216   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
1217   auto *Overflow =
1218       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
1219 
1220   CI->replaceAllUsesWith(Overflow);
1221   AddI->replaceAllUsesWith(UAdd);
1222   CI->eraseFromParent();
1223   AddI->eraseFromParent();
1224   return true;
1225 }
1226 
1227 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1228 /// registers that must be created and coalesced. This is a clear win except on
1229 /// targets with multiple condition code registers (PowerPC), where it might
1230 /// lose; some adjustment may be wanted there.
1231 ///
1232 /// Return true if any changes are made.
1233 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1234   BasicBlock *DefBB = CI->getParent();
1235 
1236   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1237   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
1238     return false;
1239 
1240   // Only insert a cmp in each block once.
1241   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1242 
1243   bool MadeChange = false;
1244   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1245        UI != E; ) {
1246     Use &TheUse = UI.getUse();
1247     Instruction *User = cast<Instruction>(*UI);
1248 
1249     // Preincrement use iterator so we don't invalidate it.
1250     ++UI;
1251 
1252     // Don't bother for PHI nodes.
1253     if (isa<PHINode>(User))
1254       continue;
1255 
1256     // Figure out which BB this cmp is used in.
1257     BasicBlock *UserBB = User->getParent();
1258 
1259     // If this user is in the same block as the cmp, don't change the cmp.
1260     if (UserBB == DefBB) continue;
1261 
1262     // If we have already inserted a cmp into this block, use it.
1263     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1264 
1265     if (!InsertedCmp) {
1266       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1267       assert(InsertPt != UserBB->end());
1268       InsertedCmp =
1269           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
1270                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
1271       // Propagate the debug info.
1272       InsertedCmp->setDebugLoc(CI->getDebugLoc());
1273     }
1274 
1275     // Replace a use of the cmp with a use of the new cmp.
1276     TheUse = InsertedCmp;
1277     MadeChange = true;
1278     ++NumCmpUses;
1279   }
1280 
1281   // If we removed all uses, nuke the cmp.
1282   if (CI->use_empty()) {
1283     CI->eraseFromParent();
1284     MadeChange = true;
1285   }
1286 
1287   return MadeChange;
1288 }
1289 
1290 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1291   if (SinkCmpExpression(CI, TLI))
1292     return true;
1293 
1294   if (CombineUAddWithOverflow(CI))
1295     return true;
1296 
1297   return false;
1298 }
1299 
1300 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1301 /// used in a compare to allow isel to generate better code for targets where
1302 /// this operation can be combined.
1303 ///
1304 /// Return true if any changes are made.
1305 static bool sinkAndCmp0Expression(Instruction *AndI,
1306                                   const TargetLowering &TLI,
1307                                   SetOfInstrs &InsertedInsts) {
1308   // Double-check that we're not trying to optimize an instruction that was
1309   // already optimized by some other part of this pass.
1310   assert(!InsertedInsts.count(AndI) &&
1311          "Attempting to optimize already optimized and instruction");
1312   (void) InsertedInsts;
1313 
1314   // Nothing to do for single use in same basic block.
1315   if (AndI->hasOneUse() &&
1316       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1317     return false;
1318 
1319   // Try to avoid cases where sinking/duplicating is likely to increase register
1320   // pressure.
1321   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1322       !isa<ConstantInt>(AndI->getOperand(1)) &&
1323       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1324     return false;
1325 
1326   for (auto *U : AndI->users()) {
1327     Instruction *User = cast<Instruction>(U);
1328 
1329     // Only sink for and mask feeding icmp with 0.
1330     if (!isa<ICmpInst>(User))
1331       return false;
1332 
1333     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1334     if (!CmpC || !CmpC->isZero())
1335       return false;
1336   }
1337 
1338   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1339     return false;
1340 
1341   DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1342   DEBUG(AndI->getParent()->dump());
1343 
1344   // Push the 'and' into the same block as the icmp 0.  There should only be
1345   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1346   // others, so we don't need to keep track of which BBs we insert into.
1347   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1348        UI != E; ) {
1349     Use &TheUse = UI.getUse();
1350     Instruction *User = cast<Instruction>(*UI);
1351 
1352     // Preincrement use iterator so we don't invalidate it.
1353     ++UI;
1354 
1355     DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1356 
1357     // Keep the 'and' in the same place if the use is already in the same block.
1358     Instruction *InsertPt =
1359         User->getParent() == AndI->getParent() ? AndI : User;
1360     Instruction *InsertedAnd =
1361         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1362                                AndI->getOperand(1), "", InsertPt);
1363     // Propagate the debug info.
1364     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1365 
1366     // Replace a use of the 'and' with a use of the new 'and'.
1367     TheUse = InsertedAnd;
1368     ++NumAndUses;
1369     DEBUG(User->getParent()->dump());
1370   }
1371 
1372   // We removed all uses, nuke the and.
1373   AndI->eraseFromParent();
1374   return true;
1375 }
1376 
1377 /// Check if the candidates could be combined with a shift instruction, which
1378 /// includes:
1379 /// 1. Truncate instruction
1380 /// 2. And instruction and the imm is a mask of the low bits:
1381 /// imm & (imm+1) == 0
1382 static bool isExtractBitsCandidateUse(Instruction *User) {
1383   if (!isa<TruncInst>(User)) {
1384     if (User->getOpcode() != Instruction::And ||
1385         !isa<ConstantInt>(User->getOperand(1)))
1386       return false;
1387 
1388     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1389 
1390     if ((Cimm & (Cimm + 1)).getBoolValue())
1391       return false;
1392   }
1393   return true;
1394 }
1395 
1396 /// Sink both shift and truncate instruction to the use of truncate's BB.
1397 static bool
1398 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1399                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1400                      const TargetLowering &TLI, const DataLayout &DL) {
1401   BasicBlock *UserBB = User->getParent();
1402   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1403   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1404   bool MadeChange = false;
1405 
1406   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1407                             TruncE = TruncI->user_end();
1408        TruncUI != TruncE;) {
1409 
1410     Use &TruncTheUse = TruncUI.getUse();
1411     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1412     // Preincrement use iterator so we don't invalidate it.
1413 
1414     ++TruncUI;
1415 
1416     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1417     if (!ISDOpcode)
1418       continue;
1419 
1420     // If the use is actually a legal node, there will not be an
1421     // implicit truncate.
1422     // FIXME: always querying the result type is just an
1423     // approximation; some nodes' legality is determined by the
1424     // operand or other means. There's no good way to find out though.
1425     if (TLI.isOperationLegalOrCustom(
1426             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1427       continue;
1428 
1429     // Don't bother for PHI nodes.
1430     if (isa<PHINode>(TruncUser))
1431       continue;
1432 
1433     BasicBlock *TruncUserBB = TruncUser->getParent();
1434 
1435     if (UserBB == TruncUserBB)
1436       continue;
1437 
1438     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1439     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1440 
1441     if (!InsertedShift && !InsertedTrunc) {
1442       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1443       assert(InsertPt != TruncUserBB->end());
1444       // Sink the shift
1445       if (ShiftI->getOpcode() == Instruction::AShr)
1446         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1447                                                    "", &*InsertPt);
1448       else
1449         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1450                                                    "", &*InsertPt);
1451 
1452       // Sink the trunc
1453       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1454       TruncInsertPt++;
1455       assert(TruncInsertPt != TruncUserBB->end());
1456 
1457       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1458                                        TruncI->getType(), "", &*TruncInsertPt);
1459 
1460       MadeChange = true;
1461 
1462       TruncTheUse = InsertedTrunc;
1463     }
1464   }
1465   return MadeChange;
1466 }
1467 
1468 /// Sink the shift *right* instruction into user blocks if the uses could
1469 /// potentially be combined with this shift instruction and generate BitExtract
1470 /// instruction. It will only be applied if the architecture supports BitExtract
1471 /// instruction. Here is an example:
1472 /// BB1:
1473 ///   %x.extract.shift = lshr i64 %arg1, 32
1474 /// BB2:
1475 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1476 /// ==>
1477 ///
1478 /// BB2:
1479 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1480 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1481 ///
1482 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
1483 /// instruction.
1484 /// Return true if any changes are made.
1485 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1486                                 const TargetLowering &TLI,
1487                                 const DataLayout &DL) {
1488   BasicBlock *DefBB = ShiftI->getParent();
1489 
1490   /// Only insert instructions in each block once.
1491   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1492 
1493   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1494 
1495   bool MadeChange = false;
1496   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1497        UI != E;) {
1498     Use &TheUse = UI.getUse();
1499     Instruction *User = cast<Instruction>(*UI);
1500     // Preincrement use iterator so we don't invalidate it.
1501     ++UI;
1502 
1503     // Don't bother for PHI nodes.
1504     if (isa<PHINode>(User))
1505       continue;
1506 
1507     if (!isExtractBitsCandidateUse(User))
1508       continue;
1509 
1510     BasicBlock *UserBB = User->getParent();
1511 
1512     if (UserBB == DefBB) {
1513       // If the shift and truncate instruction are in the same BB. The use of
1514       // the truncate(TruncUse) may still introduce another truncate if not
1515       // legal. In this case, we would like to sink both shift and truncate
1516       // instruction to the BB of TruncUse.
1517       // for example:
1518       // BB1:
1519       // i64 shift.result = lshr i64 opnd, imm
1520       // trunc.result = trunc shift.result to i16
1521       //
1522       // BB2:
1523       //   ----> We will have an implicit truncate here if the architecture does
1524       //   not have i16 compare.
1525       // cmp i16 trunc.result, opnd2
1526       //
1527       if (isa<TruncInst>(User) && shiftIsLegal
1528           // If the type of the truncate is legal, no trucate will be
1529           // introduced in other basic blocks.
1530           &&
1531           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1532         MadeChange =
1533             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1534 
1535       continue;
1536     }
1537     // If we have already inserted a shift into this block, use it.
1538     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1539 
1540     if (!InsertedShift) {
1541       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1542       assert(InsertPt != UserBB->end());
1543 
1544       if (ShiftI->getOpcode() == Instruction::AShr)
1545         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1546                                                    "", &*InsertPt);
1547       else
1548         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1549                                                    "", &*InsertPt);
1550 
1551       MadeChange = true;
1552     }
1553 
1554     // Replace a use of the shift with a use of the new shift.
1555     TheUse = InsertedShift;
1556   }
1557 
1558   // If we removed all uses, nuke the shift.
1559   if (ShiftI->use_empty())
1560     ShiftI->eraseFromParent();
1561 
1562   return MadeChange;
1563 }
1564 
1565 /// If counting leading or trailing zeros is an expensive operation and a zero
1566 /// input is defined, add a check for zero to avoid calling the intrinsic.
1567 ///
1568 /// We want to transform:
1569 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1570 ///
1571 /// into:
1572 ///   entry:
1573 ///     %cmpz = icmp eq i64 %A, 0
1574 ///     br i1 %cmpz, label %cond.end, label %cond.false
1575 ///   cond.false:
1576 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1577 ///     br label %cond.end
1578 ///   cond.end:
1579 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1580 ///
1581 /// If the transform is performed, return true and set ModifiedDT to true.
1582 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1583                                   const TargetLowering *TLI,
1584                                   const DataLayout *DL,
1585                                   bool &ModifiedDT) {
1586   if (!TLI || !DL)
1587     return false;
1588 
1589   // If a zero input is undefined, it doesn't make sense to despeculate that.
1590   if (match(CountZeros->getOperand(1), m_One()))
1591     return false;
1592 
1593   // If it's cheap to speculate, there's nothing to do.
1594   auto IntrinsicID = CountZeros->getIntrinsicID();
1595   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1596       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1597     return false;
1598 
1599   // Only handle legal scalar cases. Anything else requires too much work.
1600   Type *Ty = CountZeros->getType();
1601   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1602   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1603     return false;
1604 
1605   // The intrinsic will be sunk behind a compare against zero and branch.
1606   BasicBlock *StartBlock = CountZeros->getParent();
1607   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1608 
1609   // Create another block after the count zero intrinsic. A PHI will be added
1610   // in this block to select the result of the intrinsic or the bit-width
1611   // constant if the input to the intrinsic is zero.
1612   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1613   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1614 
1615   // Set up a builder to create a compare, conditional branch, and PHI.
1616   IRBuilder<> Builder(CountZeros->getContext());
1617   Builder.SetInsertPoint(StartBlock->getTerminator());
1618   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1619 
1620   // Replace the unconditional branch that was created by the first split with
1621   // a compare against zero and a conditional branch.
1622   Value *Zero = Constant::getNullValue(Ty);
1623   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1624   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1625   StartBlock->getTerminator()->eraseFromParent();
1626 
1627   // Create a PHI in the end block to select either the output of the intrinsic
1628   // or the bit width of the operand.
1629   Builder.SetInsertPoint(&EndBlock->front());
1630   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1631   CountZeros->replaceAllUsesWith(PN);
1632   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1633   PN->addIncoming(BitWidth, StartBlock);
1634   PN->addIncoming(CountZeros, CallBlock);
1635 
1636   // We are explicitly handling the zero case, so we can set the intrinsic's
1637   // undefined zero argument to 'true'. This will also prevent reprocessing the
1638   // intrinsic; we only despeculate when a zero input is defined.
1639   CountZeros->setArgOperand(1, Builder.getTrue());
1640   ModifiedDT = true;
1641   return true;
1642 }
1643 
1644 // This class provides helper functions to expand a memcmp library call into an
1645 // inline expansion.
1646 class MemCmpExpansion {
1647   struct ResultBlock {
1648     BasicBlock *BB;
1649     PHINode *PhiSrc1;
1650     PHINode *PhiSrc2;
1651     ResultBlock();
1652   };
1653 
1654   CallInst *CI;
1655   ResultBlock ResBlock;
1656   unsigned MaxLoadSize;
1657   unsigned NumBlocks;
1658   unsigned NumBlocksNonOneByte;
1659   unsigned NumLoadsPerBlock;
1660   std::vector<BasicBlock *> LoadCmpBlocks;
1661   BasicBlock *EndBlock;
1662   PHINode *PhiRes;
1663   bool IsUsedForZeroCmp;
1664   const DataLayout &DL;
1665   IRBuilder<> Builder;
1666 
1667   unsigned calculateNumBlocks(unsigned Size);
1668   void createLoadCmpBlocks();
1669   void createResultBlock();
1670   void setupResultBlockPHINodes();
1671   void setupEndBlockPHINodes();
1672   void emitLoadCompareBlock(unsigned Index, unsigned LoadSize,
1673                             unsigned GEPIndex);
1674   Value *getCompareLoadPairs(unsigned Index, unsigned Size,
1675                              unsigned &NumBytesProcessed);
1676   void emitLoadCompareBlockMultipleLoads(unsigned Index, unsigned Size,
1677                                          unsigned &NumBytesProcessed);
1678   void emitLoadCompareByteBlock(unsigned Index, unsigned GEPIndex);
1679   void emitMemCmpResultBlock();
1680   Value *getMemCmpExpansionZeroCase(unsigned Size);
1681   Value *getMemCmpEqZeroOneBlock(unsigned Size);
1682   Value *getMemCmpOneBlock(unsigned Size);
1683   unsigned getLoadSize(unsigned Size);
1684   unsigned getNumLoads(unsigned Size);
1685 
1686 public:
1687   MemCmpExpansion(CallInst *CI, uint64_t Size, unsigned MaxLoadSize,
1688                   unsigned NumLoadsPerBlock, const DataLayout &DL);
1689   Value *getMemCmpExpansion(uint64_t Size);
1690 };
1691 
1692 MemCmpExpansion::ResultBlock::ResultBlock()
1693     : BB(nullptr), PhiSrc1(nullptr), PhiSrc2(nullptr) {}
1694 
1695 // Initialize the basic block structure required for expansion of memcmp call
1696 // with given maximum load size and memcmp size parameter.
1697 // This structure includes:
1698 // 1. A list of load compare blocks - LoadCmpBlocks.
1699 // 2. An EndBlock, split from original instruction point, which is the block to
1700 // return from.
1701 // 3. ResultBlock, block to branch to for early exit when a
1702 // LoadCmpBlock finds a difference.
1703 MemCmpExpansion::MemCmpExpansion(CallInst *CI, uint64_t Size,
1704                                  unsigned MaxLoadSize, unsigned LoadsPerBlock,
1705                                  const DataLayout &TheDataLayout)
1706     : CI(CI), MaxLoadSize(MaxLoadSize), NumLoadsPerBlock(LoadsPerBlock),
1707       DL(TheDataLayout), Builder(CI) {
1708 
1709   // A memcmp with zero-comparison with only one block of load and compare does
1710   // not need to set up any extra blocks. This case could be handled in the DAG,
1711   // but since we have all of the machinery to flexibly expand any memcpy here,
1712   // we choose to handle this case too to avoid fragmented lowering.
1713   IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
1714   NumBlocks = calculateNumBlocks(Size);
1715   if ((!IsUsedForZeroCmp && NumLoadsPerBlock != 1) || NumBlocks != 1) {
1716     BasicBlock *StartBlock = CI->getParent();
1717     EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
1718     setupEndBlockPHINodes();
1719     createResultBlock();
1720 
1721     // If return value of memcmp is not used in a zero equality, we need to
1722     // calculate which source was larger. The calculation requires the
1723     // two loaded source values of each load compare block.
1724     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
1725     if (!IsUsedForZeroCmp)
1726       setupResultBlockPHINodes();
1727 
1728     // Create the number of required load compare basic blocks.
1729     createLoadCmpBlocks();
1730 
1731     // Update the terminator added by splitBasicBlock to branch to the first
1732     // LoadCmpBlock.
1733     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
1734   }
1735 
1736   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1737 }
1738 
1739 void MemCmpExpansion::createLoadCmpBlocks() {
1740   for (unsigned i = 0; i < NumBlocks; i++) {
1741     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
1742                                         EndBlock->getParent(), EndBlock);
1743     LoadCmpBlocks.push_back(BB);
1744   }
1745 }
1746 
1747 void MemCmpExpansion::createResultBlock() {
1748   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
1749                                    EndBlock->getParent(), EndBlock);
1750 }
1751 
1752 // This function creates the IR instructions for loading and comparing 1 byte.
1753 // It loads 1 byte from each source of the memcmp parameters with the given
1754 // GEPIndex. It then subtracts the two loaded values and adds this result to the
1755 // final phi node for selecting the memcmp result.
1756 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned Index,
1757                                                unsigned GEPIndex) {
1758   Value *Source1 = CI->getArgOperand(0);
1759   Value *Source2 = CI->getArgOperand(1);
1760 
1761   Builder.SetInsertPoint(LoadCmpBlocks[Index]);
1762   Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
1763   // Cast source to LoadSizeType*.
1764   if (Source1->getType() != LoadSizeType)
1765     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
1766   if (Source2->getType() != LoadSizeType)
1767     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
1768 
1769   // Get the base address using the GEPIndex.
1770   if (GEPIndex != 0) {
1771     Source1 = Builder.CreateGEP(LoadSizeType, Source1,
1772                                 ConstantInt::get(LoadSizeType, GEPIndex));
1773     Source2 = Builder.CreateGEP(LoadSizeType, Source2,
1774                                 ConstantInt::get(LoadSizeType, GEPIndex));
1775   }
1776 
1777   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
1778   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
1779 
1780   LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
1781   LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
1782   Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
1783 
1784   PhiRes->addIncoming(Diff, LoadCmpBlocks[Index]);
1785 
1786   if (Index < (LoadCmpBlocks.size() - 1)) {
1787     // Early exit branch if difference found to EndBlock. Otherwise, continue to
1788     // next LoadCmpBlock,
1789     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
1790                                     ConstantInt::get(Diff->getType(), 0));
1791     BranchInst *CmpBr =
1792         BranchInst::Create(EndBlock, LoadCmpBlocks[Index + 1], Cmp);
1793     Builder.Insert(CmpBr);
1794   } else {
1795     // The last block has an unconditional branch to EndBlock.
1796     BranchInst *CmpBr = BranchInst::Create(EndBlock);
1797     Builder.Insert(CmpBr);
1798   }
1799 }
1800 
1801 unsigned MemCmpExpansion::getNumLoads(unsigned Size) {
1802   return (Size / MaxLoadSize) + countPopulation(Size % MaxLoadSize);
1803 }
1804 
1805 unsigned MemCmpExpansion::getLoadSize(unsigned Size) {
1806   return MinAlign(PowerOf2Floor(Size), MaxLoadSize);
1807 }
1808 
1809 /// Generate an equality comparison for one or more pairs of loaded values.
1810 /// This is used in the case where the memcmp() call is compared equal or not
1811 /// equal to zero.
1812 Value *MemCmpExpansion::getCompareLoadPairs(unsigned Index, unsigned Size,
1813                                             unsigned &NumBytesProcessed) {
1814   std::vector<Value *> XorList, OrList;
1815   Value *Diff;
1816 
1817   unsigned RemainingBytes = Size - NumBytesProcessed;
1818   unsigned NumLoadsRemaining = getNumLoads(RemainingBytes);
1819   unsigned NumLoads = std::min(NumLoadsRemaining, NumLoadsPerBlock);
1820 
1821   // For a single-block expansion, start inserting before the memcmp call.
1822   if (LoadCmpBlocks.empty())
1823     Builder.SetInsertPoint(CI);
1824   else
1825     Builder.SetInsertPoint(LoadCmpBlocks[Index]);
1826 
1827   Value *Cmp = nullptr;
1828   for (unsigned i = 0; i < NumLoads; ++i) {
1829     unsigned LoadSize = getLoadSize(RemainingBytes);
1830     unsigned GEPIndex = NumBytesProcessed / LoadSize;
1831     NumBytesProcessed += LoadSize;
1832     RemainingBytes -= LoadSize;
1833 
1834     Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8);
1835     Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
1836     assert(LoadSize <= MaxLoadSize && "Unexpected load type");
1837 
1838     Value *Source1 = CI->getArgOperand(0);
1839     Value *Source2 = CI->getArgOperand(1);
1840 
1841     // Cast source to LoadSizeType*.
1842     if (Source1->getType() != LoadSizeType)
1843       Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
1844     if (Source2->getType() != LoadSizeType)
1845       Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
1846 
1847     // Get the base address using the GEPIndex.
1848     if (GEPIndex != 0) {
1849       Source1 = Builder.CreateGEP(LoadSizeType, Source1,
1850                                   ConstantInt::get(LoadSizeType, GEPIndex));
1851       Source2 = Builder.CreateGEP(LoadSizeType, Source2,
1852                                   ConstantInt::get(LoadSizeType, GEPIndex));
1853     }
1854 
1855     // Get a constant or load a value for each source address.
1856     Value *LoadSrc1 = nullptr;
1857     if (auto *Source1C = dyn_cast<Constant>(Source1))
1858       LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
1859     if (!LoadSrc1)
1860       LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
1861 
1862     Value *LoadSrc2 = nullptr;
1863     if (auto *Source2C = dyn_cast<Constant>(Source2))
1864       LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
1865     if (!LoadSrc2)
1866       LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
1867 
1868     if (NumLoads != 1) {
1869       if (LoadSizeType != MaxLoadType) {
1870         LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
1871         LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
1872       }
1873       // If we have multiple loads per block, we need to generate a composite
1874       // comparison using xor+or.
1875       Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
1876       Diff = Builder.CreateZExt(Diff, MaxLoadType);
1877       XorList.push_back(Diff);
1878     } else {
1879       // If there's only one load per block, we just compare the loaded values.
1880       Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
1881     }
1882   }
1883 
1884   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
1885     std::vector<Value *> OutList;
1886     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
1887       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
1888       OutList.push_back(Or);
1889     }
1890     if (InList.size() % 2 != 0)
1891       OutList.push_back(InList.back());
1892     return OutList;
1893   };
1894 
1895   if (!Cmp) {
1896     // Pairwise OR the XOR results.
1897     OrList = pairWiseOr(XorList);
1898 
1899     // Pairwise OR the OR results until one result left.
1900     while (OrList.size() != 1) {
1901       OrList = pairWiseOr(OrList);
1902     }
1903     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
1904   }
1905 
1906   return Cmp;
1907 }
1908 
1909 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(
1910     unsigned Index, unsigned Size, unsigned &NumBytesProcessed) {
1911   Value *Cmp = getCompareLoadPairs(Index, Size, NumBytesProcessed);
1912 
1913   BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1))
1914                            ? EndBlock
1915                            : LoadCmpBlocks[Index + 1];
1916   // Early exit branch if difference found to ResultBlock. Otherwise,
1917   // continue to next LoadCmpBlock or EndBlock.
1918   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
1919   Builder.Insert(CmpBr);
1920 
1921   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
1922   // since early exit to ResultBlock was not taken (no difference was found in
1923   // any of the bytes).
1924   if (Index == LoadCmpBlocks.size() - 1) {
1925     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
1926     PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]);
1927   }
1928 }
1929 
1930 // This function creates the IR intructions for loading and comparing using the
1931 // given LoadSize. It loads the number of bytes specified by LoadSize from each
1932 // source of the memcmp parameters. It then does a subtract to see if there was
1933 // a difference in the loaded values. If a difference is found, it branches
1934 // with an early exit to the ResultBlock for calculating which source was
1935 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
1936 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
1937 // a special case through emitLoadCompareByteBlock. The special handling can
1938 // simply subtract the loaded values and add it to the result phi node.
1939 void MemCmpExpansion::emitLoadCompareBlock(unsigned Index, unsigned LoadSize,
1940                                            unsigned GEPIndex) {
1941   if (LoadSize == 1) {
1942     MemCmpExpansion::emitLoadCompareByteBlock(Index, GEPIndex);
1943     return;
1944   }
1945 
1946   Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8);
1947   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
1948   assert(LoadSize <= MaxLoadSize && "Unexpected load type");
1949 
1950   Value *Source1 = CI->getArgOperand(0);
1951   Value *Source2 = CI->getArgOperand(1);
1952 
1953   Builder.SetInsertPoint(LoadCmpBlocks[Index]);
1954   // Cast source to LoadSizeType*.
1955   if (Source1->getType() != LoadSizeType)
1956     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
1957   if (Source2->getType() != LoadSizeType)
1958     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
1959 
1960   // Get the base address using the GEPIndex.
1961   if (GEPIndex != 0) {
1962     Source1 = Builder.CreateGEP(LoadSizeType, Source1,
1963                                 ConstantInt::get(LoadSizeType, GEPIndex));
1964     Source2 = Builder.CreateGEP(LoadSizeType, Source2,
1965                                 ConstantInt::get(LoadSizeType, GEPIndex));
1966   }
1967 
1968   // Load LoadSizeType from the base address.
1969   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
1970   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
1971 
1972   if (DL.isLittleEndian()) {
1973     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
1974                                                 Intrinsic::bswap, LoadSizeType);
1975     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
1976     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
1977   }
1978 
1979   if (LoadSizeType != MaxLoadType) {
1980     LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
1981     LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
1982   }
1983 
1984   // Add the loaded values to the phi nodes for calculating memcmp result only
1985   // if result is not used in a zero equality.
1986   if (!IsUsedForZeroCmp) {
1987     ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[Index]);
1988     ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[Index]);
1989   }
1990 
1991   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
1992   BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1))
1993                            ? EndBlock
1994                            : LoadCmpBlocks[Index + 1];
1995   // Early exit branch if difference found to ResultBlock. Otherwise, continue
1996   // to next LoadCmpBlock or EndBlock.
1997   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
1998   Builder.Insert(CmpBr);
1999 
2000   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
2001   // since early exit to ResultBlock was not taken (no difference was found in
2002   // any of the bytes).
2003   if (Index == LoadCmpBlocks.size() - 1) {
2004     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
2005     PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]);
2006   }
2007 }
2008 
2009 // This function populates the ResultBlock with a sequence to calculate the
2010 // memcmp result. It compares the two loaded source values and returns -1 if
2011 // src1 < src2 and 1 if src1 > src2.
2012 void MemCmpExpansion::emitMemCmpResultBlock() {
2013   // Special case: if memcmp result is used in a zero equality, result does not
2014   // need to be calculated and can simply return 1.
2015   if (IsUsedForZeroCmp) {
2016     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
2017     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
2018     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
2019     PhiRes->addIncoming(Res, ResBlock.BB);
2020     BranchInst *NewBr = BranchInst::Create(EndBlock);
2021     Builder.Insert(NewBr);
2022     return;
2023   }
2024   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
2025   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
2026 
2027   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
2028                                   ResBlock.PhiSrc2);
2029 
2030   Value *Res =
2031       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
2032                            ConstantInt::get(Builder.getInt32Ty(), 1));
2033 
2034   BranchInst *NewBr = BranchInst::Create(EndBlock);
2035   Builder.Insert(NewBr);
2036   PhiRes->addIncoming(Res, ResBlock.BB);
2037 }
2038 
2039 unsigned MemCmpExpansion::calculateNumBlocks(unsigned Size) {
2040   unsigned NumBlocks = 0;
2041   bool HaveOneByteLoad = false;
2042   unsigned RemainingSize = Size;
2043   unsigned LoadSize = MaxLoadSize;
2044   while (RemainingSize) {
2045     if (LoadSize == 1)
2046       HaveOneByteLoad = true;
2047     NumBlocks += RemainingSize / LoadSize;
2048     RemainingSize = RemainingSize % LoadSize;
2049     LoadSize = LoadSize / 2;
2050   }
2051   NumBlocksNonOneByte = HaveOneByteLoad ? (NumBlocks - 1) : NumBlocks;
2052 
2053   if (IsUsedForZeroCmp)
2054     NumBlocks = NumBlocks / NumLoadsPerBlock +
2055                 (NumBlocks % NumLoadsPerBlock != 0 ? 1 : 0);
2056 
2057   return NumBlocks;
2058 }
2059 
2060 void MemCmpExpansion::setupResultBlockPHINodes() {
2061   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
2062   Builder.SetInsertPoint(ResBlock.BB);
2063   ResBlock.PhiSrc1 =
2064       Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src1");
2065   ResBlock.PhiSrc2 =
2066       Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src2");
2067 }
2068 
2069 void MemCmpExpansion::setupEndBlockPHINodes() {
2070   Builder.SetInsertPoint(&EndBlock->front());
2071   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
2072 }
2073 
2074 Value *MemCmpExpansion::getMemCmpExpansionZeroCase(unsigned Size) {
2075   unsigned NumBytesProcessed = 0;
2076   // This loop populates each of the LoadCmpBlocks with the IR sequence to
2077   // handle multiple loads per block.
2078   for (unsigned i = 0; i < NumBlocks; ++i)
2079     emitLoadCompareBlockMultipleLoads(i, Size, NumBytesProcessed);
2080 
2081   emitMemCmpResultBlock();
2082   return PhiRes;
2083 }
2084 
2085 /// A memcmp expansion that compares equality with 0 and only has one block of
2086 /// load and compare can bypass the compare, branch, and phi IR that is required
2087 /// in the general case.
2088 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock(unsigned Size) {
2089   unsigned NumBytesProcessed = 0;
2090   Value *Cmp = getCompareLoadPairs(0, Size, NumBytesProcessed);
2091   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
2092 }
2093 
2094 /// A memcmp expansion that only has one block of load and compare can bypass
2095 /// the compare, branch, and phi IR that is required in the general case.
2096 Value *MemCmpExpansion::getMemCmpOneBlock(unsigned Size) {
2097   assert(NumLoadsPerBlock == 1 && "Only handles one load pair per block");
2098 
2099   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
2100   Value *Source1 = CI->getArgOperand(0);
2101   Value *Source2 = CI->getArgOperand(1);
2102 
2103   // Cast source to LoadSizeType*.
2104   if (Source1->getType() != LoadSizeType)
2105     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
2106   if (Source2->getType() != LoadSizeType)
2107     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
2108 
2109   // Load LoadSizeType from the base address.
2110   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
2111   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
2112 
2113   if (DL.isLittleEndian() && Size != 1) {
2114     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
2115                                                 Intrinsic::bswap, LoadSizeType);
2116     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
2117     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
2118   }
2119 
2120   // TODO: Instead of comparing ULT, just subtract and return the difference?
2121   Value *CmpNE = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
2122   Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
2123   Type *I32 = Builder.getInt32Ty();
2124   Value *Sel1 = Builder.CreateSelect(CmpULT, ConstantInt::get(I32, -1),
2125                                              ConstantInt::get(I32, 1));
2126   return Builder.CreateSelect(CmpNE, Sel1, ConstantInt::get(I32, 0));
2127 }
2128 
2129 // This function expands the memcmp call into an inline expansion and returns
2130 // the memcmp result.
2131 Value *MemCmpExpansion::getMemCmpExpansion(uint64_t Size) {
2132   if (IsUsedForZeroCmp)
2133     return NumBlocks == 1 ? getMemCmpEqZeroOneBlock(Size) :
2134                             getMemCmpExpansionZeroCase(Size);
2135 
2136   // TODO: Handle more than one load pair per block in getMemCmpOneBlock().
2137   if (NumBlocks == 1 && NumLoadsPerBlock == 1)
2138     return getMemCmpOneBlock(Size);
2139 
2140   // This loop calls emitLoadCompareBlock for comparing Size bytes of the two
2141   // memcmp sources. It starts with loading using the maximum load size set by
2142   // the target. It processes any remaining bytes using a load size which is the
2143   // next smallest power of 2.
2144   unsigned LoadSize = MaxLoadSize;
2145   unsigned NumBytesToBeProcessed = Size;
2146   unsigned Index = 0;
2147   while (NumBytesToBeProcessed) {
2148     // Calculate how many blocks we can create with the current load size.
2149     unsigned NumBlocks = NumBytesToBeProcessed / LoadSize;
2150     unsigned GEPIndex = (Size - NumBytesToBeProcessed) / LoadSize;
2151     NumBytesToBeProcessed = NumBytesToBeProcessed % LoadSize;
2152 
2153     // For each NumBlocks, populate the instruction sequence for loading and
2154     // comparing LoadSize bytes.
2155     while (NumBlocks--) {
2156       emitLoadCompareBlock(Index, LoadSize, GEPIndex);
2157       Index++;
2158       GEPIndex++;
2159     }
2160     // Get the next LoadSize to use.
2161     LoadSize = LoadSize / 2;
2162   }
2163 
2164   emitMemCmpResultBlock();
2165   return PhiRes;
2166 }
2167 
2168 // This function checks to see if an expansion of memcmp can be generated.
2169 // It checks for constant compare size that is less than the max inline size.
2170 // If an expansion cannot occur, returns false to leave as a library call.
2171 // Otherwise, the library call is replaced with a new IR instruction sequence.
2172 /// We want to transform:
2173 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
2174 /// To:
2175 /// loadbb:
2176 ///  %0 = bitcast i32* %buffer2 to i8*
2177 ///  %1 = bitcast i32* %buffer1 to i8*
2178 ///  %2 = bitcast i8* %1 to i64*
2179 ///  %3 = bitcast i8* %0 to i64*
2180 ///  %4 = load i64, i64* %2
2181 ///  %5 = load i64, i64* %3
2182 ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
2183 ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
2184 ///  %8 = sub i64 %6, %7
2185 ///  %9 = icmp ne i64 %8, 0
2186 ///  br i1 %9, label %res_block, label %loadbb1
2187 /// res_block:                                        ; preds = %loadbb2,
2188 /// %loadbb1, %loadbb
2189 ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
2190 ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
2191 ///  %10 = icmp ult i64 %phi.src1, %phi.src2
2192 ///  %11 = select i1 %10, i32 -1, i32 1
2193 ///  br label %endblock
2194 /// loadbb1:                                          ; preds = %loadbb
2195 ///  %12 = bitcast i32* %buffer2 to i8*
2196 ///  %13 = bitcast i32* %buffer1 to i8*
2197 ///  %14 = bitcast i8* %13 to i32*
2198 ///  %15 = bitcast i8* %12 to i32*
2199 ///  %16 = getelementptr i32, i32* %14, i32 2
2200 ///  %17 = getelementptr i32, i32* %15, i32 2
2201 ///  %18 = load i32, i32* %16
2202 ///  %19 = load i32, i32* %17
2203 ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
2204 ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
2205 ///  %22 = zext i32 %20 to i64
2206 ///  %23 = zext i32 %21 to i64
2207 ///  %24 = sub i64 %22, %23
2208 ///  %25 = icmp ne i64 %24, 0
2209 ///  br i1 %25, label %res_block, label %loadbb2
2210 /// loadbb2:                                          ; preds = %loadbb1
2211 ///  %26 = bitcast i32* %buffer2 to i8*
2212 ///  %27 = bitcast i32* %buffer1 to i8*
2213 ///  %28 = bitcast i8* %27 to i16*
2214 ///  %29 = bitcast i8* %26 to i16*
2215 ///  %30 = getelementptr i16, i16* %28, i16 6
2216 ///  %31 = getelementptr i16, i16* %29, i16 6
2217 ///  %32 = load i16, i16* %30
2218 ///  %33 = load i16, i16* %31
2219 ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
2220 ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
2221 ///  %36 = zext i16 %34 to i64
2222 ///  %37 = zext i16 %35 to i64
2223 ///  %38 = sub i64 %36, %37
2224 ///  %39 = icmp ne i64 %38, 0
2225 ///  br i1 %39, label %res_block, label %loadbb3
2226 /// loadbb3:                                          ; preds = %loadbb2
2227 ///  %40 = bitcast i32* %buffer2 to i8*
2228 ///  %41 = bitcast i32* %buffer1 to i8*
2229 ///  %42 = getelementptr i8, i8* %41, i8 14
2230 ///  %43 = getelementptr i8, i8* %40, i8 14
2231 ///  %44 = load i8, i8* %42
2232 ///  %45 = load i8, i8* %43
2233 ///  %46 = zext i8 %44 to i32
2234 ///  %47 = zext i8 %45 to i32
2235 ///  %48 = sub i32 %46, %47
2236 ///  br label %endblock
2237 /// endblock:                                         ; preds = %res_block,
2238 /// %loadbb3
2239 ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
2240 ///  ret i32 %phi.res
2241 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
2242                          const TargetLowering *TLI, const DataLayout *DL) {
2243   NumMemCmpCalls++;
2244 
2245   // TTI call to check if target would like to expand memcmp. Also, get the
2246   // MaxLoadSize.
2247   unsigned MaxLoadSize;
2248   if (!TTI->expandMemCmp(CI, MaxLoadSize))
2249     return false;
2250 
2251   // Early exit from expansion if -Oz.
2252   if (CI->getFunction()->optForMinSize())
2253     return false;
2254 
2255   // Early exit from expansion if size is not a constant.
2256   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2257   if (!SizeCast) {
2258     NumMemCmpNotConstant++;
2259     return false;
2260   }
2261 
2262   // Early exit from expansion if size greater than max bytes to load.
2263   uint64_t SizeVal = SizeCast->getZExtValue();
2264   unsigned NumLoads = 0;
2265   unsigned RemainingSize = SizeVal;
2266   unsigned LoadSize = MaxLoadSize;
2267   while (RemainingSize) {
2268     NumLoads += RemainingSize / LoadSize;
2269     RemainingSize = RemainingSize % LoadSize;
2270     LoadSize = LoadSize / 2;
2271   }
2272 
2273   if (NumLoads > TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize())) {
2274     NumMemCmpGreaterThanMax++;
2275     return false;
2276   }
2277 
2278   NumMemCmpInlined++;
2279 
2280   // MemCmpHelper object creates and sets up basic blocks required for
2281   // expanding memcmp with size SizeVal.
2282   unsigned NumLoadsPerBlock = MemCmpNumLoadsPerBlock;
2283   MemCmpExpansion MemCmpHelper(CI, SizeVal, MaxLoadSize, NumLoadsPerBlock, *DL);
2284 
2285   Value *Res = MemCmpHelper.getMemCmpExpansion(SizeVal);
2286 
2287   // Replace call with result of expansion and erase call.
2288   CI->replaceAllUsesWith(Res);
2289   CI->eraseFromParent();
2290 
2291   return true;
2292 }
2293 
2294 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
2295   BasicBlock *BB = CI->getParent();
2296 
2297   // Lower inline assembly if we can.
2298   // If we found an inline asm expession, and if the target knows how to
2299   // lower it to normal LLVM code, do so now.
2300   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
2301     if (TLI->ExpandInlineAsm(CI)) {
2302       // Avoid invalidating the iterator.
2303       CurInstIterator = BB->begin();
2304       // Avoid processing instructions out of order, which could cause
2305       // reuse before a value is defined.
2306       SunkAddrs.clear();
2307       return true;
2308     }
2309     // Sink address computing for memory operands into the block.
2310     if (optimizeInlineAsmInst(CI))
2311       return true;
2312   }
2313 
2314   // Align the pointer arguments to this call if the target thinks it's a good
2315   // idea
2316   unsigned MinSize, PrefAlign;
2317   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2318     for (auto &Arg : CI->arg_operands()) {
2319       // We want to align both objects whose address is used directly and
2320       // objects whose address is used in casts and GEPs, though it only makes
2321       // sense for GEPs if the offset is a multiple of the desired alignment and
2322       // if size - offset meets the size threshold.
2323       if (!Arg->getType()->isPointerTy())
2324         continue;
2325       APInt Offset(DL->getPointerSizeInBits(
2326                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2327                    0);
2328       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2329       uint64_t Offset2 = Offset.getLimitedValue();
2330       if ((Offset2 & (PrefAlign-1)) != 0)
2331         continue;
2332       AllocaInst *AI;
2333       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2334           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2335         AI->setAlignment(PrefAlign);
2336       // Global variables can only be aligned if they are defined in this
2337       // object (i.e. they are uniquely initialized in this object), and
2338       // over-aligning global variables that have an explicit section is
2339       // forbidden.
2340       GlobalVariable *GV;
2341       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2342           GV->getPointerAlignment(*DL) < PrefAlign &&
2343           DL->getTypeAllocSize(GV->getValueType()) >=
2344               MinSize + Offset2)
2345         GV->setAlignment(PrefAlign);
2346     }
2347     // If this is a memcpy (or similar) then we may be able to improve the
2348     // alignment
2349     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2350       unsigned Align = getKnownAlignment(MI->getDest(), *DL);
2351       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
2352         Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
2353       if (Align > MI->getAlignment())
2354         MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
2355     }
2356   }
2357 
2358   // If we have a cold call site, try to sink addressing computation into the
2359   // cold block.  This interacts with our handling for loads and stores to
2360   // ensure that we can fold all uses of a potential addressing computation
2361   // into their uses.  TODO: generalize this to work over profiling data
2362   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
2363     for (auto &Arg : CI->arg_operands()) {
2364       if (!Arg->getType()->isPointerTy())
2365         continue;
2366       unsigned AS = Arg->getType()->getPointerAddressSpace();
2367       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2368     }
2369 
2370   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2371   if (II) {
2372     switch (II->getIntrinsicID()) {
2373     default: break;
2374     case Intrinsic::objectsize: {
2375       // Lower all uses of llvm.objectsize.*
2376       ConstantInt *RetVal =
2377           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
2378       // Substituting this can cause recursive simplifications, which can
2379       // invalidate our iterator.  Use a WeakTrackingVH to hold onto it in case
2380       // this
2381       // happens.
2382       Value *CurValue = &*CurInstIterator;
2383       WeakTrackingVH IterHandle(CurValue);
2384 
2385       replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2386 
2387       // If the iterator instruction was recursively deleted, start over at the
2388       // start of the block.
2389       if (IterHandle != CurValue) {
2390         CurInstIterator = BB->begin();
2391         SunkAddrs.clear();
2392       }
2393       return true;
2394     }
2395     case Intrinsic::aarch64_stlxr:
2396     case Intrinsic::aarch64_stxr: {
2397       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2398       if (!ExtVal || !ExtVal->hasOneUse() ||
2399           ExtVal->getParent() == CI->getParent())
2400         return false;
2401       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2402       ExtVal->moveBefore(CI);
2403       // Mark this instruction as "inserted by CGP", so that other
2404       // optimizations don't touch it.
2405       InsertedInsts.insert(ExtVal);
2406       return true;
2407     }
2408     case Intrinsic::invariant_group_barrier:
2409       II->replaceAllUsesWith(II->getArgOperand(0));
2410       II->eraseFromParent();
2411       return true;
2412 
2413     case Intrinsic::cttz:
2414     case Intrinsic::ctlz:
2415       // If counting zeros is expensive, try to avoid it.
2416       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2417     }
2418 
2419     if (TLI) {
2420       SmallVector<Value*, 2> PtrOps;
2421       Type *AccessTy;
2422       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2423         while (!PtrOps.empty()) {
2424           Value *PtrVal = PtrOps.pop_back_val();
2425           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2426           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2427             return true;
2428         }
2429     }
2430   }
2431 
2432   // From here on out we're working with named functions.
2433   if (!CI->getCalledFunction()) return false;
2434 
2435   // Lower all default uses of _chk calls.  This is very similar
2436   // to what InstCombineCalls does, but here we are only lowering calls
2437   // to fortified library functions (e.g. __memcpy_chk) that have the default
2438   // "don't know" as the objectsize.  Anything else should be left alone.
2439   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2440   if (Value *V = Simplifier.optimizeCall(CI)) {
2441     CI->replaceAllUsesWith(V);
2442     CI->eraseFromParent();
2443     return true;
2444   }
2445 
2446   LibFunc Func;
2447   if (TLInfo->getLibFunc(ImmutableCallSite(CI), Func) &&
2448       Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TLI, DL)) {
2449     ModifiedDT = true;
2450     return true;
2451   }
2452   return false;
2453 }
2454 
2455 /// Look for opportunities to duplicate return instructions to the predecessor
2456 /// to enable tail call optimizations. The case it is currently looking for is:
2457 /// @code
2458 /// bb0:
2459 ///   %tmp0 = tail call i32 @f0()
2460 ///   br label %return
2461 /// bb1:
2462 ///   %tmp1 = tail call i32 @f1()
2463 ///   br label %return
2464 /// bb2:
2465 ///   %tmp2 = tail call i32 @f2()
2466 ///   br label %return
2467 /// return:
2468 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2469 ///   ret i32 %retval
2470 /// @endcode
2471 ///
2472 /// =>
2473 ///
2474 /// @code
2475 /// bb0:
2476 ///   %tmp0 = tail call i32 @f0()
2477 ///   ret i32 %tmp0
2478 /// bb1:
2479 ///   %tmp1 = tail call i32 @f1()
2480 ///   ret i32 %tmp1
2481 /// bb2:
2482 ///   %tmp2 = tail call i32 @f2()
2483 ///   ret i32 %tmp2
2484 /// @endcode
2485 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
2486   if (!TLI)
2487     return false;
2488 
2489   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2490   if (!RetI)
2491     return false;
2492 
2493   PHINode *PN = nullptr;
2494   BitCastInst *BCI = nullptr;
2495   Value *V = RetI->getReturnValue();
2496   if (V) {
2497     BCI = dyn_cast<BitCastInst>(V);
2498     if (BCI)
2499       V = BCI->getOperand(0);
2500 
2501     PN = dyn_cast<PHINode>(V);
2502     if (!PN)
2503       return false;
2504   }
2505 
2506   if (PN && PN->getParent() != BB)
2507     return false;
2508 
2509   // Make sure there are no instructions between the PHI and return, or that the
2510   // return is the first instruction in the block.
2511   if (PN) {
2512     BasicBlock::iterator BI = BB->begin();
2513     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
2514     if (&*BI == BCI)
2515       // Also skip over the bitcast.
2516       ++BI;
2517     if (&*BI != RetI)
2518       return false;
2519   } else {
2520     BasicBlock::iterator BI = BB->begin();
2521     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2522     if (&*BI != RetI)
2523       return false;
2524   }
2525 
2526   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2527   /// call.
2528   const Function *F = BB->getParent();
2529   SmallVector<CallInst*, 4> TailCalls;
2530   if (PN) {
2531     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2532       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
2533       // Make sure the phi value is indeed produced by the tail call.
2534       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
2535           TLI->mayBeEmittedAsTailCall(CI) &&
2536           attributesPermitTailCall(F, CI, RetI, *TLI))
2537         TailCalls.push_back(CI);
2538     }
2539   } else {
2540     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2541     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2542       if (!VisitedBBs.insert(*PI).second)
2543         continue;
2544 
2545       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2546       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2547       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2548       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2549       if (RI == RE)
2550         continue;
2551 
2552       CallInst *CI = dyn_cast<CallInst>(&*RI);
2553       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2554           attributesPermitTailCall(F, CI, RetI, *TLI))
2555         TailCalls.push_back(CI);
2556     }
2557   }
2558 
2559   bool Changed = false;
2560   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
2561     CallInst *CI = TailCalls[i];
2562     CallSite CS(CI);
2563 
2564     // Conservatively require the attributes of the call to match those of the
2565     // return. Ignore noalias because it doesn't affect the call sequence.
2566     AttributeList CalleeAttrs = CS.getAttributes();
2567     if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
2568             .removeAttribute(Attribute::NoAlias) !=
2569         AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
2570             .removeAttribute(Attribute::NoAlias))
2571       continue;
2572 
2573     // Make sure the call instruction is followed by an unconditional branch to
2574     // the return block.
2575     BasicBlock *CallBB = CI->getParent();
2576     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
2577     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2578       continue;
2579 
2580     // Duplicate the return into CallBB.
2581     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
2582     ModifiedDT = Changed = true;
2583     ++NumRetsDup;
2584   }
2585 
2586   // If we eliminated all predecessors of the block, delete the block now.
2587   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2588     BB->eraseFromParent();
2589 
2590   return Changed;
2591 }
2592 
2593 //===----------------------------------------------------------------------===//
2594 // Memory Optimization
2595 //===----------------------------------------------------------------------===//
2596 
2597 namespace {
2598 
2599 /// This is an extended version of TargetLowering::AddrMode
2600 /// which holds actual Value*'s for register values.
2601 struct ExtAddrMode : public TargetLowering::AddrMode {
2602   Value *BaseReg;
2603   Value *ScaledReg;
2604   ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
2605   void print(raw_ostream &OS) const;
2606   void dump() const;
2607 
2608   bool operator==(const ExtAddrMode& O) const {
2609     return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
2610            (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
2611            (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
2612   }
2613 };
2614 
2615 #ifndef NDEBUG
2616 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2617   AM.print(OS);
2618   return OS;
2619 }
2620 #endif
2621 
2622 void ExtAddrMode::print(raw_ostream &OS) const {
2623   bool NeedPlus = false;
2624   OS << "[";
2625   if (BaseGV) {
2626     OS << (NeedPlus ? " + " : "")
2627        << "GV:";
2628     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2629     NeedPlus = true;
2630   }
2631 
2632   if (BaseOffs) {
2633     OS << (NeedPlus ? " + " : "")
2634        << BaseOffs;
2635     NeedPlus = true;
2636   }
2637 
2638   if (BaseReg) {
2639     OS << (NeedPlus ? " + " : "")
2640        << "Base:";
2641     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2642     NeedPlus = true;
2643   }
2644   if (Scale) {
2645     OS << (NeedPlus ? " + " : "")
2646        << Scale << "*";
2647     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2648   }
2649 
2650   OS << ']';
2651 }
2652 
2653 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2654 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2655   print(dbgs());
2656   dbgs() << '\n';
2657 }
2658 #endif
2659 
2660 /// \brief This class provides transaction based operation on the IR.
2661 /// Every change made through this class is recorded in the internal state and
2662 /// can be undone (rollback) until commit is called.
2663 class TypePromotionTransaction {
2664 
2665   /// \brief This represents the common interface of the individual transaction.
2666   /// Each class implements the logic for doing one specific modification on
2667   /// the IR via the TypePromotionTransaction.
2668   class TypePromotionAction {
2669   protected:
2670     /// The Instruction modified.
2671     Instruction *Inst;
2672 
2673   public:
2674     /// \brief Constructor of the action.
2675     /// The constructor performs the related action on the IR.
2676     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2677 
2678     virtual ~TypePromotionAction() {}
2679 
2680     /// \brief Undo the modification done by this action.
2681     /// When this method is called, the IR must be in the same state as it was
2682     /// before this action was applied.
2683     /// \pre Undoing the action works if and only if the IR is in the exact same
2684     /// state as it was directly after this action was applied.
2685     virtual void undo() = 0;
2686 
2687     /// \brief Advocate every change made by this action.
2688     /// When the results on the IR of the action are to be kept, it is important
2689     /// to call this function, otherwise hidden information may be kept forever.
2690     virtual void commit() {
2691       // Nothing to be done, this action is not doing anything.
2692     }
2693   };
2694 
2695   /// \brief Utility to remember the position of an instruction.
2696   class InsertionHandler {
2697     /// Position of an instruction.
2698     /// Either an instruction:
2699     /// - Is the first in a basic block: BB is used.
2700     /// - Has a previous instructon: PrevInst is used.
2701     union {
2702       Instruction *PrevInst;
2703       BasicBlock *BB;
2704     } Point;
2705     /// Remember whether or not the instruction had a previous instruction.
2706     bool HasPrevInstruction;
2707 
2708   public:
2709     /// \brief Record the position of \p Inst.
2710     InsertionHandler(Instruction *Inst) {
2711       BasicBlock::iterator It = Inst->getIterator();
2712       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2713       if (HasPrevInstruction)
2714         Point.PrevInst = &*--It;
2715       else
2716         Point.BB = Inst->getParent();
2717     }
2718 
2719     /// \brief Insert \p Inst at the recorded position.
2720     void insert(Instruction *Inst) {
2721       if (HasPrevInstruction) {
2722         if (Inst->getParent())
2723           Inst->removeFromParent();
2724         Inst->insertAfter(Point.PrevInst);
2725       } else {
2726         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2727         if (Inst->getParent())
2728           Inst->moveBefore(Position);
2729         else
2730           Inst->insertBefore(Position);
2731       }
2732     }
2733   };
2734 
2735   /// \brief Move an instruction before another.
2736   class InstructionMoveBefore : public TypePromotionAction {
2737     /// Original position of the instruction.
2738     InsertionHandler Position;
2739 
2740   public:
2741     /// \brief Move \p Inst before \p Before.
2742     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2743         : TypePromotionAction(Inst), Position(Inst) {
2744       DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
2745       Inst->moveBefore(Before);
2746     }
2747 
2748     /// \brief Move the instruction back to its original position.
2749     void undo() override {
2750       DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2751       Position.insert(Inst);
2752     }
2753   };
2754 
2755   /// \brief Set the operand of an instruction with a new value.
2756   class OperandSetter : public TypePromotionAction {
2757     /// Original operand of the instruction.
2758     Value *Origin;
2759     /// Index of the modified instruction.
2760     unsigned Idx;
2761 
2762   public:
2763     /// \brief Set \p Idx operand of \p Inst with \p NewVal.
2764     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2765         : TypePromotionAction(Inst), Idx(Idx) {
2766       DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2767                    << "for:" << *Inst << "\n"
2768                    << "with:" << *NewVal << "\n");
2769       Origin = Inst->getOperand(Idx);
2770       Inst->setOperand(Idx, NewVal);
2771     }
2772 
2773     /// \brief Restore the original value of the instruction.
2774     void undo() override {
2775       DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2776                    << "for: " << *Inst << "\n"
2777                    << "with: " << *Origin << "\n");
2778       Inst->setOperand(Idx, Origin);
2779     }
2780   };
2781 
2782   /// \brief Hide the operands of an instruction.
2783   /// Do as if this instruction was not using any of its operands.
2784   class OperandsHider : public TypePromotionAction {
2785     /// The list of original operands.
2786     SmallVector<Value *, 4> OriginalValues;
2787 
2788   public:
2789     /// \brief Remove \p Inst from the uses of the operands of \p Inst.
2790     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2791       DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2792       unsigned NumOpnds = Inst->getNumOperands();
2793       OriginalValues.reserve(NumOpnds);
2794       for (unsigned It = 0; It < NumOpnds; ++It) {
2795         // Save the current operand.
2796         Value *Val = Inst->getOperand(It);
2797         OriginalValues.push_back(Val);
2798         // Set a dummy one.
2799         // We could use OperandSetter here, but that would imply an overhead
2800         // that we are not willing to pay.
2801         Inst->setOperand(It, UndefValue::get(Val->getType()));
2802       }
2803     }
2804 
2805     /// \brief Restore the original list of uses.
2806     void undo() override {
2807       DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2808       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2809         Inst->setOperand(It, OriginalValues[It]);
2810     }
2811   };
2812 
2813   /// \brief Build a truncate instruction.
2814   class TruncBuilder : public TypePromotionAction {
2815     Value *Val;
2816   public:
2817     /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
2818     /// result.
2819     /// trunc Opnd to Ty.
2820     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2821       IRBuilder<> Builder(Opnd);
2822       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2823       DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2824     }
2825 
2826     /// \brief Get the built value.
2827     Value *getBuiltValue() { return Val; }
2828 
2829     /// \brief Remove the built instruction.
2830     void undo() override {
2831       DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2832       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2833         IVal->eraseFromParent();
2834     }
2835   };
2836 
2837   /// \brief Build a sign extension instruction.
2838   class SExtBuilder : public TypePromotionAction {
2839     Value *Val;
2840   public:
2841     /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
2842     /// result.
2843     /// sext Opnd to Ty.
2844     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2845         : TypePromotionAction(InsertPt) {
2846       IRBuilder<> Builder(InsertPt);
2847       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2848       DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2849     }
2850 
2851     /// \brief Get the built value.
2852     Value *getBuiltValue() { return Val; }
2853 
2854     /// \brief Remove the built instruction.
2855     void undo() override {
2856       DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2857       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2858         IVal->eraseFromParent();
2859     }
2860   };
2861 
2862   /// \brief Build a zero extension instruction.
2863   class ZExtBuilder : public TypePromotionAction {
2864     Value *Val;
2865   public:
2866     /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
2867     /// result.
2868     /// zext Opnd to Ty.
2869     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2870         : TypePromotionAction(InsertPt) {
2871       IRBuilder<> Builder(InsertPt);
2872       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2873       DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2874     }
2875 
2876     /// \brief Get the built value.
2877     Value *getBuiltValue() { return Val; }
2878 
2879     /// \brief Remove the built instruction.
2880     void undo() override {
2881       DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2882       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2883         IVal->eraseFromParent();
2884     }
2885   };
2886 
2887   /// \brief Mutate an instruction to another type.
2888   class TypeMutator : public TypePromotionAction {
2889     /// Record the original type.
2890     Type *OrigTy;
2891 
2892   public:
2893     /// \brief Mutate the type of \p Inst into \p NewTy.
2894     TypeMutator(Instruction *Inst, Type *NewTy)
2895         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2896       DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2897                    << "\n");
2898       Inst->mutateType(NewTy);
2899     }
2900 
2901     /// \brief Mutate the instruction back to its original type.
2902     void undo() override {
2903       DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2904                    << "\n");
2905       Inst->mutateType(OrigTy);
2906     }
2907   };
2908 
2909   /// \brief Replace the uses of an instruction by another instruction.
2910   class UsesReplacer : public TypePromotionAction {
2911     /// Helper structure to keep track of the replaced uses.
2912     struct InstructionAndIdx {
2913       /// The instruction using the instruction.
2914       Instruction *Inst;
2915       /// The index where this instruction is used for Inst.
2916       unsigned Idx;
2917       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2918           : Inst(Inst), Idx(Idx) {}
2919     };
2920 
2921     /// Keep track of the original uses (pair Instruction, Index).
2922     SmallVector<InstructionAndIdx, 4> OriginalUses;
2923     typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
2924 
2925   public:
2926     /// \brief Replace all the use of \p Inst by \p New.
2927     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2928       DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2929                    << "\n");
2930       // Record the original uses.
2931       for (Use &U : Inst->uses()) {
2932         Instruction *UserI = cast<Instruction>(U.getUser());
2933         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2934       }
2935       // Now, we can replace the uses.
2936       Inst->replaceAllUsesWith(New);
2937     }
2938 
2939     /// \brief Reassign the original uses of Inst to Inst.
2940     void undo() override {
2941       DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2942       for (use_iterator UseIt = OriginalUses.begin(),
2943                         EndIt = OriginalUses.end();
2944            UseIt != EndIt; ++UseIt) {
2945         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2946       }
2947     }
2948   };
2949 
2950   /// \brief Remove an instruction from the IR.
2951   class InstructionRemover : public TypePromotionAction {
2952     /// Original position of the instruction.
2953     InsertionHandler Inserter;
2954     /// Helper structure to hide all the link to the instruction. In other
2955     /// words, this helps to do as if the instruction was removed.
2956     OperandsHider Hider;
2957     /// Keep track of the uses replaced, if any.
2958     UsesReplacer *Replacer;
2959     /// Keep track of instructions removed.
2960     SetOfInstrs &RemovedInsts;
2961 
2962   public:
2963     /// \brief Remove all reference of \p Inst and optinally replace all its
2964     /// uses with New.
2965     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2966     /// \pre If !Inst->use_empty(), then New != nullptr
2967     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2968                        Value *New = nullptr)
2969         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2970           Replacer(nullptr), RemovedInsts(RemovedInsts) {
2971       if (New)
2972         Replacer = new UsesReplacer(Inst, New);
2973       DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2974       RemovedInsts.insert(Inst);
2975       /// The instructions removed here will be freed after completing
2976       /// optimizeBlock() for all blocks as we need to keep track of the
2977       /// removed instructions during promotion.
2978       Inst->removeFromParent();
2979     }
2980 
2981     ~InstructionRemover() override { delete Replacer; }
2982 
2983     /// \brief Resurrect the instruction and reassign it to the proper uses if
2984     /// new value was provided when build this action.
2985     void undo() override {
2986       DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2987       Inserter.insert(Inst);
2988       if (Replacer)
2989         Replacer->undo();
2990       Hider.undo();
2991       RemovedInsts.erase(Inst);
2992     }
2993   };
2994 
2995 public:
2996   /// Restoration point.
2997   /// The restoration point is a pointer to an action instead of an iterator
2998   /// because the iterator may be invalidated but not the pointer.
2999   typedef const TypePromotionAction *ConstRestorationPt;
3000 
3001   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
3002       : RemovedInsts(RemovedInsts) {}
3003 
3004   /// Advocate every changes made in that transaction.
3005   void commit();
3006   /// Undo all the changes made after the given point.
3007   void rollback(ConstRestorationPt Point);
3008   /// Get the current restoration point.
3009   ConstRestorationPt getRestorationPoint() const;
3010 
3011   /// \name API for IR modification with state keeping to support rollback.
3012   /// @{
3013   /// Same as Instruction::setOperand.
3014   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3015   /// Same as Instruction::eraseFromParent.
3016   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3017   /// Same as Value::replaceAllUsesWith.
3018   void replaceAllUsesWith(Instruction *Inst, Value *New);
3019   /// Same as Value::mutateType.
3020   void mutateType(Instruction *Inst, Type *NewTy);
3021   /// Same as IRBuilder::createTrunc.
3022   Value *createTrunc(Instruction *Opnd, Type *Ty);
3023   /// Same as IRBuilder::createSExt.
3024   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3025   /// Same as IRBuilder::createZExt.
3026   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3027   /// Same as Instruction::moveBefore.
3028   void moveBefore(Instruction *Inst, Instruction *Before);
3029   /// @}
3030 
3031 private:
3032   /// The ordered list of actions made so far.
3033   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3034   typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
3035   SetOfInstrs &RemovedInsts;
3036 };
3037 
3038 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3039                                           Value *NewVal) {
3040   Actions.push_back(
3041       make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
3042 }
3043 
3044 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3045                                                 Value *NewVal) {
3046   Actions.push_back(
3047       make_unique<TypePromotionTransaction::InstructionRemover>(Inst,
3048                                                          RemovedInsts, NewVal));
3049 }
3050 
3051 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3052                                                   Value *New) {
3053   Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3054 }
3055 
3056 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3057   Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3058 }
3059 
3060 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
3061                                              Type *Ty) {
3062   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3063   Value *Val = Ptr->getBuiltValue();
3064   Actions.push_back(std::move(Ptr));
3065   return Val;
3066 }
3067 
3068 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
3069                                             Value *Opnd, Type *Ty) {
3070   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3071   Value *Val = Ptr->getBuiltValue();
3072   Actions.push_back(std::move(Ptr));
3073   return Val;
3074 }
3075 
3076 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
3077                                             Value *Opnd, Type *Ty) {
3078   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3079   Value *Val = Ptr->getBuiltValue();
3080   Actions.push_back(std::move(Ptr));
3081   return Val;
3082 }
3083 
3084 void TypePromotionTransaction::moveBefore(Instruction *Inst,
3085                                           Instruction *Before) {
3086   Actions.push_back(
3087       make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
3088 }
3089 
3090 TypePromotionTransaction::ConstRestorationPt
3091 TypePromotionTransaction::getRestorationPoint() const {
3092   return !Actions.empty() ? Actions.back().get() : nullptr;
3093 }
3094 
3095 void TypePromotionTransaction::commit() {
3096   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
3097        ++It)
3098     (*It)->commit();
3099   Actions.clear();
3100 }
3101 
3102 void TypePromotionTransaction::rollback(
3103     TypePromotionTransaction::ConstRestorationPt Point) {
3104   while (!Actions.empty() && Point != Actions.back().get()) {
3105     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3106     Curr->undo();
3107   }
3108 }
3109 
3110 /// \brief A helper class for matching addressing modes.
3111 ///
3112 /// This encapsulates the logic for matching the target-legal addressing modes.
3113 class AddressingModeMatcher {
3114   SmallVectorImpl<Instruction*> &AddrModeInsts;
3115   const TargetLowering &TLI;
3116   const TargetRegisterInfo &TRI;
3117   const DataLayout &DL;
3118 
3119   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3120   /// the memory instruction that we're computing this address for.
3121   Type *AccessTy;
3122   unsigned AddrSpace;
3123   Instruction *MemoryInst;
3124 
3125   /// This is the addressing mode that we're building up. This is
3126   /// part of the return value of this addressing mode matching stuff.
3127   ExtAddrMode &AddrMode;
3128 
3129   /// The instructions inserted by other CodeGenPrepare optimizations.
3130   const SetOfInstrs &InsertedInsts;
3131   /// A map from the instructions to their type before promotion.
3132   InstrToOrigTy &PromotedInsts;
3133   /// The ongoing transaction where every action should be registered.
3134   TypePromotionTransaction &TPT;
3135 
3136   /// This is set to true when we should not do profitability checks.
3137   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3138   bool IgnoreProfitability;
3139 
3140   AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
3141                         const TargetLowering &TLI,
3142                         const TargetRegisterInfo &TRI,
3143                         Type *AT, unsigned AS,
3144                         Instruction *MI, ExtAddrMode &AM,
3145                         const SetOfInstrs &InsertedInsts,
3146                         InstrToOrigTy &PromotedInsts,
3147                         TypePromotionTransaction &TPT)
3148       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3149         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
3150         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
3151         PromotedInsts(PromotedInsts), TPT(TPT) {
3152     IgnoreProfitability = false;
3153   }
3154 public:
3155 
3156   /// Find the maximal addressing mode that a load/store of V can fold,
3157   /// give an access type of AccessTy.  This returns a list of involved
3158   /// instructions in AddrModeInsts.
3159   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3160   /// optimizations.
3161   /// \p PromotedInsts maps the instructions to their type before promotion.
3162   /// \p The ongoing transaction where every action should be registered.
3163   static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
3164                            Instruction *MemoryInst,
3165                            SmallVectorImpl<Instruction*> &AddrModeInsts,
3166                            const TargetLowering &TLI,
3167                            const TargetRegisterInfo &TRI,
3168                            const SetOfInstrs &InsertedInsts,
3169                            InstrToOrigTy &PromotedInsts,
3170                            TypePromotionTransaction &TPT) {
3171     ExtAddrMode Result;
3172 
3173     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI,
3174                                          AccessTy, AS,
3175                                          MemoryInst, Result, InsertedInsts,
3176                                          PromotedInsts, TPT).matchAddr(V, 0);
3177     (void)Success; assert(Success && "Couldn't select *anything*?");
3178     return Result;
3179   }
3180 private:
3181   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3182   bool matchAddr(Value *V, unsigned Depth);
3183   bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
3184                           bool *MovedAway = nullptr);
3185   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3186                                             ExtAddrMode &AMBefore,
3187                                             ExtAddrMode &AMAfter);
3188   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3189   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3190                              Value *PromotedOperand) const;
3191 };
3192 
3193 /// Try adding ScaleReg*Scale to the current addressing mode.
3194 /// Return true and update AddrMode if this addr mode is legal for the target,
3195 /// false if not.
3196 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3197                                              unsigned Depth) {
3198   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3199   // mode.  Just process that directly.
3200   if (Scale == 1)
3201     return matchAddr(ScaleReg, Depth);
3202 
3203   // If the scale is 0, it takes nothing to add this.
3204   if (Scale == 0)
3205     return true;
3206 
3207   // If we already have a scale of this value, we can add to it, otherwise, we
3208   // need an available scale field.
3209   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3210     return false;
3211 
3212   ExtAddrMode TestAddrMode = AddrMode;
3213 
3214   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3215   // [A+B + A*7] -> [B+A*8].
3216   TestAddrMode.Scale += Scale;
3217   TestAddrMode.ScaledReg = ScaleReg;
3218 
3219   // If the new address isn't legal, bail out.
3220   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3221     return false;
3222 
3223   // It was legal, so commit it.
3224   AddrMode = TestAddrMode;
3225 
3226   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3227   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3228   // X*Scale + C*Scale to addr mode.
3229   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3230   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3231       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3232     TestAddrMode.ScaledReg = AddLHS;
3233     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3234 
3235     // If this addressing mode is legal, commit it and remember that we folded
3236     // this instruction.
3237     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3238       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3239       AddrMode = TestAddrMode;
3240       return true;
3241     }
3242   }
3243 
3244   // Otherwise, not (x+c)*scale, just return what we have.
3245   return true;
3246 }
3247 
3248 /// This is a little filter, which returns true if an addressing computation
3249 /// involving I might be folded into a load/store accessing it.
3250 /// This doesn't need to be perfect, but needs to accept at least
3251 /// the set of instructions that MatchOperationAddr can.
3252 static bool MightBeFoldableInst(Instruction *I) {
3253   switch (I->getOpcode()) {
3254   case Instruction::BitCast:
3255   case Instruction::AddrSpaceCast:
3256     // Don't touch identity bitcasts.
3257     if (I->getType() == I->getOperand(0)->getType())
3258       return false;
3259     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
3260   case Instruction::PtrToInt:
3261     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3262     return true;
3263   case Instruction::IntToPtr:
3264     // We know the input is intptr_t, so this is foldable.
3265     return true;
3266   case Instruction::Add:
3267     return true;
3268   case Instruction::Mul:
3269   case Instruction::Shl:
3270     // Can only handle X*C and X << C.
3271     return isa<ConstantInt>(I->getOperand(1));
3272   case Instruction::GetElementPtr:
3273     return true;
3274   default:
3275     return false;
3276   }
3277 }
3278 
3279 /// \brief Check whether or not \p Val is a legal instruction for \p TLI.
3280 /// \note \p Val is assumed to be the product of some type promotion.
3281 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3282 /// to be legal, as the non-promoted value would have had the same state.
3283 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3284                                        const DataLayout &DL, Value *Val) {
3285   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3286   if (!PromotedInst)
3287     return false;
3288   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3289   // If the ISDOpcode is undefined, it was undefined before the promotion.
3290   if (!ISDOpcode)
3291     return true;
3292   // Otherwise, check if the promoted instruction is legal or not.
3293   return TLI.isOperationLegalOrCustom(
3294       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3295 }
3296 
3297 /// \brief Hepler class to perform type promotion.
3298 class TypePromotionHelper {
3299   /// \brief Utility function to check whether or not a sign or zero extension
3300   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3301   /// either using the operands of \p Inst or promoting \p Inst.
3302   /// The type of the extension is defined by \p IsSExt.
3303   /// In other words, check if:
3304   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3305   /// #1 Promotion applies:
3306   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3307   /// #2 Operand reuses:
3308   /// ext opnd1 to ConsideredExtType.
3309   /// \p PromotedInsts maps the instructions to their type before promotion.
3310   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3311                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3312 
3313   /// \brief Utility function to determine if \p OpIdx should be promoted when
3314   /// promoting \p Inst.
3315   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3316     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3317   }
3318 
3319   /// \brief Utility function to promote the operand of \p Ext when this
3320   /// operand is a promotable trunc or sext or zext.
3321   /// \p PromotedInsts maps the instructions to their type before promotion.
3322   /// \p CreatedInstsCost[out] contains the cost of all instructions
3323   /// created to promote the operand of Ext.
3324   /// Newly added extensions are inserted in \p Exts.
3325   /// Newly added truncates are inserted in \p Truncs.
3326   /// Should never be called directly.
3327   /// \return The promoted value which is used instead of Ext.
3328   static Value *promoteOperandForTruncAndAnyExt(
3329       Instruction *Ext, TypePromotionTransaction &TPT,
3330       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3331       SmallVectorImpl<Instruction *> *Exts,
3332       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3333 
3334   /// \brief Utility function to promote the operand of \p Ext when this
3335   /// operand is promotable and is not a supported trunc or sext.
3336   /// \p PromotedInsts maps the instructions to their type before promotion.
3337   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3338   /// created to promote the operand of Ext.
3339   /// Newly added extensions are inserted in \p Exts.
3340   /// Newly added truncates are inserted in \p Truncs.
3341   /// Should never be called directly.
3342   /// \return The promoted value which is used instead of Ext.
3343   static Value *promoteOperandForOther(Instruction *Ext,
3344                                        TypePromotionTransaction &TPT,
3345                                        InstrToOrigTy &PromotedInsts,
3346                                        unsigned &CreatedInstsCost,
3347                                        SmallVectorImpl<Instruction *> *Exts,
3348                                        SmallVectorImpl<Instruction *> *Truncs,
3349                                        const TargetLowering &TLI, bool IsSExt);
3350 
3351   /// \see promoteOperandForOther.
3352   static Value *signExtendOperandForOther(
3353       Instruction *Ext, TypePromotionTransaction &TPT,
3354       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3355       SmallVectorImpl<Instruction *> *Exts,
3356       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3357     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3358                                   Exts, Truncs, TLI, true);
3359   }
3360 
3361   /// \see promoteOperandForOther.
3362   static Value *zeroExtendOperandForOther(
3363       Instruction *Ext, TypePromotionTransaction &TPT,
3364       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3365       SmallVectorImpl<Instruction *> *Exts,
3366       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3367     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3368                                   Exts, Truncs, TLI, false);
3369   }
3370 
3371 public:
3372   /// Type for the utility function that promotes the operand of Ext.
3373   typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT,
3374                            InstrToOrigTy &PromotedInsts,
3375                            unsigned &CreatedInstsCost,
3376                            SmallVectorImpl<Instruction *> *Exts,
3377                            SmallVectorImpl<Instruction *> *Truncs,
3378                            const TargetLowering &TLI);
3379   /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
3380   /// action to promote the operand of \p Ext instead of using Ext.
3381   /// \return NULL if no promotable action is possible with the current
3382   /// sign extension.
3383   /// \p InsertedInsts keeps track of all the instructions inserted by the
3384   /// other CodeGenPrepare optimizations. This information is important
3385   /// because we do not want to promote these instructions as CodeGenPrepare
3386   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3387   /// \p PromotedInsts maps the instructions to their type before promotion.
3388   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3389                           const TargetLowering &TLI,
3390                           const InstrToOrigTy &PromotedInsts);
3391 };
3392 
3393 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3394                                         Type *ConsideredExtType,
3395                                         const InstrToOrigTy &PromotedInsts,
3396                                         bool IsSExt) {
3397   // The promotion helper does not know how to deal with vector types yet.
3398   // To be able to fix that, we would need to fix the places where we
3399   // statically extend, e.g., constants and such.
3400   if (Inst->getType()->isVectorTy())
3401     return false;
3402 
3403   // We can always get through zext.
3404   if (isa<ZExtInst>(Inst))
3405     return true;
3406 
3407   // sext(sext) is ok too.
3408   if (IsSExt && isa<SExtInst>(Inst))
3409     return true;
3410 
3411   // We can get through binary operator, if it is legal. In other words, the
3412   // binary operator must have a nuw or nsw flag.
3413   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3414   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3415       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3416        (IsSExt && BinOp->hasNoSignedWrap())))
3417     return true;
3418 
3419   // Check if we can do the following simplification.
3420   // ext(trunc(opnd)) --> ext(opnd)
3421   if (!isa<TruncInst>(Inst))
3422     return false;
3423 
3424   Value *OpndVal = Inst->getOperand(0);
3425   // Check if we can use this operand in the extension.
3426   // If the type is larger than the result type of the extension, we cannot.
3427   if (!OpndVal->getType()->isIntegerTy() ||
3428       OpndVal->getType()->getIntegerBitWidth() >
3429           ConsideredExtType->getIntegerBitWidth())
3430     return false;
3431 
3432   // If the operand of the truncate is not an instruction, we will not have
3433   // any information on the dropped bits.
3434   // (Actually we could for constant but it is not worth the extra logic).
3435   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3436   if (!Opnd)
3437     return false;
3438 
3439   // Check if the source of the type is narrow enough.
3440   // I.e., check that trunc just drops extended bits of the same kind of
3441   // the extension.
3442   // #1 get the type of the operand and check the kind of the extended bits.
3443   const Type *OpndType;
3444   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3445   if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
3446     OpndType = It->second.getPointer();
3447   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3448     OpndType = Opnd->getOperand(0)->getType();
3449   else
3450     return false;
3451 
3452   // #2 check that the truncate just drops extended bits.
3453   return Inst->getType()->getIntegerBitWidth() >=
3454          OpndType->getIntegerBitWidth();
3455 }
3456 
3457 TypePromotionHelper::Action TypePromotionHelper::getAction(
3458     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3459     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3460   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3461          "Unexpected instruction type");
3462   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3463   Type *ExtTy = Ext->getType();
3464   bool IsSExt = isa<SExtInst>(Ext);
3465   // If the operand of the extension is not an instruction, we cannot
3466   // get through.
3467   // If it, check we can get through.
3468   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3469     return nullptr;
3470 
3471   // Do not promote if the operand has been added by codegenprepare.
3472   // Otherwise, it means we are undoing an optimization that is likely to be
3473   // redone, thus causing potential infinite loop.
3474   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3475     return nullptr;
3476 
3477   // SExt or Trunc instructions.
3478   // Return the related handler.
3479   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3480       isa<ZExtInst>(ExtOpnd))
3481     return promoteOperandForTruncAndAnyExt;
3482 
3483   // Regular instruction.
3484   // Abort early if we will have to insert non-free instructions.
3485   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3486     return nullptr;
3487   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3488 }
3489 
3490 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3491     llvm::Instruction *SExt, TypePromotionTransaction &TPT,
3492     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3493     SmallVectorImpl<Instruction *> *Exts,
3494     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3495   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3496   // get through it and this method should not be called.
3497   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3498   Value *ExtVal = SExt;
3499   bool HasMergedNonFreeExt = false;
3500   if (isa<ZExtInst>(SExtOpnd)) {
3501     // Replace s|zext(zext(opnd))
3502     // => zext(opnd).
3503     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3504     Value *ZExt =
3505         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3506     TPT.replaceAllUsesWith(SExt, ZExt);
3507     TPT.eraseInstruction(SExt);
3508     ExtVal = ZExt;
3509   } else {
3510     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3511     // => z|sext(opnd).
3512     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3513   }
3514   CreatedInstsCost = 0;
3515 
3516   // Remove dead code.
3517   if (SExtOpnd->use_empty())
3518     TPT.eraseInstruction(SExtOpnd);
3519 
3520   // Check if the extension is still needed.
3521   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3522   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3523     if (ExtInst) {
3524       if (Exts)
3525         Exts->push_back(ExtInst);
3526       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3527     }
3528     return ExtVal;
3529   }
3530 
3531   // At this point we have: ext ty opnd to ty.
3532   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3533   Value *NextVal = ExtInst->getOperand(0);
3534   TPT.eraseInstruction(ExtInst, NextVal);
3535   return NextVal;
3536 }
3537 
3538 Value *TypePromotionHelper::promoteOperandForOther(
3539     Instruction *Ext, TypePromotionTransaction &TPT,
3540     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3541     SmallVectorImpl<Instruction *> *Exts,
3542     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3543     bool IsSExt) {
3544   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3545   // get through it and this method should not be called.
3546   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3547   CreatedInstsCost = 0;
3548   if (!ExtOpnd->hasOneUse()) {
3549     // ExtOpnd will be promoted.
3550     // All its uses, but Ext, will need to use a truncated value of the
3551     // promoted version.
3552     // Create the truncate now.
3553     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3554     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3555       ITrunc->removeFromParent();
3556       // Insert it just after the definition.
3557       ITrunc->insertAfter(ExtOpnd);
3558       if (Truncs)
3559         Truncs->push_back(ITrunc);
3560     }
3561 
3562     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3563     // Restore the operand of Ext (which has been replaced by the previous call
3564     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3565     TPT.setOperand(Ext, 0, ExtOpnd);
3566   }
3567 
3568   // Get through the Instruction:
3569   // 1. Update its type.
3570   // 2. Replace the uses of Ext by Inst.
3571   // 3. Extend each operand that needs to be extended.
3572 
3573   // Remember the original type of the instruction before promotion.
3574   // This is useful to know that the high bits are sign extended bits.
3575   PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
3576       ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
3577   // Step #1.
3578   TPT.mutateType(ExtOpnd, Ext->getType());
3579   // Step #2.
3580   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3581   // Step #3.
3582   Instruction *ExtForOpnd = Ext;
3583 
3584   DEBUG(dbgs() << "Propagate Ext to operands\n");
3585   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3586        ++OpIdx) {
3587     DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3588     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3589         !shouldExtOperand(ExtOpnd, OpIdx)) {
3590       DEBUG(dbgs() << "No need to propagate\n");
3591       continue;
3592     }
3593     // Check if we can statically extend the operand.
3594     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3595     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3596       DEBUG(dbgs() << "Statically extend\n");
3597       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3598       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3599                             : Cst->getValue().zext(BitWidth);
3600       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3601       continue;
3602     }
3603     // UndefValue are typed, so we have to statically sign extend them.
3604     if (isa<UndefValue>(Opnd)) {
3605       DEBUG(dbgs() << "Statically extend\n");
3606       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3607       continue;
3608     }
3609 
3610     // Otherwise we have to explicity sign extend the operand.
3611     // Check if Ext was reused to extend an operand.
3612     if (!ExtForOpnd) {
3613       // If yes, create a new one.
3614       DEBUG(dbgs() << "More operands to ext\n");
3615       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3616         : TPT.createZExt(Ext, Opnd, Ext->getType());
3617       if (!isa<Instruction>(ValForExtOpnd)) {
3618         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3619         continue;
3620       }
3621       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3622     }
3623     if (Exts)
3624       Exts->push_back(ExtForOpnd);
3625     TPT.setOperand(ExtForOpnd, 0, Opnd);
3626 
3627     // Move the sign extension before the insertion point.
3628     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3629     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3630     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3631     // If more sext are required, new instructions will have to be created.
3632     ExtForOpnd = nullptr;
3633   }
3634   if (ExtForOpnd == Ext) {
3635     DEBUG(dbgs() << "Extension is useless now\n");
3636     TPT.eraseInstruction(Ext);
3637   }
3638   return ExtOpnd;
3639 }
3640 
3641 /// Check whether or not promoting an instruction to a wider type is profitable.
3642 /// \p NewCost gives the cost of extension instructions created by the
3643 /// promotion.
3644 /// \p OldCost gives the cost of extension instructions before the promotion
3645 /// plus the number of instructions that have been
3646 /// matched in the addressing mode the promotion.
3647 /// \p PromotedOperand is the value that has been promoted.
3648 /// \return True if the promotion is profitable, false otherwise.
3649 bool AddressingModeMatcher::isPromotionProfitable(
3650     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3651   DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
3652   // The cost of the new extensions is greater than the cost of the
3653   // old extension plus what we folded.
3654   // This is not profitable.
3655   if (NewCost > OldCost)
3656     return false;
3657   if (NewCost < OldCost)
3658     return true;
3659   // The promotion is neutral but it may help folding the sign extension in
3660   // loads for instance.
3661   // Check that we did not create an illegal instruction.
3662   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3663 }
3664 
3665 /// Given an instruction or constant expr, see if we can fold the operation
3666 /// into the addressing mode. If so, update the addressing mode and return
3667 /// true, otherwise return false without modifying AddrMode.
3668 /// If \p MovedAway is not NULL, it contains the information of whether or
3669 /// not AddrInst has to be folded into the addressing mode on success.
3670 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3671 /// because it has been moved away.
3672 /// Thus AddrInst must not be added in the matched instructions.
3673 /// This state can happen when AddrInst is a sext, since it may be moved away.
3674 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3675 /// not be referenced anymore.
3676 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3677                                                unsigned Depth,
3678                                                bool *MovedAway) {
3679   // Avoid exponential behavior on extremely deep expression trees.
3680   if (Depth >= 5) return false;
3681 
3682   // By default, all matched instructions stay in place.
3683   if (MovedAway)
3684     *MovedAway = false;
3685 
3686   switch (Opcode) {
3687   case Instruction::PtrToInt:
3688     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3689     return matchAddr(AddrInst->getOperand(0), Depth);
3690   case Instruction::IntToPtr: {
3691     auto AS = AddrInst->getType()->getPointerAddressSpace();
3692     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3693     // This inttoptr is a no-op if the integer type is pointer sized.
3694     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3695       return matchAddr(AddrInst->getOperand(0), Depth);
3696     return false;
3697   }
3698   case Instruction::BitCast:
3699     // BitCast is always a noop, and we can handle it as long as it is
3700     // int->int or pointer->pointer (we don't want int<->fp or something).
3701     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
3702          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
3703         // Don't touch identity bitcasts.  These were probably put here by LSR,
3704         // and we don't want to mess around with them.  Assume it knows what it
3705         // is doing.
3706         AddrInst->getOperand(0)->getType() != AddrInst->getType())
3707       return matchAddr(AddrInst->getOperand(0), Depth);
3708     return false;
3709   case Instruction::AddrSpaceCast: {
3710     unsigned SrcAS
3711       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3712     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3713     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3714       return matchAddr(AddrInst->getOperand(0), Depth);
3715     return false;
3716   }
3717   case Instruction::Add: {
3718     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
3719     ExtAddrMode BackupAddrMode = AddrMode;
3720     unsigned OldSize = AddrModeInsts.size();
3721     // Start a transaction at this point.
3722     // The LHS may match but not the RHS.
3723     // Therefore, we need a higher level restoration point to undo partially
3724     // matched operation.
3725     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3726         TPT.getRestorationPoint();
3727 
3728     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3729         matchAddr(AddrInst->getOperand(0), Depth+1))
3730       return true;
3731 
3732     // Restore the old addr mode info.
3733     AddrMode = BackupAddrMode;
3734     AddrModeInsts.resize(OldSize);
3735     TPT.rollback(LastKnownGood);
3736 
3737     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
3738     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3739         matchAddr(AddrInst->getOperand(1), Depth+1))
3740       return true;
3741 
3742     // Otherwise we definitely can't merge the ADD in.
3743     AddrMode = BackupAddrMode;
3744     AddrModeInsts.resize(OldSize);
3745     TPT.rollback(LastKnownGood);
3746     break;
3747   }
3748   //case Instruction::Or:
3749   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3750   //break;
3751   case Instruction::Mul:
3752   case Instruction::Shl: {
3753     // Can only handle X*C and X << C.
3754     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3755     if (!RHS)
3756       return false;
3757     int64_t Scale = RHS->getSExtValue();
3758     if (Opcode == Instruction::Shl)
3759       Scale = 1LL << Scale;
3760 
3761     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3762   }
3763   case Instruction::GetElementPtr: {
3764     // Scan the GEP.  We check it if it contains constant offsets and at most
3765     // one variable offset.
3766     int VariableOperand = -1;
3767     unsigned VariableScale = 0;
3768 
3769     int64_t ConstantOffset = 0;
3770     gep_type_iterator GTI = gep_type_begin(AddrInst);
3771     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
3772       if (StructType *STy = GTI.getStructTypeOrNull()) {
3773         const StructLayout *SL = DL.getStructLayout(STy);
3774         unsigned Idx =
3775           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
3776         ConstantOffset += SL->getElementOffset(Idx);
3777       } else {
3778         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
3779         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
3780           ConstantOffset += CI->getSExtValue()*TypeSize;
3781         } else if (TypeSize) {  // Scales of zero don't do anything.
3782           // We only allow one variable index at the moment.
3783           if (VariableOperand != -1)
3784             return false;
3785 
3786           // Remember the variable index.
3787           VariableOperand = i;
3788           VariableScale = TypeSize;
3789         }
3790       }
3791     }
3792 
3793     // A common case is for the GEP to only do a constant offset.  In this case,
3794     // just add it to the disp field and check validity.
3795     if (VariableOperand == -1) {
3796       AddrMode.BaseOffs += ConstantOffset;
3797       if (ConstantOffset == 0 ||
3798           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
3799         // Check to see if we can fold the base pointer in too.
3800         if (matchAddr(AddrInst->getOperand(0), Depth+1))
3801           return true;
3802       }
3803       AddrMode.BaseOffs -= ConstantOffset;
3804       return false;
3805     }
3806 
3807     // Save the valid addressing mode in case we can't match.
3808     ExtAddrMode BackupAddrMode = AddrMode;
3809     unsigned OldSize = AddrModeInsts.size();
3810 
3811     // See if the scale and offset amount is valid for this target.
3812     AddrMode.BaseOffs += ConstantOffset;
3813 
3814     // Match the base operand of the GEP.
3815     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
3816       // If it couldn't be matched, just stuff the value in a register.
3817       if (AddrMode.HasBaseReg) {
3818         AddrMode = BackupAddrMode;
3819         AddrModeInsts.resize(OldSize);
3820         return false;
3821       }
3822       AddrMode.HasBaseReg = true;
3823       AddrMode.BaseReg = AddrInst->getOperand(0);
3824     }
3825 
3826     // Match the remaining variable portion of the GEP.
3827     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
3828                           Depth)) {
3829       // If it couldn't be matched, try stuffing the base into a register
3830       // instead of matching it, and retrying the match of the scale.
3831       AddrMode = BackupAddrMode;
3832       AddrModeInsts.resize(OldSize);
3833       if (AddrMode.HasBaseReg)
3834         return false;
3835       AddrMode.HasBaseReg = true;
3836       AddrMode.BaseReg = AddrInst->getOperand(0);
3837       AddrMode.BaseOffs += ConstantOffset;
3838       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
3839                             VariableScale, Depth)) {
3840         // If even that didn't work, bail.
3841         AddrMode = BackupAddrMode;
3842         AddrModeInsts.resize(OldSize);
3843         return false;
3844       }
3845     }
3846 
3847     return true;
3848   }
3849   case Instruction::SExt:
3850   case Instruction::ZExt: {
3851     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
3852     if (!Ext)
3853       return false;
3854 
3855     // Try to move this ext out of the way of the addressing mode.
3856     // Ask for a method for doing so.
3857     TypePromotionHelper::Action TPH =
3858         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
3859     if (!TPH)
3860       return false;
3861 
3862     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3863         TPT.getRestorationPoint();
3864     unsigned CreatedInstsCost = 0;
3865     unsigned ExtCost = !TLI.isExtFree(Ext);
3866     Value *PromotedOperand =
3867         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
3868     // SExt has been moved away.
3869     // Thus either it will be rematched later in the recursive calls or it is
3870     // gone. Anyway, we must not fold it into the addressing mode at this point.
3871     // E.g.,
3872     // op = add opnd, 1
3873     // idx = ext op
3874     // addr = gep base, idx
3875     // is now:
3876     // promotedOpnd = ext opnd            <- no match here
3877     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
3878     // addr = gep base, op                <- match
3879     if (MovedAway)
3880       *MovedAway = true;
3881 
3882     assert(PromotedOperand &&
3883            "TypePromotionHelper should have filtered out those cases");
3884 
3885     ExtAddrMode BackupAddrMode = AddrMode;
3886     unsigned OldSize = AddrModeInsts.size();
3887 
3888     if (!matchAddr(PromotedOperand, Depth) ||
3889         // The total of the new cost is equal to the cost of the created
3890         // instructions.
3891         // The total of the old cost is equal to the cost of the extension plus
3892         // what we have saved in the addressing mode.
3893         !isPromotionProfitable(CreatedInstsCost,
3894                                ExtCost + (AddrModeInsts.size() - OldSize),
3895                                PromotedOperand)) {
3896       AddrMode = BackupAddrMode;
3897       AddrModeInsts.resize(OldSize);
3898       DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
3899       TPT.rollback(LastKnownGood);
3900       return false;
3901     }
3902     return true;
3903   }
3904   }
3905   return false;
3906 }
3907 
3908 /// If we can, try to add the value of 'Addr' into the current addressing mode.
3909 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
3910 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
3911 /// for the target.
3912 ///
3913 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
3914   // Start a transaction at this point that we will rollback if the matching
3915   // fails.
3916   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3917       TPT.getRestorationPoint();
3918   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
3919     // Fold in immediates if legal for the target.
3920     AddrMode.BaseOffs += CI->getSExtValue();
3921     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3922       return true;
3923     AddrMode.BaseOffs -= CI->getSExtValue();
3924   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
3925     // If this is a global variable, try to fold it into the addressing mode.
3926     if (!AddrMode.BaseGV) {
3927       AddrMode.BaseGV = GV;
3928       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3929         return true;
3930       AddrMode.BaseGV = nullptr;
3931     }
3932   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
3933     ExtAddrMode BackupAddrMode = AddrMode;
3934     unsigned OldSize = AddrModeInsts.size();
3935 
3936     // Check to see if it is possible to fold this operation.
3937     bool MovedAway = false;
3938     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
3939       // This instruction may have been moved away. If so, there is nothing
3940       // to check here.
3941       if (MovedAway)
3942         return true;
3943       // Okay, it's possible to fold this.  Check to see if it is actually
3944       // *profitable* to do so.  We use a simple cost model to avoid increasing
3945       // register pressure too much.
3946       if (I->hasOneUse() ||
3947           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
3948         AddrModeInsts.push_back(I);
3949         return true;
3950       }
3951 
3952       // It isn't profitable to do this, roll back.
3953       //cerr << "NOT FOLDING: " << *I;
3954       AddrMode = BackupAddrMode;
3955       AddrModeInsts.resize(OldSize);
3956       TPT.rollback(LastKnownGood);
3957     }
3958   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
3959     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
3960       return true;
3961     TPT.rollback(LastKnownGood);
3962   } else if (isa<ConstantPointerNull>(Addr)) {
3963     // Null pointer gets folded without affecting the addressing mode.
3964     return true;
3965   }
3966 
3967   // Worse case, the target should support [reg] addressing modes. :)
3968   if (!AddrMode.HasBaseReg) {
3969     AddrMode.HasBaseReg = true;
3970     AddrMode.BaseReg = Addr;
3971     // Still check for legality in case the target supports [imm] but not [i+r].
3972     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3973       return true;
3974     AddrMode.HasBaseReg = false;
3975     AddrMode.BaseReg = nullptr;
3976   }
3977 
3978   // If the base register is already taken, see if we can do [r+r].
3979   if (AddrMode.Scale == 0) {
3980     AddrMode.Scale = 1;
3981     AddrMode.ScaledReg = Addr;
3982     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3983       return true;
3984     AddrMode.Scale = 0;
3985     AddrMode.ScaledReg = nullptr;
3986   }
3987   // Couldn't match.
3988   TPT.rollback(LastKnownGood);
3989   return false;
3990 }
3991 
3992 /// Check to see if all uses of OpVal by the specified inline asm call are due
3993 /// to memory operands. If so, return true, otherwise return false.
3994 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
3995                                     const TargetLowering &TLI,
3996                                     const TargetRegisterInfo &TRI) {
3997   const Function *F = CI->getFunction();
3998   TargetLowering::AsmOperandInfoVector TargetConstraints =
3999       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4000                             ImmutableCallSite(CI));
4001 
4002   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4003     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4004 
4005     // Compute the constraint code and ConstraintType to use.
4006     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4007 
4008     // If this asm operand is our Value*, and if it isn't an indirect memory
4009     // operand, we can't fold it!
4010     if (OpInfo.CallOperandVal == OpVal &&
4011         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4012          !OpInfo.isIndirect))
4013       return false;
4014   }
4015 
4016   return true;
4017 }
4018 
4019 /// Recursively walk all the uses of I until we find a memory use.
4020 /// If we find an obviously non-foldable instruction, return true.
4021 /// Add the ultimately found memory instructions to MemoryUses.
4022 static bool FindAllMemoryUses(
4023     Instruction *I,
4024     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4025     SmallPtrSetImpl<Instruction *> &ConsideredInsts,
4026     const TargetLowering &TLI, const TargetRegisterInfo &TRI) {
4027   // If we already considered this instruction, we're done.
4028   if (!ConsideredInsts.insert(I).second)
4029     return false;
4030 
4031   // If this is an obviously unfoldable instruction, bail out.
4032   if (!MightBeFoldableInst(I))
4033     return true;
4034 
4035   const bool OptSize = I->getFunction()->optForSize();
4036 
4037   // Loop over all the uses, recursively processing them.
4038   for (Use &U : I->uses()) {
4039     Instruction *UserI = cast<Instruction>(U.getUser());
4040 
4041     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4042       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4043       continue;
4044     }
4045 
4046     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4047       unsigned opNo = U.getOperandNo();
4048       if (opNo != StoreInst::getPointerOperandIndex())
4049         return true; // Storing addr, not into addr.
4050       MemoryUses.push_back(std::make_pair(SI, opNo));
4051       continue;
4052     }
4053 
4054     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4055       unsigned opNo = U.getOperandNo();
4056       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4057         return true; // Storing addr, not into addr.
4058       MemoryUses.push_back(std::make_pair(RMW, opNo));
4059       continue;
4060     }
4061 
4062     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4063       unsigned opNo = U.getOperandNo();
4064       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4065         return true; // Storing addr, not into addr.
4066       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4067       continue;
4068     }
4069 
4070     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4071       // If this is a cold call, we can sink the addressing calculation into
4072       // the cold path.  See optimizeCallInst
4073       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4074         continue;
4075 
4076       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4077       if (!IA) return true;
4078 
4079       // If this is a memory operand, we're cool, otherwise bail out.
4080       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4081         return true;
4082       continue;
4083     }
4084 
4085     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI))
4086       return true;
4087   }
4088 
4089   return false;
4090 }
4091 
4092 /// Return true if Val is already known to be live at the use site that we're
4093 /// folding it into. If so, there is no cost to include it in the addressing
4094 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4095 /// instruction already.
4096 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4097                                                    Value *KnownLive2) {
4098   // If Val is either of the known-live values, we know it is live!
4099   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4100     return true;
4101 
4102   // All values other than instructions and arguments (e.g. constants) are live.
4103   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4104 
4105   // If Val is a constant sized alloca in the entry block, it is live, this is
4106   // true because it is just a reference to the stack/frame pointer, which is
4107   // live for the whole function.
4108   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4109     if (AI->isStaticAlloca())
4110       return true;
4111 
4112   // Check to see if this value is already used in the memory instruction's
4113   // block.  If so, it's already live into the block at the very least, so we
4114   // can reasonably fold it.
4115   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4116 }
4117 
4118 /// It is possible for the addressing mode of the machine to fold the specified
4119 /// instruction into a load or store that ultimately uses it.
4120 /// However, the specified instruction has multiple uses.
4121 /// Given this, it may actually increase register pressure to fold it
4122 /// into the load. For example, consider this code:
4123 ///
4124 ///     X = ...
4125 ///     Y = X+1
4126 ///     use(Y)   -> nonload/store
4127 ///     Z = Y+1
4128 ///     load Z
4129 ///
4130 /// In this case, Y has multiple uses, and can be folded into the load of Z
4131 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4132 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4133 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4134 /// number of computations either.
4135 ///
4136 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4137 /// X was live across 'load Z' for other reasons, we actually *would* want to
4138 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4139 bool AddressingModeMatcher::
4140 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4141                                      ExtAddrMode &AMAfter) {
4142   if (IgnoreProfitability) return true;
4143 
4144   // AMBefore is the addressing mode before this instruction was folded into it,
4145   // and AMAfter is the addressing mode after the instruction was folded.  Get
4146   // the set of registers referenced by AMAfter and subtract out those
4147   // referenced by AMBefore: this is the set of values which folding in this
4148   // address extends the lifetime of.
4149   //
4150   // Note that there are only two potential values being referenced here,
4151   // BaseReg and ScaleReg (global addresses are always available, as are any
4152   // folded immediates).
4153   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4154 
4155   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4156   // lifetime wasn't extended by adding this instruction.
4157   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4158     BaseReg = nullptr;
4159   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4160     ScaledReg = nullptr;
4161 
4162   // If folding this instruction (and it's subexprs) didn't extend any live
4163   // ranges, we're ok with it.
4164   if (!BaseReg && !ScaledReg)
4165     return true;
4166 
4167   // If all uses of this instruction can have the address mode sunk into them,
4168   // we can remove the addressing mode and effectively trade one live register
4169   // for another (at worst.)  In this context, folding an addressing mode into
4170   // the use is just a particularly nice way of sinking it.
4171   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4172   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4173   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4174     return false;  // Has a non-memory, non-foldable use!
4175 
4176   // Now that we know that all uses of this instruction are part of a chain of
4177   // computation involving only operations that could theoretically be folded
4178   // into a memory use, loop over each of these memory operation uses and see
4179   // if they could  *actually* fold the instruction.  The assumption is that
4180   // addressing modes are cheap and that duplicating the computation involved
4181   // many times is worthwhile, even on a fastpath. For sinking candidates
4182   // (i.e. cold call sites), this serves as a way to prevent excessive code
4183   // growth since most architectures have some reasonable small and fast way to
4184   // compute an effective address.  (i.e LEA on x86)
4185   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4186   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4187     Instruction *User = MemoryUses[i].first;
4188     unsigned OpNo = MemoryUses[i].second;
4189 
4190     // Get the access type of this use.  If the use isn't a pointer, we don't
4191     // know what it accesses.
4192     Value *Address = User->getOperand(OpNo);
4193     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4194     if (!AddrTy)
4195       return false;
4196     Type *AddressAccessTy = AddrTy->getElementType();
4197     unsigned AS = AddrTy->getAddressSpace();
4198 
4199     // Do a match against the root of this address, ignoring profitability. This
4200     // will tell us if the addressing mode for the memory operation will
4201     // *actually* cover the shared instruction.
4202     ExtAddrMode Result;
4203     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4204         TPT.getRestorationPoint();
4205     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI,
4206                                   AddressAccessTy, AS,
4207                                   MemoryInst, Result, InsertedInsts,
4208                                   PromotedInsts, TPT);
4209     Matcher.IgnoreProfitability = true;
4210     bool Success = Matcher.matchAddr(Address, 0);
4211     (void)Success; assert(Success && "Couldn't select *anything*?");
4212 
4213     // The match was to check the profitability, the changes made are not
4214     // part of the original matcher. Therefore, they should be dropped
4215     // otherwise the original matcher will not present the right state.
4216     TPT.rollback(LastKnownGood);
4217 
4218     // If the match didn't cover I, then it won't be shared by it.
4219     if (!is_contained(MatchedAddrModeInsts, I))
4220       return false;
4221 
4222     MatchedAddrModeInsts.clear();
4223   }
4224 
4225   return true;
4226 }
4227 
4228 } // end anonymous namespace
4229 
4230 /// Return true if the specified values are defined in a
4231 /// different basic block than BB.
4232 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4233   if (Instruction *I = dyn_cast<Instruction>(V))
4234     return I->getParent() != BB;
4235   return false;
4236 }
4237 
4238 /// Sink addressing mode computation immediate before MemoryInst if doing so
4239 /// can be done without increasing register pressure.  The need for the
4240 /// register pressure constraint means this can end up being an all or nothing
4241 /// decision for all uses of the same addressing computation.
4242 ///
4243 /// Load and Store Instructions often have addressing modes that can do
4244 /// significant amounts of computation. As such, instruction selection will try
4245 /// to get the load or store to do as much computation as possible for the
4246 /// program. The problem is that isel can only see within a single block. As
4247 /// such, we sink as much legal addressing mode work into the block as possible.
4248 ///
4249 /// This method is used to optimize both load/store and inline asms with memory
4250 /// operands.  It's also used to sink addressing computations feeding into cold
4251 /// call sites into their (cold) basic block.
4252 ///
4253 /// The motivation for handling sinking into cold blocks is that doing so can
4254 /// both enable other address mode sinking (by satisfying the register pressure
4255 /// constraint above), and reduce register pressure globally (by removing the
4256 /// addressing mode computation from the fast path entirely.).
4257 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4258                                         Type *AccessTy, unsigned AddrSpace) {
4259   Value *Repl = Addr;
4260 
4261   // Try to collapse single-value PHI nodes.  This is necessary to undo
4262   // unprofitable PRE transformations.
4263   SmallVector<Value*, 8> worklist;
4264   SmallPtrSet<Value*, 16> Visited;
4265   worklist.push_back(Addr);
4266 
4267   // Use a worklist to iteratively look through PHI nodes, and ensure that
4268   // the addressing mode obtained from the non-PHI roots of the graph
4269   // are equivalent.
4270   Value *Consensus = nullptr;
4271   unsigned NumUsesConsensus = 0;
4272   bool IsNumUsesConsensusValid = false;
4273   SmallVector<Instruction*, 16> AddrModeInsts;
4274   ExtAddrMode AddrMode;
4275   TypePromotionTransaction TPT(RemovedInsts);
4276   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4277       TPT.getRestorationPoint();
4278   while (!worklist.empty()) {
4279     Value *V = worklist.back();
4280     worklist.pop_back();
4281 
4282     // Break use-def graph loops.
4283     if (!Visited.insert(V).second) {
4284       Consensus = nullptr;
4285       break;
4286     }
4287 
4288     // For a PHI node, push all of its incoming values.
4289     if (PHINode *P = dyn_cast<PHINode>(V)) {
4290       for (Value *IncValue : P->incoming_values())
4291         worklist.push_back(IncValue);
4292       continue;
4293     }
4294 
4295     // For non-PHIs, determine the addressing mode being computed.  Note that
4296     // the result may differ depending on what other uses our candidate
4297     // addressing instructions might have.
4298     SmallVector<Instruction*, 16> NewAddrModeInsts;
4299     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4300       V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TLI, *TRI,
4301       InsertedInsts, PromotedInsts, TPT);
4302 
4303     // This check is broken into two cases with very similar code to avoid using
4304     // getNumUses() as much as possible. Some values have a lot of uses, so
4305     // calling getNumUses() unconditionally caused a significant compile-time
4306     // regression.
4307     if (!Consensus) {
4308       Consensus = V;
4309       AddrMode = NewAddrMode;
4310       AddrModeInsts = NewAddrModeInsts;
4311       continue;
4312     } else if (NewAddrMode == AddrMode) {
4313       if (!IsNumUsesConsensusValid) {
4314         NumUsesConsensus = Consensus->getNumUses();
4315         IsNumUsesConsensusValid = true;
4316       }
4317 
4318       // Ensure that the obtained addressing mode is equivalent to that obtained
4319       // for all other roots of the PHI traversal.  Also, when choosing one
4320       // such root as representative, select the one with the most uses in order
4321       // to keep the cost modeling heuristics in AddressingModeMatcher
4322       // applicable.
4323       unsigned NumUses = V->getNumUses();
4324       if (NumUses > NumUsesConsensus) {
4325         Consensus = V;
4326         NumUsesConsensus = NumUses;
4327         AddrModeInsts = NewAddrModeInsts;
4328       }
4329       continue;
4330     }
4331 
4332     Consensus = nullptr;
4333     break;
4334   }
4335 
4336   // If the addressing mode couldn't be determined, or if multiple different
4337   // ones were determined, bail out now.
4338   if (!Consensus) {
4339     TPT.rollback(LastKnownGood);
4340     return false;
4341   }
4342   TPT.commit();
4343 
4344   // If all the instructions matched are already in this BB, don't do anything.
4345   if (none_of(AddrModeInsts, [&](Value *V) {
4346         return IsNonLocalValue(V, MemoryInst->getParent());
4347       })) {
4348     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
4349     return false;
4350   }
4351 
4352   // Insert this computation right after this user.  Since our caller is
4353   // scanning from the top of the BB to the bottom, reuse of the expr are
4354   // guaranteed to happen later.
4355   IRBuilder<> Builder(MemoryInst);
4356 
4357   // Now that we determined the addressing expression we want to use and know
4358   // that we have to sink it into this block.  Check to see if we have already
4359   // done this for some other load/store instr in this block.  If so, reuse the
4360   // computation.
4361   Value *&SunkAddr = SunkAddrs[Addr];
4362   if (SunkAddr) {
4363     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
4364                  << *MemoryInst << "\n");
4365     if (SunkAddr->getType() != Addr->getType())
4366       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4367   } else if (AddrSinkUsingGEPs ||
4368              (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
4369               SubtargetInfo->useAA())) {
4370     // By default, we use the GEP-based method when AA is used later. This
4371     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4372     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
4373                  << *MemoryInst << "\n");
4374     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4375     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4376 
4377     // First, find the pointer.
4378     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4379       ResultPtr = AddrMode.BaseReg;
4380       AddrMode.BaseReg = nullptr;
4381     }
4382 
4383     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4384       // We can't add more than one pointer together, nor can we scale a
4385       // pointer (both of which seem meaningless).
4386       if (ResultPtr || AddrMode.Scale != 1)
4387         return false;
4388 
4389       ResultPtr = AddrMode.ScaledReg;
4390       AddrMode.Scale = 0;
4391     }
4392 
4393     if (AddrMode.BaseGV) {
4394       if (ResultPtr)
4395         return false;
4396 
4397       ResultPtr = AddrMode.BaseGV;
4398     }
4399 
4400     // If the real base value actually came from an inttoptr, then the matcher
4401     // will look through it and provide only the integer value. In that case,
4402     // use it here.
4403     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4404       if (!ResultPtr && AddrMode.BaseReg) {
4405         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4406                                            "sunkaddr");
4407         AddrMode.BaseReg = nullptr;
4408       } else if (!ResultPtr && AddrMode.Scale == 1) {
4409         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4410                                            "sunkaddr");
4411         AddrMode.Scale = 0;
4412       }
4413     }
4414 
4415     if (!ResultPtr &&
4416         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4417       SunkAddr = Constant::getNullValue(Addr->getType());
4418     } else if (!ResultPtr) {
4419       return false;
4420     } else {
4421       Type *I8PtrTy =
4422           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4423       Type *I8Ty = Builder.getInt8Ty();
4424 
4425       // Start with the base register. Do this first so that subsequent address
4426       // matching finds it last, which will prevent it from trying to match it
4427       // as the scaled value in case it happens to be a mul. That would be
4428       // problematic if we've sunk a different mul for the scale, because then
4429       // we'd end up sinking both muls.
4430       if (AddrMode.BaseReg) {
4431         Value *V = AddrMode.BaseReg;
4432         if (V->getType() != IntPtrTy)
4433           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4434 
4435         ResultIndex = V;
4436       }
4437 
4438       // Add the scale value.
4439       if (AddrMode.Scale) {
4440         Value *V = AddrMode.ScaledReg;
4441         if (V->getType() == IntPtrTy) {
4442           // done.
4443         } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4444                    cast<IntegerType>(V->getType())->getBitWidth()) {
4445           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4446         } else {
4447           // It is only safe to sign extend the BaseReg if we know that the math
4448           // required to create it did not overflow before we extend it. Since
4449           // the original IR value was tossed in favor of a constant back when
4450           // the AddrMode was created we need to bail out gracefully if widths
4451           // do not match instead of extending it.
4452           Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
4453           if (I && (ResultIndex != AddrMode.BaseReg))
4454             I->eraseFromParent();
4455           return false;
4456         }
4457 
4458         if (AddrMode.Scale != 1)
4459           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4460                                 "sunkaddr");
4461         if (ResultIndex)
4462           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4463         else
4464           ResultIndex = V;
4465       }
4466 
4467       // Add in the Base Offset if present.
4468       if (AddrMode.BaseOffs) {
4469         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4470         if (ResultIndex) {
4471           // We need to add this separately from the scale above to help with
4472           // SDAG consecutive load/store merging.
4473           if (ResultPtr->getType() != I8PtrTy)
4474             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4475           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4476         }
4477 
4478         ResultIndex = V;
4479       }
4480 
4481       if (!ResultIndex) {
4482         SunkAddr = ResultPtr;
4483       } else {
4484         if (ResultPtr->getType() != I8PtrTy)
4485           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4486         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4487       }
4488 
4489       if (SunkAddr->getType() != Addr->getType())
4490         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4491     }
4492   } else {
4493     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4494     // non-integral pointers, so in that case bail out now.
4495     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4496     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4497     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4498     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4499     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4500         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4501         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4502         (AddrMode.BaseGV &&
4503          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4504       return false;
4505 
4506     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
4507                  << *MemoryInst << "\n");
4508     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4509     Value *Result = nullptr;
4510 
4511     // Start with the base register. Do this first so that subsequent address
4512     // matching finds it last, which will prevent it from trying to match it
4513     // as the scaled value in case it happens to be a mul. That would be
4514     // problematic if we've sunk a different mul for the scale, because then
4515     // we'd end up sinking both muls.
4516     if (AddrMode.BaseReg) {
4517       Value *V = AddrMode.BaseReg;
4518       if (V->getType()->isPointerTy())
4519         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4520       if (V->getType() != IntPtrTy)
4521         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4522       Result = V;
4523     }
4524 
4525     // Add the scale value.
4526     if (AddrMode.Scale) {
4527       Value *V = AddrMode.ScaledReg;
4528       if (V->getType() == IntPtrTy) {
4529         // done.
4530       } else if (V->getType()->isPointerTy()) {
4531         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4532       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4533                  cast<IntegerType>(V->getType())->getBitWidth()) {
4534         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4535       } else {
4536         // It is only safe to sign extend the BaseReg if we know that the math
4537         // required to create it did not overflow before we extend it. Since
4538         // the original IR value was tossed in favor of a constant back when
4539         // the AddrMode was created we need to bail out gracefully if widths
4540         // do not match instead of extending it.
4541         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4542         if (I && (Result != AddrMode.BaseReg))
4543           I->eraseFromParent();
4544         return false;
4545       }
4546       if (AddrMode.Scale != 1)
4547         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4548                               "sunkaddr");
4549       if (Result)
4550         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4551       else
4552         Result = V;
4553     }
4554 
4555     // Add in the BaseGV if present.
4556     if (AddrMode.BaseGV) {
4557       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4558       if (Result)
4559         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4560       else
4561         Result = V;
4562     }
4563 
4564     // Add in the Base Offset if present.
4565     if (AddrMode.BaseOffs) {
4566       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4567       if (Result)
4568         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4569       else
4570         Result = V;
4571     }
4572 
4573     if (!Result)
4574       SunkAddr = Constant::getNullValue(Addr->getType());
4575     else
4576       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4577   }
4578 
4579   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4580 
4581   // If we have no uses, recursively delete the value and all dead instructions
4582   // using it.
4583   if (Repl->use_empty()) {
4584     // This can cause recursive deletion, which can invalidate our iterator.
4585     // Use a WeakTrackingVH to hold onto it in case this happens.
4586     Value *CurValue = &*CurInstIterator;
4587     WeakTrackingVH IterHandle(CurValue);
4588     BasicBlock *BB = CurInstIterator->getParent();
4589 
4590     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4591 
4592     if (IterHandle != CurValue) {
4593       // If the iterator instruction was recursively deleted, start over at the
4594       // start of the block.
4595       CurInstIterator = BB->begin();
4596       SunkAddrs.clear();
4597     }
4598   }
4599   ++NumMemoryInsts;
4600   return true;
4601 }
4602 
4603 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4604 /// address computing into the block when possible / profitable.
4605 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4606   bool MadeChange = false;
4607 
4608   const TargetRegisterInfo *TRI =
4609       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
4610   TargetLowering::AsmOperandInfoVector TargetConstraints =
4611       TLI->ParseConstraints(*DL, TRI, CS);
4612   unsigned ArgNo = 0;
4613   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4614     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4615 
4616     // Compute the constraint code and ConstraintType to use.
4617     TLI->ComputeConstraintToUse(OpInfo, SDValue());
4618 
4619     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4620         OpInfo.isIndirect) {
4621       Value *OpVal = CS->getArgOperand(ArgNo++);
4622       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4623     } else if (OpInfo.Type == InlineAsm::isInput)
4624       ArgNo++;
4625   }
4626 
4627   return MadeChange;
4628 }
4629 
4630 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or
4631 /// sign extensions.
4632 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
4633   assert(!Val->use_empty() && "Input must have at least one use");
4634   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
4635   bool IsSExt = isa<SExtInst>(FirstUser);
4636   Type *ExtTy = FirstUser->getType();
4637   for (const User *U : Val->users()) {
4638     const Instruction *UI = cast<Instruction>(U);
4639     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4640       return false;
4641     Type *CurTy = UI->getType();
4642     // Same input and output types: Same instruction after CSE.
4643     if (CurTy == ExtTy)
4644       continue;
4645 
4646     // If IsSExt is true, we are in this situation:
4647     // a = Val
4648     // b = sext ty1 a to ty2
4649     // c = sext ty1 a to ty3
4650     // Assuming ty2 is shorter than ty3, this could be turned into:
4651     // a = Val
4652     // b = sext ty1 a to ty2
4653     // c = sext ty2 b to ty3
4654     // However, the last sext is not free.
4655     if (IsSExt)
4656       return false;
4657 
4658     // This is a ZExt, maybe this is free to extend from one type to another.
4659     // In that case, we would not account for a different use.
4660     Type *NarrowTy;
4661     Type *LargeTy;
4662     if (ExtTy->getScalarType()->getIntegerBitWidth() >
4663         CurTy->getScalarType()->getIntegerBitWidth()) {
4664       NarrowTy = CurTy;
4665       LargeTy = ExtTy;
4666     } else {
4667       NarrowTy = ExtTy;
4668       LargeTy = CurTy;
4669     }
4670 
4671     if (!TLI.isZExtFree(NarrowTy, LargeTy))
4672       return false;
4673   }
4674   // All uses are the same or can be derived from one another for free.
4675   return true;
4676 }
4677 
4678 /// \brief Try to speculatively promote extensions in \p Exts and continue
4679 /// promoting through newly promoted operands recursively as far as doing so is
4680 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4681 /// When some promotion happened, \p TPT contains the proper state to revert
4682 /// them.
4683 ///
4684 /// \return true if some promotion happened, false otherwise.
4685 bool CodeGenPrepare::tryToPromoteExts(
4686     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
4687     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
4688     unsigned CreatedInstsCost) {
4689   bool Promoted = false;
4690 
4691   // Iterate over all the extensions to try to promote them.
4692   for (auto I : Exts) {
4693     // Early check if we directly have ext(load).
4694     if (isa<LoadInst>(I->getOperand(0))) {
4695       ProfitablyMovedExts.push_back(I);
4696       continue;
4697     }
4698 
4699     // Check whether or not we want to do any promotion.  The reason we have
4700     // this check inside the for loop is to catch the case where an extension
4701     // is directly fed by a load because in such case the extension can be moved
4702     // up without any promotion on its operands.
4703     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4704       return false;
4705 
4706     // Get the action to perform the promotion.
4707     TypePromotionHelper::Action TPH =
4708         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
4709     // Check if we can promote.
4710     if (!TPH) {
4711       // Save the current extension as we cannot move up through its operand.
4712       ProfitablyMovedExts.push_back(I);
4713       continue;
4714     }
4715 
4716     // Save the current state.
4717     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4718         TPT.getRestorationPoint();
4719     SmallVector<Instruction *, 4> NewExts;
4720     unsigned NewCreatedInstsCost = 0;
4721     unsigned ExtCost = !TLI->isExtFree(I);
4722     // Promote.
4723     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4724                              &NewExts, nullptr, *TLI);
4725     assert(PromotedVal &&
4726            "TypePromotionHelper should have filtered out those cases");
4727 
4728     // We would be able to merge only one extension in a load.
4729     // Therefore, if we have more than 1 new extension we heuristically
4730     // cut this search path, because it means we degrade the code quality.
4731     // With exactly 2, the transformation is neutral, because we will merge
4732     // one extension but leave one. However, we optimistically keep going,
4733     // because the new extension may be removed too.
4734     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
4735     // FIXME: It would be possible to propagate a negative value instead of
4736     // conservatively ceiling it to 0.
4737     TotalCreatedInstsCost =
4738         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
4739     if (!StressExtLdPromotion &&
4740         (TotalCreatedInstsCost > 1 ||
4741          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
4742       // This promotion is not profitable, rollback to the previous state, and
4743       // save the current extension in ProfitablyMovedExts as the latest
4744       // speculative promotion turned out to be unprofitable.
4745       TPT.rollback(LastKnownGood);
4746       ProfitablyMovedExts.push_back(I);
4747       continue;
4748     }
4749     // Continue promoting NewExts as far as doing so is profitable.
4750     SmallVector<Instruction *, 2> NewlyMovedExts;
4751     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
4752     bool NewPromoted = false;
4753     for (auto ExtInst : NewlyMovedExts) {
4754       Instruction *MovedExt = cast<Instruction>(ExtInst);
4755       Value *ExtOperand = MovedExt->getOperand(0);
4756       // If we have reached to a load, we need this extra profitability check
4757       // as it could potentially be merged into an ext(load).
4758       if (isa<LoadInst>(ExtOperand) &&
4759           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
4760             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
4761         continue;
4762 
4763       ProfitablyMovedExts.push_back(MovedExt);
4764       NewPromoted = true;
4765     }
4766 
4767     // If none of speculative promotions for NewExts is profitable, rollback
4768     // and save the current extension (I) as the last profitable extension.
4769     if (!NewPromoted) {
4770       TPT.rollback(LastKnownGood);
4771       ProfitablyMovedExts.push_back(I);
4772       continue;
4773     }
4774     // The promotion is profitable.
4775     Promoted = true;
4776   }
4777   return Promoted;
4778 }
4779 
4780 /// Merging redundant sexts when one is dominating the other.
4781 bool CodeGenPrepare::mergeSExts(Function &F) {
4782   DominatorTree DT(F);
4783   bool Changed = false;
4784   for (auto &Entry : ValToSExtendedUses) {
4785     SExts &Insts = Entry.second;
4786     SExts CurPts;
4787     for (Instruction *Inst : Insts) {
4788       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
4789           Inst->getOperand(0) != Entry.first)
4790         continue;
4791       bool inserted = false;
4792       for (auto &Pt : CurPts) {
4793         if (DT.dominates(Inst, Pt)) {
4794           Pt->replaceAllUsesWith(Inst);
4795           RemovedInsts.insert(Pt);
4796           Pt->removeFromParent();
4797           Pt = Inst;
4798           inserted = true;
4799           Changed = true;
4800           break;
4801         }
4802         if (!DT.dominates(Pt, Inst))
4803           // Give up if we need to merge in a common dominator as the
4804           // expermients show it is not profitable.
4805           continue;
4806         Inst->replaceAllUsesWith(Pt);
4807         RemovedInsts.insert(Inst);
4808         Inst->removeFromParent();
4809         inserted = true;
4810         Changed = true;
4811         break;
4812       }
4813       if (!inserted)
4814         CurPts.push_back(Inst);
4815     }
4816   }
4817   return Changed;
4818 }
4819 
4820 /// Return true, if an ext(load) can be formed from an extension in
4821 /// \p MovedExts.
4822 bool CodeGenPrepare::canFormExtLd(
4823     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
4824     Instruction *&Inst, bool HasPromoted) {
4825   for (auto *MovedExtInst : MovedExts) {
4826     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
4827       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
4828       Inst = MovedExtInst;
4829       break;
4830     }
4831   }
4832   if (!LI)
4833     return false;
4834 
4835   // If they're already in the same block, there's nothing to do.
4836   // Make the cheap checks first if we did not promote.
4837   // If we promoted, we need to check if it is indeed profitable.
4838   if (!HasPromoted && LI->getParent() == Inst->getParent())
4839     return false;
4840 
4841   EVT VT = TLI->getValueType(*DL, Inst->getType());
4842   EVT LoadVT = TLI->getValueType(*DL, LI->getType());
4843 
4844   // If the load has other users and the truncate is not free, this probably
4845   // isn't worthwhile.
4846   if (!LI->hasOneUse() && (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) &&
4847       !TLI->isTruncateFree(Inst->getType(), LI->getType()))
4848     return false;
4849 
4850   // Check whether the target supports casts folded into loads.
4851   unsigned LType;
4852   if (isa<ZExtInst>(Inst))
4853     LType = ISD::ZEXTLOAD;
4854   else {
4855     assert(isa<SExtInst>(Inst) && "Unexpected ext type!");
4856     LType = ISD::SEXTLOAD;
4857   }
4858 
4859   return TLI->isLoadExtLegal(LType, VT, LoadVT);
4860 }
4861 
4862 /// Move a zext or sext fed by a load into the same basic block as the load,
4863 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
4864 /// extend into the load.
4865 ///
4866 /// E.g.,
4867 /// \code
4868 /// %ld = load i32* %addr
4869 /// %add = add nuw i32 %ld, 4
4870 /// %zext = zext i32 %add to i64
4871 // \endcode
4872 /// =>
4873 /// \code
4874 /// %ld = load i32* %addr
4875 /// %zext = zext i32 %ld to i64
4876 /// %add = add nuw i64 %zext, 4
4877 /// \encode
4878 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
4879 /// allow us to match zext(load i32*) to i64.
4880 ///
4881 /// Also, try to promote the computations used to obtain a sign extended
4882 /// value used into memory accesses.
4883 /// E.g.,
4884 /// \code
4885 /// a = add nsw i32 b, 3
4886 /// d = sext i32 a to i64
4887 /// e = getelementptr ..., i64 d
4888 /// \endcode
4889 /// =>
4890 /// \code
4891 /// f = sext i32 b to i64
4892 /// a = add nsw i64 f, 3
4893 /// e = getelementptr ..., i64 a
4894 /// \endcode
4895 ///
4896 /// \p Inst[in/out] the extension may be modified during the process if some
4897 /// promotions apply.
4898 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
4899   // ExtLoad formation and address type promotion infrastructure requires TLI to
4900   // be effective.
4901   if (!TLI)
4902     return false;
4903 
4904   bool AllowPromotionWithoutCommonHeader = false;
4905   /// See if it is an interesting sext operations for the address type
4906   /// promotion before trying to promote it, e.g., the ones with the right
4907   /// type and used in memory accesses.
4908   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
4909       *Inst, AllowPromotionWithoutCommonHeader);
4910   TypePromotionTransaction TPT(RemovedInsts);
4911   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4912       TPT.getRestorationPoint();
4913   SmallVector<Instruction *, 1> Exts;
4914   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
4915   Exts.push_back(Inst);
4916 
4917   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
4918 
4919   // Look for a load being extended.
4920   LoadInst *LI = nullptr;
4921   Instruction *ExtFedByLoad;
4922 
4923   // Try to promote a chain of computation if it allows to form an extended
4924   // load.
4925   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
4926     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
4927     TPT.commit();
4928     // Move the extend into the same block as the load
4929     ExtFedByLoad->removeFromParent();
4930     ExtFedByLoad->insertAfter(LI);
4931     // CGP does not check if the zext would be speculatively executed when moved
4932     // to the same basic block as the load. Preserving its original location
4933     // would pessimize the debugging experience, as well as negatively impact
4934     // the quality of sample pgo. We don't want to use "line 0" as that has a
4935     // size cost in the line-table section and logically the zext can be seen as
4936     // part of the load. Therefore we conservatively reuse the same debug
4937     // location for the load and the zext.
4938     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
4939     ++NumExtsMoved;
4940     Inst = ExtFedByLoad;
4941     return true;
4942   }
4943 
4944   // Continue promoting SExts if known as considerable depending on targets.
4945   if (ATPConsiderable &&
4946       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
4947                                   HasPromoted, TPT, SpeculativelyMovedExts))
4948     return true;
4949 
4950   TPT.rollback(LastKnownGood);
4951   return false;
4952 }
4953 
4954 // Perform address type promotion if doing so is profitable.
4955 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
4956 // instructions that sign extended the same initial value. However, if
4957 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
4958 // extension is just profitable.
4959 bool CodeGenPrepare::performAddressTypePromotion(
4960     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
4961     bool HasPromoted, TypePromotionTransaction &TPT,
4962     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
4963   bool Promoted = false;
4964   SmallPtrSet<Instruction *, 1> UnhandledExts;
4965   bool AllSeenFirst = true;
4966   for (auto I : SpeculativelyMovedExts) {
4967     Value *HeadOfChain = I->getOperand(0);
4968     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
4969         SeenChainsForSExt.find(HeadOfChain);
4970     // If there is an unhandled SExt which has the same header, try to promote
4971     // it as well.
4972     if (AlreadySeen != SeenChainsForSExt.end()) {
4973       if (AlreadySeen->second != nullptr)
4974         UnhandledExts.insert(AlreadySeen->second);
4975       AllSeenFirst = false;
4976     }
4977   }
4978 
4979   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
4980                         SpeculativelyMovedExts.size() == 1)) {
4981     TPT.commit();
4982     if (HasPromoted)
4983       Promoted = true;
4984     for (auto I : SpeculativelyMovedExts) {
4985       Value *HeadOfChain = I->getOperand(0);
4986       SeenChainsForSExt[HeadOfChain] = nullptr;
4987       ValToSExtendedUses[HeadOfChain].push_back(I);
4988     }
4989     // Update Inst as promotion happen.
4990     Inst = SpeculativelyMovedExts.pop_back_val();
4991   } else {
4992     // This is the first chain visited from the header, keep the current chain
4993     // as unhandled. Defer to promote this until we encounter another SExt
4994     // chain derived from the same header.
4995     for (auto I : SpeculativelyMovedExts) {
4996       Value *HeadOfChain = I->getOperand(0);
4997       SeenChainsForSExt[HeadOfChain] = Inst;
4998     }
4999     return false;
5000   }
5001 
5002   if (!AllSeenFirst && !UnhandledExts.empty())
5003     for (auto VisitedSExt : UnhandledExts) {
5004       if (RemovedInsts.count(VisitedSExt))
5005         continue;
5006       TypePromotionTransaction TPT(RemovedInsts);
5007       SmallVector<Instruction *, 1> Exts;
5008       SmallVector<Instruction *, 2> Chains;
5009       Exts.push_back(VisitedSExt);
5010       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5011       TPT.commit();
5012       if (HasPromoted)
5013         Promoted = true;
5014       for (auto I : Chains) {
5015         Value *HeadOfChain = I->getOperand(0);
5016         // Mark this as handled.
5017         SeenChainsForSExt[HeadOfChain] = nullptr;
5018         ValToSExtendedUses[HeadOfChain].push_back(I);
5019       }
5020     }
5021   return Promoted;
5022 }
5023 
5024 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5025   BasicBlock *DefBB = I->getParent();
5026 
5027   // If the result of a {s|z}ext and its source are both live out, rewrite all
5028   // other uses of the source with result of extension.
5029   Value *Src = I->getOperand(0);
5030   if (Src->hasOneUse())
5031     return false;
5032 
5033   // Only do this xform if truncating is free.
5034   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5035     return false;
5036 
5037   // Only safe to perform the optimization if the source is also defined in
5038   // this block.
5039   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5040     return false;
5041 
5042   bool DefIsLiveOut = false;
5043   for (User *U : I->users()) {
5044     Instruction *UI = cast<Instruction>(U);
5045 
5046     // Figure out which BB this ext is used in.
5047     BasicBlock *UserBB = UI->getParent();
5048     if (UserBB == DefBB) continue;
5049     DefIsLiveOut = true;
5050     break;
5051   }
5052   if (!DefIsLiveOut)
5053     return false;
5054 
5055   // Make sure none of the uses are PHI nodes.
5056   for (User *U : Src->users()) {
5057     Instruction *UI = cast<Instruction>(U);
5058     BasicBlock *UserBB = UI->getParent();
5059     if (UserBB == DefBB) continue;
5060     // Be conservative. We don't want this xform to end up introducing
5061     // reloads just before load / store instructions.
5062     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5063       return false;
5064   }
5065 
5066   // InsertedTruncs - Only insert one trunc in each block once.
5067   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5068 
5069   bool MadeChange = false;
5070   for (Use &U : Src->uses()) {
5071     Instruction *User = cast<Instruction>(U.getUser());
5072 
5073     // Figure out which BB this ext is used in.
5074     BasicBlock *UserBB = User->getParent();
5075     if (UserBB == DefBB) continue;
5076 
5077     // Both src and def are live in this block. Rewrite the use.
5078     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5079 
5080     if (!InsertedTrunc) {
5081       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5082       assert(InsertPt != UserBB->end());
5083       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5084       InsertedInsts.insert(InsertedTrunc);
5085     }
5086 
5087     // Replace a use of the {s|z}ext source with a use of the result.
5088     U = InsertedTrunc;
5089     ++NumExtUses;
5090     MadeChange = true;
5091   }
5092 
5093   return MadeChange;
5094 }
5095 
5096 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5097 // just after the load if the target can fold this into one extload instruction,
5098 // with the hope of eliminating some of the other later "and" instructions using
5099 // the loaded value.  "and"s that are made trivially redundant by the insertion
5100 // of the new "and" are removed by this function, while others (e.g. those whose
5101 // path from the load goes through a phi) are left for isel to potentially
5102 // remove.
5103 //
5104 // For example:
5105 //
5106 // b0:
5107 //   x = load i32
5108 //   ...
5109 // b1:
5110 //   y = and x, 0xff
5111 //   z = use y
5112 //
5113 // becomes:
5114 //
5115 // b0:
5116 //   x = load i32
5117 //   x' = and x, 0xff
5118 //   ...
5119 // b1:
5120 //   z = use x'
5121 //
5122 // whereas:
5123 //
5124 // b0:
5125 //   x1 = load i32
5126 //   ...
5127 // b1:
5128 //   x2 = load i32
5129 //   ...
5130 // b2:
5131 //   x = phi x1, x2
5132 //   y = and x, 0xff
5133 //
5134 // becomes (after a call to optimizeLoadExt for each load):
5135 //
5136 // b0:
5137 //   x1 = load i32
5138 //   x1' = and x1, 0xff
5139 //   ...
5140 // b1:
5141 //   x2 = load i32
5142 //   x2' = and x2, 0xff
5143 //   ...
5144 // b2:
5145 //   x = phi x1', x2'
5146 //   y = and x, 0xff
5147 //
5148 
5149 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5150 
5151   if (!Load->isSimple() ||
5152       !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
5153     return false;
5154 
5155   // Skip loads we've already transformed.
5156   if (Load->hasOneUse() &&
5157       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5158     return false;
5159 
5160   // Look at all uses of Load, looking through phis, to determine how many bits
5161   // of the loaded value are needed.
5162   SmallVector<Instruction *, 8> WorkList;
5163   SmallPtrSet<Instruction *, 16> Visited;
5164   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5165   for (auto *U : Load->users())
5166     WorkList.push_back(cast<Instruction>(U));
5167 
5168   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5169   unsigned BitWidth = LoadResultVT.getSizeInBits();
5170   APInt DemandBits(BitWidth, 0);
5171   APInt WidestAndBits(BitWidth, 0);
5172 
5173   while (!WorkList.empty()) {
5174     Instruction *I = WorkList.back();
5175     WorkList.pop_back();
5176 
5177     // Break use-def graph loops.
5178     if (!Visited.insert(I).second)
5179       continue;
5180 
5181     // For a PHI node, push all of its users.
5182     if (auto *Phi = dyn_cast<PHINode>(I)) {
5183       for (auto *U : Phi->users())
5184         WorkList.push_back(cast<Instruction>(U));
5185       continue;
5186     }
5187 
5188     switch (I->getOpcode()) {
5189     case llvm::Instruction::And: {
5190       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5191       if (!AndC)
5192         return false;
5193       APInt AndBits = AndC->getValue();
5194       DemandBits |= AndBits;
5195       // Keep track of the widest and mask we see.
5196       if (AndBits.ugt(WidestAndBits))
5197         WidestAndBits = AndBits;
5198       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5199         AndsToMaybeRemove.push_back(I);
5200       break;
5201     }
5202 
5203     case llvm::Instruction::Shl: {
5204       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5205       if (!ShlC)
5206         return false;
5207       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5208       DemandBits.setLowBits(BitWidth - ShiftAmt);
5209       break;
5210     }
5211 
5212     case llvm::Instruction::Trunc: {
5213       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5214       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5215       DemandBits.setLowBits(TruncBitWidth);
5216       break;
5217     }
5218 
5219     default:
5220       return false;
5221     }
5222   }
5223 
5224   uint32_t ActiveBits = DemandBits.getActiveBits();
5225   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5226   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5227   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5228   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5229   // followed by an AND.
5230   // TODO: Look into removing this restriction by fixing backends to either
5231   // return false for isLoadExtLegal for i1 or have them select this pattern to
5232   // a single instruction.
5233   //
5234   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5235   // mask, since these are the only ands that will be removed by isel.
5236   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5237       WidestAndBits != DemandBits)
5238     return false;
5239 
5240   LLVMContext &Ctx = Load->getType()->getContext();
5241   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5242   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5243 
5244   // Reject cases that won't be matched as extloads.
5245   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5246       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5247     return false;
5248 
5249   IRBuilder<> Builder(Load->getNextNode());
5250   auto *NewAnd = dyn_cast<Instruction>(
5251       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5252   // Mark this instruction as "inserted by CGP", so that other
5253   // optimizations don't touch it.
5254   InsertedInsts.insert(NewAnd);
5255 
5256   // Replace all uses of load with new and (except for the use of load in the
5257   // new and itself).
5258   Load->replaceAllUsesWith(NewAnd);
5259   NewAnd->setOperand(0, Load);
5260 
5261   // Remove any and instructions that are now redundant.
5262   for (auto *And : AndsToMaybeRemove)
5263     // Check that the and mask is the same as the one we decided to put on the
5264     // new and.
5265     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5266       And->replaceAllUsesWith(NewAnd);
5267       if (&*CurInstIterator == And)
5268         CurInstIterator = std::next(And->getIterator());
5269       And->eraseFromParent();
5270       ++NumAndUses;
5271     }
5272 
5273   ++NumAndsAdded;
5274   return true;
5275 }
5276 
5277 /// Check if V (an operand of a select instruction) is an expensive instruction
5278 /// that is only used once.
5279 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5280   auto *I = dyn_cast<Instruction>(V);
5281   // If it's safe to speculatively execute, then it should not have side
5282   // effects; therefore, it's safe to sink and possibly *not* execute.
5283   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5284          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5285 }
5286 
5287 /// Returns true if a SelectInst should be turned into an explicit branch.
5288 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5289                                                 const TargetLowering *TLI,
5290                                                 SelectInst *SI) {
5291   // If even a predictable select is cheap, then a branch can't be cheaper.
5292   if (!TLI->isPredictableSelectExpensive())
5293     return false;
5294 
5295   // FIXME: This should use the same heuristics as IfConversion to determine
5296   // whether a select is better represented as a branch.
5297 
5298   // If metadata tells us that the select condition is obviously predictable,
5299   // then we want to replace the select with a branch.
5300   uint64_t TrueWeight, FalseWeight;
5301   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5302     uint64_t Max = std::max(TrueWeight, FalseWeight);
5303     uint64_t Sum = TrueWeight + FalseWeight;
5304     if (Sum != 0) {
5305       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5306       if (Probability > TLI->getPredictableBranchThreshold())
5307         return true;
5308     }
5309   }
5310 
5311   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5312 
5313   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5314   // comparison condition. If the compare has more than one use, there's
5315   // probably another cmov or setcc around, so it's not worth emitting a branch.
5316   if (!Cmp || !Cmp->hasOneUse())
5317     return false;
5318 
5319   // If either operand of the select is expensive and only needed on one side
5320   // of the select, we should form a branch.
5321   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5322       sinkSelectOperand(TTI, SI->getFalseValue()))
5323     return true;
5324 
5325   return false;
5326 }
5327 
5328 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5329 /// false value of \p SI. If the true/false value of \p SI is defined by any
5330 /// select instructions in \p Selects, look through the defining select
5331 /// instruction until the true/false value is not defined in \p Selects.
5332 static Value *getTrueOrFalseValue(
5333     SelectInst *SI, bool isTrue,
5334     const SmallPtrSet<const Instruction *, 2> &Selects) {
5335   Value *V;
5336 
5337   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5338        DefSI = dyn_cast<SelectInst>(V)) {
5339     assert(DefSI->getCondition() == SI->getCondition() &&
5340            "The condition of DefSI does not match with SI");
5341     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5342   }
5343   return V;
5344 }
5345 
5346 /// If we have a SelectInst that will likely profit from branch prediction,
5347 /// turn it into a branch.
5348 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5349   // Find all consecutive select instructions that share the same condition.
5350   SmallVector<SelectInst *, 2> ASI;
5351   ASI.push_back(SI);
5352   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5353        It != SI->getParent()->end(); ++It) {
5354     SelectInst *I = dyn_cast<SelectInst>(&*It);
5355     if (I && SI->getCondition() == I->getCondition()) {
5356       ASI.push_back(I);
5357     } else {
5358       break;
5359     }
5360   }
5361 
5362   SelectInst *LastSI = ASI.back();
5363   // Increment the current iterator to skip all the rest of select instructions
5364   // because they will be either "not lowered" or "all lowered" to branch.
5365   CurInstIterator = std::next(LastSI->getIterator());
5366 
5367   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5368 
5369   // Can we convert the 'select' to CF ?
5370   if (DisableSelectToBranch || OptSize || !TLI || VectorCond ||
5371       SI->getMetadata(LLVMContext::MD_unpredictable))
5372     return false;
5373 
5374   TargetLowering::SelectSupportKind SelectKind;
5375   if (VectorCond)
5376     SelectKind = TargetLowering::VectorMaskSelect;
5377   else if (SI->getType()->isVectorTy())
5378     SelectKind = TargetLowering::ScalarCondVectorVal;
5379   else
5380     SelectKind = TargetLowering::ScalarValSelect;
5381 
5382   if (TLI->isSelectSupported(SelectKind) &&
5383       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5384     return false;
5385 
5386   ModifiedDT = true;
5387 
5388   // Transform a sequence like this:
5389   //    start:
5390   //       %cmp = cmp uge i32 %a, %b
5391   //       %sel = select i1 %cmp, i32 %c, i32 %d
5392   //
5393   // Into:
5394   //    start:
5395   //       %cmp = cmp uge i32 %a, %b
5396   //       br i1 %cmp, label %select.true, label %select.false
5397   //    select.true:
5398   //       br label %select.end
5399   //    select.false:
5400   //       br label %select.end
5401   //    select.end:
5402   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5403   //
5404   // In addition, we may sink instructions that produce %c or %d from
5405   // the entry block into the destination(s) of the new branch.
5406   // If the true or false blocks do not contain a sunken instruction, that
5407   // block and its branch may be optimized away. In that case, one side of the
5408   // first branch will point directly to select.end, and the corresponding PHI
5409   // predecessor block will be the start block.
5410 
5411   // First, we split the block containing the select into 2 blocks.
5412   BasicBlock *StartBlock = SI->getParent();
5413   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5414   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5415 
5416   // Delete the unconditional branch that was just created by the split.
5417   StartBlock->getTerminator()->eraseFromParent();
5418 
5419   // These are the new basic blocks for the conditional branch.
5420   // At least one will become an actual new basic block.
5421   BasicBlock *TrueBlock = nullptr;
5422   BasicBlock *FalseBlock = nullptr;
5423   BranchInst *TrueBranch = nullptr;
5424   BranchInst *FalseBranch = nullptr;
5425 
5426   // Sink expensive instructions into the conditional blocks to avoid executing
5427   // them speculatively.
5428   for (SelectInst *SI : ASI) {
5429     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5430       if (TrueBlock == nullptr) {
5431         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5432                                        EndBlock->getParent(), EndBlock);
5433         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5434       }
5435       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5436       TrueInst->moveBefore(TrueBranch);
5437     }
5438     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5439       if (FalseBlock == nullptr) {
5440         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5441                                         EndBlock->getParent(), EndBlock);
5442         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5443       }
5444       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5445       FalseInst->moveBefore(FalseBranch);
5446     }
5447   }
5448 
5449   // If there was nothing to sink, then arbitrarily choose the 'false' side
5450   // for a new input value to the PHI.
5451   if (TrueBlock == FalseBlock) {
5452     assert(TrueBlock == nullptr &&
5453            "Unexpected basic block transform while optimizing select");
5454 
5455     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5456                                     EndBlock->getParent(), EndBlock);
5457     BranchInst::Create(EndBlock, FalseBlock);
5458   }
5459 
5460   // Insert the real conditional branch based on the original condition.
5461   // If we did not create a new block for one of the 'true' or 'false' paths
5462   // of the condition, it means that side of the branch goes to the end block
5463   // directly and the path originates from the start block from the point of
5464   // view of the new PHI.
5465   BasicBlock *TT, *FT;
5466   if (TrueBlock == nullptr) {
5467     TT = EndBlock;
5468     FT = FalseBlock;
5469     TrueBlock = StartBlock;
5470   } else if (FalseBlock == nullptr) {
5471     TT = TrueBlock;
5472     FT = EndBlock;
5473     FalseBlock = StartBlock;
5474   } else {
5475     TT = TrueBlock;
5476     FT = FalseBlock;
5477   }
5478   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
5479 
5480   SmallPtrSet<const Instruction *, 2> INS;
5481   INS.insert(ASI.begin(), ASI.end());
5482   // Use reverse iterator because later select may use the value of the
5483   // earlier select, and we need to propagate value through earlier select
5484   // to get the PHI operand.
5485   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
5486     SelectInst *SI = *It;
5487     // The select itself is replaced with a PHI Node.
5488     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
5489     PN->takeName(SI);
5490     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
5491     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
5492 
5493     SI->replaceAllUsesWith(PN);
5494     SI->eraseFromParent();
5495     INS.erase(SI);
5496     ++NumSelectsExpanded;
5497   }
5498 
5499   // Instruct OptimizeBlock to skip to the next block.
5500   CurInstIterator = StartBlock->end();
5501   return true;
5502 }
5503 
5504 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
5505   SmallVector<int, 16> Mask(SVI->getShuffleMask());
5506   int SplatElem = -1;
5507   for (unsigned i = 0; i < Mask.size(); ++i) {
5508     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
5509       return false;
5510     SplatElem = Mask[i];
5511   }
5512 
5513   return true;
5514 }
5515 
5516 /// Some targets have expensive vector shifts if the lanes aren't all the same
5517 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5518 /// it's often worth sinking a shufflevector splat down to its use so that
5519 /// codegen can spot all lanes are identical.
5520 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
5521   BasicBlock *DefBB = SVI->getParent();
5522 
5523   // Only do this xform if variable vector shifts are particularly expensive.
5524   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
5525     return false;
5526 
5527   // We only expect better codegen by sinking a shuffle if we can recognise a
5528   // constant splat.
5529   if (!isBroadcastShuffle(SVI))
5530     return false;
5531 
5532   // InsertedShuffles - Only insert a shuffle in each block once.
5533   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
5534 
5535   bool MadeChange = false;
5536   for (User *U : SVI->users()) {
5537     Instruction *UI = cast<Instruction>(U);
5538 
5539     // Figure out which BB this ext is used in.
5540     BasicBlock *UserBB = UI->getParent();
5541     if (UserBB == DefBB) continue;
5542 
5543     // For now only apply this when the splat is used by a shift instruction.
5544     if (!UI->isShift()) continue;
5545 
5546     // Everything checks out, sink the shuffle if the user's block doesn't
5547     // already have a copy.
5548     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
5549 
5550     if (!InsertedShuffle) {
5551       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5552       assert(InsertPt != UserBB->end());
5553       InsertedShuffle =
5554           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5555                                 SVI->getOperand(2), "", &*InsertPt);
5556     }
5557 
5558     UI->replaceUsesOfWith(SVI, InsertedShuffle);
5559     MadeChange = true;
5560   }
5561 
5562   // If we removed all uses, nuke the shuffle.
5563   if (SVI->use_empty()) {
5564     SVI->eraseFromParent();
5565     MadeChange = true;
5566   }
5567 
5568   return MadeChange;
5569 }
5570 
5571 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
5572   if (!TLI || !DL)
5573     return false;
5574 
5575   Value *Cond = SI->getCondition();
5576   Type *OldType = Cond->getType();
5577   LLVMContext &Context = Cond->getContext();
5578   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
5579   unsigned RegWidth = RegType.getSizeInBits();
5580 
5581   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
5582     return false;
5583 
5584   // If the register width is greater than the type width, expand the condition
5585   // of the switch instruction and each case constant to the width of the
5586   // register. By widening the type of the switch condition, subsequent
5587   // comparisons (for case comparisons) will not need to be extended to the
5588   // preferred register width, so we will potentially eliminate N-1 extends,
5589   // where N is the number of cases in the switch.
5590   auto *NewType = Type::getIntNTy(Context, RegWidth);
5591 
5592   // Zero-extend the switch condition and case constants unless the switch
5593   // condition is a function argument that is already being sign-extended.
5594   // In that case, we can avoid an unnecessary mask/extension by sign-extending
5595   // everything instead.
5596   Instruction::CastOps ExtType = Instruction::ZExt;
5597   if (auto *Arg = dyn_cast<Argument>(Cond))
5598     if (Arg->hasSExtAttr())
5599       ExtType = Instruction::SExt;
5600 
5601   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
5602   ExtInst->insertBefore(SI);
5603   SI->setCondition(ExtInst);
5604   for (auto Case : SI->cases()) {
5605     APInt NarrowConst = Case.getCaseValue()->getValue();
5606     APInt WideConst = (ExtType == Instruction::ZExt) ?
5607                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
5608     Case.setValue(ConstantInt::get(Context, WideConst));
5609   }
5610 
5611   return true;
5612 }
5613 
5614 
5615 namespace {
5616 /// \brief Helper class to promote a scalar operation to a vector one.
5617 /// This class is used to move downward extractelement transition.
5618 /// E.g.,
5619 /// a = vector_op <2 x i32>
5620 /// b = extractelement <2 x i32> a, i32 0
5621 /// c = scalar_op b
5622 /// store c
5623 ///
5624 /// =>
5625 /// a = vector_op <2 x i32>
5626 /// c = vector_op a (equivalent to scalar_op on the related lane)
5627 /// * d = extractelement <2 x i32> c, i32 0
5628 /// * store d
5629 /// Assuming both extractelement and store can be combine, we get rid of the
5630 /// transition.
5631 class VectorPromoteHelper {
5632   /// DataLayout associated with the current module.
5633   const DataLayout &DL;
5634 
5635   /// Used to perform some checks on the legality of vector operations.
5636   const TargetLowering &TLI;
5637 
5638   /// Used to estimated the cost of the promoted chain.
5639   const TargetTransformInfo &TTI;
5640 
5641   /// The transition being moved downwards.
5642   Instruction *Transition;
5643   /// The sequence of instructions to be promoted.
5644   SmallVector<Instruction *, 4> InstsToBePromoted;
5645   /// Cost of combining a store and an extract.
5646   unsigned StoreExtractCombineCost;
5647   /// Instruction that will be combined with the transition.
5648   Instruction *CombineInst;
5649 
5650   /// \brief The instruction that represents the current end of the transition.
5651   /// Since we are faking the promotion until we reach the end of the chain
5652   /// of computation, we need a way to get the current end of the transition.
5653   Instruction *getEndOfTransition() const {
5654     if (InstsToBePromoted.empty())
5655       return Transition;
5656     return InstsToBePromoted.back();
5657   }
5658 
5659   /// \brief Return the index of the original value in the transition.
5660   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
5661   /// c, is at index 0.
5662   unsigned getTransitionOriginalValueIdx() const {
5663     assert(isa<ExtractElementInst>(Transition) &&
5664            "Other kind of transitions are not supported yet");
5665     return 0;
5666   }
5667 
5668   /// \brief Return the index of the index in the transition.
5669   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
5670   /// is at index 1.
5671   unsigned getTransitionIdx() const {
5672     assert(isa<ExtractElementInst>(Transition) &&
5673            "Other kind of transitions are not supported yet");
5674     return 1;
5675   }
5676 
5677   /// \brief Get the type of the transition.
5678   /// This is the type of the original value.
5679   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
5680   /// transition is <2 x i32>.
5681   Type *getTransitionType() const {
5682     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
5683   }
5684 
5685   /// \brief Promote \p ToBePromoted by moving \p Def downward through.
5686   /// I.e., we have the following sequence:
5687   /// Def = Transition <ty1> a to <ty2>
5688   /// b = ToBePromoted <ty2> Def, ...
5689   /// =>
5690   /// b = ToBePromoted <ty1> a, ...
5691   /// Def = Transition <ty1> ToBePromoted to <ty2>
5692   void promoteImpl(Instruction *ToBePromoted);
5693 
5694   /// \brief Check whether or not it is profitable to promote all the
5695   /// instructions enqueued to be promoted.
5696   bool isProfitableToPromote() {
5697     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
5698     unsigned Index = isa<ConstantInt>(ValIdx)
5699                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
5700                          : -1;
5701     Type *PromotedType = getTransitionType();
5702 
5703     StoreInst *ST = cast<StoreInst>(CombineInst);
5704     unsigned AS = ST->getPointerAddressSpace();
5705     unsigned Align = ST->getAlignment();
5706     // Check if this store is supported.
5707     if (!TLI.allowsMisalignedMemoryAccesses(
5708             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
5709             Align)) {
5710       // If this is not supported, there is no way we can combine
5711       // the extract with the store.
5712       return false;
5713     }
5714 
5715     // The scalar chain of computation has to pay for the transition
5716     // scalar to vector.
5717     // The vector chain has to account for the combining cost.
5718     uint64_t ScalarCost =
5719         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
5720     uint64_t VectorCost = StoreExtractCombineCost;
5721     for (const auto &Inst : InstsToBePromoted) {
5722       // Compute the cost.
5723       // By construction, all instructions being promoted are arithmetic ones.
5724       // Moreover, one argument is a constant that can be viewed as a splat
5725       // constant.
5726       Value *Arg0 = Inst->getOperand(0);
5727       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
5728                             isa<ConstantFP>(Arg0);
5729       TargetTransformInfo::OperandValueKind Arg0OVK =
5730           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5731                          : TargetTransformInfo::OK_AnyValue;
5732       TargetTransformInfo::OperandValueKind Arg1OVK =
5733           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5734                           : TargetTransformInfo::OK_AnyValue;
5735       ScalarCost += TTI.getArithmeticInstrCost(
5736           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
5737       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
5738                                                Arg0OVK, Arg1OVK);
5739     }
5740     DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
5741                  << ScalarCost << "\nVector: " << VectorCost << '\n');
5742     return ScalarCost > VectorCost;
5743   }
5744 
5745   /// \brief Generate a constant vector with \p Val with the same
5746   /// number of elements as the transition.
5747   /// \p UseSplat defines whether or not \p Val should be replicated
5748   /// across the whole vector.
5749   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
5750   /// otherwise we generate a vector with as many undef as possible:
5751   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
5752   /// used at the index of the extract.
5753   Value *getConstantVector(Constant *Val, bool UseSplat) const {
5754     unsigned ExtractIdx = UINT_MAX;
5755     if (!UseSplat) {
5756       // If we cannot determine where the constant must be, we have to
5757       // use a splat constant.
5758       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
5759       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
5760         ExtractIdx = CstVal->getSExtValue();
5761       else
5762         UseSplat = true;
5763     }
5764 
5765     unsigned End = getTransitionType()->getVectorNumElements();
5766     if (UseSplat)
5767       return ConstantVector::getSplat(End, Val);
5768 
5769     SmallVector<Constant *, 4> ConstVec;
5770     UndefValue *UndefVal = UndefValue::get(Val->getType());
5771     for (unsigned Idx = 0; Idx != End; ++Idx) {
5772       if (Idx == ExtractIdx)
5773         ConstVec.push_back(Val);
5774       else
5775         ConstVec.push_back(UndefVal);
5776     }
5777     return ConstantVector::get(ConstVec);
5778   }
5779 
5780   /// \brief Check if promoting to a vector type an operand at \p OperandIdx
5781   /// in \p Use can trigger undefined behavior.
5782   static bool canCauseUndefinedBehavior(const Instruction *Use,
5783                                         unsigned OperandIdx) {
5784     // This is not safe to introduce undef when the operand is on
5785     // the right hand side of a division-like instruction.
5786     if (OperandIdx != 1)
5787       return false;
5788     switch (Use->getOpcode()) {
5789     default:
5790       return false;
5791     case Instruction::SDiv:
5792     case Instruction::UDiv:
5793     case Instruction::SRem:
5794     case Instruction::URem:
5795       return true;
5796     case Instruction::FDiv:
5797     case Instruction::FRem:
5798       return !Use->hasNoNaNs();
5799     }
5800     llvm_unreachable(nullptr);
5801   }
5802 
5803 public:
5804   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
5805                       const TargetTransformInfo &TTI, Instruction *Transition,
5806                       unsigned CombineCost)
5807       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
5808         StoreExtractCombineCost(CombineCost), CombineInst(nullptr) {
5809     assert(Transition && "Do not know how to promote null");
5810   }
5811 
5812   /// \brief Check if we can promote \p ToBePromoted to \p Type.
5813   bool canPromote(const Instruction *ToBePromoted) const {
5814     // We could support CastInst too.
5815     return isa<BinaryOperator>(ToBePromoted);
5816   }
5817 
5818   /// \brief Check if it is profitable to promote \p ToBePromoted
5819   /// by moving downward the transition through.
5820   bool shouldPromote(const Instruction *ToBePromoted) const {
5821     // Promote only if all the operands can be statically expanded.
5822     // Indeed, we do not want to introduce any new kind of transitions.
5823     for (const Use &U : ToBePromoted->operands()) {
5824       const Value *Val = U.get();
5825       if (Val == getEndOfTransition()) {
5826         // If the use is a division and the transition is on the rhs,
5827         // we cannot promote the operation, otherwise we may create a
5828         // division by zero.
5829         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
5830           return false;
5831         continue;
5832       }
5833       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
5834           !isa<ConstantFP>(Val))
5835         return false;
5836     }
5837     // Check that the resulting operation is legal.
5838     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
5839     if (!ISDOpcode)
5840       return false;
5841     return StressStoreExtract ||
5842            TLI.isOperationLegalOrCustom(
5843                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
5844   }
5845 
5846   /// \brief Check whether or not \p Use can be combined
5847   /// with the transition.
5848   /// I.e., is it possible to do Use(Transition) => AnotherUse?
5849   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
5850 
5851   /// \brief Record \p ToBePromoted as part of the chain to be promoted.
5852   void enqueueForPromotion(Instruction *ToBePromoted) {
5853     InstsToBePromoted.push_back(ToBePromoted);
5854   }
5855 
5856   /// \brief Set the instruction that will be combined with the transition.
5857   void recordCombineInstruction(Instruction *ToBeCombined) {
5858     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
5859     CombineInst = ToBeCombined;
5860   }
5861 
5862   /// \brief Promote all the instructions enqueued for promotion if it is
5863   /// is profitable.
5864   /// \return True if the promotion happened, false otherwise.
5865   bool promote() {
5866     // Check if there is something to promote.
5867     // Right now, if we do not have anything to combine with,
5868     // we assume the promotion is not profitable.
5869     if (InstsToBePromoted.empty() || !CombineInst)
5870       return false;
5871 
5872     // Check cost.
5873     if (!StressStoreExtract && !isProfitableToPromote())
5874       return false;
5875 
5876     // Promote.
5877     for (auto &ToBePromoted : InstsToBePromoted)
5878       promoteImpl(ToBePromoted);
5879     InstsToBePromoted.clear();
5880     return true;
5881   }
5882 };
5883 } // End of anonymous namespace.
5884 
5885 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
5886   // At this point, we know that all the operands of ToBePromoted but Def
5887   // can be statically promoted.
5888   // For Def, we need to use its parameter in ToBePromoted:
5889   // b = ToBePromoted ty1 a
5890   // Def = Transition ty1 b to ty2
5891   // Move the transition down.
5892   // 1. Replace all uses of the promoted operation by the transition.
5893   // = ... b => = ... Def.
5894   assert(ToBePromoted->getType() == Transition->getType() &&
5895          "The type of the result of the transition does not match "
5896          "the final type");
5897   ToBePromoted->replaceAllUsesWith(Transition);
5898   // 2. Update the type of the uses.
5899   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
5900   Type *TransitionTy = getTransitionType();
5901   ToBePromoted->mutateType(TransitionTy);
5902   // 3. Update all the operands of the promoted operation with promoted
5903   // operands.
5904   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
5905   for (Use &U : ToBePromoted->operands()) {
5906     Value *Val = U.get();
5907     Value *NewVal = nullptr;
5908     if (Val == Transition)
5909       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
5910     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
5911              isa<ConstantFP>(Val)) {
5912       // Use a splat constant if it is not safe to use undef.
5913       NewVal = getConstantVector(
5914           cast<Constant>(Val),
5915           isa<UndefValue>(Val) ||
5916               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
5917     } else
5918       llvm_unreachable("Did you modified shouldPromote and forgot to update "
5919                        "this?");
5920     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
5921   }
5922   Transition->removeFromParent();
5923   Transition->insertAfter(ToBePromoted);
5924   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
5925 }
5926 
5927 /// Some targets can do store(extractelement) with one instruction.
5928 /// Try to push the extractelement towards the stores when the target
5929 /// has this feature and this is profitable.
5930 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
5931   unsigned CombineCost = UINT_MAX;
5932   if (DisableStoreExtract || !TLI ||
5933       (!StressStoreExtract &&
5934        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
5935                                        Inst->getOperand(1), CombineCost)))
5936     return false;
5937 
5938   // At this point we know that Inst is a vector to scalar transition.
5939   // Try to move it down the def-use chain, until:
5940   // - We can combine the transition with its single use
5941   //   => we got rid of the transition.
5942   // - We escape the current basic block
5943   //   => we would need to check that we are moving it at a cheaper place and
5944   //      we do not do that for now.
5945   BasicBlock *Parent = Inst->getParent();
5946   DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
5947   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
5948   // If the transition has more than one use, assume this is not going to be
5949   // beneficial.
5950   while (Inst->hasOneUse()) {
5951     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
5952     DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
5953 
5954     if (ToBePromoted->getParent() != Parent) {
5955       DEBUG(dbgs() << "Instruction to promote is in a different block ("
5956                    << ToBePromoted->getParent()->getName()
5957                    << ") than the transition (" << Parent->getName() << ").\n");
5958       return false;
5959     }
5960 
5961     if (VPH.canCombine(ToBePromoted)) {
5962       DEBUG(dbgs() << "Assume " << *Inst << '\n'
5963                    << "will be combined with: " << *ToBePromoted << '\n');
5964       VPH.recordCombineInstruction(ToBePromoted);
5965       bool Changed = VPH.promote();
5966       NumStoreExtractExposed += Changed;
5967       return Changed;
5968     }
5969 
5970     DEBUG(dbgs() << "Try promoting.\n");
5971     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
5972       return false;
5973 
5974     DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
5975 
5976     VPH.enqueueForPromotion(ToBePromoted);
5977     Inst = ToBePromoted;
5978   }
5979   return false;
5980 }
5981 
5982 /// For the instruction sequence of store below, F and I values
5983 /// are bundled together as an i64 value before being stored into memory.
5984 /// Sometimes it is more efficent to generate separate stores for F and I,
5985 /// which can remove the bitwise instructions or sink them to colder places.
5986 ///
5987 ///   (store (or (zext (bitcast F to i32) to i64),
5988 ///              (shl (zext I to i64), 32)), addr)  -->
5989 ///   (store F, addr) and (store I, addr+4)
5990 ///
5991 /// Similarly, splitting for other merged store can also be beneficial, like:
5992 /// For pair of {i32, i32}, i64 store --> two i32 stores.
5993 /// For pair of {i32, i16}, i64 store --> two i32 stores.
5994 /// For pair of {i16, i16}, i32 store --> two i16 stores.
5995 /// For pair of {i16, i8},  i32 store --> two i16 stores.
5996 /// For pair of {i8, i8},   i16 store --> two i8 stores.
5997 ///
5998 /// We allow each target to determine specifically which kind of splitting is
5999 /// supported.
6000 ///
6001 /// The store patterns are commonly seen from the simple code snippet below
6002 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6003 ///   void goo(const std::pair<int, float> &);
6004 ///   hoo() {
6005 ///     ...
6006 ///     goo(std::make_pair(tmp, ftmp));
6007 ///     ...
6008 ///   }
6009 ///
6010 /// Although we already have similar splitting in DAG Combine, we duplicate
6011 /// it in CodeGenPrepare to catch the case in which pattern is across
6012 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6013 /// during code expansion.
6014 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6015                                 const TargetLowering &TLI) {
6016   // Handle simple but common cases only.
6017   Type *StoreType = SI.getValueOperand()->getType();
6018   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6019       DL.getTypeSizeInBits(StoreType) == 0)
6020     return false;
6021 
6022   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6023   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6024   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6025       DL.getTypeSizeInBits(SplitStoreType))
6026     return false;
6027 
6028   // Match the following patterns:
6029   // (store (or (zext LValue to i64),
6030   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6031   //  or
6032   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6033   //            (zext LValue to i64),
6034   // Expect both operands of OR and the first operand of SHL have only
6035   // one use.
6036   Value *LValue, *HValue;
6037   if (!match(SI.getValueOperand(),
6038              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6039                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6040                                    m_SpecificInt(HalfValBitSize))))))
6041     return false;
6042 
6043   // Check LValue and HValue are int with size less or equal than 32.
6044   if (!LValue->getType()->isIntegerTy() ||
6045       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6046       !HValue->getType()->isIntegerTy() ||
6047       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6048     return false;
6049 
6050   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6051   // as the input of target query.
6052   auto *LBC = dyn_cast<BitCastInst>(LValue);
6053   auto *HBC = dyn_cast<BitCastInst>(HValue);
6054   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6055                   : EVT::getEVT(LValue->getType());
6056   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6057                    : EVT::getEVT(HValue->getType());
6058   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6059     return false;
6060 
6061   // Start to split store.
6062   IRBuilder<> Builder(SI.getContext());
6063   Builder.SetInsertPoint(&SI);
6064 
6065   // If LValue/HValue is a bitcast in another BB, create a new one in current
6066   // BB so it may be merged with the splitted stores by dag combiner.
6067   if (LBC && LBC->getParent() != SI.getParent())
6068     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6069   if (HBC && HBC->getParent() != SI.getParent())
6070     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6071 
6072   auto CreateSplitStore = [&](Value *V, bool Upper) {
6073     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6074     Value *Addr = Builder.CreateBitCast(
6075         SI.getOperand(1),
6076         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6077     if (Upper)
6078       Addr = Builder.CreateGEP(
6079           SplitStoreType, Addr,
6080           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6081     Builder.CreateAlignedStore(
6082         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6083   };
6084 
6085   CreateSplitStore(LValue, false);
6086   CreateSplitStore(HValue, true);
6087 
6088   // Delete the old store.
6089   SI.eraseFromParent();
6090   return true;
6091 }
6092 
6093 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6094   // Bail out if we inserted the instruction to prevent optimizations from
6095   // stepping on each other's toes.
6096   if (InsertedInsts.count(I))
6097     return false;
6098 
6099   if (PHINode *P = dyn_cast<PHINode>(I)) {
6100     // It is possible for very late stage optimizations (such as SimplifyCFG)
6101     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6102     // trivial PHI, go ahead and zap it here.
6103     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6104       P->replaceAllUsesWith(V);
6105       P->eraseFromParent();
6106       ++NumPHIsElim;
6107       return true;
6108     }
6109     return false;
6110   }
6111 
6112   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6113     // If the source of the cast is a constant, then this should have
6114     // already been constant folded.  The only reason NOT to constant fold
6115     // it is if something (e.g. LSR) was careful to place the constant
6116     // evaluation in a block other than then one that uses it (e.g. to hoist
6117     // the address of globals out of a loop).  If this is the case, we don't
6118     // want to forward-subst the cast.
6119     if (isa<Constant>(CI->getOperand(0)))
6120       return false;
6121 
6122     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6123       return true;
6124 
6125     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6126       /// Sink a zext or sext into its user blocks if the target type doesn't
6127       /// fit in one register
6128       if (TLI &&
6129           TLI->getTypeAction(CI->getContext(),
6130                              TLI->getValueType(*DL, CI->getType())) ==
6131               TargetLowering::TypeExpandInteger) {
6132         return SinkCast(CI);
6133       } else {
6134         bool MadeChange = optimizeExt(I);
6135         return MadeChange | optimizeExtUses(I);
6136       }
6137     }
6138     return false;
6139   }
6140 
6141   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6142     if (!TLI || !TLI->hasMultipleConditionRegisters())
6143       return OptimizeCmpExpression(CI, TLI);
6144 
6145   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6146     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6147     if (TLI) {
6148       bool Modified = optimizeLoadExt(LI);
6149       unsigned AS = LI->getPointerAddressSpace();
6150       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6151       return Modified;
6152     }
6153     return false;
6154   }
6155 
6156   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6157     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6158       return true;
6159     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6160     if (TLI) {
6161       unsigned AS = SI->getPointerAddressSpace();
6162       return optimizeMemoryInst(I, SI->getOperand(1),
6163                                 SI->getOperand(0)->getType(), AS);
6164     }
6165     return false;
6166   }
6167 
6168   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6169       unsigned AS = RMW->getPointerAddressSpace();
6170       return optimizeMemoryInst(I, RMW->getPointerOperand(),
6171                                 RMW->getType(), AS);
6172   }
6173 
6174   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6175       unsigned AS = CmpX->getPointerAddressSpace();
6176       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6177                                 CmpX->getCompareOperand()->getType(), AS);
6178   }
6179 
6180   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6181 
6182   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6183       EnableAndCmpSinking && TLI)
6184     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6185 
6186   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6187                 BinOp->getOpcode() == Instruction::LShr)) {
6188     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6189     if (TLI && CI && TLI->hasExtractBitsInsn())
6190       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6191 
6192     return false;
6193   }
6194 
6195   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6196     if (GEPI->hasAllZeroIndices()) {
6197       /// The GEP operand must be a pointer, so must its result -> BitCast
6198       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6199                                         GEPI->getName(), GEPI);
6200       GEPI->replaceAllUsesWith(NC);
6201       GEPI->eraseFromParent();
6202       ++NumGEPsElim;
6203       optimizeInst(NC, ModifiedDT);
6204       return true;
6205     }
6206     return false;
6207   }
6208 
6209   if (CallInst *CI = dyn_cast<CallInst>(I))
6210     return optimizeCallInst(CI, ModifiedDT);
6211 
6212   if (SelectInst *SI = dyn_cast<SelectInst>(I))
6213     return optimizeSelectInst(SI);
6214 
6215   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6216     return optimizeShuffleVectorInst(SVI);
6217 
6218   if (auto *Switch = dyn_cast<SwitchInst>(I))
6219     return optimizeSwitchInst(Switch);
6220 
6221   if (isa<ExtractElementInst>(I))
6222     return optimizeExtractElementInst(I);
6223 
6224   return false;
6225 }
6226 
6227 /// Given an OR instruction, check to see if this is a bitreverse
6228 /// idiom. If so, insert the new intrinsic and return true.
6229 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6230                            const TargetLowering &TLI) {
6231   if (!I.getType()->isIntegerTy() ||
6232       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6233                                     TLI.getValueType(DL, I.getType(), true)))
6234     return false;
6235 
6236   SmallVector<Instruction*, 4> Insts;
6237   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6238     return false;
6239   Instruction *LastInst = Insts.back();
6240   I.replaceAllUsesWith(LastInst);
6241   RecursivelyDeleteTriviallyDeadInstructions(&I);
6242   return true;
6243 }
6244 
6245 // In this pass we look for GEP and cast instructions that are used
6246 // across basic blocks and rewrite them to improve basic-block-at-a-time
6247 // selection.
6248 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
6249   SunkAddrs.clear();
6250   bool MadeChange = false;
6251 
6252   CurInstIterator = BB.begin();
6253   while (CurInstIterator != BB.end()) {
6254     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
6255     if (ModifiedDT)
6256       return true;
6257   }
6258 
6259   bool MadeBitReverse = true;
6260   while (TLI && MadeBitReverse) {
6261     MadeBitReverse = false;
6262     for (auto &I : reverse(BB)) {
6263       if (makeBitReverse(I, *DL, *TLI)) {
6264         MadeBitReverse = MadeChange = true;
6265         ModifiedDT = true;
6266         break;
6267       }
6268     }
6269   }
6270   MadeChange |= dupRetToEnableTailCallOpts(&BB);
6271 
6272   return MadeChange;
6273 }
6274 
6275 // llvm.dbg.value is far away from the value then iSel may not be able
6276 // handle it properly. iSel will drop llvm.dbg.value if it can not
6277 // find a node corresponding to the value.
6278 bool CodeGenPrepare::placeDbgValues(Function &F) {
6279   bool MadeChange = false;
6280   for (BasicBlock &BB : F) {
6281     Instruction *PrevNonDbgInst = nullptr;
6282     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
6283       Instruction *Insn = &*BI++;
6284       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
6285       // Leave dbg.values that refer to an alloca alone. These
6286       // instrinsics describe the address of a variable (= the alloca)
6287       // being taken.  They should not be moved next to the alloca
6288       // (and to the beginning of the scope), but rather stay close to
6289       // where said address is used.
6290       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
6291         PrevNonDbgInst = Insn;
6292         continue;
6293       }
6294 
6295       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
6296       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
6297         // If VI is a phi in a block with an EHPad terminator, we can't insert
6298         // after it.
6299         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
6300           continue;
6301         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
6302         DVI->removeFromParent();
6303         if (isa<PHINode>(VI))
6304           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
6305         else
6306           DVI->insertAfter(VI);
6307         MadeChange = true;
6308         ++NumDbgValueMoved;
6309       }
6310     }
6311   }
6312   return MadeChange;
6313 }
6314 
6315 /// \brief Scale down both weights to fit into uint32_t.
6316 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
6317   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
6318   uint32_t Scale = (NewMax / UINT32_MAX) + 1;
6319   NewTrue = NewTrue / Scale;
6320   NewFalse = NewFalse / Scale;
6321 }
6322 
6323 /// \brief Some targets prefer to split a conditional branch like:
6324 /// \code
6325 ///   %0 = icmp ne i32 %a, 0
6326 ///   %1 = icmp ne i32 %b, 0
6327 ///   %or.cond = or i1 %0, %1
6328 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
6329 /// \endcode
6330 /// into multiple branch instructions like:
6331 /// \code
6332 ///   bb1:
6333 ///     %0 = icmp ne i32 %a, 0
6334 ///     br i1 %0, label %TrueBB, label %bb2
6335 ///   bb2:
6336 ///     %1 = icmp ne i32 %b, 0
6337 ///     br i1 %1, label %TrueBB, label %FalseBB
6338 /// \endcode
6339 /// This usually allows instruction selection to do even further optimizations
6340 /// and combine the compare with the branch instruction. Currently this is
6341 /// applied for targets which have "cheap" jump instructions.
6342 ///
6343 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6344 ///
6345 bool CodeGenPrepare::splitBranchCondition(Function &F) {
6346   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
6347     return false;
6348 
6349   bool MadeChange = false;
6350   for (auto &BB : F) {
6351     // Does this BB end with the following?
6352     //   %cond1 = icmp|fcmp|binary instruction ...
6353     //   %cond2 = icmp|fcmp|binary instruction ...
6354     //   %cond.or = or|and i1 %cond1, cond2
6355     //   br i1 %cond.or label %dest1, label %dest2"
6356     BinaryOperator *LogicOp;
6357     BasicBlock *TBB, *FBB;
6358     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
6359       continue;
6360 
6361     auto *Br1 = cast<BranchInst>(BB.getTerminator());
6362     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
6363       continue;
6364 
6365     unsigned Opc;
6366     Value *Cond1, *Cond2;
6367     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
6368                              m_OneUse(m_Value(Cond2)))))
6369       Opc = Instruction::And;
6370     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
6371                                  m_OneUse(m_Value(Cond2)))))
6372       Opc = Instruction::Or;
6373     else
6374       continue;
6375 
6376     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
6377         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
6378       continue;
6379 
6380     DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
6381 
6382     // Create a new BB.
6383     auto TmpBB =
6384         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
6385                            BB.getParent(), BB.getNextNode());
6386 
6387     // Update original basic block by using the first condition directly by the
6388     // branch instruction and removing the no longer needed and/or instruction.
6389     Br1->setCondition(Cond1);
6390     LogicOp->eraseFromParent();
6391 
6392     // Depending on the conditon we have to either replace the true or the false
6393     // successor of the original branch instruction.
6394     if (Opc == Instruction::And)
6395       Br1->setSuccessor(0, TmpBB);
6396     else
6397       Br1->setSuccessor(1, TmpBB);
6398 
6399     // Fill in the new basic block.
6400     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
6401     if (auto *I = dyn_cast<Instruction>(Cond2)) {
6402       I->removeFromParent();
6403       I->insertBefore(Br2);
6404     }
6405 
6406     // Update PHI nodes in both successors. The original BB needs to be
6407     // replaced in one successor's PHI nodes, because the branch comes now from
6408     // the newly generated BB (NewBB). In the other successor we need to add one
6409     // incoming edge to the PHI nodes, because both branch instructions target
6410     // now the same successor. Depending on the original branch condition
6411     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6412     // we perform the correct update for the PHI nodes.
6413     // This doesn't change the successor order of the just created branch
6414     // instruction (or any other instruction).
6415     if (Opc == Instruction::Or)
6416       std::swap(TBB, FBB);
6417 
6418     // Replace the old BB with the new BB.
6419     for (auto &I : *TBB) {
6420       PHINode *PN = dyn_cast<PHINode>(&I);
6421       if (!PN)
6422         break;
6423       int i;
6424       while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
6425         PN->setIncomingBlock(i, TmpBB);
6426     }
6427 
6428     // Add another incoming edge form the new BB.
6429     for (auto &I : *FBB) {
6430       PHINode *PN = dyn_cast<PHINode>(&I);
6431       if (!PN)
6432         break;
6433       auto *Val = PN->getIncomingValueForBlock(&BB);
6434       PN->addIncoming(Val, TmpBB);
6435     }
6436 
6437     // Update the branch weights (from SelectionDAGBuilder::
6438     // FindMergedConditions).
6439     if (Opc == Instruction::Or) {
6440       // Codegen X | Y as:
6441       // BB1:
6442       //   jmp_if_X TBB
6443       //   jmp TmpBB
6444       // TmpBB:
6445       //   jmp_if_Y TBB
6446       //   jmp FBB
6447       //
6448 
6449       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
6450       // The requirement is that
6451       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
6452       //     = TrueProb for orignal BB.
6453       // Assuming the orignal weights are A and B, one choice is to set BB1's
6454       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
6455       // assumes that
6456       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
6457       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
6458       // TmpBB, but the math is more complicated.
6459       uint64_t TrueWeight, FalseWeight;
6460       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6461         uint64_t NewTrueWeight = TrueWeight;
6462         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
6463         scaleWeights(NewTrueWeight, NewFalseWeight);
6464         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6465                          .createBranchWeights(TrueWeight, FalseWeight));
6466 
6467         NewTrueWeight = TrueWeight;
6468         NewFalseWeight = 2 * FalseWeight;
6469         scaleWeights(NewTrueWeight, NewFalseWeight);
6470         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6471                          .createBranchWeights(TrueWeight, FalseWeight));
6472       }
6473     } else {
6474       // Codegen X & Y as:
6475       // BB1:
6476       //   jmp_if_X TmpBB
6477       //   jmp FBB
6478       // TmpBB:
6479       //   jmp_if_Y TBB
6480       //   jmp FBB
6481       //
6482       //  This requires creation of TmpBB after CurBB.
6483 
6484       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
6485       // The requirement is that
6486       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
6487       //     = FalseProb for orignal BB.
6488       // Assuming the orignal weights are A and B, one choice is to set BB1's
6489       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
6490       // assumes that
6491       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
6492       uint64_t TrueWeight, FalseWeight;
6493       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6494         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
6495         uint64_t NewFalseWeight = FalseWeight;
6496         scaleWeights(NewTrueWeight, NewFalseWeight);
6497         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6498                          .createBranchWeights(TrueWeight, FalseWeight));
6499 
6500         NewTrueWeight = 2 * TrueWeight;
6501         NewFalseWeight = FalseWeight;
6502         scaleWeights(NewTrueWeight, NewFalseWeight);
6503         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6504                          .createBranchWeights(TrueWeight, FalseWeight));
6505       }
6506     }
6507 
6508     // Note: No point in getting fancy here, since the DT info is never
6509     // available to CodeGenPrepare.
6510     ModifiedDT = true;
6511 
6512     MadeChange = true;
6513 
6514     DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
6515           TmpBB->dump());
6516   }
6517   return MadeChange;
6518 }
6519