1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/CodeGen/TargetPassConfig.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InlineAsm.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/Statepoint.h" 48 #include "llvm/IR/ValueHandle.h" 49 #include "llvm/IR/ValueMap.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/BranchProbability.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetLowering.h" 56 #include "llvm/Target/TargetSubtargetInfo.h" 57 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 58 #include "llvm/Transforms/Utils/BuildLibCalls.h" 59 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 63 #include "llvm/Transforms/Utils/ValueMapper.h" 64 65 using namespace llvm; 66 using namespace llvm::PatternMatch; 67 68 #define DEBUG_TYPE "codegenprepare" 69 70 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 71 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 72 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 73 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 74 "sunken Cmps"); 75 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 76 "of sunken Casts"); 77 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 78 "computations were sunk"); 79 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 80 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 81 STATISTIC(NumAndsAdded, 82 "Number of and mask instructions added to form ext loads"); 83 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 84 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 85 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 86 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 87 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 88 89 STATISTIC(NumMemCmpCalls, "Number of memcmp calls"); 90 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size"); 91 STATISTIC(NumMemCmpGreaterThanMax, 92 "Number of memcmp calls with size greater than max size"); 93 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls"); 94 95 static cl::opt<bool> DisableBranchOpts( 96 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 97 cl::desc("Disable branch optimizations in CodeGenPrepare")); 98 99 static cl::opt<bool> 100 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 101 cl::desc("Disable GC optimizations in CodeGenPrepare")); 102 103 static cl::opt<bool> DisableSelectToBranch( 104 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 105 cl::desc("Disable select to branch conversion.")); 106 107 static cl::opt<bool> AddrSinkUsingGEPs( 108 "addr-sink-using-gep", cl::Hidden, cl::init(true), 109 cl::desc("Address sinking in CGP using GEPs.")); 110 111 static cl::opt<bool> EnableAndCmpSinking( 112 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 113 cl::desc("Enable sinkinig and/cmp into branches.")); 114 115 static cl::opt<bool> DisableStoreExtract( 116 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 117 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 118 119 static cl::opt<bool> StressStoreExtract( 120 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 121 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 122 123 static cl::opt<bool> DisableExtLdPromotion( 124 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 125 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 126 "CodeGenPrepare")); 127 128 static cl::opt<bool> StressExtLdPromotion( 129 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 130 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 131 "optimization in CodeGenPrepare")); 132 133 static cl::opt<bool> DisablePreheaderProtect( 134 "disable-preheader-prot", cl::Hidden, cl::init(false), 135 cl::desc("Disable protection against removing loop preheaders")); 136 137 static cl::opt<bool> ProfileGuidedSectionPrefix( 138 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 139 cl::desc("Use profile info to add section prefix for hot/cold functions")); 140 141 static cl::opt<unsigned> FreqRatioToSkipMerge( 142 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 143 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 144 "(frequency of destination block) is greater than this ratio")); 145 146 static cl::opt<bool> ForceSplitStore( 147 "force-split-store", cl::Hidden, cl::init(false), 148 cl::desc("Force store splitting no matter what the target query says.")); 149 150 static cl::opt<bool> 151 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 152 cl::desc("Enable merging of redundant sexts when one is dominating" 153 " the other."), cl::init(true)); 154 155 static cl::opt<unsigned> MemCmpNumLoadsPerBlock( 156 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1), 157 cl::desc("The number of loads per basic block for inline expansion of " 158 "memcmp that is only being compared against zero.")); 159 160 namespace { 161 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 162 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 163 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 164 typedef SmallVector<Instruction *, 16> SExts; 165 typedef DenseMap<Value *, SExts> ValueToSExts; 166 class TypePromotionTransaction; 167 168 class CodeGenPrepare : public FunctionPass { 169 const TargetMachine *TM; 170 const TargetSubtargetInfo *SubtargetInfo; 171 const TargetLowering *TLI; 172 const TargetRegisterInfo *TRI; 173 const TargetTransformInfo *TTI; 174 const TargetLibraryInfo *TLInfo; 175 const LoopInfo *LI; 176 std::unique_ptr<BlockFrequencyInfo> BFI; 177 std::unique_ptr<BranchProbabilityInfo> BPI; 178 179 /// As we scan instructions optimizing them, this is the next instruction 180 /// to optimize. Transforms that can invalidate this should update it. 181 BasicBlock::iterator CurInstIterator; 182 183 /// Keeps track of non-local addresses that have been sunk into a block. 184 /// This allows us to avoid inserting duplicate code for blocks with 185 /// multiple load/stores of the same address. 186 ValueMap<Value*, Value*> SunkAddrs; 187 188 /// Keeps track of all instructions inserted for the current function. 189 SetOfInstrs InsertedInsts; 190 /// Keeps track of the type of the related instruction before their 191 /// promotion for the current function. 192 InstrToOrigTy PromotedInsts; 193 194 /// Keep track of instructions removed during promotion. 195 SetOfInstrs RemovedInsts; 196 197 /// Keep track of sext chains based on their initial value. 198 DenseMap<Value *, Instruction *> SeenChainsForSExt; 199 200 /// Keep track of SExt promoted. 201 ValueToSExts ValToSExtendedUses; 202 203 /// True if CFG is modified in any way. 204 bool ModifiedDT; 205 206 /// True if optimizing for size. 207 bool OptSize; 208 209 /// DataLayout for the Function being processed. 210 const DataLayout *DL; 211 212 public: 213 static char ID; // Pass identification, replacement for typeid 214 CodeGenPrepare() 215 : FunctionPass(ID), TM(nullptr), TLI(nullptr), TTI(nullptr), 216 DL(nullptr) { 217 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 218 } 219 bool runOnFunction(Function &F) override; 220 221 StringRef getPassName() const override { return "CodeGen Prepare"; } 222 223 void getAnalysisUsage(AnalysisUsage &AU) const override { 224 // FIXME: When we can selectively preserve passes, preserve the domtree. 225 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 226 AU.addRequired<TargetLibraryInfoWrapperPass>(); 227 AU.addRequired<TargetTransformInfoWrapperPass>(); 228 AU.addRequired<LoopInfoWrapperPass>(); 229 } 230 231 private: 232 bool eliminateFallThrough(Function &F); 233 bool eliminateMostlyEmptyBlocks(Function &F); 234 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 235 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 236 void eliminateMostlyEmptyBlock(BasicBlock *BB); 237 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 238 bool isPreheader); 239 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 240 bool optimizeInst(Instruction *I, bool& ModifiedDT); 241 bool optimizeMemoryInst(Instruction *I, Value *Addr, 242 Type *AccessTy, unsigned AS); 243 bool optimizeInlineAsmInst(CallInst *CS); 244 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 245 bool optimizeExt(Instruction *&I); 246 bool optimizeExtUses(Instruction *I); 247 bool optimizeLoadExt(LoadInst *I); 248 bool optimizeSelectInst(SelectInst *SI); 249 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 250 bool optimizeSwitchInst(SwitchInst *CI); 251 bool optimizeExtractElementInst(Instruction *Inst); 252 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 253 bool placeDbgValues(Function &F); 254 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 255 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 256 bool tryToPromoteExts(TypePromotionTransaction &TPT, 257 const SmallVectorImpl<Instruction *> &Exts, 258 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 259 unsigned CreatedInstsCost = 0); 260 bool mergeSExts(Function &F); 261 bool performAddressTypePromotion( 262 Instruction *&Inst, 263 bool AllowPromotionWithoutCommonHeader, 264 bool HasPromoted, TypePromotionTransaction &TPT, 265 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 266 bool splitBranchCondition(Function &F); 267 bool simplifyOffsetableRelocate(Instruction &I); 268 bool splitIndirectCriticalEdges(Function &F); 269 }; 270 } 271 272 char CodeGenPrepare::ID = 0; 273 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 274 "Optimize for code generation", false, false) 275 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 276 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 277 "Optimize for code generation", false, false) 278 279 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 280 281 bool CodeGenPrepare::runOnFunction(Function &F) { 282 if (skipFunction(F)) 283 return false; 284 285 DL = &F.getParent()->getDataLayout(); 286 287 bool EverMadeChange = false; 288 // Clear per function information. 289 InsertedInsts.clear(); 290 PromotedInsts.clear(); 291 BFI.reset(); 292 BPI.reset(); 293 294 ModifiedDT = false; 295 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 296 TM = &TPC->getTM<TargetMachine>(); 297 SubtargetInfo = TM->getSubtargetImpl(F); 298 TLI = SubtargetInfo->getTargetLowering(); 299 TRI = SubtargetInfo->getRegisterInfo(); 300 } 301 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 302 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 303 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 304 OptSize = F.optForSize(); 305 306 if (ProfileGuidedSectionPrefix) { 307 ProfileSummaryInfo *PSI = 308 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 309 if (PSI->isFunctionHotInCallGraph(&F)) 310 F.setSectionPrefix(".hot"); 311 else if (PSI->isFunctionColdInCallGraph(&F)) 312 F.setSectionPrefix(".unlikely"); 313 } 314 315 /// This optimization identifies DIV instructions that can be 316 /// profitably bypassed and carried out with a shorter, faster divide. 317 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 318 const DenseMap<unsigned int, unsigned int> &BypassWidths = 319 TLI->getBypassSlowDivWidths(); 320 BasicBlock* BB = &*F.begin(); 321 while (BB != nullptr) { 322 // bypassSlowDivision may create new BBs, but we don't want to reapply the 323 // optimization to those blocks. 324 BasicBlock* Next = BB->getNextNode(); 325 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 326 BB = Next; 327 } 328 } 329 330 // Eliminate blocks that contain only PHI nodes and an 331 // unconditional branch. 332 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 333 334 // llvm.dbg.value is far away from the value then iSel may not be able 335 // handle it properly. iSel will drop llvm.dbg.value if it can not 336 // find a node corresponding to the value. 337 EverMadeChange |= placeDbgValues(F); 338 339 if (!DisableBranchOpts) 340 EverMadeChange |= splitBranchCondition(F); 341 342 // Split some critical edges where one of the sources is an indirect branch, 343 // to help generate sane code for PHIs involving such edges. 344 EverMadeChange |= splitIndirectCriticalEdges(F); 345 346 bool MadeChange = true; 347 while (MadeChange) { 348 MadeChange = false; 349 SeenChainsForSExt.clear(); 350 ValToSExtendedUses.clear(); 351 RemovedInsts.clear(); 352 for (Function::iterator I = F.begin(); I != F.end(); ) { 353 BasicBlock *BB = &*I++; 354 bool ModifiedDTOnIteration = false; 355 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 356 357 // Restart BB iteration if the dominator tree of the Function was changed 358 if (ModifiedDTOnIteration) 359 break; 360 } 361 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 362 MadeChange |= mergeSExts(F); 363 364 // Really free removed instructions during promotion. 365 for (Instruction *I : RemovedInsts) 366 I->deleteValue(); 367 368 EverMadeChange |= MadeChange; 369 } 370 371 SunkAddrs.clear(); 372 373 if (!DisableBranchOpts) { 374 MadeChange = false; 375 SmallPtrSet<BasicBlock*, 8> WorkList; 376 for (BasicBlock &BB : F) { 377 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 378 MadeChange |= ConstantFoldTerminator(&BB, true); 379 if (!MadeChange) continue; 380 381 for (SmallVectorImpl<BasicBlock*>::iterator 382 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 383 if (pred_begin(*II) == pred_end(*II)) 384 WorkList.insert(*II); 385 } 386 387 // Delete the dead blocks and any of their dead successors. 388 MadeChange |= !WorkList.empty(); 389 while (!WorkList.empty()) { 390 BasicBlock *BB = *WorkList.begin(); 391 WorkList.erase(BB); 392 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 393 394 DeleteDeadBlock(BB); 395 396 for (SmallVectorImpl<BasicBlock*>::iterator 397 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 398 if (pred_begin(*II) == pred_end(*II)) 399 WorkList.insert(*II); 400 } 401 402 // Merge pairs of basic blocks with unconditional branches, connected by 403 // a single edge. 404 if (EverMadeChange || MadeChange) 405 MadeChange |= eliminateFallThrough(F); 406 407 EverMadeChange |= MadeChange; 408 } 409 410 if (!DisableGCOpts) { 411 SmallVector<Instruction *, 2> Statepoints; 412 for (BasicBlock &BB : F) 413 for (Instruction &I : BB) 414 if (isStatepoint(I)) 415 Statepoints.push_back(&I); 416 for (auto &I : Statepoints) 417 EverMadeChange |= simplifyOffsetableRelocate(*I); 418 } 419 420 return EverMadeChange; 421 } 422 423 /// Merge basic blocks which are connected by a single edge, where one of the 424 /// basic blocks has a single successor pointing to the other basic block, 425 /// which has a single predecessor. 426 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 427 bool Changed = false; 428 // Scan all of the blocks in the function, except for the entry block. 429 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 430 BasicBlock *BB = &*I++; 431 // If the destination block has a single pred, then this is a trivial 432 // edge, just collapse it. 433 BasicBlock *SinglePred = BB->getSinglePredecessor(); 434 435 // Don't merge if BB's address is taken. 436 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 437 438 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 439 if (Term && !Term->isConditional()) { 440 Changed = true; 441 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 442 // Remember if SinglePred was the entry block of the function. 443 // If so, we will need to move BB back to the entry position. 444 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 445 MergeBasicBlockIntoOnlyPred(BB, nullptr); 446 447 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 448 BB->moveBefore(&BB->getParent()->getEntryBlock()); 449 450 // We have erased a block. Update the iterator. 451 I = BB->getIterator(); 452 } 453 } 454 return Changed; 455 } 456 457 /// Find a destination block from BB if BB is mergeable empty block. 458 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 459 // If this block doesn't end with an uncond branch, ignore it. 460 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 461 if (!BI || !BI->isUnconditional()) 462 return nullptr; 463 464 // If the instruction before the branch (skipping debug info) isn't a phi 465 // node, then other stuff is happening here. 466 BasicBlock::iterator BBI = BI->getIterator(); 467 if (BBI != BB->begin()) { 468 --BBI; 469 while (isa<DbgInfoIntrinsic>(BBI)) { 470 if (BBI == BB->begin()) 471 break; 472 --BBI; 473 } 474 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 475 return nullptr; 476 } 477 478 // Do not break infinite loops. 479 BasicBlock *DestBB = BI->getSuccessor(0); 480 if (DestBB == BB) 481 return nullptr; 482 483 if (!canMergeBlocks(BB, DestBB)) 484 DestBB = nullptr; 485 486 return DestBB; 487 } 488 489 // Return the unique indirectbr predecessor of a block. This may return null 490 // even if such a predecessor exists, if it's not useful for splitting. 491 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 492 // predecessors of BB. 493 static BasicBlock * 494 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 495 // If the block doesn't have any PHIs, we don't care about it, since there's 496 // no point in splitting it. 497 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 498 if (!PN) 499 return nullptr; 500 501 // Verify we have exactly one IBR predecessor. 502 // Conservatively bail out if one of the other predecessors is not a "regular" 503 // terminator (that is, not a switch or a br). 504 BasicBlock *IBB = nullptr; 505 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 506 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 507 TerminatorInst *PredTerm = PredBB->getTerminator(); 508 switch (PredTerm->getOpcode()) { 509 case Instruction::IndirectBr: 510 if (IBB) 511 return nullptr; 512 IBB = PredBB; 513 break; 514 case Instruction::Br: 515 case Instruction::Switch: 516 OtherPreds.push_back(PredBB); 517 continue; 518 default: 519 return nullptr; 520 } 521 } 522 523 return IBB; 524 } 525 526 // Split critical edges where the source of the edge is an indirectbr 527 // instruction. This isn't always possible, but we can handle some easy cases. 528 // This is useful because MI is unable to split such critical edges, 529 // which means it will not be able to sink instructions along those edges. 530 // This is especially painful for indirect branches with many successors, where 531 // we end up having to prepare all outgoing values in the origin block. 532 // 533 // Our normal algorithm for splitting critical edges requires us to update 534 // the outgoing edges of the edge origin block, but for an indirectbr this 535 // is hard, since it would require finding and updating the block addresses 536 // the indirect branch uses. But if a block only has a single indirectbr 537 // predecessor, with the others being regular branches, we can do it in a 538 // different way. 539 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr. 540 // We can split D into D0 and D1, where D0 contains only the PHIs from D, 541 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and 542 // create the following structure: 543 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1 544 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) { 545 // Check whether the function has any indirectbrs, and collect which blocks 546 // they may jump to. Since most functions don't have indirect branches, 547 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 548 SmallSetVector<BasicBlock *, 16> Targets; 549 for (auto &BB : F) { 550 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 551 if (!IBI) 552 continue; 553 554 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 555 Targets.insert(IBI->getSuccessor(Succ)); 556 } 557 558 if (Targets.empty()) 559 return false; 560 561 bool Changed = false; 562 for (BasicBlock *Target : Targets) { 563 SmallVector<BasicBlock *, 16> OtherPreds; 564 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 565 // If we did not found an indirectbr, or the indirectbr is the only 566 // incoming edge, this isn't the kind of edge we're looking for. 567 if (!IBRPred || OtherPreds.empty()) 568 continue; 569 570 // Don't even think about ehpads/landingpads. 571 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 572 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 573 continue; 574 575 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 576 // It's possible Target was its own successor through an indirectbr. 577 // In this case, the indirectbr now comes from BodyBlock. 578 if (IBRPred == Target) 579 IBRPred = BodyBlock; 580 581 // At this point Target only has PHIs, and BodyBlock has the rest of the 582 // block's body. Create a copy of Target that will be used by the "direct" 583 // preds. 584 ValueToValueMapTy VMap; 585 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 586 587 for (BasicBlock *Pred : OtherPreds) { 588 // If the target is a loop to itself, then the terminator of the split 589 // block needs to be updated. 590 if (Pred == Target) 591 BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 592 else 593 Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 594 } 595 596 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 597 // they are clones, so the number of PHIs are the same. 598 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 599 // (b) Leave that as the only edge in the "Indirect" PHI. 600 // (c) Merge the two in the body block. 601 BasicBlock::iterator Indirect = Target->begin(), 602 End = Target->getFirstNonPHI()->getIterator(); 603 BasicBlock::iterator Direct = DirectSucc->begin(); 604 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 605 606 assert(&*End == Target->getTerminator() && 607 "Block was expected to only contain PHIs"); 608 609 while (Indirect != End) { 610 PHINode *DirPHI = cast<PHINode>(Direct); 611 PHINode *IndPHI = cast<PHINode>(Indirect); 612 613 // Now, clean up - the direct block shouldn't get the indirect value, 614 // and vice versa. 615 DirPHI->removeIncomingValue(IBRPred); 616 Direct++; 617 618 // Advance the pointer here, to avoid invalidation issues when the old 619 // PHI is erased. 620 Indirect++; 621 622 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 623 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 624 IBRPred); 625 626 // Create a PHI in the body block, to merge the direct and indirect 627 // predecessors. 628 PHINode *MergePHI = 629 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 630 MergePHI->addIncoming(NewIndPHI, Target); 631 MergePHI->addIncoming(DirPHI, DirectSucc); 632 633 IndPHI->replaceAllUsesWith(MergePHI); 634 IndPHI->eraseFromParent(); 635 } 636 637 Changed = true; 638 } 639 640 return Changed; 641 } 642 643 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 644 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 645 /// edges in ways that are non-optimal for isel. Start by eliminating these 646 /// blocks so we can split them the way we want them. 647 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 648 SmallPtrSet<BasicBlock *, 16> Preheaders; 649 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 650 while (!LoopList.empty()) { 651 Loop *L = LoopList.pop_back_val(); 652 LoopList.insert(LoopList.end(), L->begin(), L->end()); 653 if (BasicBlock *Preheader = L->getLoopPreheader()) 654 Preheaders.insert(Preheader); 655 } 656 657 bool MadeChange = false; 658 // Note that this intentionally skips the entry block. 659 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 660 BasicBlock *BB = &*I++; 661 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 662 if (!DestBB || 663 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 664 continue; 665 666 eliminateMostlyEmptyBlock(BB); 667 MadeChange = true; 668 } 669 return MadeChange; 670 } 671 672 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 673 BasicBlock *DestBB, 674 bool isPreheader) { 675 // Do not delete loop preheaders if doing so would create a critical edge. 676 // Loop preheaders can be good locations to spill registers. If the 677 // preheader is deleted and we create a critical edge, registers may be 678 // spilled in the loop body instead. 679 if (!DisablePreheaderProtect && isPreheader && 680 !(BB->getSinglePredecessor() && 681 BB->getSinglePredecessor()->getSingleSuccessor())) 682 return false; 683 684 // Try to skip merging if the unique predecessor of BB is terminated by a 685 // switch or indirect branch instruction, and BB is used as an incoming block 686 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 687 // add COPY instructions in the predecessor of BB instead of BB (if it is not 688 // merged). Note that the critical edge created by merging such blocks wont be 689 // split in MachineSink because the jump table is not analyzable. By keeping 690 // such empty block (BB), ISel will place COPY instructions in BB, not in the 691 // predecessor of BB. 692 BasicBlock *Pred = BB->getUniquePredecessor(); 693 if (!Pred || 694 !(isa<SwitchInst>(Pred->getTerminator()) || 695 isa<IndirectBrInst>(Pred->getTerminator()))) 696 return true; 697 698 if (BB->getTerminator() != BB->getFirstNonPHI()) 699 return true; 700 701 // We use a simple cost heuristic which determine skipping merging is 702 // profitable if the cost of skipping merging is less than the cost of 703 // merging : Cost(skipping merging) < Cost(merging BB), where the 704 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 705 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 706 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 707 // Freq(Pred) / Freq(BB) > 2. 708 // Note that if there are multiple empty blocks sharing the same incoming 709 // value for the PHIs in the DestBB, we consider them together. In such 710 // case, Cost(merging BB) will be the sum of their frequencies. 711 712 if (!isa<PHINode>(DestBB->begin())) 713 return true; 714 715 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 716 717 // Find all other incoming blocks from which incoming values of all PHIs in 718 // DestBB are the same as the ones from BB. 719 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 720 ++PI) { 721 BasicBlock *DestBBPred = *PI; 722 if (DestBBPred == BB) 723 continue; 724 725 bool HasAllSameValue = true; 726 BasicBlock::const_iterator DestBBI = DestBB->begin(); 727 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 728 if (DestPN->getIncomingValueForBlock(BB) != 729 DestPN->getIncomingValueForBlock(DestBBPred)) { 730 HasAllSameValue = false; 731 break; 732 } 733 } 734 if (HasAllSameValue) 735 SameIncomingValueBBs.insert(DestBBPred); 736 } 737 738 // See if all BB's incoming values are same as the value from Pred. In this 739 // case, no reason to skip merging because COPYs are expected to be place in 740 // Pred already. 741 if (SameIncomingValueBBs.count(Pred)) 742 return true; 743 744 if (!BFI) { 745 Function &F = *BB->getParent(); 746 LoopInfo LI{DominatorTree(F)}; 747 BPI.reset(new BranchProbabilityInfo(F, LI)); 748 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 749 } 750 751 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 752 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 753 754 for (auto SameValueBB : SameIncomingValueBBs) 755 if (SameValueBB->getUniquePredecessor() == Pred && 756 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 757 BBFreq += BFI->getBlockFreq(SameValueBB); 758 759 return PredFreq.getFrequency() <= 760 BBFreq.getFrequency() * FreqRatioToSkipMerge; 761 } 762 763 /// Return true if we can merge BB into DestBB if there is a single 764 /// unconditional branch between them, and BB contains no other non-phi 765 /// instructions. 766 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 767 const BasicBlock *DestBB) const { 768 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 769 // the successor. If there are more complex condition (e.g. preheaders), 770 // don't mess around with them. 771 BasicBlock::const_iterator BBI = BB->begin(); 772 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 773 for (const User *U : PN->users()) { 774 const Instruction *UI = cast<Instruction>(U); 775 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 776 return false; 777 // If User is inside DestBB block and it is a PHINode then check 778 // incoming value. If incoming value is not from BB then this is 779 // a complex condition (e.g. preheaders) we want to avoid here. 780 if (UI->getParent() == DestBB) { 781 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 782 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 783 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 784 if (Insn && Insn->getParent() == BB && 785 Insn->getParent() != UPN->getIncomingBlock(I)) 786 return false; 787 } 788 } 789 } 790 } 791 792 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 793 // and DestBB may have conflicting incoming values for the block. If so, we 794 // can't merge the block. 795 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 796 if (!DestBBPN) return true; // no conflict. 797 798 // Collect the preds of BB. 799 SmallPtrSet<const BasicBlock*, 16> BBPreds; 800 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 801 // It is faster to get preds from a PHI than with pred_iterator. 802 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 803 BBPreds.insert(BBPN->getIncomingBlock(i)); 804 } else { 805 BBPreds.insert(pred_begin(BB), pred_end(BB)); 806 } 807 808 // Walk the preds of DestBB. 809 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 810 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 811 if (BBPreds.count(Pred)) { // Common predecessor? 812 BBI = DestBB->begin(); 813 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 814 const Value *V1 = PN->getIncomingValueForBlock(Pred); 815 const Value *V2 = PN->getIncomingValueForBlock(BB); 816 817 // If V2 is a phi node in BB, look up what the mapped value will be. 818 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 819 if (V2PN->getParent() == BB) 820 V2 = V2PN->getIncomingValueForBlock(Pred); 821 822 // If there is a conflict, bail out. 823 if (V1 != V2) return false; 824 } 825 } 826 } 827 828 return true; 829 } 830 831 832 /// Eliminate a basic block that has only phi's and an unconditional branch in 833 /// it. 834 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 835 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 836 BasicBlock *DestBB = BI->getSuccessor(0); 837 838 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 839 840 // If the destination block has a single pred, then this is a trivial edge, 841 // just collapse it. 842 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 843 if (SinglePred != DestBB) { 844 // Remember if SinglePred was the entry block of the function. If so, we 845 // will need to move BB back to the entry position. 846 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 847 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 848 849 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 850 BB->moveBefore(&BB->getParent()->getEntryBlock()); 851 852 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 853 return; 854 } 855 } 856 857 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 858 // to handle the new incoming edges it is about to have. 859 PHINode *PN; 860 for (BasicBlock::iterator BBI = DestBB->begin(); 861 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 862 // Remove the incoming value for BB, and remember it. 863 Value *InVal = PN->removeIncomingValue(BB, false); 864 865 // Two options: either the InVal is a phi node defined in BB or it is some 866 // value that dominates BB. 867 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 868 if (InValPhi && InValPhi->getParent() == BB) { 869 // Add all of the input values of the input PHI as inputs of this phi. 870 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 871 PN->addIncoming(InValPhi->getIncomingValue(i), 872 InValPhi->getIncomingBlock(i)); 873 } else { 874 // Otherwise, add one instance of the dominating value for each edge that 875 // we will be adding. 876 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 877 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 878 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 879 } else { 880 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 881 PN->addIncoming(InVal, *PI); 882 } 883 } 884 } 885 886 // The PHIs are now updated, change everything that refers to BB to use 887 // DestBB and remove BB. 888 BB->replaceAllUsesWith(DestBB); 889 BB->eraseFromParent(); 890 ++NumBlocksElim; 891 892 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 893 } 894 895 // Computes a map of base pointer relocation instructions to corresponding 896 // derived pointer relocation instructions given a vector of all relocate calls 897 static void computeBaseDerivedRelocateMap( 898 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 899 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 900 &RelocateInstMap) { 901 // Collect information in two maps: one primarily for locating the base object 902 // while filling the second map; the second map is the final structure holding 903 // a mapping between Base and corresponding Derived relocate calls 904 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 905 for (auto *ThisRelocate : AllRelocateCalls) { 906 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 907 ThisRelocate->getDerivedPtrIndex()); 908 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 909 } 910 for (auto &Item : RelocateIdxMap) { 911 std::pair<unsigned, unsigned> Key = Item.first; 912 if (Key.first == Key.second) 913 // Base relocation: nothing to insert 914 continue; 915 916 GCRelocateInst *I = Item.second; 917 auto BaseKey = std::make_pair(Key.first, Key.first); 918 919 // We're iterating over RelocateIdxMap so we cannot modify it. 920 auto MaybeBase = RelocateIdxMap.find(BaseKey); 921 if (MaybeBase == RelocateIdxMap.end()) 922 // TODO: We might want to insert a new base object relocate and gep off 923 // that, if there are enough derived object relocates. 924 continue; 925 926 RelocateInstMap[MaybeBase->second].push_back(I); 927 } 928 } 929 930 // Accepts a GEP and extracts the operands into a vector provided they're all 931 // small integer constants 932 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 933 SmallVectorImpl<Value *> &OffsetV) { 934 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 935 // Only accept small constant integer operands 936 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 937 if (!Op || Op->getZExtValue() > 20) 938 return false; 939 } 940 941 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 942 OffsetV.push_back(GEP->getOperand(i)); 943 return true; 944 } 945 946 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 947 // replace, computes a replacement, and affects it. 948 static bool 949 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 950 const SmallVectorImpl<GCRelocateInst *> &Targets) { 951 bool MadeChange = false; 952 for (GCRelocateInst *ToReplace : Targets) { 953 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 954 "Not relocating a derived object of the original base object"); 955 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 956 // A duplicate relocate call. TODO: coalesce duplicates. 957 continue; 958 } 959 960 if (RelocatedBase->getParent() != ToReplace->getParent()) { 961 // Base and derived relocates are in different basic blocks. 962 // In this case transform is only valid when base dominates derived 963 // relocate. However it would be too expensive to check dominance 964 // for each such relocate, so we skip the whole transformation. 965 continue; 966 } 967 968 Value *Base = ToReplace->getBasePtr(); 969 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 970 if (!Derived || Derived->getPointerOperand() != Base) 971 continue; 972 973 SmallVector<Value *, 2> OffsetV; 974 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 975 continue; 976 977 // Create a Builder and replace the target callsite with a gep 978 assert(RelocatedBase->getNextNode() && 979 "Should always have one since it's not a terminator"); 980 981 // Insert after RelocatedBase 982 IRBuilder<> Builder(RelocatedBase->getNextNode()); 983 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 984 985 // If gc_relocate does not match the actual type, cast it to the right type. 986 // In theory, there must be a bitcast after gc_relocate if the type does not 987 // match, and we should reuse it to get the derived pointer. But it could be 988 // cases like this: 989 // bb1: 990 // ... 991 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 992 // br label %merge 993 // 994 // bb2: 995 // ... 996 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 997 // br label %merge 998 // 999 // merge: 1000 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1001 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1002 // 1003 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1004 // no matter there is already one or not. In this way, we can handle all cases, and 1005 // the extra bitcast should be optimized away in later passes. 1006 Value *ActualRelocatedBase = RelocatedBase; 1007 if (RelocatedBase->getType() != Base->getType()) { 1008 ActualRelocatedBase = 1009 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1010 } 1011 Value *Replacement = Builder.CreateGEP( 1012 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1013 Replacement->takeName(ToReplace); 1014 // If the newly generated derived pointer's type does not match the original derived 1015 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1016 Value *ActualReplacement = Replacement; 1017 if (Replacement->getType() != ToReplace->getType()) { 1018 ActualReplacement = 1019 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1020 } 1021 ToReplace->replaceAllUsesWith(ActualReplacement); 1022 ToReplace->eraseFromParent(); 1023 1024 MadeChange = true; 1025 } 1026 return MadeChange; 1027 } 1028 1029 // Turns this: 1030 // 1031 // %base = ... 1032 // %ptr = gep %base + 15 1033 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1034 // %base' = relocate(%tok, i32 4, i32 4) 1035 // %ptr' = relocate(%tok, i32 4, i32 5) 1036 // %val = load %ptr' 1037 // 1038 // into this: 1039 // 1040 // %base = ... 1041 // %ptr = gep %base + 15 1042 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1043 // %base' = gc.relocate(%tok, i32 4, i32 4) 1044 // %ptr' = gep %base' + 15 1045 // %val = load %ptr' 1046 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1047 bool MadeChange = false; 1048 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1049 1050 for (auto *U : I.users()) 1051 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1052 // Collect all the relocate calls associated with a statepoint 1053 AllRelocateCalls.push_back(Relocate); 1054 1055 // We need atleast one base pointer relocation + one derived pointer 1056 // relocation to mangle 1057 if (AllRelocateCalls.size() < 2) 1058 return false; 1059 1060 // RelocateInstMap is a mapping from the base relocate instruction to the 1061 // corresponding derived relocate instructions 1062 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1063 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1064 if (RelocateInstMap.empty()) 1065 return false; 1066 1067 for (auto &Item : RelocateInstMap) 1068 // Item.first is the RelocatedBase to offset against 1069 // Item.second is the vector of Targets to replace 1070 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1071 return MadeChange; 1072 } 1073 1074 /// SinkCast - Sink the specified cast instruction into its user blocks 1075 static bool SinkCast(CastInst *CI) { 1076 BasicBlock *DefBB = CI->getParent(); 1077 1078 /// InsertedCasts - Only insert a cast in each block once. 1079 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1080 1081 bool MadeChange = false; 1082 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1083 UI != E; ) { 1084 Use &TheUse = UI.getUse(); 1085 Instruction *User = cast<Instruction>(*UI); 1086 1087 // Figure out which BB this cast is used in. For PHI's this is the 1088 // appropriate predecessor block. 1089 BasicBlock *UserBB = User->getParent(); 1090 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1091 UserBB = PN->getIncomingBlock(TheUse); 1092 } 1093 1094 // Preincrement use iterator so we don't invalidate it. 1095 ++UI; 1096 1097 // The first insertion point of a block containing an EH pad is after the 1098 // pad. If the pad is the user, we cannot sink the cast past the pad. 1099 if (User->isEHPad()) 1100 continue; 1101 1102 // If the block selected to receive the cast is an EH pad that does not 1103 // allow non-PHI instructions before the terminator, we can't sink the 1104 // cast. 1105 if (UserBB->getTerminator()->isEHPad()) 1106 continue; 1107 1108 // If this user is in the same block as the cast, don't change the cast. 1109 if (UserBB == DefBB) continue; 1110 1111 // If we have already inserted a cast into this block, use it. 1112 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1113 1114 if (!InsertedCast) { 1115 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1116 assert(InsertPt != UserBB->end()); 1117 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1118 CI->getType(), "", &*InsertPt); 1119 } 1120 1121 // Replace a use of the cast with a use of the new cast. 1122 TheUse = InsertedCast; 1123 MadeChange = true; 1124 ++NumCastUses; 1125 } 1126 1127 // If we removed all uses, nuke the cast. 1128 if (CI->use_empty()) { 1129 CI->eraseFromParent(); 1130 MadeChange = true; 1131 } 1132 1133 return MadeChange; 1134 } 1135 1136 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1137 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1138 /// reduce the number of virtual registers that must be created and coalesced. 1139 /// 1140 /// Return true if any changes are made. 1141 /// 1142 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1143 const DataLayout &DL) { 1144 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1145 // than sinking only nop casts, but is helpful on some platforms. 1146 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1147 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1148 ASC->getDestAddressSpace())) 1149 return false; 1150 } 1151 1152 // If this is a noop copy, 1153 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1154 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1155 1156 // This is an fp<->int conversion? 1157 if (SrcVT.isInteger() != DstVT.isInteger()) 1158 return false; 1159 1160 // If this is an extension, it will be a zero or sign extension, which 1161 // isn't a noop. 1162 if (SrcVT.bitsLT(DstVT)) return false; 1163 1164 // If these values will be promoted, find out what they will be promoted 1165 // to. This helps us consider truncates on PPC as noop copies when they 1166 // are. 1167 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1168 TargetLowering::TypePromoteInteger) 1169 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1170 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1171 TargetLowering::TypePromoteInteger) 1172 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1173 1174 // If, after promotion, these are the same types, this is a noop copy. 1175 if (SrcVT != DstVT) 1176 return false; 1177 1178 return SinkCast(CI); 1179 } 1180 1181 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1182 /// possible. 1183 /// 1184 /// Return true if any changes were made. 1185 static bool CombineUAddWithOverflow(CmpInst *CI) { 1186 Value *A, *B; 1187 Instruction *AddI; 1188 if (!match(CI, 1189 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1190 return false; 1191 1192 Type *Ty = AddI->getType(); 1193 if (!isa<IntegerType>(Ty)) 1194 return false; 1195 1196 // We don't want to move around uses of condition values this late, so we we 1197 // check if it is legal to create the call to the intrinsic in the basic 1198 // block containing the icmp: 1199 1200 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1201 return false; 1202 1203 #ifndef NDEBUG 1204 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1205 // for now: 1206 if (AddI->hasOneUse()) 1207 assert(*AddI->user_begin() == CI && "expected!"); 1208 #endif 1209 1210 Module *M = CI->getModule(); 1211 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1212 1213 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1214 1215 auto *UAddWithOverflow = 1216 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1217 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1218 auto *Overflow = 1219 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1220 1221 CI->replaceAllUsesWith(Overflow); 1222 AddI->replaceAllUsesWith(UAdd); 1223 CI->eraseFromParent(); 1224 AddI->eraseFromParent(); 1225 return true; 1226 } 1227 1228 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1229 /// registers that must be created and coalesced. This is a clear win except on 1230 /// targets with multiple condition code registers (PowerPC), where it might 1231 /// lose; some adjustment may be wanted there. 1232 /// 1233 /// Return true if any changes are made. 1234 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1235 BasicBlock *DefBB = CI->getParent(); 1236 1237 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1238 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1239 return false; 1240 1241 // Only insert a cmp in each block once. 1242 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1243 1244 bool MadeChange = false; 1245 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1246 UI != E; ) { 1247 Use &TheUse = UI.getUse(); 1248 Instruction *User = cast<Instruction>(*UI); 1249 1250 // Preincrement use iterator so we don't invalidate it. 1251 ++UI; 1252 1253 // Don't bother for PHI nodes. 1254 if (isa<PHINode>(User)) 1255 continue; 1256 1257 // Figure out which BB this cmp is used in. 1258 BasicBlock *UserBB = User->getParent(); 1259 1260 // If this user is in the same block as the cmp, don't change the cmp. 1261 if (UserBB == DefBB) continue; 1262 1263 // If we have already inserted a cmp into this block, use it. 1264 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1265 1266 if (!InsertedCmp) { 1267 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1268 assert(InsertPt != UserBB->end()); 1269 InsertedCmp = 1270 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1271 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1272 // Propagate the debug info. 1273 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1274 } 1275 1276 // Replace a use of the cmp with a use of the new cmp. 1277 TheUse = InsertedCmp; 1278 MadeChange = true; 1279 ++NumCmpUses; 1280 } 1281 1282 // If we removed all uses, nuke the cmp. 1283 if (CI->use_empty()) { 1284 CI->eraseFromParent(); 1285 MadeChange = true; 1286 } 1287 1288 return MadeChange; 1289 } 1290 1291 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1292 if (SinkCmpExpression(CI, TLI)) 1293 return true; 1294 1295 if (CombineUAddWithOverflow(CI)) 1296 return true; 1297 1298 return false; 1299 } 1300 1301 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1302 /// used in a compare to allow isel to generate better code for targets where 1303 /// this operation can be combined. 1304 /// 1305 /// Return true if any changes are made. 1306 static bool sinkAndCmp0Expression(Instruction *AndI, 1307 const TargetLowering &TLI, 1308 SetOfInstrs &InsertedInsts) { 1309 // Double-check that we're not trying to optimize an instruction that was 1310 // already optimized by some other part of this pass. 1311 assert(!InsertedInsts.count(AndI) && 1312 "Attempting to optimize already optimized and instruction"); 1313 (void) InsertedInsts; 1314 1315 // Nothing to do for single use in same basic block. 1316 if (AndI->hasOneUse() && 1317 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1318 return false; 1319 1320 // Try to avoid cases where sinking/duplicating is likely to increase register 1321 // pressure. 1322 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1323 !isa<ConstantInt>(AndI->getOperand(1)) && 1324 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1325 return false; 1326 1327 for (auto *U : AndI->users()) { 1328 Instruction *User = cast<Instruction>(U); 1329 1330 // Only sink for and mask feeding icmp with 0. 1331 if (!isa<ICmpInst>(User)) 1332 return false; 1333 1334 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1335 if (!CmpC || !CmpC->isZero()) 1336 return false; 1337 } 1338 1339 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1340 return false; 1341 1342 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1343 DEBUG(AndI->getParent()->dump()); 1344 1345 // Push the 'and' into the same block as the icmp 0. There should only be 1346 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1347 // others, so we don't need to keep track of which BBs we insert into. 1348 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1349 UI != E; ) { 1350 Use &TheUse = UI.getUse(); 1351 Instruction *User = cast<Instruction>(*UI); 1352 1353 // Preincrement use iterator so we don't invalidate it. 1354 ++UI; 1355 1356 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1357 1358 // Keep the 'and' in the same place if the use is already in the same block. 1359 Instruction *InsertPt = 1360 User->getParent() == AndI->getParent() ? AndI : User; 1361 Instruction *InsertedAnd = 1362 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1363 AndI->getOperand(1), "", InsertPt); 1364 // Propagate the debug info. 1365 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1366 1367 // Replace a use of the 'and' with a use of the new 'and'. 1368 TheUse = InsertedAnd; 1369 ++NumAndUses; 1370 DEBUG(User->getParent()->dump()); 1371 } 1372 1373 // We removed all uses, nuke the and. 1374 AndI->eraseFromParent(); 1375 return true; 1376 } 1377 1378 /// Check if the candidates could be combined with a shift instruction, which 1379 /// includes: 1380 /// 1. Truncate instruction 1381 /// 2. And instruction and the imm is a mask of the low bits: 1382 /// imm & (imm+1) == 0 1383 static bool isExtractBitsCandidateUse(Instruction *User) { 1384 if (!isa<TruncInst>(User)) { 1385 if (User->getOpcode() != Instruction::And || 1386 !isa<ConstantInt>(User->getOperand(1))) 1387 return false; 1388 1389 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1390 1391 if ((Cimm & (Cimm + 1)).getBoolValue()) 1392 return false; 1393 } 1394 return true; 1395 } 1396 1397 /// Sink both shift and truncate instruction to the use of truncate's BB. 1398 static bool 1399 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1400 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1401 const TargetLowering &TLI, const DataLayout &DL) { 1402 BasicBlock *UserBB = User->getParent(); 1403 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1404 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1405 bool MadeChange = false; 1406 1407 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1408 TruncE = TruncI->user_end(); 1409 TruncUI != TruncE;) { 1410 1411 Use &TruncTheUse = TruncUI.getUse(); 1412 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1413 // Preincrement use iterator so we don't invalidate it. 1414 1415 ++TruncUI; 1416 1417 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1418 if (!ISDOpcode) 1419 continue; 1420 1421 // If the use is actually a legal node, there will not be an 1422 // implicit truncate. 1423 // FIXME: always querying the result type is just an 1424 // approximation; some nodes' legality is determined by the 1425 // operand or other means. There's no good way to find out though. 1426 if (TLI.isOperationLegalOrCustom( 1427 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1428 continue; 1429 1430 // Don't bother for PHI nodes. 1431 if (isa<PHINode>(TruncUser)) 1432 continue; 1433 1434 BasicBlock *TruncUserBB = TruncUser->getParent(); 1435 1436 if (UserBB == TruncUserBB) 1437 continue; 1438 1439 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1440 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1441 1442 if (!InsertedShift && !InsertedTrunc) { 1443 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1444 assert(InsertPt != TruncUserBB->end()); 1445 // Sink the shift 1446 if (ShiftI->getOpcode() == Instruction::AShr) 1447 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1448 "", &*InsertPt); 1449 else 1450 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1451 "", &*InsertPt); 1452 1453 // Sink the trunc 1454 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1455 TruncInsertPt++; 1456 assert(TruncInsertPt != TruncUserBB->end()); 1457 1458 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1459 TruncI->getType(), "", &*TruncInsertPt); 1460 1461 MadeChange = true; 1462 1463 TruncTheUse = InsertedTrunc; 1464 } 1465 } 1466 return MadeChange; 1467 } 1468 1469 /// Sink the shift *right* instruction into user blocks if the uses could 1470 /// potentially be combined with this shift instruction and generate BitExtract 1471 /// instruction. It will only be applied if the architecture supports BitExtract 1472 /// instruction. Here is an example: 1473 /// BB1: 1474 /// %x.extract.shift = lshr i64 %arg1, 32 1475 /// BB2: 1476 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1477 /// ==> 1478 /// 1479 /// BB2: 1480 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1481 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1482 /// 1483 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1484 /// instruction. 1485 /// Return true if any changes are made. 1486 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1487 const TargetLowering &TLI, 1488 const DataLayout &DL) { 1489 BasicBlock *DefBB = ShiftI->getParent(); 1490 1491 /// Only insert instructions in each block once. 1492 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1493 1494 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1495 1496 bool MadeChange = false; 1497 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1498 UI != E;) { 1499 Use &TheUse = UI.getUse(); 1500 Instruction *User = cast<Instruction>(*UI); 1501 // Preincrement use iterator so we don't invalidate it. 1502 ++UI; 1503 1504 // Don't bother for PHI nodes. 1505 if (isa<PHINode>(User)) 1506 continue; 1507 1508 if (!isExtractBitsCandidateUse(User)) 1509 continue; 1510 1511 BasicBlock *UserBB = User->getParent(); 1512 1513 if (UserBB == DefBB) { 1514 // If the shift and truncate instruction are in the same BB. The use of 1515 // the truncate(TruncUse) may still introduce another truncate if not 1516 // legal. In this case, we would like to sink both shift and truncate 1517 // instruction to the BB of TruncUse. 1518 // for example: 1519 // BB1: 1520 // i64 shift.result = lshr i64 opnd, imm 1521 // trunc.result = trunc shift.result to i16 1522 // 1523 // BB2: 1524 // ----> We will have an implicit truncate here if the architecture does 1525 // not have i16 compare. 1526 // cmp i16 trunc.result, opnd2 1527 // 1528 if (isa<TruncInst>(User) && shiftIsLegal 1529 // If the type of the truncate is legal, no trucate will be 1530 // introduced in other basic blocks. 1531 && 1532 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1533 MadeChange = 1534 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1535 1536 continue; 1537 } 1538 // If we have already inserted a shift into this block, use it. 1539 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1540 1541 if (!InsertedShift) { 1542 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1543 assert(InsertPt != UserBB->end()); 1544 1545 if (ShiftI->getOpcode() == Instruction::AShr) 1546 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1547 "", &*InsertPt); 1548 else 1549 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1550 "", &*InsertPt); 1551 1552 MadeChange = true; 1553 } 1554 1555 // Replace a use of the shift with a use of the new shift. 1556 TheUse = InsertedShift; 1557 } 1558 1559 // If we removed all uses, nuke the shift. 1560 if (ShiftI->use_empty()) 1561 ShiftI->eraseFromParent(); 1562 1563 return MadeChange; 1564 } 1565 1566 /// If counting leading or trailing zeros is an expensive operation and a zero 1567 /// input is defined, add a check for zero to avoid calling the intrinsic. 1568 /// 1569 /// We want to transform: 1570 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1571 /// 1572 /// into: 1573 /// entry: 1574 /// %cmpz = icmp eq i64 %A, 0 1575 /// br i1 %cmpz, label %cond.end, label %cond.false 1576 /// cond.false: 1577 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1578 /// br label %cond.end 1579 /// cond.end: 1580 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1581 /// 1582 /// If the transform is performed, return true and set ModifiedDT to true. 1583 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1584 const TargetLowering *TLI, 1585 const DataLayout *DL, 1586 bool &ModifiedDT) { 1587 if (!TLI || !DL) 1588 return false; 1589 1590 // If a zero input is undefined, it doesn't make sense to despeculate that. 1591 if (match(CountZeros->getOperand(1), m_One())) 1592 return false; 1593 1594 // If it's cheap to speculate, there's nothing to do. 1595 auto IntrinsicID = CountZeros->getIntrinsicID(); 1596 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1597 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1598 return false; 1599 1600 // Only handle legal scalar cases. Anything else requires too much work. 1601 Type *Ty = CountZeros->getType(); 1602 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1603 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1604 return false; 1605 1606 // The intrinsic will be sunk behind a compare against zero and branch. 1607 BasicBlock *StartBlock = CountZeros->getParent(); 1608 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1609 1610 // Create another block after the count zero intrinsic. A PHI will be added 1611 // in this block to select the result of the intrinsic or the bit-width 1612 // constant if the input to the intrinsic is zero. 1613 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1614 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1615 1616 // Set up a builder to create a compare, conditional branch, and PHI. 1617 IRBuilder<> Builder(CountZeros->getContext()); 1618 Builder.SetInsertPoint(StartBlock->getTerminator()); 1619 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1620 1621 // Replace the unconditional branch that was created by the first split with 1622 // a compare against zero and a conditional branch. 1623 Value *Zero = Constant::getNullValue(Ty); 1624 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1625 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1626 StartBlock->getTerminator()->eraseFromParent(); 1627 1628 // Create a PHI in the end block to select either the output of the intrinsic 1629 // or the bit width of the operand. 1630 Builder.SetInsertPoint(&EndBlock->front()); 1631 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1632 CountZeros->replaceAllUsesWith(PN); 1633 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1634 PN->addIncoming(BitWidth, StartBlock); 1635 PN->addIncoming(CountZeros, CallBlock); 1636 1637 // We are explicitly handling the zero case, so we can set the intrinsic's 1638 // undefined zero argument to 'true'. This will also prevent reprocessing the 1639 // intrinsic; we only despeculate when a zero input is defined. 1640 CountZeros->setArgOperand(1, Builder.getTrue()); 1641 ModifiedDT = true; 1642 return true; 1643 } 1644 1645 // This class provides helper functions to expand a memcmp library call into an 1646 // inline expansion. 1647 class MemCmpExpansion { 1648 struct ResultBlock { 1649 BasicBlock *BB; 1650 PHINode *PhiSrc1; 1651 PHINode *PhiSrc2; 1652 ResultBlock(); 1653 }; 1654 1655 CallInst *CI; 1656 ResultBlock ResBlock; 1657 unsigned MaxLoadSize; 1658 unsigned NumBlocks; 1659 unsigned NumBlocksNonOneByte; 1660 unsigned NumLoadsPerBlock; 1661 std::vector<BasicBlock *> LoadCmpBlocks; 1662 BasicBlock *EndBlock; 1663 PHINode *PhiRes; 1664 bool IsUsedForZeroCmp; 1665 int calculateNumBlocks(unsigned Size); 1666 void createLoadCmpBlocks(); 1667 void createResultBlock(); 1668 void setupResultBlockPHINodes(); 1669 void setupEndBlockPHINodes(); 1670 void emitLoadCompareBlock(unsigned Index, int LoadSize, int GEPIndex, 1671 bool IsLittleEndian); 1672 void emitLoadCompareBlockMultipleLoads(unsigned Index, unsigned Size, 1673 unsigned &NumBytesProcessed); 1674 void emitLoadCompareByteBlock(unsigned Index, int GEPIndex); 1675 void emitMemCmpResultBlock(bool IsLittleEndian); 1676 Value *getMemCmpExpansionZeroCase(unsigned Size, bool IsLittleEndian); 1677 unsigned getLoadSize(unsigned Size); 1678 unsigned getNumLoads(unsigned Size); 1679 1680 public: 1681 MemCmpExpansion(CallInst *CI, unsigned MaxLoadSize, 1682 unsigned NumLoadsPerBlock); 1683 Value *getMemCmpExpansion(bool IsLittleEndian); 1684 }; 1685 1686 MemCmpExpansion::ResultBlock::ResultBlock() 1687 : BB(nullptr), PhiSrc1(nullptr), PhiSrc2(nullptr) {} 1688 1689 // Initialize the basic block structure required for expansion of memcmp call 1690 // with given maximum load size and memcmp size parameter. 1691 // This structure includes: 1692 // 1. A list of load compare blocks - LoadCmpBlocks. 1693 // 2. An EndBlock, split from original instruction point, which is the block to 1694 // return from. 1695 // 3. ResultBlock, block to branch to for early exit when a 1696 // LoadCmpBlock finds a difference. 1697 MemCmpExpansion::MemCmpExpansion(CallInst *CI, unsigned MaxLoadSize, 1698 unsigned NumLoadsPerBlock) 1699 : CI(CI), MaxLoadSize(MaxLoadSize), NumLoadsPerBlock(NumLoadsPerBlock) { 1700 1701 IRBuilder<> Builder(CI->getContext()); 1702 1703 BasicBlock *StartBlock = CI->getParent(); 1704 EndBlock = StartBlock->splitBasicBlock(CI, "endblock"); 1705 setupEndBlockPHINodes(); 1706 IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI); 1707 1708 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1709 uint64_t Size = SizeCast->getZExtValue(); 1710 1711 // Calculate how many load compare blocks are required for an expansion of 1712 // given Size. 1713 NumBlocks = calculateNumBlocks(Size); 1714 createResultBlock(); 1715 1716 // If return value of memcmp is not used in a zero equality, we need to 1717 // calculate which source was larger. The calculation requires the 1718 // two loaded source values of each load compare block. 1719 // These will be saved in the phi nodes created by setupResultBlockPHINodes. 1720 if (!IsUsedForZeroCmp) 1721 setupResultBlockPHINodes(); 1722 1723 // Create the number of required load compare basic blocks. 1724 createLoadCmpBlocks(); 1725 1726 // Update the terminator added by splitBasicBlock to branch to the first 1727 // LoadCmpBlock. 1728 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1729 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]); 1730 } 1731 1732 void MemCmpExpansion::createLoadCmpBlocks() { 1733 for (unsigned i = 0; i < NumBlocks; i++) { 1734 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb", 1735 EndBlock->getParent(), EndBlock); 1736 LoadCmpBlocks.push_back(BB); 1737 } 1738 } 1739 1740 void MemCmpExpansion::createResultBlock() { 1741 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block", 1742 EndBlock->getParent(), EndBlock); 1743 } 1744 1745 // This function creates the IR instructions for loading and comparing 1 byte. 1746 // It loads 1 byte from each source of the memcmp paramters with the given 1747 // GEPIndex. It then subtracts the two loaded values and adds this result to the 1748 // final phi node for selecting the memcmp result. 1749 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned Index, int GEPIndex) { 1750 IRBuilder<> Builder(CI->getContext()); 1751 1752 Value *Source1 = CI->getArgOperand(0); 1753 Value *Source2 = CI->getArgOperand(1); 1754 1755 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1756 Type *LoadSizeType = Type::getInt8Ty(CI->getContext()); 1757 // Cast source to LoadSizeType* 1758 if (Source1->getType() != LoadSizeType) 1759 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1760 if (Source2->getType() != LoadSizeType) 1761 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1762 1763 // Get the base address using the GEPIndex 1764 if (GEPIndex != 0) { 1765 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1766 ConstantInt::get(LoadSizeType, GEPIndex)); 1767 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1768 ConstantInt::get(LoadSizeType, GEPIndex)); 1769 } 1770 1771 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1772 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1773 1774 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext())); 1775 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext())); 1776 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2); 1777 1778 PhiRes->addIncoming(Diff, LoadCmpBlocks[Index]); 1779 1780 if (Index < (LoadCmpBlocks.size() - 1)) { 1781 // Early exit branch if difference found to EndBlock, otherwise continue to 1782 // next LoadCmpBlock 1783 1784 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 1785 ConstantInt::get(Diff->getType(), 0)); 1786 BranchInst *CmpBr = 1787 BranchInst::Create(EndBlock, LoadCmpBlocks[Index + 1], Cmp); 1788 Builder.Insert(CmpBr); 1789 } else { 1790 // The last block has an unconditional branch to EndBlock 1791 BranchInst *CmpBr = BranchInst::Create(EndBlock); 1792 Builder.Insert(CmpBr); 1793 } 1794 } 1795 1796 unsigned MemCmpExpansion::getNumLoads(unsigned Size) { 1797 return (Size / MaxLoadSize) + countPopulation(Size % MaxLoadSize); 1798 } 1799 1800 unsigned MemCmpExpansion::getLoadSize(unsigned Size) { 1801 return MinAlign(PowerOf2Floor(Size), MaxLoadSize); 1802 } 1803 1804 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads( 1805 unsigned Index, unsigned Size, unsigned &NumBytesProcessed) { 1806 1807 IRBuilder<> Builder(CI->getContext()); 1808 1809 std::vector<Value *> XorList, OrList; 1810 Value *Diff; 1811 1812 unsigned RemainingBytes = Size - NumBytesProcessed; 1813 unsigned NumLoadsRemaining = getNumLoads(RemainingBytes); 1814 unsigned NumLoads = std::min(NumLoadsRemaining, NumLoadsPerBlock); 1815 1816 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1817 1818 for (unsigned i = 0; i < NumLoads; ++i) { 1819 unsigned LoadSize = getLoadSize(RemainingBytes); 1820 unsigned GEPIndex = NumBytesProcessed / LoadSize; 1821 NumBytesProcessed += LoadSize; 1822 RemainingBytes -= LoadSize; 1823 1824 Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8); 1825 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 1826 1827 Value *Source1 = CI->getArgOperand(0); 1828 Value *Source2 = CI->getArgOperand(1); 1829 1830 // Cast source to LoadSizeType* 1831 if (Source1->getType() != LoadSizeType) 1832 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1833 if (Source2->getType() != LoadSizeType) 1834 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1835 1836 // Get the base address using the GEPIndex 1837 if (GEPIndex != 0) { 1838 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1839 ConstantInt::get(LoadSizeType, GEPIndex)); 1840 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1841 ConstantInt::get(LoadSizeType, GEPIndex)); 1842 } 1843 1844 // Load LoadSizeType from the base address 1845 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1846 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1847 if (LoadSizeType != MaxLoadType) { 1848 LoadSrc1 = Builder.CreateZExtOrTrunc(LoadSrc1, MaxLoadType); 1849 LoadSrc2 = Builder.CreateZExtOrTrunc(LoadSrc2, MaxLoadType); 1850 } 1851 Diff = Builder.CreateXor(LoadSrc1, LoadSrc2); 1852 Diff = Builder.CreateZExtOrTrunc(Diff, MaxLoadType); 1853 XorList.push_back(Diff); 1854 } 1855 1856 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> { 1857 std::vector<Value *> OutList; 1858 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) { 1859 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]); 1860 OutList.push_back(Or); 1861 } 1862 if (InList.size() % 2 != 0) 1863 OutList.push_back(InList.back()); 1864 return OutList; 1865 }; 1866 1867 // Pair wise OR the XOR results 1868 OrList = pairWiseOr(XorList); 1869 1870 // Pair wise OR the OR results until one result left 1871 while (OrList.size() != 1) { 1872 OrList = pairWiseOr(OrList); 1873 } 1874 1875 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, OrList[0], 1876 ConstantInt::get(Diff->getType(), 0)); 1877 BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1)) 1878 ? EndBlock 1879 : LoadCmpBlocks[Index + 1]; 1880 // Early exit branch if difference found to ResultBlock, otherwise continue to 1881 // next LoadCmpBlock or EndBlock. 1882 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 1883 Builder.Insert(CmpBr); 1884 1885 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 1886 // since early exit to ResultBlock was not taken (no difference was found in 1887 // any of the bytes) 1888 if (Index == LoadCmpBlocks.size() - 1) { 1889 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 1890 PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]); 1891 } 1892 } 1893 1894 // This function creates the IR intructions for loading and comparing using the 1895 // given LoadSize. It loads the number of bytes specified by LoadSize from each 1896 // source of the memcmp parameters. It then does a subtract to see if there was 1897 // a difference in the loaded values. If a difference is found, it branches 1898 // with an early exit to the ResultBlock for calculating which source was 1899 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or 1900 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with 1901 // a special case through emitLoadCompareByteBlock. The special handling can 1902 // simply subtract the loaded values and add it to the result phi node. 1903 void MemCmpExpansion::emitLoadCompareBlock(unsigned Index, int LoadSize, 1904 int GEPIndex, bool IsLittleEndian) { 1905 if (LoadSize == 1) { 1906 MemCmpExpansion::emitLoadCompareByteBlock(Index, GEPIndex); 1907 return; 1908 } 1909 1910 IRBuilder<> Builder(CI->getContext()); 1911 1912 Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8); 1913 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 1914 1915 Value *Source1 = CI->getArgOperand(0); 1916 Value *Source2 = CI->getArgOperand(1); 1917 1918 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1919 // Cast source to LoadSizeType* 1920 if (Source1->getType() != LoadSizeType) 1921 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1922 if (Source2->getType() != LoadSizeType) 1923 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1924 1925 // Get the base address using the GEPIndex 1926 if (GEPIndex != 0) { 1927 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1928 ConstantInt::get(LoadSizeType, GEPIndex)); 1929 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1930 ConstantInt::get(LoadSizeType, GEPIndex)); 1931 } 1932 1933 // Load LoadSizeType from the base address 1934 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1935 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1936 1937 if (IsLittleEndian) { 1938 Function *F = LoadCmpBlocks[Index]->getParent(); 1939 1940 Function *Bswap = Intrinsic::getDeclaration(F->getParent(), 1941 Intrinsic::bswap, LoadSizeType); 1942 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 1943 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 1944 } 1945 1946 if (LoadSizeType != MaxLoadType) { 1947 LoadSrc1 = Builder.CreateZExtOrTrunc(LoadSrc1, MaxLoadType); 1948 LoadSrc2 = Builder.CreateZExtOrTrunc(LoadSrc2, MaxLoadType); 1949 } 1950 1951 // Add the loaded values to the phi nodes for calculating memcmp result only 1952 // if result is not used in a zero equality. 1953 if (!IsUsedForZeroCmp) { 1954 ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[Index]); 1955 ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[Index]); 1956 } 1957 1958 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2); 1959 1960 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 1961 ConstantInt::get(Diff->getType(), 0)); 1962 BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1)) 1963 ? EndBlock 1964 : LoadCmpBlocks[Index + 1]; 1965 // Early exit branch if difference found to ResultBlock, otherwise continue to 1966 // next LoadCmpBlock or EndBlock. 1967 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 1968 Builder.Insert(CmpBr); 1969 1970 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 1971 // since early exit to ResultBlock was not taken (no difference was found in 1972 // any of the bytes) 1973 if (Index == LoadCmpBlocks.size() - 1) { 1974 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 1975 PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]); 1976 } 1977 } 1978 1979 // This function populates the ResultBlock with a sequence to calculate the 1980 // memcmp result. It compares the two loaded source values and returns -1 if 1981 // src1 < src2 and 1 if src1 > src2. 1982 void MemCmpExpansion::emitMemCmpResultBlock(bool IsLittleEndian) { 1983 IRBuilder<> Builder(CI->getContext()); 1984 1985 // Special case: if memcmp result is used in a zero equality, result does not 1986 // need to be calculated and can simply return 1. 1987 if (IsUsedForZeroCmp) { 1988 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 1989 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 1990 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1); 1991 PhiRes->addIncoming(Res, ResBlock.BB); 1992 BranchInst *NewBr = BranchInst::Create(EndBlock); 1993 Builder.Insert(NewBr); 1994 return; 1995 } 1996 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 1997 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 1998 1999 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1, 2000 ResBlock.PhiSrc2); 2001 2002 Value *Res = 2003 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1), 2004 ConstantInt::get(Builder.getInt32Ty(), 1)); 2005 2006 BranchInst *NewBr = BranchInst::Create(EndBlock); 2007 Builder.Insert(NewBr); 2008 PhiRes->addIncoming(Res, ResBlock.BB); 2009 } 2010 2011 int MemCmpExpansion::calculateNumBlocks(unsigned Size) { 2012 int NumBlocks = 0; 2013 bool haveOneByteLoad = false; 2014 unsigned RemainingSize = Size; 2015 unsigned LoadSize = MaxLoadSize; 2016 while (RemainingSize) { 2017 if (LoadSize == 1) 2018 haveOneByteLoad = true; 2019 NumBlocks += RemainingSize / LoadSize; 2020 RemainingSize = RemainingSize % LoadSize; 2021 LoadSize = LoadSize / 2; 2022 } 2023 NumBlocksNonOneByte = haveOneByteLoad ? (NumBlocks - 1) : NumBlocks; 2024 2025 if (IsUsedForZeroCmp) 2026 NumBlocks = NumBlocks / NumLoadsPerBlock + 2027 (NumBlocks % NumLoadsPerBlock != 0 ? 1 : 0); 2028 2029 return NumBlocks; 2030 } 2031 2032 void MemCmpExpansion::setupResultBlockPHINodes() { 2033 IRBuilder<> Builder(CI->getContext()); 2034 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 2035 Builder.SetInsertPoint(ResBlock.BB); 2036 ResBlock.PhiSrc1 = 2037 Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src1"); 2038 ResBlock.PhiSrc2 = 2039 Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src2"); 2040 } 2041 2042 void MemCmpExpansion::setupEndBlockPHINodes() { 2043 IRBuilder<> Builder(CI->getContext()); 2044 2045 Builder.SetInsertPoint(&EndBlock->front()); 2046 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res"); 2047 } 2048 2049 Value *MemCmpExpansion::getMemCmpExpansionZeroCase(unsigned Size, 2050 bool IsLittleEndian) { 2051 unsigned NumBytesProcessed = 0; 2052 // This loop populates each of the LoadCmpBlocks with IR sequence to handle 2053 // multiple loads per block 2054 for (unsigned i = 0; i < NumBlocks; ++i) { 2055 emitLoadCompareBlockMultipleLoads(i, Size, NumBytesProcessed); 2056 } 2057 2058 emitMemCmpResultBlock(IsLittleEndian); 2059 return PhiRes; 2060 } 2061 2062 // This function expands the memcmp call into an inline expansion and returns 2063 // the memcmp result. 2064 Value *MemCmpExpansion::getMemCmpExpansion(bool IsLittleEndian) { 2065 2066 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2067 uint64_t Size = SizeCast->getZExtValue(); 2068 2069 int LoadSize = MaxLoadSize; 2070 int NumBytesToBeProcessed = Size; 2071 2072 if (IsUsedForZeroCmp) { 2073 return getMemCmpExpansionZeroCase(Size, IsLittleEndian); 2074 } 2075 2076 unsigned Index = 0; 2077 // This loop calls emitLoadCompareBlock for comparing SizeVal bytes of the two 2078 // memcmp source. It starts with loading using the maximum load size set by 2079 // the target. It processes any remaining bytes using a load size which is the 2080 // next smallest power of 2. 2081 while (NumBytesToBeProcessed) { 2082 // Calculate how many blocks we can create with the current load size 2083 int NumBlocks = NumBytesToBeProcessed / LoadSize; 2084 int GEPIndex = (Size - NumBytesToBeProcessed) / LoadSize; 2085 NumBytesToBeProcessed = NumBytesToBeProcessed % LoadSize; 2086 2087 // For each NumBlocks, populate the instruction sequence for loading and 2088 // comparing LoadSize bytes 2089 while (NumBlocks--) { 2090 emitLoadCompareBlock(Index, LoadSize, GEPIndex, IsLittleEndian); 2091 Index++; 2092 GEPIndex++; 2093 } 2094 // Get the next LoadSize to use 2095 LoadSize = LoadSize / 2; 2096 } 2097 2098 emitMemCmpResultBlock(IsLittleEndian); 2099 return PhiRes; 2100 } 2101 2102 // This function checks to see if an expansion of memcmp can be generated. 2103 // It checks for constant compare size that is less than the max inline size. 2104 // If an expansion cannot occur, returns false to leave as a library call. 2105 // Otherwise, the library call is replaced wtih new IR instruction sequence. 2106 /// We want to transform: 2107 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15) 2108 /// To: 2109 /// loadbb: 2110 /// %0 = bitcast i32* %buffer2 to i8* 2111 /// %1 = bitcast i32* %buffer1 to i8* 2112 /// %2 = bitcast i8* %1 to i64* 2113 /// %3 = bitcast i8* %0 to i64* 2114 /// %4 = load i64, i64* %2 2115 /// %5 = load i64, i64* %3 2116 /// %6 = call i64 @llvm.bswap.i64(i64 %4) 2117 /// %7 = call i64 @llvm.bswap.i64(i64 %5) 2118 /// %8 = sub i64 %6, %7 2119 /// %9 = icmp ne i64 %8, 0 2120 /// br i1 %9, label %res_block, label %loadbb1 2121 /// res_block: ; preds = %loadbb2, 2122 /// %loadbb1, %loadbb 2123 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ] 2124 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ] 2125 /// %10 = icmp ult i64 %phi.src1, %phi.src2 2126 /// %11 = select i1 %10, i32 -1, i32 1 2127 /// br label %endblock 2128 /// loadbb1: ; preds = %loadbb 2129 /// %12 = bitcast i32* %buffer2 to i8* 2130 /// %13 = bitcast i32* %buffer1 to i8* 2131 /// %14 = bitcast i8* %13 to i32* 2132 /// %15 = bitcast i8* %12 to i32* 2133 /// %16 = getelementptr i32, i32* %14, i32 2 2134 /// %17 = getelementptr i32, i32* %15, i32 2 2135 /// %18 = load i32, i32* %16 2136 /// %19 = load i32, i32* %17 2137 /// %20 = call i32 @llvm.bswap.i32(i32 %18) 2138 /// %21 = call i32 @llvm.bswap.i32(i32 %19) 2139 /// %22 = zext i32 %20 to i64 2140 /// %23 = zext i32 %21 to i64 2141 /// %24 = sub i64 %22, %23 2142 /// %25 = icmp ne i64 %24, 0 2143 /// br i1 %25, label %res_block, label %loadbb2 2144 /// loadbb2: ; preds = %loadbb1 2145 /// %26 = bitcast i32* %buffer2 to i8* 2146 /// %27 = bitcast i32* %buffer1 to i8* 2147 /// %28 = bitcast i8* %27 to i16* 2148 /// %29 = bitcast i8* %26 to i16* 2149 /// %30 = getelementptr i16, i16* %28, i16 6 2150 /// %31 = getelementptr i16, i16* %29, i16 6 2151 /// %32 = load i16, i16* %30 2152 /// %33 = load i16, i16* %31 2153 /// %34 = call i16 @llvm.bswap.i16(i16 %32) 2154 /// %35 = call i16 @llvm.bswap.i16(i16 %33) 2155 /// %36 = zext i16 %34 to i64 2156 /// %37 = zext i16 %35 to i64 2157 /// %38 = sub i64 %36, %37 2158 /// %39 = icmp ne i64 %38, 0 2159 /// br i1 %39, label %res_block, label %loadbb3 2160 /// loadbb3: ; preds = %loadbb2 2161 /// %40 = bitcast i32* %buffer2 to i8* 2162 /// %41 = bitcast i32* %buffer1 to i8* 2163 /// %42 = getelementptr i8, i8* %41, i8 14 2164 /// %43 = getelementptr i8, i8* %40, i8 14 2165 /// %44 = load i8, i8* %42 2166 /// %45 = load i8, i8* %43 2167 /// %46 = zext i8 %44 to i32 2168 /// %47 = zext i8 %45 to i32 2169 /// %48 = sub i32 %46, %47 2170 /// br label %endblock 2171 /// endblock: ; preds = %res_block, 2172 /// %loadbb3 2173 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ] 2174 /// ret i32 %phi.res 2175 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI, 2176 const TargetLowering *TLI, const DataLayout *DL) { 2177 NumMemCmpCalls++; 2178 IRBuilder<> Builder(CI->getContext()); 2179 2180 // TTI call to check if target would like to expand memcmp and get the 2181 // MaxLoadSize 2182 unsigned MaxLoadSize; 2183 if (!TTI->expandMemCmp(CI, MaxLoadSize)) 2184 return false; 2185 2186 // Early exit from expansion if -Oz 2187 if (CI->getParent()->getParent()->optForMinSize()) { 2188 return false; 2189 } 2190 2191 // Early exit from expansion if size is not a constant 2192 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2193 if (!SizeCast) { 2194 NumMemCmpNotConstant++; 2195 return false; 2196 } 2197 2198 // Early exit from expansion if size greater than max bytes to load 2199 uint64_t SizeVal = SizeCast->getZExtValue(); 2200 2201 unsigned NumLoads = 0; 2202 unsigned RemainingSize = SizeVal; 2203 unsigned LoadSize = MaxLoadSize; 2204 while (RemainingSize) { 2205 NumLoads += RemainingSize / LoadSize; 2206 RemainingSize = RemainingSize % LoadSize; 2207 LoadSize = LoadSize / 2; 2208 } 2209 2210 if (NumLoads > 2211 TLI->getMaxExpandSizeMemcmp(CI->getParent()->getParent()->optForSize())) { 2212 NumMemCmpGreaterThanMax++; 2213 return false; 2214 } 2215 2216 NumMemCmpInlined++; 2217 2218 // MemCmpHelper object, creates and sets up basic blocks required for 2219 // expanding memcmp with size SizeVal 2220 unsigned NumLoadsPerBlock = MemCmpNumLoadsPerBlock; 2221 MemCmpExpansion MemCmpHelper(CI, MaxLoadSize, NumLoadsPerBlock); 2222 2223 Value *Res = MemCmpHelper.getMemCmpExpansion(DL->isLittleEndian()); 2224 2225 // Replace call with result of expansion and erarse call. 2226 CI->replaceAllUsesWith(Res); 2227 CI->eraseFromParent(); 2228 2229 return true; 2230 } 2231 2232 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 2233 BasicBlock *BB = CI->getParent(); 2234 2235 // Lower inline assembly if we can. 2236 // If we found an inline asm expession, and if the target knows how to 2237 // lower it to normal LLVM code, do so now. 2238 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 2239 if (TLI->ExpandInlineAsm(CI)) { 2240 // Avoid invalidating the iterator. 2241 CurInstIterator = BB->begin(); 2242 // Avoid processing instructions out of order, which could cause 2243 // reuse before a value is defined. 2244 SunkAddrs.clear(); 2245 return true; 2246 } 2247 // Sink address computing for memory operands into the block. 2248 if (optimizeInlineAsmInst(CI)) 2249 return true; 2250 } 2251 2252 // Align the pointer arguments to this call if the target thinks it's a good 2253 // idea 2254 unsigned MinSize, PrefAlign; 2255 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2256 for (auto &Arg : CI->arg_operands()) { 2257 // We want to align both objects whose address is used directly and 2258 // objects whose address is used in casts and GEPs, though it only makes 2259 // sense for GEPs if the offset is a multiple of the desired alignment and 2260 // if size - offset meets the size threshold. 2261 if (!Arg->getType()->isPointerTy()) 2262 continue; 2263 APInt Offset(DL->getPointerSizeInBits( 2264 cast<PointerType>(Arg->getType())->getAddressSpace()), 2265 0); 2266 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2267 uint64_t Offset2 = Offset.getLimitedValue(); 2268 if ((Offset2 & (PrefAlign-1)) != 0) 2269 continue; 2270 AllocaInst *AI; 2271 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2272 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2273 AI->setAlignment(PrefAlign); 2274 // Global variables can only be aligned if they are defined in this 2275 // object (i.e. they are uniquely initialized in this object), and 2276 // over-aligning global variables that have an explicit section is 2277 // forbidden. 2278 GlobalVariable *GV; 2279 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2280 GV->getPointerAlignment(*DL) < PrefAlign && 2281 DL->getTypeAllocSize(GV->getValueType()) >= 2282 MinSize + Offset2) 2283 GV->setAlignment(PrefAlign); 2284 } 2285 // If this is a memcpy (or similar) then we may be able to improve the 2286 // alignment 2287 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2288 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 2289 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 2290 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 2291 if (Align > MI->getAlignment()) 2292 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 2293 } 2294 } 2295 2296 // If we have a cold call site, try to sink addressing computation into the 2297 // cold block. This interacts with our handling for loads and stores to 2298 // ensure that we can fold all uses of a potential addressing computation 2299 // into their uses. TODO: generalize this to work over profiling data 2300 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 2301 for (auto &Arg : CI->arg_operands()) { 2302 if (!Arg->getType()->isPointerTy()) 2303 continue; 2304 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2305 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2306 } 2307 2308 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2309 if (II) { 2310 switch (II->getIntrinsicID()) { 2311 default: break; 2312 case Intrinsic::objectsize: { 2313 // Lower all uses of llvm.objectsize.* 2314 ConstantInt *RetVal = 2315 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 2316 // Substituting this can cause recursive simplifications, which can 2317 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 2318 // this 2319 // happens. 2320 Value *CurValue = &*CurInstIterator; 2321 WeakTrackingVH IterHandle(CurValue); 2322 2323 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2324 2325 // If the iterator instruction was recursively deleted, start over at the 2326 // start of the block. 2327 if (IterHandle != CurValue) { 2328 CurInstIterator = BB->begin(); 2329 SunkAddrs.clear(); 2330 } 2331 return true; 2332 } 2333 case Intrinsic::aarch64_stlxr: 2334 case Intrinsic::aarch64_stxr: { 2335 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2336 if (!ExtVal || !ExtVal->hasOneUse() || 2337 ExtVal->getParent() == CI->getParent()) 2338 return false; 2339 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2340 ExtVal->moveBefore(CI); 2341 // Mark this instruction as "inserted by CGP", so that other 2342 // optimizations don't touch it. 2343 InsertedInsts.insert(ExtVal); 2344 return true; 2345 } 2346 case Intrinsic::invariant_group_barrier: 2347 II->replaceAllUsesWith(II->getArgOperand(0)); 2348 II->eraseFromParent(); 2349 return true; 2350 2351 case Intrinsic::cttz: 2352 case Intrinsic::ctlz: 2353 // If counting zeros is expensive, try to avoid it. 2354 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2355 } 2356 2357 if (TLI) { 2358 SmallVector<Value*, 2> PtrOps; 2359 Type *AccessTy; 2360 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2361 while (!PtrOps.empty()) { 2362 Value *PtrVal = PtrOps.pop_back_val(); 2363 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2364 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2365 return true; 2366 } 2367 } 2368 } 2369 2370 // From here on out we're working with named functions. 2371 if (!CI->getCalledFunction()) return false; 2372 2373 // Lower all default uses of _chk calls. This is very similar 2374 // to what InstCombineCalls does, but here we are only lowering calls 2375 // to fortified library functions (e.g. __memcpy_chk) that have the default 2376 // "don't know" as the objectsize. Anything else should be left alone. 2377 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2378 if (Value *V = Simplifier.optimizeCall(CI)) { 2379 CI->replaceAllUsesWith(V); 2380 CI->eraseFromParent(); 2381 return true; 2382 } 2383 2384 LibFunc Func; 2385 if (TLInfo->getLibFunc(*CI->getCalledFunction(), Func) && 2386 Func == LibFunc_memcmp) { 2387 if (expandMemCmp(CI, TTI, TLI, DL)) { 2388 ModifiedDT = true; 2389 return true; 2390 } 2391 } 2392 return false; 2393 } 2394 2395 /// Look for opportunities to duplicate return instructions to the predecessor 2396 /// to enable tail call optimizations. The case it is currently looking for is: 2397 /// @code 2398 /// bb0: 2399 /// %tmp0 = tail call i32 @f0() 2400 /// br label %return 2401 /// bb1: 2402 /// %tmp1 = tail call i32 @f1() 2403 /// br label %return 2404 /// bb2: 2405 /// %tmp2 = tail call i32 @f2() 2406 /// br label %return 2407 /// return: 2408 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2409 /// ret i32 %retval 2410 /// @endcode 2411 /// 2412 /// => 2413 /// 2414 /// @code 2415 /// bb0: 2416 /// %tmp0 = tail call i32 @f0() 2417 /// ret i32 %tmp0 2418 /// bb1: 2419 /// %tmp1 = tail call i32 @f1() 2420 /// ret i32 %tmp1 2421 /// bb2: 2422 /// %tmp2 = tail call i32 @f2() 2423 /// ret i32 %tmp2 2424 /// @endcode 2425 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 2426 if (!TLI) 2427 return false; 2428 2429 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2430 if (!RetI) 2431 return false; 2432 2433 PHINode *PN = nullptr; 2434 BitCastInst *BCI = nullptr; 2435 Value *V = RetI->getReturnValue(); 2436 if (V) { 2437 BCI = dyn_cast<BitCastInst>(V); 2438 if (BCI) 2439 V = BCI->getOperand(0); 2440 2441 PN = dyn_cast<PHINode>(V); 2442 if (!PN) 2443 return false; 2444 } 2445 2446 if (PN && PN->getParent() != BB) 2447 return false; 2448 2449 // Make sure there are no instructions between the PHI and return, or that the 2450 // return is the first instruction in the block. 2451 if (PN) { 2452 BasicBlock::iterator BI = BB->begin(); 2453 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 2454 if (&*BI == BCI) 2455 // Also skip over the bitcast. 2456 ++BI; 2457 if (&*BI != RetI) 2458 return false; 2459 } else { 2460 BasicBlock::iterator BI = BB->begin(); 2461 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2462 if (&*BI != RetI) 2463 return false; 2464 } 2465 2466 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2467 /// call. 2468 const Function *F = BB->getParent(); 2469 SmallVector<CallInst*, 4> TailCalls; 2470 if (PN) { 2471 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2472 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2473 // Make sure the phi value is indeed produced by the tail call. 2474 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2475 TLI->mayBeEmittedAsTailCall(CI) && 2476 attributesPermitTailCall(F, CI, RetI, *TLI)) 2477 TailCalls.push_back(CI); 2478 } 2479 } else { 2480 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2481 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2482 if (!VisitedBBs.insert(*PI).second) 2483 continue; 2484 2485 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2486 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2487 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2488 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2489 if (RI == RE) 2490 continue; 2491 2492 CallInst *CI = dyn_cast<CallInst>(&*RI); 2493 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2494 attributesPermitTailCall(F, CI, RetI, *TLI)) 2495 TailCalls.push_back(CI); 2496 } 2497 } 2498 2499 bool Changed = false; 2500 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2501 CallInst *CI = TailCalls[i]; 2502 CallSite CS(CI); 2503 2504 // Conservatively require the attributes of the call to match those of the 2505 // return. Ignore noalias because it doesn't affect the call sequence. 2506 AttributeList CalleeAttrs = CS.getAttributes(); 2507 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2508 .removeAttribute(Attribute::NoAlias) != 2509 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2510 .removeAttribute(Attribute::NoAlias)) 2511 continue; 2512 2513 // Make sure the call instruction is followed by an unconditional branch to 2514 // the return block. 2515 BasicBlock *CallBB = CI->getParent(); 2516 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2517 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2518 continue; 2519 2520 // Duplicate the return into CallBB. 2521 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2522 ModifiedDT = Changed = true; 2523 ++NumRetsDup; 2524 } 2525 2526 // If we eliminated all predecessors of the block, delete the block now. 2527 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2528 BB->eraseFromParent(); 2529 2530 return Changed; 2531 } 2532 2533 //===----------------------------------------------------------------------===// 2534 // Memory Optimization 2535 //===----------------------------------------------------------------------===// 2536 2537 namespace { 2538 2539 /// This is an extended version of TargetLowering::AddrMode 2540 /// which holds actual Value*'s for register values. 2541 struct ExtAddrMode : public TargetLowering::AddrMode { 2542 Value *BaseReg; 2543 Value *ScaledReg; 2544 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2545 void print(raw_ostream &OS) const; 2546 void dump() const; 2547 2548 bool operator==(const ExtAddrMode& O) const { 2549 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2550 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2551 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2552 } 2553 }; 2554 2555 #ifndef NDEBUG 2556 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2557 AM.print(OS); 2558 return OS; 2559 } 2560 #endif 2561 2562 void ExtAddrMode::print(raw_ostream &OS) const { 2563 bool NeedPlus = false; 2564 OS << "["; 2565 if (BaseGV) { 2566 OS << (NeedPlus ? " + " : "") 2567 << "GV:"; 2568 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2569 NeedPlus = true; 2570 } 2571 2572 if (BaseOffs) { 2573 OS << (NeedPlus ? " + " : "") 2574 << BaseOffs; 2575 NeedPlus = true; 2576 } 2577 2578 if (BaseReg) { 2579 OS << (NeedPlus ? " + " : "") 2580 << "Base:"; 2581 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2582 NeedPlus = true; 2583 } 2584 if (Scale) { 2585 OS << (NeedPlus ? " + " : "") 2586 << Scale << "*"; 2587 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2588 } 2589 2590 OS << ']'; 2591 } 2592 2593 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2594 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2595 print(dbgs()); 2596 dbgs() << '\n'; 2597 } 2598 #endif 2599 2600 /// \brief This class provides transaction based operation on the IR. 2601 /// Every change made through this class is recorded in the internal state and 2602 /// can be undone (rollback) until commit is called. 2603 class TypePromotionTransaction { 2604 2605 /// \brief This represents the common interface of the individual transaction. 2606 /// Each class implements the logic for doing one specific modification on 2607 /// the IR via the TypePromotionTransaction. 2608 class TypePromotionAction { 2609 protected: 2610 /// The Instruction modified. 2611 Instruction *Inst; 2612 2613 public: 2614 /// \brief Constructor of the action. 2615 /// The constructor performs the related action on the IR. 2616 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2617 2618 virtual ~TypePromotionAction() {} 2619 2620 /// \brief Undo the modification done by this action. 2621 /// When this method is called, the IR must be in the same state as it was 2622 /// before this action was applied. 2623 /// \pre Undoing the action works if and only if the IR is in the exact same 2624 /// state as it was directly after this action was applied. 2625 virtual void undo() = 0; 2626 2627 /// \brief Advocate every change made by this action. 2628 /// When the results on the IR of the action are to be kept, it is important 2629 /// to call this function, otherwise hidden information may be kept forever. 2630 virtual void commit() { 2631 // Nothing to be done, this action is not doing anything. 2632 } 2633 }; 2634 2635 /// \brief Utility to remember the position of an instruction. 2636 class InsertionHandler { 2637 /// Position of an instruction. 2638 /// Either an instruction: 2639 /// - Is the first in a basic block: BB is used. 2640 /// - Has a previous instructon: PrevInst is used. 2641 union { 2642 Instruction *PrevInst; 2643 BasicBlock *BB; 2644 } Point; 2645 /// Remember whether or not the instruction had a previous instruction. 2646 bool HasPrevInstruction; 2647 2648 public: 2649 /// \brief Record the position of \p Inst. 2650 InsertionHandler(Instruction *Inst) { 2651 BasicBlock::iterator It = Inst->getIterator(); 2652 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2653 if (HasPrevInstruction) 2654 Point.PrevInst = &*--It; 2655 else 2656 Point.BB = Inst->getParent(); 2657 } 2658 2659 /// \brief Insert \p Inst at the recorded position. 2660 void insert(Instruction *Inst) { 2661 if (HasPrevInstruction) { 2662 if (Inst->getParent()) 2663 Inst->removeFromParent(); 2664 Inst->insertAfter(Point.PrevInst); 2665 } else { 2666 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2667 if (Inst->getParent()) 2668 Inst->moveBefore(Position); 2669 else 2670 Inst->insertBefore(Position); 2671 } 2672 } 2673 }; 2674 2675 /// \brief Move an instruction before another. 2676 class InstructionMoveBefore : public TypePromotionAction { 2677 /// Original position of the instruction. 2678 InsertionHandler Position; 2679 2680 public: 2681 /// \brief Move \p Inst before \p Before. 2682 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2683 : TypePromotionAction(Inst), Position(Inst) { 2684 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2685 Inst->moveBefore(Before); 2686 } 2687 2688 /// \brief Move the instruction back to its original position. 2689 void undo() override { 2690 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2691 Position.insert(Inst); 2692 } 2693 }; 2694 2695 /// \brief Set the operand of an instruction with a new value. 2696 class OperandSetter : public TypePromotionAction { 2697 /// Original operand of the instruction. 2698 Value *Origin; 2699 /// Index of the modified instruction. 2700 unsigned Idx; 2701 2702 public: 2703 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2704 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2705 : TypePromotionAction(Inst), Idx(Idx) { 2706 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2707 << "for:" << *Inst << "\n" 2708 << "with:" << *NewVal << "\n"); 2709 Origin = Inst->getOperand(Idx); 2710 Inst->setOperand(Idx, NewVal); 2711 } 2712 2713 /// \brief Restore the original value of the instruction. 2714 void undo() override { 2715 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2716 << "for: " << *Inst << "\n" 2717 << "with: " << *Origin << "\n"); 2718 Inst->setOperand(Idx, Origin); 2719 } 2720 }; 2721 2722 /// \brief Hide the operands of an instruction. 2723 /// Do as if this instruction was not using any of its operands. 2724 class OperandsHider : public TypePromotionAction { 2725 /// The list of original operands. 2726 SmallVector<Value *, 4> OriginalValues; 2727 2728 public: 2729 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2730 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2731 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2732 unsigned NumOpnds = Inst->getNumOperands(); 2733 OriginalValues.reserve(NumOpnds); 2734 for (unsigned It = 0; It < NumOpnds; ++It) { 2735 // Save the current operand. 2736 Value *Val = Inst->getOperand(It); 2737 OriginalValues.push_back(Val); 2738 // Set a dummy one. 2739 // We could use OperandSetter here, but that would imply an overhead 2740 // that we are not willing to pay. 2741 Inst->setOperand(It, UndefValue::get(Val->getType())); 2742 } 2743 } 2744 2745 /// \brief Restore the original list of uses. 2746 void undo() override { 2747 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2748 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2749 Inst->setOperand(It, OriginalValues[It]); 2750 } 2751 }; 2752 2753 /// \brief Build a truncate instruction. 2754 class TruncBuilder : public TypePromotionAction { 2755 Value *Val; 2756 public: 2757 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2758 /// result. 2759 /// trunc Opnd to Ty. 2760 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2761 IRBuilder<> Builder(Opnd); 2762 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2763 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2764 } 2765 2766 /// \brief Get the built value. 2767 Value *getBuiltValue() { return Val; } 2768 2769 /// \brief Remove the built instruction. 2770 void undo() override { 2771 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2772 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2773 IVal->eraseFromParent(); 2774 } 2775 }; 2776 2777 /// \brief Build a sign extension instruction. 2778 class SExtBuilder : public TypePromotionAction { 2779 Value *Val; 2780 public: 2781 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2782 /// result. 2783 /// sext Opnd to Ty. 2784 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2785 : TypePromotionAction(InsertPt) { 2786 IRBuilder<> Builder(InsertPt); 2787 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2788 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2789 } 2790 2791 /// \brief Get the built value. 2792 Value *getBuiltValue() { return Val; } 2793 2794 /// \brief Remove the built instruction. 2795 void undo() override { 2796 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2797 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2798 IVal->eraseFromParent(); 2799 } 2800 }; 2801 2802 /// \brief Build a zero extension instruction. 2803 class ZExtBuilder : public TypePromotionAction { 2804 Value *Val; 2805 public: 2806 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2807 /// result. 2808 /// zext Opnd to Ty. 2809 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2810 : TypePromotionAction(InsertPt) { 2811 IRBuilder<> Builder(InsertPt); 2812 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2813 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2814 } 2815 2816 /// \brief Get the built value. 2817 Value *getBuiltValue() { return Val; } 2818 2819 /// \brief Remove the built instruction. 2820 void undo() override { 2821 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2822 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2823 IVal->eraseFromParent(); 2824 } 2825 }; 2826 2827 /// \brief Mutate an instruction to another type. 2828 class TypeMutator : public TypePromotionAction { 2829 /// Record the original type. 2830 Type *OrigTy; 2831 2832 public: 2833 /// \brief Mutate the type of \p Inst into \p NewTy. 2834 TypeMutator(Instruction *Inst, Type *NewTy) 2835 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2836 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2837 << "\n"); 2838 Inst->mutateType(NewTy); 2839 } 2840 2841 /// \brief Mutate the instruction back to its original type. 2842 void undo() override { 2843 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2844 << "\n"); 2845 Inst->mutateType(OrigTy); 2846 } 2847 }; 2848 2849 /// \brief Replace the uses of an instruction by another instruction. 2850 class UsesReplacer : public TypePromotionAction { 2851 /// Helper structure to keep track of the replaced uses. 2852 struct InstructionAndIdx { 2853 /// The instruction using the instruction. 2854 Instruction *Inst; 2855 /// The index where this instruction is used for Inst. 2856 unsigned Idx; 2857 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2858 : Inst(Inst), Idx(Idx) {} 2859 }; 2860 2861 /// Keep track of the original uses (pair Instruction, Index). 2862 SmallVector<InstructionAndIdx, 4> OriginalUses; 2863 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2864 2865 public: 2866 /// \brief Replace all the use of \p Inst by \p New. 2867 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2868 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2869 << "\n"); 2870 // Record the original uses. 2871 for (Use &U : Inst->uses()) { 2872 Instruction *UserI = cast<Instruction>(U.getUser()); 2873 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2874 } 2875 // Now, we can replace the uses. 2876 Inst->replaceAllUsesWith(New); 2877 } 2878 2879 /// \brief Reassign the original uses of Inst to Inst. 2880 void undo() override { 2881 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2882 for (use_iterator UseIt = OriginalUses.begin(), 2883 EndIt = OriginalUses.end(); 2884 UseIt != EndIt; ++UseIt) { 2885 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2886 } 2887 } 2888 }; 2889 2890 /// \brief Remove an instruction from the IR. 2891 class InstructionRemover : public TypePromotionAction { 2892 /// Original position of the instruction. 2893 InsertionHandler Inserter; 2894 /// Helper structure to hide all the link to the instruction. In other 2895 /// words, this helps to do as if the instruction was removed. 2896 OperandsHider Hider; 2897 /// Keep track of the uses replaced, if any. 2898 UsesReplacer *Replacer; 2899 /// Keep track of instructions removed. 2900 SetOfInstrs &RemovedInsts; 2901 2902 public: 2903 /// \brief Remove all reference of \p Inst and optinally replace all its 2904 /// uses with New. 2905 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2906 /// \pre If !Inst->use_empty(), then New != nullptr 2907 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2908 Value *New = nullptr) 2909 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2910 Replacer(nullptr), RemovedInsts(RemovedInsts) { 2911 if (New) 2912 Replacer = new UsesReplacer(Inst, New); 2913 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2914 RemovedInsts.insert(Inst); 2915 /// The instructions removed here will be freed after completing 2916 /// optimizeBlock() for all blocks as we need to keep track of the 2917 /// removed instructions during promotion. 2918 Inst->removeFromParent(); 2919 } 2920 2921 ~InstructionRemover() override { delete Replacer; } 2922 2923 /// \brief Resurrect the instruction and reassign it to the proper uses if 2924 /// new value was provided when build this action. 2925 void undo() override { 2926 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2927 Inserter.insert(Inst); 2928 if (Replacer) 2929 Replacer->undo(); 2930 Hider.undo(); 2931 RemovedInsts.erase(Inst); 2932 } 2933 }; 2934 2935 public: 2936 /// Restoration point. 2937 /// The restoration point is a pointer to an action instead of an iterator 2938 /// because the iterator may be invalidated but not the pointer. 2939 typedef const TypePromotionAction *ConstRestorationPt; 2940 2941 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2942 : RemovedInsts(RemovedInsts) {} 2943 2944 /// Advocate every changes made in that transaction. 2945 void commit(); 2946 /// Undo all the changes made after the given point. 2947 void rollback(ConstRestorationPt Point); 2948 /// Get the current restoration point. 2949 ConstRestorationPt getRestorationPoint() const; 2950 2951 /// \name API for IR modification with state keeping to support rollback. 2952 /// @{ 2953 /// Same as Instruction::setOperand. 2954 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2955 /// Same as Instruction::eraseFromParent. 2956 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2957 /// Same as Value::replaceAllUsesWith. 2958 void replaceAllUsesWith(Instruction *Inst, Value *New); 2959 /// Same as Value::mutateType. 2960 void mutateType(Instruction *Inst, Type *NewTy); 2961 /// Same as IRBuilder::createTrunc. 2962 Value *createTrunc(Instruction *Opnd, Type *Ty); 2963 /// Same as IRBuilder::createSExt. 2964 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2965 /// Same as IRBuilder::createZExt. 2966 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2967 /// Same as Instruction::moveBefore. 2968 void moveBefore(Instruction *Inst, Instruction *Before); 2969 /// @} 2970 2971 private: 2972 /// The ordered list of actions made so far. 2973 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2974 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2975 SetOfInstrs &RemovedInsts; 2976 }; 2977 2978 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2979 Value *NewVal) { 2980 Actions.push_back( 2981 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2982 } 2983 2984 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2985 Value *NewVal) { 2986 Actions.push_back( 2987 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, 2988 RemovedInsts, NewVal)); 2989 } 2990 2991 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2992 Value *New) { 2993 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2994 } 2995 2996 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2997 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2998 } 2999 3000 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3001 Type *Ty) { 3002 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3003 Value *Val = Ptr->getBuiltValue(); 3004 Actions.push_back(std::move(Ptr)); 3005 return Val; 3006 } 3007 3008 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3009 Value *Opnd, Type *Ty) { 3010 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3011 Value *Val = Ptr->getBuiltValue(); 3012 Actions.push_back(std::move(Ptr)); 3013 return Val; 3014 } 3015 3016 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3017 Value *Opnd, Type *Ty) { 3018 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3019 Value *Val = Ptr->getBuiltValue(); 3020 Actions.push_back(std::move(Ptr)); 3021 return Val; 3022 } 3023 3024 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3025 Instruction *Before) { 3026 Actions.push_back( 3027 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 3028 } 3029 3030 TypePromotionTransaction::ConstRestorationPt 3031 TypePromotionTransaction::getRestorationPoint() const { 3032 return !Actions.empty() ? Actions.back().get() : nullptr; 3033 } 3034 3035 void TypePromotionTransaction::commit() { 3036 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 3037 ++It) 3038 (*It)->commit(); 3039 Actions.clear(); 3040 } 3041 3042 void TypePromotionTransaction::rollback( 3043 TypePromotionTransaction::ConstRestorationPt Point) { 3044 while (!Actions.empty() && Point != Actions.back().get()) { 3045 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3046 Curr->undo(); 3047 } 3048 } 3049 3050 /// \brief A helper class for matching addressing modes. 3051 /// 3052 /// This encapsulates the logic for matching the target-legal addressing modes. 3053 class AddressingModeMatcher { 3054 SmallVectorImpl<Instruction*> &AddrModeInsts; 3055 const TargetLowering &TLI; 3056 const TargetRegisterInfo &TRI; 3057 const DataLayout &DL; 3058 3059 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3060 /// the memory instruction that we're computing this address for. 3061 Type *AccessTy; 3062 unsigned AddrSpace; 3063 Instruction *MemoryInst; 3064 3065 /// This is the addressing mode that we're building up. This is 3066 /// part of the return value of this addressing mode matching stuff. 3067 ExtAddrMode &AddrMode; 3068 3069 /// The instructions inserted by other CodeGenPrepare optimizations. 3070 const SetOfInstrs &InsertedInsts; 3071 /// A map from the instructions to their type before promotion. 3072 InstrToOrigTy &PromotedInsts; 3073 /// The ongoing transaction where every action should be registered. 3074 TypePromotionTransaction &TPT; 3075 3076 /// This is set to true when we should not do profitability checks. 3077 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3078 bool IgnoreProfitability; 3079 3080 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 3081 const TargetLowering &TLI, 3082 const TargetRegisterInfo &TRI, 3083 Type *AT, unsigned AS, 3084 Instruction *MI, ExtAddrMode &AM, 3085 const SetOfInstrs &InsertedInsts, 3086 InstrToOrigTy &PromotedInsts, 3087 TypePromotionTransaction &TPT) 3088 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3089 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3090 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3091 PromotedInsts(PromotedInsts), TPT(TPT) { 3092 IgnoreProfitability = false; 3093 } 3094 public: 3095 3096 /// Find the maximal addressing mode that a load/store of V can fold, 3097 /// give an access type of AccessTy. This returns a list of involved 3098 /// instructions in AddrModeInsts. 3099 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3100 /// optimizations. 3101 /// \p PromotedInsts maps the instructions to their type before promotion. 3102 /// \p The ongoing transaction where every action should be registered. 3103 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 3104 Instruction *MemoryInst, 3105 SmallVectorImpl<Instruction*> &AddrModeInsts, 3106 const TargetLowering &TLI, 3107 const TargetRegisterInfo &TRI, 3108 const SetOfInstrs &InsertedInsts, 3109 InstrToOrigTy &PromotedInsts, 3110 TypePromotionTransaction &TPT) { 3111 ExtAddrMode Result; 3112 3113 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 3114 AccessTy, AS, 3115 MemoryInst, Result, InsertedInsts, 3116 PromotedInsts, TPT).matchAddr(V, 0); 3117 (void)Success; assert(Success && "Couldn't select *anything*?"); 3118 return Result; 3119 } 3120 private: 3121 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3122 bool matchAddr(Value *V, unsigned Depth); 3123 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 3124 bool *MovedAway = nullptr); 3125 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3126 ExtAddrMode &AMBefore, 3127 ExtAddrMode &AMAfter); 3128 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3129 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3130 Value *PromotedOperand) const; 3131 }; 3132 3133 /// Try adding ScaleReg*Scale to the current addressing mode. 3134 /// Return true and update AddrMode if this addr mode is legal for the target, 3135 /// false if not. 3136 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3137 unsigned Depth) { 3138 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3139 // mode. Just process that directly. 3140 if (Scale == 1) 3141 return matchAddr(ScaleReg, Depth); 3142 3143 // If the scale is 0, it takes nothing to add this. 3144 if (Scale == 0) 3145 return true; 3146 3147 // If we already have a scale of this value, we can add to it, otherwise, we 3148 // need an available scale field. 3149 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3150 return false; 3151 3152 ExtAddrMode TestAddrMode = AddrMode; 3153 3154 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3155 // [A+B + A*7] -> [B+A*8]. 3156 TestAddrMode.Scale += Scale; 3157 TestAddrMode.ScaledReg = ScaleReg; 3158 3159 // If the new address isn't legal, bail out. 3160 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3161 return false; 3162 3163 // It was legal, so commit it. 3164 AddrMode = TestAddrMode; 3165 3166 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3167 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3168 // X*Scale + C*Scale to addr mode. 3169 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3170 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3171 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3172 TestAddrMode.ScaledReg = AddLHS; 3173 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3174 3175 // If this addressing mode is legal, commit it and remember that we folded 3176 // this instruction. 3177 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3178 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3179 AddrMode = TestAddrMode; 3180 return true; 3181 } 3182 } 3183 3184 // Otherwise, not (x+c)*scale, just return what we have. 3185 return true; 3186 } 3187 3188 /// This is a little filter, which returns true if an addressing computation 3189 /// involving I might be folded into a load/store accessing it. 3190 /// This doesn't need to be perfect, but needs to accept at least 3191 /// the set of instructions that MatchOperationAddr can. 3192 static bool MightBeFoldableInst(Instruction *I) { 3193 switch (I->getOpcode()) { 3194 case Instruction::BitCast: 3195 case Instruction::AddrSpaceCast: 3196 // Don't touch identity bitcasts. 3197 if (I->getType() == I->getOperand(0)->getType()) 3198 return false; 3199 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3200 case Instruction::PtrToInt: 3201 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3202 return true; 3203 case Instruction::IntToPtr: 3204 // We know the input is intptr_t, so this is foldable. 3205 return true; 3206 case Instruction::Add: 3207 return true; 3208 case Instruction::Mul: 3209 case Instruction::Shl: 3210 // Can only handle X*C and X << C. 3211 return isa<ConstantInt>(I->getOperand(1)); 3212 case Instruction::GetElementPtr: 3213 return true; 3214 default: 3215 return false; 3216 } 3217 } 3218 3219 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3220 /// \note \p Val is assumed to be the product of some type promotion. 3221 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3222 /// to be legal, as the non-promoted value would have had the same state. 3223 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3224 const DataLayout &DL, Value *Val) { 3225 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3226 if (!PromotedInst) 3227 return false; 3228 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3229 // If the ISDOpcode is undefined, it was undefined before the promotion. 3230 if (!ISDOpcode) 3231 return true; 3232 // Otherwise, check if the promoted instruction is legal or not. 3233 return TLI.isOperationLegalOrCustom( 3234 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3235 } 3236 3237 /// \brief Hepler class to perform type promotion. 3238 class TypePromotionHelper { 3239 /// \brief Utility function to check whether or not a sign or zero extension 3240 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3241 /// either using the operands of \p Inst or promoting \p Inst. 3242 /// The type of the extension is defined by \p IsSExt. 3243 /// In other words, check if: 3244 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3245 /// #1 Promotion applies: 3246 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3247 /// #2 Operand reuses: 3248 /// ext opnd1 to ConsideredExtType. 3249 /// \p PromotedInsts maps the instructions to their type before promotion. 3250 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3251 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3252 3253 /// \brief Utility function to determine if \p OpIdx should be promoted when 3254 /// promoting \p Inst. 3255 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3256 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3257 } 3258 3259 /// \brief Utility function to promote the operand of \p Ext when this 3260 /// operand is a promotable trunc or sext or zext. 3261 /// \p PromotedInsts maps the instructions to their type before promotion. 3262 /// \p CreatedInstsCost[out] contains the cost of all instructions 3263 /// created to promote the operand of Ext. 3264 /// Newly added extensions are inserted in \p Exts. 3265 /// Newly added truncates are inserted in \p Truncs. 3266 /// Should never be called directly. 3267 /// \return The promoted value which is used instead of Ext. 3268 static Value *promoteOperandForTruncAndAnyExt( 3269 Instruction *Ext, TypePromotionTransaction &TPT, 3270 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3271 SmallVectorImpl<Instruction *> *Exts, 3272 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3273 3274 /// \brief Utility function to promote the operand of \p Ext when this 3275 /// operand is promotable and is not a supported trunc or sext. 3276 /// \p PromotedInsts maps the instructions to their type before promotion. 3277 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3278 /// created to promote the operand of Ext. 3279 /// Newly added extensions are inserted in \p Exts. 3280 /// Newly added truncates are inserted in \p Truncs. 3281 /// Should never be called directly. 3282 /// \return The promoted value which is used instead of Ext. 3283 static Value *promoteOperandForOther(Instruction *Ext, 3284 TypePromotionTransaction &TPT, 3285 InstrToOrigTy &PromotedInsts, 3286 unsigned &CreatedInstsCost, 3287 SmallVectorImpl<Instruction *> *Exts, 3288 SmallVectorImpl<Instruction *> *Truncs, 3289 const TargetLowering &TLI, bool IsSExt); 3290 3291 /// \see promoteOperandForOther. 3292 static Value *signExtendOperandForOther( 3293 Instruction *Ext, TypePromotionTransaction &TPT, 3294 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3295 SmallVectorImpl<Instruction *> *Exts, 3296 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3297 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3298 Exts, Truncs, TLI, true); 3299 } 3300 3301 /// \see promoteOperandForOther. 3302 static Value *zeroExtendOperandForOther( 3303 Instruction *Ext, TypePromotionTransaction &TPT, 3304 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3305 SmallVectorImpl<Instruction *> *Exts, 3306 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3307 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3308 Exts, Truncs, TLI, false); 3309 } 3310 3311 public: 3312 /// Type for the utility function that promotes the operand of Ext. 3313 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 3314 InstrToOrigTy &PromotedInsts, 3315 unsigned &CreatedInstsCost, 3316 SmallVectorImpl<Instruction *> *Exts, 3317 SmallVectorImpl<Instruction *> *Truncs, 3318 const TargetLowering &TLI); 3319 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3320 /// action to promote the operand of \p Ext instead of using Ext. 3321 /// \return NULL if no promotable action is possible with the current 3322 /// sign extension. 3323 /// \p InsertedInsts keeps track of all the instructions inserted by the 3324 /// other CodeGenPrepare optimizations. This information is important 3325 /// because we do not want to promote these instructions as CodeGenPrepare 3326 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3327 /// \p PromotedInsts maps the instructions to their type before promotion. 3328 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3329 const TargetLowering &TLI, 3330 const InstrToOrigTy &PromotedInsts); 3331 }; 3332 3333 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3334 Type *ConsideredExtType, 3335 const InstrToOrigTy &PromotedInsts, 3336 bool IsSExt) { 3337 // The promotion helper does not know how to deal with vector types yet. 3338 // To be able to fix that, we would need to fix the places where we 3339 // statically extend, e.g., constants and such. 3340 if (Inst->getType()->isVectorTy()) 3341 return false; 3342 3343 // We can always get through zext. 3344 if (isa<ZExtInst>(Inst)) 3345 return true; 3346 3347 // sext(sext) is ok too. 3348 if (IsSExt && isa<SExtInst>(Inst)) 3349 return true; 3350 3351 // We can get through binary operator, if it is legal. In other words, the 3352 // binary operator must have a nuw or nsw flag. 3353 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3354 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3355 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3356 (IsSExt && BinOp->hasNoSignedWrap()))) 3357 return true; 3358 3359 // Check if we can do the following simplification. 3360 // ext(trunc(opnd)) --> ext(opnd) 3361 if (!isa<TruncInst>(Inst)) 3362 return false; 3363 3364 Value *OpndVal = Inst->getOperand(0); 3365 // Check if we can use this operand in the extension. 3366 // If the type is larger than the result type of the extension, we cannot. 3367 if (!OpndVal->getType()->isIntegerTy() || 3368 OpndVal->getType()->getIntegerBitWidth() > 3369 ConsideredExtType->getIntegerBitWidth()) 3370 return false; 3371 3372 // If the operand of the truncate is not an instruction, we will not have 3373 // any information on the dropped bits. 3374 // (Actually we could for constant but it is not worth the extra logic). 3375 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3376 if (!Opnd) 3377 return false; 3378 3379 // Check if the source of the type is narrow enough. 3380 // I.e., check that trunc just drops extended bits of the same kind of 3381 // the extension. 3382 // #1 get the type of the operand and check the kind of the extended bits. 3383 const Type *OpndType; 3384 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3385 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3386 OpndType = It->second.getPointer(); 3387 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3388 OpndType = Opnd->getOperand(0)->getType(); 3389 else 3390 return false; 3391 3392 // #2 check that the truncate just drops extended bits. 3393 return Inst->getType()->getIntegerBitWidth() >= 3394 OpndType->getIntegerBitWidth(); 3395 } 3396 3397 TypePromotionHelper::Action TypePromotionHelper::getAction( 3398 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3399 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3400 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3401 "Unexpected instruction type"); 3402 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3403 Type *ExtTy = Ext->getType(); 3404 bool IsSExt = isa<SExtInst>(Ext); 3405 // If the operand of the extension is not an instruction, we cannot 3406 // get through. 3407 // If it, check we can get through. 3408 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3409 return nullptr; 3410 3411 // Do not promote if the operand has been added by codegenprepare. 3412 // Otherwise, it means we are undoing an optimization that is likely to be 3413 // redone, thus causing potential infinite loop. 3414 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3415 return nullptr; 3416 3417 // SExt or Trunc instructions. 3418 // Return the related handler. 3419 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3420 isa<ZExtInst>(ExtOpnd)) 3421 return promoteOperandForTruncAndAnyExt; 3422 3423 // Regular instruction. 3424 // Abort early if we will have to insert non-free instructions. 3425 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3426 return nullptr; 3427 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3428 } 3429 3430 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3431 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 3432 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3433 SmallVectorImpl<Instruction *> *Exts, 3434 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3435 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3436 // get through it and this method should not be called. 3437 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3438 Value *ExtVal = SExt; 3439 bool HasMergedNonFreeExt = false; 3440 if (isa<ZExtInst>(SExtOpnd)) { 3441 // Replace s|zext(zext(opnd)) 3442 // => zext(opnd). 3443 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3444 Value *ZExt = 3445 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3446 TPT.replaceAllUsesWith(SExt, ZExt); 3447 TPT.eraseInstruction(SExt); 3448 ExtVal = ZExt; 3449 } else { 3450 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3451 // => z|sext(opnd). 3452 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3453 } 3454 CreatedInstsCost = 0; 3455 3456 // Remove dead code. 3457 if (SExtOpnd->use_empty()) 3458 TPT.eraseInstruction(SExtOpnd); 3459 3460 // Check if the extension is still needed. 3461 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3462 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3463 if (ExtInst) { 3464 if (Exts) 3465 Exts->push_back(ExtInst); 3466 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3467 } 3468 return ExtVal; 3469 } 3470 3471 // At this point we have: ext ty opnd to ty. 3472 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3473 Value *NextVal = ExtInst->getOperand(0); 3474 TPT.eraseInstruction(ExtInst, NextVal); 3475 return NextVal; 3476 } 3477 3478 Value *TypePromotionHelper::promoteOperandForOther( 3479 Instruction *Ext, TypePromotionTransaction &TPT, 3480 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3481 SmallVectorImpl<Instruction *> *Exts, 3482 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3483 bool IsSExt) { 3484 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3485 // get through it and this method should not be called. 3486 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3487 CreatedInstsCost = 0; 3488 if (!ExtOpnd->hasOneUse()) { 3489 // ExtOpnd will be promoted. 3490 // All its uses, but Ext, will need to use a truncated value of the 3491 // promoted version. 3492 // Create the truncate now. 3493 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3494 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3495 ITrunc->removeFromParent(); 3496 // Insert it just after the definition. 3497 ITrunc->insertAfter(ExtOpnd); 3498 if (Truncs) 3499 Truncs->push_back(ITrunc); 3500 } 3501 3502 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3503 // Restore the operand of Ext (which has been replaced by the previous call 3504 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3505 TPT.setOperand(Ext, 0, ExtOpnd); 3506 } 3507 3508 // Get through the Instruction: 3509 // 1. Update its type. 3510 // 2. Replace the uses of Ext by Inst. 3511 // 3. Extend each operand that needs to be extended. 3512 3513 // Remember the original type of the instruction before promotion. 3514 // This is useful to know that the high bits are sign extended bits. 3515 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3516 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3517 // Step #1. 3518 TPT.mutateType(ExtOpnd, Ext->getType()); 3519 // Step #2. 3520 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3521 // Step #3. 3522 Instruction *ExtForOpnd = Ext; 3523 3524 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3525 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3526 ++OpIdx) { 3527 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3528 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3529 !shouldExtOperand(ExtOpnd, OpIdx)) { 3530 DEBUG(dbgs() << "No need to propagate\n"); 3531 continue; 3532 } 3533 // Check if we can statically extend the operand. 3534 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3535 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3536 DEBUG(dbgs() << "Statically extend\n"); 3537 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3538 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3539 : Cst->getValue().zext(BitWidth); 3540 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3541 continue; 3542 } 3543 // UndefValue are typed, so we have to statically sign extend them. 3544 if (isa<UndefValue>(Opnd)) { 3545 DEBUG(dbgs() << "Statically extend\n"); 3546 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3547 continue; 3548 } 3549 3550 // Otherwise we have to explicity sign extend the operand. 3551 // Check if Ext was reused to extend an operand. 3552 if (!ExtForOpnd) { 3553 // If yes, create a new one. 3554 DEBUG(dbgs() << "More operands to ext\n"); 3555 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3556 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3557 if (!isa<Instruction>(ValForExtOpnd)) { 3558 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3559 continue; 3560 } 3561 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3562 } 3563 if (Exts) 3564 Exts->push_back(ExtForOpnd); 3565 TPT.setOperand(ExtForOpnd, 0, Opnd); 3566 3567 // Move the sign extension before the insertion point. 3568 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3569 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3570 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3571 // If more sext are required, new instructions will have to be created. 3572 ExtForOpnd = nullptr; 3573 } 3574 if (ExtForOpnd == Ext) { 3575 DEBUG(dbgs() << "Extension is useless now\n"); 3576 TPT.eraseInstruction(Ext); 3577 } 3578 return ExtOpnd; 3579 } 3580 3581 /// Check whether or not promoting an instruction to a wider type is profitable. 3582 /// \p NewCost gives the cost of extension instructions created by the 3583 /// promotion. 3584 /// \p OldCost gives the cost of extension instructions before the promotion 3585 /// plus the number of instructions that have been 3586 /// matched in the addressing mode the promotion. 3587 /// \p PromotedOperand is the value that has been promoted. 3588 /// \return True if the promotion is profitable, false otherwise. 3589 bool AddressingModeMatcher::isPromotionProfitable( 3590 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3591 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3592 // The cost of the new extensions is greater than the cost of the 3593 // old extension plus what we folded. 3594 // This is not profitable. 3595 if (NewCost > OldCost) 3596 return false; 3597 if (NewCost < OldCost) 3598 return true; 3599 // The promotion is neutral but it may help folding the sign extension in 3600 // loads for instance. 3601 // Check that we did not create an illegal instruction. 3602 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3603 } 3604 3605 /// Given an instruction or constant expr, see if we can fold the operation 3606 /// into the addressing mode. If so, update the addressing mode and return 3607 /// true, otherwise return false without modifying AddrMode. 3608 /// If \p MovedAway is not NULL, it contains the information of whether or 3609 /// not AddrInst has to be folded into the addressing mode on success. 3610 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3611 /// because it has been moved away. 3612 /// Thus AddrInst must not be added in the matched instructions. 3613 /// This state can happen when AddrInst is a sext, since it may be moved away. 3614 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3615 /// not be referenced anymore. 3616 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3617 unsigned Depth, 3618 bool *MovedAway) { 3619 // Avoid exponential behavior on extremely deep expression trees. 3620 if (Depth >= 5) return false; 3621 3622 // By default, all matched instructions stay in place. 3623 if (MovedAway) 3624 *MovedAway = false; 3625 3626 switch (Opcode) { 3627 case Instruction::PtrToInt: 3628 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3629 return matchAddr(AddrInst->getOperand(0), Depth); 3630 case Instruction::IntToPtr: { 3631 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3632 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3633 // This inttoptr is a no-op if the integer type is pointer sized. 3634 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3635 return matchAddr(AddrInst->getOperand(0), Depth); 3636 return false; 3637 } 3638 case Instruction::BitCast: 3639 // BitCast is always a noop, and we can handle it as long as it is 3640 // int->int or pointer->pointer (we don't want int<->fp or something). 3641 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3642 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3643 // Don't touch identity bitcasts. These were probably put here by LSR, 3644 // and we don't want to mess around with them. Assume it knows what it 3645 // is doing. 3646 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3647 return matchAddr(AddrInst->getOperand(0), Depth); 3648 return false; 3649 case Instruction::AddrSpaceCast: { 3650 unsigned SrcAS 3651 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3652 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3653 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3654 return matchAddr(AddrInst->getOperand(0), Depth); 3655 return false; 3656 } 3657 case Instruction::Add: { 3658 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3659 ExtAddrMode BackupAddrMode = AddrMode; 3660 unsigned OldSize = AddrModeInsts.size(); 3661 // Start a transaction at this point. 3662 // The LHS may match but not the RHS. 3663 // Therefore, we need a higher level restoration point to undo partially 3664 // matched operation. 3665 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3666 TPT.getRestorationPoint(); 3667 3668 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3669 matchAddr(AddrInst->getOperand(0), Depth+1)) 3670 return true; 3671 3672 // Restore the old addr mode info. 3673 AddrMode = BackupAddrMode; 3674 AddrModeInsts.resize(OldSize); 3675 TPT.rollback(LastKnownGood); 3676 3677 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3678 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3679 matchAddr(AddrInst->getOperand(1), Depth+1)) 3680 return true; 3681 3682 // Otherwise we definitely can't merge the ADD in. 3683 AddrMode = BackupAddrMode; 3684 AddrModeInsts.resize(OldSize); 3685 TPT.rollback(LastKnownGood); 3686 break; 3687 } 3688 //case Instruction::Or: 3689 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3690 //break; 3691 case Instruction::Mul: 3692 case Instruction::Shl: { 3693 // Can only handle X*C and X << C. 3694 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3695 if (!RHS) 3696 return false; 3697 int64_t Scale = RHS->getSExtValue(); 3698 if (Opcode == Instruction::Shl) 3699 Scale = 1LL << Scale; 3700 3701 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3702 } 3703 case Instruction::GetElementPtr: { 3704 // Scan the GEP. We check it if it contains constant offsets and at most 3705 // one variable offset. 3706 int VariableOperand = -1; 3707 unsigned VariableScale = 0; 3708 3709 int64_t ConstantOffset = 0; 3710 gep_type_iterator GTI = gep_type_begin(AddrInst); 3711 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3712 if (StructType *STy = GTI.getStructTypeOrNull()) { 3713 const StructLayout *SL = DL.getStructLayout(STy); 3714 unsigned Idx = 3715 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3716 ConstantOffset += SL->getElementOffset(Idx); 3717 } else { 3718 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3719 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3720 ConstantOffset += CI->getSExtValue()*TypeSize; 3721 } else if (TypeSize) { // Scales of zero don't do anything. 3722 // We only allow one variable index at the moment. 3723 if (VariableOperand != -1) 3724 return false; 3725 3726 // Remember the variable index. 3727 VariableOperand = i; 3728 VariableScale = TypeSize; 3729 } 3730 } 3731 } 3732 3733 // A common case is for the GEP to only do a constant offset. In this case, 3734 // just add it to the disp field and check validity. 3735 if (VariableOperand == -1) { 3736 AddrMode.BaseOffs += ConstantOffset; 3737 if (ConstantOffset == 0 || 3738 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3739 // Check to see if we can fold the base pointer in too. 3740 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3741 return true; 3742 } 3743 AddrMode.BaseOffs -= ConstantOffset; 3744 return false; 3745 } 3746 3747 // Save the valid addressing mode in case we can't match. 3748 ExtAddrMode BackupAddrMode = AddrMode; 3749 unsigned OldSize = AddrModeInsts.size(); 3750 3751 // See if the scale and offset amount is valid for this target. 3752 AddrMode.BaseOffs += ConstantOffset; 3753 3754 // Match the base operand of the GEP. 3755 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3756 // If it couldn't be matched, just stuff the value in a register. 3757 if (AddrMode.HasBaseReg) { 3758 AddrMode = BackupAddrMode; 3759 AddrModeInsts.resize(OldSize); 3760 return false; 3761 } 3762 AddrMode.HasBaseReg = true; 3763 AddrMode.BaseReg = AddrInst->getOperand(0); 3764 } 3765 3766 // Match the remaining variable portion of the GEP. 3767 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3768 Depth)) { 3769 // If it couldn't be matched, try stuffing the base into a register 3770 // instead of matching it, and retrying the match of the scale. 3771 AddrMode = BackupAddrMode; 3772 AddrModeInsts.resize(OldSize); 3773 if (AddrMode.HasBaseReg) 3774 return false; 3775 AddrMode.HasBaseReg = true; 3776 AddrMode.BaseReg = AddrInst->getOperand(0); 3777 AddrMode.BaseOffs += ConstantOffset; 3778 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3779 VariableScale, Depth)) { 3780 // If even that didn't work, bail. 3781 AddrMode = BackupAddrMode; 3782 AddrModeInsts.resize(OldSize); 3783 return false; 3784 } 3785 } 3786 3787 return true; 3788 } 3789 case Instruction::SExt: 3790 case Instruction::ZExt: { 3791 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3792 if (!Ext) 3793 return false; 3794 3795 // Try to move this ext out of the way of the addressing mode. 3796 // Ask for a method for doing so. 3797 TypePromotionHelper::Action TPH = 3798 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3799 if (!TPH) 3800 return false; 3801 3802 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3803 TPT.getRestorationPoint(); 3804 unsigned CreatedInstsCost = 0; 3805 unsigned ExtCost = !TLI.isExtFree(Ext); 3806 Value *PromotedOperand = 3807 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3808 // SExt has been moved away. 3809 // Thus either it will be rematched later in the recursive calls or it is 3810 // gone. Anyway, we must not fold it into the addressing mode at this point. 3811 // E.g., 3812 // op = add opnd, 1 3813 // idx = ext op 3814 // addr = gep base, idx 3815 // is now: 3816 // promotedOpnd = ext opnd <- no match here 3817 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3818 // addr = gep base, op <- match 3819 if (MovedAway) 3820 *MovedAway = true; 3821 3822 assert(PromotedOperand && 3823 "TypePromotionHelper should have filtered out those cases"); 3824 3825 ExtAddrMode BackupAddrMode = AddrMode; 3826 unsigned OldSize = AddrModeInsts.size(); 3827 3828 if (!matchAddr(PromotedOperand, Depth) || 3829 // The total of the new cost is equal to the cost of the created 3830 // instructions. 3831 // The total of the old cost is equal to the cost of the extension plus 3832 // what we have saved in the addressing mode. 3833 !isPromotionProfitable(CreatedInstsCost, 3834 ExtCost + (AddrModeInsts.size() - OldSize), 3835 PromotedOperand)) { 3836 AddrMode = BackupAddrMode; 3837 AddrModeInsts.resize(OldSize); 3838 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3839 TPT.rollback(LastKnownGood); 3840 return false; 3841 } 3842 return true; 3843 } 3844 } 3845 return false; 3846 } 3847 3848 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3849 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3850 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3851 /// for the target. 3852 /// 3853 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3854 // Start a transaction at this point that we will rollback if the matching 3855 // fails. 3856 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3857 TPT.getRestorationPoint(); 3858 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3859 // Fold in immediates if legal for the target. 3860 AddrMode.BaseOffs += CI->getSExtValue(); 3861 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3862 return true; 3863 AddrMode.BaseOffs -= CI->getSExtValue(); 3864 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3865 // If this is a global variable, try to fold it into the addressing mode. 3866 if (!AddrMode.BaseGV) { 3867 AddrMode.BaseGV = GV; 3868 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3869 return true; 3870 AddrMode.BaseGV = nullptr; 3871 } 3872 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3873 ExtAddrMode BackupAddrMode = AddrMode; 3874 unsigned OldSize = AddrModeInsts.size(); 3875 3876 // Check to see if it is possible to fold this operation. 3877 bool MovedAway = false; 3878 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3879 // This instruction may have been moved away. If so, there is nothing 3880 // to check here. 3881 if (MovedAway) 3882 return true; 3883 // Okay, it's possible to fold this. Check to see if it is actually 3884 // *profitable* to do so. We use a simple cost model to avoid increasing 3885 // register pressure too much. 3886 if (I->hasOneUse() || 3887 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3888 AddrModeInsts.push_back(I); 3889 return true; 3890 } 3891 3892 // It isn't profitable to do this, roll back. 3893 //cerr << "NOT FOLDING: " << *I; 3894 AddrMode = BackupAddrMode; 3895 AddrModeInsts.resize(OldSize); 3896 TPT.rollback(LastKnownGood); 3897 } 3898 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3899 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3900 return true; 3901 TPT.rollback(LastKnownGood); 3902 } else if (isa<ConstantPointerNull>(Addr)) { 3903 // Null pointer gets folded without affecting the addressing mode. 3904 return true; 3905 } 3906 3907 // Worse case, the target should support [reg] addressing modes. :) 3908 if (!AddrMode.HasBaseReg) { 3909 AddrMode.HasBaseReg = true; 3910 AddrMode.BaseReg = Addr; 3911 // Still check for legality in case the target supports [imm] but not [i+r]. 3912 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3913 return true; 3914 AddrMode.HasBaseReg = false; 3915 AddrMode.BaseReg = nullptr; 3916 } 3917 3918 // If the base register is already taken, see if we can do [r+r]. 3919 if (AddrMode.Scale == 0) { 3920 AddrMode.Scale = 1; 3921 AddrMode.ScaledReg = Addr; 3922 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3923 return true; 3924 AddrMode.Scale = 0; 3925 AddrMode.ScaledReg = nullptr; 3926 } 3927 // Couldn't match. 3928 TPT.rollback(LastKnownGood); 3929 return false; 3930 } 3931 3932 /// Check to see if all uses of OpVal by the specified inline asm call are due 3933 /// to memory operands. If so, return true, otherwise return false. 3934 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3935 const TargetLowering &TLI, 3936 const TargetRegisterInfo &TRI) { 3937 const Function *F = CI->getParent()->getParent(); 3938 TargetLowering::AsmOperandInfoVector TargetConstraints = 3939 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3940 ImmutableCallSite(CI)); 3941 3942 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3943 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3944 3945 // Compute the constraint code and ConstraintType to use. 3946 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3947 3948 // If this asm operand is our Value*, and if it isn't an indirect memory 3949 // operand, we can't fold it! 3950 if (OpInfo.CallOperandVal == OpVal && 3951 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3952 !OpInfo.isIndirect)) 3953 return false; 3954 } 3955 3956 return true; 3957 } 3958 3959 /// Recursively walk all the uses of I until we find a memory use. 3960 /// If we find an obviously non-foldable instruction, return true. 3961 /// Add the ultimately found memory instructions to MemoryUses. 3962 static bool FindAllMemoryUses( 3963 Instruction *I, 3964 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3965 SmallPtrSetImpl<Instruction *> &ConsideredInsts, 3966 const TargetLowering &TLI, const TargetRegisterInfo &TRI) { 3967 // If we already considered this instruction, we're done. 3968 if (!ConsideredInsts.insert(I).second) 3969 return false; 3970 3971 // If this is an obviously unfoldable instruction, bail out. 3972 if (!MightBeFoldableInst(I)) 3973 return true; 3974 3975 const bool OptSize = I->getFunction()->optForSize(); 3976 3977 // Loop over all the uses, recursively processing them. 3978 for (Use &U : I->uses()) { 3979 Instruction *UserI = cast<Instruction>(U.getUser()); 3980 3981 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3982 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3983 continue; 3984 } 3985 3986 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3987 unsigned opNo = U.getOperandNo(); 3988 if (opNo != StoreInst::getPointerOperandIndex()) 3989 return true; // Storing addr, not into addr. 3990 MemoryUses.push_back(std::make_pair(SI, opNo)); 3991 continue; 3992 } 3993 3994 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 3995 unsigned opNo = U.getOperandNo(); 3996 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 3997 return true; // Storing addr, not into addr. 3998 MemoryUses.push_back(std::make_pair(RMW, opNo)); 3999 continue; 4000 } 4001 4002 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4003 unsigned opNo = U.getOperandNo(); 4004 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4005 return true; // Storing addr, not into addr. 4006 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4007 continue; 4008 } 4009 4010 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4011 // If this is a cold call, we can sink the addressing calculation into 4012 // the cold path. See optimizeCallInst 4013 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4014 continue; 4015 4016 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4017 if (!IA) return true; 4018 4019 // If this is a memory operand, we're cool, otherwise bail out. 4020 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4021 return true; 4022 continue; 4023 } 4024 4025 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI)) 4026 return true; 4027 } 4028 4029 return false; 4030 } 4031 4032 /// Return true if Val is already known to be live at the use site that we're 4033 /// folding it into. If so, there is no cost to include it in the addressing 4034 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4035 /// instruction already. 4036 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4037 Value *KnownLive2) { 4038 // If Val is either of the known-live values, we know it is live! 4039 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4040 return true; 4041 4042 // All values other than instructions and arguments (e.g. constants) are live. 4043 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4044 4045 // If Val is a constant sized alloca in the entry block, it is live, this is 4046 // true because it is just a reference to the stack/frame pointer, which is 4047 // live for the whole function. 4048 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4049 if (AI->isStaticAlloca()) 4050 return true; 4051 4052 // Check to see if this value is already used in the memory instruction's 4053 // block. If so, it's already live into the block at the very least, so we 4054 // can reasonably fold it. 4055 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4056 } 4057 4058 /// It is possible for the addressing mode of the machine to fold the specified 4059 /// instruction into a load or store that ultimately uses it. 4060 /// However, the specified instruction has multiple uses. 4061 /// Given this, it may actually increase register pressure to fold it 4062 /// into the load. For example, consider this code: 4063 /// 4064 /// X = ... 4065 /// Y = X+1 4066 /// use(Y) -> nonload/store 4067 /// Z = Y+1 4068 /// load Z 4069 /// 4070 /// In this case, Y has multiple uses, and can be folded into the load of Z 4071 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4072 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4073 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4074 /// number of computations either. 4075 /// 4076 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4077 /// X was live across 'load Z' for other reasons, we actually *would* want to 4078 /// fold the addressing mode in the Z case. This would make Y die earlier. 4079 bool AddressingModeMatcher:: 4080 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4081 ExtAddrMode &AMAfter) { 4082 if (IgnoreProfitability) return true; 4083 4084 // AMBefore is the addressing mode before this instruction was folded into it, 4085 // and AMAfter is the addressing mode after the instruction was folded. Get 4086 // the set of registers referenced by AMAfter and subtract out those 4087 // referenced by AMBefore: this is the set of values which folding in this 4088 // address extends the lifetime of. 4089 // 4090 // Note that there are only two potential values being referenced here, 4091 // BaseReg and ScaleReg (global addresses are always available, as are any 4092 // folded immediates). 4093 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4094 4095 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4096 // lifetime wasn't extended by adding this instruction. 4097 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4098 BaseReg = nullptr; 4099 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4100 ScaledReg = nullptr; 4101 4102 // If folding this instruction (and it's subexprs) didn't extend any live 4103 // ranges, we're ok with it. 4104 if (!BaseReg && !ScaledReg) 4105 return true; 4106 4107 // If all uses of this instruction can have the address mode sunk into them, 4108 // we can remove the addressing mode and effectively trade one live register 4109 // for another (at worst.) In this context, folding an addressing mode into 4110 // the use is just a particularly nice way of sinking it. 4111 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4112 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4113 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4114 return false; // Has a non-memory, non-foldable use! 4115 4116 // Now that we know that all uses of this instruction are part of a chain of 4117 // computation involving only operations that could theoretically be folded 4118 // into a memory use, loop over each of these memory operation uses and see 4119 // if they could *actually* fold the instruction. The assumption is that 4120 // addressing modes are cheap and that duplicating the computation involved 4121 // many times is worthwhile, even on a fastpath. For sinking candidates 4122 // (i.e. cold call sites), this serves as a way to prevent excessive code 4123 // growth since most architectures have some reasonable small and fast way to 4124 // compute an effective address. (i.e LEA on x86) 4125 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4126 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4127 Instruction *User = MemoryUses[i].first; 4128 unsigned OpNo = MemoryUses[i].second; 4129 4130 // Get the access type of this use. If the use isn't a pointer, we don't 4131 // know what it accesses. 4132 Value *Address = User->getOperand(OpNo); 4133 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4134 if (!AddrTy) 4135 return false; 4136 Type *AddressAccessTy = AddrTy->getElementType(); 4137 unsigned AS = AddrTy->getAddressSpace(); 4138 4139 // Do a match against the root of this address, ignoring profitability. This 4140 // will tell us if the addressing mode for the memory operation will 4141 // *actually* cover the shared instruction. 4142 ExtAddrMode Result; 4143 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4144 TPT.getRestorationPoint(); 4145 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4146 AddressAccessTy, AS, 4147 MemoryInst, Result, InsertedInsts, 4148 PromotedInsts, TPT); 4149 Matcher.IgnoreProfitability = true; 4150 bool Success = Matcher.matchAddr(Address, 0); 4151 (void)Success; assert(Success && "Couldn't select *anything*?"); 4152 4153 // The match was to check the profitability, the changes made are not 4154 // part of the original matcher. Therefore, they should be dropped 4155 // otherwise the original matcher will not present the right state. 4156 TPT.rollback(LastKnownGood); 4157 4158 // If the match didn't cover I, then it won't be shared by it. 4159 if (!is_contained(MatchedAddrModeInsts, I)) 4160 return false; 4161 4162 MatchedAddrModeInsts.clear(); 4163 } 4164 4165 return true; 4166 } 4167 4168 } // end anonymous namespace 4169 4170 /// Return true if the specified values are defined in a 4171 /// different basic block than BB. 4172 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4173 if (Instruction *I = dyn_cast<Instruction>(V)) 4174 return I->getParent() != BB; 4175 return false; 4176 } 4177 4178 /// Sink addressing mode computation immediate before MemoryInst if doing so 4179 /// can be done without increasing register pressure. The need for the 4180 /// register pressure constraint means this can end up being an all or nothing 4181 /// decision for all uses of the same addressing computation. 4182 /// 4183 /// Load and Store Instructions often have addressing modes that can do 4184 /// significant amounts of computation. As such, instruction selection will try 4185 /// to get the load or store to do as much computation as possible for the 4186 /// program. The problem is that isel can only see within a single block. As 4187 /// such, we sink as much legal addressing mode work into the block as possible. 4188 /// 4189 /// This method is used to optimize both load/store and inline asms with memory 4190 /// operands. It's also used to sink addressing computations feeding into cold 4191 /// call sites into their (cold) basic block. 4192 /// 4193 /// The motivation for handling sinking into cold blocks is that doing so can 4194 /// both enable other address mode sinking (by satisfying the register pressure 4195 /// constraint above), and reduce register pressure globally (by removing the 4196 /// addressing mode computation from the fast path entirely.). 4197 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4198 Type *AccessTy, unsigned AddrSpace) { 4199 Value *Repl = Addr; 4200 4201 // Try to collapse single-value PHI nodes. This is necessary to undo 4202 // unprofitable PRE transformations. 4203 SmallVector<Value*, 8> worklist; 4204 SmallPtrSet<Value*, 16> Visited; 4205 worklist.push_back(Addr); 4206 4207 // Use a worklist to iteratively look through PHI nodes, and ensure that 4208 // the addressing mode obtained from the non-PHI roots of the graph 4209 // are equivalent. 4210 Value *Consensus = nullptr; 4211 unsigned NumUsesConsensus = 0; 4212 bool IsNumUsesConsensusValid = false; 4213 SmallVector<Instruction*, 16> AddrModeInsts; 4214 ExtAddrMode AddrMode; 4215 TypePromotionTransaction TPT(RemovedInsts); 4216 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4217 TPT.getRestorationPoint(); 4218 while (!worklist.empty()) { 4219 Value *V = worklist.back(); 4220 worklist.pop_back(); 4221 4222 // Break use-def graph loops. 4223 if (!Visited.insert(V).second) { 4224 Consensus = nullptr; 4225 break; 4226 } 4227 4228 // For a PHI node, push all of its incoming values. 4229 if (PHINode *P = dyn_cast<PHINode>(V)) { 4230 for (Value *IncValue : P->incoming_values()) 4231 worklist.push_back(IncValue); 4232 continue; 4233 } 4234 4235 // For non-PHIs, determine the addressing mode being computed. Note that 4236 // the result may differ depending on what other uses our candidate 4237 // addressing instructions might have. 4238 SmallVector<Instruction*, 16> NewAddrModeInsts; 4239 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4240 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TLI, *TRI, 4241 InsertedInsts, PromotedInsts, TPT); 4242 4243 // This check is broken into two cases with very similar code to avoid using 4244 // getNumUses() as much as possible. Some values have a lot of uses, so 4245 // calling getNumUses() unconditionally caused a significant compile-time 4246 // regression. 4247 if (!Consensus) { 4248 Consensus = V; 4249 AddrMode = NewAddrMode; 4250 AddrModeInsts = NewAddrModeInsts; 4251 continue; 4252 } else if (NewAddrMode == AddrMode) { 4253 if (!IsNumUsesConsensusValid) { 4254 NumUsesConsensus = Consensus->getNumUses(); 4255 IsNumUsesConsensusValid = true; 4256 } 4257 4258 // Ensure that the obtained addressing mode is equivalent to that obtained 4259 // for all other roots of the PHI traversal. Also, when choosing one 4260 // such root as representative, select the one with the most uses in order 4261 // to keep the cost modeling heuristics in AddressingModeMatcher 4262 // applicable. 4263 unsigned NumUses = V->getNumUses(); 4264 if (NumUses > NumUsesConsensus) { 4265 Consensus = V; 4266 NumUsesConsensus = NumUses; 4267 AddrModeInsts = NewAddrModeInsts; 4268 } 4269 continue; 4270 } 4271 4272 Consensus = nullptr; 4273 break; 4274 } 4275 4276 // If the addressing mode couldn't be determined, or if multiple different 4277 // ones were determined, bail out now. 4278 if (!Consensus) { 4279 TPT.rollback(LastKnownGood); 4280 return false; 4281 } 4282 TPT.commit(); 4283 4284 // If all the instructions matched are already in this BB, don't do anything. 4285 if (none_of(AddrModeInsts, [&](Value *V) { 4286 return IsNonLocalValue(V, MemoryInst->getParent()); 4287 })) { 4288 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4289 return false; 4290 } 4291 4292 // Insert this computation right after this user. Since our caller is 4293 // scanning from the top of the BB to the bottom, reuse of the expr are 4294 // guaranteed to happen later. 4295 IRBuilder<> Builder(MemoryInst); 4296 4297 // Now that we determined the addressing expression we want to use and know 4298 // that we have to sink it into this block. Check to see if we have already 4299 // done this for some other load/store instr in this block. If so, reuse the 4300 // computation. 4301 Value *&SunkAddr = SunkAddrs[Addr]; 4302 if (SunkAddr) { 4303 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4304 << *MemoryInst << "\n"); 4305 if (SunkAddr->getType() != Addr->getType()) 4306 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4307 } else if (AddrSinkUsingGEPs || 4308 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4309 SubtargetInfo->useAA())) { 4310 // By default, we use the GEP-based method when AA is used later. This 4311 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4312 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4313 << *MemoryInst << "\n"); 4314 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4315 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4316 4317 // First, find the pointer. 4318 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4319 ResultPtr = AddrMode.BaseReg; 4320 AddrMode.BaseReg = nullptr; 4321 } 4322 4323 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4324 // We can't add more than one pointer together, nor can we scale a 4325 // pointer (both of which seem meaningless). 4326 if (ResultPtr || AddrMode.Scale != 1) 4327 return false; 4328 4329 ResultPtr = AddrMode.ScaledReg; 4330 AddrMode.Scale = 0; 4331 } 4332 4333 if (AddrMode.BaseGV) { 4334 if (ResultPtr) 4335 return false; 4336 4337 ResultPtr = AddrMode.BaseGV; 4338 } 4339 4340 // If the real base value actually came from an inttoptr, then the matcher 4341 // will look through it and provide only the integer value. In that case, 4342 // use it here. 4343 if (!ResultPtr && AddrMode.BaseReg) { 4344 ResultPtr = 4345 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 4346 AddrMode.BaseReg = nullptr; 4347 } else if (!ResultPtr && AddrMode.Scale == 1) { 4348 ResultPtr = 4349 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 4350 AddrMode.Scale = 0; 4351 } 4352 4353 if (!ResultPtr && 4354 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4355 SunkAddr = Constant::getNullValue(Addr->getType()); 4356 } else if (!ResultPtr) { 4357 return false; 4358 } else { 4359 Type *I8PtrTy = 4360 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4361 Type *I8Ty = Builder.getInt8Ty(); 4362 4363 // Start with the base register. Do this first so that subsequent address 4364 // matching finds it last, which will prevent it from trying to match it 4365 // as the scaled value in case it happens to be a mul. That would be 4366 // problematic if we've sunk a different mul for the scale, because then 4367 // we'd end up sinking both muls. 4368 if (AddrMode.BaseReg) { 4369 Value *V = AddrMode.BaseReg; 4370 if (V->getType() != IntPtrTy) 4371 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4372 4373 ResultIndex = V; 4374 } 4375 4376 // Add the scale value. 4377 if (AddrMode.Scale) { 4378 Value *V = AddrMode.ScaledReg; 4379 if (V->getType() == IntPtrTy) { 4380 // done. 4381 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4382 cast<IntegerType>(V->getType())->getBitWidth()) { 4383 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4384 } else { 4385 // It is only safe to sign extend the BaseReg if we know that the math 4386 // required to create it did not overflow before we extend it. Since 4387 // the original IR value was tossed in favor of a constant back when 4388 // the AddrMode was created we need to bail out gracefully if widths 4389 // do not match instead of extending it. 4390 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 4391 if (I && (ResultIndex != AddrMode.BaseReg)) 4392 I->eraseFromParent(); 4393 return false; 4394 } 4395 4396 if (AddrMode.Scale != 1) 4397 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4398 "sunkaddr"); 4399 if (ResultIndex) 4400 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4401 else 4402 ResultIndex = V; 4403 } 4404 4405 // Add in the Base Offset if present. 4406 if (AddrMode.BaseOffs) { 4407 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4408 if (ResultIndex) { 4409 // We need to add this separately from the scale above to help with 4410 // SDAG consecutive load/store merging. 4411 if (ResultPtr->getType() != I8PtrTy) 4412 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4413 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4414 } 4415 4416 ResultIndex = V; 4417 } 4418 4419 if (!ResultIndex) { 4420 SunkAddr = ResultPtr; 4421 } else { 4422 if (ResultPtr->getType() != I8PtrTy) 4423 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4424 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4425 } 4426 4427 if (SunkAddr->getType() != Addr->getType()) 4428 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4429 } 4430 } else { 4431 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4432 << *MemoryInst << "\n"); 4433 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4434 Value *Result = nullptr; 4435 4436 // Start with the base register. Do this first so that subsequent address 4437 // matching finds it last, which will prevent it from trying to match it 4438 // as the scaled value in case it happens to be a mul. That would be 4439 // problematic if we've sunk a different mul for the scale, because then 4440 // we'd end up sinking both muls. 4441 if (AddrMode.BaseReg) { 4442 Value *V = AddrMode.BaseReg; 4443 if (V->getType()->isPointerTy()) 4444 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4445 if (V->getType() != IntPtrTy) 4446 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4447 Result = V; 4448 } 4449 4450 // Add the scale value. 4451 if (AddrMode.Scale) { 4452 Value *V = AddrMode.ScaledReg; 4453 if (V->getType() == IntPtrTy) { 4454 // done. 4455 } else if (V->getType()->isPointerTy()) { 4456 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4457 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4458 cast<IntegerType>(V->getType())->getBitWidth()) { 4459 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4460 } else { 4461 // It is only safe to sign extend the BaseReg if we know that the math 4462 // required to create it did not overflow before we extend it. Since 4463 // the original IR value was tossed in favor of a constant back when 4464 // the AddrMode was created we need to bail out gracefully if widths 4465 // do not match instead of extending it. 4466 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4467 if (I && (Result != AddrMode.BaseReg)) 4468 I->eraseFromParent(); 4469 return false; 4470 } 4471 if (AddrMode.Scale != 1) 4472 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4473 "sunkaddr"); 4474 if (Result) 4475 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4476 else 4477 Result = V; 4478 } 4479 4480 // Add in the BaseGV if present. 4481 if (AddrMode.BaseGV) { 4482 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4483 if (Result) 4484 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4485 else 4486 Result = V; 4487 } 4488 4489 // Add in the Base Offset if present. 4490 if (AddrMode.BaseOffs) { 4491 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4492 if (Result) 4493 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4494 else 4495 Result = V; 4496 } 4497 4498 if (!Result) 4499 SunkAddr = Constant::getNullValue(Addr->getType()); 4500 else 4501 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4502 } 4503 4504 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4505 4506 // If we have no uses, recursively delete the value and all dead instructions 4507 // using it. 4508 if (Repl->use_empty()) { 4509 // This can cause recursive deletion, which can invalidate our iterator. 4510 // Use a WeakTrackingVH to hold onto it in case this happens. 4511 Value *CurValue = &*CurInstIterator; 4512 WeakTrackingVH IterHandle(CurValue); 4513 BasicBlock *BB = CurInstIterator->getParent(); 4514 4515 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4516 4517 if (IterHandle != CurValue) { 4518 // If the iterator instruction was recursively deleted, start over at the 4519 // start of the block. 4520 CurInstIterator = BB->begin(); 4521 SunkAddrs.clear(); 4522 } 4523 } 4524 ++NumMemoryInsts; 4525 return true; 4526 } 4527 4528 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4529 /// address computing into the block when possible / profitable. 4530 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4531 bool MadeChange = false; 4532 4533 const TargetRegisterInfo *TRI = 4534 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 4535 TargetLowering::AsmOperandInfoVector TargetConstraints = 4536 TLI->ParseConstraints(*DL, TRI, CS); 4537 unsigned ArgNo = 0; 4538 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4539 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4540 4541 // Compute the constraint code and ConstraintType to use. 4542 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4543 4544 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4545 OpInfo.isIndirect) { 4546 Value *OpVal = CS->getArgOperand(ArgNo++); 4547 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4548 } else if (OpInfo.Type == InlineAsm::isInput) 4549 ArgNo++; 4550 } 4551 4552 return MadeChange; 4553 } 4554 4555 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4556 /// sign extensions. 4557 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4558 assert(!Val->use_empty() && "Input must have at least one use"); 4559 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4560 bool IsSExt = isa<SExtInst>(FirstUser); 4561 Type *ExtTy = FirstUser->getType(); 4562 for (const User *U : Val->users()) { 4563 const Instruction *UI = cast<Instruction>(U); 4564 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4565 return false; 4566 Type *CurTy = UI->getType(); 4567 // Same input and output types: Same instruction after CSE. 4568 if (CurTy == ExtTy) 4569 continue; 4570 4571 // If IsSExt is true, we are in this situation: 4572 // a = Val 4573 // b = sext ty1 a to ty2 4574 // c = sext ty1 a to ty3 4575 // Assuming ty2 is shorter than ty3, this could be turned into: 4576 // a = Val 4577 // b = sext ty1 a to ty2 4578 // c = sext ty2 b to ty3 4579 // However, the last sext is not free. 4580 if (IsSExt) 4581 return false; 4582 4583 // This is a ZExt, maybe this is free to extend from one type to another. 4584 // In that case, we would not account for a different use. 4585 Type *NarrowTy; 4586 Type *LargeTy; 4587 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4588 CurTy->getScalarType()->getIntegerBitWidth()) { 4589 NarrowTy = CurTy; 4590 LargeTy = ExtTy; 4591 } else { 4592 NarrowTy = ExtTy; 4593 LargeTy = CurTy; 4594 } 4595 4596 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4597 return false; 4598 } 4599 // All uses are the same or can be derived from one another for free. 4600 return true; 4601 } 4602 4603 /// \brief Try to speculatively promote extensions in \p Exts and continue 4604 /// promoting through newly promoted operands recursively as far as doing so is 4605 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4606 /// When some promotion happened, \p TPT contains the proper state to revert 4607 /// them. 4608 /// 4609 /// \return true if some promotion happened, false otherwise. 4610 bool CodeGenPrepare::tryToPromoteExts( 4611 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4612 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4613 unsigned CreatedInstsCost) { 4614 bool Promoted = false; 4615 4616 // Iterate over all the extensions to try to promote them. 4617 for (auto I : Exts) { 4618 // Early check if we directly have ext(load). 4619 if (isa<LoadInst>(I->getOperand(0))) { 4620 ProfitablyMovedExts.push_back(I); 4621 continue; 4622 } 4623 4624 // Check whether or not we want to do any promotion. The reason we have 4625 // this check inside the for loop is to catch the case where an extension 4626 // is directly fed by a load because in such case the extension can be moved 4627 // up without any promotion on its operands. 4628 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4629 return false; 4630 4631 // Get the action to perform the promotion. 4632 TypePromotionHelper::Action TPH = 4633 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4634 // Check if we can promote. 4635 if (!TPH) { 4636 // Save the current extension as we cannot move up through its operand. 4637 ProfitablyMovedExts.push_back(I); 4638 continue; 4639 } 4640 4641 // Save the current state. 4642 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4643 TPT.getRestorationPoint(); 4644 SmallVector<Instruction *, 4> NewExts; 4645 unsigned NewCreatedInstsCost = 0; 4646 unsigned ExtCost = !TLI->isExtFree(I); 4647 // Promote. 4648 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4649 &NewExts, nullptr, *TLI); 4650 assert(PromotedVal && 4651 "TypePromotionHelper should have filtered out those cases"); 4652 4653 // We would be able to merge only one extension in a load. 4654 // Therefore, if we have more than 1 new extension we heuristically 4655 // cut this search path, because it means we degrade the code quality. 4656 // With exactly 2, the transformation is neutral, because we will merge 4657 // one extension but leave one. However, we optimistically keep going, 4658 // because the new extension may be removed too. 4659 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4660 // FIXME: It would be possible to propagate a negative value instead of 4661 // conservatively ceiling it to 0. 4662 TotalCreatedInstsCost = 4663 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4664 if (!StressExtLdPromotion && 4665 (TotalCreatedInstsCost > 1 || 4666 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4667 // This promotion is not profitable, rollback to the previous state, and 4668 // save the current extension in ProfitablyMovedExts as the latest 4669 // speculative promotion turned out to be unprofitable. 4670 TPT.rollback(LastKnownGood); 4671 ProfitablyMovedExts.push_back(I); 4672 continue; 4673 } 4674 // Continue promoting NewExts as far as doing so is profitable. 4675 SmallVector<Instruction *, 2> NewlyMovedExts; 4676 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4677 bool NewPromoted = false; 4678 for (auto ExtInst : NewlyMovedExts) { 4679 Instruction *MovedExt = cast<Instruction>(ExtInst); 4680 Value *ExtOperand = MovedExt->getOperand(0); 4681 // If we have reached to a load, we need this extra profitability check 4682 // as it could potentially be merged into an ext(load). 4683 if (isa<LoadInst>(ExtOperand) && 4684 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4685 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4686 continue; 4687 4688 ProfitablyMovedExts.push_back(MovedExt); 4689 NewPromoted = true; 4690 } 4691 4692 // If none of speculative promotions for NewExts is profitable, rollback 4693 // and save the current extension (I) as the last profitable extension. 4694 if (!NewPromoted) { 4695 TPT.rollback(LastKnownGood); 4696 ProfitablyMovedExts.push_back(I); 4697 continue; 4698 } 4699 // The promotion is profitable. 4700 Promoted = true; 4701 } 4702 return Promoted; 4703 } 4704 4705 /// Merging redundant sexts when one is dominating the other. 4706 bool CodeGenPrepare::mergeSExts(Function &F) { 4707 DominatorTree DT(F); 4708 bool Changed = false; 4709 for (auto &Entry : ValToSExtendedUses) { 4710 SExts &Insts = Entry.second; 4711 SExts CurPts; 4712 for (Instruction *Inst : Insts) { 4713 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4714 Inst->getOperand(0) != Entry.first) 4715 continue; 4716 bool inserted = false; 4717 for (auto &Pt : CurPts) { 4718 if (DT.dominates(Inst, Pt)) { 4719 Pt->replaceAllUsesWith(Inst); 4720 RemovedInsts.insert(Pt); 4721 Pt->removeFromParent(); 4722 Pt = Inst; 4723 inserted = true; 4724 Changed = true; 4725 break; 4726 } 4727 if (!DT.dominates(Pt, Inst)) 4728 // Give up if we need to merge in a common dominator as the 4729 // expermients show it is not profitable. 4730 continue; 4731 Inst->replaceAllUsesWith(Pt); 4732 RemovedInsts.insert(Inst); 4733 Inst->removeFromParent(); 4734 inserted = true; 4735 Changed = true; 4736 break; 4737 } 4738 if (!inserted) 4739 CurPts.push_back(Inst); 4740 } 4741 } 4742 return Changed; 4743 } 4744 4745 /// Return true, if an ext(load) can be formed from an extension in 4746 /// \p MovedExts. 4747 bool CodeGenPrepare::canFormExtLd( 4748 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4749 Instruction *&Inst, bool HasPromoted) { 4750 for (auto *MovedExtInst : MovedExts) { 4751 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4752 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4753 Inst = MovedExtInst; 4754 break; 4755 } 4756 } 4757 if (!LI) 4758 return false; 4759 4760 // If they're already in the same block, there's nothing to do. 4761 // Make the cheap checks first if we did not promote. 4762 // If we promoted, we need to check if it is indeed profitable. 4763 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4764 return false; 4765 4766 EVT VT = TLI->getValueType(*DL, Inst->getType()); 4767 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4768 4769 // If the load has other users and the truncate is not free, this probably 4770 // isn't worthwhile. 4771 if (!LI->hasOneUse() && (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4772 !TLI->isTruncateFree(Inst->getType(), LI->getType())) 4773 return false; 4774 4775 // Check whether the target supports casts folded into loads. 4776 unsigned LType; 4777 if (isa<ZExtInst>(Inst)) 4778 LType = ISD::ZEXTLOAD; 4779 else { 4780 assert(isa<SExtInst>(Inst) && "Unexpected ext type!"); 4781 LType = ISD::SEXTLOAD; 4782 } 4783 4784 return TLI->isLoadExtLegal(LType, VT, LoadVT); 4785 } 4786 4787 /// Move a zext or sext fed by a load into the same basic block as the load, 4788 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4789 /// extend into the load. 4790 /// 4791 /// E.g., 4792 /// \code 4793 /// %ld = load i32* %addr 4794 /// %add = add nuw i32 %ld, 4 4795 /// %zext = zext i32 %add to i64 4796 // \endcode 4797 /// => 4798 /// \code 4799 /// %ld = load i32* %addr 4800 /// %zext = zext i32 %ld to i64 4801 /// %add = add nuw i64 %zext, 4 4802 /// \encode 4803 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4804 /// allow us to match zext(load i32*) to i64. 4805 /// 4806 /// Also, try to promote the computations used to obtain a sign extended 4807 /// value used into memory accesses. 4808 /// E.g., 4809 /// \code 4810 /// a = add nsw i32 b, 3 4811 /// d = sext i32 a to i64 4812 /// e = getelementptr ..., i64 d 4813 /// \endcode 4814 /// => 4815 /// \code 4816 /// f = sext i32 b to i64 4817 /// a = add nsw i64 f, 3 4818 /// e = getelementptr ..., i64 a 4819 /// \endcode 4820 /// 4821 /// \p Inst[in/out] the extension may be modified during the process if some 4822 /// promotions apply. 4823 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4824 // ExtLoad formation and address type promotion infrastructure requires TLI to 4825 // be effective. 4826 if (!TLI) 4827 return false; 4828 4829 bool AllowPromotionWithoutCommonHeader = false; 4830 /// See if it is an interesting sext operations for the address type 4831 /// promotion before trying to promote it, e.g., the ones with the right 4832 /// type and used in memory accesses. 4833 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4834 *Inst, AllowPromotionWithoutCommonHeader); 4835 TypePromotionTransaction TPT(RemovedInsts); 4836 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4837 TPT.getRestorationPoint(); 4838 SmallVector<Instruction *, 1> Exts; 4839 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4840 Exts.push_back(Inst); 4841 4842 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4843 4844 // Look for a load being extended. 4845 LoadInst *LI = nullptr; 4846 Instruction *ExtFedByLoad; 4847 4848 // Try to promote a chain of computation if it allows to form an extended 4849 // load. 4850 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4851 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4852 TPT.commit(); 4853 // Move the extend into the same block as the load 4854 ExtFedByLoad->removeFromParent(); 4855 ExtFedByLoad->insertAfter(LI); 4856 // CGP does not check if the zext would be speculatively executed when moved 4857 // to the same basic block as the load. Preserving its original location 4858 // would pessimize the debugging experience, as well as negatively impact 4859 // the quality of sample pgo. We don't want to use "line 0" as that has a 4860 // size cost in the line-table section and logically the zext can be seen as 4861 // part of the load. Therefore we conservatively reuse the same debug 4862 // location for the load and the zext. 4863 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4864 ++NumExtsMoved; 4865 Inst = ExtFedByLoad; 4866 return true; 4867 } 4868 4869 // Continue promoting SExts if known as considerable depending on targets. 4870 if (ATPConsiderable && 4871 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4872 HasPromoted, TPT, SpeculativelyMovedExts)) 4873 return true; 4874 4875 TPT.rollback(LastKnownGood); 4876 return false; 4877 } 4878 4879 // Perform address type promotion if doing so is profitable. 4880 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4881 // instructions that sign extended the same initial value. However, if 4882 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4883 // extension is just profitable. 4884 bool CodeGenPrepare::performAddressTypePromotion( 4885 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4886 bool HasPromoted, TypePromotionTransaction &TPT, 4887 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4888 bool Promoted = false; 4889 SmallPtrSet<Instruction *, 1> UnhandledExts; 4890 bool AllSeenFirst = true; 4891 for (auto I : SpeculativelyMovedExts) { 4892 Value *HeadOfChain = I->getOperand(0); 4893 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4894 SeenChainsForSExt.find(HeadOfChain); 4895 // If there is an unhandled SExt which has the same header, try to promote 4896 // it as well. 4897 if (AlreadySeen != SeenChainsForSExt.end()) { 4898 if (AlreadySeen->second != nullptr) 4899 UnhandledExts.insert(AlreadySeen->second); 4900 AllSeenFirst = false; 4901 } 4902 } 4903 4904 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4905 SpeculativelyMovedExts.size() == 1)) { 4906 TPT.commit(); 4907 if (HasPromoted) 4908 Promoted = true; 4909 for (auto I : SpeculativelyMovedExts) { 4910 Value *HeadOfChain = I->getOperand(0); 4911 SeenChainsForSExt[HeadOfChain] = nullptr; 4912 ValToSExtendedUses[HeadOfChain].push_back(I); 4913 } 4914 // Update Inst as promotion happen. 4915 Inst = SpeculativelyMovedExts.pop_back_val(); 4916 } else { 4917 // This is the first chain visited from the header, keep the current chain 4918 // as unhandled. Defer to promote this until we encounter another SExt 4919 // chain derived from the same header. 4920 for (auto I : SpeculativelyMovedExts) { 4921 Value *HeadOfChain = I->getOperand(0); 4922 SeenChainsForSExt[HeadOfChain] = Inst; 4923 } 4924 return false; 4925 } 4926 4927 if (!AllSeenFirst && !UnhandledExts.empty()) 4928 for (auto VisitedSExt : UnhandledExts) { 4929 if (RemovedInsts.count(VisitedSExt)) 4930 continue; 4931 TypePromotionTransaction TPT(RemovedInsts); 4932 SmallVector<Instruction *, 1> Exts; 4933 SmallVector<Instruction *, 2> Chains; 4934 Exts.push_back(VisitedSExt); 4935 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 4936 TPT.commit(); 4937 if (HasPromoted) 4938 Promoted = true; 4939 for (auto I : Chains) { 4940 Value *HeadOfChain = I->getOperand(0); 4941 // Mark this as handled. 4942 SeenChainsForSExt[HeadOfChain] = nullptr; 4943 ValToSExtendedUses[HeadOfChain].push_back(I); 4944 } 4945 } 4946 return Promoted; 4947 } 4948 4949 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4950 BasicBlock *DefBB = I->getParent(); 4951 4952 // If the result of a {s|z}ext and its source are both live out, rewrite all 4953 // other uses of the source with result of extension. 4954 Value *Src = I->getOperand(0); 4955 if (Src->hasOneUse()) 4956 return false; 4957 4958 // Only do this xform if truncating is free. 4959 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4960 return false; 4961 4962 // Only safe to perform the optimization if the source is also defined in 4963 // this block. 4964 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4965 return false; 4966 4967 bool DefIsLiveOut = false; 4968 for (User *U : I->users()) { 4969 Instruction *UI = cast<Instruction>(U); 4970 4971 // Figure out which BB this ext is used in. 4972 BasicBlock *UserBB = UI->getParent(); 4973 if (UserBB == DefBB) continue; 4974 DefIsLiveOut = true; 4975 break; 4976 } 4977 if (!DefIsLiveOut) 4978 return false; 4979 4980 // Make sure none of the uses are PHI nodes. 4981 for (User *U : Src->users()) { 4982 Instruction *UI = cast<Instruction>(U); 4983 BasicBlock *UserBB = UI->getParent(); 4984 if (UserBB == DefBB) continue; 4985 // Be conservative. We don't want this xform to end up introducing 4986 // reloads just before load / store instructions. 4987 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4988 return false; 4989 } 4990 4991 // InsertedTruncs - Only insert one trunc in each block once. 4992 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4993 4994 bool MadeChange = false; 4995 for (Use &U : Src->uses()) { 4996 Instruction *User = cast<Instruction>(U.getUser()); 4997 4998 // Figure out which BB this ext is used in. 4999 BasicBlock *UserBB = User->getParent(); 5000 if (UserBB == DefBB) continue; 5001 5002 // Both src and def are live in this block. Rewrite the use. 5003 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5004 5005 if (!InsertedTrunc) { 5006 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5007 assert(InsertPt != UserBB->end()); 5008 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5009 InsertedInsts.insert(InsertedTrunc); 5010 } 5011 5012 // Replace a use of the {s|z}ext source with a use of the result. 5013 U = InsertedTrunc; 5014 ++NumExtUses; 5015 MadeChange = true; 5016 } 5017 5018 return MadeChange; 5019 } 5020 5021 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5022 // just after the load if the target can fold this into one extload instruction, 5023 // with the hope of eliminating some of the other later "and" instructions using 5024 // the loaded value. "and"s that are made trivially redundant by the insertion 5025 // of the new "and" are removed by this function, while others (e.g. those whose 5026 // path from the load goes through a phi) are left for isel to potentially 5027 // remove. 5028 // 5029 // For example: 5030 // 5031 // b0: 5032 // x = load i32 5033 // ... 5034 // b1: 5035 // y = and x, 0xff 5036 // z = use y 5037 // 5038 // becomes: 5039 // 5040 // b0: 5041 // x = load i32 5042 // x' = and x, 0xff 5043 // ... 5044 // b1: 5045 // z = use x' 5046 // 5047 // whereas: 5048 // 5049 // b0: 5050 // x1 = load i32 5051 // ... 5052 // b1: 5053 // x2 = load i32 5054 // ... 5055 // b2: 5056 // x = phi x1, x2 5057 // y = and x, 0xff 5058 // 5059 // becomes (after a call to optimizeLoadExt for each load): 5060 // 5061 // b0: 5062 // x1 = load i32 5063 // x1' = and x1, 0xff 5064 // ... 5065 // b1: 5066 // x2 = load i32 5067 // x2' = and x2, 0xff 5068 // ... 5069 // b2: 5070 // x = phi x1', x2' 5071 // y = and x, 0xff 5072 // 5073 5074 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5075 5076 if (!Load->isSimple() || 5077 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5078 return false; 5079 5080 // Skip loads we've already transformed. 5081 if (Load->hasOneUse() && 5082 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5083 return false; 5084 5085 // Look at all uses of Load, looking through phis, to determine how many bits 5086 // of the loaded value are needed. 5087 SmallVector<Instruction *, 8> WorkList; 5088 SmallPtrSet<Instruction *, 16> Visited; 5089 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5090 for (auto *U : Load->users()) 5091 WorkList.push_back(cast<Instruction>(U)); 5092 5093 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5094 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5095 APInt DemandBits(BitWidth, 0); 5096 APInt WidestAndBits(BitWidth, 0); 5097 5098 while (!WorkList.empty()) { 5099 Instruction *I = WorkList.back(); 5100 WorkList.pop_back(); 5101 5102 // Break use-def graph loops. 5103 if (!Visited.insert(I).second) 5104 continue; 5105 5106 // For a PHI node, push all of its users. 5107 if (auto *Phi = dyn_cast<PHINode>(I)) { 5108 for (auto *U : Phi->users()) 5109 WorkList.push_back(cast<Instruction>(U)); 5110 continue; 5111 } 5112 5113 switch (I->getOpcode()) { 5114 case llvm::Instruction::And: { 5115 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5116 if (!AndC) 5117 return false; 5118 APInt AndBits = AndC->getValue(); 5119 DemandBits |= AndBits; 5120 // Keep track of the widest and mask we see. 5121 if (AndBits.ugt(WidestAndBits)) 5122 WidestAndBits = AndBits; 5123 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5124 AndsToMaybeRemove.push_back(I); 5125 break; 5126 } 5127 5128 case llvm::Instruction::Shl: { 5129 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5130 if (!ShlC) 5131 return false; 5132 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5133 DemandBits.setLowBits(BitWidth - ShiftAmt); 5134 break; 5135 } 5136 5137 case llvm::Instruction::Trunc: { 5138 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5139 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5140 DemandBits.setLowBits(TruncBitWidth); 5141 break; 5142 } 5143 5144 default: 5145 return false; 5146 } 5147 } 5148 5149 uint32_t ActiveBits = DemandBits.getActiveBits(); 5150 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5151 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5152 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5153 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5154 // followed by an AND. 5155 // TODO: Look into removing this restriction by fixing backends to either 5156 // return false for isLoadExtLegal for i1 or have them select this pattern to 5157 // a single instruction. 5158 // 5159 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5160 // mask, since these are the only ands that will be removed by isel. 5161 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5162 WidestAndBits != DemandBits) 5163 return false; 5164 5165 LLVMContext &Ctx = Load->getType()->getContext(); 5166 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5167 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5168 5169 // Reject cases that won't be matched as extloads. 5170 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5171 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5172 return false; 5173 5174 IRBuilder<> Builder(Load->getNextNode()); 5175 auto *NewAnd = dyn_cast<Instruction>( 5176 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5177 // Mark this instruction as "inserted by CGP", so that other 5178 // optimizations don't touch it. 5179 InsertedInsts.insert(NewAnd); 5180 5181 // Replace all uses of load with new and (except for the use of load in the 5182 // new and itself). 5183 Load->replaceAllUsesWith(NewAnd); 5184 NewAnd->setOperand(0, Load); 5185 5186 // Remove any and instructions that are now redundant. 5187 for (auto *And : AndsToMaybeRemove) 5188 // Check that the and mask is the same as the one we decided to put on the 5189 // new and. 5190 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5191 And->replaceAllUsesWith(NewAnd); 5192 if (&*CurInstIterator == And) 5193 CurInstIterator = std::next(And->getIterator()); 5194 And->eraseFromParent(); 5195 ++NumAndUses; 5196 } 5197 5198 ++NumAndsAdded; 5199 return true; 5200 } 5201 5202 /// Check if V (an operand of a select instruction) is an expensive instruction 5203 /// that is only used once. 5204 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5205 auto *I = dyn_cast<Instruction>(V); 5206 // If it's safe to speculatively execute, then it should not have side 5207 // effects; therefore, it's safe to sink and possibly *not* execute. 5208 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5209 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5210 } 5211 5212 /// Returns true if a SelectInst should be turned into an explicit branch. 5213 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5214 const TargetLowering *TLI, 5215 SelectInst *SI) { 5216 // If even a predictable select is cheap, then a branch can't be cheaper. 5217 if (!TLI->isPredictableSelectExpensive()) 5218 return false; 5219 5220 // FIXME: This should use the same heuristics as IfConversion to determine 5221 // whether a select is better represented as a branch. 5222 5223 // If metadata tells us that the select condition is obviously predictable, 5224 // then we want to replace the select with a branch. 5225 uint64_t TrueWeight, FalseWeight; 5226 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5227 uint64_t Max = std::max(TrueWeight, FalseWeight); 5228 uint64_t Sum = TrueWeight + FalseWeight; 5229 if (Sum != 0) { 5230 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5231 if (Probability > TLI->getPredictableBranchThreshold()) 5232 return true; 5233 } 5234 } 5235 5236 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5237 5238 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5239 // comparison condition. If the compare has more than one use, there's 5240 // probably another cmov or setcc around, so it's not worth emitting a branch. 5241 if (!Cmp || !Cmp->hasOneUse()) 5242 return false; 5243 5244 // If either operand of the select is expensive and only needed on one side 5245 // of the select, we should form a branch. 5246 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5247 sinkSelectOperand(TTI, SI->getFalseValue())) 5248 return true; 5249 5250 return false; 5251 } 5252 5253 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5254 /// false value of \p SI. If the true/false value of \p SI is defined by any 5255 /// select instructions in \p Selects, look through the defining select 5256 /// instruction until the true/false value is not defined in \p Selects. 5257 static Value *getTrueOrFalseValue( 5258 SelectInst *SI, bool isTrue, 5259 const SmallPtrSet<const Instruction *, 2> &Selects) { 5260 Value *V; 5261 5262 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5263 DefSI = dyn_cast<SelectInst>(V)) { 5264 assert(DefSI->getCondition() == SI->getCondition() && 5265 "The condition of DefSI does not match with SI"); 5266 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5267 } 5268 return V; 5269 } 5270 5271 /// If we have a SelectInst that will likely profit from branch prediction, 5272 /// turn it into a branch. 5273 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5274 // Find all consecutive select instructions that share the same condition. 5275 SmallVector<SelectInst *, 2> ASI; 5276 ASI.push_back(SI); 5277 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5278 It != SI->getParent()->end(); ++It) { 5279 SelectInst *I = dyn_cast<SelectInst>(&*It); 5280 if (I && SI->getCondition() == I->getCondition()) { 5281 ASI.push_back(I); 5282 } else { 5283 break; 5284 } 5285 } 5286 5287 SelectInst *LastSI = ASI.back(); 5288 // Increment the current iterator to skip all the rest of select instructions 5289 // because they will be either "not lowered" or "all lowered" to branch. 5290 CurInstIterator = std::next(LastSI->getIterator()); 5291 5292 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5293 5294 // Can we convert the 'select' to CF ? 5295 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5296 SI->getMetadata(LLVMContext::MD_unpredictable)) 5297 return false; 5298 5299 TargetLowering::SelectSupportKind SelectKind; 5300 if (VectorCond) 5301 SelectKind = TargetLowering::VectorMaskSelect; 5302 else if (SI->getType()->isVectorTy()) 5303 SelectKind = TargetLowering::ScalarCondVectorVal; 5304 else 5305 SelectKind = TargetLowering::ScalarValSelect; 5306 5307 if (TLI->isSelectSupported(SelectKind) && 5308 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5309 return false; 5310 5311 ModifiedDT = true; 5312 5313 // Transform a sequence like this: 5314 // start: 5315 // %cmp = cmp uge i32 %a, %b 5316 // %sel = select i1 %cmp, i32 %c, i32 %d 5317 // 5318 // Into: 5319 // start: 5320 // %cmp = cmp uge i32 %a, %b 5321 // br i1 %cmp, label %select.true, label %select.false 5322 // select.true: 5323 // br label %select.end 5324 // select.false: 5325 // br label %select.end 5326 // select.end: 5327 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5328 // 5329 // In addition, we may sink instructions that produce %c or %d from 5330 // the entry block into the destination(s) of the new branch. 5331 // If the true or false blocks do not contain a sunken instruction, that 5332 // block and its branch may be optimized away. In that case, one side of the 5333 // first branch will point directly to select.end, and the corresponding PHI 5334 // predecessor block will be the start block. 5335 5336 // First, we split the block containing the select into 2 blocks. 5337 BasicBlock *StartBlock = SI->getParent(); 5338 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5339 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5340 5341 // Delete the unconditional branch that was just created by the split. 5342 StartBlock->getTerminator()->eraseFromParent(); 5343 5344 // These are the new basic blocks for the conditional branch. 5345 // At least one will become an actual new basic block. 5346 BasicBlock *TrueBlock = nullptr; 5347 BasicBlock *FalseBlock = nullptr; 5348 BranchInst *TrueBranch = nullptr; 5349 BranchInst *FalseBranch = nullptr; 5350 5351 // Sink expensive instructions into the conditional blocks to avoid executing 5352 // them speculatively. 5353 for (SelectInst *SI : ASI) { 5354 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5355 if (TrueBlock == nullptr) { 5356 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5357 EndBlock->getParent(), EndBlock); 5358 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5359 } 5360 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5361 TrueInst->moveBefore(TrueBranch); 5362 } 5363 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5364 if (FalseBlock == nullptr) { 5365 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5366 EndBlock->getParent(), EndBlock); 5367 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5368 } 5369 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5370 FalseInst->moveBefore(FalseBranch); 5371 } 5372 } 5373 5374 // If there was nothing to sink, then arbitrarily choose the 'false' side 5375 // for a new input value to the PHI. 5376 if (TrueBlock == FalseBlock) { 5377 assert(TrueBlock == nullptr && 5378 "Unexpected basic block transform while optimizing select"); 5379 5380 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5381 EndBlock->getParent(), EndBlock); 5382 BranchInst::Create(EndBlock, FalseBlock); 5383 } 5384 5385 // Insert the real conditional branch based on the original condition. 5386 // If we did not create a new block for one of the 'true' or 'false' paths 5387 // of the condition, it means that side of the branch goes to the end block 5388 // directly and the path originates from the start block from the point of 5389 // view of the new PHI. 5390 BasicBlock *TT, *FT; 5391 if (TrueBlock == nullptr) { 5392 TT = EndBlock; 5393 FT = FalseBlock; 5394 TrueBlock = StartBlock; 5395 } else if (FalseBlock == nullptr) { 5396 TT = TrueBlock; 5397 FT = EndBlock; 5398 FalseBlock = StartBlock; 5399 } else { 5400 TT = TrueBlock; 5401 FT = FalseBlock; 5402 } 5403 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5404 5405 SmallPtrSet<const Instruction *, 2> INS; 5406 INS.insert(ASI.begin(), ASI.end()); 5407 // Use reverse iterator because later select may use the value of the 5408 // earlier select, and we need to propagate value through earlier select 5409 // to get the PHI operand. 5410 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5411 SelectInst *SI = *It; 5412 // The select itself is replaced with a PHI Node. 5413 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5414 PN->takeName(SI); 5415 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5416 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5417 5418 SI->replaceAllUsesWith(PN); 5419 SI->eraseFromParent(); 5420 INS.erase(SI); 5421 ++NumSelectsExpanded; 5422 } 5423 5424 // Instruct OptimizeBlock to skip to the next block. 5425 CurInstIterator = StartBlock->end(); 5426 return true; 5427 } 5428 5429 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5430 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5431 int SplatElem = -1; 5432 for (unsigned i = 0; i < Mask.size(); ++i) { 5433 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5434 return false; 5435 SplatElem = Mask[i]; 5436 } 5437 5438 return true; 5439 } 5440 5441 /// Some targets have expensive vector shifts if the lanes aren't all the same 5442 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5443 /// it's often worth sinking a shufflevector splat down to its use so that 5444 /// codegen can spot all lanes are identical. 5445 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5446 BasicBlock *DefBB = SVI->getParent(); 5447 5448 // Only do this xform if variable vector shifts are particularly expensive. 5449 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5450 return false; 5451 5452 // We only expect better codegen by sinking a shuffle if we can recognise a 5453 // constant splat. 5454 if (!isBroadcastShuffle(SVI)) 5455 return false; 5456 5457 // InsertedShuffles - Only insert a shuffle in each block once. 5458 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5459 5460 bool MadeChange = false; 5461 for (User *U : SVI->users()) { 5462 Instruction *UI = cast<Instruction>(U); 5463 5464 // Figure out which BB this ext is used in. 5465 BasicBlock *UserBB = UI->getParent(); 5466 if (UserBB == DefBB) continue; 5467 5468 // For now only apply this when the splat is used by a shift instruction. 5469 if (!UI->isShift()) continue; 5470 5471 // Everything checks out, sink the shuffle if the user's block doesn't 5472 // already have a copy. 5473 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5474 5475 if (!InsertedShuffle) { 5476 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5477 assert(InsertPt != UserBB->end()); 5478 InsertedShuffle = 5479 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5480 SVI->getOperand(2), "", &*InsertPt); 5481 } 5482 5483 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5484 MadeChange = true; 5485 } 5486 5487 // If we removed all uses, nuke the shuffle. 5488 if (SVI->use_empty()) { 5489 SVI->eraseFromParent(); 5490 MadeChange = true; 5491 } 5492 5493 return MadeChange; 5494 } 5495 5496 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5497 if (!TLI || !DL) 5498 return false; 5499 5500 Value *Cond = SI->getCondition(); 5501 Type *OldType = Cond->getType(); 5502 LLVMContext &Context = Cond->getContext(); 5503 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5504 unsigned RegWidth = RegType.getSizeInBits(); 5505 5506 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5507 return false; 5508 5509 // If the register width is greater than the type width, expand the condition 5510 // of the switch instruction and each case constant to the width of the 5511 // register. By widening the type of the switch condition, subsequent 5512 // comparisons (for case comparisons) will not need to be extended to the 5513 // preferred register width, so we will potentially eliminate N-1 extends, 5514 // where N is the number of cases in the switch. 5515 auto *NewType = Type::getIntNTy(Context, RegWidth); 5516 5517 // Zero-extend the switch condition and case constants unless the switch 5518 // condition is a function argument that is already being sign-extended. 5519 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5520 // everything instead. 5521 Instruction::CastOps ExtType = Instruction::ZExt; 5522 if (auto *Arg = dyn_cast<Argument>(Cond)) 5523 if (Arg->hasSExtAttr()) 5524 ExtType = Instruction::SExt; 5525 5526 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5527 ExtInst->insertBefore(SI); 5528 SI->setCondition(ExtInst); 5529 for (auto Case : SI->cases()) { 5530 APInt NarrowConst = Case.getCaseValue()->getValue(); 5531 APInt WideConst = (ExtType == Instruction::ZExt) ? 5532 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5533 Case.setValue(ConstantInt::get(Context, WideConst)); 5534 } 5535 5536 return true; 5537 } 5538 5539 5540 namespace { 5541 /// \brief Helper class to promote a scalar operation to a vector one. 5542 /// This class is used to move downward extractelement transition. 5543 /// E.g., 5544 /// a = vector_op <2 x i32> 5545 /// b = extractelement <2 x i32> a, i32 0 5546 /// c = scalar_op b 5547 /// store c 5548 /// 5549 /// => 5550 /// a = vector_op <2 x i32> 5551 /// c = vector_op a (equivalent to scalar_op on the related lane) 5552 /// * d = extractelement <2 x i32> c, i32 0 5553 /// * store d 5554 /// Assuming both extractelement and store can be combine, we get rid of the 5555 /// transition. 5556 class VectorPromoteHelper { 5557 /// DataLayout associated with the current module. 5558 const DataLayout &DL; 5559 5560 /// Used to perform some checks on the legality of vector operations. 5561 const TargetLowering &TLI; 5562 5563 /// Used to estimated the cost of the promoted chain. 5564 const TargetTransformInfo &TTI; 5565 5566 /// The transition being moved downwards. 5567 Instruction *Transition; 5568 /// The sequence of instructions to be promoted. 5569 SmallVector<Instruction *, 4> InstsToBePromoted; 5570 /// Cost of combining a store and an extract. 5571 unsigned StoreExtractCombineCost; 5572 /// Instruction that will be combined with the transition. 5573 Instruction *CombineInst; 5574 5575 /// \brief The instruction that represents the current end of the transition. 5576 /// Since we are faking the promotion until we reach the end of the chain 5577 /// of computation, we need a way to get the current end of the transition. 5578 Instruction *getEndOfTransition() const { 5579 if (InstsToBePromoted.empty()) 5580 return Transition; 5581 return InstsToBePromoted.back(); 5582 } 5583 5584 /// \brief Return the index of the original value in the transition. 5585 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5586 /// c, is at index 0. 5587 unsigned getTransitionOriginalValueIdx() const { 5588 assert(isa<ExtractElementInst>(Transition) && 5589 "Other kind of transitions are not supported yet"); 5590 return 0; 5591 } 5592 5593 /// \brief Return the index of the index in the transition. 5594 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5595 /// is at index 1. 5596 unsigned getTransitionIdx() const { 5597 assert(isa<ExtractElementInst>(Transition) && 5598 "Other kind of transitions are not supported yet"); 5599 return 1; 5600 } 5601 5602 /// \brief Get the type of the transition. 5603 /// This is the type of the original value. 5604 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5605 /// transition is <2 x i32>. 5606 Type *getTransitionType() const { 5607 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5608 } 5609 5610 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5611 /// I.e., we have the following sequence: 5612 /// Def = Transition <ty1> a to <ty2> 5613 /// b = ToBePromoted <ty2> Def, ... 5614 /// => 5615 /// b = ToBePromoted <ty1> a, ... 5616 /// Def = Transition <ty1> ToBePromoted to <ty2> 5617 void promoteImpl(Instruction *ToBePromoted); 5618 5619 /// \brief Check whether or not it is profitable to promote all the 5620 /// instructions enqueued to be promoted. 5621 bool isProfitableToPromote() { 5622 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5623 unsigned Index = isa<ConstantInt>(ValIdx) 5624 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5625 : -1; 5626 Type *PromotedType = getTransitionType(); 5627 5628 StoreInst *ST = cast<StoreInst>(CombineInst); 5629 unsigned AS = ST->getPointerAddressSpace(); 5630 unsigned Align = ST->getAlignment(); 5631 // Check if this store is supported. 5632 if (!TLI.allowsMisalignedMemoryAccesses( 5633 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5634 Align)) { 5635 // If this is not supported, there is no way we can combine 5636 // the extract with the store. 5637 return false; 5638 } 5639 5640 // The scalar chain of computation has to pay for the transition 5641 // scalar to vector. 5642 // The vector chain has to account for the combining cost. 5643 uint64_t ScalarCost = 5644 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5645 uint64_t VectorCost = StoreExtractCombineCost; 5646 for (const auto &Inst : InstsToBePromoted) { 5647 // Compute the cost. 5648 // By construction, all instructions being promoted are arithmetic ones. 5649 // Moreover, one argument is a constant that can be viewed as a splat 5650 // constant. 5651 Value *Arg0 = Inst->getOperand(0); 5652 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5653 isa<ConstantFP>(Arg0); 5654 TargetTransformInfo::OperandValueKind Arg0OVK = 5655 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5656 : TargetTransformInfo::OK_AnyValue; 5657 TargetTransformInfo::OperandValueKind Arg1OVK = 5658 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5659 : TargetTransformInfo::OK_AnyValue; 5660 ScalarCost += TTI.getArithmeticInstrCost( 5661 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5662 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5663 Arg0OVK, Arg1OVK); 5664 } 5665 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5666 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5667 return ScalarCost > VectorCost; 5668 } 5669 5670 /// \brief Generate a constant vector with \p Val with the same 5671 /// number of elements as the transition. 5672 /// \p UseSplat defines whether or not \p Val should be replicated 5673 /// across the whole vector. 5674 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5675 /// otherwise we generate a vector with as many undef as possible: 5676 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5677 /// used at the index of the extract. 5678 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5679 unsigned ExtractIdx = UINT_MAX; 5680 if (!UseSplat) { 5681 // If we cannot determine where the constant must be, we have to 5682 // use a splat constant. 5683 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5684 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5685 ExtractIdx = CstVal->getSExtValue(); 5686 else 5687 UseSplat = true; 5688 } 5689 5690 unsigned End = getTransitionType()->getVectorNumElements(); 5691 if (UseSplat) 5692 return ConstantVector::getSplat(End, Val); 5693 5694 SmallVector<Constant *, 4> ConstVec; 5695 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5696 for (unsigned Idx = 0; Idx != End; ++Idx) { 5697 if (Idx == ExtractIdx) 5698 ConstVec.push_back(Val); 5699 else 5700 ConstVec.push_back(UndefVal); 5701 } 5702 return ConstantVector::get(ConstVec); 5703 } 5704 5705 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5706 /// in \p Use can trigger undefined behavior. 5707 static bool canCauseUndefinedBehavior(const Instruction *Use, 5708 unsigned OperandIdx) { 5709 // This is not safe to introduce undef when the operand is on 5710 // the right hand side of a division-like instruction. 5711 if (OperandIdx != 1) 5712 return false; 5713 switch (Use->getOpcode()) { 5714 default: 5715 return false; 5716 case Instruction::SDiv: 5717 case Instruction::UDiv: 5718 case Instruction::SRem: 5719 case Instruction::URem: 5720 return true; 5721 case Instruction::FDiv: 5722 case Instruction::FRem: 5723 return !Use->hasNoNaNs(); 5724 } 5725 llvm_unreachable(nullptr); 5726 } 5727 5728 public: 5729 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5730 const TargetTransformInfo &TTI, Instruction *Transition, 5731 unsigned CombineCost) 5732 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5733 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5734 assert(Transition && "Do not know how to promote null"); 5735 } 5736 5737 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5738 bool canPromote(const Instruction *ToBePromoted) const { 5739 // We could support CastInst too. 5740 return isa<BinaryOperator>(ToBePromoted); 5741 } 5742 5743 /// \brief Check if it is profitable to promote \p ToBePromoted 5744 /// by moving downward the transition through. 5745 bool shouldPromote(const Instruction *ToBePromoted) const { 5746 // Promote only if all the operands can be statically expanded. 5747 // Indeed, we do not want to introduce any new kind of transitions. 5748 for (const Use &U : ToBePromoted->operands()) { 5749 const Value *Val = U.get(); 5750 if (Val == getEndOfTransition()) { 5751 // If the use is a division and the transition is on the rhs, 5752 // we cannot promote the operation, otherwise we may create a 5753 // division by zero. 5754 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5755 return false; 5756 continue; 5757 } 5758 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5759 !isa<ConstantFP>(Val)) 5760 return false; 5761 } 5762 // Check that the resulting operation is legal. 5763 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5764 if (!ISDOpcode) 5765 return false; 5766 return StressStoreExtract || 5767 TLI.isOperationLegalOrCustom( 5768 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5769 } 5770 5771 /// \brief Check whether or not \p Use can be combined 5772 /// with the transition. 5773 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5774 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5775 5776 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5777 void enqueueForPromotion(Instruction *ToBePromoted) { 5778 InstsToBePromoted.push_back(ToBePromoted); 5779 } 5780 5781 /// \brief Set the instruction that will be combined with the transition. 5782 void recordCombineInstruction(Instruction *ToBeCombined) { 5783 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5784 CombineInst = ToBeCombined; 5785 } 5786 5787 /// \brief Promote all the instructions enqueued for promotion if it is 5788 /// is profitable. 5789 /// \return True if the promotion happened, false otherwise. 5790 bool promote() { 5791 // Check if there is something to promote. 5792 // Right now, if we do not have anything to combine with, 5793 // we assume the promotion is not profitable. 5794 if (InstsToBePromoted.empty() || !CombineInst) 5795 return false; 5796 5797 // Check cost. 5798 if (!StressStoreExtract && !isProfitableToPromote()) 5799 return false; 5800 5801 // Promote. 5802 for (auto &ToBePromoted : InstsToBePromoted) 5803 promoteImpl(ToBePromoted); 5804 InstsToBePromoted.clear(); 5805 return true; 5806 } 5807 }; 5808 } // End of anonymous namespace. 5809 5810 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5811 // At this point, we know that all the operands of ToBePromoted but Def 5812 // can be statically promoted. 5813 // For Def, we need to use its parameter in ToBePromoted: 5814 // b = ToBePromoted ty1 a 5815 // Def = Transition ty1 b to ty2 5816 // Move the transition down. 5817 // 1. Replace all uses of the promoted operation by the transition. 5818 // = ... b => = ... Def. 5819 assert(ToBePromoted->getType() == Transition->getType() && 5820 "The type of the result of the transition does not match " 5821 "the final type"); 5822 ToBePromoted->replaceAllUsesWith(Transition); 5823 // 2. Update the type of the uses. 5824 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5825 Type *TransitionTy = getTransitionType(); 5826 ToBePromoted->mutateType(TransitionTy); 5827 // 3. Update all the operands of the promoted operation with promoted 5828 // operands. 5829 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5830 for (Use &U : ToBePromoted->operands()) { 5831 Value *Val = U.get(); 5832 Value *NewVal = nullptr; 5833 if (Val == Transition) 5834 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5835 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5836 isa<ConstantFP>(Val)) { 5837 // Use a splat constant if it is not safe to use undef. 5838 NewVal = getConstantVector( 5839 cast<Constant>(Val), 5840 isa<UndefValue>(Val) || 5841 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5842 } else 5843 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5844 "this?"); 5845 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5846 } 5847 Transition->removeFromParent(); 5848 Transition->insertAfter(ToBePromoted); 5849 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5850 } 5851 5852 /// Some targets can do store(extractelement) with one instruction. 5853 /// Try to push the extractelement towards the stores when the target 5854 /// has this feature and this is profitable. 5855 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5856 unsigned CombineCost = UINT_MAX; 5857 if (DisableStoreExtract || !TLI || 5858 (!StressStoreExtract && 5859 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5860 Inst->getOperand(1), CombineCost))) 5861 return false; 5862 5863 // At this point we know that Inst is a vector to scalar transition. 5864 // Try to move it down the def-use chain, until: 5865 // - We can combine the transition with its single use 5866 // => we got rid of the transition. 5867 // - We escape the current basic block 5868 // => we would need to check that we are moving it at a cheaper place and 5869 // we do not do that for now. 5870 BasicBlock *Parent = Inst->getParent(); 5871 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5872 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5873 // If the transition has more than one use, assume this is not going to be 5874 // beneficial. 5875 while (Inst->hasOneUse()) { 5876 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5877 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5878 5879 if (ToBePromoted->getParent() != Parent) { 5880 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5881 << ToBePromoted->getParent()->getName() 5882 << ") than the transition (" << Parent->getName() << ").\n"); 5883 return false; 5884 } 5885 5886 if (VPH.canCombine(ToBePromoted)) { 5887 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5888 << "will be combined with: " << *ToBePromoted << '\n'); 5889 VPH.recordCombineInstruction(ToBePromoted); 5890 bool Changed = VPH.promote(); 5891 NumStoreExtractExposed += Changed; 5892 return Changed; 5893 } 5894 5895 DEBUG(dbgs() << "Try promoting.\n"); 5896 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5897 return false; 5898 5899 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5900 5901 VPH.enqueueForPromotion(ToBePromoted); 5902 Inst = ToBePromoted; 5903 } 5904 return false; 5905 } 5906 5907 /// For the instruction sequence of store below, F and I values 5908 /// are bundled together as an i64 value before being stored into memory. 5909 /// Sometimes it is more efficent to generate separate stores for F and I, 5910 /// which can remove the bitwise instructions or sink them to colder places. 5911 /// 5912 /// (store (or (zext (bitcast F to i32) to i64), 5913 /// (shl (zext I to i64), 32)), addr) --> 5914 /// (store F, addr) and (store I, addr+4) 5915 /// 5916 /// Similarly, splitting for other merged store can also be beneficial, like: 5917 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5918 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5919 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5920 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5921 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5922 /// 5923 /// We allow each target to determine specifically which kind of splitting is 5924 /// supported. 5925 /// 5926 /// The store patterns are commonly seen from the simple code snippet below 5927 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5928 /// void goo(const std::pair<int, float> &); 5929 /// hoo() { 5930 /// ... 5931 /// goo(std::make_pair(tmp, ftmp)); 5932 /// ... 5933 /// } 5934 /// 5935 /// Although we already have similar splitting in DAG Combine, we duplicate 5936 /// it in CodeGenPrepare to catch the case in which pattern is across 5937 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5938 /// during code expansion. 5939 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5940 const TargetLowering &TLI) { 5941 // Handle simple but common cases only. 5942 Type *StoreType = SI.getValueOperand()->getType(); 5943 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5944 DL.getTypeSizeInBits(StoreType) == 0) 5945 return false; 5946 5947 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5948 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5949 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5950 DL.getTypeSizeInBits(SplitStoreType)) 5951 return false; 5952 5953 // Match the following patterns: 5954 // (store (or (zext LValue to i64), 5955 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5956 // or 5957 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5958 // (zext LValue to i64), 5959 // Expect both operands of OR and the first operand of SHL have only 5960 // one use. 5961 Value *LValue, *HValue; 5962 if (!match(SI.getValueOperand(), 5963 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 5964 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 5965 m_SpecificInt(HalfValBitSize)))))) 5966 return false; 5967 5968 // Check LValue and HValue are int with size less or equal than 32. 5969 if (!LValue->getType()->isIntegerTy() || 5970 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 5971 !HValue->getType()->isIntegerTy() || 5972 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 5973 return false; 5974 5975 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 5976 // as the input of target query. 5977 auto *LBC = dyn_cast<BitCastInst>(LValue); 5978 auto *HBC = dyn_cast<BitCastInst>(HValue); 5979 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 5980 : EVT::getEVT(LValue->getType()); 5981 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 5982 : EVT::getEVT(HValue->getType()); 5983 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 5984 return false; 5985 5986 // Start to split store. 5987 IRBuilder<> Builder(SI.getContext()); 5988 Builder.SetInsertPoint(&SI); 5989 5990 // If LValue/HValue is a bitcast in another BB, create a new one in current 5991 // BB so it may be merged with the splitted stores by dag combiner. 5992 if (LBC && LBC->getParent() != SI.getParent()) 5993 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 5994 if (HBC && HBC->getParent() != SI.getParent()) 5995 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 5996 5997 auto CreateSplitStore = [&](Value *V, bool Upper) { 5998 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 5999 Value *Addr = Builder.CreateBitCast( 6000 SI.getOperand(1), 6001 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6002 if (Upper) 6003 Addr = Builder.CreateGEP( 6004 SplitStoreType, Addr, 6005 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6006 Builder.CreateAlignedStore( 6007 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6008 }; 6009 6010 CreateSplitStore(LValue, false); 6011 CreateSplitStore(HValue, true); 6012 6013 // Delete the old store. 6014 SI.eraseFromParent(); 6015 return true; 6016 } 6017 6018 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 6019 // Bail out if we inserted the instruction to prevent optimizations from 6020 // stepping on each other's toes. 6021 if (InsertedInsts.count(I)) 6022 return false; 6023 6024 if (PHINode *P = dyn_cast<PHINode>(I)) { 6025 // It is possible for very late stage optimizations (such as SimplifyCFG) 6026 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6027 // trivial PHI, go ahead and zap it here. 6028 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6029 P->replaceAllUsesWith(V); 6030 P->eraseFromParent(); 6031 ++NumPHIsElim; 6032 return true; 6033 } 6034 return false; 6035 } 6036 6037 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6038 // If the source of the cast is a constant, then this should have 6039 // already been constant folded. The only reason NOT to constant fold 6040 // it is if something (e.g. LSR) was careful to place the constant 6041 // evaluation in a block other than then one that uses it (e.g. to hoist 6042 // the address of globals out of a loop). If this is the case, we don't 6043 // want to forward-subst the cast. 6044 if (isa<Constant>(CI->getOperand(0))) 6045 return false; 6046 6047 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6048 return true; 6049 6050 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6051 /// Sink a zext or sext into its user blocks if the target type doesn't 6052 /// fit in one register 6053 if (TLI && 6054 TLI->getTypeAction(CI->getContext(), 6055 TLI->getValueType(*DL, CI->getType())) == 6056 TargetLowering::TypeExpandInteger) { 6057 return SinkCast(CI); 6058 } else { 6059 bool MadeChange = optimizeExt(I); 6060 return MadeChange | optimizeExtUses(I); 6061 } 6062 } 6063 return false; 6064 } 6065 6066 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6067 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6068 return OptimizeCmpExpression(CI, TLI); 6069 6070 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6071 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6072 if (TLI) { 6073 bool Modified = optimizeLoadExt(LI); 6074 unsigned AS = LI->getPointerAddressSpace(); 6075 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6076 return Modified; 6077 } 6078 return false; 6079 } 6080 6081 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6082 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6083 return true; 6084 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6085 if (TLI) { 6086 unsigned AS = SI->getPointerAddressSpace(); 6087 return optimizeMemoryInst(I, SI->getOperand(1), 6088 SI->getOperand(0)->getType(), AS); 6089 } 6090 return false; 6091 } 6092 6093 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6094 unsigned AS = RMW->getPointerAddressSpace(); 6095 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6096 RMW->getType(), AS); 6097 } 6098 6099 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6100 unsigned AS = CmpX->getPointerAddressSpace(); 6101 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6102 CmpX->getCompareOperand()->getType(), AS); 6103 } 6104 6105 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6106 6107 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6108 EnableAndCmpSinking && TLI) 6109 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6110 6111 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6112 BinOp->getOpcode() == Instruction::LShr)) { 6113 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6114 if (TLI && CI && TLI->hasExtractBitsInsn()) 6115 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6116 6117 return false; 6118 } 6119 6120 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6121 if (GEPI->hasAllZeroIndices()) { 6122 /// The GEP operand must be a pointer, so must its result -> BitCast 6123 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6124 GEPI->getName(), GEPI); 6125 GEPI->replaceAllUsesWith(NC); 6126 GEPI->eraseFromParent(); 6127 ++NumGEPsElim; 6128 optimizeInst(NC, ModifiedDT); 6129 return true; 6130 } 6131 return false; 6132 } 6133 6134 if (CallInst *CI = dyn_cast<CallInst>(I)) 6135 return optimizeCallInst(CI, ModifiedDT); 6136 6137 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6138 return optimizeSelectInst(SI); 6139 6140 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6141 return optimizeShuffleVectorInst(SVI); 6142 6143 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6144 return optimizeSwitchInst(Switch); 6145 6146 if (isa<ExtractElementInst>(I)) 6147 return optimizeExtractElementInst(I); 6148 6149 return false; 6150 } 6151 6152 /// Given an OR instruction, check to see if this is a bitreverse 6153 /// idiom. If so, insert the new intrinsic and return true. 6154 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6155 const TargetLowering &TLI) { 6156 if (!I.getType()->isIntegerTy() || 6157 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6158 TLI.getValueType(DL, I.getType(), true))) 6159 return false; 6160 6161 SmallVector<Instruction*, 4> Insts; 6162 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6163 return false; 6164 Instruction *LastInst = Insts.back(); 6165 I.replaceAllUsesWith(LastInst); 6166 RecursivelyDeleteTriviallyDeadInstructions(&I); 6167 return true; 6168 } 6169 6170 // In this pass we look for GEP and cast instructions that are used 6171 // across basic blocks and rewrite them to improve basic-block-at-a-time 6172 // selection. 6173 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 6174 SunkAddrs.clear(); 6175 bool MadeChange = false; 6176 6177 CurInstIterator = BB.begin(); 6178 while (CurInstIterator != BB.end()) { 6179 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6180 if (ModifiedDT) 6181 return true; 6182 } 6183 6184 bool MadeBitReverse = true; 6185 while (TLI && MadeBitReverse) { 6186 MadeBitReverse = false; 6187 for (auto &I : reverse(BB)) { 6188 if (makeBitReverse(I, *DL, *TLI)) { 6189 MadeBitReverse = MadeChange = true; 6190 ModifiedDT = true; 6191 break; 6192 } 6193 } 6194 } 6195 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6196 6197 return MadeChange; 6198 } 6199 6200 // llvm.dbg.value is far away from the value then iSel may not be able 6201 // handle it properly. iSel will drop llvm.dbg.value if it can not 6202 // find a node corresponding to the value. 6203 bool CodeGenPrepare::placeDbgValues(Function &F) { 6204 bool MadeChange = false; 6205 for (BasicBlock &BB : F) { 6206 Instruction *PrevNonDbgInst = nullptr; 6207 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6208 Instruction *Insn = &*BI++; 6209 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6210 // Leave dbg.values that refer to an alloca alone. These 6211 // instrinsics describe the address of a variable (= the alloca) 6212 // being taken. They should not be moved next to the alloca 6213 // (and to the beginning of the scope), but rather stay close to 6214 // where said address is used. 6215 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6216 PrevNonDbgInst = Insn; 6217 continue; 6218 } 6219 6220 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6221 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6222 // If VI is a phi in a block with an EHPad terminator, we can't insert 6223 // after it. 6224 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6225 continue; 6226 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6227 DVI->removeFromParent(); 6228 if (isa<PHINode>(VI)) 6229 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6230 else 6231 DVI->insertAfter(VI); 6232 MadeChange = true; 6233 ++NumDbgValueMoved; 6234 } 6235 } 6236 } 6237 return MadeChange; 6238 } 6239 6240 /// \brief Scale down both weights to fit into uint32_t. 6241 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6242 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6243 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 6244 NewTrue = NewTrue / Scale; 6245 NewFalse = NewFalse / Scale; 6246 } 6247 6248 /// \brief Some targets prefer to split a conditional branch like: 6249 /// \code 6250 /// %0 = icmp ne i32 %a, 0 6251 /// %1 = icmp ne i32 %b, 0 6252 /// %or.cond = or i1 %0, %1 6253 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6254 /// \endcode 6255 /// into multiple branch instructions like: 6256 /// \code 6257 /// bb1: 6258 /// %0 = icmp ne i32 %a, 0 6259 /// br i1 %0, label %TrueBB, label %bb2 6260 /// bb2: 6261 /// %1 = icmp ne i32 %b, 0 6262 /// br i1 %1, label %TrueBB, label %FalseBB 6263 /// \endcode 6264 /// This usually allows instruction selection to do even further optimizations 6265 /// and combine the compare with the branch instruction. Currently this is 6266 /// applied for targets which have "cheap" jump instructions. 6267 /// 6268 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6269 /// 6270 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6271 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6272 return false; 6273 6274 bool MadeChange = false; 6275 for (auto &BB : F) { 6276 // Does this BB end with the following? 6277 // %cond1 = icmp|fcmp|binary instruction ... 6278 // %cond2 = icmp|fcmp|binary instruction ... 6279 // %cond.or = or|and i1 %cond1, cond2 6280 // br i1 %cond.or label %dest1, label %dest2" 6281 BinaryOperator *LogicOp; 6282 BasicBlock *TBB, *FBB; 6283 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6284 continue; 6285 6286 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6287 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6288 continue; 6289 6290 unsigned Opc; 6291 Value *Cond1, *Cond2; 6292 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6293 m_OneUse(m_Value(Cond2))))) 6294 Opc = Instruction::And; 6295 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6296 m_OneUse(m_Value(Cond2))))) 6297 Opc = Instruction::Or; 6298 else 6299 continue; 6300 6301 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6302 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6303 continue; 6304 6305 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6306 6307 // Create a new BB. 6308 auto TmpBB = 6309 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6310 BB.getParent(), BB.getNextNode()); 6311 6312 // Update original basic block by using the first condition directly by the 6313 // branch instruction and removing the no longer needed and/or instruction. 6314 Br1->setCondition(Cond1); 6315 LogicOp->eraseFromParent(); 6316 6317 // Depending on the conditon we have to either replace the true or the false 6318 // successor of the original branch instruction. 6319 if (Opc == Instruction::And) 6320 Br1->setSuccessor(0, TmpBB); 6321 else 6322 Br1->setSuccessor(1, TmpBB); 6323 6324 // Fill in the new basic block. 6325 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6326 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6327 I->removeFromParent(); 6328 I->insertBefore(Br2); 6329 } 6330 6331 // Update PHI nodes in both successors. The original BB needs to be 6332 // replaced in one succesor's PHI nodes, because the branch comes now from 6333 // the newly generated BB (NewBB). In the other successor we need to add one 6334 // incoming edge to the PHI nodes, because both branch instructions target 6335 // now the same successor. Depending on the original branch condition 6336 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6337 // we perform the correct update for the PHI nodes. 6338 // This doesn't change the successor order of the just created branch 6339 // instruction (or any other instruction). 6340 if (Opc == Instruction::Or) 6341 std::swap(TBB, FBB); 6342 6343 // Replace the old BB with the new BB. 6344 for (auto &I : *TBB) { 6345 PHINode *PN = dyn_cast<PHINode>(&I); 6346 if (!PN) 6347 break; 6348 int i; 6349 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 6350 PN->setIncomingBlock(i, TmpBB); 6351 } 6352 6353 // Add another incoming edge form the new BB. 6354 for (auto &I : *FBB) { 6355 PHINode *PN = dyn_cast<PHINode>(&I); 6356 if (!PN) 6357 break; 6358 auto *Val = PN->getIncomingValueForBlock(&BB); 6359 PN->addIncoming(Val, TmpBB); 6360 } 6361 6362 // Update the branch weights (from SelectionDAGBuilder:: 6363 // FindMergedConditions). 6364 if (Opc == Instruction::Or) { 6365 // Codegen X | Y as: 6366 // BB1: 6367 // jmp_if_X TBB 6368 // jmp TmpBB 6369 // TmpBB: 6370 // jmp_if_Y TBB 6371 // jmp FBB 6372 // 6373 6374 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6375 // The requirement is that 6376 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6377 // = TrueProb for orignal BB. 6378 // Assuming the orignal weights are A and B, one choice is to set BB1's 6379 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6380 // assumes that 6381 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6382 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6383 // TmpBB, but the math is more complicated. 6384 uint64_t TrueWeight, FalseWeight; 6385 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6386 uint64_t NewTrueWeight = TrueWeight; 6387 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6388 scaleWeights(NewTrueWeight, NewFalseWeight); 6389 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6390 .createBranchWeights(TrueWeight, FalseWeight)); 6391 6392 NewTrueWeight = TrueWeight; 6393 NewFalseWeight = 2 * FalseWeight; 6394 scaleWeights(NewTrueWeight, NewFalseWeight); 6395 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6396 .createBranchWeights(TrueWeight, FalseWeight)); 6397 } 6398 } else { 6399 // Codegen X & Y as: 6400 // BB1: 6401 // jmp_if_X TmpBB 6402 // jmp FBB 6403 // TmpBB: 6404 // jmp_if_Y TBB 6405 // jmp FBB 6406 // 6407 // This requires creation of TmpBB after CurBB. 6408 6409 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6410 // The requirement is that 6411 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6412 // = FalseProb for orignal BB. 6413 // Assuming the orignal weights are A and B, one choice is to set BB1's 6414 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6415 // assumes that 6416 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6417 uint64_t TrueWeight, FalseWeight; 6418 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6419 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6420 uint64_t NewFalseWeight = FalseWeight; 6421 scaleWeights(NewTrueWeight, NewFalseWeight); 6422 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6423 .createBranchWeights(TrueWeight, FalseWeight)); 6424 6425 NewTrueWeight = 2 * TrueWeight; 6426 NewFalseWeight = FalseWeight; 6427 scaleWeights(NewTrueWeight, NewFalseWeight); 6428 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6429 .createBranchWeights(TrueWeight, FalseWeight)); 6430 } 6431 } 6432 6433 // Note: No point in getting fancy here, since the DT info is never 6434 // available to CodeGenPrepare. 6435 ModifiedDT = true; 6436 6437 MadeChange = true; 6438 6439 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6440 TmpBB->dump()); 6441 } 6442 return MadeChange; 6443 } 6444