1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/MemoryBuiltins.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/Statepoint.h" 46 #include "llvm/IR/ValueHandle.h" 47 #include "llvm/IR/ValueMap.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/BranchProbability.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetLowering.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 56 #include "llvm/Transforms/Utils/BuildLibCalls.h" 57 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 58 #include "llvm/Transforms/Utils/Cloning.h" 59 #include "llvm/Transforms/Utils/Local.h" 60 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 61 #include "llvm/Transforms/Utils/ValueMapper.h" 62 using namespace llvm; 63 using namespace llvm::PatternMatch; 64 65 #define DEBUG_TYPE "codegenprepare" 66 67 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 68 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 69 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 70 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 71 "sunken Cmps"); 72 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 73 "of sunken Casts"); 74 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 75 "computations were sunk"); 76 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 77 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 78 STATISTIC(NumAndsAdded, 79 "Number of and mask instructions added to form ext loads"); 80 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 81 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 82 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 83 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 84 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 85 86 static cl::opt<bool> DisableBranchOpts( 87 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 88 cl::desc("Disable branch optimizations in CodeGenPrepare")); 89 90 static cl::opt<bool> 91 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 92 cl::desc("Disable GC optimizations in CodeGenPrepare")); 93 94 static cl::opt<bool> DisableSelectToBranch( 95 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 96 cl::desc("Disable select to branch conversion.")); 97 98 static cl::opt<bool> AddrSinkUsingGEPs( 99 "addr-sink-using-gep", cl::Hidden, cl::init(true), 100 cl::desc("Address sinking in CGP using GEPs.")); 101 102 static cl::opt<bool> EnableAndCmpSinking( 103 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 104 cl::desc("Enable sinkinig and/cmp into branches.")); 105 106 static cl::opt<bool> DisableStoreExtract( 107 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 108 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 109 110 static cl::opt<bool> StressStoreExtract( 111 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 112 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 113 114 static cl::opt<bool> DisableExtLdPromotion( 115 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 116 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 117 "CodeGenPrepare")); 118 119 static cl::opt<bool> StressExtLdPromotion( 120 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 121 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 122 "optimization in CodeGenPrepare")); 123 124 static cl::opt<bool> DisablePreheaderProtect( 125 "disable-preheader-prot", cl::Hidden, cl::init(false), 126 cl::desc("Disable protection against removing loop preheaders")); 127 128 static cl::opt<bool> ProfileGuidedSectionPrefix( 129 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 130 cl::desc("Use profile info to add section prefix for hot/cold functions")); 131 132 static cl::opt<unsigned> FreqRatioToSkipMerge( 133 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 134 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 135 "(frequency of destination block) is greater than this ratio")); 136 137 static cl::opt<bool> ForceSplitStore( 138 "force-split-store", cl::Hidden, cl::init(false), 139 cl::desc("Force store splitting no matter what the target query says.")); 140 141 static cl::opt<bool> 142 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 143 cl::desc("Enable merging of redundant sexts when one is dominating" 144 " the other."), cl::init(true)); 145 146 namespace { 147 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 148 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 149 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 150 typedef SmallVector<Instruction *, 16> SExts; 151 typedef DenseMap<Value *, SExts> ValueToSExts; 152 class TypePromotionTransaction; 153 154 class CodeGenPrepare : public FunctionPass { 155 const TargetMachine *TM; 156 const TargetSubtargetInfo *SubtargetInfo; 157 const TargetLowering *TLI; 158 const TargetRegisterInfo *TRI; 159 const TargetTransformInfo *TTI; 160 const TargetLibraryInfo *TLInfo; 161 const LoopInfo *LI; 162 std::unique_ptr<BlockFrequencyInfo> BFI; 163 std::unique_ptr<BranchProbabilityInfo> BPI; 164 165 /// As we scan instructions optimizing them, this is the next instruction 166 /// to optimize. Transforms that can invalidate this should update it. 167 BasicBlock::iterator CurInstIterator; 168 169 /// Keeps track of non-local addresses that have been sunk into a block. 170 /// This allows us to avoid inserting duplicate code for blocks with 171 /// multiple load/stores of the same address. 172 ValueMap<Value*, Value*> SunkAddrs; 173 174 /// Keeps track of all instructions inserted for the current function. 175 SetOfInstrs InsertedInsts; 176 /// Keeps track of the type of the related instruction before their 177 /// promotion for the current function. 178 InstrToOrigTy PromotedInsts; 179 180 /// Keep track of instructions removed during promotion. 181 SetOfInstrs RemovedInsts; 182 183 /// Keep track of sext chains based on their initial value. 184 DenseMap<Value *, Instruction *> SeenChainsForSExt; 185 186 /// Keep track of SExt promoted. 187 ValueToSExts ValToSExtendedUses; 188 189 /// True if CFG is modified in any way. 190 bool ModifiedDT; 191 192 /// True if optimizing for size. 193 bool OptSize; 194 195 /// DataLayout for the Function being processed. 196 const DataLayout *DL; 197 198 public: 199 static char ID; // Pass identification, replacement for typeid 200 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 201 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 202 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 203 } 204 bool runOnFunction(Function &F) override; 205 206 StringRef getPassName() const override { return "CodeGen Prepare"; } 207 208 void getAnalysisUsage(AnalysisUsage &AU) const override { 209 // FIXME: When we can selectively preserve passes, preserve the domtree. 210 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 211 AU.addRequired<TargetLibraryInfoWrapperPass>(); 212 AU.addRequired<TargetTransformInfoWrapperPass>(); 213 AU.addRequired<LoopInfoWrapperPass>(); 214 } 215 216 private: 217 bool eliminateFallThrough(Function &F); 218 bool eliminateMostlyEmptyBlocks(Function &F); 219 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 220 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 221 void eliminateMostlyEmptyBlock(BasicBlock *BB); 222 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 223 bool isPreheader); 224 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 225 bool optimizeInst(Instruction *I, bool& ModifiedDT); 226 bool optimizeMemoryInst(Instruction *I, Value *Addr, 227 Type *AccessTy, unsigned AS); 228 bool optimizeInlineAsmInst(CallInst *CS); 229 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 230 bool optimizeExt(Instruction *&I); 231 bool optimizeExtUses(Instruction *I); 232 bool optimizeLoadExt(LoadInst *I); 233 bool optimizeSelectInst(SelectInst *SI); 234 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 235 bool optimizeSwitchInst(SwitchInst *CI); 236 bool optimizeExtractElementInst(Instruction *Inst); 237 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 238 bool placeDbgValues(Function &F); 239 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 240 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 241 bool tryToPromoteExts(TypePromotionTransaction &TPT, 242 const SmallVectorImpl<Instruction *> &Exts, 243 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 244 unsigned CreatedInstsCost = 0); 245 bool mergeSExts(Function &F); 246 bool performAddressTypePromotion( 247 Instruction *&Inst, 248 bool AllowPromotionWithoutCommonHeader, 249 bool HasPromoted, TypePromotionTransaction &TPT, 250 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 251 bool splitBranchCondition(Function &F); 252 bool simplifyOffsetableRelocate(Instruction &I); 253 bool splitIndirectCriticalEdges(Function &F); 254 }; 255 } 256 257 char CodeGenPrepare::ID = 0; 258 INITIALIZE_TM_PASS_BEGIN(CodeGenPrepare, "codegenprepare", 259 "Optimize for code generation", false, false) 260 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 261 INITIALIZE_TM_PASS_END(CodeGenPrepare, "codegenprepare", 262 "Optimize for code generation", false, false) 263 264 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 265 return new CodeGenPrepare(TM); 266 } 267 268 bool CodeGenPrepare::runOnFunction(Function &F) { 269 if (skipFunction(F)) 270 return false; 271 272 DL = &F.getParent()->getDataLayout(); 273 274 bool EverMadeChange = false; 275 // Clear per function information. 276 InsertedInsts.clear(); 277 PromotedInsts.clear(); 278 BFI.reset(); 279 BPI.reset(); 280 281 ModifiedDT = false; 282 if (TM) { 283 SubtargetInfo = TM->getSubtargetImpl(F); 284 TLI = SubtargetInfo->getTargetLowering(); 285 TRI = SubtargetInfo->getRegisterInfo(); 286 } 287 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 288 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 289 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 290 OptSize = F.optForSize(); 291 292 if (ProfileGuidedSectionPrefix) { 293 ProfileSummaryInfo *PSI = 294 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 295 if (PSI->isFunctionHotInCallGraph(&F)) 296 F.setSectionPrefix(".hot"); 297 else if (PSI->isFunctionColdInCallGraph(&F)) 298 F.setSectionPrefix(".unlikely"); 299 } 300 301 /// This optimization identifies DIV instructions that can be 302 /// profitably bypassed and carried out with a shorter, faster divide. 303 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 304 const DenseMap<unsigned int, unsigned int> &BypassWidths = 305 TLI->getBypassSlowDivWidths(); 306 BasicBlock* BB = &*F.begin(); 307 while (BB != nullptr) { 308 // bypassSlowDivision may create new BBs, but we don't want to reapply the 309 // optimization to those blocks. 310 BasicBlock* Next = BB->getNextNode(); 311 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 312 BB = Next; 313 } 314 } 315 316 // Eliminate blocks that contain only PHI nodes and an 317 // unconditional branch. 318 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 319 320 // llvm.dbg.value is far away from the value then iSel may not be able 321 // handle it properly. iSel will drop llvm.dbg.value if it can not 322 // find a node corresponding to the value. 323 EverMadeChange |= placeDbgValues(F); 324 325 if (!DisableBranchOpts) 326 EverMadeChange |= splitBranchCondition(F); 327 328 // Split some critical edges where one of the sources is an indirect branch, 329 // to help generate sane code for PHIs involving such edges. 330 EverMadeChange |= splitIndirectCriticalEdges(F); 331 332 bool MadeChange = true; 333 while (MadeChange) { 334 MadeChange = false; 335 SeenChainsForSExt.clear(); 336 ValToSExtendedUses.clear(); 337 RemovedInsts.clear(); 338 for (Function::iterator I = F.begin(); I != F.end(); ) { 339 BasicBlock *BB = &*I++; 340 bool ModifiedDTOnIteration = false; 341 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 342 343 // Restart BB iteration if the dominator tree of the Function was changed 344 if (ModifiedDTOnIteration) 345 break; 346 } 347 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 348 MadeChange |= mergeSExts(F); 349 350 // Really free removed instructions during promotion. 351 for (Instruction *I : RemovedInsts) 352 delete I; 353 354 EverMadeChange |= MadeChange; 355 } 356 357 SunkAddrs.clear(); 358 359 if (!DisableBranchOpts) { 360 MadeChange = false; 361 SmallPtrSet<BasicBlock*, 8> WorkList; 362 for (BasicBlock &BB : F) { 363 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 364 MadeChange |= ConstantFoldTerminator(&BB, true); 365 if (!MadeChange) continue; 366 367 for (SmallVectorImpl<BasicBlock*>::iterator 368 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 369 if (pred_begin(*II) == pred_end(*II)) 370 WorkList.insert(*II); 371 } 372 373 // Delete the dead blocks and any of their dead successors. 374 MadeChange |= !WorkList.empty(); 375 while (!WorkList.empty()) { 376 BasicBlock *BB = *WorkList.begin(); 377 WorkList.erase(BB); 378 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 379 380 DeleteDeadBlock(BB); 381 382 for (SmallVectorImpl<BasicBlock*>::iterator 383 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 384 if (pred_begin(*II) == pred_end(*II)) 385 WorkList.insert(*II); 386 } 387 388 // Merge pairs of basic blocks with unconditional branches, connected by 389 // a single edge. 390 if (EverMadeChange || MadeChange) 391 MadeChange |= eliminateFallThrough(F); 392 393 EverMadeChange |= MadeChange; 394 } 395 396 if (!DisableGCOpts) { 397 SmallVector<Instruction *, 2> Statepoints; 398 for (BasicBlock &BB : F) 399 for (Instruction &I : BB) 400 if (isStatepoint(I)) 401 Statepoints.push_back(&I); 402 for (auto &I : Statepoints) 403 EverMadeChange |= simplifyOffsetableRelocate(*I); 404 } 405 406 return EverMadeChange; 407 } 408 409 /// Merge basic blocks which are connected by a single edge, where one of the 410 /// basic blocks has a single successor pointing to the other basic block, 411 /// which has a single predecessor. 412 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 413 bool Changed = false; 414 // Scan all of the blocks in the function, except for the entry block. 415 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 416 BasicBlock *BB = &*I++; 417 // If the destination block has a single pred, then this is a trivial 418 // edge, just collapse it. 419 BasicBlock *SinglePred = BB->getSinglePredecessor(); 420 421 // Don't merge if BB's address is taken. 422 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 423 424 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 425 if (Term && !Term->isConditional()) { 426 Changed = true; 427 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 428 // Remember if SinglePred was the entry block of the function. 429 // If so, we will need to move BB back to the entry position. 430 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 431 MergeBasicBlockIntoOnlyPred(BB, nullptr); 432 433 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 434 BB->moveBefore(&BB->getParent()->getEntryBlock()); 435 436 // We have erased a block. Update the iterator. 437 I = BB->getIterator(); 438 } 439 } 440 return Changed; 441 } 442 443 /// Find a destination block from BB if BB is mergeable empty block. 444 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 445 // If this block doesn't end with an uncond branch, ignore it. 446 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 447 if (!BI || !BI->isUnconditional()) 448 return nullptr; 449 450 // If the instruction before the branch (skipping debug info) isn't a phi 451 // node, then other stuff is happening here. 452 BasicBlock::iterator BBI = BI->getIterator(); 453 if (BBI != BB->begin()) { 454 --BBI; 455 while (isa<DbgInfoIntrinsic>(BBI)) { 456 if (BBI == BB->begin()) 457 break; 458 --BBI; 459 } 460 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 461 return nullptr; 462 } 463 464 // Do not break infinite loops. 465 BasicBlock *DestBB = BI->getSuccessor(0); 466 if (DestBB == BB) 467 return nullptr; 468 469 if (!canMergeBlocks(BB, DestBB)) 470 DestBB = nullptr; 471 472 return DestBB; 473 } 474 475 // Return the unique indirectbr predecessor of a block. This may return null 476 // even if such a predecessor exists, if it's not useful for splitting. 477 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 478 // predecessors of BB. 479 static BasicBlock * 480 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 481 // If the block doesn't have any PHIs, we don't care about it, since there's 482 // no point in splitting it. 483 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 484 if (!PN) 485 return nullptr; 486 487 // Verify we have exactly one IBR predecessor. 488 // Conservatively bail out if one of the other predecessors is not a "regular" 489 // terminator (that is, not a switch or a br). 490 BasicBlock *IBB = nullptr; 491 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 492 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 493 TerminatorInst *PredTerm = PredBB->getTerminator(); 494 switch (PredTerm->getOpcode()) { 495 case Instruction::IndirectBr: 496 if (IBB) 497 return nullptr; 498 IBB = PredBB; 499 break; 500 case Instruction::Br: 501 case Instruction::Switch: 502 OtherPreds.push_back(PredBB); 503 continue; 504 default: 505 return nullptr; 506 } 507 } 508 509 return IBB; 510 } 511 512 // Split critical edges where the source of the edge is an indirectbr 513 // instruction. This isn't always possible, but we can handle some easy cases. 514 // This is useful because MI is unable to split such critical edges, 515 // which means it will not be able to sink instructions along those edges. 516 // This is especially painful for indirect branches with many successors, where 517 // we end up having to prepare all outgoing values in the origin block. 518 // 519 // Our normal algorithm for splitting critical edges requires us to update 520 // the outgoing edges of the edge origin block, but for an indirectbr this 521 // is hard, since it would require finding and updating the block addresses 522 // the indirect branch uses. But if a block only has a single indirectbr 523 // predecessor, with the others being regular branches, we can do it in a 524 // different way. 525 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr. 526 // We can split D into D0 and D1, where D0 contains only the PHIs from D, 527 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and 528 // create the following structure: 529 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1 530 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) { 531 // Check whether the function has any indirectbrs, and collect which blocks 532 // they may jump to. Since most functions don't have indirect branches, 533 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 534 SmallSetVector<BasicBlock *, 16> Targets; 535 for (auto &BB : F) { 536 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 537 if (!IBI) 538 continue; 539 540 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 541 Targets.insert(IBI->getSuccessor(Succ)); 542 } 543 544 if (Targets.empty()) 545 return false; 546 547 bool Changed = false; 548 for (BasicBlock *Target : Targets) { 549 SmallVector<BasicBlock *, 16> OtherPreds; 550 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 551 // If we did not found an indirectbr, or the indirectbr is the only 552 // incoming edge, this isn't the kind of edge we're looking for. 553 if (!IBRPred || OtherPreds.empty()) 554 continue; 555 556 // Don't even think about ehpads/landingpads. 557 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 558 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 559 continue; 560 561 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 562 // It's possible Target was its own successor through an indirectbr. 563 // In this case, the indirectbr now comes from BodyBlock. 564 if (IBRPred == Target) 565 IBRPred = BodyBlock; 566 567 // At this point Target only has PHIs, and BodyBlock has the rest of the 568 // block's body. Create a copy of Target that will be used by the "direct" 569 // preds. 570 ValueToValueMapTy VMap; 571 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 572 573 for (BasicBlock *Pred : OtherPreds) { 574 // If the target is a loop to itself, then the terminator of the split 575 // block needs to be updated. 576 if (Pred == Target) 577 BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 578 else 579 Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 580 } 581 582 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 583 // they are clones, so the number of PHIs are the same. 584 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 585 // (b) Leave that as the only edge in the "Indirect" PHI. 586 // (c) Merge the two in the body block. 587 BasicBlock::iterator Indirect = Target->begin(), 588 End = Target->getFirstNonPHI()->getIterator(); 589 BasicBlock::iterator Direct = DirectSucc->begin(); 590 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 591 592 assert(&*End == Target->getTerminator() && 593 "Block was expected to only contain PHIs"); 594 595 while (Indirect != End) { 596 PHINode *DirPHI = cast<PHINode>(Direct); 597 PHINode *IndPHI = cast<PHINode>(Indirect); 598 599 // Now, clean up - the direct block shouldn't get the indirect value, 600 // and vice versa. 601 DirPHI->removeIncomingValue(IBRPred); 602 Direct++; 603 604 // Advance the pointer here, to avoid invalidation issues when the old 605 // PHI is erased. 606 Indirect++; 607 608 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 609 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 610 IBRPred); 611 612 // Create a PHI in the body block, to merge the direct and indirect 613 // predecessors. 614 PHINode *MergePHI = 615 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 616 MergePHI->addIncoming(NewIndPHI, Target); 617 MergePHI->addIncoming(DirPHI, DirectSucc); 618 619 IndPHI->replaceAllUsesWith(MergePHI); 620 IndPHI->eraseFromParent(); 621 } 622 623 Changed = true; 624 } 625 626 return Changed; 627 } 628 629 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 630 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 631 /// edges in ways that are non-optimal for isel. Start by eliminating these 632 /// blocks so we can split them the way we want them. 633 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 634 SmallPtrSet<BasicBlock *, 16> Preheaders; 635 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 636 while (!LoopList.empty()) { 637 Loop *L = LoopList.pop_back_val(); 638 LoopList.insert(LoopList.end(), L->begin(), L->end()); 639 if (BasicBlock *Preheader = L->getLoopPreheader()) 640 Preheaders.insert(Preheader); 641 } 642 643 bool MadeChange = false; 644 // Note that this intentionally skips the entry block. 645 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 646 BasicBlock *BB = &*I++; 647 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 648 if (!DestBB || 649 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 650 continue; 651 652 eliminateMostlyEmptyBlock(BB); 653 MadeChange = true; 654 } 655 return MadeChange; 656 } 657 658 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 659 BasicBlock *DestBB, 660 bool isPreheader) { 661 // Do not delete loop preheaders if doing so would create a critical edge. 662 // Loop preheaders can be good locations to spill registers. If the 663 // preheader is deleted and we create a critical edge, registers may be 664 // spilled in the loop body instead. 665 if (!DisablePreheaderProtect && isPreheader && 666 !(BB->getSinglePredecessor() && 667 BB->getSinglePredecessor()->getSingleSuccessor())) 668 return false; 669 670 // Try to skip merging if the unique predecessor of BB is terminated by a 671 // switch or indirect branch instruction, and BB is used as an incoming block 672 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 673 // add COPY instructions in the predecessor of BB instead of BB (if it is not 674 // merged). Note that the critical edge created by merging such blocks wont be 675 // split in MachineSink because the jump table is not analyzable. By keeping 676 // such empty block (BB), ISel will place COPY instructions in BB, not in the 677 // predecessor of BB. 678 BasicBlock *Pred = BB->getUniquePredecessor(); 679 if (!Pred || 680 !(isa<SwitchInst>(Pred->getTerminator()) || 681 isa<IndirectBrInst>(Pred->getTerminator()))) 682 return true; 683 684 if (BB->getTerminator() != BB->getFirstNonPHI()) 685 return true; 686 687 // We use a simple cost heuristic which determine skipping merging is 688 // profitable if the cost of skipping merging is less than the cost of 689 // merging : Cost(skipping merging) < Cost(merging BB), where the 690 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 691 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 692 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 693 // Freq(Pred) / Freq(BB) > 2. 694 // Note that if there are multiple empty blocks sharing the same incoming 695 // value for the PHIs in the DestBB, we consider them together. In such 696 // case, Cost(merging BB) will be the sum of their frequencies. 697 698 if (!isa<PHINode>(DestBB->begin())) 699 return true; 700 701 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 702 703 // Find all other incoming blocks from which incoming values of all PHIs in 704 // DestBB are the same as the ones from BB. 705 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 706 ++PI) { 707 BasicBlock *DestBBPred = *PI; 708 if (DestBBPred == BB) 709 continue; 710 711 bool HasAllSameValue = true; 712 BasicBlock::const_iterator DestBBI = DestBB->begin(); 713 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 714 if (DestPN->getIncomingValueForBlock(BB) != 715 DestPN->getIncomingValueForBlock(DestBBPred)) { 716 HasAllSameValue = false; 717 break; 718 } 719 } 720 if (HasAllSameValue) 721 SameIncomingValueBBs.insert(DestBBPred); 722 } 723 724 // See if all BB's incoming values are same as the value from Pred. In this 725 // case, no reason to skip merging because COPYs are expected to be place in 726 // Pred already. 727 if (SameIncomingValueBBs.count(Pred)) 728 return true; 729 730 if (!BFI) { 731 Function &F = *BB->getParent(); 732 LoopInfo LI{DominatorTree(F)}; 733 BPI.reset(new BranchProbabilityInfo(F, LI)); 734 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 735 } 736 737 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 738 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 739 740 for (auto SameValueBB : SameIncomingValueBBs) 741 if (SameValueBB->getUniquePredecessor() == Pred && 742 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 743 BBFreq += BFI->getBlockFreq(SameValueBB); 744 745 return PredFreq.getFrequency() <= 746 BBFreq.getFrequency() * FreqRatioToSkipMerge; 747 } 748 749 /// Return true if we can merge BB into DestBB if there is a single 750 /// unconditional branch between them, and BB contains no other non-phi 751 /// instructions. 752 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 753 const BasicBlock *DestBB) const { 754 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 755 // the successor. If there are more complex condition (e.g. preheaders), 756 // don't mess around with them. 757 BasicBlock::const_iterator BBI = BB->begin(); 758 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 759 for (const User *U : PN->users()) { 760 const Instruction *UI = cast<Instruction>(U); 761 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 762 return false; 763 // If User is inside DestBB block and it is a PHINode then check 764 // incoming value. If incoming value is not from BB then this is 765 // a complex condition (e.g. preheaders) we want to avoid here. 766 if (UI->getParent() == DestBB) { 767 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 768 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 769 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 770 if (Insn && Insn->getParent() == BB && 771 Insn->getParent() != UPN->getIncomingBlock(I)) 772 return false; 773 } 774 } 775 } 776 } 777 778 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 779 // and DestBB may have conflicting incoming values for the block. If so, we 780 // can't merge the block. 781 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 782 if (!DestBBPN) return true; // no conflict. 783 784 // Collect the preds of BB. 785 SmallPtrSet<const BasicBlock*, 16> BBPreds; 786 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 787 // It is faster to get preds from a PHI than with pred_iterator. 788 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 789 BBPreds.insert(BBPN->getIncomingBlock(i)); 790 } else { 791 BBPreds.insert(pred_begin(BB), pred_end(BB)); 792 } 793 794 // Walk the preds of DestBB. 795 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 796 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 797 if (BBPreds.count(Pred)) { // Common predecessor? 798 BBI = DestBB->begin(); 799 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 800 const Value *V1 = PN->getIncomingValueForBlock(Pred); 801 const Value *V2 = PN->getIncomingValueForBlock(BB); 802 803 // If V2 is a phi node in BB, look up what the mapped value will be. 804 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 805 if (V2PN->getParent() == BB) 806 V2 = V2PN->getIncomingValueForBlock(Pred); 807 808 // If there is a conflict, bail out. 809 if (V1 != V2) return false; 810 } 811 } 812 } 813 814 return true; 815 } 816 817 818 /// Eliminate a basic block that has only phi's and an unconditional branch in 819 /// it. 820 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 821 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 822 BasicBlock *DestBB = BI->getSuccessor(0); 823 824 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 825 826 // If the destination block has a single pred, then this is a trivial edge, 827 // just collapse it. 828 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 829 if (SinglePred != DestBB) { 830 // Remember if SinglePred was the entry block of the function. If so, we 831 // will need to move BB back to the entry position. 832 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 833 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 834 835 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 836 BB->moveBefore(&BB->getParent()->getEntryBlock()); 837 838 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 839 return; 840 } 841 } 842 843 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 844 // to handle the new incoming edges it is about to have. 845 PHINode *PN; 846 for (BasicBlock::iterator BBI = DestBB->begin(); 847 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 848 // Remove the incoming value for BB, and remember it. 849 Value *InVal = PN->removeIncomingValue(BB, false); 850 851 // Two options: either the InVal is a phi node defined in BB or it is some 852 // value that dominates BB. 853 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 854 if (InValPhi && InValPhi->getParent() == BB) { 855 // Add all of the input values of the input PHI as inputs of this phi. 856 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 857 PN->addIncoming(InValPhi->getIncomingValue(i), 858 InValPhi->getIncomingBlock(i)); 859 } else { 860 // Otherwise, add one instance of the dominating value for each edge that 861 // we will be adding. 862 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 863 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 864 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 865 } else { 866 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 867 PN->addIncoming(InVal, *PI); 868 } 869 } 870 } 871 872 // The PHIs are now updated, change everything that refers to BB to use 873 // DestBB and remove BB. 874 BB->replaceAllUsesWith(DestBB); 875 BB->eraseFromParent(); 876 ++NumBlocksElim; 877 878 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 879 } 880 881 // Computes a map of base pointer relocation instructions to corresponding 882 // derived pointer relocation instructions given a vector of all relocate calls 883 static void computeBaseDerivedRelocateMap( 884 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 885 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 886 &RelocateInstMap) { 887 // Collect information in two maps: one primarily for locating the base object 888 // while filling the second map; the second map is the final structure holding 889 // a mapping between Base and corresponding Derived relocate calls 890 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 891 for (auto *ThisRelocate : AllRelocateCalls) { 892 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 893 ThisRelocate->getDerivedPtrIndex()); 894 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 895 } 896 for (auto &Item : RelocateIdxMap) { 897 std::pair<unsigned, unsigned> Key = Item.first; 898 if (Key.first == Key.second) 899 // Base relocation: nothing to insert 900 continue; 901 902 GCRelocateInst *I = Item.second; 903 auto BaseKey = std::make_pair(Key.first, Key.first); 904 905 // We're iterating over RelocateIdxMap so we cannot modify it. 906 auto MaybeBase = RelocateIdxMap.find(BaseKey); 907 if (MaybeBase == RelocateIdxMap.end()) 908 // TODO: We might want to insert a new base object relocate and gep off 909 // that, if there are enough derived object relocates. 910 continue; 911 912 RelocateInstMap[MaybeBase->second].push_back(I); 913 } 914 } 915 916 // Accepts a GEP and extracts the operands into a vector provided they're all 917 // small integer constants 918 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 919 SmallVectorImpl<Value *> &OffsetV) { 920 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 921 // Only accept small constant integer operands 922 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 923 if (!Op || Op->getZExtValue() > 20) 924 return false; 925 } 926 927 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 928 OffsetV.push_back(GEP->getOperand(i)); 929 return true; 930 } 931 932 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 933 // replace, computes a replacement, and affects it. 934 static bool 935 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 936 const SmallVectorImpl<GCRelocateInst *> &Targets) { 937 bool MadeChange = false; 938 for (GCRelocateInst *ToReplace : Targets) { 939 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 940 "Not relocating a derived object of the original base object"); 941 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 942 // A duplicate relocate call. TODO: coalesce duplicates. 943 continue; 944 } 945 946 if (RelocatedBase->getParent() != ToReplace->getParent()) { 947 // Base and derived relocates are in different basic blocks. 948 // In this case transform is only valid when base dominates derived 949 // relocate. However it would be too expensive to check dominance 950 // for each such relocate, so we skip the whole transformation. 951 continue; 952 } 953 954 Value *Base = ToReplace->getBasePtr(); 955 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 956 if (!Derived || Derived->getPointerOperand() != Base) 957 continue; 958 959 SmallVector<Value *, 2> OffsetV; 960 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 961 continue; 962 963 // Create a Builder and replace the target callsite with a gep 964 assert(RelocatedBase->getNextNode() && 965 "Should always have one since it's not a terminator"); 966 967 // Insert after RelocatedBase 968 IRBuilder<> Builder(RelocatedBase->getNextNode()); 969 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 970 971 // If gc_relocate does not match the actual type, cast it to the right type. 972 // In theory, there must be a bitcast after gc_relocate if the type does not 973 // match, and we should reuse it to get the derived pointer. But it could be 974 // cases like this: 975 // bb1: 976 // ... 977 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 978 // br label %merge 979 // 980 // bb2: 981 // ... 982 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 983 // br label %merge 984 // 985 // merge: 986 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 987 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 988 // 989 // In this case, we can not find the bitcast any more. So we insert a new bitcast 990 // no matter there is already one or not. In this way, we can handle all cases, and 991 // the extra bitcast should be optimized away in later passes. 992 Value *ActualRelocatedBase = RelocatedBase; 993 if (RelocatedBase->getType() != Base->getType()) { 994 ActualRelocatedBase = 995 Builder.CreateBitCast(RelocatedBase, Base->getType()); 996 } 997 Value *Replacement = Builder.CreateGEP( 998 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 999 Replacement->takeName(ToReplace); 1000 // If the newly generated derived pointer's type does not match the original derived 1001 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1002 Value *ActualReplacement = Replacement; 1003 if (Replacement->getType() != ToReplace->getType()) { 1004 ActualReplacement = 1005 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1006 } 1007 ToReplace->replaceAllUsesWith(ActualReplacement); 1008 ToReplace->eraseFromParent(); 1009 1010 MadeChange = true; 1011 } 1012 return MadeChange; 1013 } 1014 1015 // Turns this: 1016 // 1017 // %base = ... 1018 // %ptr = gep %base + 15 1019 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1020 // %base' = relocate(%tok, i32 4, i32 4) 1021 // %ptr' = relocate(%tok, i32 4, i32 5) 1022 // %val = load %ptr' 1023 // 1024 // into this: 1025 // 1026 // %base = ... 1027 // %ptr = gep %base + 15 1028 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1029 // %base' = gc.relocate(%tok, i32 4, i32 4) 1030 // %ptr' = gep %base' + 15 1031 // %val = load %ptr' 1032 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1033 bool MadeChange = false; 1034 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1035 1036 for (auto *U : I.users()) 1037 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1038 // Collect all the relocate calls associated with a statepoint 1039 AllRelocateCalls.push_back(Relocate); 1040 1041 // We need atleast one base pointer relocation + one derived pointer 1042 // relocation to mangle 1043 if (AllRelocateCalls.size() < 2) 1044 return false; 1045 1046 // RelocateInstMap is a mapping from the base relocate instruction to the 1047 // corresponding derived relocate instructions 1048 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1049 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1050 if (RelocateInstMap.empty()) 1051 return false; 1052 1053 for (auto &Item : RelocateInstMap) 1054 // Item.first is the RelocatedBase to offset against 1055 // Item.second is the vector of Targets to replace 1056 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1057 return MadeChange; 1058 } 1059 1060 /// SinkCast - Sink the specified cast instruction into its user blocks 1061 static bool SinkCast(CastInst *CI) { 1062 BasicBlock *DefBB = CI->getParent(); 1063 1064 /// InsertedCasts - Only insert a cast in each block once. 1065 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1066 1067 bool MadeChange = false; 1068 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1069 UI != E; ) { 1070 Use &TheUse = UI.getUse(); 1071 Instruction *User = cast<Instruction>(*UI); 1072 1073 // Figure out which BB this cast is used in. For PHI's this is the 1074 // appropriate predecessor block. 1075 BasicBlock *UserBB = User->getParent(); 1076 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1077 UserBB = PN->getIncomingBlock(TheUse); 1078 } 1079 1080 // Preincrement use iterator so we don't invalidate it. 1081 ++UI; 1082 1083 // The first insertion point of a block containing an EH pad is after the 1084 // pad. If the pad is the user, we cannot sink the cast past the pad. 1085 if (User->isEHPad()) 1086 continue; 1087 1088 // If the block selected to receive the cast is an EH pad that does not 1089 // allow non-PHI instructions before the terminator, we can't sink the 1090 // cast. 1091 if (UserBB->getTerminator()->isEHPad()) 1092 continue; 1093 1094 // If this user is in the same block as the cast, don't change the cast. 1095 if (UserBB == DefBB) continue; 1096 1097 // If we have already inserted a cast into this block, use it. 1098 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1099 1100 if (!InsertedCast) { 1101 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1102 assert(InsertPt != UserBB->end()); 1103 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1104 CI->getType(), "", &*InsertPt); 1105 } 1106 1107 // Replace a use of the cast with a use of the new cast. 1108 TheUse = InsertedCast; 1109 MadeChange = true; 1110 ++NumCastUses; 1111 } 1112 1113 // If we removed all uses, nuke the cast. 1114 if (CI->use_empty()) { 1115 CI->eraseFromParent(); 1116 MadeChange = true; 1117 } 1118 1119 return MadeChange; 1120 } 1121 1122 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1123 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1124 /// reduce the number of virtual registers that must be created and coalesced. 1125 /// 1126 /// Return true if any changes are made. 1127 /// 1128 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1129 const DataLayout &DL) { 1130 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1131 // than sinking only nop casts, but is helpful on some platforms. 1132 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1133 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1134 ASC->getDestAddressSpace())) 1135 return false; 1136 } 1137 1138 // If this is a noop copy, 1139 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1140 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1141 1142 // This is an fp<->int conversion? 1143 if (SrcVT.isInteger() != DstVT.isInteger()) 1144 return false; 1145 1146 // If this is an extension, it will be a zero or sign extension, which 1147 // isn't a noop. 1148 if (SrcVT.bitsLT(DstVT)) return false; 1149 1150 // If these values will be promoted, find out what they will be promoted 1151 // to. This helps us consider truncates on PPC as noop copies when they 1152 // are. 1153 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1154 TargetLowering::TypePromoteInteger) 1155 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1156 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1157 TargetLowering::TypePromoteInteger) 1158 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1159 1160 // If, after promotion, these are the same types, this is a noop copy. 1161 if (SrcVT != DstVT) 1162 return false; 1163 1164 return SinkCast(CI); 1165 } 1166 1167 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1168 /// possible. 1169 /// 1170 /// Return true if any changes were made. 1171 static bool CombineUAddWithOverflow(CmpInst *CI) { 1172 Value *A, *B; 1173 Instruction *AddI; 1174 if (!match(CI, 1175 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1176 return false; 1177 1178 Type *Ty = AddI->getType(); 1179 if (!isa<IntegerType>(Ty)) 1180 return false; 1181 1182 // We don't want to move around uses of condition values this late, so we we 1183 // check if it is legal to create the call to the intrinsic in the basic 1184 // block containing the icmp: 1185 1186 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1187 return false; 1188 1189 #ifndef NDEBUG 1190 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1191 // for now: 1192 if (AddI->hasOneUse()) 1193 assert(*AddI->user_begin() == CI && "expected!"); 1194 #endif 1195 1196 Module *M = CI->getModule(); 1197 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1198 1199 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1200 1201 auto *UAddWithOverflow = 1202 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1203 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1204 auto *Overflow = 1205 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1206 1207 CI->replaceAllUsesWith(Overflow); 1208 AddI->replaceAllUsesWith(UAdd); 1209 CI->eraseFromParent(); 1210 AddI->eraseFromParent(); 1211 return true; 1212 } 1213 1214 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1215 /// registers that must be created and coalesced. This is a clear win except on 1216 /// targets with multiple condition code registers (PowerPC), where it might 1217 /// lose; some adjustment may be wanted there. 1218 /// 1219 /// Return true if any changes are made. 1220 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1221 BasicBlock *DefBB = CI->getParent(); 1222 1223 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1224 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1225 return false; 1226 1227 // Only insert a cmp in each block once. 1228 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1229 1230 bool MadeChange = false; 1231 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1232 UI != E; ) { 1233 Use &TheUse = UI.getUse(); 1234 Instruction *User = cast<Instruction>(*UI); 1235 1236 // Preincrement use iterator so we don't invalidate it. 1237 ++UI; 1238 1239 // Don't bother for PHI nodes. 1240 if (isa<PHINode>(User)) 1241 continue; 1242 1243 // Figure out which BB this cmp is used in. 1244 BasicBlock *UserBB = User->getParent(); 1245 1246 // If this user is in the same block as the cmp, don't change the cmp. 1247 if (UserBB == DefBB) continue; 1248 1249 // If we have already inserted a cmp into this block, use it. 1250 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1251 1252 if (!InsertedCmp) { 1253 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1254 assert(InsertPt != UserBB->end()); 1255 InsertedCmp = 1256 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1257 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1258 // Propagate the debug info. 1259 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1260 } 1261 1262 // Replace a use of the cmp with a use of the new cmp. 1263 TheUse = InsertedCmp; 1264 MadeChange = true; 1265 ++NumCmpUses; 1266 } 1267 1268 // If we removed all uses, nuke the cmp. 1269 if (CI->use_empty()) { 1270 CI->eraseFromParent(); 1271 MadeChange = true; 1272 } 1273 1274 return MadeChange; 1275 } 1276 1277 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1278 if (SinkCmpExpression(CI, TLI)) 1279 return true; 1280 1281 if (CombineUAddWithOverflow(CI)) 1282 return true; 1283 1284 return false; 1285 } 1286 1287 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1288 /// used in a compare to allow isel to generate better code for targets where 1289 /// this operation can be combined. 1290 /// 1291 /// Return true if any changes are made. 1292 static bool sinkAndCmp0Expression(Instruction *AndI, 1293 const TargetLowering &TLI, 1294 SetOfInstrs &InsertedInsts) { 1295 // Double-check that we're not trying to optimize an instruction that was 1296 // already optimized by some other part of this pass. 1297 assert(!InsertedInsts.count(AndI) && 1298 "Attempting to optimize already optimized and instruction"); 1299 (void) InsertedInsts; 1300 1301 // Nothing to do for single use in same basic block. 1302 if (AndI->hasOneUse() && 1303 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1304 return false; 1305 1306 // Try to avoid cases where sinking/duplicating is likely to increase register 1307 // pressure. 1308 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1309 !isa<ConstantInt>(AndI->getOperand(1)) && 1310 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1311 return false; 1312 1313 for (auto *U : AndI->users()) { 1314 Instruction *User = cast<Instruction>(U); 1315 1316 // Only sink for and mask feeding icmp with 0. 1317 if (!isa<ICmpInst>(User)) 1318 return false; 1319 1320 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1321 if (!CmpC || !CmpC->isZero()) 1322 return false; 1323 } 1324 1325 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1326 return false; 1327 1328 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1329 DEBUG(AndI->getParent()->dump()); 1330 1331 // Push the 'and' into the same block as the icmp 0. There should only be 1332 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1333 // others, so we don't need to keep track of which BBs we insert into. 1334 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1335 UI != E; ) { 1336 Use &TheUse = UI.getUse(); 1337 Instruction *User = cast<Instruction>(*UI); 1338 1339 // Preincrement use iterator so we don't invalidate it. 1340 ++UI; 1341 1342 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1343 1344 // Keep the 'and' in the same place if the use is already in the same block. 1345 Instruction *InsertPt = 1346 User->getParent() == AndI->getParent() ? AndI : User; 1347 Instruction *InsertedAnd = 1348 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1349 AndI->getOperand(1), "", InsertPt); 1350 // Propagate the debug info. 1351 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1352 1353 // Replace a use of the 'and' with a use of the new 'and'. 1354 TheUse = InsertedAnd; 1355 ++NumAndUses; 1356 DEBUG(User->getParent()->dump()); 1357 } 1358 1359 // We removed all uses, nuke the and. 1360 AndI->eraseFromParent(); 1361 return true; 1362 } 1363 1364 /// Check if the candidates could be combined with a shift instruction, which 1365 /// includes: 1366 /// 1. Truncate instruction 1367 /// 2. And instruction and the imm is a mask of the low bits: 1368 /// imm & (imm+1) == 0 1369 static bool isExtractBitsCandidateUse(Instruction *User) { 1370 if (!isa<TruncInst>(User)) { 1371 if (User->getOpcode() != Instruction::And || 1372 !isa<ConstantInt>(User->getOperand(1))) 1373 return false; 1374 1375 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1376 1377 if ((Cimm & (Cimm + 1)).getBoolValue()) 1378 return false; 1379 } 1380 return true; 1381 } 1382 1383 /// Sink both shift and truncate instruction to the use of truncate's BB. 1384 static bool 1385 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1386 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1387 const TargetLowering &TLI, const DataLayout &DL) { 1388 BasicBlock *UserBB = User->getParent(); 1389 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1390 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1391 bool MadeChange = false; 1392 1393 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1394 TruncE = TruncI->user_end(); 1395 TruncUI != TruncE;) { 1396 1397 Use &TruncTheUse = TruncUI.getUse(); 1398 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1399 // Preincrement use iterator so we don't invalidate it. 1400 1401 ++TruncUI; 1402 1403 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1404 if (!ISDOpcode) 1405 continue; 1406 1407 // If the use is actually a legal node, there will not be an 1408 // implicit truncate. 1409 // FIXME: always querying the result type is just an 1410 // approximation; some nodes' legality is determined by the 1411 // operand or other means. There's no good way to find out though. 1412 if (TLI.isOperationLegalOrCustom( 1413 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1414 continue; 1415 1416 // Don't bother for PHI nodes. 1417 if (isa<PHINode>(TruncUser)) 1418 continue; 1419 1420 BasicBlock *TruncUserBB = TruncUser->getParent(); 1421 1422 if (UserBB == TruncUserBB) 1423 continue; 1424 1425 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1426 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1427 1428 if (!InsertedShift && !InsertedTrunc) { 1429 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1430 assert(InsertPt != TruncUserBB->end()); 1431 // Sink the shift 1432 if (ShiftI->getOpcode() == Instruction::AShr) 1433 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1434 "", &*InsertPt); 1435 else 1436 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1437 "", &*InsertPt); 1438 1439 // Sink the trunc 1440 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1441 TruncInsertPt++; 1442 assert(TruncInsertPt != TruncUserBB->end()); 1443 1444 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1445 TruncI->getType(), "", &*TruncInsertPt); 1446 1447 MadeChange = true; 1448 1449 TruncTheUse = InsertedTrunc; 1450 } 1451 } 1452 return MadeChange; 1453 } 1454 1455 /// Sink the shift *right* instruction into user blocks if the uses could 1456 /// potentially be combined with this shift instruction and generate BitExtract 1457 /// instruction. It will only be applied if the architecture supports BitExtract 1458 /// instruction. Here is an example: 1459 /// BB1: 1460 /// %x.extract.shift = lshr i64 %arg1, 32 1461 /// BB2: 1462 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1463 /// ==> 1464 /// 1465 /// BB2: 1466 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1467 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1468 /// 1469 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1470 /// instruction. 1471 /// Return true if any changes are made. 1472 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1473 const TargetLowering &TLI, 1474 const DataLayout &DL) { 1475 BasicBlock *DefBB = ShiftI->getParent(); 1476 1477 /// Only insert instructions in each block once. 1478 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1479 1480 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1481 1482 bool MadeChange = false; 1483 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1484 UI != E;) { 1485 Use &TheUse = UI.getUse(); 1486 Instruction *User = cast<Instruction>(*UI); 1487 // Preincrement use iterator so we don't invalidate it. 1488 ++UI; 1489 1490 // Don't bother for PHI nodes. 1491 if (isa<PHINode>(User)) 1492 continue; 1493 1494 if (!isExtractBitsCandidateUse(User)) 1495 continue; 1496 1497 BasicBlock *UserBB = User->getParent(); 1498 1499 if (UserBB == DefBB) { 1500 // If the shift and truncate instruction are in the same BB. The use of 1501 // the truncate(TruncUse) may still introduce another truncate if not 1502 // legal. In this case, we would like to sink both shift and truncate 1503 // instruction to the BB of TruncUse. 1504 // for example: 1505 // BB1: 1506 // i64 shift.result = lshr i64 opnd, imm 1507 // trunc.result = trunc shift.result to i16 1508 // 1509 // BB2: 1510 // ----> We will have an implicit truncate here if the architecture does 1511 // not have i16 compare. 1512 // cmp i16 trunc.result, opnd2 1513 // 1514 if (isa<TruncInst>(User) && shiftIsLegal 1515 // If the type of the truncate is legal, no trucate will be 1516 // introduced in other basic blocks. 1517 && 1518 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1519 MadeChange = 1520 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1521 1522 continue; 1523 } 1524 // If we have already inserted a shift into this block, use it. 1525 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1526 1527 if (!InsertedShift) { 1528 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1529 assert(InsertPt != UserBB->end()); 1530 1531 if (ShiftI->getOpcode() == Instruction::AShr) 1532 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1533 "", &*InsertPt); 1534 else 1535 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1536 "", &*InsertPt); 1537 1538 MadeChange = true; 1539 } 1540 1541 // Replace a use of the shift with a use of the new shift. 1542 TheUse = InsertedShift; 1543 } 1544 1545 // If we removed all uses, nuke the shift. 1546 if (ShiftI->use_empty()) 1547 ShiftI->eraseFromParent(); 1548 1549 return MadeChange; 1550 } 1551 1552 /// If counting leading or trailing zeros is an expensive operation and a zero 1553 /// input is defined, add a check for zero to avoid calling the intrinsic. 1554 /// 1555 /// We want to transform: 1556 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1557 /// 1558 /// into: 1559 /// entry: 1560 /// %cmpz = icmp eq i64 %A, 0 1561 /// br i1 %cmpz, label %cond.end, label %cond.false 1562 /// cond.false: 1563 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1564 /// br label %cond.end 1565 /// cond.end: 1566 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1567 /// 1568 /// If the transform is performed, return true and set ModifiedDT to true. 1569 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1570 const TargetLowering *TLI, 1571 const DataLayout *DL, 1572 bool &ModifiedDT) { 1573 if (!TLI || !DL) 1574 return false; 1575 1576 // If a zero input is undefined, it doesn't make sense to despeculate that. 1577 if (match(CountZeros->getOperand(1), m_One())) 1578 return false; 1579 1580 // If it's cheap to speculate, there's nothing to do. 1581 auto IntrinsicID = CountZeros->getIntrinsicID(); 1582 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1583 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1584 return false; 1585 1586 // Only handle legal scalar cases. Anything else requires too much work. 1587 Type *Ty = CountZeros->getType(); 1588 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1589 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1590 return false; 1591 1592 // The intrinsic will be sunk behind a compare against zero and branch. 1593 BasicBlock *StartBlock = CountZeros->getParent(); 1594 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1595 1596 // Create another block after the count zero intrinsic. A PHI will be added 1597 // in this block to select the result of the intrinsic or the bit-width 1598 // constant if the input to the intrinsic is zero. 1599 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1600 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1601 1602 // Set up a builder to create a compare, conditional branch, and PHI. 1603 IRBuilder<> Builder(CountZeros->getContext()); 1604 Builder.SetInsertPoint(StartBlock->getTerminator()); 1605 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1606 1607 // Replace the unconditional branch that was created by the first split with 1608 // a compare against zero and a conditional branch. 1609 Value *Zero = Constant::getNullValue(Ty); 1610 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1611 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1612 StartBlock->getTerminator()->eraseFromParent(); 1613 1614 // Create a PHI in the end block to select either the output of the intrinsic 1615 // or the bit width of the operand. 1616 Builder.SetInsertPoint(&EndBlock->front()); 1617 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1618 CountZeros->replaceAllUsesWith(PN); 1619 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1620 PN->addIncoming(BitWidth, StartBlock); 1621 PN->addIncoming(CountZeros, CallBlock); 1622 1623 // We are explicitly handling the zero case, so we can set the intrinsic's 1624 // undefined zero argument to 'true'. This will also prevent reprocessing the 1625 // intrinsic; we only despeculate when a zero input is defined. 1626 CountZeros->setArgOperand(1, Builder.getTrue()); 1627 ModifiedDT = true; 1628 return true; 1629 } 1630 1631 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1632 BasicBlock *BB = CI->getParent(); 1633 1634 // Lower inline assembly if we can. 1635 // If we found an inline asm expession, and if the target knows how to 1636 // lower it to normal LLVM code, do so now. 1637 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1638 if (TLI->ExpandInlineAsm(CI)) { 1639 // Avoid invalidating the iterator. 1640 CurInstIterator = BB->begin(); 1641 // Avoid processing instructions out of order, which could cause 1642 // reuse before a value is defined. 1643 SunkAddrs.clear(); 1644 return true; 1645 } 1646 // Sink address computing for memory operands into the block. 1647 if (optimizeInlineAsmInst(CI)) 1648 return true; 1649 } 1650 1651 // Align the pointer arguments to this call if the target thinks it's a good 1652 // idea 1653 unsigned MinSize, PrefAlign; 1654 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1655 for (auto &Arg : CI->arg_operands()) { 1656 // We want to align both objects whose address is used directly and 1657 // objects whose address is used in casts and GEPs, though it only makes 1658 // sense for GEPs if the offset is a multiple of the desired alignment and 1659 // if size - offset meets the size threshold. 1660 if (!Arg->getType()->isPointerTy()) 1661 continue; 1662 APInt Offset(DL->getPointerSizeInBits( 1663 cast<PointerType>(Arg->getType())->getAddressSpace()), 1664 0); 1665 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1666 uint64_t Offset2 = Offset.getLimitedValue(); 1667 if ((Offset2 & (PrefAlign-1)) != 0) 1668 continue; 1669 AllocaInst *AI; 1670 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1671 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1672 AI->setAlignment(PrefAlign); 1673 // Global variables can only be aligned if they are defined in this 1674 // object (i.e. they are uniquely initialized in this object), and 1675 // over-aligning global variables that have an explicit section is 1676 // forbidden. 1677 GlobalVariable *GV; 1678 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1679 GV->getPointerAlignment(*DL) < PrefAlign && 1680 DL->getTypeAllocSize(GV->getValueType()) >= 1681 MinSize + Offset2) 1682 GV->setAlignment(PrefAlign); 1683 } 1684 // If this is a memcpy (or similar) then we may be able to improve the 1685 // alignment 1686 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1687 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1688 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1689 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1690 if (Align > MI->getAlignment()) 1691 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1692 } 1693 } 1694 1695 // If we have a cold call site, try to sink addressing computation into the 1696 // cold block. This interacts with our handling for loads and stores to 1697 // ensure that we can fold all uses of a potential addressing computation 1698 // into their uses. TODO: generalize this to work over profiling data 1699 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1700 for (auto &Arg : CI->arg_operands()) { 1701 if (!Arg->getType()->isPointerTy()) 1702 continue; 1703 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1704 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1705 } 1706 1707 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1708 if (II) { 1709 switch (II->getIntrinsicID()) { 1710 default: break; 1711 case Intrinsic::objectsize: { 1712 // Lower all uses of llvm.objectsize.* 1713 ConstantInt *RetVal = 1714 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1715 // Substituting this can cause recursive simplifications, which can 1716 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1717 // this 1718 // happens. 1719 Value *CurValue = &*CurInstIterator; 1720 WeakTrackingVH IterHandle(CurValue); 1721 1722 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1723 1724 // If the iterator instruction was recursively deleted, start over at the 1725 // start of the block. 1726 if (IterHandle != CurValue) { 1727 CurInstIterator = BB->begin(); 1728 SunkAddrs.clear(); 1729 } 1730 return true; 1731 } 1732 case Intrinsic::aarch64_stlxr: 1733 case Intrinsic::aarch64_stxr: { 1734 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1735 if (!ExtVal || !ExtVal->hasOneUse() || 1736 ExtVal->getParent() == CI->getParent()) 1737 return false; 1738 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1739 ExtVal->moveBefore(CI); 1740 // Mark this instruction as "inserted by CGP", so that other 1741 // optimizations don't touch it. 1742 InsertedInsts.insert(ExtVal); 1743 return true; 1744 } 1745 case Intrinsic::invariant_group_barrier: 1746 II->replaceAllUsesWith(II->getArgOperand(0)); 1747 II->eraseFromParent(); 1748 return true; 1749 1750 case Intrinsic::cttz: 1751 case Intrinsic::ctlz: 1752 // If counting zeros is expensive, try to avoid it. 1753 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1754 } 1755 1756 if (TLI) { 1757 SmallVector<Value*, 2> PtrOps; 1758 Type *AccessTy; 1759 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1760 while (!PtrOps.empty()) { 1761 Value *PtrVal = PtrOps.pop_back_val(); 1762 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1763 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1764 return true; 1765 } 1766 } 1767 } 1768 1769 // From here on out we're working with named functions. 1770 if (!CI->getCalledFunction()) return false; 1771 1772 // Lower all default uses of _chk calls. This is very similar 1773 // to what InstCombineCalls does, but here we are only lowering calls 1774 // to fortified library functions (e.g. __memcpy_chk) that have the default 1775 // "don't know" as the objectsize. Anything else should be left alone. 1776 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1777 if (Value *V = Simplifier.optimizeCall(CI)) { 1778 CI->replaceAllUsesWith(V); 1779 CI->eraseFromParent(); 1780 return true; 1781 } 1782 return false; 1783 } 1784 1785 /// Look for opportunities to duplicate return instructions to the predecessor 1786 /// to enable tail call optimizations. The case it is currently looking for is: 1787 /// @code 1788 /// bb0: 1789 /// %tmp0 = tail call i32 @f0() 1790 /// br label %return 1791 /// bb1: 1792 /// %tmp1 = tail call i32 @f1() 1793 /// br label %return 1794 /// bb2: 1795 /// %tmp2 = tail call i32 @f2() 1796 /// br label %return 1797 /// return: 1798 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1799 /// ret i32 %retval 1800 /// @endcode 1801 /// 1802 /// => 1803 /// 1804 /// @code 1805 /// bb0: 1806 /// %tmp0 = tail call i32 @f0() 1807 /// ret i32 %tmp0 1808 /// bb1: 1809 /// %tmp1 = tail call i32 @f1() 1810 /// ret i32 %tmp1 1811 /// bb2: 1812 /// %tmp2 = tail call i32 @f2() 1813 /// ret i32 %tmp2 1814 /// @endcode 1815 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1816 if (!TLI) 1817 return false; 1818 1819 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1820 if (!RetI) 1821 return false; 1822 1823 PHINode *PN = nullptr; 1824 BitCastInst *BCI = nullptr; 1825 Value *V = RetI->getReturnValue(); 1826 if (V) { 1827 BCI = dyn_cast<BitCastInst>(V); 1828 if (BCI) 1829 V = BCI->getOperand(0); 1830 1831 PN = dyn_cast<PHINode>(V); 1832 if (!PN) 1833 return false; 1834 } 1835 1836 if (PN && PN->getParent() != BB) 1837 return false; 1838 1839 // Make sure there are no instructions between the PHI and return, or that the 1840 // return is the first instruction in the block. 1841 if (PN) { 1842 BasicBlock::iterator BI = BB->begin(); 1843 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1844 if (&*BI == BCI) 1845 // Also skip over the bitcast. 1846 ++BI; 1847 if (&*BI != RetI) 1848 return false; 1849 } else { 1850 BasicBlock::iterator BI = BB->begin(); 1851 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1852 if (&*BI != RetI) 1853 return false; 1854 } 1855 1856 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1857 /// call. 1858 const Function *F = BB->getParent(); 1859 SmallVector<CallInst*, 4> TailCalls; 1860 if (PN) { 1861 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1862 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1863 // Make sure the phi value is indeed produced by the tail call. 1864 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1865 TLI->mayBeEmittedAsTailCall(CI) && 1866 attributesPermitTailCall(F, CI, RetI, *TLI)) 1867 TailCalls.push_back(CI); 1868 } 1869 } else { 1870 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1871 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1872 if (!VisitedBBs.insert(*PI).second) 1873 continue; 1874 1875 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1876 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1877 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1878 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1879 if (RI == RE) 1880 continue; 1881 1882 CallInst *CI = dyn_cast<CallInst>(&*RI); 1883 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1884 attributesPermitTailCall(F, CI, RetI, *TLI)) 1885 TailCalls.push_back(CI); 1886 } 1887 } 1888 1889 bool Changed = false; 1890 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1891 CallInst *CI = TailCalls[i]; 1892 CallSite CS(CI); 1893 1894 // Conservatively require the attributes of the call to match those of the 1895 // return. Ignore noalias because it doesn't affect the call sequence. 1896 AttributeList CalleeAttrs = CS.getAttributes(); 1897 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1898 .removeAttribute(Attribute::NoAlias) != 1899 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1900 .removeAttribute(Attribute::NoAlias)) 1901 continue; 1902 1903 // Make sure the call instruction is followed by an unconditional branch to 1904 // the return block. 1905 BasicBlock *CallBB = CI->getParent(); 1906 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1907 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1908 continue; 1909 1910 // Duplicate the return into CallBB. 1911 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1912 ModifiedDT = Changed = true; 1913 ++NumRetsDup; 1914 } 1915 1916 // If we eliminated all predecessors of the block, delete the block now. 1917 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1918 BB->eraseFromParent(); 1919 1920 return Changed; 1921 } 1922 1923 //===----------------------------------------------------------------------===// 1924 // Memory Optimization 1925 //===----------------------------------------------------------------------===// 1926 1927 namespace { 1928 1929 /// This is an extended version of TargetLowering::AddrMode 1930 /// which holds actual Value*'s for register values. 1931 struct ExtAddrMode : public TargetLowering::AddrMode { 1932 Value *BaseReg; 1933 Value *ScaledReg; 1934 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1935 void print(raw_ostream &OS) const; 1936 void dump() const; 1937 1938 bool operator==(const ExtAddrMode& O) const { 1939 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1940 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1941 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1942 } 1943 }; 1944 1945 #ifndef NDEBUG 1946 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1947 AM.print(OS); 1948 return OS; 1949 } 1950 #endif 1951 1952 void ExtAddrMode::print(raw_ostream &OS) const { 1953 bool NeedPlus = false; 1954 OS << "["; 1955 if (BaseGV) { 1956 OS << (NeedPlus ? " + " : "") 1957 << "GV:"; 1958 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1959 NeedPlus = true; 1960 } 1961 1962 if (BaseOffs) { 1963 OS << (NeedPlus ? " + " : "") 1964 << BaseOffs; 1965 NeedPlus = true; 1966 } 1967 1968 if (BaseReg) { 1969 OS << (NeedPlus ? " + " : "") 1970 << "Base:"; 1971 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1972 NeedPlus = true; 1973 } 1974 if (Scale) { 1975 OS << (NeedPlus ? " + " : "") 1976 << Scale << "*"; 1977 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1978 } 1979 1980 OS << ']'; 1981 } 1982 1983 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1984 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 1985 print(dbgs()); 1986 dbgs() << '\n'; 1987 } 1988 #endif 1989 1990 /// \brief This class provides transaction based operation on the IR. 1991 /// Every change made through this class is recorded in the internal state and 1992 /// can be undone (rollback) until commit is called. 1993 class TypePromotionTransaction { 1994 1995 /// \brief This represents the common interface of the individual transaction. 1996 /// Each class implements the logic for doing one specific modification on 1997 /// the IR via the TypePromotionTransaction. 1998 class TypePromotionAction { 1999 protected: 2000 /// The Instruction modified. 2001 Instruction *Inst; 2002 2003 public: 2004 /// \brief Constructor of the action. 2005 /// The constructor performs the related action on the IR. 2006 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2007 2008 virtual ~TypePromotionAction() {} 2009 2010 /// \brief Undo the modification done by this action. 2011 /// When this method is called, the IR must be in the same state as it was 2012 /// before this action was applied. 2013 /// \pre Undoing the action works if and only if the IR is in the exact same 2014 /// state as it was directly after this action was applied. 2015 virtual void undo() = 0; 2016 2017 /// \brief Advocate every change made by this action. 2018 /// When the results on the IR of the action are to be kept, it is important 2019 /// to call this function, otherwise hidden information may be kept forever. 2020 virtual void commit() { 2021 // Nothing to be done, this action is not doing anything. 2022 } 2023 }; 2024 2025 /// \brief Utility to remember the position of an instruction. 2026 class InsertionHandler { 2027 /// Position of an instruction. 2028 /// Either an instruction: 2029 /// - Is the first in a basic block: BB is used. 2030 /// - Has a previous instructon: PrevInst is used. 2031 union { 2032 Instruction *PrevInst; 2033 BasicBlock *BB; 2034 } Point; 2035 /// Remember whether or not the instruction had a previous instruction. 2036 bool HasPrevInstruction; 2037 2038 public: 2039 /// \brief Record the position of \p Inst. 2040 InsertionHandler(Instruction *Inst) { 2041 BasicBlock::iterator It = Inst->getIterator(); 2042 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2043 if (HasPrevInstruction) 2044 Point.PrevInst = &*--It; 2045 else 2046 Point.BB = Inst->getParent(); 2047 } 2048 2049 /// \brief Insert \p Inst at the recorded position. 2050 void insert(Instruction *Inst) { 2051 if (HasPrevInstruction) { 2052 if (Inst->getParent()) 2053 Inst->removeFromParent(); 2054 Inst->insertAfter(Point.PrevInst); 2055 } else { 2056 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2057 if (Inst->getParent()) 2058 Inst->moveBefore(Position); 2059 else 2060 Inst->insertBefore(Position); 2061 } 2062 } 2063 }; 2064 2065 /// \brief Move an instruction before another. 2066 class InstructionMoveBefore : public TypePromotionAction { 2067 /// Original position of the instruction. 2068 InsertionHandler Position; 2069 2070 public: 2071 /// \brief Move \p Inst before \p Before. 2072 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2073 : TypePromotionAction(Inst), Position(Inst) { 2074 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2075 Inst->moveBefore(Before); 2076 } 2077 2078 /// \brief Move the instruction back to its original position. 2079 void undo() override { 2080 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2081 Position.insert(Inst); 2082 } 2083 }; 2084 2085 /// \brief Set the operand of an instruction with a new value. 2086 class OperandSetter : public TypePromotionAction { 2087 /// Original operand of the instruction. 2088 Value *Origin; 2089 /// Index of the modified instruction. 2090 unsigned Idx; 2091 2092 public: 2093 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2094 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2095 : TypePromotionAction(Inst), Idx(Idx) { 2096 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2097 << "for:" << *Inst << "\n" 2098 << "with:" << *NewVal << "\n"); 2099 Origin = Inst->getOperand(Idx); 2100 Inst->setOperand(Idx, NewVal); 2101 } 2102 2103 /// \brief Restore the original value of the instruction. 2104 void undo() override { 2105 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2106 << "for: " << *Inst << "\n" 2107 << "with: " << *Origin << "\n"); 2108 Inst->setOperand(Idx, Origin); 2109 } 2110 }; 2111 2112 /// \brief Hide the operands of an instruction. 2113 /// Do as if this instruction was not using any of its operands. 2114 class OperandsHider : public TypePromotionAction { 2115 /// The list of original operands. 2116 SmallVector<Value *, 4> OriginalValues; 2117 2118 public: 2119 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2120 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2121 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2122 unsigned NumOpnds = Inst->getNumOperands(); 2123 OriginalValues.reserve(NumOpnds); 2124 for (unsigned It = 0; It < NumOpnds; ++It) { 2125 // Save the current operand. 2126 Value *Val = Inst->getOperand(It); 2127 OriginalValues.push_back(Val); 2128 // Set a dummy one. 2129 // We could use OperandSetter here, but that would imply an overhead 2130 // that we are not willing to pay. 2131 Inst->setOperand(It, UndefValue::get(Val->getType())); 2132 } 2133 } 2134 2135 /// \brief Restore the original list of uses. 2136 void undo() override { 2137 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2138 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2139 Inst->setOperand(It, OriginalValues[It]); 2140 } 2141 }; 2142 2143 /// \brief Build a truncate instruction. 2144 class TruncBuilder : public TypePromotionAction { 2145 Value *Val; 2146 public: 2147 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2148 /// result. 2149 /// trunc Opnd to Ty. 2150 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2151 IRBuilder<> Builder(Opnd); 2152 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2153 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2154 } 2155 2156 /// \brief Get the built value. 2157 Value *getBuiltValue() { return Val; } 2158 2159 /// \brief Remove the built instruction. 2160 void undo() override { 2161 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2162 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2163 IVal->eraseFromParent(); 2164 } 2165 }; 2166 2167 /// \brief Build a sign extension instruction. 2168 class SExtBuilder : public TypePromotionAction { 2169 Value *Val; 2170 public: 2171 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2172 /// result. 2173 /// sext Opnd to Ty. 2174 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2175 : TypePromotionAction(InsertPt) { 2176 IRBuilder<> Builder(InsertPt); 2177 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2178 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2179 } 2180 2181 /// \brief Get the built value. 2182 Value *getBuiltValue() { return Val; } 2183 2184 /// \brief Remove the built instruction. 2185 void undo() override { 2186 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2187 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2188 IVal->eraseFromParent(); 2189 } 2190 }; 2191 2192 /// \brief Build a zero extension instruction. 2193 class ZExtBuilder : public TypePromotionAction { 2194 Value *Val; 2195 public: 2196 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2197 /// result. 2198 /// zext Opnd to Ty. 2199 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2200 : TypePromotionAction(InsertPt) { 2201 IRBuilder<> Builder(InsertPt); 2202 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2203 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2204 } 2205 2206 /// \brief Get the built value. 2207 Value *getBuiltValue() { return Val; } 2208 2209 /// \brief Remove the built instruction. 2210 void undo() override { 2211 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2212 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2213 IVal->eraseFromParent(); 2214 } 2215 }; 2216 2217 /// \brief Mutate an instruction to another type. 2218 class TypeMutator : public TypePromotionAction { 2219 /// Record the original type. 2220 Type *OrigTy; 2221 2222 public: 2223 /// \brief Mutate the type of \p Inst into \p NewTy. 2224 TypeMutator(Instruction *Inst, Type *NewTy) 2225 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2226 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2227 << "\n"); 2228 Inst->mutateType(NewTy); 2229 } 2230 2231 /// \brief Mutate the instruction back to its original type. 2232 void undo() override { 2233 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2234 << "\n"); 2235 Inst->mutateType(OrigTy); 2236 } 2237 }; 2238 2239 /// \brief Replace the uses of an instruction by another instruction. 2240 class UsesReplacer : public TypePromotionAction { 2241 /// Helper structure to keep track of the replaced uses. 2242 struct InstructionAndIdx { 2243 /// The instruction using the instruction. 2244 Instruction *Inst; 2245 /// The index where this instruction is used for Inst. 2246 unsigned Idx; 2247 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2248 : Inst(Inst), Idx(Idx) {} 2249 }; 2250 2251 /// Keep track of the original uses (pair Instruction, Index). 2252 SmallVector<InstructionAndIdx, 4> OriginalUses; 2253 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2254 2255 public: 2256 /// \brief Replace all the use of \p Inst by \p New. 2257 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2258 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2259 << "\n"); 2260 // Record the original uses. 2261 for (Use &U : Inst->uses()) { 2262 Instruction *UserI = cast<Instruction>(U.getUser()); 2263 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2264 } 2265 // Now, we can replace the uses. 2266 Inst->replaceAllUsesWith(New); 2267 } 2268 2269 /// \brief Reassign the original uses of Inst to Inst. 2270 void undo() override { 2271 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2272 for (use_iterator UseIt = OriginalUses.begin(), 2273 EndIt = OriginalUses.end(); 2274 UseIt != EndIt; ++UseIt) { 2275 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2276 } 2277 } 2278 }; 2279 2280 /// \brief Remove an instruction from the IR. 2281 class InstructionRemover : public TypePromotionAction { 2282 /// Original position of the instruction. 2283 InsertionHandler Inserter; 2284 /// Helper structure to hide all the link to the instruction. In other 2285 /// words, this helps to do as if the instruction was removed. 2286 OperandsHider Hider; 2287 /// Keep track of the uses replaced, if any. 2288 UsesReplacer *Replacer; 2289 /// Keep track of instructions removed. 2290 SetOfInstrs &RemovedInsts; 2291 2292 public: 2293 /// \brief Remove all reference of \p Inst and optinally replace all its 2294 /// uses with New. 2295 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2296 /// \pre If !Inst->use_empty(), then New != nullptr 2297 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2298 Value *New = nullptr) 2299 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2300 Replacer(nullptr), RemovedInsts(RemovedInsts) { 2301 if (New) 2302 Replacer = new UsesReplacer(Inst, New); 2303 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2304 RemovedInsts.insert(Inst); 2305 /// The instructions removed here will be freed after completing 2306 /// optimizeBlock() for all blocks as we need to keep track of the 2307 /// removed instructions during promotion. 2308 Inst->removeFromParent(); 2309 } 2310 2311 ~InstructionRemover() override { delete Replacer; } 2312 2313 /// \brief Resurrect the instruction and reassign it to the proper uses if 2314 /// new value was provided when build this action. 2315 void undo() override { 2316 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2317 Inserter.insert(Inst); 2318 if (Replacer) 2319 Replacer->undo(); 2320 Hider.undo(); 2321 RemovedInsts.erase(Inst); 2322 } 2323 }; 2324 2325 public: 2326 /// Restoration point. 2327 /// The restoration point is a pointer to an action instead of an iterator 2328 /// because the iterator may be invalidated but not the pointer. 2329 typedef const TypePromotionAction *ConstRestorationPt; 2330 2331 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2332 : RemovedInsts(RemovedInsts) {} 2333 2334 /// Advocate every changes made in that transaction. 2335 void commit(); 2336 /// Undo all the changes made after the given point. 2337 void rollback(ConstRestorationPt Point); 2338 /// Get the current restoration point. 2339 ConstRestorationPt getRestorationPoint() const; 2340 2341 /// \name API for IR modification with state keeping to support rollback. 2342 /// @{ 2343 /// Same as Instruction::setOperand. 2344 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2345 /// Same as Instruction::eraseFromParent. 2346 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2347 /// Same as Value::replaceAllUsesWith. 2348 void replaceAllUsesWith(Instruction *Inst, Value *New); 2349 /// Same as Value::mutateType. 2350 void mutateType(Instruction *Inst, Type *NewTy); 2351 /// Same as IRBuilder::createTrunc. 2352 Value *createTrunc(Instruction *Opnd, Type *Ty); 2353 /// Same as IRBuilder::createSExt. 2354 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2355 /// Same as IRBuilder::createZExt. 2356 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2357 /// Same as Instruction::moveBefore. 2358 void moveBefore(Instruction *Inst, Instruction *Before); 2359 /// @} 2360 2361 private: 2362 /// The ordered list of actions made so far. 2363 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2364 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2365 SetOfInstrs &RemovedInsts; 2366 }; 2367 2368 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2369 Value *NewVal) { 2370 Actions.push_back( 2371 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2372 } 2373 2374 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2375 Value *NewVal) { 2376 Actions.push_back( 2377 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, 2378 RemovedInsts, NewVal)); 2379 } 2380 2381 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2382 Value *New) { 2383 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2384 } 2385 2386 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2387 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2388 } 2389 2390 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2391 Type *Ty) { 2392 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2393 Value *Val = Ptr->getBuiltValue(); 2394 Actions.push_back(std::move(Ptr)); 2395 return Val; 2396 } 2397 2398 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2399 Value *Opnd, Type *Ty) { 2400 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2401 Value *Val = Ptr->getBuiltValue(); 2402 Actions.push_back(std::move(Ptr)); 2403 return Val; 2404 } 2405 2406 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2407 Value *Opnd, Type *Ty) { 2408 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2409 Value *Val = Ptr->getBuiltValue(); 2410 Actions.push_back(std::move(Ptr)); 2411 return Val; 2412 } 2413 2414 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2415 Instruction *Before) { 2416 Actions.push_back( 2417 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2418 } 2419 2420 TypePromotionTransaction::ConstRestorationPt 2421 TypePromotionTransaction::getRestorationPoint() const { 2422 return !Actions.empty() ? Actions.back().get() : nullptr; 2423 } 2424 2425 void TypePromotionTransaction::commit() { 2426 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2427 ++It) 2428 (*It)->commit(); 2429 Actions.clear(); 2430 } 2431 2432 void TypePromotionTransaction::rollback( 2433 TypePromotionTransaction::ConstRestorationPt Point) { 2434 while (!Actions.empty() && Point != Actions.back().get()) { 2435 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2436 Curr->undo(); 2437 } 2438 } 2439 2440 /// \brief A helper class for matching addressing modes. 2441 /// 2442 /// This encapsulates the logic for matching the target-legal addressing modes. 2443 class AddressingModeMatcher { 2444 SmallVectorImpl<Instruction*> &AddrModeInsts; 2445 const TargetLowering &TLI; 2446 const TargetRegisterInfo &TRI; 2447 const DataLayout &DL; 2448 2449 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2450 /// the memory instruction that we're computing this address for. 2451 Type *AccessTy; 2452 unsigned AddrSpace; 2453 Instruction *MemoryInst; 2454 2455 /// This is the addressing mode that we're building up. This is 2456 /// part of the return value of this addressing mode matching stuff. 2457 ExtAddrMode &AddrMode; 2458 2459 /// The instructions inserted by other CodeGenPrepare optimizations. 2460 const SetOfInstrs &InsertedInsts; 2461 /// A map from the instructions to their type before promotion. 2462 InstrToOrigTy &PromotedInsts; 2463 /// The ongoing transaction where every action should be registered. 2464 TypePromotionTransaction &TPT; 2465 2466 /// This is set to true when we should not do profitability checks. 2467 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2468 bool IgnoreProfitability; 2469 2470 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2471 const TargetLowering &TLI, 2472 const TargetRegisterInfo &TRI, 2473 Type *AT, unsigned AS, 2474 Instruction *MI, ExtAddrMode &AM, 2475 const SetOfInstrs &InsertedInsts, 2476 InstrToOrigTy &PromotedInsts, 2477 TypePromotionTransaction &TPT) 2478 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2479 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2480 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2481 PromotedInsts(PromotedInsts), TPT(TPT) { 2482 IgnoreProfitability = false; 2483 } 2484 public: 2485 2486 /// Find the maximal addressing mode that a load/store of V can fold, 2487 /// give an access type of AccessTy. This returns a list of involved 2488 /// instructions in AddrModeInsts. 2489 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2490 /// optimizations. 2491 /// \p PromotedInsts maps the instructions to their type before promotion. 2492 /// \p The ongoing transaction where every action should be registered. 2493 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2494 Instruction *MemoryInst, 2495 SmallVectorImpl<Instruction*> &AddrModeInsts, 2496 const TargetLowering &TLI, 2497 const TargetRegisterInfo &TRI, 2498 const SetOfInstrs &InsertedInsts, 2499 InstrToOrigTy &PromotedInsts, 2500 TypePromotionTransaction &TPT) { 2501 ExtAddrMode Result; 2502 2503 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 2504 AccessTy, AS, 2505 MemoryInst, Result, InsertedInsts, 2506 PromotedInsts, TPT).matchAddr(V, 0); 2507 (void)Success; assert(Success && "Couldn't select *anything*?"); 2508 return Result; 2509 } 2510 private: 2511 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2512 bool matchAddr(Value *V, unsigned Depth); 2513 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2514 bool *MovedAway = nullptr); 2515 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2516 ExtAddrMode &AMBefore, 2517 ExtAddrMode &AMAfter); 2518 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2519 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2520 Value *PromotedOperand) const; 2521 }; 2522 2523 /// Try adding ScaleReg*Scale to the current addressing mode. 2524 /// Return true and update AddrMode if this addr mode is legal for the target, 2525 /// false if not. 2526 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2527 unsigned Depth) { 2528 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2529 // mode. Just process that directly. 2530 if (Scale == 1) 2531 return matchAddr(ScaleReg, Depth); 2532 2533 // If the scale is 0, it takes nothing to add this. 2534 if (Scale == 0) 2535 return true; 2536 2537 // If we already have a scale of this value, we can add to it, otherwise, we 2538 // need an available scale field. 2539 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2540 return false; 2541 2542 ExtAddrMode TestAddrMode = AddrMode; 2543 2544 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2545 // [A+B + A*7] -> [B+A*8]. 2546 TestAddrMode.Scale += Scale; 2547 TestAddrMode.ScaledReg = ScaleReg; 2548 2549 // If the new address isn't legal, bail out. 2550 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2551 return false; 2552 2553 // It was legal, so commit it. 2554 AddrMode = TestAddrMode; 2555 2556 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2557 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2558 // X*Scale + C*Scale to addr mode. 2559 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2560 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2561 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2562 TestAddrMode.ScaledReg = AddLHS; 2563 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2564 2565 // If this addressing mode is legal, commit it and remember that we folded 2566 // this instruction. 2567 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2568 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2569 AddrMode = TestAddrMode; 2570 return true; 2571 } 2572 } 2573 2574 // Otherwise, not (x+c)*scale, just return what we have. 2575 return true; 2576 } 2577 2578 /// This is a little filter, which returns true if an addressing computation 2579 /// involving I might be folded into a load/store accessing it. 2580 /// This doesn't need to be perfect, but needs to accept at least 2581 /// the set of instructions that MatchOperationAddr can. 2582 static bool MightBeFoldableInst(Instruction *I) { 2583 switch (I->getOpcode()) { 2584 case Instruction::BitCast: 2585 case Instruction::AddrSpaceCast: 2586 // Don't touch identity bitcasts. 2587 if (I->getType() == I->getOperand(0)->getType()) 2588 return false; 2589 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2590 case Instruction::PtrToInt: 2591 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2592 return true; 2593 case Instruction::IntToPtr: 2594 // We know the input is intptr_t, so this is foldable. 2595 return true; 2596 case Instruction::Add: 2597 return true; 2598 case Instruction::Mul: 2599 case Instruction::Shl: 2600 // Can only handle X*C and X << C. 2601 return isa<ConstantInt>(I->getOperand(1)); 2602 case Instruction::GetElementPtr: 2603 return true; 2604 default: 2605 return false; 2606 } 2607 } 2608 2609 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2610 /// \note \p Val is assumed to be the product of some type promotion. 2611 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2612 /// to be legal, as the non-promoted value would have had the same state. 2613 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2614 const DataLayout &DL, Value *Val) { 2615 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2616 if (!PromotedInst) 2617 return false; 2618 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2619 // If the ISDOpcode is undefined, it was undefined before the promotion. 2620 if (!ISDOpcode) 2621 return true; 2622 // Otherwise, check if the promoted instruction is legal or not. 2623 return TLI.isOperationLegalOrCustom( 2624 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2625 } 2626 2627 /// \brief Hepler class to perform type promotion. 2628 class TypePromotionHelper { 2629 /// \brief Utility function to check whether or not a sign or zero extension 2630 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2631 /// either using the operands of \p Inst or promoting \p Inst. 2632 /// The type of the extension is defined by \p IsSExt. 2633 /// In other words, check if: 2634 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2635 /// #1 Promotion applies: 2636 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2637 /// #2 Operand reuses: 2638 /// ext opnd1 to ConsideredExtType. 2639 /// \p PromotedInsts maps the instructions to their type before promotion. 2640 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2641 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2642 2643 /// \brief Utility function to determine if \p OpIdx should be promoted when 2644 /// promoting \p Inst. 2645 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2646 return !(isa<SelectInst>(Inst) && OpIdx == 0); 2647 } 2648 2649 /// \brief Utility function to promote the operand of \p Ext when this 2650 /// operand is a promotable trunc or sext or zext. 2651 /// \p PromotedInsts maps the instructions to their type before promotion. 2652 /// \p CreatedInstsCost[out] contains the cost of all instructions 2653 /// created to promote the operand of Ext. 2654 /// Newly added extensions are inserted in \p Exts. 2655 /// Newly added truncates are inserted in \p Truncs. 2656 /// Should never be called directly. 2657 /// \return The promoted value which is used instead of Ext. 2658 static Value *promoteOperandForTruncAndAnyExt( 2659 Instruction *Ext, TypePromotionTransaction &TPT, 2660 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2661 SmallVectorImpl<Instruction *> *Exts, 2662 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2663 2664 /// \brief Utility function to promote the operand of \p Ext when this 2665 /// operand is promotable and is not a supported trunc or sext. 2666 /// \p PromotedInsts maps the instructions to their type before promotion. 2667 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2668 /// created to promote the operand of Ext. 2669 /// Newly added extensions are inserted in \p Exts. 2670 /// Newly added truncates are inserted in \p Truncs. 2671 /// Should never be called directly. 2672 /// \return The promoted value which is used instead of Ext. 2673 static Value *promoteOperandForOther(Instruction *Ext, 2674 TypePromotionTransaction &TPT, 2675 InstrToOrigTy &PromotedInsts, 2676 unsigned &CreatedInstsCost, 2677 SmallVectorImpl<Instruction *> *Exts, 2678 SmallVectorImpl<Instruction *> *Truncs, 2679 const TargetLowering &TLI, bool IsSExt); 2680 2681 /// \see promoteOperandForOther. 2682 static Value *signExtendOperandForOther( 2683 Instruction *Ext, TypePromotionTransaction &TPT, 2684 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2685 SmallVectorImpl<Instruction *> *Exts, 2686 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2687 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2688 Exts, Truncs, TLI, true); 2689 } 2690 2691 /// \see promoteOperandForOther. 2692 static Value *zeroExtendOperandForOther( 2693 Instruction *Ext, TypePromotionTransaction &TPT, 2694 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2695 SmallVectorImpl<Instruction *> *Exts, 2696 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2697 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2698 Exts, Truncs, TLI, false); 2699 } 2700 2701 public: 2702 /// Type for the utility function that promotes the operand of Ext. 2703 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2704 InstrToOrigTy &PromotedInsts, 2705 unsigned &CreatedInstsCost, 2706 SmallVectorImpl<Instruction *> *Exts, 2707 SmallVectorImpl<Instruction *> *Truncs, 2708 const TargetLowering &TLI); 2709 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2710 /// action to promote the operand of \p Ext instead of using Ext. 2711 /// \return NULL if no promotable action is possible with the current 2712 /// sign extension. 2713 /// \p InsertedInsts keeps track of all the instructions inserted by the 2714 /// other CodeGenPrepare optimizations. This information is important 2715 /// because we do not want to promote these instructions as CodeGenPrepare 2716 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2717 /// \p PromotedInsts maps the instructions to their type before promotion. 2718 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2719 const TargetLowering &TLI, 2720 const InstrToOrigTy &PromotedInsts); 2721 }; 2722 2723 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2724 Type *ConsideredExtType, 2725 const InstrToOrigTy &PromotedInsts, 2726 bool IsSExt) { 2727 // The promotion helper does not know how to deal with vector types yet. 2728 // To be able to fix that, we would need to fix the places where we 2729 // statically extend, e.g., constants and such. 2730 if (Inst->getType()->isVectorTy()) 2731 return false; 2732 2733 // We can always get through zext. 2734 if (isa<ZExtInst>(Inst)) 2735 return true; 2736 2737 // sext(sext) is ok too. 2738 if (IsSExt && isa<SExtInst>(Inst)) 2739 return true; 2740 2741 // We can get through binary operator, if it is legal. In other words, the 2742 // binary operator must have a nuw or nsw flag. 2743 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2744 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2745 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2746 (IsSExt && BinOp->hasNoSignedWrap()))) 2747 return true; 2748 2749 // Check if we can do the following simplification. 2750 // ext(trunc(opnd)) --> ext(opnd) 2751 if (!isa<TruncInst>(Inst)) 2752 return false; 2753 2754 Value *OpndVal = Inst->getOperand(0); 2755 // Check if we can use this operand in the extension. 2756 // If the type is larger than the result type of the extension, we cannot. 2757 if (!OpndVal->getType()->isIntegerTy() || 2758 OpndVal->getType()->getIntegerBitWidth() > 2759 ConsideredExtType->getIntegerBitWidth()) 2760 return false; 2761 2762 // If the operand of the truncate is not an instruction, we will not have 2763 // any information on the dropped bits. 2764 // (Actually we could for constant but it is not worth the extra logic). 2765 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2766 if (!Opnd) 2767 return false; 2768 2769 // Check if the source of the type is narrow enough. 2770 // I.e., check that trunc just drops extended bits of the same kind of 2771 // the extension. 2772 // #1 get the type of the operand and check the kind of the extended bits. 2773 const Type *OpndType; 2774 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2775 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2776 OpndType = It->second.getPointer(); 2777 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2778 OpndType = Opnd->getOperand(0)->getType(); 2779 else 2780 return false; 2781 2782 // #2 check that the truncate just drops extended bits. 2783 return Inst->getType()->getIntegerBitWidth() >= 2784 OpndType->getIntegerBitWidth(); 2785 } 2786 2787 TypePromotionHelper::Action TypePromotionHelper::getAction( 2788 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2789 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2790 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2791 "Unexpected instruction type"); 2792 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2793 Type *ExtTy = Ext->getType(); 2794 bool IsSExt = isa<SExtInst>(Ext); 2795 // If the operand of the extension is not an instruction, we cannot 2796 // get through. 2797 // If it, check we can get through. 2798 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2799 return nullptr; 2800 2801 // Do not promote if the operand has been added by codegenprepare. 2802 // Otherwise, it means we are undoing an optimization that is likely to be 2803 // redone, thus causing potential infinite loop. 2804 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2805 return nullptr; 2806 2807 // SExt or Trunc instructions. 2808 // Return the related handler. 2809 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2810 isa<ZExtInst>(ExtOpnd)) 2811 return promoteOperandForTruncAndAnyExt; 2812 2813 // Regular instruction. 2814 // Abort early if we will have to insert non-free instructions. 2815 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2816 return nullptr; 2817 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2818 } 2819 2820 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2821 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2822 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2823 SmallVectorImpl<Instruction *> *Exts, 2824 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2825 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2826 // get through it and this method should not be called. 2827 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2828 Value *ExtVal = SExt; 2829 bool HasMergedNonFreeExt = false; 2830 if (isa<ZExtInst>(SExtOpnd)) { 2831 // Replace s|zext(zext(opnd)) 2832 // => zext(opnd). 2833 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2834 Value *ZExt = 2835 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2836 TPT.replaceAllUsesWith(SExt, ZExt); 2837 TPT.eraseInstruction(SExt); 2838 ExtVal = ZExt; 2839 } else { 2840 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2841 // => z|sext(opnd). 2842 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2843 } 2844 CreatedInstsCost = 0; 2845 2846 // Remove dead code. 2847 if (SExtOpnd->use_empty()) 2848 TPT.eraseInstruction(SExtOpnd); 2849 2850 // Check if the extension is still needed. 2851 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2852 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2853 if (ExtInst) { 2854 if (Exts) 2855 Exts->push_back(ExtInst); 2856 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2857 } 2858 return ExtVal; 2859 } 2860 2861 // At this point we have: ext ty opnd to ty. 2862 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2863 Value *NextVal = ExtInst->getOperand(0); 2864 TPT.eraseInstruction(ExtInst, NextVal); 2865 return NextVal; 2866 } 2867 2868 Value *TypePromotionHelper::promoteOperandForOther( 2869 Instruction *Ext, TypePromotionTransaction &TPT, 2870 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2871 SmallVectorImpl<Instruction *> *Exts, 2872 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 2873 bool IsSExt) { 2874 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2875 // get through it and this method should not be called. 2876 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2877 CreatedInstsCost = 0; 2878 if (!ExtOpnd->hasOneUse()) { 2879 // ExtOpnd will be promoted. 2880 // All its uses, but Ext, will need to use a truncated value of the 2881 // promoted version. 2882 // Create the truncate now. 2883 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2884 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2885 ITrunc->removeFromParent(); 2886 // Insert it just after the definition. 2887 ITrunc->insertAfter(ExtOpnd); 2888 if (Truncs) 2889 Truncs->push_back(ITrunc); 2890 } 2891 2892 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2893 // Restore the operand of Ext (which has been replaced by the previous call 2894 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2895 TPT.setOperand(Ext, 0, ExtOpnd); 2896 } 2897 2898 // Get through the Instruction: 2899 // 1. Update its type. 2900 // 2. Replace the uses of Ext by Inst. 2901 // 3. Extend each operand that needs to be extended. 2902 2903 // Remember the original type of the instruction before promotion. 2904 // This is useful to know that the high bits are sign extended bits. 2905 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2906 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2907 // Step #1. 2908 TPT.mutateType(ExtOpnd, Ext->getType()); 2909 // Step #2. 2910 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2911 // Step #3. 2912 Instruction *ExtForOpnd = Ext; 2913 2914 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2915 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2916 ++OpIdx) { 2917 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2918 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2919 !shouldExtOperand(ExtOpnd, OpIdx)) { 2920 DEBUG(dbgs() << "No need to propagate\n"); 2921 continue; 2922 } 2923 // Check if we can statically extend the operand. 2924 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2925 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2926 DEBUG(dbgs() << "Statically extend\n"); 2927 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2928 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2929 : Cst->getValue().zext(BitWidth); 2930 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2931 continue; 2932 } 2933 // UndefValue are typed, so we have to statically sign extend them. 2934 if (isa<UndefValue>(Opnd)) { 2935 DEBUG(dbgs() << "Statically extend\n"); 2936 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2937 continue; 2938 } 2939 2940 // Otherwise we have to explicity sign extend the operand. 2941 // Check if Ext was reused to extend an operand. 2942 if (!ExtForOpnd) { 2943 // If yes, create a new one. 2944 DEBUG(dbgs() << "More operands to ext\n"); 2945 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2946 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2947 if (!isa<Instruction>(ValForExtOpnd)) { 2948 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2949 continue; 2950 } 2951 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2952 } 2953 if (Exts) 2954 Exts->push_back(ExtForOpnd); 2955 TPT.setOperand(ExtForOpnd, 0, Opnd); 2956 2957 // Move the sign extension before the insertion point. 2958 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2959 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2960 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 2961 // If more sext are required, new instructions will have to be created. 2962 ExtForOpnd = nullptr; 2963 } 2964 if (ExtForOpnd == Ext) { 2965 DEBUG(dbgs() << "Extension is useless now\n"); 2966 TPT.eraseInstruction(Ext); 2967 } 2968 return ExtOpnd; 2969 } 2970 2971 /// Check whether or not promoting an instruction to a wider type is profitable. 2972 /// \p NewCost gives the cost of extension instructions created by the 2973 /// promotion. 2974 /// \p OldCost gives the cost of extension instructions before the promotion 2975 /// plus the number of instructions that have been 2976 /// matched in the addressing mode the promotion. 2977 /// \p PromotedOperand is the value that has been promoted. 2978 /// \return True if the promotion is profitable, false otherwise. 2979 bool AddressingModeMatcher::isPromotionProfitable( 2980 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 2981 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 2982 // The cost of the new extensions is greater than the cost of the 2983 // old extension plus what we folded. 2984 // This is not profitable. 2985 if (NewCost > OldCost) 2986 return false; 2987 if (NewCost < OldCost) 2988 return true; 2989 // The promotion is neutral but it may help folding the sign extension in 2990 // loads for instance. 2991 // Check that we did not create an illegal instruction. 2992 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 2993 } 2994 2995 /// Given an instruction or constant expr, see if we can fold the operation 2996 /// into the addressing mode. If so, update the addressing mode and return 2997 /// true, otherwise return false without modifying AddrMode. 2998 /// If \p MovedAway is not NULL, it contains the information of whether or 2999 /// not AddrInst has to be folded into the addressing mode on success. 3000 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3001 /// because it has been moved away. 3002 /// Thus AddrInst must not be added in the matched instructions. 3003 /// This state can happen when AddrInst is a sext, since it may be moved away. 3004 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3005 /// not be referenced anymore. 3006 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3007 unsigned Depth, 3008 bool *MovedAway) { 3009 // Avoid exponential behavior on extremely deep expression trees. 3010 if (Depth >= 5) return false; 3011 3012 // By default, all matched instructions stay in place. 3013 if (MovedAway) 3014 *MovedAway = false; 3015 3016 switch (Opcode) { 3017 case Instruction::PtrToInt: 3018 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3019 return matchAddr(AddrInst->getOperand(0), Depth); 3020 case Instruction::IntToPtr: { 3021 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3022 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3023 // This inttoptr is a no-op if the integer type is pointer sized. 3024 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3025 return matchAddr(AddrInst->getOperand(0), Depth); 3026 return false; 3027 } 3028 case Instruction::BitCast: 3029 // BitCast is always a noop, and we can handle it as long as it is 3030 // int->int or pointer->pointer (we don't want int<->fp or something). 3031 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3032 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3033 // Don't touch identity bitcasts. These were probably put here by LSR, 3034 // and we don't want to mess around with them. Assume it knows what it 3035 // is doing. 3036 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3037 return matchAddr(AddrInst->getOperand(0), Depth); 3038 return false; 3039 case Instruction::AddrSpaceCast: { 3040 unsigned SrcAS 3041 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3042 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3043 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3044 return matchAddr(AddrInst->getOperand(0), Depth); 3045 return false; 3046 } 3047 case Instruction::Add: { 3048 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3049 ExtAddrMode BackupAddrMode = AddrMode; 3050 unsigned OldSize = AddrModeInsts.size(); 3051 // Start a transaction at this point. 3052 // The LHS may match but not the RHS. 3053 // Therefore, we need a higher level restoration point to undo partially 3054 // matched operation. 3055 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3056 TPT.getRestorationPoint(); 3057 3058 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3059 matchAddr(AddrInst->getOperand(0), Depth+1)) 3060 return true; 3061 3062 // Restore the old addr mode info. 3063 AddrMode = BackupAddrMode; 3064 AddrModeInsts.resize(OldSize); 3065 TPT.rollback(LastKnownGood); 3066 3067 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3068 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3069 matchAddr(AddrInst->getOperand(1), Depth+1)) 3070 return true; 3071 3072 // Otherwise we definitely can't merge the ADD in. 3073 AddrMode = BackupAddrMode; 3074 AddrModeInsts.resize(OldSize); 3075 TPT.rollback(LastKnownGood); 3076 break; 3077 } 3078 //case Instruction::Or: 3079 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3080 //break; 3081 case Instruction::Mul: 3082 case Instruction::Shl: { 3083 // Can only handle X*C and X << C. 3084 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3085 if (!RHS) 3086 return false; 3087 int64_t Scale = RHS->getSExtValue(); 3088 if (Opcode == Instruction::Shl) 3089 Scale = 1LL << Scale; 3090 3091 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3092 } 3093 case Instruction::GetElementPtr: { 3094 // Scan the GEP. We check it if it contains constant offsets and at most 3095 // one variable offset. 3096 int VariableOperand = -1; 3097 unsigned VariableScale = 0; 3098 3099 int64_t ConstantOffset = 0; 3100 gep_type_iterator GTI = gep_type_begin(AddrInst); 3101 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3102 if (StructType *STy = GTI.getStructTypeOrNull()) { 3103 const StructLayout *SL = DL.getStructLayout(STy); 3104 unsigned Idx = 3105 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3106 ConstantOffset += SL->getElementOffset(Idx); 3107 } else { 3108 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3109 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3110 ConstantOffset += CI->getSExtValue()*TypeSize; 3111 } else if (TypeSize) { // Scales of zero don't do anything. 3112 // We only allow one variable index at the moment. 3113 if (VariableOperand != -1) 3114 return false; 3115 3116 // Remember the variable index. 3117 VariableOperand = i; 3118 VariableScale = TypeSize; 3119 } 3120 } 3121 } 3122 3123 // A common case is for the GEP to only do a constant offset. In this case, 3124 // just add it to the disp field and check validity. 3125 if (VariableOperand == -1) { 3126 AddrMode.BaseOffs += ConstantOffset; 3127 if (ConstantOffset == 0 || 3128 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3129 // Check to see if we can fold the base pointer in too. 3130 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3131 return true; 3132 } 3133 AddrMode.BaseOffs -= ConstantOffset; 3134 return false; 3135 } 3136 3137 // Save the valid addressing mode in case we can't match. 3138 ExtAddrMode BackupAddrMode = AddrMode; 3139 unsigned OldSize = AddrModeInsts.size(); 3140 3141 // See if the scale and offset amount is valid for this target. 3142 AddrMode.BaseOffs += ConstantOffset; 3143 3144 // Match the base operand of the GEP. 3145 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3146 // If it couldn't be matched, just stuff the value in a register. 3147 if (AddrMode.HasBaseReg) { 3148 AddrMode = BackupAddrMode; 3149 AddrModeInsts.resize(OldSize); 3150 return false; 3151 } 3152 AddrMode.HasBaseReg = true; 3153 AddrMode.BaseReg = AddrInst->getOperand(0); 3154 } 3155 3156 // Match the remaining variable portion of the GEP. 3157 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3158 Depth)) { 3159 // If it couldn't be matched, try stuffing the base into a register 3160 // instead of matching it, and retrying the match of the scale. 3161 AddrMode = BackupAddrMode; 3162 AddrModeInsts.resize(OldSize); 3163 if (AddrMode.HasBaseReg) 3164 return false; 3165 AddrMode.HasBaseReg = true; 3166 AddrMode.BaseReg = AddrInst->getOperand(0); 3167 AddrMode.BaseOffs += ConstantOffset; 3168 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3169 VariableScale, Depth)) { 3170 // If even that didn't work, bail. 3171 AddrMode = BackupAddrMode; 3172 AddrModeInsts.resize(OldSize); 3173 return false; 3174 } 3175 } 3176 3177 return true; 3178 } 3179 case Instruction::SExt: 3180 case Instruction::ZExt: { 3181 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3182 if (!Ext) 3183 return false; 3184 3185 // Try to move this ext out of the way of the addressing mode. 3186 // Ask for a method for doing so. 3187 TypePromotionHelper::Action TPH = 3188 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3189 if (!TPH) 3190 return false; 3191 3192 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3193 TPT.getRestorationPoint(); 3194 unsigned CreatedInstsCost = 0; 3195 unsigned ExtCost = !TLI.isExtFree(Ext); 3196 Value *PromotedOperand = 3197 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3198 // SExt has been moved away. 3199 // Thus either it will be rematched later in the recursive calls or it is 3200 // gone. Anyway, we must not fold it into the addressing mode at this point. 3201 // E.g., 3202 // op = add opnd, 1 3203 // idx = ext op 3204 // addr = gep base, idx 3205 // is now: 3206 // promotedOpnd = ext opnd <- no match here 3207 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3208 // addr = gep base, op <- match 3209 if (MovedAway) 3210 *MovedAway = true; 3211 3212 assert(PromotedOperand && 3213 "TypePromotionHelper should have filtered out those cases"); 3214 3215 ExtAddrMode BackupAddrMode = AddrMode; 3216 unsigned OldSize = AddrModeInsts.size(); 3217 3218 if (!matchAddr(PromotedOperand, Depth) || 3219 // The total of the new cost is equal to the cost of the created 3220 // instructions. 3221 // The total of the old cost is equal to the cost of the extension plus 3222 // what we have saved in the addressing mode. 3223 !isPromotionProfitable(CreatedInstsCost, 3224 ExtCost + (AddrModeInsts.size() - OldSize), 3225 PromotedOperand)) { 3226 AddrMode = BackupAddrMode; 3227 AddrModeInsts.resize(OldSize); 3228 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3229 TPT.rollback(LastKnownGood); 3230 return false; 3231 } 3232 return true; 3233 } 3234 } 3235 return false; 3236 } 3237 3238 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3239 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3240 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3241 /// for the target. 3242 /// 3243 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3244 // Start a transaction at this point that we will rollback if the matching 3245 // fails. 3246 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3247 TPT.getRestorationPoint(); 3248 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3249 // Fold in immediates if legal for the target. 3250 AddrMode.BaseOffs += CI->getSExtValue(); 3251 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3252 return true; 3253 AddrMode.BaseOffs -= CI->getSExtValue(); 3254 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3255 // If this is a global variable, try to fold it into the addressing mode. 3256 if (!AddrMode.BaseGV) { 3257 AddrMode.BaseGV = GV; 3258 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3259 return true; 3260 AddrMode.BaseGV = nullptr; 3261 } 3262 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3263 ExtAddrMode BackupAddrMode = AddrMode; 3264 unsigned OldSize = AddrModeInsts.size(); 3265 3266 // Check to see if it is possible to fold this operation. 3267 bool MovedAway = false; 3268 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3269 // This instruction may have been moved away. If so, there is nothing 3270 // to check here. 3271 if (MovedAway) 3272 return true; 3273 // Okay, it's possible to fold this. Check to see if it is actually 3274 // *profitable* to do so. We use a simple cost model to avoid increasing 3275 // register pressure too much. 3276 if (I->hasOneUse() || 3277 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3278 AddrModeInsts.push_back(I); 3279 return true; 3280 } 3281 3282 // It isn't profitable to do this, roll back. 3283 //cerr << "NOT FOLDING: " << *I; 3284 AddrMode = BackupAddrMode; 3285 AddrModeInsts.resize(OldSize); 3286 TPT.rollback(LastKnownGood); 3287 } 3288 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3289 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3290 return true; 3291 TPT.rollback(LastKnownGood); 3292 } else if (isa<ConstantPointerNull>(Addr)) { 3293 // Null pointer gets folded without affecting the addressing mode. 3294 return true; 3295 } 3296 3297 // Worse case, the target should support [reg] addressing modes. :) 3298 if (!AddrMode.HasBaseReg) { 3299 AddrMode.HasBaseReg = true; 3300 AddrMode.BaseReg = Addr; 3301 // Still check for legality in case the target supports [imm] but not [i+r]. 3302 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3303 return true; 3304 AddrMode.HasBaseReg = false; 3305 AddrMode.BaseReg = nullptr; 3306 } 3307 3308 // If the base register is already taken, see if we can do [r+r]. 3309 if (AddrMode.Scale == 0) { 3310 AddrMode.Scale = 1; 3311 AddrMode.ScaledReg = Addr; 3312 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3313 return true; 3314 AddrMode.Scale = 0; 3315 AddrMode.ScaledReg = nullptr; 3316 } 3317 // Couldn't match. 3318 TPT.rollback(LastKnownGood); 3319 return false; 3320 } 3321 3322 /// Check to see if all uses of OpVal by the specified inline asm call are due 3323 /// to memory operands. If so, return true, otherwise return false. 3324 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3325 const TargetLowering &TLI, 3326 const TargetRegisterInfo &TRI) { 3327 const Function *F = CI->getParent()->getParent(); 3328 TargetLowering::AsmOperandInfoVector TargetConstraints = 3329 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3330 ImmutableCallSite(CI)); 3331 3332 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3333 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3334 3335 // Compute the constraint code and ConstraintType to use. 3336 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3337 3338 // If this asm operand is our Value*, and if it isn't an indirect memory 3339 // operand, we can't fold it! 3340 if (OpInfo.CallOperandVal == OpVal && 3341 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3342 !OpInfo.isIndirect)) 3343 return false; 3344 } 3345 3346 return true; 3347 } 3348 3349 /// Recursively walk all the uses of I until we find a memory use. 3350 /// If we find an obviously non-foldable instruction, return true. 3351 /// Add the ultimately found memory instructions to MemoryUses. 3352 static bool FindAllMemoryUses( 3353 Instruction *I, 3354 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3355 SmallPtrSetImpl<Instruction *> &ConsideredInsts, 3356 const TargetLowering &TLI, const TargetRegisterInfo &TRI) { 3357 // If we already considered this instruction, we're done. 3358 if (!ConsideredInsts.insert(I).second) 3359 return false; 3360 3361 // If this is an obviously unfoldable instruction, bail out. 3362 if (!MightBeFoldableInst(I)) 3363 return true; 3364 3365 const bool OptSize = I->getFunction()->optForSize(); 3366 3367 // Loop over all the uses, recursively processing them. 3368 for (Use &U : I->uses()) { 3369 Instruction *UserI = cast<Instruction>(U.getUser()); 3370 3371 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3372 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3373 continue; 3374 } 3375 3376 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3377 unsigned opNo = U.getOperandNo(); 3378 if (opNo != StoreInst::getPointerOperandIndex()) 3379 return true; // Storing addr, not into addr. 3380 MemoryUses.push_back(std::make_pair(SI, opNo)); 3381 continue; 3382 } 3383 3384 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 3385 unsigned opNo = U.getOperandNo(); 3386 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 3387 return true; // Storing addr, not into addr. 3388 MemoryUses.push_back(std::make_pair(RMW, opNo)); 3389 continue; 3390 } 3391 3392 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 3393 unsigned opNo = U.getOperandNo(); 3394 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 3395 return true; // Storing addr, not into addr. 3396 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 3397 continue; 3398 } 3399 3400 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3401 // If this is a cold call, we can sink the addressing calculation into 3402 // the cold path. See optimizeCallInst 3403 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 3404 continue; 3405 3406 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3407 if (!IA) return true; 3408 3409 // If this is a memory operand, we're cool, otherwise bail out. 3410 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 3411 return true; 3412 continue; 3413 } 3414 3415 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI)) 3416 return true; 3417 } 3418 3419 return false; 3420 } 3421 3422 /// Return true if Val is already known to be live at the use site that we're 3423 /// folding it into. If so, there is no cost to include it in the addressing 3424 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3425 /// instruction already. 3426 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3427 Value *KnownLive2) { 3428 // If Val is either of the known-live values, we know it is live! 3429 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3430 return true; 3431 3432 // All values other than instructions and arguments (e.g. constants) are live. 3433 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3434 3435 // If Val is a constant sized alloca in the entry block, it is live, this is 3436 // true because it is just a reference to the stack/frame pointer, which is 3437 // live for the whole function. 3438 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3439 if (AI->isStaticAlloca()) 3440 return true; 3441 3442 // Check to see if this value is already used in the memory instruction's 3443 // block. If so, it's already live into the block at the very least, so we 3444 // can reasonably fold it. 3445 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3446 } 3447 3448 /// It is possible for the addressing mode of the machine to fold the specified 3449 /// instruction into a load or store that ultimately uses it. 3450 /// However, the specified instruction has multiple uses. 3451 /// Given this, it may actually increase register pressure to fold it 3452 /// into the load. For example, consider this code: 3453 /// 3454 /// X = ... 3455 /// Y = X+1 3456 /// use(Y) -> nonload/store 3457 /// Z = Y+1 3458 /// load Z 3459 /// 3460 /// In this case, Y has multiple uses, and can be folded into the load of Z 3461 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3462 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3463 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3464 /// number of computations either. 3465 /// 3466 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3467 /// X was live across 'load Z' for other reasons, we actually *would* want to 3468 /// fold the addressing mode in the Z case. This would make Y die earlier. 3469 bool AddressingModeMatcher:: 3470 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3471 ExtAddrMode &AMAfter) { 3472 if (IgnoreProfitability) return true; 3473 3474 // AMBefore is the addressing mode before this instruction was folded into it, 3475 // and AMAfter is the addressing mode after the instruction was folded. Get 3476 // the set of registers referenced by AMAfter and subtract out those 3477 // referenced by AMBefore: this is the set of values which folding in this 3478 // address extends the lifetime of. 3479 // 3480 // Note that there are only two potential values being referenced here, 3481 // BaseReg and ScaleReg (global addresses are always available, as are any 3482 // folded immediates). 3483 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3484 3485 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3486 // lifetime wasn't extended by adding this instruction. 3487 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3488 BaseReg = nullptr; 3489 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3490 ScaledReg = nullptr; 3491 3492 // If folding this instruction (and it's subexprs) didn't extend any live 3493 // ranges, we're ok with it. 3494 if (!BaseReg && !ScaledReg) 3495 return true; 3496 3497 // If all uses of this instruction can have the address mode sunk into them, 3498 // we can remove the addressing mode and effectively trade one live register 3499 // for another (at worst.) In this context, folding an addressing mode into 3500 // the use is just a particularly nice way of sinking it. 3501 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3502 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3503 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 3504 return false; // Has a non-memory, non-foldable use! 3505 3506 // Now that we know that all uses of this instruction are part of a chain of 3507 // computation involving only operations that could theoretically be folded 3508 // into a memory use, loop over each of these memory operation uses and see 3509 // if they could *actually* fold the instruction. The assumption is that 3510 // addressing modes are cheap and that duplicating the computation involved 3511 // many times is worthwhile, even on a fastpath. For sinking candidates 3512 // (i.e. cold call sites), this serves as a way to prevent excessive code 3513 // growth since most architectures have some reasonable small and fast way to 3514 // compute an effective address. (i.e LEA on x86) 3515 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3516 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3517 Instruction *User = MemoryUses[i].first; 3518 unsigned OpNo = MemoryUses[i].second; 3519 3520 // Get the access type of this use. If the use isn't a pointer, we don't 3521 // know what it accesses. 3522 Value *Address = User->getOperand(OpNo); 3523 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3524 if (!AddrTy) 3525 return false; 3526 Type *AddressAccessTy = AddrTy->getElementType(); 3527 unsigned AS = AddrTy->getAddressSpace(); 3528 3529 // Do a match against the root of this address, ignoring profitability. This 3530 // will tell us if the addressing mode for the memory operation will 3531 // *actually* cover the shared instruction. 3532 ExtAddrMode Result; 3533 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3534 TPT.getRestorationPoint(); 3535 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 3536 AddressAccessTy, AS, 3537 MemoryInst, Result, InsertedInsts, 3538 PromotedInsts, TPT); 3539 Matcher.IgnoreProfitability = true; 3540 bool Success = Matcher.matchAddr(Address, 0); 3541 (void)Success; assert(Success && "Couldn't select *anything*?"); 3542 3543 // The match was to check the profitability, the changes made are not 3544 // part of the original matcher. Therefore, they should be dropped 3545 // otherwise the original matcher will not present the right state. 3546 TPT.rollback(LastKnownGood); 3547 3548 // If the match didn't cover I, then it won't be shared by it. 3549 if (!is_contained(MatchedAddrModeInsts, I)) 3550 return false; 3551 3552 MatchedAddrModeInsts.clear(); 3553 } 3554 3555 return true; 3556 } 3557 3558 } // end anonymous namespace 3559 3560 /// Return true if the specified values are defined in a 3561 /// different basic block than BB. 3562 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3563 if (Instruction *I = dyn_cast<Instruction>(V)) 3564 return I->getParent() != BB; 3565 return false; 3566 } 3567 3568 /// Sink addressing mode computation immediate before MemoryInst if doing so 3569 /// can be done without increasing register pressure. The need for the 3570 /// register pressure constraint means this can end up being an all or nothing 3571 /// decision for all uses of the same addressing computation. 3572 /// 3573 /// Load and Store Instructions often have addressing modes that can do 3574 /// significant amounts of computation. As such, instruction selection will try 3575 /// to get the load or store to do as much computation as possible for the 3576 /// program. The problem is that isel can only see within a single block. As 3577 /// such, we sink as much legal addressing mode work into the block as possible. 3578 /// 3579 /// This method is used to optimize both load/store and inline asms with memory 3580 /// operands. It's also used to sink addressing computations feeding into cold 3581 /// call sites into their (cold) basic block. 3582 /// 3583 /// The motivation for handling sinking into cold blocks is that doing so can 3584 /// both enable other address mode sinking (by satisfying the register pressure 3585 /// constraint above), and reduce register pressure globally (by removing the 3586 /// addressing mode computation from the fast path entirely.). 3587 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3588 Type *AccessTy, unsigned AddrSpace) { 3589 Value *Repl = Addr; 3590 3591 // Try to collapse single-value PHI nodes. This is necessary to undo 3592 // unprofitable PRE transformations. 3593 SmallVector<Value*, 8> worklist; 3594 SmallPtrSet<Value*, 16> Visited; 3595 worklist.push_back(Addr); 3596 3597 // Use a worklist to iteratively look through PHI nodes, and ensure that 3598 // the addressing mode obtained from the non-PHI roots of the graph 3599 // are equivalent. 3600 Value *Consensus = nullptr; 3601 unsigned NumUsesConsensus = 0; 3602 bool IsNumUsesConsensusValid = false; 3603 SmallVector<Instruction*, 16> AddrModeInsts; 3604 ExtAddrMode AddrMode; 3605 TypePromotionTransaction TPT(RemovedInsts); 3606 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3607 TPT.getRestorationPoint(); 3608 while (!worklist.empty()) { 3609 Value *V = worklist.back(); 3610 worklist.pop_back(); 3611 3612 // Break use-def graph loops. 3613 if (!Visited.insert(V).second) { 3614 Consensus = nullptr; 3615 break; 3616 } 3617 3618 // For a PHI node, push all of its incoming values. 3619 if (PHINode *P = dyn_cast<PHINode>(V)) { 3620 for (Value *IncValue : P->incoming_values()) 3621 worklist.push_back(IncValue); 3622 continue; 3623 } 3624 3625 // For non-PHIs, determine the addressing mode being computed. Note that 3626 // the result may differ depending on what other uses our candidate 3627 // addressing instructions might have. 3628 SmallVector<Instruction*, 16> NewAddrModeInsts; 3629 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3630 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TLI, *TRI, 3631 InsertedInsts, PromotedInsts, TPT); 3632 3633 // This check is broken into two cases with very similar code to avoid using 3634 // getNumUses() as much as possible. Some values have a lot of uses, so 3635 // calling getNumUses() unconditionally caused a significant compile-time 3636 // regression. 3637 if (!Consensus) { 3638 Consensus = V; 3639 AddrMode = NewAddrMode; 3640 AddrModeInsts = NewAddrModeInsts; 3641 continue; 3642 } else if (NewAddrMode == AddrMode) { 3643 if (!IsNumUsesConsensusValid) { 3644 NumUsesConsensus = Consensus->getNumUses(); 3645 IsNumUsesConsensusValid = true; 3646 } 3647 3648 // Ensure that the obtained addressing mode is equivalent to that obtained 3649 // for all other roots of the PHI traversal. Also, when choosing one 3650 // such root as representative, select the one with the most uses in order 3651 // to keep the cost modeling heuristics in AddressingModeMatcher 3652 // applicable. 3653 unsigned NumUses = V->getNumUses(); 3654 if (NumUses > NumUsesConsensus) { 3655 Consensus = V; 3656 NumUsesConsensus = NumUses; 3657 AddrModeInsts = NewAddrModeInsts; 3658 } 3659 continue; 3660 } 3661 3662 Consensus = nullptr; 3663 break; 3664 } 3665 3666 // If the addressing mode couldn't be determined, or if multiple different 3667 // ones were determined, bail out now. 3668 if (!Consensus) { 3669 TPT.rollback(LastKnownGood); 3670 return false; 3671 } 3672 TPT.commit(); 3673 3674 // If all the instructions matched are already in this BB, don't do anything. 3675 if (none_of(AddrModeInsts, [&](Value *V) { 3676 return IsNonLocalValue(V, MemoryInst->getParent()); 3677 })) { 3678 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3679 return false; 3680 } 3681 3682 // Insert this computation right after this user. Since our caller is 3683 // scanning from the top of the BB to the bottom, reuse of the expr are 3684 // guaranteed to happen later. 3685 IRBuilder<> Builder(MemoryInst); 3686 3687 // Now that we determined the addressing expression we want to use and know 3688 // that we have to sink it into this block. Check to see if we have already 3689 // done this for some other load/store instr in this block. If so, reuse the 3690 // computation. 3691 Value *&SunkAddr = SunkAddrs[Addr]; 3692 if (SunkAddr) { 3693 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3694 << *MemoryInst << "\n"); 3695 if (SunkAddr->getType() != Addr->getType()) 3696 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 3697 } else if (AddrSinkUsingGEPs || 3698 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3699 SubtargetInfo->useAA())) { 3700 // By default, we use the GEP-based method when AA is used later. This 3701 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3702 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3703 << *MemoryInst << "\n"); 3704 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3705 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3706 3707 // First, find the pointer. 3708 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3709 ResultPtr = AddrMode.BaseReg; 3710 AddrMode.BaseReg = nullptr; 3711 } 3712 3713 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3714 // We can't add more than one pointer together, nor can we scale a 3715 // pointer (both of which seem meaningless). 3716 if (ResultPtr || AddrMode.Scale != 1) 3717 return false; 3718 3719 ResultPtr = AddrMode.ScaledReg; 3720 AddrMode.Scale = 0; 3721 } 3722 3723 if (AddrMode.BaseGV) { 3724 if (ResultPtr) 3725 return false; 3726 3727 ResultPtr = AddrMode.BaseGV; 3728 } 3729 3730 // If the real base value actually came from an inttoptr, then the matcher 3731 // will look through it and provide only the integer value. In that case, 3732 // use it here. 3733 if (!ResultPtr && AddrMode.BaseReg) { 3734 ResultPtr = 3735 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3736 AddrMode.BaseReg = nullptr; 3737 } else if (!ResultPtr && AddrMode.Scale == 1) { 3738 ResultPtr = 3739 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3740 AddrMode.Scale = 0; 3741 } 3742 3743 if (!ResultPtr && 3744 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3745 SunkAddr = Constant::getNullValue(Addr->getType()); 3746 } else if (!ResultPtr) { 3747 return false; 3748 } else { 3749 Type *I8PtrTy = 3750 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3751 Type *I8Ty = Builder.getInt8Ty(); 3752 3753 // Start with the base register. Do this first so that subsequent address 3754 // matching finds it last, which will prevent it from trying to match it 3755 // as the scaled value in case it happens to be a mul. That would be 3756 // problematic if we've sunk a different mul for the scale, because then 3757 // we'd end up sinking both muls. 3758 if (AddrMode.BaseReg) { 3759 Value *V = AddrMode.BaseReg; 3760 if (V->getType() != IntPtrTy) 3761 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3762 3763 ResultIndex = V; 3764 } 3765 3766 // Add the scale value. 3767 if (AddrMode.Scale) { 3768 Value *V = AddrMode.ScaledReg; 3769 if (V->getType() == IntPtrTy) { 3770 // done. 3771 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3772 cast<IntegerType>(V->getType())->getBitWidth()) { 3773 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3774 } else { 3775 // It is only safe to sign extend the BaseReg if we know that the math 3776 // required to create it did not overflow before we extend it. Since 3777 // the original IR value was tossed in favor of a constant back when 3778 // the AddrMode was created we need to bail out gracefully if widths 3779 // do not match instead of extending it. 3780 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3781 if (I && (ResultIndex != AddrMode.BaseReg)) 3782 I->eraseFromParent(); 3783 return false; 3784 } 3785 3786 if (AddrMode.Scale != 1) 3787 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3788 "sunkaddr"); 3789 if (ResultIndex) 3790 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3791 else 3792 ResultIndex = V; 3793 } 3794 3795 // Add in the Base Offset if present. 3796 if (AddrMode.BaseOffs) { 3797 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3798 if (ResultIndex) { 3799 // We need to add this separately from the scale above to help with 3800 // SDAG consecutive load/store merging. 3801 if (ResultPtr->getType() != I8PtrTy) 3802 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 3803 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3804 } 3805 3806 ResultIndex = V; 3807 } 3808 3809 if (!ResultIndex) { 3810 SunkAddr = ResultPtr; 3811 } else { 3812 if (ResultPtr->getType() != I8PtrTy) 3813 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 3814 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3815 } 3816 3817 if (SunkAddr->getType() != Addr->getType()) 3818 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 3819 } 3820 } else { 3821 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3822 << *MemoryInst << "\n"); 3823 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3824 Value *Result = nullptr; 3825 3826 // Start with the base register. Do this first so that subsequent address 3827 // matching finds it last, which will prevent it from trying to match it 3828 // as the scaled value in case it happens to be a mul. That would be 3829 // problematic if we've sunk a different mul for the scale, because then 3830 // we'd end up sinking both muls. 3831 if (AddrMode.BaseReg) { 3832 Value *V = AddrMode.BaseReg; 3833 if (V->getType()->isPointerTy()) 3834 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3835 if (V->getType() != IntPtrTy) 3836 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3837 Result = V; 3838 } 3839 3840 // Add the scale value. 3841 if (AddrMode.Scale) { 3842 Value *V = AddrMode.ScaledReg; 3843 if (V->getType() == IntPtrTy) { 3844 // done. 3845 } else if (V->getType()->isPointerTy()) { 3846 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3847 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3848 cast<IntegerType>(V->getType())->getBitWidth()) { 3849 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3850 } else { 3851 // It is only safe to sign extend the BaseReg if we know that the math 3852 // required to create it did not overflow before we extend it. Since 3853 // the original IR value was tossed in favor of a constant back when 3854 // the AddrMode was created we need to bail out gracefully if widths 3855 // do not match instead of extending it. 3856 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3857 if (I && (Result != AddrMode.BaseReg)) 3858 I->eraseFromParent(); 3859 return false; 3860 } 3861 if (AddrMode.Scale != 1) 3862 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3863 "sunkaddr"); 3864 if (Result) 3865 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3866 else 3867 Result = V; 3868 } 3869 3870 // Add in the BaseGV if present. 3871 if (AddrMode.BaseGV) { 3872 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3873 if (Result) 3874 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3875 else 3876 Result = V; 3877 } 3878 3879 // Add in the Base Offset if present. 3880 if (AddrMode.BaseOffs) { 3881 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3882 if (Result) 3883 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3884 else 3885 Result = V; 3886 } 3887 3888 if (!Result) 3889 SunkAddr = Constant::getNullValue(Addr->getType()); 3890 else 3891 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3892 } 3893 3894 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3895 3896 // If we have no uses, recursively delete the value and all dead instructions 3897 // using it. 3898 if (Repl->use_empty()) { 3899 // This can cause recursive deletion, which can invalidate our iterator. 3900 // Use a WeakTrackingVH to hold onto it in case this happens. 3901 Value *CurValue = &*CurInstIterator; 3902 WeakTrackingVH IterHandle(CurValue); 3903 BasicBlock *BB = CurInstIterator->getParent(); 3904 3905 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3906 3907 if (IterHandle != CurValue) { 3908 // If the iterator instruction was recursively deleted, start over at the 3909 // start of the block. 3910 CurInstIterator = BB->begin(); 3911 SunkAddrs.clear(); 3912 } 3913 } 3914 ++NumMemoryInsts; 3915 return true; 3916 } 3917 3918 /// If there are any memory operands, use OptimizeMemoryInst to sink their 3919 /// address computing into the block when possible / profitable. 3920 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 3921 bool MadeChange = false; 3922 3923 const TargetRegisterInfo *TRI = 3924 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 3925 TargetLowering::AsmOperandInfoVector TargetConstraints = 3926 TLI->ParseConstraints(*DL, TRI, CS); 3927 unsigned ArgNo = 0; 3928 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3929 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3930 3931 // Compute the constraint code and ConstraintType to use. 3932 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3933 3934 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3935 OpInfo.isIndirect) { 3936 Value *OpVal = CS->getArgOperand(ArgNo++); 3937 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 3938 } else if (OpInfo.Type == InlineAsm::isInput) 3939 ArgNo++; 3940 } 3941 3942 return MadeChange; 3943 } 3944 3945 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 3946 /// sign extensions. 3947 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 3948 assert(!Val->use_empty() && "Input must have at least one use"); 3949 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 3950 bool IsSExt = isa<SExtInst>(FirstUser); 3951 Type *ExtTy = FirstUser->getType(); 3952 for (const User *U : Val->users()) { 3953 const Instruction *UI = cast<Instruction>(U); 3954 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3955 return false; 3956 Type *CurTy = UI->getType(); 3957 // Same input and output types: Same instruction after CSE. 3958 if (CurTy == ExtTy) 3959 continue; 3960 3961 // If IsSExt is true, we are in this situation: 3962 // a = Val 3963 // b = sext ty1 a to ty2 3964 // c = sext ty1 a to ty3 3965 // Assuming ty2 is shorter than ty3, this could be turned into: 3966 // a = Val 3967 // b = sext ty1 a to ty2 3968 // c = sext ty2 b to ty3 3969 // However, the last sext is not free. 3970 if (IsSExt) 3971 return false; 3972 3973 // This is a ZExt, maybe this is free to extend from one type to another. 3974 // In that case, we would not account for a different use. 3975 Type *NarrowTy; 3976 Type *LargeTy; 3977 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3978 CurTy->getScalarType()->getIntegerBitWidth()) { 3979 NarrowTy = CurTy; 3980 LargeTy = ExtTy; 3981 } else { 3982 NarrowTy = ExtTy; 3983 LargeTy = CurTy; 3984 } 3985 3986 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3987 return false; 3988 } 3989 // All uses are the same or can be derived from one another for free. 3990 return true; 3991 } 3992 3993 /// \brief Try to speculatively promote extensions in \p Exts and continue 3994 /// promoting through newly promoted operands recursively as far as doing so is 3995 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 3996 /// When some promotion happened, \p TPT contains the proper state to revert 3997 /// them. 3998 /// 3999 /// \return true if some promotion happened, false otherwise. 4000 bool CodeGenPrepare::tryToPromoteExts( 4001 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4002 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4003 unsigned CreatedInstsCost) { 4004 bool Promoted = false; 4005 4006 // Iterate over all the extensions to try to promote them. 4007 for (auto I : Exts) { 4008 // Early check if we directly have ext(load). 4009 if (isa<LoadInst>(I->getOperand(0))) { 4010 ProfitablyMovedExts.push_back(I); 4011 continue; 4012 } 4013 4014 // Check whether or not we want to do any promotion. The reason we have 4015 // this check inside the for loop is to catch the case where an extension 4016 // is directly fed by a load because in such case the extension can be moved 4017 // up without any promotion on its operands. 4018 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4019 return false; 4020 4021 // Get the action to perform the promotion. 4022 TypePromotionHelper::Action TPH = 4023 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4024 // Check if we can promote. 4025 if (!TPH) { 4026 // Save the current extension as we cannot move up through its operand. 4027 ProfitablyMovedExts.push_back(I); 4028 continue; 4029 } 4030 4031 // Save the current state. 4032 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4033 TPT.getRestorationPoint(); 4034 SmallVector<Instruction *, 4> NewExts; 4035 unsigned NewCreatedInstsCost = 0; 4036 unsigned ExtCost = !TLI->isExtFree(I); 4037 // Promote. 4038 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4039 &NewExts, nullptr, *TLI); 4040 assert(PromotedVal && 4041 "TypePromotionHelper should have filtered out those cases"); 4042 4043 // We would be able to merge only one extension in a load. 4044 // Therefore, if we have more than 1 new extension we heuristically 4045 // cut this search path, because it means we degrade the code quality. 4046 // With exactly 2, the transformation is neutral, because we will merge 4047 // one extension but leave one. However, we optimistically keep going, 4048 // because the new extension may be removed too. 4049 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4050 // FIXME: It would be possible to propagate a negative value instead of 4051 // conservatively ceiling it to 0. 4052 TotalCreatedInstsCost = 4053 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4054 if (!StressExtLdPromotion && 4055 (TotalCreatedInstsCost > 1 || 4056 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4057 // This promotion is not profitable, rollback to the previous state, and 4058 // save the current extension in ProfitablyMovedExts as the latest 4059 // speculative promotion turned out to be unprofitable. 4060 TPT.rollback(LastKnownGood); 4061 ProfitablyMovedExts.push_back(I); 4062 continue; 4063 } 4064 // Continue promoting NewExts as far as doing so is profitable. 4065 SmallVector<Instruction *, 2> NewlyMovedExts; 4066 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4067 bool NewPromoted = false; 4068 for (auto ExtInst : NewlyMovedExts) { 4069 Instruction *MovedExt = cast<Instruction>(ExtInst); 4070 Value *ExtOperand = MovedExt->getOperand(0); 4071 // If we have reached to a load, we need this extra profitability check 4072 // as it could potentially be merged into an ext(load). 4073 if (isa<LoadInst>(ExtOperand) && 4074 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4075 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4076 continue; 4077 4078 ProfitablyMovedExts.push_back(MovedExt); 4079 NewPromoted = true; 4080 } 4081 4082 // If none of speculative promotions for NewExts is profitable, rollback 4083 // and save the current extension (I) as the last profitable extension. 4084 if (!NewPromoted) { 4085 TPT.rollback(LastKnownGood); 4086 ProfitablyMovedExts.push_back(I); 4087 continue; 4088 } 4089 // The promotion is profitable. 4090 Promoted = true; 4091 } 4092 return Promoted; 4093 } 4094 4095 /// Merging redundant sexts when one is dominating the other. 4096 bool CodeGenPrepare::mergeSExts(Function &F) { 4097 DominatorTree DT(F); 4098 bool Changed = false; 4099 for (auto &Entry : ValToSExtendedUses) { 4100 SExts &Insts = Entry.second; 4101 SExts CurPts; 4102 for (Instruction *Inst : Insts) { 4103 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4104 Inst->getOperand(0) != Entry.first) 4105 continue; 4106 bool inserted = false; 4107 for (auto &Pt : CurPts) { 4108 if (DT.dominates(Inst, Pt)) { 4109 Pt->replaceAllUsesWith(Inst); 4110 RemovedInsts.insert(Pt); 4111 Pt->removeFromParent(); 4112 Pt = Inst; 4113 inserted = true; 4114 Changed = true; 4115 break; 4116 } 4117 if (!DT.dominates(Pt, Inst)) 4118 // Give up if we need to merge in a common dominator as the 4119 // expermients show it is not profitable. 4120 continue; 4121 Inst->replaceAllUsesWith(Pt); 4122 RemovedInsts.insert(Inst); 4123 Inst->removeFromParent(); 4124 inserted = true; 4125 Changed = true; 4126 break; 4127 } 4128 if (!inserted) 4129 CurPts.push_back(Inst); 4130 } 4131 } 4132 return Changed; 4133 } 4134 4135 /// Return true, if an ext(load) can be formed from an extension in 4136 /// \p MovedExts. 4137 bool CodeGenPrepare::canFormExtLd( 4138 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4139 Instruction *&Inst, bool HasPromoted) { 4140 for (auto *MovedExtInst : MovedExts) { 4141 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4142 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4143 Inst = MovedExtInst; 4144 break; 4145 } 4146 } 4147 if (!LI) 4148 return false; 4149 4150 // If they're already in the same block, there's nothing to do. 4151 // Make the cheap checks first if we did not promote. 4152 // If we promoted, we need to check if it is indeed profitable. 4153 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4154 return false; 4155 4156 EVT VT = TLI->getValueType(*DL, Inst->getType()); 4157 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4158 4159 // If the load has other users and the truncate is not free, this probably 4160 // isn't worthwhile. 4161 if (!LI->hasOneUse() && (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4162 !TLI->isTruncateFree(Inst->getType(), LI->getType())) 4163 return false; 4164 4165 // Check whether the target supports casts folded into loads. 4166 unsigned LType; 4167 if (isa<ZExtInst>(Inst)) 4168 LType = ISD::ZEXTLOAD; 4169 else { 4170 assert(isa<SExtInst>(Inst) && "Unexpected ext type!"); 4171 LType = ISD::SEXTLOAD; 4172 } 4173 4174 return TLI->isLoadExtLegal(LType, VT, LoadVT); 4175 } 4176 4177 /// Move a zext or sext fed by a load into the same basic block as the load, 4178 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4179 /// extend into the load. 4180 /// 4181 /// E.g., 4182 /// \code 4183 /// %ld = load i32* %addr 4184 /// %add = add nuw i32 %ld, 4 4185 /// %zext = zext i32 %add to i64 4186 // \endcode 4187 /// => 4188 /// \code 4189 /// %ld = load i32* %addr 4190 /// %zext = zext i32 %ld to i64 4191 /// %add = add nuw i64 %zext, 4 4192 /// \encode 4193 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4194 /// allow us to match zext(load i32*) to i64. 4195 /// 4196 /// Also, try to promote the computations used to obtain a sign extended 4197 /// value used into memory accesses. 4198 /// E.g., 4199 /// \code 4200 /// a = add nsw i32 b, 3 4201 /// d = sext i32 a to i64 4202 /// e = getelementptr ..., i64 d 4203 /// \endcode 4204 /// => 4205 /// \code 4206 /// f = sext i32 b to i64 4207 /// a = add nsw i64 f, 3 4208 /// e = getelementptr ..., i64 a 4209 /// \endcode 4210 /// 4211 /// \p Inst[in/out] the extension may be modified during the process if some 4212 /// promotions apply. 4213 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4214 // ExtLoad formation and address type promotion infrastructure requires TLI to 4215 // be effective. 4216 if (!TLI) 4217 return false; 4218 4219 bool AllowPromotionWithoutCommonHeader = false; 4220 /// See if it is an interesting sext operations for the address type 4221 /// promotion before trying to promote it, e.g., the ones with the right 4222 /// type and used in memory accesses. 4223 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4224 *Inst, AllowPromotionWithoutCommonHeader); 4225 TypePromotionTransaction TPT(RemovedInsts); 4226 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4227 TPT.getRestorationPoint(); 4228 SmallVector<Instruction *, 1> Exts; 4229 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4230 Exts.push_back(Inst); 4231 4232 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4233 4234 // Look for a load being extended. 4235 LoadInst *LI = nullptr; 4236 Instruction *ExtFedByLoad; 4237 4238 // Try to promote a chain of computation if it allows to form an extended 4239 // load. 4240 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4241 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4242 TPT.commit(); 4243 // Move the extend into the same block as the load 4244 ExtFedByLoad->removeFromParent(); 4245 ExtFedByLoad->insertAfter(LI); 4246 // CGP does not check if the zext would be speculatively executed when moved 4247 // to the same basic block as the load. Preserving its original location 4248 // would pessimize the debugging experience, as well as negatively impact 4249 // the quality of sample pgo. We don't want to use "line 0" as that has a 4250 // size cost in the line-table section and logically the zext can be seen as 4251 // part of the load. Therefore we conservatively reuse the same debug 4252 // location for the load and the zext. 4253 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4254 ++NumExtsMoved; 4255 Inst = ExtFedByLoad; 4256 return true; 4257 } 4258 4259 // Continue promoting SExts if known as considerable depending on targets. 4260 if (ATPConsiderable && 4261 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4262 HasPromoted, TPT, SpeculativelyMovedExts)) 4263 return true; 4264 4265 TPT.rollback(LastKnownGood); 4266 return false; 4267 } 4268 4269 // Perform address type promotion if doing so is profitable. 4270 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4271 // instructions that sign extended the same initial value. However, if 4272 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4273 // extension is just profitable. 4274 bool CodeGenPrepare::performAddressTypePromotion( 4275 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4276 bool HasPromoted, TypePromotionTransaction &TPT, 4277 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4278 bool Promoted = false; 4279 SmallPtrSet<Instruction *, 1> UnhandledExts; 4280 bool AllSeenFirst = true; 4281 for (auto I : SpeculativelyMovedExts) { 4282 Value *HeadOfChain = I->getOperand(0); 4283 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4284 SeenChainsForSExt.find(HeadOfChain); 4285 // If there is an unhandled SExt which has the same header, try to promote 4286 // it as well. 4287 if (AlreadySeen != SeenChainsForSExt.end()) { 4288 if (AlreadySeen->second != nullptr) 4289 UnhandledExts.insert(AlreadySeen->second); 4290 AllSeenFirst = false; 4291 } 4292 } 4293 4294 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4295 SpeculativelyMovedExts.size() == 1)) { 4296 TPT.commit(); 4297 if (HasPromoted) 4298 Promoted = true; 4299 for (auto I : SpeculativelyMovedExts) { 4300 Value *HeadOfChain = I->getOperand(0); 4301 SeenChainsForSExt[HeadOfChain] = nullptr; 4302 ValToSExtendedUses[HeadOfChain].push_back(I); 4303 } 4304 // Update Inst as promotion happen. 4305 Inst = SpeculativelyMovedExts.pop_back_val(); 4306 } else { 4307 // This is the first chain visited from the header, keep the current chain 4308 // as unhandled. Defer to promote this until we encounter another SExt 4309 // chain derived from the same header. 4310 for (auto I : SpeculativelyMovedExts) { 4311 Value *HeadOfChain = I->getOperand(0); 4312 SeenChainsForSExt[HeadOfChain] = Inst; 4313 } 4314 return false; 4315 } 4316 4317 if (!AllSeenFirst && !UnhandledExts.empty()) 4318 for (auto VisitedSExt : UnhandledExts) { 4319 if (RemovedInsts.count(VisitedSExt)) 4320 continue; 4321 TypePromotionTransaction TPT(RemovedInsts); 4322 SmallVector<Instruction *, 1> Exts; 4323 SmallVector<Instruction *, 2> Chains; 4324 Exts.push_back(VisitedSExt); 4325 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 4326 TPT.commit(); 4327 if (HasPromoted) 4328 Promoted = true; 4329 for (auto I : Chains) { 4330 Value *HeadOfChain = I->getOperand(0); 4331 // Mark this as handled. 4332 SeenChainsForSExt[HeadOfChain] = nullptr; 4333 ValToSExtendedUses[HeadOfChain].push_back(I); 4334 } 4335 } 4336 return Promoted; 4337 } 4338 4339 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4340 BasicBlock *DefBB = I->getParent(); 4341 4342 // If the result of a {s|z}ext and its source are both live out, rewrite all 4343 // other uses of the source with result of extension. 4344 Value *Src = I->getOperand(0); 4345 if (Src->hasOneUse()) 4346 return false; 4347 4348 // Only do this xform if truncating is free. 4349 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4350 return false; 4351 4352 // Only safe to perform the optimization if the source is also defined in 4353 // this block. 4354 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4355 return false; 4356 4357 bool DefIsLiveOut = false; 4358 for (User *U : I->users()) { 4359 Instruction *UI = cast<Instruction>(U); 4360 4361 // Figure out which BB this ext is used in. 4362 BasicBlock *UserBB = UI->getParent(); 4363 if (UserBB == DefBB) continue; 4364 DefIsLiveOut = true; 4365 break; 4366 } 4367 if (!DefIsLiveOut) 4368 return false; 4369 4370 // Make sure none of the uses are PHI nodes. 4371 for (User *U : Src->users()) { 4372 Instruction *UI = cast<Instruction>(U); 4373 BasicBlock *UserBB = UI->getParent(); 4374 if (UserBB == DefBB) continue; 4375 // Be conservative. We don't want this xform to end up introducing 4376 // reloads just before load / store instructions. 4377 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4378 return false; 4379 } 4380 4381 // InsertedTruncs - Only insert one trunc in each block once. 4382 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4383 4384 bool MadeChange = false; 4385 for (Use &U : Src->uses()) { 4386 Instruction *User = cast<Instruction>(U.getUser()); 4387 4388 // Figure out which BB this ext is used in. 4389 BasicBlock *UserBB = User->getParent(); 4390 if (UserBB == DefBB) continue; 4391 4392 // Both src and def are live in this block. Rewrite the use. 4393 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4394 4395 if (!InsertedTrunc) { 4396 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4397 assert(InsertPt != UserBB->end()); 4398 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4399 InsertedInsts.insert(InsertedTrunc); 4400 } 4401 4402 // Replace a use of the {s|z}ext source with a use of the result. 4403 U = InsertedTrunc; 4404 ++NumExtUses; 4405 MadeChange = true; 4406 } 4407 4408 return MadeChange; 4409 } 4410 4411 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4412 // just after the load if the target can fold this into one extload instruction, 4413 // with the hope of eliminating some of the other later "and" instructions using 4414 // the loaded value. "and"s that are made trivially redundant by the insertion 4415 // of the new "and" are removed by this function, while others (e.g. those whose 4416 // path from the load goes through a phi) are left for isel to potentially 4417 // remove. 4418 // 4419 // For example: 4420 // 4421 // b0: 4422 // x = load i32 4423 // ... 4424 // b1: 4425 // y = and x, 0xff 4426 // z = use y 4427 // 4428 // becomes: 4429 // 4430 // b0: 4431 // x = load i32 4432 // x' = and x, 0xff 4433 // ... 4434 // b1: 4435 // z = use x' 4436 // 4437 // whereas: 4438 // 4439 // b0: 4440 // x1 = load i32 4441 // ... 4442 // b1: 4443 // x2 = load i32 4444 // ... 4445 // b2: 4446 // x = phi x1, x2 4447 // y = and x, 0xff 4448 // 4449 // becomes (after a call to optimizeLoadExt for each load): 4450 // 4451 // b0: 4452 // x1 = load i32 4453 // x1' = and x1, 0xff 4454 // ... 4455 // b1: 4456 // x2 = load i32 4457 // x2' = and x2, 0xff 4458 // ... 4459 // b2: 4460 // x = phi x1', x2' 4461 // y = and x, 0xff 4462 // 4463 4464 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 4465 4466 if (!Load->isSimple() || 4467 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 4468 return false; 4469 4470 // Skip loads we've already transformed. 4471 if (Load->hasOneUse() && 4472 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 4473 return false; 4474 4475 // Look at all uses of Load, looking through phis, to determine how many bits 4476 // of the loaded value are needed. 4477 SmallVector<Instruction *, 8> WorkList; 4478 SmallPtrSet<Instruction *, 16> Visited; 4479 SmallVector<Instruction *, 8> AndsToMaybeRemove; 4480 for (auto *U : Load->users()) 4481 WorkList.push_back(cast<Instruction>(U)); 4482 4483 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 4484 unsigned BitWidth = LoadResultVT.getSizeInBits(); 4485 APInt DemandBits(BitWidth, 0); 4486 APInt WidestAndBits(BitWidth, 0); 4487 4488 while (!WorkList.empty()) { 4489 Instruction *I = WorkList.back(); 4490 WorkList.pop_back(); 4491 4492 // Break use-def graph loops. 4493 if (!Visited.insert(I).second) 4494 continue; 4495 4496 // For a PHI node, push all of its users. 4497 if (auto *Phi = dyn_cast<PHINode>(I)) { 4498 for (auto *U : Phi->users()) 4499 WorkList.push_back(cast<Instruction>(U)); 4500 continue; 4501 } 4502 4503 switch (I->getOpcode()) { 4504 case llvm::Instruction::And: { 4505 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 4506 if (!AndC) 4507 return false; 4508 APInt AndBits = AndC->getValue(); 4509 DemandBits |= AndBits; 4510 // Keep track of the widest and mask we see. 4511 if (AndBits.ugt(WidestAndBits)) 4512 WidestAndBits = AndBits; 4513 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 4514 AndsToMaybeRemove.push_back(I); 4515 break; 4516 } 4517 4518 case llvm::Instruction::Shl: { 4519 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 4520 if (!ShlC) 4521 return false; 4522 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 4523 DemandBits.setLowBits(BitWidth - ShiftAmt); 4524 break; 4525 } 4526 4527 case llvm::Instruction::Trunc: { 4528 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 4529 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 4530 DemandBits.setLowBits(TruncBitWidth); 4531 break; 4532 } 4533 4534 default: 4535 return false; 4536 } 4537 } 4538 4539 uint32_t ActiveBits = DemandBits.getActiveBits(); 4540 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 4541 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 4542 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 4543 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 4544 // followed by an AND. 4545 // TODO: Look into removing this restriction by fixing backends to either 4546 // return false for isLoadExtLegal for i1 or have them select this pattern to 4547 // a single instruction. 4548 // 4549 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 4550 // mask, since these are the only ands that will be removed by isel. 4551 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 4552 WidestAndBits != DemandBits) 4553 return false; 4554 4555 LLVMContext &Ctx = Load->getType()->getContext(); 4556 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 4557 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 4558 4559 // Reject cases that won't be matched as extloads. 4560 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 4561 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 4562 return false; 4563 4564 IRBuilder<> Builder(Load->getNextNode()); 4565 auto *NewAnd = dyn_cast<Instruction>( 4566 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 4567 // Mark this instruction as "inserted by CGP", so that other 4568 // optimizations don't touch it. 4569 InsertedInsts.insert(NewAnd); 4570 4571 // Replace all uses of load with new and (except for the use of load in the 4572 // new and itself). 4573 Load->replaceAllUsesWith(NewAnd); 4574 NewAnd->setOperand(0, Load); 4575 4576 // Remove any and instructions that are now redundant. 4577 for (auto *And : AndsToMaybeRemove) 4578 // Check that the and mask is the same as the one we decided to put on the 4579 // new and. 4580 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 4581 And->replaceAllUsesWith(NewAnd); 4582 if (&*CurInstIterator == And) 4583 CurInstIterator = std::next(And->getIterator()); 4584 And->eraseFromParent(); 4585 ++NumAndUses; 4586 } 4587 4588 ++NumAndsAdded; 4589 return true; 4590 } 4591 4592 /// Check if V (an operand of a select instruction) is an expensive instruction 4593 /// that is only used once. 4594 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4595 auto *I = dyn_cast<Instruction>(V); 4596 // If it's safe to speculatively execute, then it should not have side 4597 // effects; therefore, it's safe to sink and possibly *not* execute. 4598 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4599 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4600 } 4601 4602 /// Returns true if a SelectInst should be turned into an explicit branch. 4603 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4604 const TargetLowering *TLI, 4605 SelectInst *SI) { 4606 // If even a predictable select is cheap, then a branch can't be cheaper. 4607 if (!TLI->isPredictableSelectExpensive()) 4608 return false; 4609 4610 // FIXME: This should use the same heuristics as IfConversion to determine 4611 // whether a select is better represented as a branch. 4612 4613 // If metadata tells us that the select condition is obviously predictable, 4614 // then we want to replace the select with a branch. 4615 uint64_t TrueWeight, FalseWeight; 4616 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 4617 uint64_t Max = std::max(TrueWeight, FalseWeight); 4618 uint64_t Sum = TrueWeight + FalseWeight; 4619 if (Sum != 0) { 4620 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 4621 if (Probability > TLI->getPredictableBranchThreshold()) 4622 return true; 4623 } 4624 } 4625 4626 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4627 4628 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4629 // comparison condition. If the compare has more than one use, there's 4630 // probably another cmov or setcc around, so it's not worth emitting a branch. 4631 if (!Cmp || !Cmp->hasOneUse()) 4632 return false; 4633 4634 // If either operand of the select is expensive and only needed on one side 4635 // of the select, we should form a branch. 4636 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4637 sinkSelectOperand(TTI, SI->getFalseValue())) 4638 return true; 4639 4640 return false; 4641 } 4642 4643 /// If \p isTrue is true, return the true value of \p SI, otherwise return 4644 /// false value of \p SI. If the true/false value of \p SI is defined by any 4645 /// select instructions in \p Selects, look through the defining select 4646 /// instruction until the true/false value is not defined in \p Selects. 4647 static Value *getTrueOrFalseValue( 4648 SelectInst *SI, bool isTrue, 4649 const SmallPtrSet<const Instruction *, 2> &Selects) { 4650 Value *V; 4651 4652 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 4653 DefSI = dyn_cast<SelectInst>(V)) { 4654 assert(DefSI->getCondition() == SI->getCondition() && 4655 "The condition of DefSI does not match with SI"); 4656 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 4657 } 4658 return V; 4659 } 4660 4661 /// If we have a SelectInst that will likely profit from branch prediction, 4662 /// turn it into a branch. 4663 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4664 // Find all consecutive select instructions that share the same condition. 4665 SmallVector<SelectInst *, 2> ASI; 4666 ASI.push_back(SI); 4667 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 4668 It != SI->getParent()->end(); ++It) { 4669 SelectInst *I = dyn_cast<SelectInst>(&*It); 4670 if (I && SI->getCondition() == I->getCondition()) { 4671 ASI.push_back(I); 4672 } else { 4673 break; 4674 } 4675 } 4676 4677 SelectInst *LastSI = ASI.back(); 4678 // Increment the current iterator to skip all the rest of select instructions 4679 // because they will be either "not lowered" or "all lowered" to branch. 4680 CurInstIterator = std::next(LastSI->getIterator()); 4681 4682 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4683 4684 // Can we convert the 'select' to CF ? 4685 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 4686 SI->getMetadata(LLVMContext::MD_unpredictable)) 4687 return false; 4688 4689 TargetLowering::SelectSupportKind SelectKind; 4690 if (VectorCond) 4691 SelectKind = TargetLowering::VectorMaskSelect; 4692 else if (SI->getType()->isVectorTy()) 4693 SelectKind = TargetLowering::ScalarCondVectorVal; 4694 else 4695 SelectKind = TargetLowering::ScalarValSelect; 4696 4697 if (TLI->isSelectSupported(SelectKind) && 4698 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 4699 return false; 4700 4701 ModifiedDT = true; 4702 4703 // Transform a sequence like this: 4704 // start: 4705 // %cmp = cmp uge i32 %a, %b 4706 // %sel = select i1 %cmp, i32 %c, i32 %d 4707 // 4708 // Into: 4709 // start: 4710 // %cmp = cmp uge i32 %a, %b 4711 // br i1 %cmp, label %select.true, label %select.false 4712 // select.true: 4713 // br label %select.end 4714 // select.false: 4715 // br label %select.end 4716 // select.end: 4717 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4718 // 4719 // In addition, we may sink instructions that produce %c or %d from 4720 // the entry block into the destination(s) of the new branch. 4721 // If the true or false blocks do not contain a sunken instruction, that 4722 // block and its branch may be optimized away. In that case, one side of the 4723 // first branch will point directly to select.end, and the corresponding PHI 4724 // predecessor block will be the start block. 4725 4726 // First, we split the block containing the select into 2 blocks. 4727 BasicBlock *StartBlock = SI->getParent(); 4728 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 4729 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4730 4731 // Delete the unconditional branch that was just created by the split. 4732 StartBlock->getTerminator()->eraseFromParent(); 4733 4734 // These are the new basic blocks for the conditional branch. 4735 // At least one will become an actual new basic block. 4736 BasicBlock *TrueBlock = nullptr; 4737 BasicBlock *FalseBlock = nullptr; 4738 BranchInst *TrueBranch = nullptr; 4739 BranchInst *FalseBranch = nullptr; 4740 4741 // Sink expensive instructions into the conditional blocks to avoid executing 4742 // them speculatively. 4743 for (SelectInst *SI : ASI) { 4744 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4745 if (TrueBlock == nullptr) { 4746 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4747 EndBlock->getParent(), EndBlock); 4748 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4749 } 4750 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4751 TrueInst->moveBefore(TrueBranch); 4752 } 4753 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4754 if (FalseBlock == nullptr) { 4755 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4756 EndBlock->getParent(), EndBlock); 4757 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4758 } 4759 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4760 FalseInst->moveBefore(FalseBranch); 4761 } 4762 } 4763 4764 // If there was nothing to sink, then arbitrarily choose the 'false' side 4765 // for a new input value to the PHI. 4766 if (TrueBlock == FalseBlock) { 4767 assert(TrueBlock == nullptr && 4768 "Unexpected basic block transform while optimizing select"); 4769 4770 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4771 EndBlock->getParent(), EndBlock); 4772 BranchInst::Create(EndBlock, FalseBlock); 4773 } 4774 4775 // Insert the real conditional branch based on the original condition. 4776 // If we did not create a new block for one of the 'true' or 'false' paths 4777 // of the condition, it means that side of the branch goes to the end block 4778 // directly and the path originates from the start block from the point of 4779 // view of the new PHI. 4780 BasicBlock *TT, *FT; 4781 if (TrueBlock == nullptr) { 4782 TT = EndBlock; 4783 FT = FalseBlock; 4784 TrueBlock = StartBlock; 4785 } else if (FalseBlock == nullptr) { 4786 TT = TrueBlock; 4787 FT = EndBlock; 4788 FalseBlock = StartBlock; 4789 } else { 4790 TT = TrueBlock; 4791 FT = FalseBlock; 4792 } 4793 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 4794 4795 SmallPtrSet<const Instruction *, 2> INS; 4796 INS.insert(ASI.begin(), ASI.end()); 4797 // Use reverse iterator because later select may use the value of the 4798 // earlier select, and we need to propagate value through earlier select 4799 // to get the PHI operand. 4800 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 4801 SelectInst *SI = *It; 4802 // The select itself is replaced with a PHI Node. 4803 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4804 PN->takeName(SI); 4805 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 4806 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 4807 4808 SI->replaceAllUsesWith(PN); 4809 SI->eraseFromParent(); 4810 INS.erase(SI); 4811 ++NumSelectsExpanded; 4812 } 4813 4814 // Instruct OptimizeBlock to skip to the next block. 4815 CurInstIterator = StartBlock->end(); 4816 return true; 4817 } 4818 4819 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4820 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4821 int SplatElem = -1; 4822 for (unsigned i = 0; i < Mask.size(); ++i) { 4823 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4824 return false; 4825 SplatElem = Mask[i]; 4826 } 4827 4828 return true; 4829 } 4830 4831 /// Some targets have expensive vector shifts if the lanes aren't all the same 4832 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4833 /// it's often worth sinking a shufflevector splat down to its use so that 4834 /// codegen can spot all lanes are identical. 4835 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4836 BasicBlock *DefBB = SVI->getParent(); 4837 4838 // Only do this xform if variable vector shifts are particularly expensive. 4839 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4840 return false; 4841 4842 // We only expect better codegen by sinking a shuffle if we can recognise a 4843 // constant splat. 4844 if (!isBroadcastShuffle(SVI)) 4845 return false; 4846 4847 // InsertedShuffles - Only insert a shuffle in each block once. 4848 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4849 4850 bool MadeChange = false; 4851 for (User *U : SVI->users()) { 4852 Instruction *UI = cast<Instruction>(U); 4853 4854 // Figure out which BB this ext is used in. 4855 BasicBlock *UserBB = UI->getParent(); 4856 if (UserBB == DefBB) continue; 4857 4858 // For now only apply this when the splat is used by a shift instruction. 4859 if (!UI->isShift()) continue; 4860 4861 // Everything checks out, sink the shuffle if the user's block doesn't 4862 // already have a copy. 4863 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4864 4865 if (!InsertedShuffle) { 4866 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4867 assert(InsertPt != UserBB->end()); 4868 InsertedShuffle = 4869 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4870 SVI->getOperand(2), "", &*InsertPt); 4871 } 4872 4873 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4874 MadeChange = true; 4875 } 4876 4877 // If we removed all uses, nuke the shuffle. 4878 if (SVI->use_empty()) { 4879 SVI->eraseFromParent(); 4880 MadeChange = true; 4881 } 4882 4883 return MadeChange; 4884 } 4885 4886 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 4887 if (!TLI || !DL) 4888 return false; 4889 4890 Value *Cond = SI->getCondition(); 4891 Type *OldType = Cond->getType(); 4892 LLVMContext &Context = Cond->getContext(); 4893 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 4894 unsigned RegWidth = RegType.getSizeInBits(); 4895 4896 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 4897 return false; 4898 4899 // If the register width is greater than the type width, expand the condition 4900 // of the switch instruction and each case constant to the width of the 4901 // register. By widening the type of the switch condition, subsequent 4902 // comparisons (for case comparisons) will not need to be extended to the 4903 // preferred register width, so we will potentially eliminate N-1 extends, 4904 // where N is the number of cases in the switch. 4905 auto *NewType = Type::getIntNTy(Context, RegWidth); 4906 4907 // Zero-extend the switch condition and case constants unless the switch 4908 // condition is a function argument that is already being sign-extended. 4909 // In that case, we can avoid an unnecessary mask/extension by sign-extending 4910 // everything instead. 4911 Instruction::CastOps ExtType = Instruction::ZExt; 4912 if (auto *Arg = dyn_cast<Argument>(Cond)) 4913 if (Arg->hasSExtAttr()) 4914 ExtType = Instruction::SExt; 4915 4916 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 4917 ExtInst->insertBefore(SI); 4918 SI->setCondition(ExtInst); 4919 for (auto Case : SI->cases()) { 4920 APInt NarrowConst = Case.getCaseValue()->getValue(); 4921 APInt WideConst = (ExtType == Instruction::ZExt) ? 4922 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 4923 Case.setValue(ConstantInt::get(Context, WideConst)); 4924 } 4925 4926 return true; 4927 } 4928 4929 namespace { 4930 /// \brief Helper class to promote a scalar operation to a vector one. 4931 /// This class is used to move downward extractelement transition. 4932 /// E.g., 4933 /// a = vector_op <2 x i32> 4934 /// b = extractelement <2 x i32> a, i32 0 4935 /// c = scalar_op b 4936 /// store c 4937 /// 4938 /// => 4939 /// a = vector_op <2 x i32> 4940 /// c = vector_op a (equivalent to scalar_op on the related lane) 4941 /// * d = extractelement <2 x i32> c, i32 0 4942 /// * store d 4943 /// Assuming both extractelement and store can be combine, we get rid of the 4944 /// transition. 4945 class VectorPromoteHelper { 4946 /// DataLayout associated with the current module. 4947 const DataLayout &DL; 4948 4949 /// Used to perform some checks on the legality of vector operations. 4950 const TargetLowering &TLI; 4951 4952 /// Used to estimated the cost of the promoted chain. 4953 const TargetTransformInfo &TTI; 4954 4955 /// The transition being moved downwards. 4956 Instruction *Transition; 4957 /// The sequence of instructions to be promoted. 4958 SmallVector<Instruction *, 4> InstsToBePromoted; 4959 /// Cost of combining a store and an extract. 4960 unsigned StoreExtractCombineCost; 4961 /// Instruction that will be combined with the transition. 4962 Instruction *CombineInst; 4963 4964 /// \brief The instruction that represents the current end of the transition. 4965 /// Since we are faking the promotion until we reach the end of the chain 4966 /// of computation, we need a way to get the current end of the transition. 4967 Instruction *getEndOfTransition() const { 4968 if (InstsToBePromoted.empty()) 4969 return Transition; 4970 return InstsToBePromoted.back(); 4971 } 4972 4973 /// \brief Return the index of the original value in the transition. 4974 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4975 /// c, is at index 0. 4976 unsigned getTransitionOriginalValueIdx() const { 4977 assert(isa<ExtractElementInst>(Transition) && 4978 "Other kind of transitions are not supported yet"); 4979 return 0; 4980 } 4981 4982 /// \brief Return the index of the index in the transition. 4983 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4984 /// is at index 1. 4985 unsigned getTransitionIdx() const { 4986 assert(isa<ExtractElementInst>(Transition) && 4987 "Other kind of transitions are not supported yet"); 4988 return 1; 4989 } 4990 4991 /// \brief Get the type of the transition. 4992 /// This is the type of the original value. 4993 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4994 /// transition is <2 x i32>. 4995 Type *getTransitionType() const { 4996 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4997 } 4998 4999 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5000 /// I.e., we have the following sequence: 5001 /// Def = Transition <ty1> a to <ty2> 5002 /// b = ToBePromoted <ty2> Def, ... 5003 /// => 5004 /// b = ToBePromoted <ty1> a, ... 5005 /// Def = Transition <ty1> ToBePromoted to <ty2> 5006 void promoteImpl(Instruction *ToBePromoted); 5007 5008 /// \brief Check whether or not it is profitable to promote all the 5009 /// instructions enqueued to be promoted. 5010 bool isProfitableToPromote() { 5011 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5012 unsigned Index = isa<ConstantInt>(ValIdx) 5013 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5014 : -1; 5015 Type *PromotedType = getTransitionType(); 5016 5017 StoreInst *ST = cast<StoreInst>(CombineInst); 5018 unsigned AS = ST->getPointerAddressSpace(); 5019 unsigned Align = ST->getAlignment(); 5020 // Check if this store is supported. 5021 if (!TLI.allowsMisalignedMemoryAccesses( 5022 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5023 Align)) { 5024 // If this is not supported, there is no way we can combine 5025 // the extract with the store. 5026 return false; 5027 } 5028 5029 // The scalar chain of computation has to pay for the transition 5030 // scalar to vector. 5031 // The vector chain has to account for the combining cost. 5032 uint64_t ScalarCost = 5033 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5034 uint64_t VectorCost = StoreExtractCombineCost; 5035 for (const auto &Inst : InstsToBePromoted) { 5036 // Compute the cost. 5037 // By construction, all instructions being promoted are arithmetic ones. 5038 // Moreover, one argument is a constant that can be viewed as a splat 5039 // constant. 5040 Value *Arg0 = Inst->getOperand(0); 5041 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5042 isa<ConstantFP>(Arg0); 5043 TargetTransformInfo::OperandValueKind Arg0OVK = 5044 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5045 : TargetTransformInfo::OK_AnyValue; 5046 TargetTransformInfo::OperandValueKind Arg1OVK = 5047 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5048 : TargetTransformInfo::OK_AnyValue; 5049 ScalarCost += TTI.getArithmeticInstrCost( 5050 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5051 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5052 Arg0OVK, Arg1OVK); 5053 } 5054 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5055 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5056 return ScalarCost > VectorCost; 5057 } 5058 5059 /// \brief Generate a constant vector with \p Val with the same 5060 /// number of elements as the transition. 5061 /// \p UseSplat defines whether or not \p Val should be replicated 5062 /// across the whole vector. 5063 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5064 /// otherwise we generate a vector with as many undef as possible: 5065 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5066 /// used at the index of the extract. 5067 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5068 unsigned ExtractIdx = UINT_MAX; 5069 if (!UseSplat) { 5070 // If we cannot determine where the constant must be, we have to 5071 // use a splat constant. 5072 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5073 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5074 ExtractIdx = CstVal->getSExtValue(); 5075 else 5076 UseSplat = true; 5077 } 5078 5079 unsigned End = getTransitionType()->getVectorNumElements(); 5080 if (UseSplat) 5081 return ConstantVector::getSplat(End, Val); 5082 5083 SmallVector<Constant *, 4> ConstVec; 5084 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5085 for (unsigned Idx = 0; Idx != End; ++Idx) { 5086 if (Idx == ExtractIdx) 5087 ConstVec.push_back(Val); 5088 else 5089 ConstVec.push_back(UndefVal); 5090 } 5091 return ConstantVector::get(ConstVec); 5092 } 5093 5094 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5095 /// in \p Use can trigger undefined behavior. 5096 static bool canCauseUndefinedBehavior(const Instruction *Use, 5097 unsigned OperandIdx) { 5098 // This is not safe to introduce undef when the operand is on 5099 // the right hand side of a division-like instruction. 5100 if (OperandIdx != 1) 5101 return false; 5102 switch (Use->getOpcode()) { 5103 default: 5104 return false; 5105 case Instruction::SDiv: 5106 case Instruction::UDiv: 5107 case Instruction::SRem: 5108 case Instruction::URem: 5109 return true; 5110 case Instruction::FDiv: 5111 case Instruction::FRem: 5112 return !Use->hasNoNaNs(); 5113 } 5114 llvm_unreachable(nullptr); 5115 } 5116 5117 public: 5118 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5119 const TargetTransformInfo &TTI, Instruction *Transition, 5120 unsigned CombineCost) 5121 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5122 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5123 assert(Transition && "Do not know how to promote null"); 5124 } 5125 5126 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5127 bool canPromote(const Instruction *ToBePromoted) const { 5128 // We could support CastInst too. 5129 return isa<BinaryOperator>(ToBePromoted); 5130 } 5131 5132 /// \brief Check if it is profitable to promote \p ToBePromoted 5133 /// by moving downward the transition through. 5134 bool shouldPromote(const Instruction *ToBePromoted) const { 5135 // Promote only if all the operands can be statically expanded. 5136 // Indeed, we do not want to introduce any new kind of transitions. 5137 for (const Use &U : ToBePromoted->operands()) { 5138 const Value *Val = U.get(); 5139 if (Val == getEndOfTransition()) { 5140 // If the use is a division and the transition is on the rhs, 5141 // we cannot promote the operation, otherwise we may create a 5142 // division by zero. 5143 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5144 return false; 5145 continue; 5146 } 5147 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5148 !isa<ConstantFP>(Val)) 5149 return false; 5150 } 5151 // Check that the resulting operation is legal. 5152 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5153 if (!ISDOpcode) 5154 return false; 5155 return StressStoreExtract || 5156 TLI.isOperationLegalOrCustom( 5157 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5158 } 5159 5160 /// \brief Check whether or not \p Use can be combined 5161 /// with the transition. 5162 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5163 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5164 5165 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5166 void enqueueForPromotion(Instruction *ToBePromoted) { 5167 InstsToBePromoted.push_back(ToBePromoted); 5168 } 5169 5170 /// \brief Set the instruction that will be combined with the transition. 5171 void recordCombineInstruction(Instruction *ToBeCombined) { 5172 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5173 CombineInst = ToBeCombined; 5174 } 5175 5176 /// \brief Promote all the instructions enqueued for promotion if it is 5177 /// is profitable. 5178 /// \return True if the promotion happened, false otherwise. 5179 bool promote() { 5180 // Check if there is something to promote. 5181 // Right now, if we do not have anything to combine with, 5182 // we assume the promotion is not profitable. 5183 if (InstsToBePromoted.empty() || !CombineInst) 5184 return false; 5185 5186 // Check cost. 5187 if (!StressStoreExtract && !isProfitableToPromote()) 5188 return false; 5189 5190 // Promote. 5191 for (auto &ToBePromoted : InstsToBePromoted) 5192 promoteImpl(ToBePromoted); 5193 InstsToBePromoted.clear(); 5194 return true; 5195 } 5196 }; 5197 } // End of anonymous namespace. 5198 5199 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5200 // At this point, we know that all the operands of ToBePromoted but Def 5201 // can be statically promoted. 5202 // For Def, we need to use its parameter in ToBePromoted: 5203 // b = ToBePromoted ty1 a 5204 // Def = Transition ty1 b to ty2 5205 // Move the transition down. 5206 // 1. Replace all uses of the promoted operation by the transition. 5207 // = ... b => = ... Def. 5208 assert(ToBePromoted->getType() == Transition->getType() && 5209 "The type of the result of the transition does not match " 5210 "the final type"); 5211 ToBePromoted->replaceAllUsesWith(Transition); 5212 // 2. Update the type of the uses. 5213 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5214 Type *TransitionTy = getTransitionType(); 5215 ToBePromoted->mutateType(TransitionTy); 5216 // 3. Update all the operands of the promoted operation with promoted 5217 // operands. 5218 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5219 for (Use &U : ToBePromoted->operands()) { 5220 Value *Val = U.get(); 5221 Value *NewVal = nullptr; 5222 if (Val == Transition) 5223 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5224 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5225 isa<ConstantFP>(Val)) { 5226 // Use a splat constant if it is not safe to use undef. 5227 NewVal = getConstantVector( 5228 cast<Constant>(Val), 5229 isa<UndefValue>(Val) || 5230 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5231 } else 5232 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5233 "this?"); 5234 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5235 } 5236 Transition->removeFromParent(); 5237 Transition->insertAfter(ToBePromoted); 5238 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5239 } 5240 5241 /// Some targets can do store(extractelement) with one instruction. 5242 /// Try to push the extractelement towards the stores when the target 5243 /// has this feature and this is profitable. 5244 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5245 unsigned CombineCost = UINT_MAX; 5246 if (DisableStoreExtract || !TLI || 5247 (!StressStoreExtract && 5248 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5249 Inst->getOperand(1), CombineCost))) 5250 return false; 5251 5252 // At this point we know that Inst is a vector to scalar transition. 5253 // Try to move it down the def-use chain, until: 5254 // - We can combine the transition with its single use 5255 // => we got rid of the transition. 5256 // - We escape the current basic block 5257 // => we would need to check that we are moving it at a cheaper place and 5258 // we do not do that for now. 5259 BasicBlock *Parent = Inst->getParent(); 5260 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5261 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5262 // If the transition has more than one use, assume this is not going to be 5263 // beneficial. 5264 while (Inst->hasOneUse()) { 5265 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5266 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5267 5268 if (ToBePromoted->getParent() != Parent) { 5269 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5270 << ToBePromoted->getParent()->getName() 5271 << ") than the transition (" << Parent->getName() << ").\n"); 5272 return false; 5273 } 5274 5275 if (VPH.canCombine(ToBePromoted)) { 5276 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5277 << "will be combined with: " << *ToBePromoted << '\n'); 5278 VPH.recordCombineInstruction(ToBePromoted); 5279 bool Changed = VPH.promote(); 5280 NumStoreExtractExposed += Changed; 5281 return Changed; 5282 } 5283 5284 DEBUG(dbgs() << "Try promoting.\n"); 5285 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5286 return false; 5287 5288 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5289 5290 VPH.enqueueForPromotion(ToBePromoted); 5291 Inst = ToBePromoted; 5292 } 5293 return false; 5294 } 5295 5296 /// For the instruction sequence of store below, F and I values 5297 /// are bundled together as an i64 value before being stored into memory. 5298 /// Sometimes it is more efficent to generate separate stores for F and I, 5299 /// which can remove the bitwise instructions or sink them to colder places. 5300 /// 5301 /// (store (or (zext (bitcast F to i32) to i64), 5302 /// (shl (zext I to i64), 32)), addr) --> 5303 /// (store F, addr) and (store I, addr+4) 5304 /// 5305 /// Similarly, splitting for other merged store can also be beneficial, like: 5306 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5307 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5308 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5309 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5310 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5311 /// 5312 /// We allow each target to determine specifically which kind of splitting is 5313 /// supported. 5314 /// 5315 /// The store patterns are commonly seen from the simple code snippet below 5316 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5317 /// void goo(const std::pair<int, float> &); 5318 /// hoo() { 5319 /// ... 5320 /// goo(std::make_pair(tmp, ftmp)); 5321 /// ... 5322 /// } 5323 /// 5324 /// Although we already have similar splitting in DAG Combine, we duplicate 5325 /// it in CodeGenPrepare to catch the case in which pattern is across 5326 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5327 /// during code expansion. 5328 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5329 const TargetLowering &TLI) { 5330 // Handle simple but common cases only. 5331 Type *StoreType = SI.getValueOperand()->getType(); 5332 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5333 DL.getTypeSizeInBits(StoreType) == 0) 5334 return false; 5335 5336 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5337 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5338 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5339 DL.getTypeSizeInBits(SplitStoreType)) 5340 return false; 5341 5342 // Match the following patterns: 5343 // (store (or (zext LValue to i64), 5344 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5345 // or 5346 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5347 // (zext LValue to i64), 5348 // Expect both operands of OR and the first operand of SHL have only 5349 // one use. 5350 Value *LValue, *HValue; 5351 if (!match(SI.getValueOperand(), 5352 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 5353 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 5354 m_SpecificInt(HalfValBitSize)))))) 5355 return false; 5356 5357 // Check LValue and HValue are int with size less or equal than 32. 5358 if (!LValue->getType()->isIntegerTy() || 5359 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 5360 !HValue->getType()->isIntegerTy() || 5361 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 5362 return false; 5363 5364 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 5365 // as the input of target query. 5366 auto *LBC = dyn_cast<BitCastInst>(LValue); 5367 auto *HBC = dyn_cast<BitCastInst>(HValue); 5368 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 5369 : EVT::getEVT(LValue->getType()); 5370 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 5371 : EVT::getEVT(HValue->getType()); 5372 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 5373 return false; 5374 5375 // Start to split store. 5376 IRBuilder<> Builder(SI.getContext()); 5377 Builder.SetInsertPoint(&SI); 5378 5379 // If LValue/HValue is a bitcast in another BB, create a new one in current 5380 // BB so it may be merged with the splitted stores by dag combiner. 5381 if (LBC && LBC->getParent() != SI.getParent()) 5382 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 5383 if (HBC && HBC->getParent() != SI.getParent()) 5384 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 5385 5386 auto CreateSplitStore = [&](Value *V, bool Upper) { 5387 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 5388 Value *Addr = Builder.CreateBitCast( 5389 SI.getOperand(1), 5390 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 5391 if (Upper) 5392 Addr = Builder.CreateGEP( 5393 SplitStoreType, Addr, 5394 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 5395 Builder.CreateAlignedStore( 5396 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 5397 }; 5398 5399 CreateSplitStore(LValue, false); 5400 CreateSplitStore(HValue, true); 5401 5402 // Delete the old store. 5403 SI.eraseFromParent(); 5404 return true; 5405 } 5406 5407 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5408 // Bail out if we inserted the instruction to prevent optimizations from 5409 // stepping on each other's toes. 5410 if (InsertedInsts.count(I)) 5411 return false; 5412 5413 if (PHINode *P = dyn_cast<PHINode>(I)) { 5414 // It is possible for very late stage optimizations (such as SimplifyCFG) 5415 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5416 // trivial PHI, go ahead and zap it here. 5417 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 5418 P->replaceAllUsesWith(V); 5419 P->eraseFromParent(); 5420 ++NumPHIsElim; 5421 return true; 5422 } 5423 return false; 5424 } 5425 5426 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5427 // If the source of the cast is a constant, then this should have 5428 // already been constant folded. The only reason NOT to constant fold 5429 // it is if something (e.g. LSR) was careful to place the constant 5430 // evaluation in a block other than then one that uses it (e.g. to hoist 5431 // the address of globals out of a loop). If this is the case, we don't 5432 // want to forward-subst the cast. 5433 if (isa<Constant>(CI->getOperand(0))) 5434 return false; 5435 5436 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5437 return true; 5438 5439 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5440 /// Sink a zext or sext into its user blocks if the target type doesn't 5441 /// fit in one register 5442 if (TLI && 5443 TLI->getTypeAction(CI->getContext(), 5444 TLI->getValueType(*DL, CI->getType())) == 5445 TargetLowering::TypeExpandInteger) { 5446 return SinkCast(CI); 5447 } else { 5448 bool MadeChange = optimizeExt(I); 5449 return MadeChange | optimizeExtUses(I); 5450 } 5451 } 5452 return false; 5453 } 5454 5455 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5456 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5457 return OptimizeCmpExpression(CI, TLI); 5458 5459 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5460 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 5461 if (TLI) { 5462 bool Modified = optimizeLoadExt(LI); 5463 unsigned AS = LI->getPointerAddressSpace(); 5464 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 5465 return Modified; 5466 } 5467 return false; 5468 } 5469 5470 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 5471 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 5472 return true; 5473 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 5474 if (TLI) { 5475 unsigned AS = SI->getPointerAddressSpace(); 5476 return optimizeMemoryInst(I, SI->getOperand(1), 5477 SI->getOperand(0)->getType(), AS); 5478 } 5479 return false; 5480 } 5481 5482 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 5483 unsigned AS = RMW->getPointerAddressSpace(); 5484 return optimizeMemoryInst(I, RMW->getPointerOperand(), 5485 RMW->getType(), AS); 5486 } 5487 5488 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 5489 unsigned AS = CmpX->getPointerAddressSpace(); 5490 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 5491 CmpX->getCompareOperand()->getType(), AS); 5492 } 5493 5494 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 5495 5496 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 5497 EnableAndCmpSinking && TLI) 5498 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 5499 5500 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 5501 BinOp->getOpcode() == Instruction::LShr)) { 5502 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 5503 if (TLI && CI && TLI->hasExtractBitsInsn()) 5504 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 5505 5506 return false; 5507 } 5508 5509 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 5510 if (GEPI->hasAllZeroIndices()) { 5511 /// The GEP operand must be a pointer, so must its result -> BitCast 5512 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 5513 GEPI->getName(), GEPI); 5514 GEPI->replaceAllUsesWith(NC); 5515 GEPI->eraseFromParent(); 5516 ++NumGEPsElim; 5517 optimizeInst(NC, ModifiedDT); 5518 return true; 5519 } 5520 return false; 5521 } 5522 5523 if (CallInst *CI = dyn_cast<CallInst>(I)) 5524 return optimizeCallInst(CI, ModifiedDT); 5525 5526 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 5527 return optimizeSelectInst(SI); 5528 5529 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 5530 return optimizeShuffleVectorInst(SVI); 5531 5532 if (auto *Switch = dyn_cast<SwitchInst>(I)) 5533 return optimizeSwitchInst(Switch); 5534 5535 if (isa<ExtractElementInst>(I)) 5536 return optimizeExtractElementInst(I); 5537 5538 return false; 5539 } 5540 5541 /// Given an OR instruction, check to see if this is a bitreverse 5542 /// idiom. If so, insert the new intrinsic and return true. 5543 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 5544 const TargetLowering &TLI) { 5545 if (!I.getType()->isIntegerTy() || 5546 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 5547 TLI.getValueType(DL, I.getType(), true))) 5548 return false; 5549 5550 SmallVector<Instruction*, 4> Insts; 5551 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 5552 return false; 5553 Instruction *LastInst = Insts.back(); 5554 I.replaceAllUsesWith(LastInst); 5555 RecursivelyDeleteTriviallyDeadInstructions(&I); 5556 return true; 5557 } 5558 5559 // In this pass we look for GEP and cast instructions that are used 5560 // across basic blocks and rewrite them to improve basic-block-at-a-time 5561 // selection. 5562 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 5563 SunkAddrs.clear(); 5564 bool MadeChange = false; 5565 5566 CurInstIterator = BB.begin(); 5567 while (CurInstIterator != BB.end()) { 5568 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 5569 if (ModifiedDT) 5570 return true; 5571 } 5572 5573 bool MadeBitReverse = true; 5574 while (TLI && MadeBitReverse) { 5575 MadeBitReverse = false; 5576 for (auto &I : reverse(BB)) { 5577 if (makeBitReverse(I, *DL, *TLI)) { 5578 MadeBitReverse = MadeChange = true; 5579 ModifiedDT = true; 5580 break; 5581 } 5582 } 5583 } 5584 MadeChange |= dupRetToEnableTailCallOpts(&BB); 5585 5586 return MadeChange; 5587 } 5588 5589 // llvm.dbg.value is far away from the value then iSel may not be able 5590 // handle it properly. iSel will drop llvm.dbg.value if it can not 5591 // find a node corresponding to the value. 5592 bool CodeGenPrepare::placeDbgValues(Function &F) { 5593 bool MadeChange = false; 5594 for (BasicBlock &BB : F) { 5595 Instruction *PrevNonDbgInst = nullptr; 5596 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 5597 Instruction *Insn = &*BI++; 5598 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 5599 // Leave dbg.values that refer to an alloca alone. These 5600 // instrinsics describe the address of a variable (= the alloca) 5601 // being taken. They should not be moved next to the alloca 5602 // (and to the beginning of the scope), but rather stay close to 5603 // where said address is used. 5604 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 5605 PrevNonDbgInst = Insn; 5606 continue; 5607 } 5608 5609 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 5610 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 5611 // If VI is a phi in a block with an EHPad terminator, we can't insert 5612 // after it. 5613 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 5614 continue; 5615 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 5616 DVI->removeFromParent(); 5617 if (isa<PHINode>(VI)) 5618 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 5619 else 5620 DVI->insertAfter(VI); 5621 MadeChange = true; 5622 ++NumDbgValueMoved; 5623 } 5624 } 5625 } 5626 return MadeChange; 5627 } 5628 5629 /// \brief Scale down both weights to fit into uint32_t. 5630 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5631 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5632 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5633 NewTrue = NewTrue / Scale; 5634 NewFalse = NewFalse / Scale; 5635 } 5636 5637 /// \brief Some targets prefer to split a conditional branch like: 5638 /// \code 5639 /// %0 = icmp ne i32 %a, 0 5640 /// %1 = icmp ne i32 %b, 0 5641 /// %or.cond = or i1 %0, %1 5642 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5643 /// \endcode 5644 /// into multiple branch instructions like: 5645 /// \code 5646 /// bb1: 5647 /// %0 = icmp ne i32 %a, 0 5648 /// br i1 %0, label %TrueBB, label %bb2 5649 /// bb2: 5650 /// %1 = icmp ne i32 %b, 0 5651 /// br i1 %1, label %TrueBB, label %FalseBB 5652 /// \endcode 5653 /// This usually allows instruction selection to do even further optimizations 5654 /// and combine the compare with the branch instruction. Currently this is 5655 /// applied for targets which have "cheap" jump instructions. 5656 /// 5657 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5658 /// 5659 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5660 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5661 return false; 5662 5663 bool MadeChange = false; 5664 for (auto &BB : F) { 5665 // Does this BB end with the following? 5666 // %cond1 = icmp|fcmp|binary instruction ... 5667 // %cond2 = icmp|fcmp|binary instruction ... 5668 // %cond.or = or|and i1 %cond1, cond2 5669 // br i1 %cond.or label %dest1, label %dest2" 5670 BinaryOperator *LogicOp; 5671 BasicBlock *TBB, *FBB; 5672 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5673 continue; 5674 5675 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5676 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5677 continue; 5678 5679 unsigned Opc; 5680 Value *Cond1, *Cond2; 5681 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5682 m_OneUse(m_Value(Cond2))))) 5683 Opc = Instruction::And; 5684 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5685 m_OneUse(m_Value(Cond2))))) 5686 Opc = Instruction::Or; 5687 else 5688 continue; 5689 5690 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5691 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5692 continue; 5693 5694 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5695 5696 // Create a new BB. 5697 auto TmpBB = 5698 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 5699 BB.getParent(), BB.getNextNode()); 5700 5701 // Update original basic block by using the first condition directly by the 5702 // branch instruction and removing the no longer needed and/or instruction. 5703 Br1->setCondition(Cond1); 5704 LogicOp->eraseFromParent(); 5705 5706 // Depending on the conditon we have to either replace the true or the false 5707 // successor of the original branch instruction. 5708 if (Opc == Instruction::And) 5709 Br1->setSuccessor(0, TmpBB); 5710 else 5711 Br1->setSuccessor(1, TmpBB); 5712 5713 // Fill in the new basic block. 5714 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 5715 if (auto *I = dyn_cast<Instruction>(Cond2)) { 5716 I->removeFromParent(); 5717 I->insertBefore(Br2); 5718 } 5719 5720 // Update PHI nodes in both successors. The original BB needs to be 5721 // replaced in one succesor's PHI nodes, because the branch comes now from 5722 // the newly generated BB (NewBB). In the other successor we need to add one 5723 // incoming edge to the PHI nodes, because both branch instructions target 5724 // now the same successor. Depending on the original branch condition 5725 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 5726 // we perform the correct update for the PHI nodes. 5727 // This doesn't change the successor order of the just created branch 5728 // instruction (or any other instruction). 5729 if (Opc == Instruction::Or) 5730 std::swap(TBB, FBB); 5731 5732 // Replace the old BB with the new BB. 5733 for (auto &I : *TBB) { 5734 PHINode *PN = dyn_cast<PHINode>(&I); 5735 if (!PN) 5736 break; 5737 int i; 5738 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 5739 PN->setIncomingBlock(i, TmpBB); 5740 } 5741 5742 // Add another incoming edge form the new BB. 5743 for (auto &I : *FBB) { 5744 PHINode *PN = dyn_cast<PHINode>(&I); 5745 if (!PN) 5746 break; 5747 auto *Val = PN->getIncomingValueForBlock(&BB); 5748 PN->addIncoming(Val, TmpBB); 5749 } 5750 5751 // Update the branch weights (from SelectionDAGBuilder:: 5752 // FindMergedConditions). 5753 if (Opc == Instruction::Or) { 5754 // Codegen X | Y as: 5755 // BB1: 5756 // jmp_if_X TBB 5757 // jmp TmpBB 5758 // TmpBB: 5759 // jmp_if_Y TBB 5760 // jmp FBB 5761 // 5762 5763 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 5764 // The requirement is that 5765 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 5766 // = TrueProb for orignal BB. 5767 // Assuming the orignal weights are A and B, one choice is to set BB1's 5768 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 5769 // assumes that 5770 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 5771 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 5772 // TmpBB, but the math is more complicated. 5773 uint64_t TrueWeight, FalseWeight; 5774 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5775 uint64_t NewTrueWeight = TrueWeight; 5776 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 5777 scaleWeights(NewTrueWeight, NewFalseWeight); 5778 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5779 .createBranchWeights(TrueWeight, FalseWeight)); 5780 5781 NewTrueWeight = TrueWeight; 5782 NewFalseWeight = 2 * FalseWeight; 5783 scaleWeights(NewTrueWeight, NewFalseWeight); 5784 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5785 .createBranchWeights(TrueWeight, FalseWeight)); 5786 } 5787 } else { 5788 // Codegen X & Y as: 5789 // BB1: 5790 // jmp_if_X TmpBB 5791 // jmp FBB 5792 // TmpBB: 5793 // jmp_if_Y TBB 5794 // jmp FBB 5795 // 5796 // This requires creation of TmpBB after CurBB. 5797 5798 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 5799 // The requirement is that 5800 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 5801 // = FalseProb for orignal BB. 5802 // Assuming the orignal weights are A and B, one choice is to set BB1's 5803 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 5804 // assumes that 5805 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 5806 uint64_t TrueWeight, FalseWeight; 5807 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5808 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 5809 uint64_t NewFalseWeight = FalseWeight; 5810 scaleWeights(NewTrueWeight, NewFalseWeight); 5811 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5812 .createBranchWeights(TrueWeight, FalseWeight)); 5813 5814 NewTrueWeight = 2 * TrueWeight; 5815 NewFalseWeight = FalseWeight; 5816 scaleWeights(NewTrueWeight, NewFalseWeight); 5817 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5818 .createBranchWeights(TrueWeight, FalseWeight)); 5819 } 5820 } 5821 5822 // Note: No point in getting fancy here, since the DT info is never 5823 // available to CodeGenPrepare. 5824 ModifiedDT = true; 5825 5826 MadeChange = true; 5827 5828 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 5829 TmpBB->dump()); 5830 } 5831 return MadeChange; 5832 } 5833