1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/CodeGen/TargetPassConfig.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/ProfileSummaryInfo.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/MDBuilder.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/Statepoint.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/IR/ValueMap.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetLowering.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 57 #include "llvm/Transforms/Utils/BuildLibCalls.h" 58 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 59 #include "llvm/Transforms/Utils/Cloning.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 62 #include "llvm/Transforms/Utils/ValueMapper.h" 63 using namespace llvm; 64 using namespace llvm::PatternMatch; 65 66 #define DEBUG_TYPE "codegenprepare" 67 68 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 69 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 70 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 71 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 72 "sunken Cmps"); 73 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 74 "of sunken Casts"); 75 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 76 "computations were sunk"); 77 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 78 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 79 STATISTIC(NumAndsAdded, 80 "Number of and mask instructions added to form ext loads"); 81 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 82 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 83 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 84 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 85 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 86 87 static cl::opt<bool> DisableBranchOpts( 88 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 89 cl::desc("Disable branch optimizations in CodeGenPrepare")); 90 91 static cl::opt<bool> 92 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 93 cl::desc("Disable GC optimizations in CodeGenPrepare")); 94 95 static cl::opt<bool> DisableSelectToBranch( 96 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 97 cl::desc("Disable select to branch conversion.")); 98 99 static cl::opt<bool> AddrSinkUsingGEPs( 100 "addr-sink-using-gep", cl::Hidden, cl::init(true), 101 cl::desc("Address sinking in CGP using GEPs.")); 102 103 static cl::opt<bool> EnableAndCmpSinking( 104 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 105 cl::desc("Enable sinkinig and/cmp into branches.")); 106 107 static cl::opt<bool> DisableStoreExtract( 108 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 109 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 110 111 static cl::opt<bool> StressStoreExtract( 112 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 113 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 114 115 static cl::opt<bool> DisableExtLdPromotion( 116 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 117 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 118 "CodeGenPrepare")); 119 120 static cl::opt<bool> StressExtLdPromotion( 121 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 122 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 123 "optimization in CodeGenPrepare")); 124 125 static cl::opt<bool> DisablePreheaderProtect( 126 "disable-preheader-prot", cl::Hidden, cl::init(false), 127 cl::desc("Disable protection against removing loop preheaders")); 128 129 static cl::opt<bool> ProfileGuidedSectionPrefix( 130 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 131 cl::desc("Use profile info to add section prefix for hot/cold functions")); 132 133 static cl::opt<unsigned> FreqRatioToSkipMerge( 134 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 135 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 136 "(frequency of destination block) is greater than this ratio")); 137 138 static cl::opt<bool> ForceSplitStore( 139 "force-split-store", cl::Hidden, cl::init(false), 140 cl::desc("Force store splitting no matter what the target query says.")); 141 142 static cl::opt<bool> 143 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 144 cl::desc("Enable merging of redundant sexts when one is dominating" 145 " the other."), cl::init(true)); 146 147 namespace { 148 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 149 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 150 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 151 typedef SmallVector<Instruction *, 16> SExts; 152 typedef DenseMap<Value *, SExts> ValueToSExts; 153 class TypePromotionTransaction; 154 155 class CodeGenPrepare : public FunctionPass { 156 const TargetMachine *TM; 157 const TargetSubtargetInfo *SubtargetInfo; 158 const TargetLowering *TLI; 159 const TargetRegisterInfo *TRI; 160 const TargetTransformInfo *TTI; 161 const TargetLibraryInfo *TLInfo; 162 const LoopInfo *LI; 163 std::unique_ptr<BlockFrequencyInfo> BFI; 164 std::unique_ptr<BranchProbabilityInfo> BPI; 165 166 /// As we scan instructions optimizing them, this is the next instruction 167 /// to optimize. Transforms that can invalidate this should update it. 168 BasicBlock::iterator CurInstIterator; 169 170 /// Keeps track of non-local addresses that have been sunk into a block. 171 /// This allows us to avoid inserting duplicate code for blocks with 172 /// multiple load/stores of the same address. 173 ValueMap<Value*, Value*> SunkAddrs; 174 175 /// Keeps track of all instructions inserted for the current function. 176 SetOfInstrs InsertedInsts; 177 /// Keeps track of the type of the related instruction before their 178 /// promotion for the current function. 179 InstrToOrigTy PromotedInsts; 180 181 /// Keep track of instructions removed during promotion. 182 SetOfInstrs RemovedInsts; 183 184 /// Keep track of sext chains based on their initial value. 185 DenseMap<Value *, Instruction *> SeenChainsForSExt; 186 187 /// Keep track of SExt promoted. 188 ValueToSExts ValToSExtendedUses; 189 190 /// True if CFG is modified in any way. 191 bool ModifiedDT; 192 193 /// True if optimizing for size. 194 bool OptSize; 195 196 /// DataLayout for the Function being processed. 197 const DataLayout *DL; 198 199 public: 200 static char ID; // Pass identification, replacement for typeid 201 CodeGenPrepare() 202 : FunctionPass(ID), TM(nullptr), TLI(nullptr), TTI(nullptr), 203 DL(nullptr) { 204 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 205 } 206 bool runOnFunction(Function &F) override; 207 208 StringRef getPassName() const override { return "CodeGen Prepare"; } 209 210 void getAnalysisUsage(AnalysisUsage &AU) const override { 211 // FIXME: When we can selectively preserve passes, preserve the domtree. 212 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 213 AU.addRequired<TargetLibraryInfoWrapperPass>(); 214 AU.addRequired<TargetTransformInfoWrapperPass>(); 215 AU.addRequired<LoopInfoWrapperPass>(); 216 } 217 218 private: 219 bool eliminateFallThrough(Function &F); 220 bool eliminateMostlyEmptyBlocks(Function &F); 221 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 222 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 223 void eliminateMostlyEmptyBlock(BasicBlock *BB); 224 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 225 bool isPreheader); 226 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 227 bool optimizeInst(Instruction *I, bool& ModifiedDT); 228 bool optimizeMemoryInst(Instruction *I, Value *Addr, 229 Type *AccessTy, unsigned AS); 230 bool optimizeInlineAsmInst(CallInst *CS); 231 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 232 bool optimizeExt(Instruction *&I); 233 bool optimizeExtUses(Instruction *I); 234 bool optimizeLoadExt(LoadInst *I); 235 bool optimizeSelectInst(SelectInst *SI); 236 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 237 bool optimizeSwitchInst(SwitchInst *CI); 238 bool optimizeExtractElementInst(Instruction *Inst); 239 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 240 bool placeDbgValues(Function &F); 241 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 242 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 243 bool tryToPromoteExts(TypePromotionTransaction &TPT, 244 const SmallVectorImpl<Instruction *> &Exts, 245 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 246 unsigned CreatedInstsCost = 0); 247 bool mergeSExts(Function &F); 248 bool performAddressTypePromotion( 249 Instruction *&Inst, 250 bool AllowPromotionWithoutCommonHeader, 251 bool HasPromoted, TypePromotionTransaction &TPT, 252 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 253 bool splitBranchCondition(Function &F); 254 bool simplifyOffsetableRelocate(Instruction &I); 255 bool splitIndirectCriticalEdges(Function &F); 256 }; 257 } 258 259 char CodeGenPrepare::ID = 0; 260 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 261 "Optimize for code generation", false, false) 262 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 263 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 264 "Optimize for code generation", false, false) 265 266 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 267 268 bool CodeGenPrepare::runOnFunction(Function &F) { 269 if (skipFunction(F)) 270 return false; 271 272 DL = &F.getParent()->getDataLayout(); 273 274 bool EverMadeChange = false; 275 // Clear per function information. 276 InsertedInsts.clear(); 277 PromotedInsts.clear(); 278 BFI.reset(); 279 BPI.reset(); 280 281 ModifiedDT = false; 282 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 283 TM = &TPC->getTM<TargetMachine>(); 284 SubtargetInfo = TM->getSubtargetImpl(F); 285 TLI = SubtargetInfo->getTargetLowering(); 286 TRI = SubtargetInfo->getRegisterInfo(); 287 } 288 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 289 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 290 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 291 OptSize = F.optForSize(); 292 293 if (ProfileGuidedSectionPrefix) { 294 ProfileSummaryInfo *PSI = 295 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 296 if (PSI->isFunctionHotInCallGraph(&F)) 297 F.setSectionPrefix(".hot"); 298 else if (PSI->isFunctionColdInCallGraph(&F)) 299 F.setSectionPrefix(".unlikely"); 300 } 301 302 /// This optimization identifies DIV instructions that can be 303 /// profitably bypassed and carried out with a shorter, faster divide. 304 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 305 const DenseMap<unsigned int, unsigned int> &BypassWidths = 306 TLI->getBypassSlowDivWidths(); 307 BasicBlock* BB = &*F.begin(); 308 while (BB != nullptr) { 309 // bypassSlowDivision may create new BBs, but we don't want to reapply the 310 // optimization to those blocks. 311 BasicBlock* Next = BB->getNextNode(); 312 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 313 BB = Next; 314 } 315 } 316 317 // Eliminate blocks that contain only PHI nodes and an 318 // unconditional branch. 319 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 320 321 // llvm.dbg.value is far away from the value then iSel may not be able 322 // handle it properly. iSel will drop llvm.dbg.value if it can not 323 // find a node corresponding to the value. 324 EverMadeChange |= placeDbgValues(F); 325 326 if (!DisableBranchOpts) 327 EverMadeChange |= splitBranchCondition(F); 328 329 // Split some critical edges where one of the sources is an indirect branch, 330 // to help generate sane code for PHIs involving such edges. 331 EverMadeChange |= splitIndirectCriticalEdges(F); 332 333 bool MadeChange = true; 334 while (MadeChange) { 335 MadeChange = false; 336 SeenChainsForSExt.clear(); 337 ValToSExtendedUses.clear(); 338 RemovedInsts.clear(); 339 for (Function::iterator I = F.begin(); I != F.end(); ) { 340 BasicBlock *BB = &*I++; 341 bool ModifiedDTOnIteration = false; 342 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 343 344 // Restart BB iteration if the dominator tree of the Function was changed 345 if (ModifiedDTOnIteration) 346 break; 347 } 348 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 349 MadeChange |= mergeSExts(F); 350 351 // Really free removed instructions during promotion. 352 for (Instruction *I : RemovedInsts) 353 I->deleteValue(); 354 355 EverMadeChange |= MadeChange; 356 } 357 358 SunkAddrs.clear(); 359 360 if (!DisableBranchOpts) { 361 MadeChange = false; 362 SmallPtrSet<BasicBlock*, 8> WorkList; 363 for (BasicBlock &BB : F) { 364 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 365 MadeChange |= ConstantFoldTerminator(&BB, true); 366 if (!MadeChange) continue; 367 368 for (SmallVectorImpl<BasicBlock*>::iterator 369 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 370 if (pred_begin(*II) == pred_end(*II)) 371 WorkList.insert(*II); 372 } 373 374 // Delete the dead blocks and any of their dead successors. 375 MadeChange |= !WorkList.empty(); 376 while (!WorkList.empty()) { 377 BasicBlock *BB = *WorkList.begin(); 378 WorkList.erase(BB); 379 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 380 381 DeleteDeadBlock(BB); 382 383 for (SmallVectorImpl<BasicBlock*>::iterator 384 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 385 if (pred_begin(*II) == pred_end(*II)) 386 WorkList.insert(*II); 387 } 388 389 // Merge pairs of basic blocks with unconditional branches, connected by 390 // a single edge. 391 if (EverMadeChange || MadeChange) 392 MadeChange |= eliminateFallThrough(F); 393 394 EverMadeChange |= MadeChange; 395 } 396 397 if (!DisableGCOpts) { 398 SmallVector<Instruction *, 2> Statepoints; 399 for (BasicBlock &BB : F) 400 for (Instruction &I : BB) 401 if (isStatepoint(I)) 402 Statepoints.push_back(&I); 403 for (auto &I : Statepoints) 404 EverMadeChange |= simplifyOffsetableRelocate(*I); 405 } 406 407 return EverMadeChange; 408 } 409 410 /// Merge basic blocks which are connected by a single edge, where one of the 411 /// basic blocks has a single successor pointing to the other basic block, 412 /// which has a single predecessor. 413 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 414 bool Changed = false; 415 // Scan all of the blocks in the function, except for the entry block. 416 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 417 BasicBlock *BB = &*I++; 418 // If the destination block has a single pred, then this is a trivial 419 // edge, just collapse it. 420 BasicBlock *SinglePred = BB->getSinglePredecessor(); 421 422 // Don't merge if BB's address is taken. 423 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 424 425 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 426 if (Term && !Term->isConditional()) { 427 Changed = true; 428 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 429 // Remember if SinglePred was the entry block of the function. 430 // If so, we will need to move BB back to the entry position. 431 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 432 MergeBasicBlockIntoOnlyPred(BB, nullptr); 433 434 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 435 BB->moveBefore(&BB->getParent()->getEntryBlock()); 436 437 // We have erased a block. Update the iterator. 438 I = BB->getIterator(); 439 } 440 } 441 return Changed; 442 } 443 444 /// Find a destination block from BB if BB is mergeable empty block. 445 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 446 // If this block doesn't end with an uncond branch, ignore it. 447 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 448 if (!BI || !BI->isUnconditional()) 449 return nullptr; 450 451 // If the instruction before the branch (skipping debug info) isn't a phi 452 // node, then other stuff is happening here. 453 BasicBlock::iterator BBI = BI->getIterator(); 454 if (BBI != BB->begin()) { 455 --BBI; 456 while (isa<DbgInfoIntrinsic>(BBI)) { 457 if (BBI == BB->begin()) 458 break; 459 --BBI; 460 } 461 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 462 return nullptr; 463 } 464 465 // Do not break infinite loops. 466 BasicBlock *DestBB = BI->getSuccessor(0); 467 if (DestBB == BB) 468 return nullptr; 469 470 if (!canMergeBlocks(BB, DestBB)) 471 DestBB = nullptr; 472 473 return DestBB; 474 } 475 476 // Return the unique indirectbr predecessor of a block. This may return null 477 // even if such a predecessor exists, if it's not useful for splitting. 478 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 479 // predecessors of BB. 480 static BasicBlock * 481 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 482 // If the block doesn't have any PHIs, we don't care about it, since there's 483 // no point in splitting it. 484 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 485 if (!PN) 486 return nullptr; 487 488 // Verify we have exactly one IBR predecessor. 489 // Conservatively bail out if one of the other predecessors is not a "regular" 490 // terminator (that is, not a switch or a br). 491 BasicBlock *IBB = nullptr; 492 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 493 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 494 TerminatorInst *PredTerm = PredBB->getTerminator(); 495 switch (PredTerm->getOpcode()) { 496 case Instruction::IndirectBr: 497 if (IBB) 498 return nullptr; 499 IBB = PredBB; 500 break; 501 case Instruction::Br: 502 case Instruction::Switch: 503 OtherPreds.push_back(PredBB); 504 continue; 505 default: 506 return nullptr; 507 } 508 } 509 510 return IBB; 511 } 512 513 // Split critical edges where the source of the edge is an indirectbr 514 // instruction. This isn't always possible, but we can handle some easy cases. 515 // This is useful because MI is unable to split such critical edges, 516 // which means it will not be able to sink instructions along those edges. 517 // This is especially painful for indirect branches with many successors, where 518 // we end up having to prepare all outgoing values in the origin block. 519 // 520 // Our normal algorithm for splitting critical edges requires us to update 521 // the outgoing edges of the edge origin block, but for an indirectbr this 522 // is hard, since it would require finding and updating the block addresses 523 // the indirect branch uses. But if a block only has a single indirectbr 524 // predecessor, with the others being regular branches, we can do it in a 525 // different way. 526 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr. 527 // We can split D into D0 and D1, where D0 contains only the PHIs from D, 528 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and 529 // create the following structure: 530 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1 531 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) { 532 // Check whether the function has any indirectbrs, and collect which blocks 533 // they may jump to. Since most functions don't have indirect branches, 534 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 535 SmallSetVector<BasicBlock *, 16> Targets; 536 for (auto &BB : F) { 537 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 538 if (!IBI) 539 continue; 540 541 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 542 Targets.insert(IBI->getSuccessor(Succ)); 543 } 544 545 if (Targets.empty()) 546 return false; 547 548 bool Changed = false; 549 for (BasicBlock *Target : Targets) { 550 SmallVector<BasicBlock *, 16> OtherPreds; 551 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 552 // If we did not found an indirectbr, or the indirectbr is the only 553 // incoming edge, this isn't the kind of edge we're looking for. 554 if (!IBRPred || OtherPreds.empty()) 555 continue; 556 557 // Don't even think about ehpads/landingpads. 558 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 559 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 560 continue; 561 562 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 563 // It's possible Target was its own successor through an indirectbr. 564 // In this case, the indirectbr now comes from BodyBlock. 565 if (IBRPred == Target) 566 IBRPred = BodyBlock; 567 568 // At this point Target only has PHIs, and BodyBlock has the rest of the 569 // block's body. Create a copy of Target that will be used by the "direct" 570 // preds. 571 ValueToValueMapTy VMap; 572 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 573 574 for (BasicBlock *Pred : OtherPreds) { 575 // If the target is a loop to itself, then the terminator of the split 576 // block needs to be updated. 577 if (Pred == Target) 578 BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 579 else 580 Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 581 } 582 583 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 584 // they are clones, so the number of PHIs are the same. 585 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 586 // (b) Leave that as the only edge in the "Indirect" PHI. 587 // (c) Merge the two in the body block. 588 BasicBlock::iterator Indirect = Target->begin(), 589 End = Target->getFirstNonPHI()->getIterator(); 590 BasicBlock::iterator Direct = DirectSucc->begin(); 591 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 592 593 assert(&*End == Target->getTerminator() && 594 "Block was expected to only contain PHIs"); 595 596 while (Indirect != End) { 597 PHINode *DirPHI = cast<PHINode>(Direct); 598 PHINode *IndPHI = cast<PHINode>(Indirect); 599 600 // Now, clean up - the direct block shouldn't get the indirect value, 601 // and vice versa. 602 DirPHI->removeIncomingValue(IBRPred); 603 Direct++; 604 605 // Advance the pointer here, to avoid invalidation issues when the old 606 // PHI is erased. 607 Indirect++; 608 609 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 610 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 611 IBRPred); 612 613 // Create a PHI in the body block, to merge the direct and indirect 614 // predecessors. 615 PHINode *MergePHI = 616 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 617 MergePHI->addIncoming(NewIndPHI, Target); 618 MergePHI->addIncoming(DirPHI, DirectSucc); 619 620 IndPHI->replaceAllUsesWith(MergePHI); 621 IndPHI->eraseFromParent(); 622 } 623 624 Changed = true; 625 } 626 627 return Changed; 628 } 629 630 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 631 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 632 /// edges in ways that are non-optimal for isel. Start by eliminating these 633 /// blocks so we can split them the way we want them. 634 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 635 SmallPtrSet<BasicBlock *, 16> Preheaders; 636 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 637 while (!LoopList.empty()) { 638 Loop *L = LoopList.pop_back_val(); 639 LoopList.insert(LoopList.end(), L->begin(), L->end()); 640 if (BasicBlock *Preheader = L->getLoopPreheader()) 641 Preheaders.insert(Preheader); 642 } 643 644 bool MadeChange = false; 645 // Note that this intentionally skips the entry block. 646 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 647 BasicBlock *BB = &*I++; 648 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 649 if (!DestBB || 650 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 651 continue; 652 653 eliminateMostlyEmptyBlock(BB); 654 MadeChange = true; 655 } 656 return MadeChange; 657 } 658 659 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 660 BasicBlock *DestBB, 661 bool isPreheader) { 662 // Do not delete loop preheaders if doing so would create a critical edge. 663 // Loop preheaders can be good locations to spill registers. If the 664 // preheader is deleted and we create a critical edge, registers may be 665 // spilled in the loop body instead. 666 if (!DisablePreheaderProtect && isPreheader && 667 !(BB->getSinglePredecessor() && 668 BB->getSinglePredecessor()->getSingleSuccessor())) 669 return false; 670 671 // Try to skip merging if the unique predecessor of BB is terminated by a 672 // switch or indirect branch instruction, and BB is used as an incoming block 673 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 674 // add COPY instructions in the predecessor of BB instead of BB (if it is not 675 // merged). Note that the critical edge created by merging such blocks wont be 676 // split in MachineSink because the jump table is not analyzable. By keeping 677 // such empty block (BB), ISel will place COPY instructions in BB, not in the 678 // predecessor of BB. 679 BasicBlock *Pred = BB->getUniquePredecessor(); 680 if (!Pred || 681 !(isa<SwitchInst>(Pred->getTerminator()) || 682 isa<IndirectBrInst>(Pred->getTerminator()))) 683 return true; 684 685 if (BB->getTerminator() != BB->getFirstNonPHI()) 686 return true; 687 688 // We use a simple cost heuristic which determine skipping merging is 689 // profitable if the cost of skipping merging is less than the cost of 690 // merging : Cost(skipping merging) < Cost(merging BB), where the 691 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 692 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 693 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 694 // Freq(Pred) / Freq(BB) > 2. 695 // Note that if there are multiple empty blocks sharing the same incoming 696 // value for the PHIs in the DestBB, we consider them together. In such 697 // case, Cost(merging BB) will be the sum of their frequencies. 698 699 if (!isa<PHINode>(DestBB->begin())) 700 return true; 701 702 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 703 704 // Find all other incoming blocks from which incoming values of all PHIs in 705 // DestBB are the same as the ones from BB. 706 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 707 ++PI) { 708 BasicBlock *DestBBPred = *PI; 709 if (DestBBPred == BB) 710 continue; 711 712 bool HasAllSameValue = true; 713 BasicBlock::const_iterator DestBBI = DestBB->begin(); 714 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 715 if (DestPN->getIncomingValueForBlock(BB) != 716 DestPN->getIncomingValueForBlock(DestBBPred)) { 717 HasAllSameValue = false; 718 break; 719 } 720 } 721 if (HasAllSameValue) 722 SameIncomingValueBBs.insert(DestBBPred); 723 } 724 725 // See if all BB's incoming values are same as the value from Pred. In this 726 // case, no reason to skip merging because COPYs are expected to be place in 727 // Pred already. 728 if (SameIncomingValueBBs.count(Pred)) 729 return true; 730 731 if (!BFI) { 732 Function &F = *BB->getParent(); 733 LoopInfo LI{DominatorTree(F)}; 734 BPI.reset(new BranchProbabilityInfo(F, LI)); 735 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 736 } 737 738 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 739 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 740 741 for (auto SameValueBB : SameIncomingValueBBs) 742 if (SameValueBB->getUniquePredecessor() == Pred && 743 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 744 BBFreq += BFI->getBlockFreq(SameValueBB); 745 746 return PredFreq.getFrequency() <= 747 BBFreq.getFrequency() * FreqRatioToSkipMerge; 748 } 749 750 /// Return true if we can merge BB into DestBB if there is a single 751 /// unconditional branch between them, and BB contains no other non-phi 752 /// instructions. 753 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 754 const BasicBlock *DestBB) const { 755 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 756 // the successor. If there are more complex condition (e.g. preheaders), 757 // don't mess around with them. 758 BasicBlock::const_iterator BBI = BB->begin(); 759 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 760 for (const User *U : PN->users()) { 761 const Instruction *UI = cast<Instruction>(U); 762 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 763 return false; 764 // If User is inside DestBB block and it is a PHINode then check 765 // incoming value. If incoming value is not from BB then this is 766 // a complex condition (e.g. preheaders) we want to avoid here. 767 if (UI->getParent() == DestBB) { 768 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 769 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 770 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 771 if (Insn && Insn->getParent() == BB && 772 Insn->getParent() != UPN->getIncomingBlock(I)) 773 return false; 774 } 775 } 776 } 777 } 778 779 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 780 // and DestBB may have conflicting incoming values for the block. If so, we 781 // can't merge the block. 782 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 783 if (!DestBBPN) return true; // no conflict. 784 785 // Collect the preds of BB. 786 SmallPtrSet<const BasicBlock*, 16> BBPreds; 787 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 788 // It is faster to get preds from a PHI than with pred_iterator. 789 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 790 BBPreds.insert(BBPN->getIncomingBlock(i)); 791 } else { 792 BBPreds.insert(pred_begin(BB), pred_end(BB)); 793 } 794 795 // Walk the preds of DestBB. 796 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 797 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 798 if (BBPreds.count(Pred)) { // Common predecessor? 799 BBI = DestBB->begin(); 800 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 801 const Value *V1 = PN->getIncomingValueForBlock(Pred); 802 const Value *V2 = PN->getIncomingValueForBlock(BB); 803 804 // If V2 is a phi node in BB, look up what the mapped value will be. 805 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 806 if (V2PN->getParent() == BB) 807 V2 = V2PN->getIncomingValueForBlock(Pred); 808 809 // If there is a conflict, bail out. 810 if (V1 != V2) return false; 811 } 812 } 813 } 814 815 return true; 816 } 817 818 819 /// Eliminate a basic block that has only phi's and an unconditional branch in 820 /// it. 821 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 822 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 823 BasicBlock *DestBB = BI->getSuccessor(0); 824 825 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 826 827 // If the destination block has a single pred, then this is a trivial edge, 828 // just collapse it. 829 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 830 if (SinglePred != DestBB) { 831 // Remember if SinglePred was the entry block of the function. If so, we 832 // will need to move BB back to the entry position. 833 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 834 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 835 836 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 837 BB->moveBefore(&BB->getParent()->getEntryBlock()); 838 839 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 840 return; 841 } 842 } 843 844 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 845 // to handle the new incoming edges it is about to have. 846 PHINode *PN; 847 for (BasicBlock::iterator BBI = DestBB->begin(); 848 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 849 // Remove the incoming value for BB, and remember it. 850 Value *InVal = PN->removeIncomingValue(BB, false); 851 852 // Two options: either the InVal is a phi node defined in BB or it is some 853 // value that dominates BB. 854 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 855 if (InValPhi && InValPhi->getParent() == BB) { 856 // Add all of the input values of the input PHI as inputs of this phi. 857 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 858 PN->addIncoming(InValPhi->getIncomingValue(i), 859 InValPhi->getIncomingBlock(i)); 860 } else { 861 // Otherwise, add one instance of the dominating value for each edge that 862 // we will be adding. 863 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 864 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 865 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 866 } else { 867 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 868 PN->addIncoming(InVal, *PI); 869 } 870 } 871 } 872 873 // The PHIs are now updated, change everything that refers to BB to use 874 // DestBB and remove BB. 875 BB->replaceAllUsesWith(DestBB); 876 BB->eraseFromParent(); 877 ++NumBlocksElim; 878 879 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 880 } 881 882 // Computes a map of base pointer relocation instructions to corresponding 883 // derived pointer relocation instructions given a vector of all relocate calls 884 static void computeBaseDerivedRelocateMap( 885 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 886 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 887 &RelocateInstMap) { 888 // Collect information in two maps: one primarily for locating the base object 889 // while filling the second map; the second map is the final structure holding 890 // a mapping between Base and corresponding Derived relocate calls 891 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 892 for (auto *ThisRelocate : AllRelocateCalls) { 893 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 894 ThisRelocate->getDerivedPtrIndex()); 895 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 896 } 897 for (auto &Item : RelocateIdxMap) { 898 std::pair<unsigned, unsigned> Key = Item.first; 899 if (Key.first == Key.second) 900 // Base relocation: nothing to insert 901 continue; 902 903 GCRelocateInst *I = Item.second; 904 auto BaseKey = std::make_pair(Key.first, Key.first); 905 906 // We're iterating over RelocateIdxMap so we cannot modify it. 907 auto MaybeBase = RelocateIdxMap.find(BaseKey); 908 if (MaybeBase == RelocateIdxMap.end()) 909 // TODO: We might want to insert a new base object relocate and gep off 910 // that, if there are enough derived object relocates. 911 continue; 912 913 RelocateInstMap[MaybeBase->second].push_back(I); 914 } 915 } 916 917 // Accepts a GEP and extracts the operands into a vector provided they're all 918 // small integer constants 919 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 920 SmallVectorImpl<Value *> &OffsetV) { 921 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 922 // Only accept small constant integer operands 923 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 924 if (!Op || Op->getZExtValue() > 20) 925 return false; 926 } 927 928 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 929 OffsetV.push_back(GEP->getOperand(i)); 930 return true; 931 } 932 933 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 934 // replace, computes a replacement, and affects it. 935 static bool 936 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 937 const SmallVectorImpl<GCRelocateInst *> &Targets) { 938 bool MadeChange = false; 939 for (GCRelocateInst *ToReplace : Targets) { 940 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 941 "Not relocating a derived object of the original base object"); 942 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 943 // A duplicate relocate call. TODO: coalesce duplicates. 944 continue; 945 } 946 947 if (RelocatedBase->getParent() != ToReplace->getParent()) { 948 // Base and derived relocates are in different basic blocks. 949 // In this case transform is only valid when base dominates derived 950 // relocate. However it would be too expensive to check dominance 951 // for each such relocate, so we skip the whole transformation. 952 continue; 953 } 954 955 Value *Base = ToReplace->getBasePtr(); 956 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 957 if (!Derived || Derived->getPointerOperand() != Base) 958 continue; 959 960 SmallVector<Value *, 2> OffsetV; 961 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 962 continue; 963 964 // Create a Builder and replace the target callsite with a gep 965 assert(RelocatedBase->getNextNode() && 966 "Should always have one since it's not a terminator"); 967 968 // Insert after RelocatedBase 969 IRBuilder<> Builder(RelocatedBase->getNextNode()); 970 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 971 972 // If gc_relocate does not match the actual type, cast it to the right type. 973 // In theory, there must be a bitcast after gc_relocate if the type does not 974 // match, and we should reuse it to get the derived pointer. But it could be 975 // cases like this: 976 // bb1: 977 // ... 978 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 979 // br label %merge 980 // 981 // bb2: 982 // ... 983 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 984 // br label %merge 985 // 986 // merge: 987 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 988 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 989 // 990 // In this case, we can not find the bitcast any more. So we insert a new bitcast 991 // no matter there is already one or not. In this way, we can handle all cases, and 992 // the extra bitcast should be optimized away in later passes. 993 Value *ActualRelocatedBase = RelocatedBase; 994 if (RelocatedBase->getType() != Base->getType()) { 995 ActualRelocatedBase = 996 Builder.CreateBitCast(RelocatedBase, Base->getType()); 997 } 998 Value *Replacement = Builder.CreateGEP( 999 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1000 Replacement->takeName(ToReplace); 1001 // If the newly generated derived pointer's type does not match the original derived 1002 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1003 Value *ActualReplacement = Replacement; 1004 if (Replacement->getType() != ToReplace->getType()) { 1005 ActualReplacement = 1006 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1007 } 1008 ToReplace->replaceAllUsesWith(ActualReplacement); 1009 ToReplace->eraseFromParent(); 1010 1011 MadeChange = true; 1012 } 1013 return MadeChange; 1014 } 1015 1016 // Turns this: 1017 // 1018 // %base = ... 1019 // %ptr = gep %base + 15 1020 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1021 // %base' = relocate(%tok, i32 4, i32 4) 1022 // %ptr' = relocate(%tok, i32 4, i32 5) 1023 // %val = load %ptr' 1024 // 1025 // into this: 1026 // 1027 // %base = ... 1028 // %ptr = gep %base + 15 1029 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1030 // %base' = gc.relocate(%tok, i32 4, i32 4) 1031 // %ptr' = gep %base' + 15 1032 // %val = load %ptr' 1033 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1034 bool MadeChange = false; 1035 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1036 1037 for (auto *U : I.users()) 1038 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1039 // Collect all the relocate calls associated with a statepoint 1040 AllRelocateCalls.push_back(Relocate); 1041 1042 // We need atleast one base pointer relocation + one derived pointer 1043 // relocation to mangle 1044 if (AllRelocateCalls.size() < 2) 1045 return false; 1046 1047 // RelocateInstMap is a mapping from the base relocate instruction to the 1048 // corresponding derived relocate instructions 1049 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1050 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1051 if (RelocateInstMap.empty()) 1052 return false; 1053 1054 for (auto &Item : RelocateInstMap) 1055 // Item.first is the RelocatedBase to offset against 1056 // Item.second is the vector of Targets to replace 1057 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1058 return MadeChange; 1059 } 1060 1061 /// SinkCast - Sink the specified cast instruction into its user blocks 1062 static bool SinkCast(CastInst *CI) { 1063 BasicBlock *DefBB = CI->getParent(); 1064 1065 /// InsertedCasts - Only insert a cast in each block once. 1066 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1067 1068 bool MadeChange = false; 1069 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1070 UI != E; ) { 1071 Use &TheUse = UI.getUse(); 1072 Instruction *User = cast<Instruction>(*UI); 1073 1074 // Figure out which BB this cast is used in. For PHI's this is the 1075 // appropriate predecessor block. 1076 BasicBlock *UserBB = User->getParent(); 1077 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1078 UserBB = PN->getIncomingBlock(TheUse); 1079 } 1080 1081 // Preincrement use iterator so we don't invalidate it. 1082 ++UI; 1083 1084 // The first insertion point of a block containing an EH pad is after the 1085 // pad. If the pad is the user, we cannot sink the cast past the pad. 1086 if (User->isEHPad()) 1087 continue; 1088 1089 // If the block selected to receive the cast is an EH pad that does not 1090 // allow non-PHI instructions before the terminator, we can't sink the 1091 // cast. 1092 if (UserBB->getTerminator()->isEHPad()) 1093 continue; 1094 1095 // If this user is in the same block as the cast, don't change the cast. 1096 if (UserBB == DefBB) continue; 1097 1098 // If we have already inserted a cast into this block, use it. 1099 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1100 1101 if (!InsertedCast) { 1102 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1103 assert(InsertPt != UserBB->end()); 1104 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1105 CI->getType(), "", &*InsertPt); 1106 } 1107 1108 // Replace a use of the cast with a use of the new cast. 1109 TheUse = InsertedCast; 1110 MadeChange = true; 1111 ++NumCastUses; 1112 } 1113 1114 // If we removed all uses, nuke the cast. 1115 if (CI->use_empty()) { 1116 CI->eraseFromParent(); 1117 MadeChange = true; 1118 } 1119 1120 return MadeChange; 1121 } 1122 1123 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1124 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1125 /// reduce the number of virtual registers that must be created and coalesced. 1126 /// 1127 /// Return true if any changes are made. 1128 /// 1129 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1130 const DataLayout &DL) { 1131 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1132 // than sinking only nop casts, but is helpful on some platforms. 1133 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1134 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1135 ASC->getDestAddressSpace())) 1136 return false; 1137 } 1138 1139 // If this is a noop copy, 1140 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1141 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1142 1143 // This is an fp<->int conversion? 1144 if (SrcVT.isInteger() != DstVT.isInteger()) 1145 return false; 1146 1147 // If this is an extension, it will be a zero or sign extension, which 1148 // isn't a noop. 1149 if (SrcVT.bitsLT(DstVT)) return false; 1150 1151 // If these values will be promoted, find out what they will be promoted 1152 // to. This helps us consider truncates on PPC as noop copies when they 1153 // are. 1154 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1155 TargetLowering::TypePromoteInteger) 1156 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1157 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1158 TargetLowering::TypePromoteInteger) 1159 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1160 1161 // If, after promotion, these are the same types, this is a noop copy. 1162 if (SrcVT != DstVT) 1163 return false; 1164 1165 return SinkCast(CI); 1166 } 1167 1168 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1169 /// possible. 1170 /// 1171 /// Return true if any changes were made. 1172 static bool CombineUAddWithOverflow(CmpInst *CI) { 1173 Value *A, *B; 1174 Instruction *AddI; 1175 if (!match(CI, 1176 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1177 return false; 1178 1179 Type *Ty = AddI->getType(); 1180 if (!isa<IntegerType>(Ty)) 1181 return false; 1182 1183 // We don't want to move around uses of condition values this late, so we we 1184 // check if it is legal to create the call to the intrinsic in the basic 1185 // block containing the icmp: 1186 1187 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1188 return false; 1189 1190 #ifndef NDEBUG 1191 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1192 // for now: 1193 if (AddI->hasOneUse()) 1194 assert(*AddI->user_begin() == CI && "expected!"); 1195 #endif 1196 1197 Module *M = CI->getModule(); 1198 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1199 1200 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1201 1202 auto *UAddWithOverflow = 1203 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1204 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1205 auto *Overflow = 1206 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1207 1208 CI->replaceAllUsesWith(Overflow); 1209 AddI->replaceAllUsesWith(UAdd); 1210 CI->eraseFromParent(); 1211 AddI->eraseFromParent(); 1212 return true; 1213 } 1214 1215 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1216 /// registers that must be created and coalesced. This is a clear win except on 1217 /// targets with multiple condition code registers (PowerPC), where it might 1218 /// lose; some adjustment may be wanted there. 1219 /// 1220 /// Return true if any changes are made. 1221 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1222 BasicBlock *DefBB = CI->getParent(); 1223 1224 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1225 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1226 return false; 1227 1228 // Only insert a cmp in each block once. 1229 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1230 1231 bool MadeChange = false; 1232 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1233 UI != E; ) { 1234 Use &TheUse = UI.getUse(); 1235 Instruction *User = cast<Instruction>(*UI); 1236 1237 // Preincrement use iterator so we don't invalidate it. 1238 ++UI; 1239 1240 // Don't bother for PHI nodes. 1241 if (isa<PHINode>(User)) 1242 continue; 1243 1244 // Figure out which BB this cmp is used in. 1245 BasicBlock *UserBB = User->getParent(); 1246 1247 // If this user is in the same block as the cmp, don't change the cmp. 1248 if (UserBB == DefBB) continue; 1249 1250 // If we have already inserted a cmp into this block, use it. 1251 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1252 1253 if (!InsertedCmp) { 1254 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1255 assert(InsertPt != UserBB->end()); 1256 InsertedCmp = 1257 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1258 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1259 // Propagate the debug info. 1260 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1261 } 1262 1263 // Replace a use of the cmp with a use of the new cmp. 1264 TheUse = InsertedCmp; 1265 MadeChange = true; 1266 ++NumCmpUses; 1267 } 1268 1269 // If we removed all uses, nuke the cmp. 1270 if (CI->use_empty()) { 1271 CI->eraseFromParent(); 1272 MadeChange = true; 1273 } 1274 1275 return MadeChange; 1276 } 1277 1278 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1279 if (SinkCmpExpression(CI, TLI)) 1280 return true; 1281 1282 if (CombineUAddWithOverflow(CI)) 1283 return true; 1284 1285 return false; 1286 } 1287 1288 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1289 /// used in a compare to allow isel to generate better code for targets where 1290 /// this operation can be combined. 1291 /// 1292 /// Return true if any changes are made. 1293 static bool sinkAndCmp0Expression(Instruction *AndI, 1294 const TargetLowering &TLI, 1295 SetOfInstrs &InsertedInsts) { 1296 // Double-check that we're not trying to optimize an instruction that was 1297 // already optimized by some other part of this pass. 1298 assert(!InsertedInsts.count(AndI) && 1299 "Attempting to optimize already optimized and instruction"); 1300 (void) InsertedInsts; 1301 1302 // Nothing to do for single use in same basic block. 1303 if (AndI->hasOneUse() && 1304 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1305 return false; 1306 1307 // Try to avoid cases where sinking/duplicating is likely to increase register 1308 // pressure. 1309 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1310 !isa<ConstantInt>(AndI->getOperand(1)) && 1311 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1312 return false; 1313 1314 for (auto *U : AndI->users()) { 1315 Instruction *User = cast<Instruction>(U); 1316 1317 // Only sink for and mask feeding icmp with 0. 1318 if (!isa<ICmpInst>(User)) 1319 return false; 1320 1321 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1322 if (!CmpC || !CmpC->isZero()) 1323 return false; 1324 } 1325 1326 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1327 return false; 1328 1329 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1330 DEBUG(AndI->getParent()->dump()); 1331 1332 // Push the 'and' into the same block as the icmp 0. There should only be 1333 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1334 // others, so we don't need to keep track of which BBs we insert into. 1335 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1336 UI != E; ) { 1337 Use &TheUse = UI.getUse(); 1338 Instruction *User = cast<Instruction>(*UI); 1339 1340 // Preincrement use iterator so we don't invalidate it. 1341 ++UI; 1342 1343 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1344 1345 // Keep the 'and' in the same place if the use is already in the same block. 1346 Instruction *InsertPt = 1347 User->getParent() == AndI->getParent() ? AndI : User; 1348 Instruction *InsertedAnd = 1349 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1350 AndI->getOperand(1), "", InsertPt); 1351 // Propagate the debug info. 1352 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1353 1354 // Replace a use of the 'and' with a use of the new 'and'. 1355 TheUse = InsertedAnd; 1356 ++NumAndUses; 1357 DEBUG(User->getParent()->dump()); 1358 } 1359 1360 // We removed all uses, nuke the and. 1361 AndI->eraseFromParent(); 1362 return true; 1363 } 1364 1365 /// Check if the candidates could be combined with a shift instruction, which 1366 /// includes: 1367 /// 1. Truncate instruction 1368 /// 2. And instruction and the imm is a mask of the low bits: 1369 /// imm & (imm+1) == 0 1370 static bool isExtractBitsCandidateUse(Instruction *User) { 1371 if (!isa<TruncInst>(User)) { 1372 if (User->getOpcode() != Instruction::And || 1373 !isa<ConstantInt>(User->getOperand(1))) 1374 return false; 1375 1376 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1377 1378 if ((Cimm & (Cimm + 1)).getBoolValue()) 1379 return false; 1380 } 1381 return true; 1382 } 1383 1384 /// Sink both shift and truncate instruction to the use of truncate's BB. 1385 static bool 1386 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1387 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1388 const TargetLowering &TLI, const DataLayout &DL) { 1389 BasicBlock *UserBB = User->getParent(); 1390 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1391 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1392 bool MadeChange = false; 1393 1394 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1395 TruncE = TruncI->user_end(); 1396 TruncUI != TruncE;) { 1397 1398 Use &TruncTheUse = TruncUI.getUse(); 1399 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1400 // Preincrement use iterator so we don't invalidate it. 1401 1402 ++TruncUI; 1403 1404 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1405 if (!ISDOpcode) 1406 continue; 1407 1408 // If the use is actually a legal node, there will not be an 1409 // implicit truncate. 1410 // FIXME: always querying the result type is just an 1411 // approximation; some nodes' legality is determined by the 1412 // operand or other means. There's no good way to find out though. 1413 if (TLI.isOperationLegalOrCustom( 1414 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1415 continue; 1416 1417 // Don't bother for PHI nodes. 1418 if (isa<PHINode>(TruncUser)) 1419 continue; 1420 1421 BasicBlock *TruncUserBB = TruncUser->getParent(); 1422 1423 if (UserBB == TruncUserBB) 1424 continue; 1425 1426 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1427 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1428 1429 if (!InsertedShift && !InsertedTrunc) { 1430 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1431 assert(InsertPt != TruncUserBB->end()); 1432 // Sink the shift 1433 if (ShiftI->getOpcode() == Instruction::AShr) 1434 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1435 "", &*InsertPt); 1436 else 1437 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1438 "", &*InsertPt); 1439 1440 // Sink the trunc 1441 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1442 TruncInsertPt++; 1443 assert(TruncInsertPt != TruncUserBB->end()); 1444 1445 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1446 TruncI->getType(), "", &*TruncInsertPt); 1447 1448 MadeChange = true; 1449 1450 TruncTheUse = InsertedTrunc; 1451 } 1452 } 1453 return MadeChange; 1454 } 1455 1456 /// Sink the shift *right* instruction into user blocks if the uses could 1457 /// potentially be combined with this shift instruction and generate BitExtract 1458 /// instruction. It will only be applied if the architecture supports BitExtract 1459 /// instruction. Here is an example: 1460 /// BB1: 1461 /// %x.extract.shift = lshr i64 %arg1, 32 1462 /// BB2: 1463 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1464 /// ==> 1465 /// 1466 /// BB2: 1467 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1468 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1469 /// 1470 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1471 /// instruction. 1472 /// Return true if any changes are made. 1473 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1474 const TargetLowering &TLI, 1475 const DataLayout &DL) { 1476 BasicBlock *DefBB = ShiftI->getParent(); 1477 1478 /// Only insert instructions in each block once. 1479 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1480 1481 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1482 1483 bool MadeChange = false; 1484 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1485 UI != E;) { 1486 Use &TheUse = UI.getUse(); 1487 Instruction *User = cast<Instruction>(*UI); 1488 // Preincrement use iterator so we don't invalidate it. 1489 ++UI; 1490 1491 // Don't bother for PHI nodes. 1492 if (isa<PHINode>(User)) 1493 continue; 1494 1495 if (!isExtractBitsCandidateUse(User)) 1496 continue; 1497 1498 BasicBlock *UserBB = User->getParent(); 1499 1500 if (UserBB == DefBB) { 1501 // If the shift and truncate instruction are in the same BB. The use of 1502 // the truncate(TruncUse) may still introduce another truncate if not 1503 // legal. In this case, we would like to sink both shift and truncate 1504 // instruction to the BB of TruncUse. 1505 // for example: 1506 // BB1: 1507 // i64 shift.result = lshr i64 opnd, imm 1508 // trunc.result = trunc shift.result to i16 1509 // 1510 // BB2: 1511 // ----> We will have an implicit truncate here if the architecture does 1512 // not have i16 compare. 1513 // cmp i16 trunc.result, opnd2 1514 // 1515 if (isa<TruncInst>(User) && shiftIsLegal 1516 // If the type of the truncate is legal, no trucate will be 1517 // introduced in other basic blocks. 1518 && 1519 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1520 MadeChange = 1521 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1522 1523 continue; 1524 } 1525 // If we have already inserted a shift into this block, use it. 1526 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1527 1528 if (!InsertedShift) { 1529 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1530 assert(InsertPt != UserBB->end()); 1531 1532 if (ShiftI->getOpcode() == Instruction::AShr) 1533 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1534 "", &*InsertPt); 1535 else 1536 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1537 "", &*InsertPt); 1538 1539 MadeChange = true; 1540 } 1541 1542 // Replace a use of the shift with a use of the new shift. 1543 TheUse = InsertedShift; 1544 } 1545 1546 // If we removed all uses, nuke the shift. 1547 if (ShiftI->use_empty()) 1548 ShiftI->eraseFromParent(); 1549 1550 return MadeChange; 1551 } 1552 1553 /// If counting leading or trailing zeros is an expensive operation and a zero 1554 /// input is defined, add a check for zero to avoid calling the intrinsic. 1555 /// 1556 /// We want to transform: 1557 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1558 /// 1559 /// into: 1560 /// entry: 1561 /// %cmpz = icmp eq i64 %A, 0 1562 /// br i1 %cmpz, label %cond.end, label %cond.false 1563 /// cond.false: 1564 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1565 /// br label %cond.end 1566 /// cond.end: 1567 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1568 /// 1569 /// If the transform is performed, return true and set ModifiedDT to true. 1570 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1571 const TargetLowering *TLI, 1572 const DataLayout *DL, 1573 bool &ModifiedDT) { 1574 if (!TLI || !DL) 1575 return false; 1576 1577 // If a zero input is undefined, it doesn't make sense to despeculate that. 1578 if (match(CountZeros->getOperand(1), m_One())) 1579 return false; 1580 1581 // If it's cheap to speculate, there's nothing to do. 1582 auto IntrinsicID = CountZeros->getIntrinsicID(); 1583 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1584 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1585 return false; 1586 1587 // Only handle legal scalar cases. Anything else requires too much work. 1588 Type *Ty = CountZeros->getType(); 1589 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1590 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1591 return false; 1592 1593 // The intrinsic will be sunk behind a compare against zero and branch. 1594 BasicBlock *StartBlock = CountZeros->getParent(); 1595 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1596 1597 // Create another block after the count zero intrinsic. A PHI will be added 1598 // in this block to select the result of the intrinsic or the bit-width 1599 // constant if the input to the intrinsic is zero. 1600 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1601 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1602 1603 // Set up a builder to create a compare, conditional branch, and PHI. 1604 IRBuilder<> Builder(CountZeros->getContext()); 1605 Builder.SetInsertPoint(StartBlock->getTerminator()); 1606 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1607 1608 // Replace the unconditional branch that was created by the first split with 1609 // a compare against zero and a conditional branch. 1610 Value *Zero = Constant::getNullValue(Ty); 1611 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1612 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1613 StartBlock->getTerminator()->eraseFromParent(); 1614 1615 // Create a PHI in the end block to select either the output of the intrinsic 1616 // or the bit width of the operand. 1617 Builder.SetInsertPoint(&EndBlock->front()); 1618 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1619 CountZeros->replaceAllUsesWith(PN); 1620 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1621 PN->addIncoming(BitWidth, StartBlock); 1622 PN->addIncoming(CountZeros, CallBlock); 1623 1624 // We are explicitly handling the zero case, so we can set the intrinsic's 1625 // undefined zero argument to 'true'. This will also prevent reprocessing the 1626 // intrinsic; we only despeculate when a zero input is defined. 1627 CountZeros->setArgOperand(1, Builder.getTrue()); 1628 ModifiedDT = true; 1629 return true; 1630 } 1631 1632 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1633 BasicBlock *BB = CI->getParent(); 1634 1635 // Lower inline assembly if we can. 1636 // If we found an inline asm expession, and if the target knows how to 1637 // lower it to normal LLVM code, do so now. 1638 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1639 if (TLI->ExpandInlineAsm(CI)) { 1640 // Avoid invalidating the iterator. 1641 CurInstIterator = BB->begin(); 1642 // Avoid processing instructions out of order, which could cause 1643 // reuse before a value is defined. 1644 SunkAddrs.clear(); 1645 return true; 1646 } 1647 // Sink address computing for memory operands into the block. 1648 if (optimizeInlineAsmInst(CI)) 1649 return true; 1650 } 1651 1652 // Align the pointer arguments to this call if the target thinks it's a good 1653 // idea 1654 unsigned MinSize, PrefAlign; 1655 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1656 for (auto &Arg : CI->arg_operands()) { 1657 // We want to align both objects whose address is used directly and 1658 // objects whose address is used in casts and GEPs, though it only makes 1659 // sense for GEPs if the offset is a multiple of the desired alignment and 1660 // if size - offset meets the size threshold. 1661 if (!Arg->getType()->isPointerTy()) 1662 continue; 1663 APInt Offset(DL->getPointerSizeInBits( 1664 cast<PointerType>(Arg->getType())->getAddressSpace()), 1665 0); 1666 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1667 uint64_t Offset2 = Offset.getLimitedValue(); 1668 if ((Offset2 & (PrefAlign-1)) != 0) 1669 continue; 1670 AllocaInst *AI; 1671 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1672 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1673 AI->setAlignment(PrefAlign); 1674 // Global variables can only be aligned if they are defined in this 1675 // object (i.e. they are uniquely initialized in this object), and 1676 // over-aligning global variables that have an explicit section is 1677 // forbidden. 1678 GlobalVariable *GV; 1679 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1680 GV->getPointerAlignment(*DL) < PrefAlign && 1681 DL->getTypeAllocSize(GV->getValueType()) >= 1682 MinSize + Offset2) 1683 GV->setAlignment(PrefAlign); 1684 } 1685 // If this is a memcpy (or similar) then we may be able to improve the 1686 // alignment 1687 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1688 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1689 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1690 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1691 if (Align > MI->getAlignment()) 1692 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1693 } 1694 } 1695 1696 // If we have a cold call site, try to sink addressing computation into the 1697 // cold block. This interacts with our handling for loads and stores to 1698 // ensure that we can fold all uses of a potential addressing computation 1699 // into their uses. TODO: generalize this to work over profiling data 1700 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1701 for (auto &Arg : CI->arg_operands()) { 1702 if (!Arg->getType()->isPointerTy()) 1703 continue; 1704 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1705 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1706 } 1707 1708 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1709 if (II) { 1710 switch (II->getIntrinsicID()) { 1711 default: break; 1712 case Intrinsic::objectsize: { 1713 // Lower all uses of llvm.objectsize.* 1714 ConstantInt *RetVal = 1715 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1716 // Substituting this can cause recursive simplifications, which can 1717 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1718 // this 1719 // happens. 1720 Value *CurValue = &*CurInstIterator; 1721 WeakTrackingVH IterHandle(CurValue); 1722 1723 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1724 1725 // If the iterator instruction was recursively deleted, start over at the 1726 // start of the block. 1727 if (IterHandle != CurValue) { 1728 CurInstIterator = BB->begin(); 1729 SunkAddrs.clear(); 1730 } 1731 return true; 1732 } 1733 case Intrinsic::aarch64_stlxr: 1734 case Intrinsic::aarch64_stxr: { 1735 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1736 if (!ExtVal || !ExtVal->hasOneUse() || 1737 ExtVal->getParent() == CI->getParent()) 1738 return false; 1739 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1740 ExtVal->moveBefore(CI); 1741 // Mark this instruction as "inserted by CGP", so that other 1742 // optimizations don't touch it. 1743 InsertedInsts.insert(ExtVal); 1744 return true; 1745 } 1746 case Intrinsic::invariant_group_barrier: 1747 II->replaceAllUsesWith(II->getArgOperand(0)); 1748 II->eraseFromParent(); 1749 return true; 1750 1751 case Intrinsic::cttz: 1752 case Intrinsic::ctlz: 1753 // If counting zeros is expensive, try to avoid it. 1754 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1755 } 1756 1757 if (TLI) { 1758 SmallVector<Value*, 2> PtrOps; 1759 Type *AccessTy; 1760 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1761 while (!PtrOps.empty()) { 1762 Value *PtrVal = PtrOps.pop_back_val(); 1763 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1764 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1765 return true; 1766 } 1767 } 1768 } 1769 1770 // From here on out we're working with named functions. 1771 if (!CI->getCalledFunction()) return false; 1772 1773 // Lower all default uses of _chk calls. This is very similar 1774 // to what InstCombineCalls does, but here we are only lowering calls 1775 // to fortified library functions (e.g. __memcpy_chk) that have the default 1776 // "don't know" as the objectsize. Anything else should be left alone. 1777 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1778 if (Value *V = Simplifier.optimizeCall(CI)) { 1779 CI->replaceAllUsesWith(V); 1780 CI->eraseFromParent(); 1781 return true; 1782 } 1783 return false; 1784 } 1785 1786 /// Look for opportunities to duplicate return instructions to the predecessor 1787 /// to enable tail call optimizations. The case it is currently looking for is: 1788 /// @code 1789 /// bb0: 1790 /// %tmp0 = tail call i32 @f0() 1791 /// br label %return 1792 /// bb1: 1793 /// %tmp1 = tail call i32 @f1() 1794 /// br label %return 1795 /// bb2: 1796 /// %tmp2 = tail call i32 @f2() 1797 /// br label %return 1798 /// return: 1799 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1800 /// ret i32 %retval 1801 /// @endcode 1802 /// 1803 /// => 1804 /// 1805 /// @code 1806 /// bb0: 1807 /// %tmp0 = tail call i32 @f0() 1808 /// ret i32 %tmp0 1809 /// bb1: 1810 /// %tmp1 = tail call i32 @f1() 1811 /// ret i32 %tmp1 1812 /// bb2: 1813 /// %tmp2 = tail call i32 @f2() 1814 /// ret i32 %tmp2 1815 /// @endcode 1816 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1817 if (!TLI) 1818 return false; 1819 1820 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1821 if (!RetI) 1822 return false; 1823 1824 PHINode *PN = nullptr; 1825 BitCastInst *BCI = nullptr; 1826 Value *V = RetI->getReturnValue(); 1827 if (V) { 1828 BCI = dyn_cast<BitCastInst>(V); 1829 if (BCI) 1830 V = BCI->getOperand(0); 1831 1832 PN = dyn_cast<PHINode>(V); 1833 if (!PN) 1834 return false; 1835 } 1836 1837 if (PN && PN->getParent() != BB) 1838 return false; 1839 1840 // Make sure there are no instructions between the PHI and return, or that the 1841 // return is the first instruction in the block. 1842 if (PN) { 1843 BasicBlock::iterator BI = BB->begin(); 1844 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1845 if (&*BI == BCI) 1846 // Also skip over the bitcast. 1847 ++BI; 1848 if (&*BI != RetI) 1849 return false; 1850 } else { 1851 BasicBlock::iterator BI = BB->begin(); 1852 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1853 if (&*BI != RetI) 1854 return false; 1855 } 1856 1857 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1858 /// call. 1859 const Function *F = BB->getParent(); 1860 SmallVector<CallInst*, 4> TailCalls; 1861 if (PN) { 1862 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1863 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1864 // Make sure the phi value is indeed produced by the tail call. 1865 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1866 TLI->mayBeEmittedAsTailCall(CI) && 1867 attributesPermitTailCall(F, CI, RetI, *TLI)) 1868 TailCalls.push_back(CI); 1869 } 1870 } else { 1871 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1872 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1873 if (!VisitedBBs.insert(*PI).second) 1874 continue; 1875 1876 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1877 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1878 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1879 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1880 if (RI == RE) 1881 continue; 1882 1883 CallInst *CI = dyn_cast<CallInst>(&*RI); 1884 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1885 attributesPermitTailCall(F, CI, RetI, *TLI)) 1886 TailCalls.push_back(CI); 1887 } 1888 } 1889 1890 bool Changed = false; 1891 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1892 CallInst *CI = TailCalls[i]; 1893 CallSite CS(CI); 1894 1895 // Conservatively require the attributes of the call to match those of the 1896 // return. Ignore noalias because it doesn't affect the call sequence. 1897 AttributeList CalleeAttrs = CS.getAttributes(); 1898 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1899 .removeAttribute(Attribute::NoAlias) != 1900 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1901 .removeAttribute(Attribute::NoAlias)) 1902 continue; 1903 1904 // Make sure the call instruction is followed by an unconditional branch to 1905 // the return block. 1906 BasicBlock *CallBB = CI->getParent(); 1907 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1908 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1909 continue; 1910 1911 // Duplicate the return into CallBB. 1912 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1913 ModifiedDT = Changed = true; 1914 ++NumRetsDup; 1915 } 1916 1917 // If we eliminated all predecessors of the block, delete the block now. 1918 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1919 BB->eraseFromParent(); 1920 1921 return Changed; 1922 } 1923 1924 //===----------------------------------------------------------------------===// 1925 // Memory Optimization 1926 //===----------------------------------------------------------------------===// 1927 1928 namespace { 1929 1930 /// This is an extended version of TargetLowering::AddrMode 1931 /// which holds actual Value*'s for register values. 1932 struct ExtAddrMode : public TargetLowering::AddrMode { 1933 Value *BaseReg; 1934 Value *ScaledReg; 1935 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1936 void print(raw_ostream &OS) const; 1937 void dump() const; 1938 1939 bool operator==(const ExtAddrMode& O) const { 1940 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1941 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1942 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1943 } 1944 }; 1945 1946 #ifndef NDEBUG 1947 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1948 AM.print(OS); 1949 return OS; 1950 } 1951 #endif 1952 1953 void ExtAddrMode::print(raw_ostream &OS) const { 1954 bool NeedPlus = false; 1955 OS << "["; 1956 if (BaseGV) { 1957 OS << (NeedPlus ? " + " : "") 1958 << "GV:"; 1959 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1960 NeedPlus = true; 1961 } 1962 1963 if (BaseOffs) { 1964 OS << (NeedPlus ? " + " : "") 1965 << BaseOffs; 1966 NeedPlus = true; 1967 } 1968 1969 if (BaseReg) { 1970 OS << (NeedPlus ? " + " : "") 1971 << "Base:"; 1972 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1973 NeedPlus = true; 1974 } 1975 if (Scale) { 1976 OS << (NeedPlus ? " + " : "") 1977 << Scale << "*"; 1978 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1979 } 1980 1981 OS << ']'; 1982 } 1983 1984 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1985 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 1986 print(dbgs()); 1987 dbgs() << '\n'; 1988 } 1989 #endif 1990 1991 /// \brief This class provides transaction based operation on the IR. 1992 /// Every change made through this class is recorded in the internal state and 1993 /// can be undone (rollback) until commit is called. 1994 class TypePromotionTransaction { 1995 1996 /// \brief This represents the common interface of the individual transaction. 1997 /// Each class implements the logic for doing one specific modification on 1998 /// the IR via the TypePromotionTransaction. 1999 class TypePromotionAction { 2000 protected: 2001 /// The Instruction modified. 2002 Instruction *Inst; 2003 2004 public: 2005 /// \brief Constructor of the action. 2006 /// The constructor performs the related action on the IR. 2007 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2008 2009 virtual ~TypePromotionAction() {} 2010 2011 /// \brief Undo the modification done by this action. 2012 /// When this method is called, the IR must be in the same state as it was 2013 /// before this action was applied. 2014 /// \pre Undoing the action works if and only if the IR is in the exact same 2015 /// state as it was directly after this action was applied. 2016 virtual void undo() = 0; 2017 2018 /// \brief Advocate every change made by this action. 2019 /// When the results on the IR of the action are to be kept, it is important 2020 /// to call this function, otherwise hidden information may be kept forever. 2021 virtual void commit() { 2022 // Nothing to be done, this action is not doing anything. 2023 } 2024 }; 2025 2026 /// \brief Utility to remember the position of an instruction. 2027 class InsertionHandler { 2028 /// Position of an instruction. 2029 /// Either an instruction: 2030 /// - Is the first in a basic block: BB is used. 2031 /// - Has a previous instructon: PrevInst is used. 2032 union { 2033 Instruction *PrevInst; 2034 BasicBlock *BB; 2035 } Point; 2036 /// Remember whether or not the instruction had a previous instruction. 2037 bool HasPrevInstruction; 2038 2039 public: 2040 /// \brief Record the position of \p Inst. 2041 InsertionHandler(Instruction *Inst) { 2042 BasicBlock::iterator It = Inst->getIterator(); 2043 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2044 if (HasPrevInstruction) 2045 Point.PrevInst = &*--It; 2046 else 2047 Point.BB = Inst->getParent(); 2048 } 2049 2050 /// \brief Insert \p Inst at the recorded position. 2051 void insert(Instruction *Inst) { 2052 if (HasPrevInstruction) { 2053 if (Inst->getParent()) 2054 Inst->removeFromParent(); 2055 Inst->insertAfter(Point.PrevInst); 2056 } else { 2057 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2058 if (Inst->getParent()) 2059 Inst->moveBefore(Position); 2060 else 2061 Inst->insertBefore(Position); 2062 } 2063 } 2064 }; 2065 2066 /// \brief Move an instruction before another. 2067 class InstructionMoveBefore : public TypePromotionAction { 2068 /// Original position of the instruction. 2069 InsertionHandler Position; 2070 2071 public: 2072 /// \brief Move \p Inst before \p Before. 2073 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2074 : TypePromotionAction(Inst), Position(Inst) { 2075 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2076 Inst->moveBefore(Before); 2077 } 2078 2079 /// \brief Move the instruction back to its original position. 2080 void undo() override { 2081 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2082 Position.insert(Inst); 2083 } 2084 }; 2085 2086 /// \brief Set the operand of an instruction with a new value. 2087 class OperandSetter : public TypePromotionAction { 2088 /// Original operand of the instruction. 2089 Value *Origin; 2090 /// Index of the modified instruction. 2091 unsigned Idx; 2092 2093 public: 2094 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2095 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2096 : TypePromotionAction(Inst), Idx(Idx) { 2097 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2098 << "for:" << *Inst << "\n" 2099 << "with:" << *NewVal << "\n"); 2100 Origin = Inst->getOperand(Idx); 2101 Inst->setOperand(Idx, NewVal); 2102 } 2103 2104 /// \brief Restore the original value of the instruction. 2105 void undo() override { 2106 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2107 << "for: " << *Inst << "\n" 2108 << "with: " << *Origin << "\n"); 2109 Inst->setOperand(Idx, Origin); 2110 } 2111 }; 2112 2113 /// \brief Hide the operands of an instruction. 2114 /// Do as if this instruction was not using any of its operands. 2115 class OperandsHider : public TypePromotionAction { 2116 /// The list of original operands. 2117 SmallVector<Value *, 4> OriginalValues; 2118 2119 public: 2120 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2121 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2122 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2123 unsigned NumOpnds = Inst->getNumOperands(); 2124 OriginalValues.reserve(NumOpnds); 2125 for (unsigned It = 0; It < NumOpnds; ++It) { 2126 // Save the current operand. 2127 Value *Val = Inst->getOperand(It); 2128 OriginalValues.push_back(Val); 2129 // Set a dummy one. 2130 // We could use OperandSetter here, but that would imply an overhead 2131 // that we are not willing to pay. 2132 Inst->setOperand(It, UndefValue::get(Val->getType())); 2133 } 2134 } 2135 2136 /// \brief Restore the original list of uses. 2137 void undo() override { 2138 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2139 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2140 Inst->setOperand(It, OriginalValues[It]); 2141 } 2142 }; 2143 2144 /// \brief Build a truncate instruction. 2145 class TruncBuilder : public TypePromotionAction { 2146 Value *Val; 2147 public: 2148 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2149 /// result. 2150 /// trunc Opnd to Ty. 2151 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2152 IRBuilder<> Builder(Opnd); 2153 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2154 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2155 } 2156 2157 /// \brief Get the built value. 2158 Value *getBuiltValue() { return Val; } 2159 2160 /// \brief Remove the built instruction. 2161 void undo() override { 2162 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2163 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2164 IVal->eraseFromParent(); 2165 } 2166 }; 2167 2168 /// \brief Build a sign extension instruction. 2169 class SExtBuilder : public TypePromotionAction { 2170 Value *Val; 2171 public: 2172 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2173 /// result. 2174 /// sext Opnd to Ty. 2175 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2176 : TypePromotionAction(InsertPt) { 2177 IRBuilder<> Builder(InsertPt); 2178 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2179 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2180 } 2181 2182 /// \brief Get the built value. 2183 Value *getBuiltValue() { return Val; } 2184 2185 /// \brief Remove the built instruction. 2186 void undo() override { 2187 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2188 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2189 IVal->eraseFromParent(); 2190 } 2191 }; 2192 2193 /// \brief Build a zero extension instruction. 2194 class ZExtBuilder : public TypePromotionAction { 2195 Value *Val; 2196 public: 2197 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2198 /// result. 2199 /// zext Opnd to Ty. 2200 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2201 : TypePromotionAction(InsertPt) { 2202 IRBuilder<> Builder(InsertPt); 2203 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2204 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2205 } 2206 2207 /// \brief Get the built value. 2208 Value *getBuiltValue() { return Val; } 2209 2210 /// \brief Remove the built instruction. 2211 void undo() override { 2212 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2213 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2214 IVal->eraseFromParent(); 2215 } 2216 }; 2217 2218 /// \brief Mutate an instruction to another type. 2219 class TypeMutator : public TypePromotionAction { 2220 /// Record the original type. 2221 Type *OrigTy; 2222 2223 public: 2224 /// \brief Mutate the type of \p Inst into \p NewTy. 2225 TypeMutator(Instruction *Inst, Type *NewTy) 2226 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2227 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2228 << "\n"); 2229 Inst->mutateType(NewTy); 2230 } 2231 2232 /// \brief Mutate the instruction back to its original type. 2233 void undo() override { 2234 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2235 << "\n"); 2236 Inst->mutateType(OrigTy); 2237 } 2238 }; 2239 2240 /// \brief Replace the uses of an instruction by another instruction. 2241 class UsesReplacer : public TypePromotionAction { 2242 /// Helper structure to keep track of the replaced uses. 2243 struct InstructionAndIdx { 2244 /// The instruction using the instruction. 2245 Instruction *Inst; 2246 /// The index where this instruction is used for Inst. 2247 unsigned Idx; 2248 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2249 : Inst(Inst), Idx(Idx) {} 2250 }; 2251 2252 /// Keep track of the original uses (pair Instruction, Index). 2253 SmallVector<InstructionAndIdx, 4> OriginalUses; 2254 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2255 2256 public: 2257 /// \brief Replace all the use of \p Inst by \p New. 2258 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2259 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2260 << "\n"); 2261 // Record the original uses. 2262 for (Use &U : Inst->uses()) { 2263 Instruction *UserI = cast<Instruction>(U.getUser()); 2264 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2265 } 2266 // Now, we can replace the uses. 2267 Inst->replaceAllUsesWith(New); 2268 } 2269 2270 /// \brief Reassign the original uses of Inst to Inst. 2271 void undo() override { 2272 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2273 for (use_iterator UseIt = OriginalUses.begin(), 2274 EndIt = OriginalUses.end(); 2275 UseIt != EndIt; ++UseIt) { 2276 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2277 } 2278 } 2279 }; 2280 2281 /// \brief Remove an instruction from the IR. 2282 class InstructionRemover : public TypePromotionAction { 2283 /// Original position of the instruction. 2284 InsertionHandler Inserter; 2285 /// Helper structure to hide all the link to the instruction. In other 2286 /// words, this helps to do as if the instruction was removed. 2287 OperandsHider Hider; 2288 /// Keep track of the uses replaced, if any. 2289 UsesReplacer *Replacer; 2290 /// Keep track of instructions removed. 2291 SetOfInstrs &RemovedInsts; 2292 2293 public: 2294 /// \brief Remove all reference of \p Inst and optinally replace all its 2295 /// uses with New. 2296 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2297 /// \pre If !Inst->use_empty(), then New != nullptr 2298 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2299 Value *New = nullptr) 2300 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2301 Replacer(nullptr), RemovedInsts(RemovedInsts) { 2302 if (New) 2303 Replacer = new UsesReplacer(Inst, New); 2304 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2305 RemovedInsts.insert(Inst); 2306 /// The instructions removed here will be freed after completing 2307 /// optimizeBlock() for all blocks as we need to keep track of the 2308 /// removed instructions during promotion. 2309 Inst->removeFromParent(); 2310 } 2311 2312 ~InstructionRemover() override { delete Replacer; } 2313 2314 /// \brief Resurrect the instruction and reassign it to the proper uses if 2315 /// new value was provided when build this action. 2316 void undo() override { 2317 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2318 Inserter.insert(Inst); 2319 if (Replacer) 2320 Replacer->undo(); 2321 Hider.undo(); 2322 RemovedInsts.erase(Inst); 2323 } 2324 }; 2325 2326 public: 2327 /// Restoration point. 2328 /// The restoration point is a pointer to an action instead of an iterator 2329 /// because the iterator may be invalidated but not the pointer. 2330 typedef const TypePromotionAction *ConstRestorationPt; 2331 2332 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2333 : RemovedInsts(RemovedInsts) {} 2334 2335 /// Advocate every changes made in that transaction. 2336 void commit(); 2337 /// Undo all the changes made after the given point. 2338 void rollback(ConstRestorationPt Point); 2339 /// Get the current restoration point. 2340 ConstRestorationPt getRestorationPoint() const; 2341 2342 /// \name API for IR modification with state keeping to support rollback. 2343 /// @{ 2344 /// Same as Instruction::setOperand. 2345 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2346 /// Same as Instruction::eraseFromParent. 2347 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2348 /// Same as Value::replaceAllUsesWith. 2349 void replaceAllUsesWith(Instruction *Inst, Value *New); 2350 /// Same as Value::mutateType. 2351 void mutateType(Instruction *Inst, Type *NewTy); 2352 /// Same as IRBuilder::createTrunc. 2353 Value *createTrunc(Instruction *Opnd, Type *Ty); 2354 /// Same as IRBuilder::createSExt. 2355 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2356 /// Same as IRBuilder::createZExt. 2357 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2358 /// Same as Instruction::moveBefore. 2359 void moveBefore(Instruction *Inst, Instruction *Before); 2360 /// @} 2361 2362 private: 2363 /// The ordered list of actions made so far. 2364 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2365 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2366 SetOfInstrs &RemovedInsts; 2367 }; 2368 2369 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2370 Value *NewVal) { 2371 Actions.push_back( 2372 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2373 } 2374 2375 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2376 Value *NewVal) { 2377 Actions.push_back( 2378 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, 2379 RemovedInsts, NewVal)); 2380 } 2381 2382 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2383 Value *New) { 2384 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2385 } 2386 2387 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2388 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2389 } 2390 2391 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2392 Type *Ty) { 2393 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2394 Value *Val = Ptr->getBuiltValue(); 2395 Actions.push_back(std::move(Ptr)); 2396 return Val; 2397 } 2398 2399 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2400 Value *Opnd, Type *Ty) { 2401 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2402 Value *Val = Ptr->getBuiltValue(); 2403 Actions.push_back(std::move(Ptr)); 2404 return Val; 2405 } 2406 2407 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2408 Value *Opnd, Type *Ty) { 2409 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2410 Value *Val = Ptr->getBuiltValue(); 2411 Actions.push_back(std::move(Ptr)); 2412 return Val; 2413 } 2414 2415 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2416 Instruction *Before) { 2417 Actions.push_back( 2418 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2419 } 2420 2421 TypePromotionTransaction::ConstRestorationPt 2422 TypePromotionTransaction::getRestorationPoint() const { 2423 return !Actions.empty() ? Actions.back().get() : nullptr; 2424 } 2425 2426 void TypePromotionTransaction::commit() { 2427 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2428 ++It) 2429 (*It)->commit(); 2430 Actions.clear(); 2431 } 2432 2433 void TypePromotionTransaction::rollback( 2434 TypePromotionTransaction::ConstRestorationPt Point) { 2435 while (!Actions.empty() && Point != Actions.back().get()) { 2436 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2437 Curr->undo(); 2438 } 2439 } 2440 2441 /// \brief A helper class for matching addressing modes. 2442 /// 2443 /// This encapsulates the logic for matching the target-legal addressing modes. 2444 class AddressingModeMatcher { 2445 SmallVectorImpl<Instruction*> &AddrModeInsts; 2446 const TargetLowering &TLI; 2447 const TargetRegisterInfo &TRI; 2448 const DataLayout &DL; 2449 2450 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2451 /// the memory instruction that we're computing this address for. 2452 Type *AccessTy; 2453 unsigned AddrSpace; 2454 Instruction *MemoryInst; 2455 2456 /// This is the addressing mode that we're building up. This is 2457 /// part of the return value of this addressing mode matching stuff. 2458 ExtAddrMode &AddrMode; 2459 2460 /// The instructions inserted by other CodeGenPrepare optimizations. 2461 const SetOfInstrs &InsertedInsts; 2462 /// A map from the instructions to their type before promotion. 2463 InstrToOrigTy &PromotedInsts; 2464 /// The ongoing transaction where every action should be registered. 2465 TypePromotionTransaction &TPT; 2466 2467 /// This is set to true when we should not do profitability checks. 2468 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2469 bool IgnoreProfitability; 2470 2471 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2472 const TargetLowering &TLI, 2473 const TargetRegisterInfo &TRI, 2474 Type *AT, unsigned AS, 2475 Instruction *MI, ExtAddrMode &AM, 2476 const SetOfInstrs &InsertedInsts, 2477 InstrToOrigTy &PromotedInsts, 2478 TypePromotionTransaction &TPT) 2479 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2480 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2481 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2482 PromotedInsts(PromotedInsts), TPT(TPT) { 2483 IgnoreProfitability = false; 2484 } 2485 public: 2486 2487 /// Find the maximal addressing mode that a load/store of V can fold, 2488 /// give an access type of AccessTy. This returns a list of involved 2489 /// instructions in AddrModeInsts. 2490 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2491 /// optimizations. 2492 /// \p PromotedInsts maps the instructions to their type before promotion. 2493 /// \p The ongoing transaction where every action should be registered. 2494 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2495 Instruction *MemoryInst, 2496 SmallVectorImpl<Instruction*> &AddrModeInsts, 2497 const TargetLowering &TLI, 2498 const TargetRegisterInfo &TRI, 2499 const SetOfInstrs &InsertedInsts, 2500 InstrToOrigTy &PromotedInsts, 2501 TypePromotionTransaction &TPT) { 2502 ExtAddrMode Result; 2503 2504 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 2505 AccessTy, AS, 2506 MemoryInst, Result, InsertedInsts, 2507 PromotedInsts, TPT).matchAddr(V, 0); 2508 (void)Success; assert(Success && "Couldn't select *anything*?"); 2509 return Result; 2510 } 2511 private: 2512 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2513 bool matchAddr(Value *V, unsigned Depth); 2514 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2515 bool *MovedAway = nullptr); 2516 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2517 ExtAddrMode &AMBefore, 2518 ExtAddrMode &AMAfter); 2519 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2520 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2521 Value *PromotedOperand) const; 2522 }; 2523 2524 /// Try adding ScaleReg*Scale to the current addressing mode. 2525 /// Return true and update AddrMode if this addr mode is legal for the target, 2526 /// false if not. 2527 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2528 unsigned Depth) { 2529 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2530 // mode. Just process that directly. 2531 if (Scale == 1) 2532 return matchAddr(ScaleReg, Depth); 2533 2534 // If the scale is 0, it takes nothing to add this. 2535 if (Scale == 0) 2536 return true; 2537 2538 // If we already have a scale of this value, we can add to it, otherwise, we 2539 // need an available scale field. 2540 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2541 return false; 2542 2543 ExtAddrMode TestAddrMode = AddrMode; 2544 2545 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2546 // [A+B + A*7] -> [B+A*8]. 2547 TestAddrMode.Scale += Scale; 2548 TestAddrMode.ScaledReg = ScaleReg; 2549 2550 // If the new address isn't legal, bail out. 2551 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2552 return false; 2553 2554 // It was legal, so commit it. 2555 AddrMode = TestAddrMode; 2556 2557 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2558 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2559 // X*Scale + C*Scale to addr mode. 2560 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2561 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2562 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2563 TestAddrMode.ScaledReg = AddLHS; 2564 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2565 2566 // If this addressing mode is legal, commit it and remember that we folded 2567 // this instruction. 2568 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2569 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2570 AddrMode = TestAddrMode; 2571 return true; 2572 } 2573 } 2574 2575 // Otherwise, not (x+c)*scale, just return what we have. 2576 return true; 2577 } 2578 2579 /// This is a little filter, which returns true if an addressing computation 2580 /// involving I might be folded into a load/store accessing it. 2581 /// This doesn't need to be perfect, but needs to accept at least 2582 /// the set of instructions that MatchOperationAddr can. 2583 static bool MightBeFoldableInst(Instruction *I) { 2584 switch (I->getOpcode()) { 2585 case Instruction::BitCast: 2586 case Instruction::AddrSpaceCast: 2587 // Don't touch identity bitcasts. 2588 if (I->getType() == I->getOperand(0)->getType()) 2589 return false; 2590 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2591 case Instruction::PtrToInt: 2592 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2593 return true; 2594 case Instruction::IntToPtr: 2595 // We know the input is intptr_t, so this is foldable. 2596 return true; 2597 case Instruction::Add: 2598 return true; 2599 case Instruction::Mul: 2600 case Instruction::Shl: 2601 // Can only handle X*C and X << C. 2602 return isa<ConstantInt>(I->getOperand(1)); 2603 case Instruction::GetElementPtr: 2604 return true; 2605 default: 2606 return false; 2607 } 2608 } 2609 2610 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2611 /// \note \p Val is assumed to be the product of some type promotion. 2612 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2613 /// to be legal, as the non-promoted value would have had the same state. 2614 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2615 const DataLayout &DL, Value *Val) { 2616 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2617 if (!PromotedInst) 2618 return false; 2619 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2620 // If the ISDOpcode is undefined, it was undefined before the promotion. 2621 if (!ISDOpcode) 2622 return true; 2623 // Otherwise, check if the promoted instruction is legal or not. 2624 return TLI.isOperationLegalOrCustom( 2625 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2626 } 2627 2628 /// \brief Hepler class to perform type promotion. 2629 class TypePromotionHelper { 2630 /// \brief Utility function to check whether or not a sign or zero extension 2631 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2632 /// either using the operands of \p Inst or promoting \p Inst. 2633 /// The type of the extension is defined by \p IsSExt. 2634 /// In other words, check if: 2635 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2636 /// #1 Promotion applies: 2637 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2638 /// #2 Operand reuses: 2639 /// ext opnd1 to ConsideredExtType. 2640 /// \p PromotedInsts maps the instructions to their type before promotion. 2641 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2642 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2643 2644 /// \brief Utility function to determine if \p OpIdx should be promoted when 2645 /// promoting \p Inst. 2646 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2647 return !(isa<SelectInst>(Inst) && OpIdx == 0); 2648 } 2649 2650 /// \brief Utility function to promote the operand of \p Ext when this 2651 /// operand is a promotable trunc or sext or zext. 2652 /// \p PromotedInsts maps the instructions to their type before promotion. 2653 /// \p CreatedInstsCost[out] contains the cost of all instructions 2654 /// created to promote the operand of Ext. 2655 /// Newly added extensions are inserted in \p Exts. 2656 /// Newly added truncates are inserted in \p Truncs. 2657 /// Should never be called directly. 2658 /// \return The promoted value which is used instead of Ext. 2659 static Value *promoteOperandForTruncAndAnyExt( 2660 Instruction *Ext, TypePromotionTransaction &TPT, 2661 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2662 SmallVectorImpl<Instruction *> *Exts, 2663 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2664 2665 /// \brief Utility function to promote the operand of \p Ext when this 2666 /// operand is promotable and is not a supported trunc or sext. 2667 /// \p PromotedInsts maps the instructions to their type before promotion. 2668 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2669 /// created to promote the operand of Ext. 2670 /// Newly added extensions are inserted in \p Exts. 2671 /// Newly added truncates are inserted in \p Truncs. 2672 /// Should never be called directly. 2673 /// \return The promoted value which is used instead of Ext. 2674 static Value *promoteOperandForOther(Instruction *Ext, 2675 TypePromotionTransaction &TPT, 2676 InstrToOrigTy &PromotedInsts, 2677 unsigned &CreatedInstsCost, 2678 SmallVectorImpl<Instruction *> *Exts, 2679 SmallVectorImpl<Instruction *> *Truncs, 2680 const TargetLowering &TLI, bool IsSExt); 2681 2682 /// \see promoteOperandForOther. 2683 static Value *signExtendOperandForOther( 2684 Instruction *Ext, TypePromotionTransaction &TPT, 2685 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2686 SmallVectorImpl<Instruction *> *Exts, 2687 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2688 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2689 Exts, Truncs, TLI, true); 2690 } 2691 2692 /// \see promoteOperandForOther. 2693 static Value *zeroExtendOperandForOther( 2694 Instruction *Ext, TypePromotionTransaction &TPT, 2695 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2696 SmallVectorImpl<Instruction *> *Exts, 2697 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2698 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2699 Exts, Truncs, TLI, false); 2700 } 2701 2702 public: 2703 /// Type for the utility function that promotes the operand of Ext. 2704 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2705 InstrToOrigTy &PromotedInsts, 2706 unsigned &CreatedInstsCost, 2707 SmallVectorImpl<Instruction *> *Exts, 2708 SmallVectorImpl<Instruction *> *Truncs, 2709 const TargetLowering &TLI); 2710 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2711 /// action to promote the operand of \p Ext instead of using Ext. 2712 /// \return NULL if no promotable action is possible with the current 2713 /// sign extension. 2714 /// \p InsertedInsts keeps track of all the instructions inserted by the 2715 /// other CodeGenPrepare optimizations. This information is important 2716 /// because we do not want to promote these instructions as CodeGenPrepare 2717 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2718 /// \p PromotedInsts maps the instructions to their type before promotion. 2719 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2720 const TargetLowering &TLI, 2721 const InstrToOrigTy &PromotedInsts); 2722 }; 2723 2724 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2725 Type *ConsideredExtType, 2726 const InstrToOrigTy &PromotedInsts, 2727 bool IsSExt) { 2728 // The promotion helper does not know how to deal with vector types yet. 2729 // To be able to fix that, we would need to fix the places where we 2730 // statically extend, e.g., constants and such. 2731 if (Inst->getType()->isVectorTy()) 2732 return false; 2733 2734 // We can always get through zext. 2735 if (isa<ZExtInst>(Inst)) 2736 return true; 2737 2738 // sext(sext) is ok too. 2739 if (IsSExt && isa<SExtInst>(Inst)) 2740 return true; 2741 2742 // We can get through binary operator, if it is legal. In other words, the 2743 // binary operator must have a nuw or nsw flag. 2744 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2745 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2746 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2747 (IsSExt && BinOp->hasNoSignedWrap()))) 2748 return true; 2749 2750 // Check if we can do the following simplification. 2751 // ext(trunc(opnd)) --> ext(opnd) 2752 if (!isa<TruncInst>(Inst)) 2753 return false; 2754 2755 Value *OpndVal = Inst->getOperand(0); 2756 // Check if we can use this operand in the extension. 2757 // If the type is larger than the result type of the extension, we cannot. 2758 if (!OpndVal->getType()->isIntegerTy() || 2759 OpndVal->getType()->getIntegerBitWidth() > 2760 ConsideredExtType->getIntegerBitWidth()) 2761 return false; 2762 2763 // If the operand of the truncate is not an instruction, we will not have 2764 // any information on the dropped bits. 2765 // (Actually we could for constant but it is not worth the extra logic). 2766 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2767 if (!Opnd) 2768 return false; 2769 2770 // Check if the source of the type is narrow enough. 2771 // I.e., check that trunc just drops extended bits of the same kind of 2772 // the extension. 2773 // #1 get the type of the operand and check the kind of the extended bits. 2774 const Type *OpndType; 2775 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2776 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2777 OpndType = It->second.getPointer(); 2778 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2779 OpndType = Opnd->getOperand(0)->getType(); 2780 else 2781 return false; 2782 2783 // #2 check that the truncate just drops extended bits. 2784 return Inst->getType()->getIntegerBitWidth() >= 2785 OpndType->getIntegerBitWidth(); 2786 } 2787 2788 TypePromotionHelper::Action TypePromotionHelper::getAction( 2789 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2790 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2791 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2792 "Unexpected instruction type"); 2793 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2794 Type *ExtTy = Ext->getType(); 2795 bool IsSExt = isa<SExtInst>(Ext); 2796 // If the operand of the extension is not an instruction, we cannot 2797 // get through. 2798 // If it, check we can get through. 2799 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2800 return nullptr; 2801 2802 // Do not promote if the operand has been added by codegenprepare. 2803 // Otherwise, it means we are undoing an optimization that is likely to be 2804 // redone, thus causing potential infinite loop. 2805 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2806 return nullptr; 2807 2808 // SExt or Trunc instructions. 2809 // Return the related handler. 2810 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2811 isa<ZExtInst>(ExtOpnd)) 2812 return promoteOperandForTruncAndAnyExt; 2813 2814 // Regular instruction. 2815 // Abort early if we will have to insert non-free instructions. 2816 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2817 return nullptr; 2818 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2819 } 2820 2821 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2822 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2823 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2824 SmallVectorImpl<Instruction *> *Exts, 2825 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2826 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2827 // get through it and this method should not be called. 2828 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2829 Value *ExtVal = SExt; 2830 bool HasMergedNonFreeExt = false; 2831 if (isa<ZExtInst>(SExtOpnd)) { 2832 // Replace s|zext(zext(opnd)) 2833 // => zext(opnd). 2834 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2835 Value *ZExt = 2836 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2837 TPT.replaceAllUsesWith(SExt, ZExt); 2838 TPT.eraseInstruction(SExt); 2839 ExtVal = ZExt; 2840 } else { 2841 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2842 // => z|sext(opnd). 2843 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2844 } 2845 CreatedInstsCost = 0; 2846 2847 // Remove dead code. 2848 if (SExtOpnd->use_empty()) 2849 TPT.eraseInstruction(SExtOpnd); 2850 2851 // Check if the extension is still needed. 2852 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2853 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2854 if (ExtInst) { 2855 if (Exts) 2856 Exts->push_back(ExtInst); 2857 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2858 } 2859 return ExtVal; 2860 } 2861 2862 // At this point we have: ext ty opnd to ty. 2863 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2864 Value *NextVal = ExtInst->getOperand(0); 2865 TPT.eraseInstruction(ExtInst, NextVal); 2866 return NextVal; 2867 } 2868 2869 Value *TypePromotionHelper::promoteOperandForOther( 2870 Instruction *Ext, TypePromotionTransaction &TPT, 2871 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2872 SmallVectorImpl<Instruction *> *Exts, 2873 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 2874 bool IsSExt) { 2875 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2876 // get through it and this method should not be called. 2877 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2878 CreatedInstsCost = 0; 2879 if (!ExtOpnd->hasOneUse()) { 2880 // ExtOpnd will be promoted. 2881 // All its uses, but Ext, will need to use a truncated value of the 2882 // promoted version. 2883 // Create the truncate now. 2884 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2885 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2886 ITrunc->removeFromParent(); 2887 // Insert it just after the definition. 2888 ITrunc->insertAfter(ExtOpnd); 2889 if (Truncs) 2890 Truncs->push_back(ITrunc); 2891 } 2892 2893 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2894 // Restore the operand of Ext (which has been replaced by the previous call 2895 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2896 TPT.setOperand(Ext, 0, ExtOpnd); 2897 } 2898 2899 // Get through the Instruction: 2900 // 1. Update its type. 2901 // 2. Replace the uses of Ext by Inst. 2902 // 3. Extend each operand that needs to be extended. 2903 2904 // Remember the original type of the instruction before promotion. 2905 // This is useful to know that the high bits are sign extended bits. 2906 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2907 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2908 // Step #1. 2909 TPT.mutateType(ExtOpnd, Ext->getType()); 2910 // Step #2. 2911 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2912 // Step #3. 2913 Instruction *ExtForOpnd = Ext; 2914 2915 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2916 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2917 ++OpIdx) { 2918 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2919 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2920 !shouldExtOperand(ExtOpnd, OpIdx)) { 2921 DEBUG(dbgs() << "No need to propagate\n"); 2922 continue; 2923 } 2924 // Check if we can statically extend the operand. 2925 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2926 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2927 DEBUG(dbgs() << "Statically extend\n"); 2928 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2929 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2930 : Cst->getValue().zext(BitWidth); 2931 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2932 continue; 2933 } 2934 // UndefValue are typed, so we have to statically sign extend them. 2935 if (isa<UndefValue>(Opnd)) { 2936 DEBUG(dbgs() << "Statically extend\n"); 2937 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2938 continue; 2939 } 2940 2941 // Otherwise we have to explicity sign extend the operand. 2942 // Check if Ext was reused to extend an operand. 2943 if (!ExtForOpnd) { 2944 // If yes, create a new one. 2945 DEBUG(dbgs() << "More operands to ext\n"); 2946 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2947 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2948 if (!isa<Instruction>(ValForExtOpnd)) { 2949 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2950 continue; 2951 } 2952 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2953 } 2954 if (Exts) 2955 Exts->push_back(ExtForOpnd); 2956 TPT.setOperand(ExtForOpnd, 0, Opnd); 2957 2958 // Move the sign extension before the insertion point. 2959 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2960 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2961 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 2962 // If more sext are required, new instructions will have to be created. 2963 ExtForOpnd = nullptr; 2964 } 2965 if (ExtForOpnd == Ext) { 2966 DEBUG(dbgs() << "Extension is useless now\n"); 2967 TPT.eraseInstruction(Ext); 2968 } 2969 return ExtOpnd; 2970 } 2971 2972 /// Check whether or not promoting an instruction to a wider type is profitable. 2973 /// \p NewCost gives the cost of extension instructions created by the 2974 /// promotion. 2975 /// \p OldCost gives the cost of extension instructions before the promotion 2976 /// plus the number of instructions that have been 2977 /// matched in the addressing mode the promotion. 2978 /// \p PromotedOperand is the value that has been promoted. 2979 /// \return True if the promotion is profitable, false otherwise. 2980 bool AddressingModeMatcher::isPromotionProfitable( 2981 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 2982 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 2983 // The cost of the new extensions is greater than the cost of the 2984 // old extension plus what we folded. 2985 // This is not profitable. 2986 if (NewCost > OldCost) 2987 return false; 2988 if (NewCost < OldCost) 2989 return true; 2990 // The promotion is neutral but it may help folding the sign extension in 2991 // loads for instance. 2992 // Check that we did not create an illegal instruction. 2993 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 2994 } 2995 2996 /// Given an instruction or constant expr, see if we can fold the operation 2997 /// into the addressing mode. If so, update the addressing mode and return 2998 /// true, otherwise return false without modifying AddrMode. 2999 /// If \p MovedAway is not NULL, it contains the information of whether or 3000 /// not AddrInst has to be folded into the addressing mode on success. 3001 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3002 /// because it has been moved away. 3003 /// Thus AddrInst must not be added in the matched instructions. 3004 /// This state can happen when AddrInst is a sext, since it may be moved away. 3005 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3006 /// not be referenced anymore. 3007 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3008 unsigned Depth, 3009 bool *MovedAway) { 3010 // Avoid exponential behavior on extremely deep expression trees. 3011 if (Depth >= 5) return false; 3012 3013 // By default, all matched instructions stay in place. 3014 if (MovedAway) 3015 *MovedAway = false; 3016 3017 switch (Opcode) { 3018 case Instruction::PtrToInt: 3019 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3020 return matchAddr(AddrInst->getOperand(0), Depth); 3021 case Instruction::IntToPtr: { 3022 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3023 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3024 // This inttoptr is a no-op if the integer type is pointer sized. 3025 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3026 return matchAddr(AddrInst->getOperand(0), Depth); 3027 return false; 3028 } 3029 case Instruction::BitCast: 3030 // BitCast is always a noop, and we can handle it as long as it is 3031 // int->int or pointer->pointer (we don't want int<->fp or something). 3032 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3033 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3034 // Don't touch identity bitcasts. These were probably put here by LSR, 3035 // and we don't want to mess around with them. Assume it knows what it 3036 // is doing. 3037 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3038 return matchAddr(AddrInst->getOperand(0), Depth); 3039 return false; 3040 case Instruction::AddrSpaceCast: { 3041 unsigned SrcAS 3042 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3043 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3044 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3045 return matchAddr(AddrInst->getOperand(0), Depth); 3046 return false; 3047 } 3048 case Instruction::Add: { 3049 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3050 ExtAddrMode BackupAddrMode = AddrMode; 3051 unsigned OldSize = AddrModeInsts.size(); 3052 // Start a transaction at this point. 3053 // The LHS may match but not the RHS. 3054 // Therefore, we need a higher level restoration point to undo partially 3055 // matched operation. 3056 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3057 TPT.getRestorationPoint(); 3058 3059 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3060 matchAddr(AddrInst->getOperand(0), Depth+1)) 3061 return true; 3062 3063 // Restore the old addr mode info. 3064 AddrMode = BackupAddrMode; 3065 AddrModeInsts.resize(OldSize); 3066 TPT.rollback(LastKnownGood); 3067 3068 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3069 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3070 matchAddr(AddrInst->getOperand(1), Depth+1)) 3071 return true; 3072 3073 // Otherwise we definitely can't merge the ADD in. 3074 AddrMode = BackupAddrMode; 3075 AddrModeInsts.resize(OldSize); 3076 TPT.rollback(LastKnownGood); 3077 break; 3078 } 3079 //case Instruction::Or: 3080 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3081 //break; 3082 case Instruction::Mul: 3083 case Instruction::Shl: { 3084 // Can only handle X*C and X << C. 3085 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3086 if (!RHS) 3087 return false; 3088 int64_t Scale = RHS->getSExtValue(); 3089 if (Opcode == Instruction::Shl) 3090 Scale = 1LL << Scale; 3091 3092 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3093 } 3094 case Instruction::GetElementPtr: { 3095 // Scan the GEP. We check it if it contains constant offsets and at most 3096 // one variable offset. 3097 int VariableOperand = -1; 3098 unsigned VariableScale = 0; 3099 3100 int64_t ConstantOffset = 0; 3101 gep_type_iterator GTI = gep_type_begin(AddrInst); 3102 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3103 if (StructType *STy = GTI.getStructTypeOrNull()) { 3104 const StructLayout *SL = DL.getStructLayout(STy); 3105 unsigned Idx = 3106 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3107 ConstantOffset += SL->getElementOffset(Idx); 3108 } else { 3109 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3110 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3111 ConstantOffset += CI->getSExtValue()*TypeSize; 3112 } else if (TypeSize) { // Scales of zero don't do anything. 3113 // We only allow one variable index at the moment. 3114 if (VariableOperand != -1) 3115 return false; 3116 3117 // Remember the variable index. 3118 VariableOperand = i; 3119 VariableScale = TypeSize; 3120 } 3121 } 3122 } 3123 3124 // A common case is for the GEP to only do a constant offset. In this case, 3125 // just add it to the disp field and check validity. 3126 if (VariableOperand == -1) { 3127 AddrMode.BaseOffs += ConstantOffset; 3128 if (ConstantOffset == 0 || 3129 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3130 // Check to see if we can fold the base pointer in too. 3131 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3132 return true; 3133 } 3134 AddrMode.BaseOffs -= ConstantOffset; 3135 return false; 3136 } 3137 3138 // Save the valid addressing mode in case we can't match. 3139 ExtAddrMode BackupAddrMode = AddrMode; 3140 unsigned OldSize = AddrModeInsts.size(); 3141 3142 // See if the scale and offset amount is valid for this target. 3143 AddrMode.BaseOffs += ConstantOffset; 3144 3145 // Match the base operand of the GEP. 3146 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3147 // If it couldn't be matched, just stuff the value in a register. 3148 if (AddrMode.HasBaseReg) { 3149 AddrMode = BackupAddrMode; 3150 AddrModeInsts.resize(OldSize); 3151 return false; 3152 } 3153 AddrMode.HasBaseReg = true; 3154 AddrMode.BaseReg = AddrInst->getOperand(0); 3155 } 3156 3157 // Match the remaining variable portion of the GEP. 3158 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3159 Depth)) { 3160 // If it couldn't be matched, try stuffing the base into a register 3161 // instead of matching it, and retrying the match of the scale. 3162 AddrMode = BackupAddrMode; 3163 AddrModeInsts.resize(OldSize); 3164 if (AddrMode.HasBaseReg) 3165 return false; 3166 AddrMode.HasBaseReg = true; 3167 AddrMode.BaseReg = AddrInst->getOperand(0); 3168 AddrMode.BaseOffs += ConstantOffset; 3169 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3170 VariableScale, Depth)) { 3171 // If even that didn't work, bail. 3172 AddrMode = BackupAddrMode; 3173 AddrModeInsts.resize(OldSize); 3174 return false; 3175 } 3176 } 3177 3178 return true; 3179 } 3180 case Instruction::SExt: 3181 case Instruction::ZExt: { 3182 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3183 if (!Ext) 3184 return false; 3185 3186 // Try to move this ext out of the way of the addressing mode. 3187 // Ask for a method for doing so. 3188 TypePromotionHelper::Action TPH = 3189 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3190 if (!TPH) 3191 return false; 3192 3193 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3194 TPT.getRestorationPoint(); 3195 unsigned CreatedInstsCost = 0; 3196 unsigned ExtCost = !TLI.isExtFree(Ext); 3197 Value *PromotedOperand = 3198 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3199 // SExt has been moved away. 3200 // Thus either it will be rematched later in the recursive calls or it is 3201 // gone. Anyway, we must not fold it into the addressing mode at this point. 3202 // E.g., 3203 // op = add opnd, 1 3204 // idx = ext op 3205 // addr = gep base, idx 3206 // is now: 3207 // promotedOpnd = ext opnd <- no match here 3208 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3209 // addr = gep base, op <- match 3210 if (MovedAway) 3211 *MovedAway = true; 3212 3213 assert(PromotedOperand && 3214 "TypePromotionHelper should have filtered out those cases"); 3215 3216 ExtAddrMode BackupAddrMode = AddrMode; 3217 unsigned OldSize = AddrModeInsts.size(); 3218 3219 if (!matchAddr(PromotedOperand, Depth) || 3220 // The total of the new cost is equal to the cost of the created 3221 // instructions. 3222 // The total of the old cost is equal to the cost of the extension plus 3223 // what we have saved in the addressing mode. 3224 !isPromotionProfitable(CreatedInstsCost, 3225 ExtCost + (AddrModeInsts.size() - OldSize), 3226 PromotedOperand)) { 3227 AddrMode = BackupAddrMode; 3228 AddrModeInsts.resize(OldSize); 3229 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3230 TPT.rollback(LastKnownGood); 3231 return false; 3232 } 3233 return true; 3234 } 3235 } 3236 return false; 3237 } 3238 3239 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3240 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3241 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3242 /// for the target. 3243 /// 3244 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3245 // Start a transaction at this point that we will rollback if the matching 3246 // fails. 3247 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3248 TPT.getRestorationPoint(); 3249 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3250 // Fold in immediates if legal for the target. 3251 AddrMode.BaseOffs += CI->getSExtValue(); 3252 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3253 return true; 3254 AddrMode.BaseOffs -= CI->getSExtValue(); 3255 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3256 // If this is a global variable, try to fold it into the addressing mode. 3257 if (!AddrMode.BaseGV) { 3258 AddrMode.BaseGV = GV; 3259 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3260 return true; 3261 AddrMode.BaseGV = nullptr; 3262 } 3263 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3264 ExtAddrMode BackupAddrMode = AddrMode; 3265 unsigned OldSize = AddrModeInsts.size(); 3266 3267 // Check to see if it is possible to fold this operation. 3268 bool MovedAway = false; 3269 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3270 // This instruction may have been moved away. If so, there is nothing 3271 // to check here. 3272 if (MovedAway) 3273 return true; 3274 // Okay, it's possible to fold this. Check to see if it is actually 3275 // *profitable* to do so. We use a simple cost model to avoid increasing 3276 // register pressure too much. 3277 if (I->hasOneUse() || 3278 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3279 AddrModeInsts.push_back(I); 3280 return true; 3281 } 3282 3283 // It isn't profitable to do this, roll back. 3284 //cerr << "NOT FOLDING: " << *I; 3285 AddrMode = BackupAddrMode; 3286 AddrModeInsts.resize(OldSize); 3287 TPT.rollback(LastKnownGood); 3288 } 3289 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3290 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3291 return true; 3292 TPT.rollback(LastKnownGood); 3293 } else if (isa<ConstantPointerNull>(Addr)) { 3294 // Null pointer gets folded without affecting the addressing mode. 3295 return true; 3296 } 3297 3298 // Worse case, the target should support [reg] addressing modes. :) 3299 if (!AddrMode.HasBaseReg) { 3300 AddrMode.HasBaseReg = true; 3301 AddrMode.BaseReg = Addr; 3302 // Still check for legality in case the target supports [imm] but not [i+r]. 3303 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3304 return true; 3305 AddrMode.HasBaseReg = false; 3306 AddrMode.BaseReg = nullptr; 3307 } 3308 3309 // If the base register is already taken, see if we can do [r+r]. 3310 if (AddrMode.Scale == 0) { 3311 AddrMode.Scale = 1; 3312 AddrMode.ScaledReg = Addr; 3313 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3314 return true; 3315 AddrMode.Scale = 0; 3316 AddrMode.ScaledReg = nullptr; 3317 } 3318 // Couldn't match. 3319 TPT.rollback(LastKnownGood); 3320 return false; 3321 } 3322 3323 /// Check to see if all uses of OpVal by the specified inline asm call are due 3324 /// to memory operands. If so, return true, otherwise return false. 3325 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3326 const TargetLowering &TLI, 3327 const TargetRegisterInfo &TRI) { 3328 const Function *F = CI->getParent()->getParent(); 3329 TargetLowering::AsmOperandInfoVector TargetConstraints = 3330 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3331 ImmutableCallSite(CI)); 3332 3333 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3334 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3335 3336 // Compute the constraint code and ConstraintType to use. 3337 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3338 3339 // If this asm operand is our Value*, and if it isn't an indirect memory 3340 // operand, we can't fold it! 3341 if (OpInfo.CallOperandVal == OpVal && 3342 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3343 !OpInfo.isIndirect)) 3344 return false; 3345 } 3346 3347 return true; 3348 } 3349 3350 /// Recursively walk all the uses of I until we find a memory use. 3351 /// If we find an obviously non-foldable instruction, return true. 3352 /// Add the ultimately found memory instructions to MemoryUses. 3353 static bool FindAllMemoryUses( 3354 Instruction *I, 3355 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3356 SmallPtrSetImpl<Instruction *> &ConsideredInsts, 3357 const TargetLowering &TLI, const TargetRegisterInfo &TRI) { 3358 // If we already considered this instruction, we're done. 3359 if (!ConsideredInsts.insert(I).second) 3360 return false; 3361 3362 // If this is an obviously unfoldable instruction, bail out. 3363 if (!MightBeFoldableInst(I)) 3364 return true; 3365 3366 const bool OptSize = I->getFunction()->optForSize(); 3367 3368 // Loop over all the uses, recursively processing them. 3369 for (Use &U : I->uses()) { 3370 Instruction *UserI = cast<Instruction>(U.getUser()); 3371 3372 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3373 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3374 continue; 3375 } 3376 3377 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3378 unsigned opNo = U.getOperandNo(); 3379 if (opNo != StoreInst::getPointerOperandIndex()) 3380 return true; // Storing addr, not into addr. 3381 MemoryUses.push_back(std::make_pair(SI, opNo)); 3382 continue; 3383 } 3384 3385 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 3386 unsigned opNo = U.getOperandNo(); 3387 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 3388 return true; // Storing addr, not into addr. 3389 MemoryUses.push_back(std::make_pair(RMW, opNo)); 3390 continue; 3391 } 3392 3393 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 3394 unsigned opNo = U.getOperandNo(); 3395 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 3396 return true; // Storing addr, not into addr. 3397 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 3398 continue; 3399 } 3400 3401 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3402 // If this is a cold call, we can sink the addressing calculation into 3403 // the cold path. See optimizeCallInst 3404 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 3405 continue; 3406 3407 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3408 if (!IA) return true; 3409 3410 // If this is a memory operand, we're cool, otherwise bail out. 3411 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 3412 return true; 3413 continue; 3414 } 3415 3416 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI)) 3417 return true; 3418 } 3419 3420 return false; 3421 } 3422 3423 /// Return true if Val is already known to be live at the use site that we're 3424 /// folding it into. If so, there is no cost to include it in the addressing 3425 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3426 /// instruction already. 3427 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3428 Value *KnownLive2) { 3429 // If Val is either of the known-live values, we know it is live! 3430 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3431 return true; 3432 3433 // All values other than instructions and arguments (e.g. constants) are live. 3434 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3435 3436 // If Val is a constant sized alloca in the entry block, it is live, this is 3437 // true because it is just a reference to the stack/frame pointer, which is 3438 // live for the whole function. 3439 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3440 if (AI->isStaticAlloca()) 3441 return true; 3442 3443 // Check to see if this value is already used in the memory instruction's 3444 // block. If so, it's already live into the block at the very least, so we 3445 // can reasonably fold it. 3446 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3447 } 3448 3449 /// It is possible for the addressing mode of the machine to fold the specified 3450 /// instruction into a load or store that ultimately uses it. 3451 /// However, the specified instruction has multiple uses. 3452 /// Given this, it may actually increase register pressure to fold it 3453 /// into the load. For example, consider this code: 3454 /// 3455 /// X = ... 3456 /// Y = X+1 3457 /// use(Y) -> nonload/store 3458 /// Z = Y+1 3459 /// load Z 3460 /// 3461 /// In this case, Y has multiple uses, and can be folded into the load of Z 3462 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3463 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3464 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3465 /// number of computations either. 3466 /// 3467 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3468 /// X was live across 'load Z' for other reasons, we actually *would* want to 3469 /// fold the addressing mode in the Z case. This would make Y die earlier. 3470 bool AddressingModeMatcher:: 3471 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3472 ExtAddrMode &AMAfter) { 3473 if (IgnoreProfitability) return true; 3474 3475 // AMBefore is the addressing mode before this instruction was folded into it, 3476 // and AMAfter is the addressing mode after the instruction was folded. Get 3477 // the set of registers referenced by AMAfter and subtract out those 3478 // referenced by AMBefore: this is the set of values which folding in this 3479 // address extends the lifetime of. 3480 // 3481 // Note that there are only two potential values being referenced here, 3482 // BaseReg and ScaleReg (global addresses are always available, as are any 3483 // folded immediates). 3484 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3485 3486 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3487 // lifetime wasn't extended by adding this instruction. 3488 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3489 BaseReg = nullptr; 3490 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3491 ScaledReg = nullptr; 3492 3493 // If folding this instruction (and it's subexprs) didn't extend any live 3494 // ranges, we're ok with it. 3495 if (!BaseReg && !ScaledReg) 3496 return true; 3497 3498 // If all uses of this instruction can have the address mode sunk into them, 3499 // we can remove the addressing mode and effectively trade one live register 3500 // for another (at worst.) In this context, folding an addressing mode into 3501 // the use is just a particularly nice way of sinking it. 3502 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3503 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3504 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 3505 return false; // Has a non-memory, non-foldable use! 3506 3507 // Now that we know that all uses of this instruction are part of a chain of 3508 // computation involving only operations that could theoretically be folded 3509 // into a memory use, loop over each of these memory operation uses and see 3510 // if they could *actually* fold the instruction. The assumption is that 3511 // addressing modes are cheap and that duplicating the computation involved 3512 // many times is worthwhile, even on a fastpath. For sinking candidates 3513 // (i.e. cold call sites), this serves as a way to prevent excessive code 3514 // growth since most architectures have some reasonable small and fast way to 3515 // compute an effective address. (i.e LEA on x86) 3516 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3517 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3518 Instruction *User = MemoryUses[i].first; 3519 unsigned OpNo = MemoryUses[i].second; 3520 3521 // Get the access type of this use. If the use isn't a pointer, we don't 3522 // know what it accesses. 3523 Value *Address = User->getOperand(OpNo); 3524 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3525 if (!AddrTy) 3526 return false; 3527 Type *AddressAccessTy = AddrTy->getElementType(); 3528 unsigned AS = AddrTy->getAddressSpace(); 3529 3530 // Do a match against the root of this address, ignoring profitability. This 3531 // will tell us if the addressing mode for the memory operation will 3532 // *actually* cover the shared instruction. 3533 ExtAddrMode Result; 3534 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3535 TPT.getRestorationPoint(); 3536 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 3537 AddressAccessTy, AS, 3538 MemoryInst, Result, InsertedInsts, 3539 PromotedInsts, TPT); 3540 Matcher.IgnoreProfitability = true; 3541 bool Success = Matcher.matchAddr(Address, 0); 3542 (void)Success; assert(Success && "Couldn't select *anything*?"); 3543 3544 // The match was to check the profitability, the changes made are not 3545 // part of the original matcher. Therefore, they should be dropped 3546 // otherwise the original matcher will not present the right state. 3547 TPT.rollback(LastKnownGood); 3548 3549 // If the match didn't cover I, then it won't be shared by it. 3550 if (!is_contained(MatchedAddrModeInsts, I)) 3551 return false; 3552 3553 MatchedAddrModeInsts.clear(); 3554 } 3555 3556 return true; 3557 } 3558 3559 } // end anonymous namespace 3560 3561 /// Return true if the specified values are defined in a 3562 /// different basic block than BB. 3563 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3564 if (Instruction *I = dyn_cast<Instruction>(V)) 3565 return I->getParent() != BB; 3566 return false; 3567 } 3568 3569 /// Sink addressing mode computation immediate before MemoryInst if doing so 3570 /// can be done without increasing register pressure. The need for the 3571 /// register pressure constraint means this can end up being an all or nothing 3572 /// decision for all uses of the same addressing computation. 3573 /// 3574 /// Load and Store Instructions often have addressing modes that can do 3575 /// significant amounts of computation. As such, instruction selection will try 3576 /// to get the load or store to do as much computation as possible for the 3577 /// program. The problem is that isel can only see within a single block. As 3578 /// such, we sink as much legal addressing mode work into the block as possible. 3579 /// 3580 /// This method is used to optimize both load/store and inline asms with memory 3581 /// operands. It's also used to sink addressing computations feeding into cold 3582 /// call sites into their (cold) basic block. 3583 /// 3584 /// The motivation for handling sinking into cold blocks is that doing so can 3585 /// both enable other address mode sinking (by satisfying the register pressure 3586 /// constraint above), and reduce register pressure globally (by removing the 3587 /// addressing mode computation from the fast path entirely.). 3588 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3589 Type *AccessTy, unsigned AddrSpace) { 3590 Value *Repl = Addr; 3591 3592 // Try to collapse single-value PHI nodes. This is necessary to undo 3593 // unprofitable PRE transformations. 3594 SmallVector<Value*, 8> worklist; 3595 SmallPtrSet<Value*, 16> Visited; 3596 worklist.push_back(Addr); 3597 3598 // Use a worklist to iteratively look through PHI nodes, and ensure that 3599 // the addressing mode obtained from the non-PHI roots of the graph 3600 // are equivalent. 3601 Value *Consensus = nullptr; 3602 unsigned NumUsesConsensus = 0; 3603 bool IsNumUsesConsensusValid = false; 3604 SmallVector<Instruction*, 16> AddrModeInsts; 3605 ExtAddrMode AddrMode; 3606 TypePromotionTransaction TPT(RemovedInsts); 3607 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3608 TPT.getRestorationPoint(); 3609 while (!worklist.empty()) { 3610 Value *V = worklist.back(); 3611 worklist.pop_back(); 3612 3613 // Break use-def graph loops. 3614 if (!Visited.insert(V).second) { 3615 Consensus = nullptr; 3616 break; 3617 } 3618 3619 // For a PHI node, push all of its incoming values. 3620 if (PHINode *P = dyn_cast<PHINode>(V)) { 3621 for (Value *IncValue : P->incoming_values()) 3622 worklist.push_back(IncValue); 3623 continue; 3624 } 3625 3626 // For non-PHIs, determine the addressing mode being computed. Note that 3627 // the result may differ depending on what other uses our candidate 3628 // addressing instructions might have. 3629 SmallVector<Instruction*, 16> NewAddrModeInsts; 3630 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3631 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TLI, *TRI, 3632 InsertedInsts, PromotedInsts, TPT); 3633 3634 // This check is broken into two cases with very similar code to avoid using 3635 // getNumUses() as much as possible. Some values have a lot of uses, so 3636 // calling getNumUses() unconditionally caused a significant compile-time 3637 // regression. 3638 if (!Consensus) { 3639 Consensus = V; 3640 AddrMode = NewAddrMode; 3641 AddrModeInsts = NewAddrModeInsts; 3642 continue; 3643 } else if (NewAddrMode == AddrMode) { 3644 if (!IsNumUsesConsensusValid) { 3645 NumUsesConsensus = Consensus->getNumUses(); 3646 IsNumUsesConsensusValid = true; 3647 } 3648 3649 // Ensure that the obtained addressing mode is equivalent to that obtained 3650 // for all other roots of the PHI traversal. Also, when choosing one 3651 // such root as representative, select the one with the most uses in order 3652 // to keep the cost modeling heuristics in AddressingModeMatcher 3653 // applicable. 3654 unsigned NumUses = V->getNumUses(); 3655 if (NumUses > NumUsesConsensus) { 3656 Consensus = V; 3657 NumUsesConsensus = NumUses; 3658 AddrModeInsts = NewAddrModeInsts; 3659 } 3660 continue; 3661 } 3662 3663 Consensus = nullptr; 3664 break; 3665 } 3666 3667 // If the addressing mode couldn't be determined, or if multiple different 3668 // ones were determined, bail out now. 3669 if (!Consensus) { 3670 TPT.rollback(LastKnownGood); 3671 return false; 3672 } 3673 TPT.commit(); 3674 3675 // If all the instructions matched are already in this BB, don't do anything. 3676 if (none_of(AddrModeInsts, [&](Value *V) { 3677 return IsNonLocalValue(V, MemoryInst->getParent()); 3678 })) { 3679 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3680 return false; 3681 } 3682 3683 // Insert this computation right after this user. Since our caller is 3684 // scanning from the top of the BB to the bottom, reuse of the expr are 3685 // guaranteed to happen later. 3686 IRBuilder<> Builder(MemoryInst); 3687 3688 // Now that we determined the addressing expression we want to use and know 3689 // that we have to sink it into this block. Check to see if we have already 3690 // done this for some other load/store instr in this block. If so, reuse the 3691 // computation. 3692 Value *&SunkAddr = SunkAddrs[Addr]; 3693 if (SunkAddr) { 3694 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3695 << *MemoryInst << "\n"); 3696 if (SunkAddr->getType() != Addr->getType()) 3697 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 3698 } else if (AddrSinkUsingGEPs || 3699 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3700 SubtargetInfo->useAA())) { 3701 // By default, we use the GEP-based method when AA is used later. This 3702 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3703 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3704 << *MemoryInst << "\n"); 3705 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3706 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3707 3708 // First, find the pointer. 3709 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3710 ResultPtr = AddrMode.BaseReg; 3711 AddrMode.BaseReg = nullptr; 3712 } 3713 3714 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3715 // We can't add more than one pointer together, nor can we scale a 3716 // pointer (both of which seem meaningless). 3717 if (ResultPtr || AddrMode.Scale != 1) 3718 return false; 3719 3720 ResultPtr = AddrMode.ScaledReg; 3721 AddrMode.Scale = 0; 3722 } 3723 3724 if (AddrMode.BaseGV) { 3725 if (ResultPtr) 3726 return false; 3727 3728 ResultPtr = AddrMode.BaseGV; 3729 } 3730 3731 // If the real base value actually came from an inttoptr, then the matcher 3732 // will look through it and provide only the integer value. In that case, 3733 // use it here. 3734 if (!ResultPtr && AddrMode.BaseReg) { 3735 ResultPtr = 3736 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3737 AddrMode.BaseReg = nullptr; 3738 } else if (!ResultPtr && AddrMode.Scale == 1) { 3739 ResultPtr = 3740 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3741 AddrMode.Scale = 0; 3742 } 3743 3744 if (!ResultPtr && 3745 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3746 SunkAddr = Constant::getNullValue(Addr->getType()); 3747 } else if (!ResultPtr) { 3748 return false; 3749 } else { 3750 Type *I8PtrTy = 3751 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3752 Type *I8Ty = Builder.getInt8Ty(); 3753 3754 // Start with the base register. Do this first so that subsequent address 3755 // matching finds it last, which will prevent it from trying to match it 3756 // as the scaled value in case it happens to be a mul. That would be 3757 // problematic if we've sunk a different mul for the scale, because then 3758 // we'd end up sinking both muls. 3759 if (AddrMode.BaseReg) { 3760 Value *V = AddrMode.BaseReg; 3761 if (V->getType() != IntPtrTy) 3762 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3763 3764 ResultIndex = V; 3765 } 3766 3767 // Add the scale value. 3768 if (AddrMode.Scale) { 3769 Value *V = AddrMode.ScaledReg; 3770 if (V->getType() == IntPtrTy) { 3771 // done. 3772 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3773 cast<IntegerType>(V->getType())->getBitWidth()) { 3774 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3775 } else { 3776 // It is only safe to sign extend the BaseReg if we know that the math 3777 // required to create it did not overflow before we extend it. Since 3778 // the original IR value was tossed in favor of a constant back when 3779 // the AddrMode was created we need to bail out gracefully if widths 3780 // do not match instead of extending it. 3781 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3782 if (I && (ResultIndex != AddrMode.BaseReg)) 3783 I->eraseFromParent(); 3784 return false; 3785 } 3786 3787 if (AddrMode.Scale != 1) 3788 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3789 "sunkaddr"); 3790 if (ResultIndex) 3791 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3792 else 3793 ResultIndex = V; 3794 } 3795 3796 // Add in the Base Offset if present. 3797 if (AddrMode.BaseOffs) { 3798 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3799 if (ResultIndex) { 3800 // We need to add this separately from the scale above to help with 3801 // SDAG consecutive load/store merging. 3802 if (ResultPtr->getType() != I8PtrTy) 3803 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 3804 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3805 } 3806 3807 ResultIndex = V; 3808 } 3809 3810 if (!ResultIndex) { 3811 SunkAddr = ResultPtr; 3812 } else { 3813 if (ResultPtr->getType() != I8PtrTy) 3814 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 3815 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3816 } 3817 3818 if (SunkAddr->getType() != Addr->getType()) 3819 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 3820 } 3821 } else { 3822 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3823 << *MemoryInst << "\n"); 3824 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3825 Value *Result = nullptr; 3826 3827 // Start with the base register. Do this first so that subsequent address 3828 // matching finds it last, which will prevent it from trying to match it 3829 // as the scaled value in case it happens to be a mul. That would be 3830 // problematic if we've sunk a different mul for the scale, because then 3831 // we'd end up sinking both muls. 3832 if (AddrMode.BaseReg) { 3833 Value *V = AddrMode.BaseReg; 3834 if (V->getType()->isPointerTy()) 3835 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3836 if (V->getType() != IntPtrTy) 3837 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3838 Result = V; 3839 } 3840 3841 // Add the scale value. 3842 if (AddrMode.Scale) { 3843 Value *V = AddrMode.ScaledReg; 3844 if (V->getType() == IntPtrTy) { 3845 // done. 3846 } else if (V->getType()->isPointerTy()) { 3847 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3848 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3849 cast<IntegerType>(V->getType())->getBitWidth()) { 3850 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3851 } else { 3852 // It is only safe to sign extend the BaseReg if we know that the math 3853 // required to create it did not overflow before we extend it. Since 3854 // the original IR value was tossed in favor of a constant back when 3855 // the AddrMode was created we need to bail out gracefully if widths 3856 // do not match instead of extending it. 3857 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3858 if (I && (Result != AddrMode.BaseReg)) 3859 I->eraseFromParent(); 3860 return false; 3861 } 3862 if (AddrMode.Scale != 1) 3863 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3864 "sunkaddr"); 3865 if (Result) 3866 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3867 else 3868 Result = V; 3869 } 3870 3871 // Add in the BaseGV if present. 3872 if (AddrMode.BaseGV) { 3873 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3874 if (Result) 3875 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3876 else 3877 Result = V; 3878 } 3879 3880 // Add in the Base Offset if present. 3881 if (AddrMode.BaseOffs) { 3882 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3883 if (Result) 3884 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3885 else 3886 Result = V; 3887 } 3888 3889 if (!Result) 3890 SunkAddr = Constant::getNullValue(Addr->getType()); 3891 else 3892 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3893 } 3894 3895 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3896 3897 // If we have no uses, recursively delete the value and all dead instructions 3898 // using it. 3899 if (Repl->use_empty()) { 3900 // This can cause recursive deletion, which can invalidate our iterator. 3901 // Use a WeakTrackingVH to hold onto it in case this happens. 3902 Value *CurValue = &*CurInstIterator; 3903 WeakTrackingVH IterHandle(CurValue); 3904 BasicBlock *BB = CurInstIterator->getParent(); 3905 3906 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3907 3908 if (IterHandle != CurValue) { 3909 // If the iterator instruction was recursively deleted, start over at the 3910 // start of the block. 3911 CurInstIterator = BB->begin(); 3912 SunkAddrs.clear(); 3913 } 3914 } 3915 ++NumMemoryInsts; 3916 return true; 3917 } 3918 3919 /// If there are any memory operands, use OptimizeMemoryInst to sink their 3920 /// address computing into the block when possible / profitable. 3921 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 3922 bool MadeChange = false; 3923 3924 const TargetRegisterInfo *TRI = 3925 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 3926 TargetLowering::AsmOperandInfoVector TargetConstraints = 3927 TLI->ParseConstraints(*DL, TRI, CS); 3928 unsigned ArgNo = 0; 3929 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3930 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3931 3932 // Compute the constraint code and ConstraintType to use. 3933 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3934 3935 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3936 OpInfo.isIndirect) { 3937 Value *OpVal = CS->getArgOperand(ArgNo++); 3938 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 3939 } else if (OpInfo.Type == InlineAsm::isInput) 3940 ArgNo++; 3941 } 3942 3943 return MadeChange; 3944 } 3945 3946 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 3947 /// sign extensions. 3948 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 3949 assert(!Val->use_empty() && "Input must have at least one use"); 3950 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 3951 bool IsSExt = isa<SExtInst>(FirstUser); 3952 Type *ExtTy = FirstUser->getType(); 3953 for (const User *U : Val->users()) { 3954 const Instruction *UI = cast<Instruction>(U); 3955 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3956 return false; 3957 Type *CurTy = UI->getType(); 3958 // Same input and output types: Same instruction after CSE. 3959 if (CurTy == ExtTy) 3960 continue; 3961 3962 // If IsSExt is true, we are in this situation: 3963 // a = Val 3964 // b = sext ty1 a to ty2 3965 // c = sext ty1 a to ty3 3966 // Assuming ty2 is shorter than ty3, this could be turned into: 3967 // a = Val 3968 // b = sext ty1 a to ty2 3969 // c = sext ty2 b to ty3 3970 // However, the last sext is not free. 3971 if (IsSExt) 3972 return false; 3973 3974 // This is a ZExt, maybe this is free to extend from one type to another. 3975 // In that case, we would not account for a different use. 3976 Type *NarrowTy; 3977 Type *LargeTy; 3978 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3979 CurTy->getScalarType()->getIntegerBitWidth()) { 3980 NarrowTy = CurTy; 3981 LargeTy = ExtTy; 3982 } else { 3983 NarrowTy = ExtTy; 3984 LargeTy = CurTy; 3985 } 3986 3987 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3988 return false; 3989 } 3990 // All uses are the same or can be derived from one another for free. 3991 return true; 3992 } 3993 3994 /// \brief Try to speculatively promote extensions in \p Exts and continue 3995 /// promoting through newly promoted operands recursively as far as doing so is 3996 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 3997 /// When some promotion happened, \p TPT contains the proper state to revert 3998 /// them. 3999 /// 4000 /// \return true if some promotion happened, false otherwise. 4001 bool CodeGenPrepare::tryToPromoteExts( 4002 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4003 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4004 unsigned CreatedInstsCost) { 4005 bool Promoted = false; 4006 4007 // Iterate over all the extensions to try to promote them. 4008 for (auto I : Exts) { 4009 // Early check if we directly have ext(load). 4010 if (isa<LoadInst>(I->getOperand(0))) { 4011 ProfitablyMovedExts.push_back(I); 4012 continue; 4013 } 4014 4015 // Check whether or not we want to do any promotion. The reason we have 4016 // this check inside the for loop is to catch the case where an extension 4017 // is directly fed by a load because in such case the extension can be moved 4018 // up without any promotion on its operands. 4019 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4020 return false; 4021 4022 // Get the action to perform the promotion. 4023 TypePromotionHelper::Action TPH = 4024 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4025 // Check if we can promote. 4026 if (!TPH) { 4027 // Save the current extension as we cannot move up through its operand. 4028 ProfitablyMovedExts.push_back(I); 4029 continue; 4030 } 4031 4032 // Save the current state. 4033 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4034 TPT.getRestorationPoint(); 4035 SmallVector<Instruction *, 4> NewExts; 4036 unsigned NewCreatedInstsCost = 0; 4037 unsigned ExtCost = !TLI->isExtFree(I); 4038 // Promote. 4039 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4040 &NewExts, nullptr, *TLI); 4041 assert(PromotedVal && 4042 "TypePromotionHelper should have filtered out those cases"); 4043 4044 // We would be able to merge only one extension in a load. 4045 // Therefore, if we have more than 1 new extension we heuristically 4046 // cut this search path, because it means we degrade the code quality. 4047 // With exactly 2, the transformation is neutral, because we will merge 4048 // one extension but leave one. However, we optimistically keep going, 4049 // because the new extension may be removed too. 4050 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4051 // FIXME: It would be possible to propagate a negative value instead of 4052 // conservatively ceiling it to 0. 4053 TotalCreatedInstsCost = 4054 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4055 if (!StressExtLdPromotion && 4056 (TotalCreatedInstsCost > 1 || 4057 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4058 // This promotion is not profitable, rollback to the previous state, and 4059 // save the current extension in ProfitablyMovedExts as the latest 4060 // speculative promotion turned out to be unprofitable. 4061 TPT.rollback(LastKnownGood); 4062 ProfitablyMovedExts.push_back(I); 4063 continue; 4064 } 4065 // Continue promoting NewExts as far as doing so is profitable. 4066 SmallVector<Instruction *, 2> NewlyMovedExts; 4067 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4068 bool NewPromoted = false; 4069 for (auto ExtInst : NewlyMovedExts) { 4070 Instruction *MovedExt = cast<Instruction>(ExtInst); 4071 Value *ExtOperand = MovedExt->getOperand(0); 4072 // If we have reached to a load, we need this extra profitability check 4073 // as it could potentially be merged into an ext(load). 4074 if (isa<LoadInst>(ExtOperand) && 4075 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4076 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4077 continue; 4078 4079 ProfitablyMovedExts.push_back(MovedExt); 4080 NewPromoted = true; 4081 } 4082 4083 // If none of speculative promotions for NewExts is profitable, rollback 4084 // and save the current extension (I) as the last profitable extension. 4085 if (!NewPromoted) { 4086 TPT.rollback(LastKnownGood); 4087 ProfitablyMovedExts.push_back(I); 4088 continue; 4089 } 4090 // The promotion is profitable. 4091 Promoted = true; 4092 } 4093 return Promoted; 4094 } 4095 4096 /// Merging redundant sexts when one is dominating the other. 4097 bool CodeGenPrepare::mergeSExts(Function &F) { 4098 DominatorTree DT(F); 4099 bool Changed = false; 4100 for (auto &Entry : ValToSExtendedUses) { 4101 SExts &Insts = Entry.second; 4102 SExts CurPts; 4103 for (Instruction *Inst : Insts) { 4104 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4105 Inst->getOperand(0) != Entry.first) 4106 continue; 4107 bool inserted = false; 4108 for (auto &Pt : CurPts) { 4109 if (DT.dominates(Inst, Pt)) { 4110 Pt->replaceAllUsesWith(Inst); 4111 RemovedInsts.insert(Pt); 4112 Pt->removeFromParent(); 4113 Pt = Inst; 4114 inserted = true; 4115 Changed = true; 4116 break; 4117 } 4118 if (!DT.dominates(Pt, Inst)) 4119 // Give up if we need to merge in a common dominator as the 4120 // expermients show it is not profitable. 4121 continue; 4122 Inst->replaceAllUsesWith(Pt); 4123 RemovedInsts.insert(Inst); 4124 Inst->removeFromParent(); 4125 inserted = true; 4126 Changed = true; 4127 break; 4128 } 4129 if (!inserted) 4130 CurPts.push_back(Inst); 4131 } 4132 } 4133 return Changed; 4134 } 4135 4136 /// Return true, if an ext(load) can be formed from an extension in 4137 /// \p MovedExts. 4138 bool CodeGenPrepare::canFormExtLd( 4139 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4140 Instruction *&Inst, bool HasPromoted) { 4141 for (auto *MovedExtInst : MovedExts) { 4142 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4143 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4144 Inst = MovedExtInst; 4145 break; 4146 } 4147 } 4148 if (!LI) 4149 return false; 4150 4151 // If they're already in the same block, there's nothing to do. 4152 // Make the cheap checks first if we did not promote. 4153 // If we promoted, we need to check if it is indeed profitable. 4154 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4155 return false; 4156 4157 EVT VT = TLI->getValueType(*DL, Inst->getType()); 4158 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4159 4160 // If the load has other users and the truncate is not free, this probably 4161 // isn't worthwhile. 4162 if (!LI->hasOneUse() && (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4163 !TLI->isTruncateFree(Inst->getType(), LI->getType())) 4164 return false; 4165 4166 // Check whether the target supports casts folded into loads. 4167 unsigned LType; 4168 if (isa<ZExtInst>(Inst)) 4169 LType = ISD::ZEXTLOAD; 4170 else { 4171 assert(isa<SExtInst>(Inst) && "Unexpected ext type!"); 4172 LType = ISD::SEXTLOAD; 4173 } 4174 4175 return TLI->isLoadExtLegal(LType, VT, LoadVT); 4176 } 4177 4178 /// Move a zext or sext fed by a load into the same basic block as the load, 4179 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4180 /// extend into the load. 4181 /// 4182 /// E.g., 4183 /// \code 4184 /// %ld = load i32* %addr 4185 /// %add = add nuw i32 %ld, 4 4186 /// %zext = zext i32 %add to i64 4187 // \endcode 4188 /// => 4189 /// \code 4190 /// %ld = load i32* %addr 4191 /// %zext = zext i32 %ld to i64 4192 /// %add = add nuw i64 %zext, 4 4193 /// \encode 4194 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4195 /// allow us to match zext(load i32*) to i64. 4196 /// 4197 /// Also, try to promote the computations used to obtain a sign extended 4198 /// value used into memory accesses. 4199 /// E.g., 4200 /// \code 4201 /// a = add nsw i32 b, 3 4202 /// d = sext i32 a to i64 4203 /// e = getelementptr ..., i64 d 4204 /// \endcode 4205 /// => 4206 /// \code 4207 /// f = sext i32 b to i64 4208 /// a = add nsw i64 f, 3 4209 /// e = getelementptr ..., i64 a 4210 /// \endcode 4211 /// 4212 /// \p Inst[in/out] the extension may be modified during the process if some 4213 /// promotions apply. 4214 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4215 // ExtLoad formation and address type promotion infrastructure requires TLI to 4216 // be effective. 4217 if (!TLI) 4218 return false; 4219 4220 bool AllowPromotionWithoutCommonHeader = false; 4221 /// See if it is an interesting sext operations for the address type 4222 /// promotion before trying to promote it, e.g., the ones with the right 4223 /// type and used in memory accesses. 4224 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4225 *Inst, AllowPromotionWithoutCommonHeader); 4226 TypePromotionTransaction TPT(RemovedInsts); 4227 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4228 TPT.getRestorationPoint(); 4229 SmallVector<Instruction *, 1> Exts; 4230 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4231 Exts.push_back(Inst); 4232 4233 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4234 4235 // Look for a load being extended. 4236 LoadInst *LI = nullptr; 4237 Instruction *ExtFedByLoad; 4238 4239 // Try to promote a chain of computation if it allows to form an extended 4240 // load. 4241 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4242 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4243 TPT.commit(); 4244 // Move the extend into the same block as the load 4245 ExtFedByLoad->removeFromParent(); 4246 ExtFedByLoad->insertAfter(LI); 4247 // CGP does not check if the zext would be speculatively executed when moved 4248 // to the same basic block as the load. Preserving its original location 4249 // would pessimize the debugging experience, as well as negatively impact 4250 // the quality of sample pgo. We don't want to use "line 0" as that has a 4251 // size cost in the line-table section and logically the zext can be seen as 4252 // part of the load. Therefore we conservatively reuse the same debug 4253 // location for the load and the zext. 4254 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4255 ++NumExtsMoved; 4256 Inst = ExtFedByLoad; 4257 return true; 4258 } 4259 4260 // Continue promoting SExts if known as considerable depending on targets. 4261 if (ATPConsiderable && 4262 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4263 HasPromoted, TPT, SpeculativelyMovedExts)) 4264 return true; 4265 4266 TPT.rollback(LastKnownGood); 4267 return false; 4268 } 4269 4270 // Perform address type promotion if doing so is profitable. 4271 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4272 // instructions that sign extended the same initial value. However, if 4273 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4274 // extension is just profitable. 4275 bool CodeGenPrepare::performAddressTypePromotion( 4276 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4277 bool HasPromoted, TypePromotionTransaction &TPT, 4278 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4279 bool Promoted = false; 4280 SmallPtrSet<Instruction *, 1> UnhandledExts; 4281 bool AllSeenFirst = true; 4282 for (auto I : SpeculativelyMovedExts) { 4283 Value *HeadOfChain = I->getOperand(0); 4284 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4285 SeenChainsForSExt.find(HeadOfChain); 4286 // If there is an unhandled SExt which has the same header, try to promote 4287 // it as well. 4288 if (AlreadySeen != SeenChainsForSExt.end()) { 4289 if (AlreadySeen->second != nullptr) 4290 UnhandledExts.insert(AlreadySeen->second); 4291 AllSeenFirst = false; 4292 } 4293 } 4294 4295 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4296 SpeculativelyMovedExts.size() == 1)) { 4297 TPT.commit(); 4298 if (HasPromoted) 4299 Promoted = true; 4300 for (auto I : SpeculativelyMovedExts) { 4301 Value *HeadOfChain = I->getOperand(0); 4302 SeenChainsForSExt[HeadOfChain] = nullptr; 4303 ValToSExtendedUses[HeadOfChain].push_back(I); 4304 } 4305 // Update Inst as promotion happen. 4306 Inst = SpeculativelyMovedExts.pop_back_val(); 4307 } else { 4308 // This is the first chain visited from the header, keep the current chain 4309 // as unhandled. Defer to promote this until we encounter another SExt 4310 // chain derived from the same header. 4311 for (auto I : SpeculativelyMovedExts) { 4312 Value *HeadOfChain = I->getOperand(0); 4313 SeenChainsForSExt[HeadOfChain] = Inst; 4314 } 4315 return false; 4316 } 4317 4318 if (!AllSeenFirst && !UnhandledExts.empty()) 4319 for (auto VisitedSExt : UnhandledExts) { 4320 if (RemovedInsts.count(VisitedSExt)) 4321 continue; 4322 TypePromotionTransaction TPT(RemovedInsts); 4323 SmallVector<Instruction *, 1> Exts; 4324 SmallVector<Instruction *, 2> Chains; 4325 Exts.push_back(VisitedSExt); 4326 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 4327 TPT.commit(); 4328 if (HasPromoted) 4329 Promoted = true; 4330 for (auto I : Chains) { 4331 Value *HeadOfChain = I->getOperand(0); 4332 // Mark this as handled. 4333 SeenChainsForSExt[HeadOfChain] = nullptr; 4334 ValToSExtendedUses[HeadOfChain].push_back(I); 4335 } 4336 } 4337 return Promoted; 4338 } 4339 4340 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4341 BasicBlock *DefBB = I->getParent(); 4342 4343 // If the result of a {s|z}ext and its source are both live out, rewrite all 4344 // other uses of the source with result of extension. 4345 Value *Src = I->getOperand(0); 4346 if (Src->hasOneUse()) 4347 return false; 4348 4349 // Only do this xform if truncating is free. 4350 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4351 return false; 4352 4353 // Only safe to perform the optimization if the source is also defined in 4354 // this block. 4355 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4356 return false; 4357 4358 bool DefIsLiveOut = false; 4359 for (User *U : I->users()) { 4360 Instruction *UI = cast<Instruction>(U); 4361 4362 // Figure out which BB this ext is used in. 4363 BasicBlock *UserBB = UI->getParent(); 4364 if (UserBB == DefBB) continue; 4365 DefIsLiveOut = true; 4366 break; 4367 } 4368 if (!DefIsLiveOut) 4369 return false; 4370 4371 // Make sure none of the uses are PHI nodes. 4372 for (User *U : Src->users()) { 4373 Instruction *UI = cast<Instruction>(U); 4374 BasicBlock *UserBB = UI->getParent(); 4375 if (UserBB == DefBB) continue; 4376 // Be conservative. We don't want this xform to end up introducing 4377 // reloads just before load / store instructions. 4378 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4379 return false; 4380 } 4381 4382 // InsertedTruncs - Only insert one trunc in each block once. 4383 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4384 4385 bool MadeChange = false; 4386 for (Use &U : Src->uses()) { 4387 Instruction *User = cast<Instruction>(U.getUser()); 4388 4389 // Figure out which BB this ext is used in. 4390 BasicBlock *UserBB = User->getParent(); 4391 if (UserBB == DefBB) continue; 4392 4393 // Both src and def are live in this block. Rewrite the use. 4394 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4395 4396 if (!InsertedTrunc) { 4397 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4398 assert(InsertPt != UserBB->end()); 4399 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4400 InsertedInsts.insert(InsertedTrunc); 4401 } 4402 4403 // Replace a use of the {s|z}ext source with a use of the result. 4404 U = InsertedTrunc; 4405 ++NumExtUses; 4406 MadeChange = true; 4407 } 4408 4409 return MadeChange; 4410 } 4411 4412 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4413 // just after the load if the target can fold this into one extload instruction, 4414 // with the hope of eliminating some of the other later "and" instructions using 4415 // the loaded value. "and"s that are made trivially redundant by the insertion 4416 // of the new "and" are removed by this function, while others (e.g. those whose 4417 // path from the load goes through a phi) are left for isel to potentially 4418 // remove. 4419 // 4420 // For example: 4421 // 4422 // b0: 4423 // x = load i32 4424 // ... 4425 // b1: 4426 // y = and x, 0xff 4427 // z = use y 4428 // 4429 // becomes: 4430 // 4431 // b0: 4432 // x = load i32 4433 // x' = and x, 0xff 4434 // ... 4435 // b1: 4436 // z = use x' 4437 // 4438 // whereas: 4439 // 4440 // b0: 4441 // x1 = load i32 4442 // ... 4443 // b1: 4444 // x2 = load i32 4445 // ... 4446 // b2: 4447 // x = phi x1, x2 4448 // y = and x, 0xff 4449 // 4450 // becomes (after a call to optimizeLoadExt for each load): 4451 // 4452 // b0: 4453 // x1 = load i32 4454 // x1' = and x1, 0xff 4455 // ... 4456 // b1: 4457 // x2 = load i32 4458 // x2' = and x2, 0xff 4459 // ... 4460 // b2: 4461 // x = phi x1', x2' 4462 // y = and x, 0xff 4463 // 4464 4465 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 4466 4467 if (!Load->isSimple() || 4468 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 4469 return false; 4470 4471 // Skip loads we've already transformed. 4472 if (Load->hasOneUse() && 4473 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 4474 return false; 4475 4476 // Look at all uses of Load, looking through phis, to determine how many bits 4477 // of the loaded value are needed. 4478 SmallVector<Instruction *, 8> WorkList; 4479 SmallPtrSet<Instruction *, 16> Visited; 4480 SmallVector<Instruction *, 8> AndsToMaybeRemove; 4481 for (auto *U : Load->users()) 4482 WorkList.push_back(cast<Instruction>(U)); 4483 4484 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 4485 unsigned BitWidth = LoadResultVT.getSizeInBits(); 4486 APInt DemandBits(BitWidth, 0); 4487 APInt WidestAndBits(BitWidth, 0); 4488 4489 while (!WorkList.empty()) { 4490 Instruction *I = WorkList.back(); 4491 WorkList.pop_back(); 4492 4493 // Break use-def graph loops. 4494 if (!Visited.insert(I).second) 4495 continue; 4496 4497 // For a PHI node, push all of its users. 4498 if (auto *Phi = dyn_cast<PHINode>(I)) { 4499 for (auto *U : Phi->users()) 4500 WorkList.push_back(cast<Instruction>(U)); 4501 continue; 4502 } 4503 4504 switch (I->getOpcode()) { 4505 case llvm::Instruction::And: { 4506 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 4507 if (!AndC) 4508 return false; 4509 APInt AndBits = AndC->getValue(); 4510 DemandBits |= AndBits; 4511 // Keep track of the widest and mask we see. 4512 if (AndBits.ugt(WidestAndBits)) 4513 WidestAndBits = AndBits; 4514 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 4515 AndsToMaybeRemove.push_back(I); 4516 break; 4517 } 4518 4519 case llvm::Instruction::Shl: { 4520 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 4521 if (!ShlC) 4522 return false; 4523 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 4524 DemandBits.setLowBits(BitWidth - ShiftAmt); 4525 break; 4526 } 4527 4528 case llvm::Instruction::Trunc: { 4529 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 4530 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 4531 DemandBits.setLowBits(TruncBitWidth); 4532 break; 4533 } 4534 4535 default: 4536 return false; 4537 } 4538 } 4539 4540 uint32_t ActiveBits = DemandBits.getActiveBits(); 4541 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 4542 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 4543 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 4544 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 4545 // followed by an AND. 4546 // TODO: Look into removing this restriction by fixing backends to either 4547 // return false for isLoadExtLegal for i1 or have them select this pattern to 4548 // a single instruction. 4549 // 4550 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 4551 // mask, since these are the only ands that will be removed by isel. 4552 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 4553 WidestAndBits != DemandBits) 4554 return false; 4555 4556 LLVMContext &Ctx = Load->getType()->getContext(); 4557 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 4558 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 4559 4560 // Reject cases that won't be matched as extloads. 4561 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 4562 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 4563 return false; 4564 4565 IRBuilder<> Builder(Load->getNextNode()); 4566 auto *NewAnd = dyn_cast<Instruction>( 4567 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 4568 // Mark this instruction as "inserted by CGP", so that other 4569 // optimizations don't touch it. 4570 InsertedInsts.insert(NewAnd); 4571 4572 // Replace all uses of load with new and (except for the use of load in the 4573 // new and itself). 4574 Load->replaceAllUsesWith(NewAnd); 4575 NewAnd->setOperand(0, Load); 4576 4577 // Remove any and instructions that are now redundant. 4578 for (auto *And : AndsToMaybeRemove) 4579 // Check that the and mask is the same as the one we decided to put on the 4580 // new and. 4581 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 4582 And->replaceAllUsesWith(NewAnd); 4583 if (&*CurInstIterator == And) 4584 CurInstIterator = std::next(And->getIterator()); 4585 And->eraseFromParent(); 4586 ++NumAndUses; 4587 } 4588 4589 ++NumAndsAdded; 4590 return true; 4591 } 4592 4593 /// Check if V (an operand of a select instruction) is an expensive instruction 4594 /// that is only used once. 4595 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4596 auto *I = dyn_cast<Instruction>(V); 4597 // If it's safe to speculatively execute, then it should not have side 4598 // effects; therefore, it's safe to sink and possibly *not* execute. 4599 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4600 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4601 } 4602 4603 /// Returns true if a SelectInst should be turned into an explicit branch. 4604 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4605 const TargetLowering *TLI, 4606 SelectInst *SI) { 4607 // If even a predictable select is cheap, then a branch can't be cheaper. 4608 if (!TLI->isPredictableSelectExpensive()) 4609 return false; 4610 4611 // FIXME: This should use the same heuristics as IfConversion to determine 4612 // whether a select is better represented as a branch. 4613 4614 // If metadata tells us that the select condition is obviously predictable, 4615 // then we want to replace the select with a branch. 4616 uint64_t TrueWeight, FalseWeight; 4617 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 4618 uint64_t Max = std::max(TrueWeight, FalseWeight); 4619 uint64_t Sum = TrueWeight + FalseWeight; 4620 if (Sum != 0) { 4621 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 4622 if (Probability > TLI->getPredictableBranchThreshold()) 4623 return true; 4624 } 4625 } 4626 4627 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4628 4629 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4630 // comparison condition. If the compare has more than one use, there's 4631 // probably another cmov or setcc around, so it's not worth emitting a branch. 4632 if (!Cmp || !Cmp->hasOneUse()) 4633 return false; 4634 4635 // If either operand of the select is expensive and only needed on one side 4636 // of the select, we should form a branch. 4637 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4638 sinkSelectOperand(TTI, SI->getFalseValue())) 4639 return true; 4640 4641 return false; 4642 } 4643 4644 /// If \p isTrue is true, return the true value of \p SI, otherwise return 4645 /// false value of \p SI. If the true/false value of \p SI is defined by any 4646 /// select instructions in \p Selects, look through the defining select 4647 /// instruction until the true/false value is not defined in \p Selects. 4648 static Value *getTrueOrFalseValue( 4649 SelectInst *SI, bool isTrue, 4650 const SmallPtrSet<const Instruction *, 2> &Selects) { 4651 Value *V; 4652 4653 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 4654 DefSI = dyn_cast<SelectInst>(V)) { 4655 assert(DefSI->getCondition() == SI->getCondition() && 4656 "The condition of DefSI does not match with SI"); 4657 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 4658 } 4659 return V; 4660 } 4661 4662 /// If we have a SelectInst that will likely profit from branch prediction, 4663 /// turn it into a branch. 4664 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4665 // Find all consecutive select instructions that share the same condition. 4666 SmallVector<SelectInst *, 2> ASI; 4667 ASI.push_back(SI); 4668 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 4669 It != SI->getParent()->end(); ++It) { 4670 SelectInst *I = dyn_cast<SelectInst>(&*It); 4671 if (I && SI->getCondition() == I->getCondition()) { 4672 ASI.push_back(I); 4673 } else { 4674 break; 4675 } 4676 } 4677 4678 SelectInst *LastSI = ASI.back(); 4679 // Increment the current iterator to skip all the rest of select instructions 4680 // because they will be either "not lowered" or "all lowered" to branch. 4681 CurInstIterator = std::next(LastSI->getIterator()); 4682 4683 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4684 4685 // Can we convert the 'select' to CF ? 4686 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 4687 SI->getMetadata(LLVMContext::MD_unpredictable)) 4688 return false; 4689 4690 TargetLowering::SelectSupportKind SelectKind; 4691 if (VectorCond) 4692 SelectKind = TargetLowering::VectorMaskSelect; 4693 else if (SI->getType()->isVectorTy()) 4694 SelectKind = TargetLowering::ScalarCondVectorVal; 4695 else 4696 SelectKind = TargetLowering::ScalarValSelect; 4697 4698 if (TLI->isSelectSupported(SelectKind) && 4699 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 4700 return false; 4701 4702 ModifiedDT = true; 4703 4704 // Transform a sequence like this: 4705 // start: 4706 // %cmp = cmp uge i32 %a, %b 4707 // %sel = select i1 %cmp, i32 %c, i32 %d 4708 // 4709 // Into: 4710 // start: 4711 // %cmp = cmp uge i32 %a, %b 4712 // br i1 %cmp, label %select.true, label %select.false 4713 // select.true: 4714 // br label %select.end 4715 // select.false: 4716 // br label %select.end 4717 // select.end: 4718 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4719 // 4720 // In addition, we may sink instructions that produce %c or %d from 4721 // the entry block into the destination(s) of the new branch. 4722 // If the true or false blocks do not contain a sunken instruction, that 4723 // block and its branch may be optimized away. In that case, one side of the 4724 // first branch will point directly to select.end, and the corresponding PHI 4725 // predecessor block will be the start block. 4726 4727 // First, we split the block containing the select into 2 blocks. 4728 BasicBlock *StartBlock = SI->getParent(); 4729 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 4730 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4731 4732 // Delete the unconditional branch that was just created by the split. 4733 StartBlock->getTerminator()->eraseFromParent(); 4734 4735 // These are the new basic blocks for the conditional branch. 4736 // At least one will become an actual new basic block. 4737 BasicBlock *TrueBlock = nullptr; 4738 BasicBlock *FalseBlock = nullptr; 4739 BranchInst *TrueBranch = nullptr; 4740 BranchInst *FalseBranch = nullptr; 4741 4742 // Sink expensive instructions into the conditional blocks to avoid executing 4743 // them speculatively. 4744 for (SelectInst *SI : ASI) { 4745 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4746 if (TrueBlock == nullptr) { 4747 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4748 EndBlock->getParent(), EndBlock); 4749 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4750 } 4751 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4752 TrueInst->moveBefore(TrueBranch); 4753 } 4754 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4755 if (FalseBlock == nullptr) { 4756 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4757 EndBlock->getParent(), EndBlock); 4758 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4759 } 4760 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4761 FalseInst->moveBefore(FalseBranch); 4762 } 4763 } 4764 4765 // If there was nothing to sink, then arbitrarily choose the 'false' side 4766 // for a new input value to the PHI. 4767 if (TrueBlock == FalseBlock) { 4768 assert(TrueBlock == nullptr && 4769 "Unexpected basic block transform while optimizing select"); 4770 4771 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4772 EndBlock->getParent(), EndBlock); 4773 BranchInst::Create(EndBlock, FalseBlock); 4774 } 4775 4776 // Insert the real conditional branch based on the original condition. 4777 // If we did not create a new block for one of the 'true' or 'false' paths 4778 // of the condition, it means that side of the branch goes to the end block 4779 // directly and the path originates from the start block from the point of 4780 // view of the new PHI. 4781 BasicBlock *TT, *FT; 4782 if (TrueBlock == nullptr) { 4783 TT = EndBlock; 4784 FT = FalseBlock; 4785 TrueBlock = StartBlock; 4786 } else if (FalseBlock == nullptr) { 4787 TT = TrueBlock; 4788 FT = EndBlock; 4789 FalseBlock = StartBlock; 4790 } else { 4791 TT = TrueBlock; 4792 FT = FalseBlock; 4793 } 4794 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 4795 4796 SmallPtrSet<const Instruction *, 2> INS; 4797 INS.insert(ASI.begin(), ASI.end()); 4798 // Use reverse iterator because later select may use the value of the 4799 // earlier select, and we need to propagate value through earlier select 4800 // to get the PHI operand. 4801 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 4802 SelectInst *SI = *It; 4803 // The select itself is replaced with a PHI Node. 4804 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4805 PN->takeName(SI); 4806 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 4807 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 4808 4809 SI->replaceAllUsesWith(PN); 4810 SI->eraseFromParent(); 4811 INS.erase(SI); 4812 ++NumSelectsExpanded; 4813 } 4814 4815 // Instruct OptimizeBlock to skip to the next block. 4816 CurInstIterator = StartBlock->end(); 4817 return true; 4818 } 4819 4820 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4821 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4822 int SplatElem = -1; 4823 for (unsigned i = 0; i < Mask.size(); ++i) { 4824 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4825 return false; 4826 SplatElem = Mask[i]; 4827 } 4828 4829 return true; 4830 } 4831 4832 /// Some targets have expensive vector shifts if the lanes aren't all the same 4833 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4834 /// it's often worth sinking a shufflevector splat down to its use so that 4835 /// codegen can spot all lanes are identical. 4836 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4837 BasicBlock *DefBB = SVI->getParent(); 4838 4839 // Only do this xform if variable vector shifts are particularly expensive. 4840 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4841 return false; 4842 4843 // We only expect better codegen by sinking a shuffle if we can recognise a 4844 // constant splat. 4845 if (!isBroadcastShuffle(SVI)) 4846 return false; 4847 4848 // InsertedShuffles - Only insert a shuffle in each block once. 4849 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4850 4851 bool MadeChange = false; 4852 for (User *U : SVI->users()) { 4853 Instruction *UI = cast<Instruction>(U); 4854 4855 // Figure out which BB this ext is used in. 4856 BasicBlock *UserBB = UI->getParent(); 4857 if (UserBB == DefBB) continue; 4858 4859 // For now only apply this when the splat is used by a shift instruction. 4860 if (!UI->isShift()) continue; 4861 4862 // Everything checks out, sink the shuffle if the user's block doesn't 4863 // already have a copy. 4864 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4865 4866 if (!InsertedShuffle) { 4867 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4868 assert(InsertPt != UserBB->end()); 4869 InsertedShuffle = 4870 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4871 SVI->getOperand(2), "", &*InsertPt); 4872 } 4873 4874 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4875 MadeChange = true; 4876 } 4877 4878 // If we removed all uses, nuke the shuffle. 4879 if (SVI->use_empty()) { 4880 SVI->eraseFromParent(); 4881 MadeChange = true; 4882 } 4883 4884 return MadeChange; 4885 } 4886 4887 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 4888 if (!TLI || !DL) 4889 return false; 4890 4891 Value *Cond = SI->getCondition(); 4892 Type *OldType = Cond->getType(); 4893 LLVMContext &Context = Cond->getContext(); 4894 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 4895 unsigned RegWidth = RegType.getSizeInBits(); 4896 4897 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 4898 return false; 4899 4900 // If the register width is greater than the type width, expand the condition 4901 // of the switch instruction and each case constant to the width of the 4902 // register. By widening the type of the switch condition, subsequent 4903 // comparisons (for case comparisons) will not need to be extended to the 4904 // preferred register width, so we will potentially eliminate N-1 extends, 4905 // where N is the number of cases in the switch. 4906 auto *NewType = Type::getIntNTy(Context, RegWidth); 4907 4908 // Zero-extend the switch condition and case constants unless the switch 4909 // condition is a function argument that is already being sign-extended. 4910 // In that case, we can avoid an unnecessary mask/extension by sign-extending 4911 // everything instead. 4912 Instruction::CastOps ExtType = Instruction::ZExt; 4913 if (auto *Arg = dyn_cast<Argument>(Cond)) 4914 if (Arg->hasSExtAttr()) 4915 ExtType = Instruction::SExt; 4916 4917 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 4918 ExtInst->insertBefore(SI); 4919 SI->setCondition(ExtInst); 4920 for (auto Case : SI->cases()) { 4921 APInt NarrowConst = Case.getCaseValue()->getValue(); 4922 APInt WideConst = (ExtType == Instruction::ZExt) ? 4923 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 4924 Case.setValue(ConstantInt::get(Context, WideConst)); 4925 } 4926 4927 return true; 4928 } 4929 4930 namespace { 4931 /// \brief Helper class to promote a scalar operation to a vector one. 4932 /// This class is used to move downward extractelement transition. 4933 /// E.g., 4934 /// a = vector_op <2 x i32> 4935 /// b = extractelement <2 x i32> a, i32 0 4936 /// c = scalar_op b 4937 /// store c 4938 /// 4939 /// => 4940 /// a = vector_op <2 x i32> 4941 /// c = vector_op a (equivalent to scalar_op on the related lane) 4942 /// * d = extractelement <2 x i32> c, i32 0 4943 /// * store d 4944 /// Assuming both extractelement and store can be combine, we get rid of the 4945 /// transition. 4946 class VectorPromoteHelper { 4947 /// DataLayout associated with the current module. 4948 const DataLayout &DL; 4949 4950 /// Used to perform some checks on the legality of vector operations. 4951 const TargetLowering &TLI; 4952 4953 /// Used to estimated the cost of the promoted chain. 4954 const TargetTransformInfo &TTI; 4955 4956 /// The transition being moved downwards. 4957 Instruction *Transition; 4958 /// The sequence of instructions to be promoted. 4959 SmallVector<Instruction *, 4> InstsToBePromoted; 4960 /// Cost of combining a store and an extract. 4961 unsigned StoreExtractCombineCost; 4962 /// Instruction that will be combined with the transition. 4963 Instruction *CombineInst; 4964 4965 /// \brief The instruction that represents the current end of the transition. 4966 /// Since we are faking the promotion until we reach the end of the chain 4967 /// of computation, we need a way to get the current end of the transition. 4968 Instruction *getEndOfTransition() const { 4969 if (InstsToBePromoted.empty()) 4970 return Transition; 4971 return InstsToBePromoted.back(); 4972 } 4973 4974 /// \brief Return the index of the original value in the transition. 4975 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4976 /// c, is at index 0. 4977 unsigned getTransitionOriginalValueIdx() const { 4978 assert(isa<ExtractElementInst>(Transition) && 4979 "Other kind of transitions are not supported yet"); 4980 return 0; 4981 } 4982 4983 /// \brief Return the index of the index in the transition. 4984 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4985 /// is at index 1. 4986 unsigned getTransitionIdx() const { 4987 assert(isa<ExtractElementInst>(Transition) && 4988 "Other kind of transitions are not supported yet"); 4989 return 1; 4990 } 4991 4992 /// \brief Get the type of the transition. 4993 /// This is the type of the original value. 4994 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4995 /// transition is <2 x i32>. 4996 Type *getTransitionType() const { 4997 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4998 } 4999 5000 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5001 /// I.e., we have the following sequence: 5002 /// Def = Transition <ty1> a to <ty2> 5003 /// b = ToBePromoted <ty2> Def, ... 5004 /// => 5005 /// b = ToBePromoted <ty1> a, ... 5006 /// Def = Transition <ty1> ToBePromoted to <ty2> 5007 void promoteImpl(Instruction *ToBePromoted); 5008 5009 /// \brief Check whether or not it is profitable to promote all the 5010 /// instructions enqueued to be promoted. 5011 bool isProfitableToPromote() { 5012 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5013 unsigned Index = isa<ConstantInt>(ValIdx) 5014 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5015 : -1; 5016 Type *PromotedType = getTransitionType(); 5017 5018 StoreInst *ST = cast<StoreInst>(CombineInst); 5019 unsigned AS = ST->getPointerAddressSpace(); 5020 unsigned Align = ST->getAlignment(); 5021 // Check if this store is supported. 5022 if (!TLI.allowsMisalignedMemoryAccesses( 5023 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5024 Align)) { 5025 // If this is not supported, there is no way we can combine 5026 // the extract with the store. 5027 return false; 5028 } 5029 5030 // The scalar chain of computation has to pay for the transition 5031 // scalar to vector. 5032 // The vector chain has to account for the combining cost. 5033 uint64_t ScalarCost = 5034 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5035 uint64_t VectorCost = StoreExtractCombineCost; 5036 for (const auto &Inst : InstsToBePromoted) { 5037 // Compute the cost. 5038 // By construction, all instructions being promoted are arithmetic ones. 5039 // Moreover, one argument is a constant that can be viewed as a splat 5040 // constant. 5041 Value *Arg0 = Inst->getOperand(0); 5042 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5043 isa<ConstantFP>(Arg0); 5044 TargetTransformInfo::OperandValueKind Arg0OVK = 5045 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5046 : TargetTransformInfo::OK_AnyValue; 5047 TargetTransformInfo::OperandValueKind Arg1OVK = 5048 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5049 : TargetTransformInfo::OK_AnyValue; 5050 ScalarCost += TTI.getArithmeticInstrCost( 5051 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5052 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5053 Arg0OVK, Arg1OVK); 5054 } 5055 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5056 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5057 return ScalarCost > VectorCost; 5058 } 5059 5060 /// \brief Generate a constant vector with \p Val with the same 5061 /// number of elements as the transition. 5062 /// \p UseSplat defines whether or not \p Val should be replicated 5063 /// across the whole vector. 5064 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5065 /// otherwise we generate a vector with as many undef as possible: 5066 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5067 /// used at the index of the extract. 5068 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5069 unsigned ExtractIdx = UINT_MAX; 5070 if (!UseSplat) { 5071 // If we cannot determine where the constant must be, we have to 5072 // use a splat constant. 5073 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5074 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5075 ExtractIdx = CstVal->getSExtValue(); 5076 else 5077 UseSplat = true; 5078 } 5079 5080 unsigned End = getTransitionType()->getVectorNumElements(); 5081 if (UseSplat) 5082 return ConstantVector::getSplat(End, Val); 5083 5084 SmallVector<Constant *, 4> ConstVec; 5085 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5086 for (unsigned Idx = 0; Idx != End; ++Idx) { 5087 if (Idx == ExtractIdx) 5088 ConstVec.push_back(Val); 5089 else 5090 ConstVec.push_back(UndefVal); 5091 } 5092 return ConstantVector::get(ConstVec); 5093 } 5094 5095 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5096 /// in \p Use can trigger undefined behavior. 5097 static bool canCauseUndefinedBehavior(const Instruction *Use, 5098 unsigned OperandIdx) { 5099 // This is not safe to introduce undef when the operand is on 5100 // the right hand side of a division-like instruction. 5101 if (OperandIdx != 1) 5102 return false; 5103 switch (Use->getOpcode()) { 5104 default: 5105 return false; 5106 case Instruction::SDiv: 5107 case Instruction::UDiv: 5108 case Instruction::SRem: 5109 case Instruction::URem: 5110 return true; 5111 case Instruction::FDiv: 5112 case Instruction::FRem: 5113 return !Use->hasNoNaNs(); 5114 } 5115 llvm_unreachable(nullptr); 5116 } 5117 5118 public: 5119 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5120 const TargetTransformInfo &TTI, Instruction *Transition, 5121 unsigned CombineCost) 5122 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5123 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5124 assert(Transition && "Do not know how to promote null"); 5125 } 5126 5127 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5128 bool canPromote(const Instruction *ToBePromoted) const { 5129 // We could support CastInst too. 5130 return isa<BinaryOperator>(ToBePromoted); 5131 } 5132 5133 /// \brief Check if it is profitable to promote \p ToBePromoted 5134 /// by moving downward the transition through. 5135 bool shouldPromote(const Instruction *ToBePromoted) const { 5136 // Promote only if all the operands can be statically expanded. 5137 // Indeed, we do not want to introduce any new kind of transitions. 5138 for (const Use &U : ToBePromoted->operands()) { 5139 const Value *Val = U.get(); 5140 if (Val == getEndOfTransition()) { 5141 // If the use is a division and the transition is on the rhs, 5142 // we cannot promote the operation, otherwise we may create a 5143 // division by zero. 5144 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5145 return false; 5146 continue; 5147 } 5148 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5149 !isa<ConstantFP>(Val)) 5150 return false; 5151 } 5152 // Check that the resulting operation is legal. 5153 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5154 if (!ISDOpcode) 5155 return false; 5156 return StressStoreExtract || 5157 TLI.isOperationLegalOrCustom( 5158 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5159 } 5160 5161 /// \brief Check whether or not \p Use can be combined 5162 /// with the transition. 5163 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5164 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5165 5166 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5167 void enqueueForPromotion(Instruction *ToBePromoted) { 5168 InstsToBePromoted.push_back(ToBePromoted); 5169 } 5170 5171 /// \brief Set the instruction that will be combined with the transition. 5172 void recordCombineInstruction(Instruction *ToBeCombined) { 5173 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5174 CombineInst = ToBeCombined; 5175 } 5176 5177 /// \brief Promote all the instructions enqueued for promotion if it is 5178 /// is profitable. 5179 /// \return True if the promotion happened, false otherwise. 5180 bool promote() { 5181 // Check if there is something to promote. 5182 // Right now, if we do not have anything to combine with, 5183 // we assume the promotion is not profitable. 5184 if (InstsToBePromoted.empty() || !CombineInst) 5185 return false; 5186 5187 // Check cost. 5188 if (!StressStoreExtract && !isProfitableToPromote()) 5189 return false; 5190 5191 // Promote. 5192 for (auto &ToBePromoted : InstsToBePromoted) 5193 promoteImpl(ToBePromoted); 5194 InstsToBePromoted.clear(); 5195 return true; 5196 } 5197 }; 5198 } // End of anonymous namespace. 5199 5200 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5201 // At this point, we know that all the operands of ToBePromoted but Def 5202 // can be statically promoted. 5203 // For Def, we need to use its parameter in ToBePromoted: 5204 // b = ToBePromoted ty1 a 5205 // Def = Transition ty1 b to ty2 5206 // Move the transition down. 5207 // 1. Replace all uses of the promoted operation by the transition. 5208 // = ... b => = ... Def. 5209 assert(ToBePromoted->getType() == Transition->getType() && 5210 "The type of the result of the transition does not match " 5211 "the final type"); 5212 ToBePromoted->replaceAllUsesWith(Transition); 5213 // 2. Update the type of the uses. 5214 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5215 Type *TransitionTy = getTransitionType(); 5216 ToBePromoted->mutateType(TransitionTy); 5217 // 3. Update all the operands of the promoted operation with promoted 5218 // operands. 5219 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5220 for (Use &U : ToBePromoted->operands()) { 5221 Value *Val = U.get(); 5222 Value *NewVal = nullptr; 5223 if (Val == Transition) 5224 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5225 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5226 isa<ConstantFP>(Val)) { 5227 // Use a splat constant if it is not safe to use undef. 5228 NewVal = getConstantVector( 5229 cast<Constant>(Val), 5230 isa<UndefValue>(Val) || 5231 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5232 } else 5233 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5234 "this?"); 5235 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5236 } 5237 Transition->removeFromParent(); 5238 Transition->insertAfter(ToBePromoted); 5239 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5240 } 5241 5242 /// Some targets can do store(extractelement) with one instruction. 5243 /// Try to push the extractelement towards the stores when the target 5244 /// has this feature and this is profitable. 5245 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5246 unsigned CombineCost = UINT_MAX; 5247 if (DisableStoreExtract || !TLI || 5248 (!StressStoreExtract && 5249 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5250 Inst->getOperand(1), CombineCost))) 5251 return false; 5252 5253 // At this point we know that Inst is a vector to scalar transition. 5254 // Try to move it down the def-use chain, until: 5255 // - We can combine the transition with its single use 5256 // => we got rid of the transition. 5257 // - We escape the current basic block 5258 // => we would need to check that we are moving it at a cheaper place and 5259 // we do not do that for now. 5260 BasicBlock *Parent = Inst->getParent(); 5261 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5262 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5263 // If the transition has more than one use, assume this is not going to be 5264 // beneficial. 5265 while (Inst->hasOneUse()) { 5266 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5267 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5268 5269 if (ToBePromoted->getParent() != Parent) { 5270 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5271 << ToBePromoted->getParent()->getName() 5272 << ") than the transition (" << Parent->getName() << ").\n"); 5273 return false; 5274 } 5275 5276 if (VPH.canCombine(ToBePromoted)) { 5277 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5278 << "will be combined with: " << *ToBePromoted << '\n'); 5279 VPH.recordCombineInstruction(ToBePromoted); 5280 bool Changed = VPH.promote(); 5281 NumStoreExtractExposed += Changed; 5282 return Changed; 5283 } 5284 5285 DEBUG(dbgs() << "Try promoting.\n"); 5286 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5287 return false; 5288 5289 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5290 5291 VPH.enqueueForPromotion(ToBePromoted); 5292 Inst = ToBePromoted; 5293 } 5294 return false; 5295 } 5296 5297 /// For the instruction sequence of store below, F and I values 5298 /// are bundled together as an i64 value before being stored into memory. 5299 /// Sometimes it is more efficent to generate separate stores for F and I, 5300 /// which can remove the bitwise instructions or sink them to colder places. 5301 /// 5302 /// (store (or (zext (bitcast F to i32) to i64), 5303 /// (shl (zext I to i64), 32)), addr) --> 5304 /// (store F, addr) and (store I, addr+4) 5305 /// 5306 /// Similarly, splitting for other merged store can also be beneficial, like: 5307 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5308 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5309 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5310 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5311 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5312 /// 5313 /// We allow each target to determine specifically which kind of splitting is 5314 /// supported. 5315 /// 5316 /// The store patterns are commonly seen from the simple code snippet below 5317 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5318 /// void goo(const std::pair<int, float> &); 5319 /// hoo() { 5320 /// ... 5321 /// goo(std::make_pair(tmp, ftmp)); 5322 /// ... 5323 /// } 5324 /// 5325 /// Although we already have similar splitting in DAG Combine, we duplicate 5326 /// it in CodeGenPrepare to catch the case in which pattern is across 5327 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5328 /// during code expansion. 5329 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5330 const TargetLowering &TLI) { 5331 // Handle simple but common cases only. 5332 Type *StoreType = SI.getValueOperand()->getType(); 5333 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5334 DL.getTypeSizeInBits(StoreType) == 0) 5335 return false; 5336 5337 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5338 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5339 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5340 DL.getTypeSizeInBits(SplitStoreType)) 5341 return false; 5342 5343 // Match the following patterns: 5344 // (store (or (zext LValue to i64), 5345 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5346 // or 5347 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5348 // (zext LValue to i64), 5349 // Expect both operands of OR and the first operand of SHL have only 5350 // one use. 5351 Value *LValue, *HValue; 5352 if (!match(SI.getValueOperand(), 5353 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 5354 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 5355 m_SpecificInt(HalfValBitSize)))))) 5356 return false; 5357 5358 // Check LValue and HValue are int with size less or equal than 32. 5359 if (!LValue->getType()->isIntegerTy() || 5360 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 5361 !HValue->getType()->isIntegerTy() || 5362 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 5363 return false; 5364 5365 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 5366 // as the input of target query. 5367 auto *LBC = dyn_cast<BitCastInst>(LValue); 5368 auto *HBC = dyn_cast<BitCastInst>(HValue); 5369 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 5370 : EVT::getEVT(LValue->getType()); 5371 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 5372 : EVT::getEVT(HValue->getType()); 5373 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 5374 return false; 5375 5376 // Start to split store. 5377 IRBuilder<> Builder(SI.getContext()); 5378 Builder.SetInsertPoint(&SI); 5379 5380 // If LValue/HValue is a bitcast in another BB, create a new one in current 5381 // BB so it may be merged with the splitted stores by dag combiner. 5382 if (LBC && LBC->getParent() != SI.getParent()) 5383 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 5384 if (HBC && HBC->getParent() != SI.getParent()) 5385 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 5386 5387 auto CreateSplitStore = [&](Value *V, bool Upper) { 5388 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 5389 Value *Addr = Builder.CreateBitCast( 5390 SI.getOperand(1), 5391 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 5392 if (Upper) 5393 Addr = Builder.CreateGEP( 5394 SplitStoreType, Addr, 5395 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 5396 Builder.CreateAlignedStore( 5397 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 5398 }; 5399 5400 CreateSplitStore(LValue, false); 5401 CreateSplitStore(HValue, true); 5402 5403 // Delete the old store. 5404 SI.eraseFromParent(); 5405 return true; 5406 } 5407 5408 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5409 // Bail out if we inserted the instruction to prevent optimizations from 5410 // stepping on each other's toes. 5411 if (InsertedInsts.count(I)) 5412 return false; 5413 5414 if (PHINode *P = dyn_cast<PHINode>(I)) { 5415 // It is possible for very late stage optimizations (such as SimplifyCFG) 5416 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5417 // trivial PHI, go ahead and zap it here. 5418 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 5419 P->replaceAllUsesWith(V); 5420 P->eraseFromParent(); 5421 ++NumPHIsElim; 5422 return true; 5423 } 5424 return false; 5425 } 5426 5427 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5428 // If the source of the cast is a constant, then this should have 5429 // already been constant folded. The only reason NOT to constant fold 5430 // it is if something (e.g. LSR) was careful to place the constant 5431 // evaluation in a block other than then one that uses it (e.g. to hoist 5432 // the address of globals out of a loop). If this is the case, we don't 5433 // want to forward-subst the cast. 5434 if (isa<Constant>(CI->getOperand(0))) 5435 return false; 5436 5437 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5438 return true; 5439 5440 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5441 /// Sink a zext or sext into its user blocks if the target type doesn't 5442 /// fit in one register 5443 if (TLI && 5444 TLI->getTypeAction(CI->getContext(), 5445 TLI->getValueType(*DL, CI->getType())) == 5446 TargetLowering::TypeExpandInteger) { 5447 return SinkCast(CI); 5448 } else { 5449 bool MadeChange = optimizeExt(I); 5450 return MadeChange | optimizeExtUses(I); 5451 } 5452 } 5453 return false; 5454 } 5455 5456 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5457 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5458 return OptimizeCmpExpression(CI, TLI); 5459 5460 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5461 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 5462 if (TLI) { 5463 bool Modified = optimizeLoadExt(LI); 5464 unsigned AS = LI->getPointerAddressSpace(); 5465 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 5466 return Modified; 5467 } 5468 return false; 5469 } 5470 5471 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 5472 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 5473 return true; 5474 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 5475 if (TLI) { 5476 unsigned AS = SI->getPointerAddressSpace(); 5477 return optimizeMemoryInst(I, SI->getOperand(1), 5478 SI->getOperand(0)->getType(), AS); 5479 } 5480 return false; 5481 } 5482 5483 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 5484 unsigned AS = RMW->getPointerAddressSpace(); 5485 return optimizeMemoryInst(I, RMW->getPointerOperand(), 5486 RMW->getType(), AS); 5487 } 5488 5489 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 5490 unsigned AS = CmpX->getPointerAddressSpace(); 5491 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 5492 CmpX->getCompareOperand()->getType(), AS); 5493 } 5494 5495 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 5496 5497 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 5498 EnableAndCmpSinking && TLI) 5499 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 5500 5501 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 5502 BinOp->getOpcode() == Instruction::LShr)) { 5503 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 5504 if (TLI && CI && TLI->hasExtractBitsInsn()) 5505 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 5506 5507 return false; 5508 } 5509 5510 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 5511 if (GEPI->hasAllZeroIndices()) { 5512 /// The GEP operand must be a pointer, so must its result -> BitCast 5513 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 5514 GEPI->getName(), GEPI); 5515 GEPI->replaceAllUsesWith(NC); 5516 GEPI->eraseFromParent(); 5517 ++NumGEPsElim; 5518 optimizeInst(NC, ModifiedDT); 5519 return true; 5520 } 5521 return false; 5522 } 5523 5524 if (CallInst *CI = dyn_cast<CallInst>(I)) 5525 return optimizeCallInst(CI, ModifiedDT); 5526 5527 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 5528 return optimizeSelectInst(SI); 5529 5530 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 5531 return optimizeShuffleVectorInst(SVI); 5532 5533 if (auto *Switch = dyn_cast<SwitchInst>(I)) 5534 return optimizeSwitchInst(Switch); 5535 5536 if (isa<ExtractElementInst>(I)) 5537 return optimizeExtractElementInst(I); 5538 5539 return false; 5540 } 5541 5542 /// Given an OR instruction, check to see if this is a bitreverse 5543 /// idiom. If so, insert the new intrinsic and return true. 5544 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 5545 const TargetLowering &TLI) { 5546 if (!I.getType()->isIntegerTy() || 5547 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 5548 TLI.getValueType(DL, I.getType(), true))) 5549 return false; 5550 5551 SmallVector<Instruction*, 4> Insts; 5552 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 5553 return false; 5554 Instruction *LastInst = Insts.back(); 5555 I.replaceAllUsesWith(LastInst); 5556 RecursivelyDeleteTriviallyDeadInstructions(&I); 5557 return true; 5558 } 5559 5560 // In this pass we look for GEP and cast instructions that are used 5561 // across basic blocks and rewrite them to improve basic-block-at-a-time 5562 // selection. 5563 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 5564 SunkAddrs.clear(); 5565 bool MadeChange = false; 5566 5567 CurInstIterator = BB.begin(); 5568 while (CurInstIterator != BB.end()) { 5569 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 5570 if (ModifiedDT) 5571 return true; 5572 } 5573 5574 bool MadeBitReverse = true; 5575 while (TLI && MadeBitReverse) { 5576 MadeBitReverse = false; 5577 for (auto &I : reverse(BB)) { 5578 if (makeBitReverse(I, *DL, *TLI)) { 5579 MadeBitReverse = MadeChange = true; 5580 ModifiedDT = true; 5581 break; 5582 } 5583 } 5584 } 5585 MadeChange |= dupRetToEnableTailCallOpts(&BB); 5586 5587 return MadeChange; 5588 } 5589 5590 // llvm.dbg.value is far away from the value then iSel may not be able 5591 // handle it properly. iSel will drop llvm.dbg.value if it can not 5592 // find a node corresponding to the value. 5593 bool CodeGenPrepare::placeDbgValues(Function &F) { 5594 bool MadeChange = false; 5595 for (BasicBlock &BB : F) { 5596 Instruction *PrevNonDbgInst = nullptr; 5597 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 5598 Instruction *Insn = &*BI++; 5599 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 5600 // Leave dbg.values that refer to an alloca alone. These 5601 // instrinsics describe the address of a variable (= the alloca) 5602 // being taken. They should not be moved next to the alloca 5603 // (and to the beginning of the scope), but rather stay close to 5604 // where said address is used. 5605 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 5606 PrevNonDbgInst = Insn; 5607 continue; 5608 } 5609 5610 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 5611 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 5612 // If VI is a phi in a block with an EHPad terminator, we can't insert 5613 // after it. 5614 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 5615 continue; 5616 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 5617 DVI->removeFromParent(); 5618 if (isa<PHINode>(VI)) 5619 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 5620 else 5621 DVI->insertAfter(VI); 5622 MadeChange = true; 5623 ++NumDbgValueMoved; 5624 } 5625 } 5626 } 5627 return MadeChange; 5628 } 5629 5630 /// \brief Scale down both weights to fit into uint32_t. 5631 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5632 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5633 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5634 NewTrue = NewTrue / Scale; 5635 NewFalse = NewFalse / Scale; 5636 } 5637 5638 /// \brief Some targets prefer to split a conditional branch like: 5639 /// \code 5640 /// %0 = icmp ne i32 %a, 0 5641 /// %1 = icmp ne i32 %b, 0 5642 /// %or.cond = or i1 %0, %1 5643 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5644 /// \endcode 5645 /// into multiple branch instructions like: 5646 /// \code 5647 /// bb1: 5648 /// %0 = icmp ne i32 %a, 0 5649 /// br i1 %0, label %TrueBB, label %bb2 5650 /// bb2: 5651 /// %1 = icmp ne i32 %b, 0 5652 /// br i1 %1, label %TrueBB, label %FalseBB 5653 /// \endcode 5654 /// This usually allows instruction selection to do even further optimizations 5655 /// and combine the compare with the branch instruction. Currently this is 5656 /// applied for targets which have "cheap" jump instructions. 5657 /// 5658 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5659 /// 5660 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5661 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5662 return false; 5663 5664 bool MadeChange = false; 5665 for (auto &BB : F) { 5666 // Does this BB end with the following? 5667 // %cond1 = icmp|fcmp|binary instruction ... 5668 // %cond2 = icmp|fcmp|binary instruction ... 5669 // %cond.or = or|and i1 %cond1, cond2 5670 // br i1 %cond.or label %dest1, label %dest2" 5671 BinaryOperator *LogicOp; 5672 BasicBlock *TBB, *FBB; 5673 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5674 continue; 5675 5676 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5677 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5678 continue; 5679 5680 unsigned Opc; 5681 Value *Cond1, *Cond2; 5682 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5683 m_OneUse(m_Value(Cond2))))) 5684 Opc = Instruction::And; 5685 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5686 m_OneUse(m_Value(Cond2))))) 5687 Opc = Instruction::Or; 5688 else 5689 continue; 5690 5691 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5692 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5693 continue; 5694 5695 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5696 5697 // Create a new BB. 5698 auto TmpBB = 5699 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 5700 BB.getParent(), BB.getNextNode()); 5701 5702 // Update original basic block by using the first condition directly by the 5703 // branch instruction and removing the no longer needed and/or instruction. 5704 Br1->setCondition(Cond1); 5705 LogicOp->eraseFromParent(); 5706 5707 // Depending on the conditon we have to either replace the true or the false 5708 // successor of the original branch instruction. 5709 if (Opc == Instruction::And) 5710 Br1->setSuccessor(0, TmpBB); 5711 else 5712 Br1->setSuccessor(1, TmpBB); 5713 5714 // Fill in the new basic block. 5715 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 5716 if (auto *I = dyn_cast<Instruction>(Cond2)) { 5717 I->removeFromParent(); 5718 I->insertBefore(Br2); 5719 } 5720 5721 // Update PHI nodes in both successors. The original BB needs to be 5722 // replaced in one succesor's PHI nodes, because the branch comes now from 5723 // the newly generated BB (NewBB). In the other successor we need to add one 5724 // incoming edge to the PHI nodes, because both branch instructions target 5725 // now the same successor. Depending on the original branch condition 5726 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 5727 // we perform the correct update for the PHI nodes. 5728 // This doesn't change the successor order of the just created branch 5729 // instruction (or any other instruction). 5730 if (Opc == Instruction::Or) 5731 std::swap(TBB, FBB); 5732 5733 // Replace the old BB with the new BB. 5734 for (auto &I : *TBB) { 5735 PHINode *PN = dyn_cast<PHINode>(&I); 5736 if (!PN) 5737 break; 5738 int i; 5739 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 5740 PN->setIncomingBlock(i, TmpBB); 5741 } 5742 5743 // Add another incoming edge form the new BB. 5744 for (auto &I : *FBB) { 5745 PHINode *PN = dyn_cast<PHINode>(&I); 5746 if (!PN) 5747 break; 5748 auto *Val = PN->getIncomingValueForBlock(&BB); 5749 PN->addIncoming(Val, TmpBB); 5750 } 5751 5752 // Update the branch weights (from SelectionDAGBuilder:: 5753 // FindMergedConditions). 5754 if (Opc == Instruction::Or) { 5755 // Codegen X | Y as: 5756 // BB1: 5757 // jmp_if_X TBB 5758 // jmp TmpBB 5759 // TmpBB: 5760 // jmp_if_Y TBB 5761 // jmp FBB 5762 // 5763 5764 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 5765 // The requirement is that 5766 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 5767 // = TrueProb for orignal BB. 5768 // Assuming the orignal weights are A and B, one choice is to set BB1's 5769 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 5770 // assumes that 5771 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 5772 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 5773 // TmpBB, but the math is more complicated. 5774 uint64_t TrueWeight, FalseWeight; 5775 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5776 uint64_t NewTrueWeight = TrueWeight; 5777 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 5778 scaleWeights(NewTrueWeight, NewFalseWeight); 5779 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5780 .createBranchWeights(TrueWeight, FalseWeight)); 5781 5782 NewTrueWeight = TrueWeight; 5783 NewFalseWeight = 2 * FalseWeight; 5784 scaleWeights(NewTrueWeight, NewFalseWeight); 5785 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5786 .createBranchWeights(TrueWeight, FalseWeight)); 5787 } 5788 } else { 5789 // Codegen X & Y as: 5790 // BB1: 5791 // jmp_if_X TmpBB 5792 // jmp FBB 5793 // TmpBB: 5794 // jmp_if_Y TBB 5795 // jmp FBB 5796 // 5797 // This requires creation of TmpBB after CurBB. 5798 5799 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 5800 // The requirement is that 5801 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 5802 // = FalseProb for orignal BB. 5803 // Assuming the orignal weights are A and B, one choice is to set BB1's 5804 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 5805 // assumes that 5806 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 5807 uint64_t TrueWeight, FalseWeight; 5808 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5809 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 5810 uint64_t NewFalseWeight = FalseWeight; 5811 scaleWeights(NewTrueWeight, NewFalseWeight); 5812 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5813 .createBranchWeights(TrueWeight, FalseWeight)); 5814 5815 NewTrueWeight = 2 * TrueWeight; 5816 NewFalseWeight = FalseWeight; 5817 scaleWeights(NewTrueWeight, NewFalseWeight); 5818 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5819 .createBranchWeights(TrueWeight, FalseWeight)); 5820 } 5821 } 5822 5823 // Note: No point in getting fancy here, since the DT info is never 5824 // available to CodeGenPrepare. 5825 ModifiedDT = true; 5826 5827 MadeChange = true; 5828 5829 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 5830 TmpBB->dump()); 5831 } 5832 return MadeChange; 5833 } 5834