1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/IR/ValueMap.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/BuildLibCalls.h" 47 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "codegenprepare" 54 55 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 56 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 57 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 58 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 59 "sunken Cmps"); 60 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 61 "of sunken Casts"); 62 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 63 "computations were sunk"); 64 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 65 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 66 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 67 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 68 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 69 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 70 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 71 72 static cl::opt<bool> DisableBranchOpts( 73 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 74 cl::desc("Disable branch optimizations in CodeGenPrepare")); 75 76 static cl::opt<bool> 77 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 78 cl::desc("Disable GC optimizations in CodeGenPrepare")); 79 80 static cl::opt<bool> DisableSelectToBranch( 81 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 82 cl::desc("Disable select to branch conversion.")); 83 84 static cl::opt<bool> AddrSinkUsingGEPs( 85 "addr-sink-using-gep", cl::Hidden, cl::init(false), 86 cl::desc("Address sinking in CGP using GEPs.")); 87 88 static cl::opt<bool> EnableAndCmpSinking( 89 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 90 cl::desc("Enable sinkinig and/cmp into branches.")); 91 92 static cl::opt<bool> DisableStoreExtract( 93 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 94 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 95 96 static cl::opt<bool> StressStoreExtract( 97 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 98 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 99 100 static cl::opt<bool> DisableExtLdPromotion( 101 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 102 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 103 "CodeGenPrepare")); 104 105 static cl::opt<bool> StressExtLdPromotion( 106 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 107 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 108 "optimization in CodeGenPrepare")); 109 110 namespace { 111 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 112 struct TypeIsSExt { 113 Type *Ty; 114 bool IsSExt; 115 TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {} 116 }; 117 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 118 class TypePromotionTransaction; 119 120 class CodeGenPrepare : public FunctionPass { 121 /// TLI - Keep a pointer of a TargetLowering to consult for determining 122 /// transformation profitability. 123 const TargetMachine *TM; 124 const TargetLowering *TLI; 125 const TargetTransformInfo *TTI; 126 const TargetLibraryInfo *TLInfo; 127 128 /// CurInstIterator - As we scan instructions optimizing them, this is the 129 /// next instruction to optimize. Xforms that can invalidate this should 130 /// update it. 131 BasicBlock::iterator CurInstIterator; 132 133 /// Keeps track of non-local addresses that have been sunk into a block. 134 /// This allows us to avoid inserting duplicate code for blocks with 135 /// multiple load/stores of the same address. 136 ValueMap<Value*, Value*> SunkAddrs; 137 138 /// Keeps track of all instructions inserted for the current function. 139 SetOfInstrs InsertedInsts; 140 /// Keeps track of the type of the related instruction before their 141 /// promotion for the current function. 142 InstrToOrigTy PromotedInsts; 143 144 /// ModifiedDT - If CFG is modified in anyway. 145 bool ModifiedDT; 146 147 /// OptSize - True if optimizing for size. 148 bool OptSize; 149 150 public: 151 static char ID; // Pass identification, replacement for typeid 152 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 153 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr) { 154 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 155 } 156 bool runOnFunction(Function &F) override; 157 158 const char *getPassName() const override { return "CodeGen Prepare"; } 159 160 void getAnalysisUsage(AnalysisUsage &AU) const override { 161 AU.addPreserved<DominatorTreeWrapperPass>(); 162 AU.addRequired<TargetLibraryInfoWrapperPass>(); 163 AU.addRequired<TargetTransformInfoWrapperPass>(); 164 } 165 166 private: 167 bool EliminateFallThrough(Function &F); 168 bool EliminateMostlyEmptyBlocks(Function &F); 169 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 170 void EliminateMostlyEmptyBlock(BasicBlock *BB); 171 bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT); 172 bool OptimizeInst(Instruction *I, bool& ModifiedDT); 173 bool OptimizeMemoryInst(Instruction *I, Value *Addr, 174 Type *AccessTy, unsigned AS); 175 bool OptimizeInlineAsmInst(CallInst *CS); 176 bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT); 177 bool MoveExtToFormExtLoad(Instruction *&I); 178 bool OptimizeExtUses(Instruction *I); 179 bool OptimizeSelectInst(SelectInst *SI); 180 bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); 181 bool OptimizeExtractElementInst(Instruction *Inst); 182 bool DupRetToEnableTailCallOpts(BasicBlock *BB); 183 bool PlaceDbgValues(Function &F); 184 bool sinkAndCmp(Function &F); 185 bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 186 Instruction *&Inst, 187 const SmallVectorImpl<Instruction *> &Exts, 188 unsigned CreatedInstCost); 189 bool splitBranchCondition(Function &F); 190 bool simplifyOffsetableRelocate(Instruction &I); 191 }; 192 } // namespace 193 194 char CodeGenPrepare::ID = 0; 195 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 196 "Optimize for code generation", false, false) 197 198 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 199 return new CodeGenPrepare(TM); 200 } 201 202 bool CodeGenPrepare::runOnFunction(Function &F) { 203 if (skipOptnoneFunction(F)) 204 return false; 205 206 bool EverMadeChange = false; 207 // Clear per function information. 208 InsertedInsts.clear(); 209 PromotedInsts.clear(); 210 211 ModifiedDT = false; 212 if (TM) 213 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 214 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 215 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 216 OptSize = F.hasFnAttribute(Attribute::OptimizeForSize); 217 218 /// This optimization identifies DIV instructions that can be 219 /// profitably bypassed and carried out with a shorter, faster divide. 220 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 221 const DenseMap<unsigned int, unsigned int> &BypassWidths = 222 TLI->getBypassSlowDivWidths(); 223 for (Function::iterator I = F.begin(); I != F.end(); I++) 224 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 225 } 226 227 // Eliminate blocks that contain only PHI nodes and an 228 // unconditional branch. 229 EverMadeChange |= EliminateMostlyEmptyBlocks(F); 230 231 // llvm.dbg.value is far away from the value then iSel may not be able 232 // handle it properly. iSel will drop llvm.dbg.value if it can not 233 // find a node corresponding to the value. 234 EverMadeChange |= PlaceDbgValues(F); 235 236 // If there is a mask, compare against zero, and branch that can be combined 237 // into a single target instruction, push the mask and compare into branch 238 // users. Do this before OptimizeBlock -> OptimizeInst -> 239 // OptimizeCmpExpression, which perturbs the pattern being searched for. 240 if (!DisableBranchOpts) { 241 EverMadeChange |= sinkAndCmp(F); 242 EverMadeChange |= splitBranchCondition(F); 243 } 244 245 bool MadeChange = true; 246 while (MadeChange) { 247 MadeChange = false; 248 for (Function::iterator I = F.begin(); I != F.end(); ) { 249 BasicBlock *BB = I++; 250 bool ModifiedDTOnIteration = false; 251 MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration); 252 253 // Restart BB iteration if the dominator tree of the Function was changed 254 if (ModifiedDTOnIteration) 255 break; 256 } 257 EverMadeChange |= MadeChange; 258 } 259 260 SunkAddrs.clear(); 261 262 if (!DisableBranchOpts) { 263 MadeChange = false; 264 SmallPtrSet<BasicBlock*, 8> WorkList; 265 for (BasicBlock &BB : F) { 266 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 267 MadeChange |= ConstantFoldTerminator(&BB, true); 268 if (!MadeChange) continue; 269 270 for (SmallVectorImpl<BasicBlock*>::iterator 271 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 272 if (pred_begin(*II) == pred_end(*II)) 273 WorkList.insert(*II); 274 } 275 276 // Delete the dead blocks and any of their dead successors. 277 MadeChange |= !WorkList.empty(); 278 while (!WorkList.empty()) { 279 BasicBlock *BB = *WorkList.begin(); 280 WorkList.erase(BB); 281 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 282 283 DeleteDeadBlock(BB); 284 285 for (SmallVectorImpl<BasicBlock*>::iterator 286 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 287 if (pred_begin(*II) == pred_end(*II)) 288 WorkList.insert(*II); 289 } 290 291 // Merge pairs of basic blocks with unconditional branches, connected by 292 // a single edge. 293 if (EverMadeChange || MadeChange) 294 MadeChange |= EliminateFallThrough(F); 295 296 EverMadeChange |= MadeChange; 297 } 298 299 if (!DisableGCOpts) { 300 SmallVector<Instruction *, 2> Statepoints; 301 for (BasicBlock &BB : F) 302 for (Instruction &I : BB) 303 if (isStatepoint(I)) 304 Statepoints.push_back(&I); 305 for (auto &I : Statepoints) 306 EverMadeChange |= simplifyOffsetableRelocate(*I); 307 } 308 309 return EverMadeChange; 310 } 311 312 /// EliminateFallThrough - Merge basic blocks which are connected 313 /// by a single edge, where one of the basic blocks has a single successor 314 /// pointing to the other basic block, which has a single predecessor. 315 bool CodeGenPrepare::EliminateFallThrough(Function &F) { 316 bool Changed = false; 317 // Scan all of the blocks in the function, except for the entry block. 318 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 319 BasicBlock *BB = I++; 320 // If the destination block has a single pred, then this is a trivial 321 // edge, just collapse it. 322 BasicBlock *SinglePred = BB->getSinglePredecessor(); 323 324 // Don't merge if BB's address is taken. 325 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 326 327 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 328 if (Term && !Term->isConditional()) { 329 Changed = true; 330 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 331 // Remember if SinglePred was the entry block of the function. 332 // If so, we will need to move BB back to the entry position. 333 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 334 MergeBasicBlockIntoOnlyPred(BB, nullptr); 335 336 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 337 BB->moveBefore(&BB->getParent()->getEntryBlock()); 338 339 // We have erased a block. Update the iterator. 340 I = BB; 341 } 342 } 343 return Changed; 344 } 345 346 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, 347 /// debug info directives, and an unconditional branch. Passes before isel 348 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for 349 /// isel. Start by eliminating these blocks so we can split them the way we 350 /// want them. 351 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { 352 bool MadeChange = false; 353 // Note that this intentionally skips the entry block. 354 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 355 BasicBlock *BB = I++; 356 357 // If this block doesn't end with an uncond branch, ignore it. 358 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 359 if (!BI || !BI->isUnconditional()) 360 continue; 361 362 // If the instruction before the branch (skipping debug info) isn't a phi 363 // node, then other stuff is happening here. 364 BasicBlock::iterator BBI = BI; 365 if (BBI != BB->begin()) { 366 --BBI; 367 while (isa<DbgInfoIntrinsic>(BBI)) { 368 if (BBI == BB->begin()) 369 break; 370 --BBI; 371 } 372 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 373 continue; 374 } 375 376 // Do not break infinite loops. 377 BasicBlock *DestBB = BI->getSuccessor(0); 378 if (DestBB == BB) 379 continue; 380 381 if (!CanMergeBlocks(BB, DestBB)) 382 continue; 383 384 EliminateMostlyEmptyBlock(BB); 385 MadeChange = true; 386 } 387 return MadeChange; 388 } 389 390 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a 391 /// single uncond branch between them, and BB contains no other non-phi 392 /// instructions. 393 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, 394 const BasicBlock *DestBB) const { 395 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 396 // the successor. If there are more complex condition (e.g. preheaders), 397 // don't mess around with them. 398 BasicBlock::const_iterator BBI = BB->begin(); 399 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 400 for (const User *U : PN->users()) { 401 const Instruction *UI = cast<Instruction>(U); 402 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 403 return false; 404 // If User is inside DestBB block and it is a PHINode then check 405 // incoming value. If incoming value is not from BB then this is 406 // a complex condition (e.g. preheaders) we want to avoid here. 407 if (UI->getParent() == DestBB) { 408 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 409 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 410 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 411 if (Insn && Insn->getParent() == BB && 412 Insn->getParent() != UPN->getIncomingBlock(I)) 413 return false; 414 } 415 } 416 } 417 } 418 419 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 420 // and DestBB may have conflicting incoming values for the block. If so, we 421 // can't merge the block. 422 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 423 if (!DestBBPN) return true; // no conflict. 424 425 // Collect the preds of BB. 426 SmallPtrSet<const BasicBlock*, 16> BBPreds; 427 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 428 // It is faster to get preds from a PHI than with pred_iterator. 429 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 430 BBPreds.insert(BBPN->getIncomingBlock(i)); 431 } else { 432 BBPreds.insert(pred_begin(BB), pred_end(BB)); 433 } 434 435 // Walk the preds of DestBB. 436 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 437 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 438 if (BBPreds.count(Pred)) { // Common predecessor? 439 BBI = DestBB->begin(); 440 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 441 const Value *V1 = PN->getIncomingValueForBlock(Pred); 442 const Value *V2 = PN->getIncomingValueForBlock(BB); 443 444 // If V2 is a phi node in BB, look up what the mapped value will be. 445 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 446 if (V2PN->getParent() == BB) 447 V2 = V2PN->getIncomingValueForBlock(Pred); 448 449 // If there is a conflict, bail out. 450 if (V1 != V2) return false; 451 } 452 } 453 } 454 455 return true; 456 } 457 458 459 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and 460 /// an unconditional branch in it. 461 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { 462 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 463 BasicBlock *DestBB = BI->getSuccessor(0); 464 465 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 466 467 // If the destination block has a single pred, then this is a trivial edge, 468 // just collapse it. 469 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 470 if (SinglePred != DestBB) { 471 // Remember if SinglePred was the entry block of the function. If so, we 472 // will need to move BB back to the entry position. 473 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 474 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 475 476 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 477 BB->moveBefore(&BB->getParent()->getEntryBlock()); 478 479 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 480 return; 481 } 482 } 483 484 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 485 // to handle the new incoming edges it is about to have. 486 PHINode *PN; 487 for (BasicBlock::iterator BBI = DestBB->begin(); 488 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 489 // Remove the incoming value for BB, and remember it. 490 Value *InVal = PN->removeIncomingValue(BB, false); 491 492 // Two options: either the InVal is a phi node defined in BB or it is some 493 // value that dominates BB. 494 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 495 if (InValPhi && InValPhi->getParent() == BB) { 496 // Add all of the input values of the input PHI as inputs of this phi. 497 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 498 PN->addIncoming(InValPhi->getIncomingValue(i), 499 InValPhi->getIncomingBlock(i)); 500 } else { 501 // Otherwise, add one instance of the dominating value for each edge that 502 // we will be adding. 503 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 504 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 505 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 506 } else { 507 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 508 PN->addIncoming(InVal, *PI); 509 } 510 } 511 } 512 513 // The PHIs are now updated, change everything that refers to BB to use 514 // DestBB and remove BB. 515 BB->replaceAllUsesWith(DestBB); 516 BB->eraseFromParent(); 517 ++NumBlocksElim; 518 519 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 520 } 521 522 // Computes a map of base pointer relocation instructions to corresponding 523 // derived pointer relocation instructions given a vector of all relocate calls 524 static void computeBaseDerivedRelocateMap( 525 const SmallVectorImpl<User *> &AllRelocateCalls, 526 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & 527 RelocateInstMap) { 528 // Collect information in two maps: one primarily for locating the base object 529 // while filling the second map; the second map is the final structure holding 530 // a mapping between Base and corresponding Derived relocate calls 531 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; 532 for (auto &U : AllRelocateCalls) { 533 GCRelocateOperands ThisRelocate(U); 534 IntrinsicInst *I = cast<IntrinsicInst>(U); 535 auto K = std::make_pair(ThisRelocate.getBasePtrIndex(), 536 ThisRelocate.getDerivedPtrIndex()); 537 RelocateIdxMap.insert(std::make_pair(K, I)); 538 } 539 for (auto &Item : RelocateIdxMap) { 540 std::pair<unsigned, unsigned> Key = Item.first; 541 if (Key.first == Key.second) 542 // Base relocation: nothing to insert 543 continue; 544 545 IntrinsicInst *I = Item.second; 546 auto BaseKey = std::make_pair(Key.first, Key.first); 547 548 // We're iterating over RelocateIdxMap so we cannot modify it. 549 auto MaybeBase = RelocateIdxMap.find(BaseKey); 550 if (MaybeBase == RelocateIdxMap.end()) 551 // TODO: We might want to insert a new base object relocate and gep off 552 // that, if there are enough derived object relocates. 553 continue; 554 555 RelocateInstMap[MaybeBase->second].push_back(I); 556 } 557 } 558 559 // Accepts a GEP and extracts the operands into a vector provided they're all 560 // small integer constants 561 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 562 SmallVectorImpl<Value *> &OffsetV) { 563 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 564 // Only accept small constant integer operands 565 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 566 if (!Op || Op->getZExtValue() > 20) 567 return false; 568 } 569 570 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 571 OffsetV.push_back(GEP->getOperand(i)); 572 return true; 573 } 574 575 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 576 // replace, computes a replacement, and affects it. 577 static bool 578 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, 579 const SmallVectorImpl<IntrinsicInst *> &Targets) { 580 bool MadeChange = false; 581 for (auto &ToReplace : Targets) { 582 GCRelocateOperands MasterRelocate(RelocatedBase); 583 GCRelocateOperands ThisRelocate(ToReplace); 584 585 assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() && 586 "Not relocating a derived object of the original base object"); 587 if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) { 588 // A duplicate relocate call. TODO: coalesce duplicates. 589 continue; 590 } 591 592 Value *Base = ThisRelocate.getBasePtr(); 593 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr()); 594 if (!Derived || Derived->getPointerOperand() != Base) 595 continue; 596 597 SmallVector<Value *, 2> OffsetV; 598 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 599 continue; 600 601 // Create a Builder and replace the target callsite with a gep 602 assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator"); 603 604 // Insert after RelocatedBase 605 IRBuilder<> Builder(RelocatedBase->getNextNode()); 606 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 607 608 // If gc_relocate does not match the actual type, cast it to the right type. 609 // In theory, there must be a bitcast after gc_relocate if the type does not 610 // match, and we should reuse it to get the derived pointer. But it could be 611 // cases like this: 612 // bb1: 613 // ... 614 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 615 // br label %merge 616 // 617 // bb2: 618 // ... 619 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 620 // br label %merge 621 // 622 // merge: 623 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 624 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 625 // 626 // In this case, we can not find the bitcast any more. So we insert a new bitcast 627 // no matter there is already one or not. In this way, we can handle all cases, and 628 // the extra bitcast should be optimized away in later passes. 629 Instruction *ActualRelocatedBase = RelocatedBase; 630 if (RelocatedBase->getType() != Base->getType()) { 631 ActualRelocatedBase = 632 cast<Instruction>(Builder.CreateBitCast(RelocatedBase, Base->getType())); 633 } 634 Value *Replacement = Builder.CreateGEP( 635 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 636 Instruction *ReplacementInst = cast<Instruction>(Replacement); 637 Replacement->takeName(ToReplace); 638 // If the newly generated derived pointer's type does not match the original derived 639 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 640 Instruction *ActualReplacement = ReplacementInst; 641 if (ReplacementInst->getType() != ToReplace->getType()) { 642 ActualReplacement = 643 cast<Instruction>(Builder.CreateBitCast(ReplacementInst, ToReplace->getType())); 644 } 645 ToReplace->replaceAllUsesWith(ActualReplacement); 646 ToReplace->eraseFromParent(); 647 648 MadeChange = true; 649 } 650 return MadeChange; 651 } 652 653 // Turns this: 654 // 655 // %base = ... 656 // %ptr = gep %base + 15 657 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 658 // %base' = relocate(%tok, i32 4, i32 4) 659 // %ptr' = relocate(%tok, i32 4, i32 5) 660 // %val = load %ptr' 661 // 662 // into this: 663 // 664 // %base = ... 665 // %ptr = gep %base + 15 666 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 667 // %base' = gc.relocate(%tok, i32 4, i32 4) 668 // %ptr' = gep %base' + 15 669 // %val = load %ptr' 670 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 671 bool MadeChange = false; 672 SmallVector<User *, 2> AllRelocateCalls; 673 674 for (auto *U : I.users()) 675 if (isGCRelocate(dyn_cast<Instruction>(U))) 676 // Collect all the relocate calls associated with a statepoint 677 AllRelocateCalls.push_back(U); 678 679 // We need atleast one base pointer relocation + one derived pointer 680 // relocation to mangle 681 if (AllRelocateCalls.size() < 2) 682 return false; 683 684 // RelocateInstMap is a mapping from the base relocate instruction to the 685 // corresponding derived relocate instructions 686 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; 687 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 688 if (RelocateInstMap.empty()) 689 return false; 690 691 for (auto &Item : RelocateInstMap) 692 // Item.first is the RelocatedBase to offset against 693 // Item.second is the vector of Targets to replace 694 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 695 return MadeChange; 696 } 697 698 /// SinkCast - Sink the specified cast instruction into its user blocks 699 static bool SinkCast(CastInst *CI) { 700 BasicBlock *DefBB = CI->getParent(); 701 702 /// InsertedCasts - Only insert a cast in each block once. 703 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 704 705 bool MadeChange = false; 706 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 707 UI != E; ) { 708 Use &TheUse = UI.getUse(); 709 Instruction *User = cast<Instruction>(*UI); 710 711 // Figure out which BB this cast is used in. For PHI's this is the 712 // appropriate predecessor block. 713 BasicBlock *UserBB = User->getParent(); 714 if (PHINode *PN = dyn_cast<PHINode>(User)) { 715 UserBB = PN->getIncomingBlock(TheUse); 716 } 717 718 // Preincrement use iterator so we don't invalidate it. 719 ++UI; 720 721 // If this user is in the same block as the cast, don't change the cast. 722 if (UserBB == DefBB) continue; 723 724 // If we have already inserted a cast into this block, use it. 725 CastInst *&InsertedCast = InsertedCasts[UserBB]; 726 727 if (!InsertedCast) { 728 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 729 InsertedCast = 730 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 731 InsertPt); 732 } 733 734 // Replace a use of the cast with a use of the new cast. 735 TheUse = InsertedCast; 736 MadeChange = true; 737 ++NumCastUses; 738 } 739 740 // If we removed all uses, nuke the cast. 741 if (CI->use_empty()) { 742 CI->eraseFromParent(); 743 MadeChange = true; 744 } 745 746 return MadeChange; 747 } 748 749 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop 750 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), 751 /// sink it into user blocks to reduce the number of virtual 752 /// registers that must be created and coalesced. 753 /// 754 /// Return true if any changes are made. 755 /// 756 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ 757 // If this is a noop copy, 758 EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); 759 EVT DstVT = TLI.getValueType(CI->getType()); 760 761 // This is an fp<->int conversion? 762 if (SrcVT.isInteger() != DstVT.isInteger()) 763 return false; 764 765 // If this is an extension, it will be a zero or sign extension, which 766 // isn't a noop. 767 if (SrcVT.bitsLT(DstVT)) return false; 768 769 // If these values will be promoted, find out what they will be promoted 770 // to. This helps us consider truncates on PPC as noop copies when they 771 // are. 772 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 773 TargetLowering::TypePromoteInteger) 774 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 775 if (TLI.getTypeAction(CI->getContext(), DstVT) == 776 TargetLowering::TypePromoteInteger) 777 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 778 779 // If, after promotion, these are the same types, this is a noop copy. 780 if (SrcVT != DstVT) 781 return false; 782 783 return SinkCast(CI); 784 } 785 786 /// CombineUAddWithOverflow - try to combine CI into a call to the 787 /// llvm.uadd.with.overflow intrinsic if possible. 788 /// 789 /// Return true if any changes were made. 790 static bool CombineUAddWithOverflow(CmpInst *CI) { 791 Value *A, *B; 792 Instruction *AddI; 793 if (!match(CI, 794 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 795 return false; 796 797 Type *Ty = AddI->getType(); 798 if (!isa<IntegerType>(Ty)) 799 return false; 800 801 // We don't want to move around uses of condition values this late, so we we 802 // check if it is legal to create the call to the intrinsic in the basic 803 // block containing the icmp: 804 805 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 806 return false; 807 808 #ifndef NDEBUG 809 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 810 // for now: 811 if (AddI->hasOneUse()) 812 assert(*AddI->user_begin() == CI && "expected!"); 813 #endif 814 815 Module *M = CI->getParent()->getParent()->getParent(); 816 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 817 818 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 819 820 auto *UAddWithOverflow = 821 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 822 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 823 auto *Overflow = 824 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 825 826 CI->replaceAllUsesWith(Overflow); 827 AddI->replaceAllUsesWith(UAdd); 828 CI->eraseFromParent(); 829 AddI->eraseFromParent(); 830 return true; 831 } 832 833 /// SinkCmpExpression - Sink the given CmpInst into user blocks to reduce 834 /// the number of virtual registers that must be created and coalesced. This is 835 /// a clear win except on targets with multiple condition code registers 836 /// (PowerPC), where it might lose; some adjustment may be wanted there. 837 /// 838 /// Return true if any changes are made. 839 static bool SinkCmpExpression(CmpInst *CI) { 840 BasicBlock *DefBB = CI->getParent(); 841 842 /// InsertedCmp - Only insert a cmp in each block once. 843 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 844 845 bool MadeChange = false; 846 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 847 UI != E; ) { 848 Use &TheUse = UI.getUse(); 849 Instruction *User = cast<Instruction>(*UI); 850 851 // Preincrement use iterator so we don't invalidate it. 852 ++UI; 853 854 // Don't bother for PHI nodes. 855 if (isa<PHINode>(User)) 856 continue; 857 858 // Figure out which BB this cmp is used in. 859 BasicBlock *UserBB = User->getParent(); 860 861 // If this user is in the same block as the cmp, don't change the cmp. 862 if (UserBB == DefBB) continue; 863 864 // If we have already inserted a cmp into this block, use it. 865 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 866 867 if (!InsertedCmp) { 868 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 869 InsertedCmp = 870 CmpInst::Create(CI->getOpcode(), 871 CI->getPredicate(), CI->getOperand(0), 872 CI->getOperand(1), "", InsertPt); 873 } 874 875 // Replace a use of the cmp with a use of the new cmp. 876 TheUse = InsertedCmp; 877 MadeChange = true; 878 ++NumCmpUses; 879 } 880 881 // If we removed all uses, nuke the cmp. 882 if (CI->use_empty()) { 883 CI->eraseFromParent(); 884 MadeChange = true; 885 } 886 887 return MadeChange; 888 } 889 890 static bool OptimizeCmpExpression(CmpInst *CI) { 891 if (SinkCmpExpression(CI)) 892 return true; 893 894 if (CombineUAddWithOverflow(CI)) 895 return true; 896 897 return false; 898 } 899 900 /// isExtractBitsCandidateUse - Check if the candidates could 901 /// be combined with shift instruction, which includes: 902 /// 1. Truncate instruction 903 /// 2. And instruction and the imm is a mask of the low bits: 904 /// imm & (imm+1) == 0 905 static bool isExtractBitsCandidateUse(Instruction *User) { 906 if (!isa<TruncInst>(User)) { 907 if (User->getOpcode() != Instruction::And || 908 !isa<ConstantInt>(User->getOperand(1))) 909 return false; 910 911 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 912 913 if ((Cimm & (Cimm + 1)).getBoolValue()) 914 return false; 915 } 916 return true; 917 } 918 919 /// SinkShiftAndTruncate - sink both shift and truncate instruction 920 /// to the use of truncate's BB. 921 static bool 922 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 923 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 924 const TargetLowering &TLI) { 925 BasicBlock *UserBB = User->getParent(); 926 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 927 TruncInst *TruncI = dyn_cast<TruncInst>(User); 928 bool MadeChange = false; 929 930 for (Value::user_iterator TruncUI = TruncI->user_begin(), 931 TruncE = TruncI->user_end(); 932 TruncUI != TruncE;) { 933 934 Use &TruncTheUse = TruncUI.getUse(); 935 Instruction *TruncUser = cast<Instruction>(*TruncUI); 936 // Preincrement use iterator so we don't invalidate it. 937 938 ++TruncUI; 939 940 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 941 if (!ISDOpcode) 942 continue; 943 944 // If the use is actually a legal node, there will not be an 945 // implicit truncate. 946 // FIXME: always querying the result type is just an 947 // approximation; some nodes' legality is determined by the 948 // operand or other means. There's no good way to find out though. 949 if (TLI.isOperationLegalOrCustom( 950 ISDOpcode, TLI.getValueType(TruncUser->getType(), true))) 951 continue; 952 953 // Don't bother for PHI nodes. 954 if (isa<PHINode>(TruncUser)) 955 continue; 956 957 BasicBlock *TruncUserBB = TruncUser->getParent(); 958 959 if (UserBB == TruncUserBB) 960 continue; 961 962 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 963 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 964 965 if (!InsertedShift && !InsertedTrunc) { 966 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 967 // Sink the shift 968 if (ShiftI->getOpcode() == Instruction::AShr) 969 InsertedShift = 970 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 971 else 972 InsertedShift = 973 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 974 975 // Sink the trunc 976 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 977 TruncInsertPt++; 978 979 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 980 TruncI->getType(), "", TruncInsertPt); 981 982 MadeChange = true; 983 984 TruncTheUse = InsertedTrunc; 985 } 986 } 987 return MadeChange; 988 } 989 990 /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if 991 /// the uses could potentially be combined with this shift instruction and 992 /// generate BitExtract instruction. It will only be applied if the architecture 993 /// supports BitExtract instruction. Here is an example: 994 /// BB1: 995 /// %x.extract.shift = lshr i64 %arg1, 32 996 /// BB2: 997 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 998 /// ==> 999 /// 1000 /// BB2: 1001 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1002 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1003 /// 1004 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1005 /// instruction. 1006 /// Return true if any changes are made. 1007 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1008 const TargetLowering &TLI) { 1009 BasicBlock *DefBB = ShiftI->getParent(); 1010 1011 /// Only insert instructions in each block once. 1012 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1013 1014 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType())); 1015 1016 bool MadeChange = false; 1017 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1018 UI != E;) { 1019 Use &TheUse = UI.getUse(); 1020 Instruction *User = cast<Instruction>(*UI); 1021 // Preincrement use iterator so we don't invalidate it. 1022 ++UI; 1023 1024 // Don't bother for PHI nodes. 1025 if (isa<PHINode>(User)) 1026 continue; 1027 1028 if (!isExtractBitsCandidateUse(User)) 1029 continue; 1030 1031 BasicBlock *UserBB = User->getParent(); 1032 1033 if (UserBB == DefBB) { 1034 // If the shift and truncate instruction are in the same BB. The use of 1035 // the truncate(TruncUse) may still introduce another truncate if not 1036 // legal. In this case, we would like to sink both shift and truncate 1037 // instruction to the BB of TruncUse. 1038 // for example: 1039 // BB1: 1040 // i64 shift.result = lshr i64 opnd, imm 1041 // trunc.result = trunc shift.result to i16 1042 // 1043 // BB2: 1044 // ----> We will have an implicit truncate here if the architecture does 1045 // not have i16 compare. 1046 // cmp i16 trunc.result, opnd2 1047 // 1048 if (isa<TruncInst>(User) && shiftIsLegal 1049 // If the type of the truncate is legal, no trucate will be 1050 // introduced in other basic blocks. 1051 && (!TLI.isTypeLegal(TLI.getValueType(User->getType())))) 1052 MadeChange = 1053 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI); 1054 1055 continue; 1056 } 1057 // If we have already inserted a shift into this block, use it. 1058 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1059 1060 if (!InsertedShift) { 1061 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1062 1063 if (ShiftI->getOpcode() == Instruction::AShr) 1064 InsertedShift = 1065 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 1066 else 1067 InsertedShift = 1068 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 1069 1070 MadeChange = true; 1071 } 1072 1073 // Replace a use of the shift with a use of the new shift. 1074 TheUse = InsertedShift; 1075 } 1076 1077 // If we removed all uses, nuke the shift. 1078 if (ShiftI->use_empty()) 1079 ShiftI->eraseFromParent(); 1080 1081 return MadeChange; 1082 } 1083 1084 // ScalarizeMaskedLoad() translates masked load intrinsic, like 1085 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1086 // <16 x i1> %mask, <16 x i32> %passthru) 1087 // to a chain of basic blocks, whith loading element one-by-one if 1088 // the appropriate mask bit is set 1089 // 1090 // %1 = bitcast i8* %addr to i32* 1091 // %2 = extractelement <16 x i1> %mask, i32 0 1092 // %3 = icmp eq i1 %2, true 1093 // br i1 %3, label %cond.load, label %else 1094 // 1095 //cond.load: ; preds = %0 1096 // %4 = getelementptr i32* %1, i32 0 1097 // %5 = load i32* %4 1098 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1099 // br label %else 1100 // 1101 //else: ; preds = %0, %cond.load 1102 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1103 // %7 = extractelement <16 x i1> %mask, i32 1 1104 // %8 = icmp eq i1 %7, true 1105 // br i1 %8, label %cond.load1, label %else2 1106 // 1107 //cond.load1: ; preds = %else 1108 // %9 = getelementptr i32* %1, i32 1 1109 // %10 = load i32* %9 1110 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1111 // br label %else2 1112 // 1113 //else2: ; preds = %else, %cond.load1 1114 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1115 // %12 = extractelement <16 x i1> %mask, i32 2 1116 // %13 = icmp eq i1 %12, true 1117 // br i1 %13, label %cond.load4, label %else5 1118 // 1119 static void ScalarizeMaskedLoad(CallInst *CI) { 1120 Value *Ptr = CI->getArgOperand(0); 1121 Value *Src0 = CI->getArgOperand(3); 1122 Value *Mask = CI->getArgOperand(2); 1123 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1124 Type *EltTy = VecType->getElementType(); 1125 1126 assert(VecType && "Unexpected return type of masked load intrinsic"); 1127 1128 IRBuilder<> Builder(CI->getContext()); 1129 Instruction *InsertPt = CI; 1130 BasicBlock *IfBlock = CI->getParent(); 1131 BasicBlock *CondBlock = nullptr; 1132 BasicBlock *PrevIfBlock = CI->getParent(); 1133 Builder.SetInsertPoint(InsertPt); 1134 1135 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1136 1137 // Bitcast %addr fron i8* to EltTy* 1138 Type *NewPtrType = 1139 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1140 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1141 Value *UndefVal = UndefValue::get(VecType); 1142 1143 // The result vector 1144 Value *VResult = UndefVal; 1145 1146 PHINode *Phi = nullptr; 1147 Value *PrevPhi = UndefVal; 1148 1149 unsigned VectorWidth = VecType->getNumElements(); 1150 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1151 1152 // Fill the "else" block, created in the previous iteration 1153 // 1154 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1155 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1156 // %to_load = icmp eq i1 %mask_1, true 1157 // br i1 %to_load, label %cond.load, label %else 1158 // 1159 if (Idx > 0) { 1160 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1161 Phi->addIncoming(VResult, CondBlock); 1162 Phi->addIncoming(PrevPhi, PrevIfBlock); 1163 PrevPhi = Phi; 1164 VResult = Phi; 1165 } 1166 1167 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1168 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1169 ConstantInt::get(Predicate->getType(), 1)); 1170 1171 // Create "cond" block 1172 // 1173 // %EltAddr = getelementptr i32* %1, i32 0 1174 // %Elt = load i32* %EltAddr 1175 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1176 // 1177 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1178 Builder.SetInsertPoint(InsertPt); 1179 1180 Value *Gep = 1181 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1182 LoadInst* Load = Builder.CreateLoad(Gep, false); 1183 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1184 1185 // Create "else" block, fill it in the next iteration 1186 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1187 Builder.SetInsertPoint(InsertPt); 1188 Instruction *OldBr = IfBlock->getTerminator(); 1189 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1190 OldBr->eraseFromParent(); 1191 PrevIfBlock = IfBlock; 1192 IfBlock = NewIfBlock; 1193 } 1194 1195 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1196 Phi->addIncoming(VResult, CondBlock); 1197 Phi->addIncoming(PrevPhi, PrevIfBlock); 1198 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1199 CI->replaceAllUsesWith(NewI); 1200 CI->eraseFromParent(); 1201 } 1202 1203 // ScalarizeMaskedStore() translates masked store intrinsic, like 1204 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1205 // <16 x i1> %mask) 1206 // to a chain of basic blocks, that stores element one-by-one if 1207 // the appropriate mask bit is set 1208 // 1209 // %1 = bitcast i8* %addr to i32* 1210 // %2 = extractelement <16 x i1> %mask, i32 0 1211 // %3 = icmp eq i1 %2, true 1212 // br i1 %3, label %cond.store, label %else 1213 // 1214 // cond.store: ; preds = %0 1215 // %4 = extractelement <16 x i32> %val, i32 0 1216 // %5 = getelementptr i32* %1, i32 0 1217 // store i32 %4, i32* %5 1218 // br label %else 1219 // 1220 // else: ; preds = %0, %cond.store 1221 // %6 = extractelement <16 x i1> %mask, i32 1 1222 // %7 = icmp eq i1 %6, true 1223 // br i1 %7, label %cond.store1, label %else2 1224 // 1225 // cond.store1: ; preds = %else 1226 // %8 = extractelement <16 x i32> %val, i32 1 1227 // %9 = getelementptr i32* %1, i32 1 1228 // store i32 %8, i32* %9 1229 // br label %else2 1230 // . . . 1231 static void ScalarizeMaskedStore(CallInst *CI) { 1232 Value *Ptr = CI->getArgOperand(1); 1233 Value *Src = CI->getArgOperand(0); 1234 Value *Mask = CI->getArgOperand(3); 1235 1236 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1237 Type *EltTy = VecType->getElementType(); 1238 1239 assert(VecType && "Unexpected data type in masked store intrinsic"); 1240 1241 IRBuilder<> Builder(CI->getContext()); 1242 Instruction *InsertPt = CI; 1243 BasicBlock *IfBlock = CI->getParent(); 1244 Builder.SetInsertPoint(InsertPt); 1245 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1246 1247 // Bitcast %addr fron i8* to EltTy* 1248 Type *NewPtrType = 1249 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1250 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1251 1252 unsigned VectorWidth = VecType->getNumElements(); 1253 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1254 1255 // Fill the "else" block, created in the previous iteration 1256 // 1257 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1258 // %to_store = icmp eq i1 %mask_1, true 1259 // br i1 %to_load, label %cond.store, label %else 1260 // 1261 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1262 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1263 ConstantInt::get(Predicate->getType(), 1)); 1264 1265 // Create "cond" block 1266 // 1267 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1268 // %EltAddr = getelementptr i32* %1, i32 0 1269 // %store i32 %OneElt, i32* %EltAddr 1270 // 1271 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1272 Builder.SetInsertPoint(InsertPt); 1273 1274 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1275 Value *Gep = 1276 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1277 Builder.CreateStore(OneElt, Gep); 1278 1279 // Create "else" block, fill it in the next iteration 1280 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1281 Builder.SetInsertPoint(InsertPt); 1282 Instruction *OldBr = IfBlock->getTerminator(); 1283 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1284 OldBr->eraseFromParent(); 1285 IfBlock = NewIfBlock; 1286 } 1287 CI->eraseFromParent(); 1288 } 1289 1290 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1291 BasicBlock *BB = CI->getParent(); 1292 1293 // Lower inline assembly if we can. 1294 // If we found an inline asm expession, and if the target knows how to 1295 // lower it to normal LLVM code, do so now. 1296 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1297 if (TLI->ExpandInlineAsm(CI)) { 1298 // Avoid invalidating the iterator. 1299 CurInstIterator = BB->begin(); 1300 // Avoid processing instructions out of order, which could cause 1301 // reuse before a value is defined. 1302 SunkAddrs.clear(); 1303 return true; 1304 } 1305 // Sink address computing for memory operands into the block. 1306 if (OptimizeInlineAsmInst(CI)) 1307 return true; 1308 } 1309 1310 const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr; 1311 1312 // Align the pointer arguments to this call if the target thinks it's a good 1313 // idea 1314 unsigned MinSize, PrefAlign; 1315 if (TLI && TD && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1316 for (auto &Arg : CI->arg_operands()) { 1317 // We want to align both objects whose address is used directly and 1318 // objects whose address is used in casts and GEPs, though it only makes 1319 // sense for GEPs if the offset is a multiple of the desired alignment and 1320 // if size - offset meets the size threshold. 1321 if (!Arg->getType()->isPointerTy()) 1322 continue; 1323 APInt Offset(TD->getPointerSizeInBits( 1324 cast<PointerType>(Arg->getType())->getAddressSpace()), 0); 1325 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*TD, Offset); 1326 uint64_t Offset2 = Offset.getLimitedValue(); 1327 if ((Offset2 & (PrefAlign-1)) != 0) 1328 continue; 1329 AllocaInst *AI; 1330 if ((AI = dyn_cast<AllocaInst>(Val)) && 1331 AI->getAlignment() < PrefAlign && 1332 TD->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1333 AI->setAlignment(PrefAlign); 1334 // Global variables can only be aligned if they are defined in this 1335 // object (i.e. they are uniquely initialized in this object), and 1336 // over-aligning global variables that have an explicit section is 1337 // forbidden. 1338 GlobalVariable *GV; 1339 if ((GV = dyn_cast<GlobalVariable>(Val)) && 1340 GV->hasUniqueInitializer() && 1341 !GV->hasSection() && 1342 GV->getAlignment() < PrefAlign && 1343 TD->getTypeAllocSize( 1344 GV->getType()->getElementType()) >= MinSize + Offset2) 1345 GV->setAlignment(PrefAlign); 1346 } 1347 // If this is a memcpy (or similar) then we may be able to improve the 1348 // alignment 1349 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1350 unsigned Align = getKnownAlignment(MI->getDest(), *TD); 1351 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1352 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *TD)); 1353 if (Align > MI->getAlignment()) 1354 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1355 } 1356 } 1357 1358 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1359 if (II) { 1360 switch (II->getIntrinsicID()) { 1361 default: break; 1362 case Intrinsic::objectsize: { 1363 // Lower all uses of llvm.objectsize.* 1364 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1365 Type *ReturnTy = CI->getType(); 1366 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1367 1368 // Substituting this can cause recursive simplifications, which can 1369 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1370 // happens. 1371 WeakVH IterHandle(CurInstIterator); 1372 1373 replaceAndRecursivelySimplify(CI, RetVal, 1374 TLInfo, nullptr); 1375 1376 // If the iterator instruction was recursively deleted, start over at the 1377 // start of the block. 1378 if (IterHandle != CurInstIterator) { 1379 CurInstIterator = BB->begin(); 1380 SunkAddrs.clear(); 1381 } 1382 return true; 1383 } 1384 case Intrinsic::masked_load: { 1385 // Scalarize unsupported vector masked load 1386 if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) { 1387 ScalarizeMaskedLoad(CI); 1388 ModifiedDT = true; 1389 return true; 1390 } 1391 return false; 1392 } 1393 case Intrinsic::masked_store: { 1394 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) { 1395 ScalarizeMaskedStore(CI); 1396 ModifiedDT = true; 1397 return true; 1398 } 1399 return false; 1400 } 1401 case Intrinsic::aarch64_stlxr: 1402 case Intrinsic::aarch64_stxr: { 1403 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1404 if (!ExtVal || !ExtVal->hasOneUse() || 1405 ExtVal->getParent() == CI->getParent()) 1406 return false; 1407 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1408 ExtVal->moveBefore(CI); 1409 // Mark this instruction as "inserted by CGP", so that other 1410 // optimizations don't touch it. 1411 InsertedInsts.insert(ExtVal); 1412 return true; 1413 } 1414 } 1415 1416 if (TLI) { 1417 // Unknown address space. 1418 // TODO: Target hook to pick which address space the intrinsic cares 1419 // about? 1420 unsigned AddrSpace = ~0u; 1421 SmallVector<Value*, 2> PtrOps; 1422 Type *AccessTy; 1423 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1424 while (!PtrOps.empty()) 1425 if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1426 return true; 1427 } 1428 } 1429 1430 // From here on out we're working with named functions. 1431 if (!CI->getCalledFunction()) return false; 1432 1433 // Lower all default uses of _chk calls. This is very similar 1434 // to what InstCombineCalls does, but here we are only lowering calls 1435 // to fortified library functions (e.g. __memcpy_chk) that have the default 1436 // "don't know" as the objectsize. Anything else should be left alone. 1437 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1438 if (Value *V = Simplifier.optimizeCall(CI)) { 1439 CI->replaceAllUsesWith(V); 1440 CI->eraseFromParent(); 1441 return true; 1442 } 1443 return false; 1444 } 1445 1446 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return 1447 /// instructions to the predecessor to enable tail call optimizations. The 1448 /// case it is currently looking for is: 1449 /// @code 1450 /// bb0: 1451 /// %tmp0 = tail call i32 @f0() 1452 /// br label %return 1453 /// bb1: 1454 /// %tmp1 = tail call i32 @f1() 1455 /// br label %return 1456 /// bb2: 1457 /// %tmp2 = tail call i32 @f2() 1458 /// br label %return 1459 /// return: 1460 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1461 /// ret i32 %retval 1462 /// @endcode 1463 /// 1464 /// => 1465 /// 1466 /// @code 1467 /// bb0: 1468 /// %tmp0 = tail call i32 @f0() 1469 /// ret i32 %tmp0 1470 /// bb1: 1471 /// %tmp1 = tail call i32 @f1() 1472 /// ret i32 %tmp1 1473 /// bb2: 1474 /// %tmp2 = tail call i32 @f2() 1475 /// ret i32 %tmp2 1476 /// @endcode 1477 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { 1478 if (!TLI) 1479 return false; 1480 1481 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1482 if (!RI) 1483 return false; 1484 1485 PHINode *PN = nullptr; 1486 BitCastInst *BCI = nullptr; 1487 Value *V = RI->getReturnValue(); 1488 if (V) { 1489 BCI = dyn_cast<BitCastInst>(V); 1490 if (BCI) 1491 V = BCI->getOperand(0); 1492 1493 PN = dyn_cast<PHINode>(V); 1494 if (!PN) 1495 return false; 1496 } 1497 1498 if (PN && PN->getParent() != BB) 1499 return false; 1500 1501 // It's not safe to eliminate the sign / zero extension of the return value. 1502 // See llvm::isInTailCallPosition(). 1503 const Function *F = BB->getParent(); 1504 AttributeSet CallerAttrs = F->getAttributes(); 1505 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1506 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1507 return false; 1508 1509 // Make sure there are no instructions between the PHI and return, or that the 1510 // return is the first instruction in the block. 1511 if (PN) { 1512 BasicBlock::iterator BI = BB->begin(); 1513 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1514 if (&*BI == BCI) 1515 // Also skip over the bitcast. 1516 ++BI; 1517 if (&*BI != RI) 1518 return false; 1519 } else { 1520 BasicBlock::iterator BI = BB->begin(); 1521 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1522 if (&*BI != RI) 1523 return false; 1524 } 1525 1526 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1527 /// call. 1528 SmallVector<CallInst*, 4> TailCalls; 1529 if (PN) { 1530 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1531 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1532 // Make sure the phi value is indeed produced by the tail call. 1533 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1534 TLI->mayBeEmittedAsTailCall(CI)) 1535 TailCalls.push_back(CI); 1536 } 1537 } else { 1538 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1539 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1540 if (!VisitedBBs.insert(*PI).second) 1541 continue; 1542 1543 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1544 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1545 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1546 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1547 if (RI == RE) 1548 continue; 1549 1550 CallInst *CI = dyn_cast<CallInst>(&*RI); 1551 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1552 TailCalls.push_back(CI); 1553 } 1554 } 1555 1556 bool Changed = false; 1557 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1558 CallInst *CI = TailCalls[i]; 1559 CallSite CS(CI); 1560 1561 // Conservatively require the attributes of the call to match those of the 1562 // return. Ignore noalias because it doesn't affect the call sequence. 1563 AttributeSet CalleeAttrs = CS.getAttributes(); 1564 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1565 removeAttribute(Attribute::NoAlias) != 1566 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1567 removeAttribute(Attribute::NoAlias)) 1568 continue; 1569 1570 // Make sure the call instruction is followed by an unconditional branch to 1571 // the return block. 1572 BasicBlock *CallBB = CI->getParent(); 1573 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1574 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1575 continue; 1576 1577 // Duplicate the return into CallBB. 1578 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1579 ModifiedDT = Changed = true; 1580 ++NumRetsDup; 1581 } 1582 1583 // If we eliminated all predecessors of the block, delete the block now. 1584 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1585 BB->eraseFromParent(); 1586 1587 return Changed; 1588 } 1589 1590 //===----------------------------------------------------------------------===// 1591 // Memory Optimization 1592 //===----------------------------------------------------------------------===// 1593 1594 namespace { 1595 1596 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode 1597 /// which holds actual Value*'s for register values. 1598 struct ExtAddrMode : public TargetLowering::AddrMode { 1599 Value *BaseReg; 1600 Value *ScaledReg; 1601 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1602 void print(raw_ostream &OS) const; 1603 void dump() const; 1604 1605 bool operator==(const ExtAddrMode& O) const { 1606 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1607 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1608 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1609 } 1610 }; 1611 1612 #ifndef NDEBUG 1613 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1614 AM.print(OS); 1615 return OS; 1616 } 1617 #endif 1618 1619 void ExtAddrMode::print(raw_ostream &OS) const { 1620 bool NeedPlus = false; 1621 OS << "["; 1622 if (BaseGV) { 1623 OS << (NeedPlus ? " + " : "") 1624 << "GV:"; 1625 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1626 NeedPlus = true; 1627 } 1628 1629 if (BaseOffs) { 1630 OS << (NeedPlus ? " + " : "") 1631 << BaseOffs; 1632 NeedPlus = true; 1633 } 1634 1635 if (BaseReg) { 1636 OS << (NeedPlus ? " + " : "") 1637 << "Base:"; 1638 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1639 NeedPlus = true; 1640 } 1641 if (Scale) { 1642 OS << (NeedPlus ? " + " : "") 1643 << Scale << "*"; 1644 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1645 } 1646 1647 OS << ']'; 1648 } 1649 1650 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1651 void ExtAddrMode::dump() const { 1652 print(dbgs()); 1653 dbgs() << '\n'; 1654 } 1655 #endif 1656 1657 /// \brief This class provides transaction based operation on the IR. 1658 /// Every change made through this class is recorded in the internal state and 1659 /// can be undone (rollback) until commit is called. 1660 class TypePromotionTransaction { 1661 1662 /// \brief This represents the common interface of the individual transaction. 1663 /// Each class implements the logic for doing one specific modification on 1664 /// the IR via the TypePromotionTransaction. 1665 class TypePromotionAction { 1666 protected: 1667 /// The Instruction modified. 1668 Instruction *Inst; 1669 1670 public: 1671 /// \brief Constructor of the action. 1672 /// The constructor performs the related action on the IR. 1673 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1674 1675 virtual ~TypePromotionAction() {} 1676 1677 /// \brief Undo the modification done by this action. 1678 /// When this method is called, the IR must be in the same state as it was 1679 /// before this action was applied. 1680 /// \pre Undoing the action works if and only if the IR is in the exact same 1681 /// state as it was directly after this action was applied. 1682 virtual void undo() = 0; 1683 1684 /// \brief Advocate every change made by this action. 1685 /// When the results on the IR of the action are to be kept, it is important 1686 /// to call this function, otherwise hidden information may be kept forever. 1687 virtual void commit() { 1688 // Nothing to be done, this action is not doing anything. 1689 } 1690 }; 1691 1692 /// \brief Utility to remember the position of an instruction. 1693 class InsertionHandler { 1694 /// Position of an instruction. 1695 /// Either an instruction: 1696 /// - Is the first in a basic block: BB is used. 1697 /// - Has a previous instructon: PrevInst is used. 1698 union { 1699 Instruction *PrevInst; 1700 BasicBlock *BB; 1701 } Point; 1702 /// Remember whether or not the instruction had a previous instruction. 1703 bool HasPrevInstruction; 1704 1705 public: 1706 /// \brief Record the position of \p Inst. 1707 InsertionHandler(Instruction *Inst) { 1708 BasicBlock::iterator It = Inst; 1709 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1710 if (HasPrevInstruction) 1711 Point.PrevInst = --It; 1712 else 1713 Point.BB = Inst->getParent(); 1714 } 1715 1716 /// \brief Insert \p Inst at the recorded position. 1717 void insert(Instruction *Inst) { 1718 if (HasPrevInstruction) { 1719 if (Inst->getParent()) 1720 Inst->removeFromParent(); 1721 Inst->insertAfter(Point.PrevInst); 1722 } else { 1723 Instruction *Position = Point.BB->getFirstInsertionPt(); 1724 if (Inst->getParent()) 1725 Inst->moveBefore(Position); 1726 else 1727 Inst->insertBefore(Position); 1728 } 1729 } 1730 }; 1731 1732 /// \brief Move an instruction before another. 1733 class InstructionMoveBefore : public TypePromotionAction { 1734 /// Original position of the instruction. 1735 InsertionHandler Position; 1736 1737 public: 1738 /// \brief Move \p Inst before \p Before. 1739 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1740 : TypePromotionAction(Inst), Position(Inst) { 1741 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1742 Inst->moveBefore(Before); 1743 } 1744 1745 /// \brief Move the instruction back to its original position. 1746 void undo() override { 1747 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1748 Position.insert(Inst); 1749 } 1750 }; 1751 1752 /// \brief Set the operand of an instruction with a new value. 1753 class OperandSetter : public TypePromotionAction { 1754 /// Original operand of the instruction. 1755 Value *Origin; 1756 /// Index of the modified instruction. 1757 unsigned Idx; 1758 1759 public: 1760 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1761 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1762 : TypePromotionAction(Inst), Idx(Idx) { 1763 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1764 << "for:" << *Inst << "\n" 1765 << "with:" << *NewVal << "\n"); 1766 Origin = Inst->getOperand(Idx); 1767 Inst->setOperand(Idx, NewVal); 1768 } 1769 1770 /// \brief Restore the original value of the instruction. 1771 void undo() override { 1772 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1773 << "for: " << *Inst << "\n" 1774 << "with: " << *Origin << "\n"); 1775 Inst->setOperand(Idx, Origin); 1776 } 1777 }; 1778 1779 /// \brief Hide the operands of an instruction. 1780 /// Do as if this instruction was not using any of its operands. 1781 class OperandsHider : public TypePromotionAction { 1782 /// The list of original operands. 1783 SmallVector<Value *, 4> OriginalValues; 1784 1785 public: 1786 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1787 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1788 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1789 unsigned NumOpnds = Inst->getNumOperands(); 1790 OriginalValues.reserve(NumOpnds); 1791 for (unsigned It = 0; It < NumOpnds; ++It) { 1792 // Save the current operand. 1793 Value *Val = Inst->getOperand(It); 1794 OriginalValues.push_back(Val); 1795 // Set a dummy one. 1796 // We could use OperandSetter here, but that would implied an overhead 1797 // that we are not willing to pay. 1798 Inst->setOperand(It, UndefValue::get(Val->getType())); 1799 } 1800 } 1801 1802 /// \brief Restore the original list of uses. 1803 void undo() override { 1804 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1805 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1806 Inst->setOperand(It, OriginalValues[It]); 1807 } 1808 }; 1809 1810 /// \brief Build a truncate instruction. 1811 class TruncBuilder : public TypePromotionAction { 1812 Value *Val; 1813 public: 1814 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1815 /// result. 1816 /// trunc Opnd to Ty. 1817 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1818 IRBuilder<> Builder(Opnd); 1819 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 1820 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 1821 } 1822 1823 /// \brief Get the built value. 1824 Value *getBuiltValue() { return Val; } 1825 1826 /// \brief Remove the built instruction. 1827 void undo() override { 1828 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 1829 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1830 IVal->eraseFromParent(); 1831 } 1832 }; 1833 1834 /// \brief Build a sign extension instruction. 1835 class SExtBuilder : public TypePromotionAction { 1836 Value *Val; 1837 public: 1838 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1839 /// result. 1840 /// sext Opnd to Ty. 1841 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1842 : TypePromotionAction(InsertPt) { 1843 IRBuilder<> Builder(InsertPt); 1844 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 1845 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 1846 } 1847 1848 /// \brief Get the built value. 1849 Value *getBuiltValue() { return Val; } 1850 1851 /// \brief Remove the built instruction. 1852 void undo() override { 1853 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 1854 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1855 IVal->eraseFromParent(); 1856 } 1857 }; 1858 1859 /// \brief Build a zero extension instruction. 1860 class ZExtBuilder : public TypePromotionAction { 1861 Value *Val; 1862 public: 1863 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 1864 /// result. 1865 /// zext Opnd to Ty. 1866 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1867 : TypePromotionAction(InsertPt) { 1868 IRBuilder<> Builder(InsertPt); 1869 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 1870 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 1871 } 1872 1873 /// \brief Get the built value. 1874 Value *getBuiltValue() { return Val; } 1875 1876 /// \brief Remove the built instruction. 1877 void undo() override { 1878 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 1879 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1880 IVal->eraseFromParent(); 1881 } 1882 }; 1883 1884 /// \brief Mutate an instruction to another type. 1885 class TypeMutator : public TypePromotionAction { 1886 /// Record the original type. 1887 Type *OrigTy; 1888 1889 public: 1890 /// \brief Mutate the type of \p Inst into \p NewTy. 1891 TypeMutator(Instruction *Inst, Type *NewTy) 1892 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1893 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1894 << "\n"); 1895 Inst->mutateType(NewTy); 1896 } 1897 1898 /// \brief Mutate the instruction back to its original type. 1899 void undo() override { 1900 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1901 << "\n"); 1902 Inst->mutateType(OrigTy); 1903 } 1904 }; 1905 1906 /// \brief Replace the uses of an instruction by another instruction. 1907 class UsesReplacer : public TypePromotionAction { 1908 /// Helper structure to keep track of the replaced uses. 1909 struct InstructionAndIdx { 1910 /// The instruction using the instruction. 1911 Instruction *Inst; 1912 /// The index where this instruction is used for Inst. 1913 unsigned Idx; 1914 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1915 : Inst(Inst), Idx(Idx) {} 1916 }; 1917 1918 /// Keep track of the original uses (pair Instruction, Index). 1919 SmallVector<InstructionAndIdx, 4> OriginalUses; 1920 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1921 1922 public: 1923 /// \brief Replace all the use of \p Inst by \p New. 1924 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1925 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1926 << "\n"); 1927 // Record the original uses. 1928 for (Use &U : Inst->uses()) { 1929 Instruction *UserI = cast<Instruction>(U.getUser()); 1930 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1931 } 1932 // Now, we can replace the uses. 1933 Inst->replaceAllUsesWith(New); 1934 } 1935 1936 /// \brief Reassign the original uses of Inst to Inst. 1937 void undo() override { 1938 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 1939 for (use_iterator UseIt = OriginalUses.begin(), 1940 EndIt = OriginalUses.end(); 1941 UseIt != EndIt; ++UseIt) { 1942 UseIt->Inst->setOperand(UseIt->Idx, Inst); 1943 } 1944 } 1945 }; 1946 1947 /// \brief Remove an instruction from the IR. 1948 class InstructionRemover : public TypePromotionAction { 1949 /// Original position of the instruction. 1950 InsertionHandler Inserter; 1951 /// Helper structure to hide all the link to the instruction. In other 1952 /// words, this helps to do as if the instruction was removed. 1953 OperandsHider Hider; 1954 /// Keep track of the uses replaced, if any. 1955 UsesReplacer *Replacer; 1956 1957 public: 1958 /// \brief Remove all reference of \p Inst and optinally replace all its 1959 /// uses with New. 1960 /// \pre If !Inst->use_empty(), then New != nullptr 1961 InstructionRemover(Instruction *Inst, Value *New = nullptr) 1962 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 1963 Replacer(nullptr) { 1964 if (New) 1965 Replacer = new UsesReplacer(Inst, New); 1966 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 1967 Inst->removeFromParent(); 1968 } 1969 1970 ~InstructionRemover() override { delete Replacer; } 1971 1972 /// \brief Really remove the instruction. 1973 void commit() override { delete Inst; } 1974 1975 /// \brief Resurrect the instruction and reassign it to the proper uses if 1976 /// new value was provided when build this action. 1977 void undo() override { 1978 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 1979 Inserter.insert(Inst); 1980 if (Replacer) 1981 Replacer->undo(); 1982 Hider.undo(); 1983 } 1984 }; 1985 1986 public: 1987 /// Restoration point. 1988 /// The restoration point is a pointer to an action instead of an iterator 1989 /// because the iterator may be invalidated but not the pointer. 1990 typedef const TypePromotionAction *ConstRestorationPt; 1991 /// Advocate every changes made in that transaction. 1992 void commit(); 1993 /// Undo all the changes made after the given point. 1994 void rollback(ConstRestorationPt Point); 1995 /// Get the current restoration point. 1996 ConstRestorationPt getRestorationPoint() const; 1997 1998 /// \name API for IR modification with state keeping to support rollback. 1999 /// @{ 2000 /// Same as Instruction::setOperand. 2001 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2002 /// Same as Instruction::eraseFromParent. 2003 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2004 /// Same as Value::replaceAllUsesWith. 2005 void replaceAllUsesWith(Instruction *Inst, Value *New); 2006 /// Same as Value::mutateType. 2007 void mutateType(Instruction *Inst, Type *NewTy); 2008 /// Same as IRBuilder::createTrunc. 2009 Value *createTrunc(Instruction *Opnd, Type *Ty); 2010 /// Same as IRBuilder::createSExt. 2011 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2012 /// Same as IRBuilder::createZExt. 2013 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2014 /// Same as Instruction::moveBefore. 2015 void moveBefore(Instruction *Inst, Instruction *Before); 2016 /// @} 2017 2018 private: 2019 /// The ordered list of actions made so far. 2020 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2021 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2022 }; 2023 2024 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2025 Value *NewVal) { 2026 Actions.push_back( 2027 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2028 } 2029 2030 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2031 Value *NewVal) { 2032 Actions.push_back( 2033 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2034 } 2035 2036 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2037 Value *New) { 2038 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2039 } 2040 2041 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2042 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2043 } 2044 2045 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2046 Type *Ty) { 2047 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2048 Value *Val = Ptr->getBuiltValue(); 2049 Actions.push_back(std::move(Ptr)); 2050 return Val; 2051 } 2052 2053 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2054 Value *Opnd, Type *Ty) { 2055 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2056 Value *Val = Ptr->getBuiltValue(); 2057 Actions.push_back(std::move(Ptr)); 2058 return Val; 2059 } 2060 2061 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2062 Value *Opnd, Type *Ty) { 2063 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2064 Value *Val = Ptr->getBuiltValue(); 2065 Actions.push_back(std::move(Ptr)); 2066 return Val; 2067 } 2068 2069 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2070 Instruction *Before) { 2071 Actions.push_back( 2072 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2073 } 2074 2075 TypePromotionTransaction::ConstRestorationPt 2076 TypePromotionTransaction::getRestorationPoint() const { 2077 return !Actions.empty() ? Actions.back().get() : nullptr; 2078 } 2079 2080 void TypePromotionTransaction::commit() { 2081 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2082 ++It) 2083 (*It)->commit(); 2084 Actions.clear(); 2085 } 2086 2087 void TypePromotionTransaction::rollback( 2088 TypePromotionTransaction::ConstRestorationPt Point) { 2089 while (!Actions.empty() && Point != Actions.back().get()) { 2090 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2091 Curr->undo(); 2092 } 2093 } 2094 2095 /// \brief A helper class for matching addressing modes. 2096 /// 2097 /// This encapsulates the logic for matching the target-legal addressing modes. 2098 class AddressingModeMatcher { 2099 SmallVectorImpl<Instruction*> &AddrModeInsts; 2100 const TargetMachine &TM; 2101 const TargetLowering &TLI; 2102 2103 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2104 /// the memory instruction that we're computing this address for. 2105 Type *AccessTy; 2106 unsigned AddrSpace; 2107 Instruction *MemoryInst; 2108 2109 /// AddrMode - This is the addressing mode that we're building up. This is 2110 /// part of the return value of this addressing mode matching stuff. 2111 ExtAddrMode &AddrMode; 2112 2113 /// The instructions inserted by other CodeGenPrepare optimizations. 2114 const SetOfInstrs &InsertedInsts; 2115 /// A map from the instructions to their type before promotion. 2116 InstrToOrigTy &PromotedInsts; 2117 /// The ongoing transaction where every action should be registered. 2118 TypePromotionTransaction &TPT; 2119 2120 /// IgnoreProfitability - This is set to true when we should not do 2121 /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode 2122 /// always returns true. 2123 bool IgnoreProfitability; 2124 2125 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2126 const TargetMachine &TM, Type *AT, unsigned AS, 2127 Instruction *MI, ExtAddrMode &AM, 2128 const SetOfInstrs &InsertedInsts, 2129 InstrToOrigTy &PromotedInsts, 2130 TypePromotionTransaction &TPT) 2131 : AddrModeInsts(AMI), TM(TM), 2132 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2133 ->getTargetLowering()), 2134 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 2135 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT) { 2136 IgnoreProfitability = false; 2137 } 2138 public: 2139 2140 /// Match - Find the maximal addressing mode that a load/store of V can fold, 2141 /// give an access type of AccessTy. This returns a list of involved 2142 /// instructions in AddrModeInsts. 2143 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2144 /// optimizations. 2145 /// \p PromotedInsts maps the instructions to their type before promotion. 2146 /// \p The ongoing transaction where every action should be registered. 2147 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2148 Instruction *MemoryInst, 2149 SmallVectorImpl<Instruction*> &AddrModeInsts, 2150 const TargetMachine &TM, 2151 const SetOfInstrs &InsertedInsts, 2152 InstrToOrigTy &PromotedInsts, 2153 TypePromotionTransaction &TPT) { 2154 ExtAddrMode Result; 2155 2156 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2157 MemoryInst, Result, InsertedInsts, 2158 PromotedInsts, TPT).MatchAddr(V, 0); 2159 (void)Success; assert(Success && "Couldn't select *anything*?"); 2160 return Result; 2161 } 2162 private: 2163 bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2164 bool MatchAddr(Value *V, unsigned Depth); 2165 bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2166 bool *MovedAway = nullptr); 2167 bool IsProfitableToFoldIntoAddressingMode(Instruction *I, 2168 ExtAddrMode &AMBefore, 2169 ExtAddrMode &AMAfter); 2170 bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2171 bool IsPromotionProfitable(unsigned NewCost, unsigned OldCost, 2172 Value *PromotedOperand) const; 2173 }; 2174 2175 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. 2176 /// Return true and update AddrMode if this addr mode is legal for the target, 2177 /// false if not. 2178 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, 2179 unsigned Depth) { 2180 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2181 // mode. Just process that directly. 2182 if (Scale == 1) 2183 return MatchAddr(ScaleReg, Depth); 2184 2185 // If the scale is 0, it takes nothing to add this. 2186 if (Scale == 0) 2187 return true; 2188 2189 // If we already have a scale of this value, we can add to it, otherwise, we 2190 // need an available scale field. 2191 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2192 return false; 2193 2194 ExtAddrMode TestAddrMode = AddrMode; 2195 2196 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2197 // [A+B + A*7] -> [B+A*8]. 2198 TestAddrMode.Scale += Scale; 2199 TestAddrMode.ScaledReg = ScaleReg; 2200 2201 // If the new address isn't legal, bail out. 2202 if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy, AddrSpace)) 2203 return false; 2204 2205 // It was legal, so commit it. 2206 AddrMode = TestAddrMode; 2207 2208 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2209 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2210 // X*Scale + C*Scale to addr mode. 2211 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2212 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2213 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2214 TestAddrMode.ScaledReg = AddLHS; 2215 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2216 2217 // If this addressing mode is legal, commit it and remember that we folded 2218 // this instruction. 2219 if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy, AddrSpace)) { 2220 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2221 AddrMode = TestAddrMode; 2222 return true; 2223 } 2224 } 2225 2226 // Otherwise, not (x+c)*scale, just return what we have. 2227 return true; 2228 } 2229 2230 /// MightBeFoldableInst - This is a little filter, which returns true if an 2231 /// addressing computation involving I might be folded into a load/store 2232 /// accessing it. This doesn't need to be perfect, but needs to accept at least 2233 /// the set of instructions that MatchOperationAddr can. 2234 static bool MightBeFoldableInst(Instruction *I) { 2235 switch (I->getOpcode()) { 2236 case Instruction::BitCast: 2237 case Instruction::AddrSpaceCast: 2238 // Don't touch identity bitcasts. 2239 if (I->getType() == I->getOperand(0)->getType()) 2240 return false; 2241 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2242 case Instruction::PtrToInt: 2243 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2244 return true; 2245 case Instruction::IntToPtr: 2246 // We know the input is intptr_t, so this is foldable. 2247 return true; 2248 case Instruction::Add: 2249 return true; 2250 case Instruction::Mul: 2251 case Instruction::Shl: 2252 // Can only handle X*C and X << C. 2253 return isa<ConstantInt>(I->getOperand(1)); 2254 case Instruction::GetElementPtr: 2255 return true; 2256 default: 2257 return false; 2258 } 2259 } 2260 2261 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2262 /// \note \p Val is assumed to be the product of some type promotion. 2263 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2264 /// to be legal, as the non-promoted value would have had the same state. 2265 static bool isPromotedInstructionLegal(const TargetLowering &TLI, Value *Val) { 2266 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2267 if (!PromotedInst) 2268 return false; 2269 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2270 // If the ISDOpcode is undefined, it was undefined before the promotion. 2271 if (!ISDOpcode) 2272 return true; 2273 // Otherwise, check if the promoted instruction is legal or not. 2274 return TLI.isOperationLegalOrCustom( 2275 ISDOpcode, TLI.getValueType(PromotedInst->getType())); 2276 } 2277 2278 /// \brief Hepler class to perform type promotion. 2279 class TypePromotionHelper { 2280 /// \brief Utility function to check whether or not a sign or zero extension 2281 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2282 /// either using the operands of \p Inst or promoting \p Inst. 2283 /// The type of the extension is defined by \p IsSExt. 2284 /// In other words, check if: 2285 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2286 /// #1 Promotion applies: 2287 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2288 /// #2 Operand reuses: 2289 /// ext opnd1 to ConsideredExtType. 2290 /// \p PromotedInsts maps the instructions to their type before promotion. 2291 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2292 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2293 2294 /// \brief Utility function to determine if \p OpIdx should be promoted when 2295 /// promoting \p Inst. 2296 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2297 if (isa<SelectInst>(Inst) && OpIdx == 0) 2298 return false; 2299 return true; 2300 } 2301 2302 /// \brief Utility function to promote the operand of \p Ext when this 2303 /// operand is a promotable trunc or sext or zext. 2304 /// \p PromotedInsts maps the instructions to their type before promotion. 2305 /// \p CreatedInstsCost[out] contains the cost of all instructions 2306 /// created to promote the operand of Ext. 2307 /// Newly added extensions are inserted in \p Exts. 2308 /// Newly added truncates are inserted in \p Truncs. 2309 /// Should never be called directly. 2310 /// \return The promoted value which is used instead of Ext. 2311 static Value *promoteOperandForTruncAndAnyExt( 2312 Instruction *Ext, TypePromotionTransaction &TPT, 2313 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2314 SmallVectorImpl<Instruction *> *Exts, 2315 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2316 2317 /// \brief Utility function to promote the operand of \p Ext when this 2318 /// operand is promotable and is not a supported trunc or sext. 2319 /// \p PromotedInsts maps the instructions to their type before promotion. 2320 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2321 /// created to promote the operand of Ext. 2322 /// Newly added extensions are inserted in \p Exts. 2323 /// Newly added truncates are inserted in \p Truncs. 2324 /// Should never be called directly. 2325 /// \return The promoted value which is used instead of Ext. 2326 static Value *promoteOperandForOther(Instruction *Ext, 2327 TypePromotionTransaction &TPT, 2328 InstrToOrigTy &PromotedInsts, 2329 unsigned &CreatedInstsCost, 2330 SmallVectorImpl<Instruction *> *Exts, 2331 SmallVectorImpl<Instruction *> *Truncs, 2332 const TargetLowering &TLI, bool IsSExt); 2333 2334 /// \see promoteOperandForOther. 2335 static Value *signExtendOperandForOther( 2336 Instruction *Ext, TypePromotionTransaction &TPT, 2337 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2338 SmallVectorImpl<Instruction *> *Exts, 2339 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2340 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2341 Exts, Truncs, TLI, true); 2342 } 2343 2344 /// \see promoteOperandForOther. 2345 static Value *zeroExtendOperandForOther( 2346 Instruction *Ext, TypePromotionTransaction &TPT, 2347 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2348 SmallVectorImpl<Instruction *> *Exts, 2349 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2350 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2351 Exts, Truncs, TLI, false); 2352 } 2353 2354 public: 2355 /// Type for the utility function that promotes the operand of Ext. 2356 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2357 InstrToOrigTy &PromotedInsts, 2358 unsigned &CreatedInstsCost, 2359 SmallVectorImpl<Instruction *> *Exts, 2360 SmallVectorImpl<Instruction *> *Truncs, 2361 const TargetLowering &TLI); 2362 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2363 /// action to promote the operand of \p Ext instead of using Ext. 2364 /// \return NULL if no promotable action is possible with the current 2365 /// sign extension. 2366 /// \p InsertedInsts keeps track of all the instructions inserted by the 2367 /// other CodeGenPrepare optimizations. This information is important 2368 /// because we do not want to promote these instructions as CodeGenPrepare 2369 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2370 /// \p PromotedInsts maps the instructions to their type before promotion. 2371 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2372 const TargetLowering &TLI, 2373 const InstrToOrigTy &PromotedInsts); 2374 }; 2375 2376 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2377 Type *ConsideredExtType, 2378 const InstrToOrigTy &PromotedInsts, 2379 bool IsSExt) { 2380 // The promotion helper does not know how to deal with vector types yet. 2381 // To be able to fix that, we would need to fix the places where we 2382 // statically extend, e.g., constants and such. 2383 if (Inst->getType()->isVectorTy()) 2384 return false; 2385 2386 // We can always get through zext. 2387 if (isa<ZExtInst>(Inst)) 2388 return true; 2389 2390 // sext(sext) is ok too. 2391 if (IsSExt && isa<SExtInst>(Inst)) 2392 return true; 2393 2394 // We can get through binary operator, if it is legal. In other words, the 2395 // binary operator must have a nuw or nsw flag. 2396 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2397 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2398 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2399 (IsSExt && BinOp->hasNoSignedWrap()))) 2400 return true; 2401 2402 // Check if we can do the following simplification. 2403 // ext(trunc(opnd)) --> ext(opnd) 2404 if (!isa<TruncInst>(Inst)) 2405 return false; 2406 2407 Value *OpndVal = Inst->getOperand(0); 2408 // Check if we can use this operand in the extension. 2409 // If the type is larger than the result type of the extension, 2410 // we cannot. 2411 if (!OpndVal->getType()->isIntegerTy() || 2412 OpndVal->getType()->getIntegerBitWidth() > 2413 ConsideredExtType->getIntegerBitWidth()) 2414 return false; 2415 2416 // If the operand of the truncate is not an instruction, we will not have 2417 // any information on the dropped bits. 2418 // (Actually we could for constant but it is not worth the extra logic). 2419 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2420 if (!Opnd) 2421 return false; 2422 2423 // Check if the source of the type is narrow enough. 2424 // I.e., check that trunc just drops extended bits of the same kind of 2425 // the extension. 2426 // #1 get the type of the operand and check the kind of the extended bits. 2427 const Type *OpndType; 2428 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2429 if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt) 2430 OpndType = It->second.Ty; 2431 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2432 OpndType = Opnd->getOperand(0)->getType(); 2433 else 2434 return false; 2435 2436 // #2 check that the truncate just drop extended bits. 2437 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 2438 return true; 2439 2440 return false; 2441 } 2442 2443 TypePromotionHelper::Action TypePromotionHelper::getAction( 2444 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2445 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2446 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2447 "Unexpected instruction type"); 2448 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2449 Type *ExtTy = Ext->getType(); 2450 bool IsSExt = isa<SExtInst>(Ext); 2451 // If the operand of the extension is not an instruction, we cannot 2452 // get through. 2453 // If it, check we can get through. 2454 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2455 return nullptr; 2456 2457 // Do not promote if the operand has been added by codegenprepare. 2458 // Otherwise, it means we are undoing an optimization that is likely to be 2459 // redone, thus causing potential infinite loop. 2460 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2461 return nullptr; 2462 2463 // SExt or Trunc instructions. 2464 // Return the related handler. 2465 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2466 isa<ZExtInst>(ExtOpnd)) 2467 return promoteOperandForTruncAndAnyExt; 2468 2469 // Regular instruction. 2470 // Abort early if we will have to insert non-free instructions. 2471 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2472 return nullptr; 2473 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2474 } 2475 2476 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2477 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2478 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2479 SmallVectorImpl<Instruction *> *Exts, 2480 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2481 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2482 // get through it and this method should not be called. 2483 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2484 Value *ExtVal = SExt; 2485 bool HasMergedNonFreeExt = false; 2486 if (isa<ZExtInst>(SExtOpnd)) { 2487 // Replace s|zext(zext(opnd)) 2488 // => zext(opnd). 2489 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2490 Value *ZExt = 2491 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2492 TPT.replaceAllUsesWith(SExt, ZExt); 2493 TPT.eraseInstruction(SExt); 2494 ExtVal = ZExt; 2495 } else { 2496 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2497 // => z|sext(opnd). 2498 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2499 } 2500 CreatedInstsCost = 0; 2501 2502 // Remove dead code. 2503 if (SExtOpnd->use_empty()) 2504 TPT.eraseInstruction(SExtOpnd); 2505 2506 // Check if the extension is still needed. 2507 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2508 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2509 if (ExtInst) { 2510 if (Exts) 2511 Exts->push_back(ExtInst); 2512 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2513 } 2514 return ExtVal; 2515 } 2516 2517 // At this point we have: ext ty opnd to ty. 2518 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2519 Value *NextVal = ExtInst->getOperand(0); 2520 TPT.eraseInstruction(ExtInst, NextVal); 2521 return NextVal; 2522 } 2523 2524 Value *TypePromotionHelper::promoteOperandForOther( 2525 Instruction *Ext, TypePromotionTransaction &TPT, 2526 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2527 SmallVectorImpl<Instruction *> *Exts, 2528 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 2529 bool IsSExt) { 2530 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2531 // get through it and this method should not be called. 2532 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2533 CreatedInstsCost = 0; 2534 if (!ExtOpnd->hasOneUse()) { 2535 // ExtOpnd will be promoted. 2536 // All its uses, but Ext, will need to use a truncated value of the 2537 // promoted version. 2538 // Create the truncate now. 2539 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2540 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2541 ITrunc->removeFromParent(); 2542 // Insert it just after the definition. 2543 ITrunc->insertAfter(ExtOpnd); 2544 if (Truncs) 2545 Truncs->push_back(ITrunc); 2546 } 2547 2548 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2549 // Restore the operand of Ext (which has been replace by the previous call 2550 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2551 TPT.setOperand(Ext, 0, ExtOpnd); 2552 } 2553 2554 // Get through the Instruction: 2555 // 1. Update its type. 2556 // 2. Replace the uses of Ext by Inst. 2557 // 3. Extend each operand that needs to be extended. 2558 2559 // Remember the original type of the instruction before promotion. 2560 // This is useful to know that the high bits are sign extended bits. 2561 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2562 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2563 // Step #1. 2564 TPT.mutateType(ExtOpnd, Ext->getType()); 2565 // Step #2. 2566 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2567 // Step #3. 2568 Instruction *ExtForOpnd = Ext; 2569 2570 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2571 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2572 ++OpIdx) { 2573 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2574 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2575 !shouldExtOperand(ExtOpnd, OpIdx)) { 2576 DEBUG(dbgs() << "No need to propagate\n"); 2577 continue; 2578 } 2579 // Check if we can statically extend the operand. 2580 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2581 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2582 DEBUG(dbgs() << "Statically extend\n"); 2583 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2584 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2585 : Cst->getValue().zext(BitWidth); 2586 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2587 continue; 2588 } 2589 // UndefValue are typed, so we have to statically sign extend them. 2590 if (isa<UndefValue>(Opnd)) { 2591 DEBUG(dbgs() << "Statically extend\n"); 2592 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2593 continue; 2594 } 2595 2596 // Otherwise we have to explicity sign extend the operand. 2597 // Check if Ext was reused to extend an operand. 2598 if (!ExtForOpnd) { 2599 // If yes, create a new one. 2600 DEBUG(dbgs() << "More operands to ext\n"); 2601 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2602 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2603 if (!isa<Instruction>(ValForExtOpnd)) { 2604 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2605 continue; 2606 } 2607 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2608 } 2609 if (Exts) 2610 Exts->push_back(ExtForOpnd); 2611 TPT.setOperand(ExtForOpnd, 0, Opnd); 2612 2613 // Move the sign extension before the insertion point. 2614 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2615 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2616 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 2617 // If more sext are required, new instructions will have to be created. 2618 ExtForOpnd = nullptr; 2619 } 2620 if (ExtForOpnd == Ext) { 2621 DEBUG(dbgs() << "Extension is useless now\n"); 2622 TPT.eraseInstruction(Ext); 2623 } 2624 return ExtOpnd; 2625 } 2626 2627 /// IsPromotionProfitable - Check whether or not promoting an instruction 2628 /// to a wider type was profitable. 2629 /// \p NewCost gives the cost of extension instructions created by the 2630 /// promotion. 2631 /// \p OldCost gives the cost of extension instructions before the promotion 2632 /// plus the number of instructions that have been 2633 /// matched in the addressing mode the promotion. 2634 /// \p PromotedOperand is the value that has been promoted. 2635 /// \return True if the promotion is profitable, false otherwise. 2636 bool AddressingModeMatcher::IsPromotionProfitable( 2637 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 2638 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 2639 // The cost of the new extensions is greater than the cost of the 2640 // old extension plus what we folded. 2641 // This is not profitable. 2642 if (NewCost > OldCost) 2643 return false; 2644 if (NewCost < OldCost) 2645 return true; 2646 // The promotion is neutral but it may help folding the sign extension in 2647 // loads for instance. 2648 // Check that we did not create an illegal instruction. 2649 return isPromotedInstructionLegal(TLI, PromotedOperand); 2650 } 2651 2652 /// MatchOperationAddr - Given an instruction or constant expr, see if we can 2653 /// fold the operation into the addressing mode. If so, update the addressing 2654 /// mode and return true, otherwise return false without modifying AddrMode. 2655 /// If \p MovedAway is not NULL, it contains the information of whether or 2656 /// not AddrInst has to be folded into the addressing mode on success. 2657 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2658 /// because it has been moved away. 2659 /// Thus AddrInst must not be added in the matched instructions. 2660 /// This state can happen when AddrInst is a sext, since it may be moved away. 2661 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2662 /// not be referenced anymore. 2663 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, 2664 unsigned Depth, 2665 bool *MovedAway) { 2666 // Avoid exponential behavior on extremely deep expression trees. 2667 if (Depth >= 5) return false; 2668 2669 // By default, all matched instructions stay in place. 2670 if (MovedAway) 2671 *MovedAway = false; 2672 2673 switch (Opcode) { 2674 case Instruction::PtrToInt: 2675 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2676 return MatchAddr(AddrInst->getOperand(0), Depth); 2677 case Instruction::IntToPtr: 2678 // This inttoptr is a no-op if the integer type is pointer sized. 2679 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == 2680 TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace())) 2681 return MatchAddr(AddrInst->getOperand(0), Depth); 2682 return false; 2683 case Instruction::BitCast: 2684 // BitCast is always a noop, and we can handle it as long as it is 2685 // int->int or pointer->pointer (we don't want int<->fp or something). 2686 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 2687 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 2688 // Don't touch identity bitcasts. These were probably put here by LSR, 2689 // and we don't want to mess around with them. Assume it knows what it 2690 // is doing. 2691 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2692 return MatchAddr(AddrInst->getOperand(0), Depth); 2693 return false; 2694 case Instruction::AddrSpaceCast: { 2695 unsigned SrcAS 2696 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 2697 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 2698 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2699 return MatchAddr(AddrInst->getOperand(0), Depth); 2700 return false; 2701 } 2702 case Instruction::Add: { 2703 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2704 ExtAddrMode BackupAddrMode = AddrMode; 2705 unsigned OldSize = AddrModeInsts.size(); 2706 // Start a transaction at this point. 2707 // The LHS may match but not the RHS. 2708 // Therefore, we need a higher level restoration point to undo partially 2709 // matched operation. 2710 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2711 TPT.getRestorationPoint(); 2712 2713 if (MatchAddr(AddrInst->getOperand(1), Depth+1) && 2714 MatchAddr(AddrInst->getOperand(0), Depth+1)) 2715 return true; 2716 2717 // Restore the old addr mode info. 2718 AddrMode = BackupAddrMode; 2719 AddrModeInsts.resize(OldSize); 2720 TPT.rollback(LastKnownGood); 2721 2722 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2723 if (MatchAddr(AddrInst->getOperand(0), Depth+1) && 2724 MatchAddr(AddrInst->getOperand(1), Depth+1)) 2725 return true; 2726 2727 // Otherwise we definitely can't merge the ADD in. 2728 AddrMode = BackupAddrMode; 2729 AddrModeInsts.resize(OldSize); 2730 TPT.rollback(LastKnownGood); 2731 break; 2732 } 2733 //case Instruction::Or: 2734 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2735 //break; 2736 case Instruction::Mul: 2737 case Instruction::Shl: { 2738 // Can only handle X*C and X << C. 2739 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2740 if (!RHS) 2741 return false; 2742 int64_t Scale = RHS->getSExtValue(); 2743 if (Opcode == Instruction::Shl) 2744 Scale = 1LL << Scale; 2745 2746 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2747 } 2748 case Instruction::GetElementPtr: { 2749 // Scan the GEP. We check it if it contains constant offsets and at most 2750 // one variable offset. 2751 int VariableOperand = -1; 2752 unsigned VariableScale = 0; 2753 2754 int64_t ConstantOffset = 0; 2755 const DataLayout *TD = TLI.getDataLayout(); 2756 gep_type_iterator GTI = gep_type_begin(AddrInst); 2757 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2758 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2759 const StructLayout *SL = TD->getStructLayout(STy); 2760 unsigned Idx = 2761 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2762 ConstantOffset += SL->getElementOffset(Idx); 2763 } else { 2764 uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType()); 2765 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2766 ConstantOffset += CI->getSExtValue()*TypeSize; 2767 } else if (TypeSize) { // Scales of zero don't do anything. 2768 // We only allow one variable index at the moment. 2769 if (VariableOperand != -1) 2770 return false; 2771 2772 // Remember the variable index. 2773 VariableOperand = i; 2774 VariableScale = TypeSize; 2775 } 2776 } 2777 } 2778 2779 // A common case is for the GEP to only do a constant offset. In this case, 2780 // just add it to the disp field and check validity. 2781 if (VariableOperand == -1) { 2782 AddrMode.BaseOffs += ConstantOffset; 2783 if (ConstantOffset == 0 || 2784 TLI.isLegalAddressingMode(AddrMode, AccessTy, AddrSpace)) { 2785 // Check to see if we can fold the base pointer in too. 2786 if (MatchAddr(AddrInst->getOperand(0), Depth+1)) 2787 return true; 2788 } 2789 AddrMode.BaseOffs -= ConstantOffset; 2790 return false; 2791 } 2792 2793 // Save the valid addressing mode in case we can't match. 2794 ExtAddrMode BackupAddrMode = AddrMode; 2795 unsigned OldSize = AddrModeInsts.size(); 2796 2797 // See if the scale and offset amount is valid for this target. 2798 AddrMode.BaseOffs += ConstantOffset; 2799 2800 // Match the base operand of the GEP. 2801 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { 2802 // If it couldn't be matched, just stuff the value in a register. 2803 if (AddrMode.HasBaseReg) { 2804 AddrMode = BackupAddrMode; 2805 AddrModeInsts.resize(OldSize); 2806 return false; 2807 } 2808 AddrMode.HasBaseReg = true; 2809 AddrMode.BaseReg = AddrInst->getOperand(0); 2810 } 2811 2812 // Match the remaining variable portion of the GEP. 2813 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2814 Depth)) { 2815 // If it couldn't be matched, try stuffing the base into a register 2816 // instead of matching it, and retrying the match of the scale. 2817 AddrMode = BackupAddrMode; 2818 AddrModeInsts.resize(OldSize); 2819 if (AddrMode.HasBaseReg) 2820 return false; 2821 AddrMode.HasBaseReg = true; 2822 AddrMode.BaseReg = AddrInst->getOperand(0); 2823 AddrMode.BaseOffs += ConstantOffset; 2824 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), 2825 VariableScale, Depth)) { 2826 // If even that didn't work, bail. 2827 AddrMode = BackupAddrMode; 2828 AddrModeInsts.resize(OldSize); 2829 return false; 2830 } 2831 } 2832 2833 return true; 2834 } 2835 case Instruction::SExt: 2836 case Instruction::ZExt: { 2837 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 2838 if (!Ext) 2839 return false; 2840 2841 // Try to move this ext out of the way of the addressing mode. 2842 // Ask for a method for doing so. 2843 TypePromotionHelper::Action TPH = 2844 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 2845 if (!TPH) 2846 return false; 2847 2848 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2849 TPT.getRestorationPoint(); 2850 unsigned CreatedInstsCost = 0; 2851 unsigned ExtCost = !TLI.isExtFree(Ext); 2852 Value *PromotedOperand = 2853 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 2854 // SExt has been moved away. 2855 // Thus either it will be rematched later in the recursive calls or it is 2856 // gone. Anyway, we must not fold it into the addressing mode at this point. 2857 // E.g., 2858 // op = add opnd, 1 2859 // idx = ext op 2860 // addr = gep base, idx 2861 // is now: 2862 // promotedOpnd = ext opnd <- no match here 2863 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2864 // addr = gep base, op <- match 2865 if (MovedAway) 2866 *MovedAway = true; 2867 2868 assert(PromotedOperand && 2869 "TypePromotionHelper should have filtered out those cases"); 2870 2871 ExtAddrMode BackupAddrMode = AddrMode; 2872 unsigned OldSize = AddrModeInsts.size(); 2873 2874 if (!MatchAddr(PromotedOperand, Depth) || 2875 // The total of the new cost is equals to the cost of the created 2876 // instructions. 2877 // The total of the old cost is equals to the cost of the extension plus 2878 // what we have saved in the addressing mode. 2879 !IsPromotionProfitable(CreatedInstsCost, 2880 ExtCost + (AddrModeInsts.size() - OldSize), 2881 PromotedOperand)) { 2882 AddrMode = BackupAddrMode; 2883 AddrModeInsts.resize(OldSize); 2884 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2885 TPT.rollback(LastKnownGood); 2886 return false; 2887 } 2888 return true; 2889 } 2890 } 2891 return false; 2892 } 2893 2894 /// MatchAddr - If we can, try to add the value of 'Addr' into the current 2895 /// addressing mode. If Addr can't be added to AddrMode this returns false and 2896 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type 2897 /// or intptr_t for the target. 2898 /// 2899 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { 2900 // Start a transaction at this point that we will rollback if the matching 2901 // fails. 2902 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2903 TPT.getRestorationPoint(); 2904 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2905 // Fold in immediates if legal for the target. 2906 AddrMode.BaseOffs += CI->getSExtValue(); 2907 if (TLI.isLegalAddressingMode(AddrMode, AccessTy, AddrSpace)) 2908 return true; 2909 AddrMode.BaseOffs -= CI->getSExtValue(); 2910 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2911 // If this is a global variable, try to fold it into the addressing mode. 2912 if (!AddrMode.BaseGV) { 2913 AddrMode.BaseGV = GV; 2914 if (TLI.isLegalAddressingMode(AddrMode, AccessTy, AddrSpace)) 2915 return true; 2916 AddrMode.BaseGV = nullptr; 2917 } 2918 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2919 ExtAddrMode BackupAddrMode = AddrMode; 2920 unsigned OldSize = AddrModeInsts.size(); 2921 2922 // Check to see if it is possible to fold this operation. 2923 bool MovedAway = false; 2924 if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2925 // This instruction may have been move away. If so, there is nothing 2926 // to check here. 2927 if (MovedAway) 2928 return true; 2929 // Okay, it's possible to fold this. Check to see if it is actually 2930 // *profitable* to do so. We use a simple cost model to avoid increasing 2931 // register pressure too much. 2932 if (I->hasOneUse() || 2933 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 2934 AddrModeInsts.push_back(I); 2935 return true; 2936 } 2937 2938 // It isn't profitable to do this, roll back. 2939 //cerr << "NOT FOLDING: " << *I; 2940 AddrMode = BackupAddrMode; 2941 AddrModeInsts.resize(OldSize); 2942 TPT.rollback(LastKnownGood); 2943 } 2944 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 2945 if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) 2946 return true; 2947 TPT.rollback(LastKnownGood); 2948 } else if (isa<ConstantPointerNull>(Addr)) { 2949 // Null pointer gets folded without affecting the addressing mode. 2950 return true; 2951 } 2952 2953 // Worse case, the target should support [reg] addressing modes. :) 2954 if (!AddrMode.HasBaseReg) { 2955 AddrMode.HasBaseReg = true; 2956 AddrMode.BaseReg = Addr; 2957 // Still check for legality in case the target supports [imm] but not [i+r]. 2958 if (TLI.isLegalAddressingMode(AddrMode, AccessTy, AddrSpace)) 2959 return true; 2960 AddrMode.HasBaseReg = false; 2961 AddrMode.BaseReg = nullptr; 2962 } 2963 2964 // If the base register is already taken, see if we can do [r+r]. 2965 if (AddrMode.Scale == 0) { 2966 AddrMode.Scale = 1; 2967 AddrMode.ScaledReg = Addr; 2968 if (TLI.isLegalAddressingMode(AddrMode, AccessTy, AddrSpace)) 2969 return true; 2970 AddrMode.Scale = 0; 2971 AddrMode.ScaledReg = nullptr; 2972 } 2973 // Couldn't match. 2974 TPT.rollback(LastKnownGood); 2975 return false; 2976 } 2977 2978 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified 2979 /// inline asm call are due to memory operands. If so, return true, otherwise 2980 /// return false. 2981 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 2982 const TargetMachine &TM) { 2983 const Function *F = CI->getParent()->getParent(); 2984 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 2985 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 2986 TargetLowering::AsmOperandInfoVector TargetConstraints = 2987 TLI->ParseConstraints(TRI, ImmutableCallSite(CI)); 2988 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2989 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2990 2991 // Compute the constraint code and ConstraintType to use. 2992 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 2993 2994 // If this asm operand is our Value*, and if it isn't an indirect memory 2995 // operand, we can't fold it! 2996 if (OpInfo.CallOperandVal == OpVal && 2997 (OpInfo.ConstraintType != TargetLowering::C_Memory || 2998 !OpInfo.isIndirect)) 2999 return false; 3000 } 3001 3002 return true; 3003 } 3004 3005 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a 3006 /// memory use. If we find an obviously non-foldable instruction, return true. 3007 /// Add the ultimately found memory instructions to MemoryUses. 3008 static bool FindAllMemoryUses( 3009 Instruction *I, 3010 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3011 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3012 // If we already considered this instruction, we're done. 3013 if (!ConsideredInsts.insert(I).second) 3014 return false; 3015 3016 // If this is an obviously unfoldable instruction, bail out. 3017 if (!MightBeFoldableInst(I)) 3018 return true; 3019 3020 // Loop over all the uses, recursively processing them. 3021 for (Use &U : I->uses()) { 3022 Instruction *UserI = cast<Instruction>(U.getUser()); 3023 3024 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3025 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3026 continue; 3027 } 3028 3029 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3030 unsigned opNo = U.getOperandNo(); 3031 if (opNo == 0) return true; // Storing addr, not into addr. 3032 MemoryUses.push_back(std::make_pair(SI, opNo)); 3033 continue; 3034 } 3035 3036 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3037 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3038 if (!IA) return true; 3039 3040 // If this is a memory operand, we're cool, otherwise bail out. 3041 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3042 return true; 3043 continue; 3044 } 3045 3046 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3047 return true; 3048 } 3049 3050 return false; 3051 } 3052 3053 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at 3054 /// the use site that we're folding it into. If so, there is no cost to 3055 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values 3056 /// that we know are live at the instruction already. 3057 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3058 Value *KnownLive2) { 3059 // If Val is either of the known-live values, we know it is live! 3060 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3061 return true; 3062 3063 // All values other than instructions and arguments (e.g. constants) are live. 3064 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3065 3066 // If Val is a constant sized alloca in the entry block, it is live, this is 3067 // true because it is just a reference to the stack/frame pointer, which is 3068 // live for the whole function. 3069 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3070 if (AI->isStaticAlloca()) 3071 return true; 3072 3073 // Check to see if this value is already used in the memory instruction's 3074 // block. If so, it's already live into the block at the very least, so we 3075 // can reasonably fold it. 3076 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3077 } 3078 3079 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing 3080 /// mode of the machine to fold the specified instruction into a load or store 3081 /// that ultimately uses it. However, the specified instruction has multiple 3082 /// uses. Given this, it may actually increase register pressure to fold it 3083 /// into the load. For example, consider this code: 3084 /// 3085 /// X = ... 3086 /// Y = X+1 3087 /// use(Y) -> nonload/store 3088 /// Z = Y+1 3089 /// load Z 3090 /// 3091 /// In this case, Y has multiple uses, and can be folded into the load of Z 3092 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3093 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3094 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3095 /// number of computations either. 3096 /// 3097 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3098 /// X was live across 'load Z' for other reasons, we actually *would* want to 3099 /// fold the addressing mode in the Z case. This would make Y die earlier. 3100 bool AddressingModeMatcher:: 3101 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3102 ExtAddrMode &AMAfter) { 3103 if (IgnoreProfitability) return true; 3104 3105 // AMBefore is the addressing mode before this instruction was folded into it, 3106 // and AMAfter is the addressing mode after the instruction was folded. Get 3107 // the set of registers referenced by AMAfter and subtract out those 3108 // referenced by AMBefore: this is the set of values which folding in this 3109 // address extends the lifetime of. 3110 // 3111 // Note that there are only two potential values being referenced here, 3112 // BaseReg and ScaleReg (global addresses are always available, as are any 3113 // folded immediates). 3114 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3115 3116 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3117 // lifetime wasn't extended by adding this instruction. 3118 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3119 BaseReg = nullptr; 3120 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3121 ScaledReg = nullptr; 3122 3123 // If folding this instruction (and it's subexprs) didn't extend any live 3124 // ranges, we're ok with it. 3125 if (!BaseReg && !ScaledReg) 3126 return true; 3127 3128 // If all uses of this instruction are ultimately load/store/inlineasm's, 3129 // check to see if their addressing modes will include this instruction. If 3130 // so, we can fold it into all uses, so it doesn't matter if it has multiple 3131 // uses. 3132 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3133 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3134 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3135 return false; // Has a non-memory, non-foldable use! 3136 3137 // Now that we know that all uses of this instruction are part of a chain of 3138 // computation involving only operations that could theoretically be folded 3139 // into a memory use, loop over each of these uses and see if they could 3140 // *actually* fold the instruction. 3141 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3142 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3143 Instruction *User = MemoryUses[i].first; 3144 unsigned OpNo = MemoryUses[i].second; 3145 3146 // Get the access type of this use. If the use isn't a pointer, we don't 3147 // know what it accesses. 3148 Value *Address = User->getOperand(OpNo); 3149 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3150 if (!AddrTy) 3151 return false; 3152 Type *AddressAccessTy = AddrTy->getElementType(); 3153 unsigned AS = AddrTy->getAddressSpace(); 3154 3155 // Do a match against the root of this address, ignoring profitability. This 3156 // will tell us if the addressing mode for the memory operation will 3157 // *actually* cover the shared instruction. 3158 ExtAddrMode Result; 3159 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3160 TPT.getRestorationPoint(); 3161 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3162 MemoryInst, Result, InsertedInsts, 3163 PromotedInsts, TPT); 3164 Matcher.IgnoreProfitability = true; 3165 bool Success = Matcher.MatchAddr(Address, 0); 3166 (void)Success; assert(Success && "Couldn't select *anything*?"); 3167 3168 // The match was to check the profitability, the changes made are not 3169 // part of the original matcher. Therefore, they should be dropped 3170 // otherwise the original matcher will not present the right state. 3171 TPT.rollback(LastKnownGood); 3172 3173 // If the match didn't cover I, then it won't be shared by it. 3174 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3175 I) == MatchedAddrModeInsts.end()) 3176 return false; 3177 3178 MatchedAddrModeInsts.clear(); 3179 } 3180 3181 return true; 3182 } 3183 3184 } // end anonymous namespace 3185 3186 /// IsNonLocalValue - Return true if the specified values are defined in a 3187 /// different basic block than BB. 3188 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3189 if (Instruction *I = dyn_cast<Instruction>(V)) 3190 return I->getParent() != BB; 3191 return false; 3192 } 3193 3194 /// OptimizeMemoryInst - Load and Store Instructions often have 3195 /// addressing modes that can do significant amounts of computation. As such, 3196 /// instruction selection will try to get the load or store to do as much 3197 /// computation as possible for the program. The problem is that isel can only 3198 /// see within a single block. As such, we sink as much legal addressing mode 3199 /// stuff into the block as possible. 3200 /// 3201 /// This method is used to optimize both load/store and inline asms with memory 3202 /// operands. 3203 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3204 Type *AccessTy, unsigned AddrSpace) { 3205 Value *Repl = Addr; 3206 3207 // Try to collapse single-value PHI nodes. This is necessary to undo 3208 // unprofitable PRE transformations. 3209 SmallVector<Value*, 8> worklist; 3210 SmallPtrSet<Value*, 16> Visited; 3211 worklist.push_back(Addr); 3212 3213 // Use a worklist to iteratively look through PHI nodes, and ensure that 3214 // the addressing mode obtained from the non-PHI roots of the graph 3215 // are equivalent. 3216 Value *Consensus = nullptr; 3217 unsigned NumUsesConsensus = 0; 3218 bool IsNumUsesConsensusValid = false; 3219 SmallVector<Instruction*, 16> AddrModeInsts; 3220 ExtAddrMode AddrMode; 3221 TypePromotionTransaction TPT; 3222 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3223 TPT.getRestorationPoint(); 3224 while (!worklist.empty()) { 3225 Value *V = worklist.back(); 3226 worklist.pop_back(); 3227 3228 // Break use-def graph loops. 3229 if (!Visited.insert(V).second) { 3230 Consensus = nullptr; 3231 break; 3232 } 3233 3234 // For a PHI node, push all of its incoming values. 3235 if (PHINode *P = dyn_cast<PHINode>(V)) { 3236 for (Value *IncValue : P->incoming_values()) 3237 worklist.push_back(IncValue); 3238 continue; 3239 } 3240 3241 // For non-PHIs, determine the addressing mode being computed. 3242 SmallVector<Instruction*, 16> NewAddrModeInsts; 3243 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3244 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3245 InsertedInsts, PromotedInsts, TPT); 3246 3247 // This check is broken into two cases with very similar code to avoid using 3248 // getNumUses() as much as possible. Some values have a lot of uses, so 3249 // calling getNumUses() unconditionally caused a significant compile-time 3250 // regression. 3251 if (!Consensus) { 3252 Consensus = V; 3253 AddrMode = NewAddrMode; 3254 AddrModeInsts = NewAddrModeInsts; 3255 continue; 3256 } else if (NewAddrMode == AddrMode) { 3257 if (!IsNumUsesConsensusValid) { 3258 NumUsesConsensus = Consensus->getNumUses(); 3259 IsNumUsesConsensusValid = true; 3260 } 3261 3262 // Ensure that the obtained addressing mode is equivalent to that obtained 3263 // for all other roots of the PHI traversal. Also, when choosing one 3264 // such root as representative, select the one with the most uses in order 3265 // to keep the cost modeling heuristics in AddressingModeMatcher 3266 // applicable. 3267 unsigned NumUses = V->getNumUses(); 3268 if (NumUses > NumUsesConsensus) { 3269 Consensus = V; 3270 NumUsesConsensus = NumUses; 3271 AddrModeInsts = NewAddrModeInsts; 3272 } 3273 continue; 3274 } 3275 3276 Consensus = nullptr; 3277 break; 3278 } 3279 3280 // If the addressing mode couldn't be determined, or if multiple different 3281 // ones were determined, bail out now. 3282 if (!Consensus) { 3283 TPT.rollback(LastKnownGood); 3284 return false; 3285 } 3286 TPT.commit(); 3287 3288 // Check to see if any of the instructions supersumed by this addr mode are 3289 // non-local to I's BB. 3290 bool AnyNonLocal = false; 3291 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3292 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3293 AnyNonLocal = true; 3294 break; 3295 } 3296 } 3297 3298 // If all the instructions matched are already in this BB, don't do anything. 3299 if (!AnyNonLocal) { 3300 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3301 return false; 3302 } 3303 3304 // Insert this computation right after this user. Since our caller is 3305 // scanning from the top of the BB to the bottom, reuse of the expr are 3306 // guaranteed to happen later. 3307 IRBuilder<> Builder(MemoryInst); 3308 3309 // Now that we determined the addressing expression we want to use and know 3310 // that we have to sink it into this block. Check to see if we have already 3311 // done this for some other load/store instr in this block. If so, reuse the 3312 // computation. 3313 Value *&SunkAddr = SunkAddrs[Addr]; 3314 if (SunkAddr) { 3315 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3316 << *MemoryInst << "\n"); 3317 if (SunkAddr->getType() != Addr->getType()) 3318 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3319 } else if (AddrSinkUsingGEPs || 3320 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3321 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3322 ->useAA())) { 3323 // By default, we use the GEP-based method when AA is used later. This 3324 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3325 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3326 << *MemoryInst << "\n"); 3327 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 3328 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3329 3330 // First, find the pointer. 3331 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3332 ResultPtr = AddrMode.BaseReg; 3333 AddrMode.BaseReg = nullptr; 3334 } 3335 3336 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3337 // We can't add more than one pointer together, nor can we scale a 3338 // pointer (both of which seem meaningless). 3339 if (ResultPtr || AddrMode.Scale != 1) 3340 return false; 3341 3342 ResultPtr = AddrMode.ScaledReg; 3343 AddrMode.Scale = 0; 3344 } 3345 3346 if (AddrMode.BaseGV) { 3347 if (ResultPtr) 3348 return false; 3349 3350 ResultPtr = AddrMode.BaseGV; 3351 } 3352 3353 // If the real base value actually came from an inttoptr, then the matcher 3354 // will look through it and provide only the integer value. In that case, 3355 // use it here. 3356 if (!ResultPtr && AddrMode.BaseReg) { 3357 ResultPtr = 3358 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3359 AddrMode.BaseReg = nullptr; 3360 } else if (!ResultPtr && AddrMode.Scale == 1) { 3361 ResultPtr = 3362 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3363 AddrMode.Scale = 0; 3364 } 3365 3366 if (!ResultPtr && 3367 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3368 SunkAddr = Constant::getNullValue(Addr->getType()); 3369 } else if (!ResultPtr) { 3370 return false; 3371 } else { 3372 Type *I8PtrTy = 3373 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3374 Type *I8Ty = Builder.getInt8Ty(); 3375 3376 // Start with the base register. Do this first so that subsequent address 3377 // matching finds it last, which will prevent it from trying to match it 3378 // as the scaled value in case it happens to be a mul. That would be 3379 // problematic if we've sunk a different mul for the scale, because then 3380 // we'd end up sinking both muls. 3381 if (AddrMode.BaseReg) { 3382 Value *V = AddrMode.BaseReg; 3383 if (V->getType() != IntPtrTy) 3384 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3385 3386 ResultIndex = V; 3387 } 3388 3389 // Add the scale value. 3390 if (AddrMode.Scale) { 3391 Value *V = AddrMode.ScaledReg; 3392 if (V->getType() == IntPtrTy) { 3393 // done. 3394 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3395 cast<IntegerType>(V->getType())->getBitWidth()) { 3396 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3397 } else { 3398 // It is only safe to sign extend the BaseReg if we know that the math 3399 // required to create it did not overflow before we extend it. Since 3400 // the original IR value was tossed in favor of a constant back when 3401 // the AddrMode was created we need to bail out gracefully if widths 3402 // do not match instead of extending it. 3403 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3404 if (I && (ResultIndex != AddrMode.BaseReg)) 3405 I->eraseFromParent(); 3406 return false; 3407 } 3408 3409 if (AddrMode.Scale != 1) 3410 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3411 "sunkaddr"); 3412 if (ResultIndex) 3413 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3414 else 3415 ResultIndex = V; 3416 } 3417 3418 // Add in the Base Offset if present. 3419 if (AddrMode.BaseOffs) { 3420 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3421 if (ResultIndex) { 3422 // We need to add this separately from the scale above to help with 3423 // SDAG consecutive load/store merging. 3424 if (ResultPtr->getType() != I8PtrTy) 3425 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3426 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3427 } 3428 3429 ResultIndex = V; 3430 } 3431 3432 if (!ResultIndex) { 3433 SunkAddr = ResultPtr; 3434 } else { 3435 if (ResultPtr->getType() != I8PtrTy) 3436 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3437 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3438 } 3439 3440 if (SunkAddr->getType() != Addr->getType()) 3441 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3442 } 3443 } else { 3444 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3445 << *MemoryInst << "\n"); 3446 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 3447 Value *Result = nullptr; 3448 3449 // Start with the base register. Do this first so that subsequent address 3450 // matching finds it last, which will prevent it from trying to match it 3451 // as the scaled value in case it happens to be a mul. That would be 3452 // problematic if we've sunk a different mul for the scale, because then 3453 // we'd end up sinking both muls. 3454 if (AddrMode.BaseReg) { 3455 Value *V = AddrMode.BaseReg; 3456 if (V->getType()->isPointerTy()) 3457 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3458 if (V->getType() != IntPtrTy) 3459 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3460 Result = V; 3461 } 3462 3463 // Add the scale value. 3464 if (AddrMode.Scale) { 3465 Value *V = AddrMode.ScaledReg; 3466 if (V->getType() == IntPtrTy) { 3467 // done. 3468 } else if (V->getType()->isPointerTy()) { 3469 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3470 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3471 cast<IntegerType>(V->getType())->getBitWidth()) { 3472 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3473 } else { 3474 // It is only safe to sign extend the BaseReg if we know that the math 3475 // required to create it did not overflow before we extend it. Since 3476 // the original IR value was tossed in favor of a constant back when 3477 // the AddrMode was created we need to bail out gracefully if widths 3478 // do not match instead of extending it. 3479 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3480 if (I && (Result != AddrMode.BaseReg)) 3481 I->eraseFromParent(); 3482 return false; 3483 } 3484 if (AddrMode.Scale != 1) 3485 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3486 "sunkaddr"); 3487 if (Result) 3488 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3489 else 3490 Result = V; 3491 } 3492 3493 // Add in the BaseGV if present. 3494 if (AddrMode.BaseGV) { 3495 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3496 if (Result) 3497 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3498 else 3499 Result = V; 3500 } 3501 3502 // Add in the Base Offset if present. 3503 if (AddrMode.BaseOffs) { 3504 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3505 if (Result) 3506 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3507 else 3508 Result = V; 3509 } 3510 3511 if (!Result) 3512 SunkAddr = Constant::getNullValue(Addr->getType()); 3513 else 3514 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3515 } 3516 3517 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3518 3519 // If we have no uses, recursively delete the value and all dead instructions 3520 // using it. 3521 if (Repl->use_empty()) { 3522 // This can cause recursive deletion, which can invalidate our iterator. 3523 // Use a WeakVH to hold onto it in case this happens. 3524 WeakVH IterHandle(CurInstIterator); 3525 BasicBlock *BB = CurInstIterator->getParent(); 3526 3527 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3528 3529 if (IterHandle != CurInstIterator) { 3530 // If the iterator instruction was recursively deleted, start over at the 3531 // start of the block. 3532 CurInstIterator = BB->begin(); 3533 SunkAddrs.clear(); 3534 } 3535 } 3536 ++NumMemoryInsts; 3537 return true; 3538 } 3539 3540 /// OptimizeInlineAsmInst - If there are any memory operands, use 3541 /// OptimizeMemoryInst to sink their address computing into the block when 3542 /// possible / profitable. 3543 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { 3544 bool MadeChange = false; 3545 3546 const TargetRegisterInfo *TRI = 3547 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 3548 TargetLowering::AsmOperandInfoVector 3549 TargetConstraints = TLI->ParseConstraints(TRI, CS); 3550 unsigned ArgNo = 0; 3551 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3552 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3553 3554 // Compute the constraint code and ConstraintType to use. 3555 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3556 3557 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3558 OpInfo.isIndirect) { 3559 Value *OpVal = CS->getArgOperand(ArgNo++); 3560 MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 3561 } else if (OpInfo.Type == InlineAsm::isInput) 3562 ArgNo++; 3563 } 3564 3565 return MadeChange; 3566 } 3567 3568 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3569 /// sign extensions. 3570 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3571 assert(!Inst->use_empty() && "Input must have at least one use"); 3572 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3573 bool IsSExt = isa<SExtInst>(FirstUser); 3574 Type *ExtTy = FirstUser->getType(); 3575 for (const User *U : Inst->users()) { 3576 const Instruction *UI = cast<Instruction>(U); 3577 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3578 return false; 3579 Type *CurTy = UI->getType(); 3580 // Same input and output types: Same instruction after CSE. 3581 if (CurTy == ExtTy) 3582 continue; 3583 3584 // If IsSExt is true, we are in this situation: 3585 // a = Inst 3586 // b = sext ty1 a to ty2 3587 // c = sext ty1 a to ty3 3588 // Assuming ty2 is shorter than ty3, this could be turned into: 3589 // a = Inst 3590 // b = sext ty1 a to ty2 3591 // c = sext ty2 b to ty3 3592 // However, the last sext is not free. 3593 if (IsSExt) 3594 return false; 3595 3596 // This is a ZExt, maybe this is free to extend from one type to another. 3597 // In that case, we would not account for a different use. 3598 Type *NarrowTy; 3599 Type *LargeTy; 3600 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3601 CurTy->getScalarType()->getIntegerBitWidth()) { 3602 NarrowTy = CurTy; 3603 LargeTy = ExtTy; 3604 } else { 3605 NarrowTy = ExtTy; 3606 LargeTy = CurTy; 3607 } 3608 3609 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3610 return false; 3611 } 3612 // All uses are the same or can be derived from one another for free. 3613 return true; 3614 } 3615 3616 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 3617 /// load instruction. 3618 /// If an ext(load) can be formed, it is returned via \p LI for the load 3619 /// and \p Inst for the extension. 3620 /// Otherwise LI == nullptr and Inst == nullptr. 3621 /// When some promotion happened, \p TPT contains the proper state to 3622 /// revert them. 3623 /// 3624 /// \return true when promoting was necessary to expose the ext(load) 3625 /// opportunity, false otherwise. 3626 /// 3627 /// Example: 3628 /// \code 3629 /// %ld = load i32* %addr 3630 /// %add = add nuw i32 %ld, 4 3631 /// %zext = zext i32 %add to i64 3632 /// \endcode 3633 /// => 3634 /// \code 3635 /// %ld = load i32* %addr 3636 /// %zext = zext i32 %ld to i64 3637 /// %add = add nuw i64 %zext, 4 3638 /// \encode 3639 /// Thanks to the promotion, we can match zext(load i32*) to i64. 3640 bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT, 3641 LoadInst *&LI, Instruction *&Inst, 3642 const SmallVectorImpl<Instruction *> &Exts, 3643 unsigned CreatedInstsCost = 0) { 3644 // Iterate over all the extensions to see if one form an ext(load). 3645 for (auto I : Exts) { 3646 // Check if we directly have ext(load). 3647 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 3648 Inst = I; 3649 // No promotion happened here. 3650 return false; 3651 } 3652 // Check whether or not we want to do any promotion. 3653 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 3654 continue; 3655 // Get the action to perform the promotion. 3656 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 3657 I, InsertedInsts, *TLI, PromotedInsts); 3658 // Check if we can promote. 3659 if (!TPH) 3660 continue; 3661 // Save the current state. 3662 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3663 TPT.getRestorationPoint(); 3664 SmallVector<Instruction *, 4> NewExts; 3665 unsigned NewCreatedInstsCost = 0; 3666 unsigned ExtCost = !TLI->isExtFree(I); 3667 // Promote. 3668 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 3669 &NewExts, nullptr, *TLI); 3670 assert(PromotedVal && 3671 "TypePromotionHelper should have filtered out those cases"); 3672 3673 // We would be able to merge only one extension in a load. 3674 // Therefore, if we have more than 1 new extension we heuristically 3675 // cut this search path, because it means we degrade the code quality. 3676 // With exactly 2, the transformation is neutral, because we will merge 3677 // one extension but leave one. However, we optimistically keep going, 3678 // because the new extension may be removed too. 3679 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 3680 TotalCreatedInstsCost -= ExtCost; 3681 if (!StressExtLdPromotion && 3682 (TotalCreatedInstsCost > 1 || 3683 !isPromotedInstructionLegal(*TLI, PromotedVal))) { 3684 // The promotion is not profitable, rollback to the previous state. 3685 TPT.rollback(LastKnownGood); 3686 continue; 3687 } 3688 // The promotion is profitable. 3689 // Check if it exposes an ext(load). 3690 (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 3691 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 3692 // If we have created a new extension, i.e., now we have two 3693 // extensions. We must make sure one of them is merged with 3694 // the load, otherwise we may degrade the code quality. 3695 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 3696 // Promotion happened. 3697 return true; 3698 // If this does not help to expose an ext(load) then, rollback. 3699 TPT.rollback(LastKnownGood); 3700 } 3701 // None of the extension can form an ext(load). 3702 LI = nullptr; 3703 Inst = nullptr; 3704 return false; 3705 } 3706 3707 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same 3708 /// basic block as the load, unless conditions are unfavorable. This allows 3709 /// SelectionDAG to fold the extend into the load. 3710 /// \p I[in/out] the extension may be modified during the process if some 3711 /// promotions apply. 3712 /// 3713 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) { 3714 // Try to promote a chain of computation if it allows to form 3715 // an extended load. 3716 TypePromotionTransaction TPT; 3717 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3718 TPT.getRestorationPoint(); 3719 SmallVector<Instruction *, 1> Exts; 3720 Exts.push_back(I); 3721 // Look for a load being extended. 3722 LoadInst *LI = nullptr; 3723 Instruction *OldExt = I; 3724 bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts); 3725 if (!LI || !I) { 3726 assert(!HasPromoted && !LI && "If we did not match any load instruction " 3727 "the code must remain the same"); 3728 I = OldExt; 3729 return false; 3730 } 3731 3732 // If they're already in the same block, there's nothing to do. 3733 // Make the cheap checks first if we did not promote. 3734 // If we promoted, we need to check if it is indeed profitable. 3735 if (!HasPromoted && LI->getParent() == I->getParent()) 3736 return false; 3737 3738 EVT VT = TLI->getValueType(I->getType()); 3739 EVT LoadVT = TLI->getValueType(LI->getType()); 3740 3741 // If the load has other users and the truncate is not free, this probably 3742 // isn't worthwhile. 3743 if (!LI->hasOneUse() && TLI && 3744 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 3745 !TLI->isTruncateFree(I->getType(), LI->getType())) { 3746 I = OldExt; 3747 TPT.rollback(LastKnownGood); 3748 return false; 3749 } 3750 3751 // Check whether the target supports casts folded into loads. 3752 unsigned LType; 3753 if (isa<ZExtInst>(I)) 3754 LType = ISD::ZEXTLOAD; 3755 else { 3756 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 3757 LType = ISD::SEXTLOAD; 3758 } 3759 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 3760 I = OldExt; 3761 TPT.rollback(LastKnownGood); 3762 return false; 3763 } 3764 3765 // Move the extend into the same block as the load, so that SelectionDAG 3766 // can fold it. 3767 TPT.commit(); 3768 I->removeFromParent(); 3769 I->insertAfter(LI); 3770 ++NumExtsMoved; 3771 return true; 3772 } 3773 3774 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { 3775 BasicBlock *DefBB = I->getParent(); 3776 3777 // If the result of a {s|z}ext and its source are both live out, rewrite all 3778 // other uses of the source with result of extension. 3779 Value *Src = I->getOperand(0); 3780 if (Src->hasOneUse()) 3781 return false; 3782 3783 // Only do this xform if truncating is free. 3784 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 3785 return false; 3786 3787 // Only safe to perform the optimization if the source is also defined in 3788 // this block. 3789 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 3790 return false; 3791 3792 bool DefIsLiveOut = false; 3793 for (User *U : I->users()) { 3794 Instruction *UI = cast<Instruction>(U); 3795 3796 // Figure out which BB this ext is used in. 3797 BasicBlock *UserBB = UI->getParent(); 3798 if (UserBB == DefBB) continue; 3799 DefIsLiveOut = true; 3800 break; 3801 } 3802 if (!DefIsLiveOut) 3803 return false; 3804 3805 // Make sure none of the uses are PHI nodes. 3806 for (User *U : Src->users()) { 3807 Instruction *UI = cast<Instruction>(U); 3808 BasicBlock *UserBB = UI->getParent(); 3809 if (UserBB == DefBB) continue; 3810 // Be conservative. We don't want this xform to end up introducing 3811 // reloads just before load / store instructions. 3812 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 3813 return false; 3814 } 3815 3816 // InsertedTruncs - Only insert one trunc in each block once. 3817 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 3818 3819 bool MadeChange = false; 3820 for (Use &U : Src->uses()) { 3821 Instruction *User = cast<Instruction>(U.getUser()); 3822 3823 // Figure out which BB this ext is used in. 3824 BasicBlock *UserBB = User->getParent(); 3825 if (UserBB == DefBB) continue; 3826 3827 // Both src and def are live in this block. Rewrite the use. 3828 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 3829 3830 if (!InsertedTrunc) { 3831 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3832 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); 3833 InsertedInsts.insert(InsertedTrunc); 3834 } 3835 3836 // Replace a use of the {s|z}ext source with a use of the result. 3837 U = InsertedTrunc; 3838 ++NumExtUses; 3839 MadeChange = true; 3840 } 3841 3842 return MadeChange; 3843 } 3844 3845 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be 3846 /// turned into an explicit branch. 3847 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { 3848 // FIXME: This should use the same heuristics as IfConversion to determine 3849 // whether a select is better represented as a branch. This requires that 3850 // branch probability metadata is preserved for the select, which is not the 3851 // case currently. 3852 3853 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 3854 3855 // If the branch is predicted right, an out of order CPU can avoid blocking on 3856 // the compare. Emit cmovs on compares with a memory operand as branches to 3857 // avoid stalls on the load from memory. If the compare has more than one use 3858 // there's probably another cmov or setcc around so it's not worth emitting a 3859 // branch. 3860 if (!Cmp) 3861 return false; 3862 3863 Value *CmpOp0 = Cmp->getOperand(0); 3864 Value *CmpOp1 = Cmp->getOperand(1); 3865 3866 // We check that the memory operand has one use to avoid uses of the loaded 3867 // value directly after the compare, making branches unprofitable. 3868 return Cmp->hasOneUse() && 3869 ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 3870 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); 3871 } 3872 3873 3874 /// If we have a SelectInst that will likely profit from branch prediction, 3875 /// turn it into a branch. 3876 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { 3877 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 3878 3879 // Can we convert the 'select' to CF ? 3880 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 3881 return false; 3882 3883 TargetLowering::SelectSupportKind SelectKind; 3884 if (VectorCond) 3885 SelectKind = TargetLowering::VectorMaskSelect; 3886 else if (SI->getType()->isVectorTy()) 3887 SelectKind = TargetLowering::ScalarCondVectorVal; 3888 else 3889 SelectKind = TargetLowering::ScalarValSelect; 3890 3891 // Do we have efficient codegen support for this kind of 'selects' ? 3892 if (TLI->isSelectSupported(SelectKind)) { 3893 // We have efficient codegen support for the select instruction. 3894 // Check if it is profitable to keep this 'select'. 3895 if (!TLI->isPredictableSelectExpensive() || 3896 !isFormingBranchFromSelectProfitable(SI)) 3897 return false; 3898 } 3899 3900 ModifiedDT = true; 3901 3902 // First, we split the block containing the select into 2 blocks. 3903 BasicBlock *StartBlock = SI->getParent(); 3904 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 3905 BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 3906 3907 // Create a new block serving as the landing pad for the branch. 3908 BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", 3909 NextBlock->getParent(), NextBlock); 3910 3911 // Move the unconditional branch from the block with the select in it into our 3912 // landing pad block. 3913 StartBlock->getTerminator()->eraseFromParent(); 3914 BranchInst::Create(NextBlock, SmallBlock); 3915 3916 // Insert the real conditional branch based on the original condition. 3917 BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); 3918 3919 // The select itself is replaced with a PHI Node. 3920 PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); 3921 PN->takeName(SI); 3922 PN->addIncoming(SI->getTrueValue(), StartBlock); 3923 PN->addIncoming(SI->getFalseValue(), SmallBlock); 3924 SI->replaceAllUsesWith(PN); 3925 SI->eraseFromParent(); 3926 3927 // Instruct OptimizeBlock to skip to the next block. 3928 CurInstIterator = StartBlock->end(); 3929 ++NumSelectsExpanded; 3930 return true; 3931 } 3932 3933 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 3934 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 3935 int SplatElem = -1; 3936 for (unsigned i = 0; i < Mask.size(); ++i) { 3937 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 3938 return false; 3939 SplatElem = Mask[i]; 3940 } 3941 3942 return true; 3943 } 3944 3945 /// Some targets have expensive vector shifts if the lanes aren't all the same 3946 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 3947 /// it's often worth sinking a shufflevector splat down to its use so that 3948 /// codegen can spot all lanes are identical. 3949 bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 3950 BasicBlock *DefBB = SVI->getParent(); 3951 3952 // Only do this xform if variable vector shifts are particularly expensive. 3953 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 3954 return false; 3955 3956 // We only expect better codegen by sinking a shuffle if we can recognise a 3957 // constant splat. 3958 if (!isBroadcastShuffle(SVI)) 3959 return false; 3960 3961 // InsertedShuffles - Only insert a shuffle in each block once. 3962 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 3963 3964 bool MadeChange = false; 3965 for (User *U : SVI->users()) { 3966 Instruction *UI = cast<Instruction>(U); 3967 3968 // Figure out which BB this ext is used in. 3969 BasicBlock *UserBB = UI->getParent(); 3970 if (UserBB == DefBB) continue; 3971 3972 // For now only apply this when the splat is used by a shift instruction. 3973 if (!UI->isShift()) continue; 3974 3975 // Everything checks out, sink the shuffle if the user's block doesn't 3976 // already have a copy. 3977 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 3978 3979 if (!InsertedShuffle) { 3980 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3981 InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), 3982 SVI->getOperand(1), 3983 SVI->getOperand(2), "", InsertPt); 3984 } 3985 3986 UI->replaceUsesOfWith(SVI, InsertedShuffle); 3987 MadeChange = true; 3988 } 3989 3990 // If we removed all uses, nuke the shuffle. 3991 if (SVI->use_empty()) { 3992 SVI->eraseFromParent(); 3993 MadeChange = true; 3994 } 3995 3996 return MadeChange; 3997 } 3998 3999 namespace { 4000 /// \brief Helper class to promote a scalar operation to a vector one. 4001 /// This class is used to move downward extractelement transition. 4002 /// E.g., 4003 /// a = vector_op <2 x i32> 4004 /// b = extractelement <2 x i32> a, i32 0 4005 /// c = scalar_op b 4006 /// store c 4007 /// 4008 /// => 4009 /// a = vector_op <2 x i32> 4010 /// c = vector_op a (equivalent to scalar_op on the related lane) 4011 /// * d = extractelement <2 x i32> c, i32 0 4012 /// * store d 4013 /// Assuming both extractelement and store can be combine, we get rid of the 4014 /// transition. 4015 class VectorPromoteHelper { 4016 /// Used to perform some checks on the legality of vector operations. 4017 const TargetLowering &TLI; 4018 4019 /// Used to estimated the cost of the promoted chain. 4020 const TargetTransformInfo &TTI; 4021 4022 /// The transition being moved downwards. 4023 Instruction *Transition; 4024 /// The sequence of instructions to be promoted. 4025 SmallVector<Instruction *, 4> InstsToBePromoted; 4026 /// Cost of combining a store and an extract. 4027 unsigned StoreExtractCombineCost; 4028 /// Instruction that will be combined with the transition. 4029 Instruction *CombineInst; 4030 4031 /// \brief The instruction that represents the current end of the transition. 4032 /// Since we are faking the promotion until we reach the end of the chain 4033 /// of computation, we need a way to get the current end of the transition. 4034 Instruction *getEndOfTransition() const { 4035 if (InstsToBePromoted.empty()) 4036 return Transition; 4037 return InstsToBePromoted.back(); 4038 } 4039 4040 /// \brief Return the index of the original value in the transition. 4041 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4042 /// c, is at index 0. 4043 unsigned getTransitionOriginalValueIdx() const { 4044 assert(isa<ExtractElementInst>(Transition) && 4045 "Other kind of transitions are not supported yet"); 4046 return 0; 4047 } 4048 4049 /// \brief Return the index of the index in the transition. 4050 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4051 /// is at index 1. 4052 unsigned getTransitionIdx() const { 4053 assert(isa<ExtractElementInst>(Transition) && 4054 "Other kind of transitions are not supported yet"); 4055 return 1; 4056 } 4057 4058 /// \brief Get the type of the transition. 4059 /// This is the type of the original value. 4060 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4061 /// transition is <2 x i32>. 4062 Type *getTransitionType() const { 4063 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4064 } 4065 4066 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4067 /// I.e., we have the following sequence: 4068 /// Def = Transition <ty1> a to <ty2> 4069 /// b = ToBePromoted <ty2> Def, ... 4070 /// => 4071 /// b = ToBePromoted <ty1> a, ... 4072 /// Def = Transition <ty1> ToBePromoted to <ty2> 4073 void promoteImpl(Instruction *ToBePromoted); 4074 4075 /// \brief Check whether or not it is profitable to promote all the 4076 /// instructions enqueued to be promoted. 4077 bool isProfitableToPromote() { 4078 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4079 unsigned Index = isa<ConstantInt>(ValIdx) 4080 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4081 : -1; 4082 Type *PromotedType = getTransitionType(); 4083 4084 StoreInst *ST = cast<StoreInst>(CombineInst); 4085 unsigned AS = ST->getPointerAddressSpace(); 4086 unsigned Align = ST->getAlignment(); 4087 // Check if this store is supported. 4088 if (!TLI.allowsMisalignedMemoryAccesses( 4089 TLI.getValueType(ST->getValueOperand()->getType()), AS, Align)) { 4090 // If this is not supported, there is no way we can combine 4091 // the extract with the store. 4092 return false; 4093 } 4094 4095 // The scalar chain of computation has to pay for the transition 4096 // scalar to vector. 4097 // The vector chain has to account for the combining cost. 4098 uint64_t ScalarCost = 4099 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 4100 uint64_t VectorCost = StoreExtractCombineCost; 4101 for (const auto &Inst : InstsToBePromoted) { 4102 // Compute the cost. 4103 // By construction, all instructions being promoted are arithmetic ones. 4104 // Moreover, one argument is a constant that can be viewed as a splat 4105 // constant. 4106 Value *Arg0 = Inst->getOperand(0); 4107 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 4108 isa<ConstantFP>(Arg0); 4109 TargetTransformInfo::OperandValueKind Arg0OVK = 4110 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4111 : TargetTransformInfo::OK_AnyValue; 4112 TargetTransformInfo::OperandValueKind Arg1OVK = 4113 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4114 : TargetTransformInfo::OK_AnyValue; 4115 ScalarCost += TTI.getArithmeticInstrCost( 4116 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 4117 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 4118 Arg0OVK, Arg1OVK); 4119 } 4120 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 4121 << ScalarCost << "\nVector: " << VectorCost << '\n'); 4122 return ScalarCost > VectorCost; 4123 } 4124 4125 /// \brief Generate a constant vector with \p Val with the same 4126 /// number of elements as the transition. 4127 /// \p UseSplat defines whether or not \p Val should be replicated 4128 /// accross the whole vector. 4129 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 4130 /// otherwise we generate a vector with as many undef as possible: 4131 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 4132 /// used at the index of the extract. 4133 Value *getConstantVector(Constant *Val, bool UseSplat) const { 4134 unsigned ExtractIdx = UINT_MAX; 4135 if (!UseSplat) { 4136 // If we cannot determine where the constant must be, we have to 4137 // use a splat constant. 4138 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 4139 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 4140 ExtractIdx = CstVal->getSExtValue(); 4141 else 4142 UseSplat = true; 4143 } 4144 4145 unsigned End = getTransitionType()->getVectorNumElements(); 4146 if (UseSplat) 4147 return ConstantVector::getSplat(End, Val); 4148 4149 SmallVector<Constant *, 4> ConstVec; 4150 UndefValue *UndefVal = UndefValue::get(Val->getType()); 4151 for (unsigned Idx = 0; Idx != End; ++Idx) { 4152 if (Idx == ExtractIdx) 4153 ConstVec.push_back(Val); 4154 else 4155 ConstVec.push_back(UndefVal); 4156 } 4157 return ConstantVector::get(ConstVec); 4158 } 4159 4160 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 4161 /// in \p Use can trigger undefined behavior. 4162 static bool canCauseUndefinedBehavior(const Instruction *Use, 4163 unsigned OperandIdx) { 4164 // This is not safe to introduce undef when the operand is on 4165 // the right hand side of a division-like instruction. 4166 if (OperandIdx != 1) 4167 return false; 4168 switch (Use->getOpcode()) { 4169 default: 4170 return false; 4171 case Instruction::SDiv: 4172 case Instruction::UDiv: 4173 case Instruction::SRem: 4174 case Instruction::URem: 4175 return true; 4176 case Instruction::FDiv: 4177 case Instruction::FRem: 4178 return !Use->hasNoNaNs(); 4179 } 4180 llvm_unreachable(nullptr); 4181 } 4182 4183 public: 4184 VectorPromoteHelper(const TargetLowering &TLI, const TargetTransformInfo &TTI, 4185 Instruction *Transition, unsigned CombineCost) 4186 : TLI(TLI), TTI(TTI), Transition(Transition), 4187 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4188 assert(Transition && "Do not know how to promote null"); 4189 } 4190 4191 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4192 bool canPromote(const Instruction *ToBePromoted) const { 4193 // We could support CastInst too. 4194 return isa<BinaryOperator>(ToBePromoted); 4195 } 4196 4197 /// \brief Check if it is profitable to promote \p ToBePromoted 4198 /// by moving downward the transition through. 4199 bool shouldPromote(const Instruction *ToBePromoted) const { 4200 // Promote only if all the operands can be statically expanded. 4201 // Indeed, we do not want to introduce any new kind of transitions. 4202 for (const Use &U : ToBePromoted->operands()) { 4203 const Value *Val = U.get(); 4204 if (Val == getEndOfTransition()) { 4205 // If the use is a division and the transition is on the rhs, 4206 // we cannot promote the operation, otherwise we may create a 4207 // division by zero. 4208 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 4209 return false; 4210 continue; 4211 } 4212 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 4213 !isa<ConstantFP>(Val)) 4214 return false; 4215 } 4216 // Check that the resulting operation is legal. 4217 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 4218 if (!ISDOpcode) 4219 return false; 4220 return StressStoreExtract || 4221 TLI.isOperationLegalOrCustom( 4222 ISDOpcode, TLI.getValueType(getTransitionType(), true)); 4223 } 4224 4225 /// \brief Check whether or not \p Use can be combined 4226 /// with the transition. 4227 /// I.e., is it possible to do Use(Transition) => AnotherUse? 4228 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 4229 4230 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 4231 void enqueueForPromotion(Instruction *ToBePromoted) { 4232 InstsToBePromoted.push_back(ToBePromoted); 4233 } 4234 4235 /// \brief Set the instruction that will be combined with the transition. 4236 void recordCombineInstruction(Instruction *ToBeCombined) { 4237 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 4238 CombineInst = ToBeCombined; 4239 } 4240 4241 /// \brief Promote all the instructions enqueued for promotion if it is 4242 /// is profitable. 4243 /// \return True if the promotion happened, false otherwise. 4244 bool promote() { 4245 // Check if there is something to promote. 4246 // Right now, if we do not have anything to combine with, 4247 // we assume the promotion is not profitable. 4248 if (InstsToBePromoted.empty() || !CombineInst) 4249 return false; 4250 4251 // Check cost. 4252 if (!StressStoreExtract && !isProfitableToPromote()) 4253 return false; 4254 4255 // Promote. 4256 for (auto &ToBePromoted : InstsToBePromoted) 4257 promoteImpl(ToBePromoted); 4258 InstsToBePromoted.clear(); 4259 return true; 4260 } 4261 }; 4262 } // End of anonymous namespace. 4263 4264 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 4265 // At this point, we know that all the operands of ToBePromoted but Def 4266 // can be statically promoted. 4267 // For Def, we need to use its parameter in ToBePromoted: 4268 // b = ToBePromoted ty1 a 4269 // Def = Transition ty1 b to ty2 4270 // Move the transition down. 4271 // 1. Replace all uses of the promoted operation by the transition. 4272 // = ... b => = ... Def. 4273 assert(ToBePromoted->getType() == Transition->getType() && 4274 "The type of the result of the transition does not match " 4275 "the final type"); 4276 ToBePromoted->replaceAllUsesWith(Transition); 4277 // 2. Update the type of the uses. 4278 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 4279 Type *TransitionTy = getTransitionType(); 4280 ToBePromoted->mutateType(TransitionTy); 4281 // 3. Update all the operands of the promoted operation with promoted 4282 // operands. 4283 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 4284 for (Use &U : ToBePromoted->operands()) { 4285 Value *Val = U.get(); 4286 Value *NewVal = nullptr; 4287 if (Val == Transition) 4288 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 4289 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 4290 isa<ConstantFP>(Val)) { 4291 // Use a splat constant if it is not safe to use undef. 4292 NewVal = getConstantVector( 4293 cast<Constant>(Val), 4294 isa<UndefValue>(Val) || 4295 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 4296 } else 4297 llvm_unreachable("Did you modified shouldPromote and forgot to update " 4298 "this?"); 4299 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 4300 } 4301 Transition->removeFromParent(); 4302 Transition->insertAfter(ToBePromoted); 4303 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 4304 } 4305 4306 /// Some targets can do store(extractelement) with one instruction. 4307 /// Try to push the extractelement towards the stores when the target 4308 /// has this feature and this is profitable. 4309 bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) { 4310 unsigned CombineCost = UINT_MAX; 4311 if (DisableStoreExtract || !TLI || 4312 (!StressStoreExtract && 4313 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 4314 Inst->getOperand(1), CombineCost))) 4315 return false; 4316 4317 // At this point we know that Inst is a vector to scalar transition. 4318 // Try to move it down the def-use chain, until: 4319 // - We can combine the transition with its single use 4320 // => we got rid of the transition. 4321 // - We escape the current basic block 4322 // => we would need to check that we are moving it at a cheaper place and 4323 // we do not do that for now. 4324 BasicBlock *Parent = Inst->getParent(); 4325 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 4326 VectorPromoteHelper VPH(*TLI, *TTI, Inst, CombineCost); 4327 // If the transition has more than one use, assume this is not going to be 4328 // beneficial. 4329 while (Inst->hasOneUse()) { 4330 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 4331 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 4332 4333 if (ToBePromoted->getParent() != Parent) { 4334 DEBUG(dbgs() << "Instruction to promote is in a different block (" 4335 << ToBePromoted->getParent()->getName() 4336 << ") than the transition (" << Parent->getName() << ").\n"); 4337 return false; 4338 } 4339 4340 if (VPH.canCombine(ToBePromoted)) { 4341 DEBUG(dbgs() << "Assume " << *Inst << '\n' 4342 << "will be combined with: " << *ToBePromoted << '\n'); 4343 VPH.recordCombineInstruction(ToBePromoted); 4344 bool Changed = VPH.promote(); 4345 NumStoreExtractExposed += Changed; 4346 return Changed; 4347 } 4348 4349 DEBUG(dbgs() << "Try promoting.\n"); 4350 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 4351 return false; 4352 4353 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 4354 4355 VPH.enqueueForPromotion(ToBePromoted); 4356 Inst = ToBePromoted; 4357 } 4358 return false; 4359 } 4360 4361 bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { 4362 // Bail out if we inserted the instruction to prevent optimizations from 4363 // stepping on each other's toes. 4364 if (InsertedInsts.count(I)) 4365 return false; 4366 4367 if (PHINode *P = dyn_cast<PHINode>(I)) { 4368 // It is possible for very late stage optimizations (such as SimplifyCFG) 4369 // to introduce PHI nodes too late to be cleaned up. If we detect such a 4370 // trivial PHI, go ahead and zap it here. 4371 const DataLayout &DL = I->getModule()->getDataLayout(); 4372 if (Value *V = SimplifyInstruction(P, DL, TLInfo, nullptr)) { 4373 P->replaceAllUsesWith(V); 4374 P->eraseFromParent(); 4375 ++NumPHIsElim; 4376 return true; 4377 } 4378 return false; 4379 } 4380 4381 if (CastInst *CI = dyn_cast<CastInst>(I)) { 4382 // If the source of the cast is a constant, then this should have 4383 // already been constant folded. The only reason NOT to constant fold 4384 // it is if something (e.g. LSR) was careful to place the constant 4385 // evaluation in a block other than then one that uses it (e.g. to hoist 4386 // the address of globals out of a loop). If this is the case, we don't 4387 // want to forward-subst the cast. 4388 if (isa<Constant>(CI->getOperand(0))) 4389 return false; 4390 4391 if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) 4392 return true; 4393 4394 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 4395 /// Sink a zext or sext into its user blocks if the target type doesn't 4396 /// fit in one register 4397 if (TLI && TLI->getTypeAction(CI->getContext(), 4398 TLI->getValueType(CI->getType())) == 4399 TargetLowering::TypeExpandInteger) { 4400 return SinkCast(CI); 4401 } else { 4402 bool MadeChange = MoveExtToFormExtLoad(I); 4403 return MadeChange | OptimizeExtUses(I); 4404 } 4405 } 4406 return false; 4407 } 4408 4409 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4410 if (!TLI || !TLI->hasMultipleConditionRegisters()) 4411 return OptimizeCmpExpression(CI); 4412 4413 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4414 if (TLI) { 4415 unsigned AS = LI->getPointerAddressSpace(); 4416 return OptimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 4417 } 4418 return false; 4419 } 4420 4421 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 4422 if (TLI) { 4423 unsigned AS = SI->getPointerAddressSpace(); 4424 return OptimizeMemoryInst(I, SI->getOperand(1), 4425 SI->getOperand(0)->getType(), AS); 4426 } 4427 return false; 4428 } 4429 4430 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 4431 4432 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 4433 BinOp->getOpcode() == Instruction::LShr)) { 4434 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 4435 if (TLI && CI && TLI->hasExtractBitsInsn()) 4436 return OptimizeExtractBits(BinOp, CI, *TLI); 4437 4438 return false; 4439 } 4440 4441 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 4442 if (GEPI->hasAllZeroIndices()) { 4443 /// The GEP operand must be a pointer, so must its result -> BitCast 4444 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 4445 GEPI->getName(), GEPI); 4446 GEPI->replaceAllUsesWith(NC); 4447 GEPI->eraseFromParent(); 4448 ++NumGEPsElim; 4449 OptimizeInst(NC, ModifiedDT); 4450 return true; 4451 } 4452 return false; 4453 } 4454 4455 if (CallInst *CI = dyn_cast<CallInst>(I)) 4456 return OptimizeCallInst(CI, ModifiedDT); 4457 4458 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 4459 return OptimizeSelectInst(SI); 4460 4461 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 4462 return OptimizeShuffleVectorInst(SVI); 4463 4464 if (isa<ExtractElementInst>(I)) 4465 return OptimizeExtractElementInst(I); 4466 4467 return false; 4468 } 4469 4470 // In this pass we look for GEP and cast instructions that are used 4471 // across basic blocks and rewrite them to improve basic-block-at-a-time 4472 // selection. 4473 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 4474 SunkAddrs.clear(); 4475 bool MadeChange = false; 4476 4477 CurInstIterator = BB.begin(); 4478 while (CurInstIterator != BB.end()) { 4479 MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT); 4480 if (ModifiedDT) 4481 return true; 4482 } 4483 MadeChange |= DupRetToEnableTailCallOpts(&BB); 4484 4485 return MadeChange; 4486 } 4487 4488 // llvm.dbg.value is far away from the value then iSel may not be able 4489 // handle it properly. iSel will drop llvm.dbg.value if it can not 4490 // find a node corresponding to the value. 4491 bool CodeGenPrepare::PlaceDbgValues(Function &F) { 4492 bool MadeChange = false; 4493 for (BasicBlock &BB : F) { 4494 Instruction *PrevNonDbgInst = nullptr; 4495 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 4496 Instruction *Insn = BI++; 4497 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 4498 // Leave dbg.values that refer to an alloca alone. These 4499 // instrinsics describe the address of a variable (= the alloca) 4500 // being taken. They should not be moved next to the alloca 4501 // (and to the beginning of the scope), but rather stay close to 4502 // where said address is used. 4503 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 4504 PrevNonDbgInst = Insn; 4505 continue; 4506 } 4507 4508 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 4509 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 4510 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 4511 DVI->removeFromParent(); 4512 if (isa<PHINode>(VI)) 4513 DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); 4514 else 4515 DVI->insertAfter(VI); 4516 MadeChange = true; 4517 ++NumDbgValueMoved; 4518 } 4519 } 4520 } 4521 return MadeChange; 4522 } 4523 4524 // If there is a sequence that branches based on comparing a single bit 4525 // against zero that can be combined into a single instruction, and the 4526 // target supports folding these into a single instruction, sink the 4527 // mask and compare into the branch uses. Do this before OptimizeBlock -> 4528 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 4529 // searched for. 4530 bool CodeGenPrepare::sinkAndCmp(Function &F) { 4531 if (!EnableAndCmpSinking) 4532 return false; 4533 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 4534 return false; 4535 bool MadeChange = false; 4536 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 4537 BasicBlock *BB = I++; 4538 4539 // Does this BB end with the following? 4540 // %andVal = and %val, #single-bit-set 4541 // %icmpVal = icmp %andResult, 0 4542 // br i1 %cmpVal label %dest1, label %dest2" 4543 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 4544 if (!Brcc || !Brcc->isConditional()) 4545 continue; 4546 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 4547 if (!Cmp || Cmp->getParent() != BB) 4548 continue; 4549 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 4550 if (!Zero || !Zero->isZero()) 4551 continue; 4552 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 4553 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 4554 continue; 4555 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 4556 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 4557 continue; 4558 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 4559 4560 // Push the "and; icmp" for any users that are conditional branches. 4561 // Since there can only be one branch use per BB, we don't need to keep 4562 // track of which BBs we insert into. 4563 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 4564 UI != E; ) { 4565 Use &TheUse = *UI; 4566 // Find brcc use. 4567 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 4568 ++UI; 4569 if (!BrccUser || !BrccUser->isConditional()) 4570 continue; 4571 BasicBlock *UserBB = BrccUser->getParent(); 4572 if (UserBB == BB) continue; 4573 DEBUG(dbgs() << "found Brcc use\n"); 4574 4575 // Sink the "and; icmp" to use. 4576 MadeChange = true; 4577 BinaryOperator *NewAnd = 4578 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 4579 BrccUser); 4580 CmpInst *NewCmp = 4581 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 4582 "", BrccUser); 4583 TheUse = NewCmp; 4584 ++NumAndCmpsMoved; 4585 DEBUG(BrccUser->getParent()->dump()); 4586 } 4587 } 4588 return MadeChange; 4589 } 4590 4591 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 4592 /// success, or returns false if no or invalid metadata was found. 4593 static bool extractBranchMetadata(BranchInst *BI, 4594 uint64_t &ProbTrue, uint64_t &ProbFalse) { 4595 assert(BI->isConditional() && 4596 "Looking for probabilities on unconditional branch?"); 4597 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 4598 if (!ProfileData || ProfileData->getNumOperands() != 3) 4599 return false; 4600 4601 const auto *CITrue = 4602 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 4603 const auto *CIFalse = 4604 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 4605 if (!CITrue || !CIFalse) 4606 return false; 4607 4608 ProbTrue = CITrue->getValue().getZExtValue(); 4609 ProbFalse = CIFalse->getValue().getZExtValue(); 4610 4611 return true; 4612 } 4613 4614 /// \brief Scale down both weights to fit into uint32_t. 4615 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 4616 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 4617 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 4618 NewTrue = NewTrue / Scale; 4619 NewFalse = NewFalse / Scale; 4620 } 4621 4622 /// \brief Some targets prefer to split a conditional branch like: 4623 /// \code 4624 /// %0 = icmp ne i32 %a, 0 4625 /// %1 = icmp ne i32 %b, 0 4626 /// %or.cond = or i1 %0, %1 4627 /// br i1 %or.cond, label %TrueBB, label %FalseBB 4628 /// \endcode 4629 /// into multiple branch instructions like: 4630 /// \code 4631 /// bb1: 4632 /// %0 = icmp ne i32 %a, 0 4633 /// br i1 %0, label %TrueBB, label %bb2 4634 /// bb2: 4635 /// %1 = icmp ne i32 %b, 0 4636 /// br i1 %1, label %TrueBB, label %FalseBB 4637 /// \endcode 4638 /// This usually allows instruction selection to do even further optimizations 4639 /// and combine the compare with the branch instruction. Currently this is 4640 /// applied for targets which have "cheap" jump instructions. 4641 /// 4642 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 4643 /// 4644 bool CodeGenPrepare::splitBranchCondition(Function &F) { 4645 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 4646 return false; 4647 4648 bool MadeChange = false; 4649 for (auto &BB : F) { 4650 // Does this BB end with the following? 4651 // %cond1 = icmp|fcmp|binary instruction ... 4652 // %cond2 = icmp|fcmp|binary instruction ... 4653 // %cond.or = or|and i1 %cond1, cond2 4654 // br i1 %cond.or label %dest1, label %dest2" 4655 BinaryOperator *LogicOp; 4656 BasicBlock *TBB, *FBB; 4657 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 4658 continue; 4659 4660 unsigned Opc; 4661 Value *Cond1, *Cond2; 4662 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 4663 m_OneUse(m_Value(Cond2))))) 4664 Opc = Instruction::And; 4665 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 4666 m_OneUse(m_Value(Cond2))))) 4667 Opc = Instruction::Or; 4668 else 4669 continue; 4670 4671 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 4672 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 4673 continue; 4674 4675 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 4676 4677 // Create a new BB. 4678 auto *InsertBefore = std::next(Function::iterator(BB)) 4679 .getNodePtrUnchecked(); 4680 auto TmpBB = BasicBlock::Create(BB.getContext(), 4681 BB.getName() + ".cond.split", 4682 BB.getParent(), InsertBefore); 4683 4684 // Update original basic block by using the first condition directly by the 4685 // branch instruction and removing the no longer needed and/or instruction. 4686 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 4687 Br1->setCondition(Cond1); 4688 LogicOp->eraseFromParent(); 4689 4690 // Depending on the conditon we have to either replace the true or the false 4691 // successor of the original branch instruction. 4692 if (Opc == Instruction::And) 4693 Br1->setSuccessor(0, TmpBB); 4694 else 4695 Br1->setSuccessor(1, TmpBB); 4696 4697 // Fill in the new basic block. 4698 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 4699 if (auto *I = dyn_cast<Instruction>(Cond2)) { 4700 I->removeFromParent(); 4701 I->insertBefore(Br2); 4702 } 4703 4704 // Update PHI nodes in both successors. The original BB needs to be 4705 // replaced in one succesor's PHI nodes, because the branch comes now from 4706 // the newly generated BB (NewBB). In the other successor we need to add one 4707 // incoming edge to the PHI nodes, because both branch instructions target 4708 // now the same successor. Depending on the original branch condition 4709 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 4710 // we perfrom the correct update for the PHI nodes. 4711 // This doesn't change the successor order of the just created branch 4712 // instruction (or any other instruction). 4713 if (Opc == Instruction::Or) 4714 std::swap(TBB, FBB); 4715 4716 // Replace the old BB with the new BB. 4717 for (auto &I : *TBB) { 4718 PHINode *PN = dyn_cast<PHINode>(&I); 4719 if (!PN) 4720 break; 4721 int i; 4722 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 4723 PN->setIncomingBlock(i, TmpBB); 4724 } 4725 4726 // Add another incoming edge form the new BB. 4727 for (auto &I : *FBB) { 4728 PHINode *PN = dyn_cast<PHINode>(&I); 4729 if (!PN) 4730 break; 4731 auto *Val = PN->getIncomingValueForBlock(&BB); 4732 PN->addIncoming(Val, TmpBB); 4733 } 4734 4735 // Update the branch weights (from SelectionDAGBuilder:: 4736 // FindMergedConditions). 4737 if (Opc == Instruction::Or) { 4738 // Codegen X | Y as: 4739 // BB1: 4740 // jmp_if_X TBB 4741 // jmp TmpBB 4742 // TmpBB: 4743 // jmp_if_Y TBB 4744 // jmp FBB 4745 // 4746 4747 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 4748 // The requirement is that 4749 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 4750 // = TrueProb for orignal BB. 4751 // Assuming the orignal weights are A and B, one choice is to set BB1's 4752 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 4753 // assumes that 4754 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 4755 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 4756 // TmpBB, but the math is more complicated. 4757 uint64_t TrueWeight, FalseWeight; 4758 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4759 uint64_t NewTrueWeight = TrueWeight; 4760 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 4761 scaleWeights(NewTrueWeight, NewFalseWeight); 4762 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4763 .createBranchWeights(TrueWeight, FalseWeight)); 4764 4765 NewTrueWeight = TrueWeight; 4766 NewFalseWeight = 2 * FalseWeight; 4767 scaleWeights(NewTrueWeight, NewFalseWeight); 4768 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4769 .createBranchWeights(TrueWeight, FalseWeight)); 4770 } 4771 } else { 4772 // Codegen X & Y as: 4773 // BB1: 4774 // jmp_if_X TmpBB 4775 // jmp FBB 4776 // TmpBB: 4777 // jmp_if_Y TBB 4778 // jmp FBB 4779 // 4780 // This requires creation of TmpBB after CurBB. 4781 4782 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 4783 // The requirement is that 4784 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 4785 // = FalseProb for orignal BB. 4786 // Assuming the orignal weights are A and B, one choice is to set BB1's 4787 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 4788 // assumes that 4789 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 4790 uint64_t TrueWeight, FalseWeight; 4791 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4792 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 4793 uint64_t NewFalseWeight = FalseWeight; 4794 scaleWeights(NewTrueWeight, NewFalseWeight); 4795 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4796 .createBranchWeights(TrueWeight, FalseWeight)); 4797 4798 NewTrueWeight = 2 * TrueWeight; 4799 NewFalseWeight = FalseWeight; 4800 scaleWeights(NewTrueWeight, NewFalseWeight); 4801 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4802 .createBranchWeights(TrueWeight, FalseWeight)); 4803 } 4804 } 4805 4806 // Note: No point in getting fancy here, since the DT info is never 4807 // available to CodeGenPrepare. 4808 ModifiedDT = true; 4809 4810 MadeChange = true; 4811 4812 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 4813 TmpBB->dump()); 4814 } 4815 return MadeChange; 4816 } 4817