1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Common functionality for different debug information format backends. 11 // LLVM currently supports DWARF and CodeView. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "DebugHandlerBase.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/MC/MCStreamer.h" 25 26 using namespace llvm; 27 28 Optional<DbgVariableLocation> 29 DbgVariableLocation::extractFromMachineInstruction( 30 const MachineInstr &Instruction) { 31 DbgVariableLocation Location; 32 if (!Instruction.isDebugValue()) 33 return None; 34 if (!Instruction.getOperand(0).isReg()) 35 return None; 36 Location.Register = Instruction.getOperand(0).getReg(); 37 Location.FragmentInfo.reset(); 38 // We only handle expressions generated by DIExpression::appendOffset, 39 // which doesn't require a full stack machine. 40 int64_t Offset = 0; 41 const DIExpression *DIExpr = Instruction.getDebugExpression(); 42 auto Op = DIExpr->expr_op_begin(); 43 while (Op != DIExpr->expr_op_end()) { 44 switch (Op->getOp()) { 45 case dwarf::DW_OP_constu: { 46 int Value = Op->getArg(0); 47 ++Op; 48 if (Op != DIExpr->expr_op_end()) { 49 switch (Op->getOp()) { 50 case dwarf::DW_OP_minus: 51 Offset -= Value; 52 break; 53 case dwarf::DW_OP_plus: 54 Offset += Value; 55 break; 56 default: 57 continue; 58 } 59 } 60 } break; 61 case dwarf::DW_OP_plus_uconst: 62 Offset += Op->getArg(0); 63 break; 64 case dwarf::DW_OP_LLVM_fragment: 65 Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)}; 66 break; 67 case dwarf::DW_OP_deref: 68 Location.LoadChain.push_back(Offset); 69 Offset = 0; 70 break; 71 default: 72 return None; 73 } 74 ++Op; 75 } 76 77 // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE 78 // instruction. 79 // FIXME: Replace these with DIExpression. 80 if (Instruction.isIndirectDebugValue()) 81 Location.LoadChain.push_back(Offset); 82 83 return Location; 84 } 85 86 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 87 88 // Each LexicalScope has first instruction and last instruction to mark 89 // beginning and end of a scope respectively. Create an inverse map that list 90 // scopes starts (and ends) with an instruction. One instruction may start (or 91 // end) multiple scopes. Ignore scopes that are not reachable. 92 void DebugHandlerBase::identifyScopeMarkers() { 93 SmallVector<LexicalScope *, 4> WorkList; 94 WorkList.push_back(LScopes.getCurrentFunctionScope()); 95 while (!WorkList.empty()) { 96 LexicalScope *S = WorkList.pop_back_val(); 97 98 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren(); 99 if (!Children.empty()) 100 WorkList.append(Children.begin(), Children.end()); 101 102 if (S->isAbstractScope()) 103 continue; 104 105 for (const InsnRange &R : S->getRanges()) { 106 assert(R.first && "InsnRange does not have first instruction!"); 107 assert(R.second && "InsnRange does not have second instruction!"); 108 requestLabelBeforeInsn(R.first); 109 requestLabelAfterInsn(R.second); 110 } 111 } 112 } 113 114 // Return Label preceding the instruction. 115 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) { 116 MCSymbol *Label = LabelsBeforeInsn.lookup(MI); 117 assert(Label && "Didn't insert label before instruction"); 118 return Label; 119 } 120 121 // Return Label immediately following the instruction. 122 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) { 123 return LabelsAfterInsn.lookup(MI); 124 } 125 126 int DebugHandlerBase::fragmentCmp(const DIExpression *P1, 127 const DIExpression *P2) { 128 auto Fragment1 = *P1->getFragmentInfo(); 129 auto Fragment2 = *P2->getFragmentInfo(); 130 unsigned l1 = Fragment1.OffsetInBits; 131 unsigned l2 = Fragment2.OffsetInBits; 132 unsigned r1 = l1 + Fragment1.SizeInBits; 133 unsigned r2 = l2 + Fragment2.SizeInBits; 134 if (r1 <= l2) 135 return -1; 136 else if (r2 <= l1) 137 return 1; 138 else 139 return 0; 140 } 141 142 bool DebugHandlerBase::fragmentsOverlap(const DIExpression *P1, 143 const DIExpression *P2) { 144 if (!P1->isFragment() || !P2->isFragment()) 145 return true; 146 return fragmentCmp(P1, P2) == 0; 147 } 148 149 /// If this type is derived from a base type then return base type size. 150 uint64_t DebugHandlerBase::getBaseTypeSize(const DITypeRef TyRef) { 151 DIType *Ty = TyRef.resolve(); 152 assert(Ty); 153 DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty); 154 if (!DDTy) 155 return Ty->getSizeInBits(); 156 157 unsigned Tag = DDTy->getTag(); 158 159 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef && 160 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && 161 Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type) 162 return DDTy->getSizeInBits(); 163 164 DIType *BaseType = DDTy->getBaseType().resolve(); 165 166 assert(BaseType && "Unexpected invalid base type"); 167 168 // If this is a derived type, go ahead and get the base type, unless it's a 169 // reference then it's just the size of the field. Pointer types have no need 170 // of this since they're a different type of qualification on the type. 171 if (BaseType->getTag() == dwarf::DW_TAG_reference_type || 172 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type) 173 return Ty->getSizeInBits(); 174 175 return getBaseTypeSize(BaseType); 176 } 177 178 static bool hasDebugInfo(const MachineModuleInfo *MMI, 179 const MachineFunction *MF) { 180 if (!MMI->hasDebugInfo()) 181 return false; 182 auto *SP = MF->getFunction().getSubprogram(); 183 if (!SP) 184 return false; 185 assert(SP->getUnit()); 186 auto EK = SP->getUnit()->getEmissionKind(); 187 if (EK == DICompileUnit::NoDebug) 188 return false; 189 return true; 190 } 191 192 void DebugHandlerBase::beginFunction(const MachineFunction *MF) { 193 PrevInstBB = nullptr; 194 195 if (!Asm || !hasDebugInfo(MMI, MF)) { 196 skippedNonDebugFunction(); 197 return; 198 } 199 200 // Grab the lexical scopes for the function, if we don't have any of those 201 // then we're not going to be able to do anything. 202 LScopes.initialize(*MF); 203 if (LScopes.empty()) { 204 beginFunctionImpl(MF); 205 return; 206 } 207 208 // Make sure that each lexical scope will have a begin/end label. 209 identifyScopeMarkers(); 210 211 // Calculate history for local variables. 212 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!"); 213 calculateDbgValueHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(), 214 DbgValues); 215 216 // Request labels for the full history. 217 for (const auto &I : DbgValues) { 218 const auto &Ranges = I.second; 219 if (Ranges.empty()) 220 continue; 221 222 // The first mention of a function argument gets the CurrentFnBegin 223 // label, so arguments are visible when breaking at function entry. 224 const DILocalVariable *DIVar = Ranges.front().first->getDebugVariable(); 225 if (DIVar->isParameter() && 226 getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) { 227 LabelsBeforeInsn[Ranges.front().first] = Asm->getFunctionBegin(); 228 if (Ranges.front().first->getDebugExpression()->isFragment()) { 229 // Mark all non-overlapping initial fragments. 230 for (auto I = Ranges.begin(); I != Ranges.end(); ++I) { 231 const DIExpression *Fragment = I->first->getDebugExpression(); 232 if (std::all_of(Ranges.begin(), I, 233 [&](DbgValueHistoryMap::InstrRange Pred) { 234 return !fragmentsOverlap( 235 Fragment, Pred.first->getDebugExpression()); 236 })) 237 LabelsBeforeInsn[I->first] = Asm->getFunctionBegin(); 238 else 239 break; 240 } 241 } 242 } 243 244 for (const auto &Range : Ranges) { 245 requestLabelBeforeInsn(Range.first); 246 if (Range.second) 247 requestLabelAfterInsn(Range.second); 248 } 249 } 250 251 PrevInstLoc = DebugLoc(); 252 PrevLabel = Asm->getFunctionBegin(); 253 beginFunctionImpl(MF); 254 } 255 256 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) { 257 if (!MMI->hasDebugInfo()) 258 return; 259 260 assert(CurMI == nullptr); 261 CurMI = MI; 262 263 // Insert labels where requested. 264 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 265 LabelsBeforeInsn.find(MI); 266 267 // No label needed. 268 if (I == LabelsBeforeInsn.end()) 269 return; 270 271 // Label already assigned. 272 if (I->second) 273 return; 274 275 if (!PrevLabel) { 276 PrevLabel = MMI->getContext().createTempSymbol(); 277 Asm->OutStreamer->EmitLabel(PrevLabel); 278 } 279 I->second = PrevLabel; 280 } 281 282 void DebugHandlerBase::endInstruction() { 283 if (!MMI->hasDebugInfo()) 284 return; 285 286 assert(CurMI != nullptr); 287 // Don't create a new label after DBG_VALUE and other instructions that don't 288 // generate code. 289 if (!CurMI->isMetaInstruction()) { 290 PrevLabel = nullptr; 291 PrevInstBB = CurMI->getParent(); 292 } 293 294 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 295 LabelsAfterInsn.find(CurMI); 296 CurMI = nullptr; 297 298 // No label needed. 299 if (I == LabelsAfterInsn.end()) 300 return; 301 302 // Label already assigned. 303 if (I->second) 304 return; 305 306 // We need a label after this instruction. 307 if (!PrevLabel) { 308 PrevLabel = MMI->getContext().createTempSymbol(); 309 Asm->OutStreamer->EmitLabel(PrevLabel); 310 } 311 I->second = PrevLabel; 312 } 313 314 void DebugHandlerBase::endFunction(const MachineFunction *MF) { 315 if (hasDebugInfo(MMI, MF)) 316 endFunctionImpl(MF); 317 DbgValues.clear(); 318 LabelsBeforeInsn.clear(); 319 LabelsAfterInsn.clear(); 320 } 321