1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineModuleInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/TargetFrameLowering.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 44 #include "llvm/DebugInfo/CodeView/CodeView.h" 45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 47 #include "llvm/DebugInfo/CodeView/EnumTables.h" 48 #include "llvm/DebugInfo/CodeView/Line.h" 49 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 50 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 51 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 52 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 53 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugInfoMetadata.h" 57 #include "llvm/IR/DebugLoc.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GlobalValue.h" 60 #include "llvm/IR/GlobalVariable.h" 61 #include "llvm/IR/Metadata.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCContext.h" 65 #include "llvm/MC/MCSectionCOFF.h" 66 #include "llvm/MC/MCStreamer.h" 67 #include "llvm/MC/MCSymbol.h" 68 #include "llvm/Support/BinaryByteStream.h" 69 #include "llvm/Support/BinaryStreamReader.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Endian.h" 74 #include "llvm/Support/Error.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/FormatVariadic.h" 77 #include "llvm/Support/Path.h" 78 #include "llvm/Support/SMLoc.h" 79 #include "llvm/Support/ScopedPrinter.h" 80 #include "llvm/Target/TargetLoweringObjectFile.h" 81 #include "llvm/Target/TargetMachine.h" 82 #include <algorithm> 83 #include <cassert> 84 #include <cctype> 85 #include <cstddef> 86 #include <cstdint> 87 #include <iterator> 88 #include <limits> 89 #include <string> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 using namespace llvm::codeview; 95 96 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 97 switch (Type) { 98 case Triple::ArchType::x86: 99 return CPUType::Pentium3; 100 case Triple::ArchType::x86_64: 101 return CPUType::X64; 102 case Triple::ArchType::thumb: 103 return CPUType::Thumb; 104 case Triple::ArchType::aarch64: 105 return CPUType::ARM64; 106 default: 107 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 108 } 109 } 110 111 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 112 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 113 // If module doesn't have named metadata anchors or COFF debug section 114 // is not available, skip any debug info related stuff. 115 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 116 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 117 Asm = nullptr; 118 MMI->setDebugInfoAvailability(false); 119 return; 120 } 121 // Tell MMI that we have debug info. 122 MMI->setDebugInfoAvailability(true); 123 124 TheCPU = 125 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 126 127 collectGlobalVariableInfo(); 128 129 // Check if we should emit type record hashes. 130 ConstantInt *GH = mdconst::extract_or_null<ConstantInt>( 131 MMI->getModule()->getModuleFlag("CodeViewGHash")); 132 EmitDebugGlobalHashes = GH && !GH->isZero(); 133 } 134 135 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 136 std::string &Filepath = FileToFilepathMap[File]; 137 if (!Filepath.empty()) 138 return Filepath; 139 140 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 141 142 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 143 // it textually because one of the path components could be a symlink. 144 if (Dir.startswith("/") || Filename.startswith("/")) { 145 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 146 return Filename; 147 Filepath = Dir; 148 if (Dir.back() != '/') 149 Filepath += '/'; 150 Filepath += Filename; 151 return Filepath; 152 } 153 154 // Clang emits directory and relative filename info into the IR, but CodeView 155 // operates on full paths. We could change Clang to emit full paths too, but 156 // that would increase the IR size and probably not needed for other users. 157 // For now, just concatenate and canonicalize the path here. 158 if (Filename.find(':') == 1) 159 Filepath = Filename; 160 else 161 Filepath = (Dir + "\\" + Filename).str(); 162 163 // Canonicalize the path. We have to do it textually because we may no longer 164 // have access the file in the filesystem. 165 // First, replace all slashes with backslashes. 166 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 167 168 // Remove all "\.\" with "\". 169 size_t Cursor = 0; 170 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 171 Filepath.erase(Cursor, 2); 172 173 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 174 // path should be well-formatted, e.g. start with a drive letter, etc. 175 Cursor = 0; 176 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 177 // Something's wrong if the path starts with "\..\", abort. 178 if (Cursor == 0) 179 break; 180 181 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 182 if (PrevSlash == std::string::npos) 183 // Something's wrong, abort. 184 break; 185 186 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 187 // The next ".." might be following the one we've just erased. 188 Cursor = PrevSlash; 189 } 190 191 // Remove all duplicate backslashes. 192 Cursor = 0; 193 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 194 Filepath.erase(Cursor, 1); 195 196 return Filepath; 197 } 198 199 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 200 StringRef FullPath = getFullFilepath(F); 201 unsigned NextId = FileIdMap.size() + 1; 202 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 203 if (Insertion.second) { 204 // We have to compute the full filepath and emit a .cv_file directive. 205 ArrayRef<uint8_t> ChecksumAsBytes; 206 FileChecksumKind CSKind = FileChecksumKind::None; 207 if (F->getChecksum()) { 208 std::string Checksum = fromHex(F->getChecksum()->Value); 209 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 210 memcpy(CKMem, Checksum.data(), Checksum.size()); 211 ChecksumAsBytes = ArrayRef<uint8_t>( 212 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 213 switch (F->getChecksum()->Kind) { 214 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break; 215 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; 216 } 217 } 218 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 219 static_cast<unsigned>(CSKind)); 220 (void)Success; 221 assert(Success && ".cv_file directive failed"); 222 } 223 return Insertion.first->second; 224 } 225 226 CodeViewDebug::InlineSite & 227 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 228 const DISubprogram *Inlinee) { 229 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 230 InlineSite *Site = &SiteInsertion.first->second; 231 if (SiteInsertion.second) { 232 unsigned ParentFuncId = CurFn->FuncId; 233 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 234 ParentFuncId = 235 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 236 .SiteFuncId; 237 238 Site->SiteFuncId = NextFuncId++; 239 OS.EmitCVInlineSiteIdDirective( 240 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 241 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 242 Site->Inlinee = Inlinee; 243 InlinedSubprograms.insert(Inlinee); 244 getFuncIdForSubprogram(Inlinee); 245 } 246 return *Site; 247 } 248 249 static StringRef getPrettyScopeName(const DIScope *Scope) { 250 StringRef ScopeName = Scope->getName(); 251 if (!ScopeName.empty()) 252 return ScopeName; 253 254 switch (Scope->getTag()) { 255 case dwarf::DW_TAG_enumeration_type: 256 case dwarf::DW_TAG_class_type: 257 case dwarf::DW_TAG_structure_type: 258 case dwarf::DW_TAG_union_type: 259 return "<unnamed-tag>"; 260 case dwarf::DW_TAG_namespace: 261 return "`anonymous namespace'"; 262 } 263 264 return StringRef(); 265 } 266 267 static const DISubprogram *getQualifiedNameComponents( 268 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 269 const DISubprogram *ClosestSubprogram = nullptr; 270 while (Scope != nullptr) { 271 if (ClosestSubprogram == nullptr) 272 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 273 StringRef ScopeName = getPrettyScopeName(Scope); 274 if (!ScopeName.empty()) 275 QualifiedNameComponents.push_back(ScopeName); 276 Scope = Scope->getScope().resolve(); 277 } 278 return ClosestSubprogram; 279 } 280 281 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 282 StringRef TypeName) { 283 std::string FullyQualifiedName; 284 for (StringRef QualifiedNameComponent : 285 llvm::reverse(QualifiedNameComponents)) { 286 FullyQualifiedName.append(QualifiedNameComponent); 287 FullyQualifiedName.append("::"); 288 } 289 FullyQualifiedName.append(TypeName); 290 return FullyQualifiedName; 291 } 292 293 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 294 SmallVector<StringRef, 5> QualifiedNameComponents; 295 getQualifiedNameComponents(Scope, QualifiedNameComponents); 296 return getQualifiedName(QualifiedNameComponents, Name); 297 } 298 299 struct CodeViewDebug::TypeLoweringScope { 300 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 301 ~TypeLoweringScope() { 302 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 303 // inner TypeLoweringScopes don't attempt to emit deferred types. 304 if (CVD.TypeEmissionLevel == 1) 305 CVD.emitDeferredCompleteTypes(); 306 --CVD.TypeEmissionLevel; 307 } 308 CodeViewDebug &CVD; 309 }; 310 311 static std::string getFullyQualifiedName(const DIScope *Ty) { 312 const DIScope *Scope = Ty->getScope().resolve(); 313 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 314 } 315 316 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 317 // No scope means global scope and that uses the zero index. 318 if (!Scope || isa<DIFile>(Scope)) 319 return TypeIndex(); 320 321 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 322 323 // Check if we've already translated this scope. 324 auto I = TypeIndices.find({Scope, nullptr}); 325 if (I != TypeIndices.end()) 326 return I->second; 327 328 // Build the fully qualified name of the scope. 329 std::string ScopeName = getFullyQualifiedName(Scope); 330 StringIdRecord SID(TypeIndex(), ScopeName); 331 auto TI = TypeTable.writeLeafType(SID); 332 return recordTypeIndexForDINode(Scope, TI); 333 } 334 335 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 336 assert(SP); 337 338 // Check if we've already translated this subprogram. 339 auto I = TypeIndices.find({SP, nullptr}); 340 if (I != TypeIndices.end()) 341 return I->second; 342 343 // The display name includes function template arguments. Drop them to match 344 // MSVC. 345 StringRef DisplayName = SP->getName().split('<').first; 346 347 const DIScope *Scope = SP->getScope().resolve(); 348 TypeIndex TI; 349 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 350 // If the scope is a DICompositeType, then this must be a method. Member 351 // function types take some special handling, and require access to the 352 // subprogram. 353 TypeIndex ClassType = getTypeIndex(Class); 354 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 355 DisplayName); 356 TI = TypeTable.writeLeafType(MFuncId); 357 } else { 358 // Otherwise, this must be a free function. 359 TypeIndex ParentScope = getScopeIndex(Scope); 360 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 361 TI = TypeTable.writeLeafType(FuncId); 362 } 363 364 return recordTypeIndexForDINode(SP, TI); 365 } 366 367 static bool isTrivial(const DICompositeType *DCTy) { 368 return ((DCTy->getFlags() & DINode::FlagTrivial) == DINode::FlagTrivial); 369 } 370 371 static FunctionOptions 372 getFunctionOptions(const DISubroutineType *Ty, 373 const DICompositeType *ClassTy = nullptr, 374 StringRef SPName = StringRef("")) { 375 FunctionOptions FO = FunctionOptions::None; 376 const DIType *ReturnTy = nullptr; 377 if (auto TypeArray = Ty->getTypeArray()) { 378 if (TypeArray.size()) 379 ReturnTy = TypeArray[0].resolve(); 380 } 381 382 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) { 383 if (!isTrivial(ReturnDCTy)) 384 FO |= FunctionOptions::CxxReturnUdt; 385 } 386 387 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 388 if (ClassTy && !isTrivial(ClassTy) && SPName == ClassTy->getName()) { 389 FO |= FunctionOptions::Constructor; 390 391 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 392 393 } 394 return FO; 395 } 396 397 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 398 const DICompositeType *Class) { 399 // Always use the method declaration as the key for the function type. The 400 // method declaration contains the this adjustment. 401 if (SP->getDeclaration()) 402 SP = SP->getDeclaration(); 403 assert(!SP->getDeclaration() && "should use declaration as key"); 404 405 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 406 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 407 auto I = TypeIndices.find({SP, Class}); 408 if (I != TypeIndices.end()) 409 return I->second; 410 411 // Make sure complete type info for the class is emitted *after* the member 412 // function type, as the complete class type is likely to reference this 413 // member function type. 414 TypeLoweringScope S(*this); 415 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 416 417 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 418 TypeIndex TI = lowerTypeMemberFunction( 419 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 420 return recordTypeIndexForDINode(SP, TI, Class); 421 } 422 423 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 424 TypeIndex TI, 425 const DIType *ClassTy) { 426 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 427 (void)InsertResult; 428 assert(InsertResult.second && "DINode was already assigned a type index"); 429 return TI; 430 } 431 432 unsigned CodeViewDebug::getPointerSizeInBytes() { 433 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 434 } 435 436 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 437 const LexicalScope *LS) { 438 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 439 // This variable was inlined. Associate it with the InlineSite. 440 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 441 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 442 Site.InlinedLocals.emplace_back(Var); 443 } else { 444 // This variable goes into the corresponding lexical scope. 445 ScopeVariables[LS].emplace_back(Var); 446 } 447 } 448 449 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 450 const DILocation *Loc) { 451 auto B = Locs.begin(), E = Locs.end(); 452 if (std::find(B, E, Loc) == E) 453 Locs.push_back(Loc); 454 } 455 456 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 457 const MachineFunction *MF) { 458 // Skip this instruction if it has the same location as the previous one. 459 if (!DL || DL == PrevInstLoc) 460 return; 461 462 const DIScope *Scope = DL.get()->getScope(); 463 if (!Scope) 464 return; 465 466 // Skip this line if it is longer than the maximum we can record. 467 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 468 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 469 LI.isNeverStepInto()) 470 return; 471 472 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 473 if (CI.getStartColumn() != DL.getCol()) 474 return; 475 476 if (!CurFn->HaveLineInfo) 477 CurFn->HaveLineInfo = true; 478 unsigned FileId = 0; 479 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 480 FileId = CurFn->LastFileId; 481 else 482 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 483 PrevInstLoc = DL; 484 485 unsigned FuncId = CurFn->FuncId; 486 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 487 const DILocation *Loc = DL.get(); 488 489 // If this location was actually inlined from somewhere else, give it the ID 490 // of the inline call site. 491 FuncId = 492 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 493 494 // Ensure we have links in the tree of inline call sites. 495 bool FirstLoc = true; 496 while ((SiteLoc = Loc->getInlinedAt())) { 497 InlineSite &Site = 498 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 499 if (!FirstLoc) 500 addLocIfNotPresent(Site.ChildSites, Loc); 501 FirstLoc = false; 502 Loc = SiteLoc; 503 } 504 addLocIfNotPresent(CurFn->ChildSites, Loc); 505 } 506 507 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 508 /*PrologueEnd=*/false, /*IsStmt=*/false, 509 DL->getFilename(), SMLoc()); 510 } 511 512 void CodeViewDebug::emitCodeViewMagicVersion() { 513 OS.EmitValueToAlignment(4); 514 OS.AddComment("Debug section magic"); 515 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 516 } 517 518 void CodeViewDebug::endModule() { 519 if (!Asm || !MMI->hasDebugInfo()) 520 return; 521 522 assert(Asm != nullptr); 523 524 // The COFF .debug$S section consists of several subsections, each starting 525 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 526 // of the payload followed by the payload itself. The subsections are 4-byte 527 // aligned. 528 529 // Use the generic .debug$S section, and make a subsection for all the inlined 530 // subprograms. 531 switchToDebugSectionForSymbol(nullptr); 532 533 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 534 emitCompilerInformation(); 535 endCVSubsection(CompilerInfo); 536 537 emitInlineeLinesSubsection(); 538 539 // Emit per-function debug information. 540 for (auto &P : FnDebugInfo) 541 if (!P.first->isDeclarationForLinker()) 542 emitDebugInfoForFunction(P.first, *P.second); 543 544 // Emit global variable debug information. 545 setCurrentSubprogram(nullptr); 546 emitDebugInfoForGlobals(); 547 548 // Emit retained types. 549 emitDebugInfoForRetainedTypes(); 550 551 // Switch back to the generic .debug$S section after potentially processing 552 // comdat symbol sections. 553 switchToDebugSectionForSymbol(nullptr); 554 555 // Emit UDT records for any types used by global variables. 556 if (!GlobalUDTs.empty()) { 557 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 558 emitDebugInfoForUDTs(GlobalUDTs); 559 endCVSubsection(SymbolsEnd); 560 } 561 562 // This subsection holds a file index to offset in string table table. 563 OS.AddComment("File index to string table offset subsection"); 564 OS.EmitCVFileChecksumsDirective(); 565 566 // This subsection holds the string table. 567 OS.AddComment("String table"); 568 OS.EmitCVStringTableDirective(); 569 570 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 571 // subsection in the generic .debug$S section at the end. There is no 572 // particular reason for this ordering other than to match MSVC. 573 emitBuildInfo(); 574 575 // Emit type information and hashes last, so that any types we translate while 576 // emitting function info are included. 577 emitTypeInformation(); 578 579 if (EmitDebugGlobalHashes) 580 emitTypeGlobalHashes(); 581 582 clear(); 583 } 584 585 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 586 unsigned MaxFixedRecordLength = 0xF00) { 587 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 588 // after a fixed length portion of the record. The fixed length portion should 589 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 590 // overall record size is less than the maximum allowed. 591 SmallString<32> NullTerminatedString( 592 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 593 NullTerminatedString.push_back('\0'); 594 OS.EmitBytes(NullTerminatedString); 595 } 596 597 void CodeViewDebug::emitTypeInformation() { 598 if (TypeTable.empty()) 599 return; 600 601 // Start the .debug$T or .debug$P section with 0x4. 602 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 603 emitCodeViewMagicVersion(); 604 605 SmallString<8> CommentPrefix; 606 if (OS.isVerboseAsm()) { 607 CommentPrefix += '\t'; 608 CommentPrefix += Asm->MAI->getCommentString(); 609 CommentPrefix += ' '; 610 } 611 612 TypeTableCollection Table(TypeTable.records()); 613 Optional<TypeIndex> B = Table.getFirst(); 614 while (B) { 615 // This will fail if the record data is invalid. 616 CVType Record = Table.getType(*B); 617 618 if (OS.isVerboseAsm()) { 619 // Emit a block comment describing the type record for readability. 620 SmallString<512> CommentBlock; 621 raw_svector_ostream CommentOS(CommentBlock); 622 ScopedPrinter SP(CommentOS); 623 SP.setPrefix(CommentPrefix); 624 TypeDumpVisitor TDV(Table, &SP, false); 625 626 Error E = codeview::visitTypeRecord(Record, *B, TDV); 627 if (E) { 628 logAllUnhandledErrors(std::move(E), errs(), "error: "); 629 llvm_unreachable("produced malformed type record"); 630 } 631 // emitRawComment will insert its own tab and comment string before 632 // the first line, so strip off our first one. It also prints its own 633 // newline. 634 OS.emitRawComment( 635 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 636 } 637 OS.EmitBinaryData(Record.str_data()); 638 B = Table.getNext(*B); 639 } 640 } 641 642 void CodeViewDebug::emitTypeGlobalHashes() { 643 if (TypeTable.empty()) 644 return; 645 646 // Start the .debug$H section with the version and hash algorithm, currently 647 // hardcoded to version 0, SHA1. 648 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 649 650 OS.EmitValueToAlignment(4); 651 OS.AddComment("Magic"); 652 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); 653 OS.AddComment("Section Version"); 654 OS.EmitIntValue(0, 2); 655 OS.AddComment("Hash Algorithm"); 656 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2); 657 658 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 659 for (const auto &GHR : TypeTable.hashes()) { 660 if (OS.isVerboseAsm()) { 661 // Emit an EOL-comment describing which TypeIndex this hash corresponds 662 // to, as well as the stringified SHA1 hash. 663 SmallString<32> Comment; 664 raw_svector_ostream CommentOS(Comment); 665 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 666 OS.AddComment(Comment); 667 ++TI; 668 } 669 assert(GHR.Hash.size() == 8); 670 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 671 GHR.Hash.size()); 672 OS.EmitBinaryData(S); 673 } 674 } 675 676 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 677 switch (DWLang) { 678 case dwarf::DW_LANG_C: 679 case dwarf::DW_LANG_C89: 680 case dwarf::DW_LANG_C99: 681 case dwarf::DW_LANG_C11: 682 case dwarf::DW_LANG_ObjC: 683 return SourceLanguage::C; 684 case dwarf::DW_LANG_C_plus_plus: 685 case dwarf::DW_LANG_C_plus_plus_03: 686 case dwarf::DW_LANG_C_plus_plus_11: 687 case dwarf::DW_LANG_C_plus_plus_14: 688 return SourceLanguage::Cpp; 689 case dwarf::DW_LANG_Fortran77: 690 case dwarf::DW_LANG_Fortran90: 691 case dwarf::DW_LANG_Fortran03: 692 case dwarf::DW_LANG_Fortran08: 693 return SourceLanguage::Fortran; 694 case dwarf::DW_LANG_Pascal83: 695 return SourceLanguage::Pascal; 696 case dwarf::DW_LANG_Cobol74: 697 case dwarf::DW_LANG_Cobol85: 698 return SourceLanguage::Cobol; 699 case dwarf::DW_LANG_Java: 700 return SourceLanguage::Java; 701 case dwarf::DW_LANG_D: 702 return SourceLanguage::D; 703 default: 704 // There's no CodeView representation for this language, and CV doesn't 705 // have an "unknown" option for the language field, so we'll use MASM, 706 // as it's very low level. 707 return SourceLanguage::Masm; 708 } 709 } 710 711 namespace { 712 struct Version { 713 int Part[4]; 714 }; 715 } // end anonymous namespace 716 717 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 718 // the version number. 719 static Version parseVersion(StringRef Name) { 720 Version V = {{0}}; 721 int N = 0; 722 for (const char C : Name) { 723 if (isdigit(C)) { 724 V.Part[N] *= 10; 725 V.Part[N] += C - '0'; 726 } else if (C == '.') { 727 ++N; 728 if (N >= 4) 729 return V; 730 } else if (N > 0) 731 return V; 732 } 733 return V; 734 } 735 736 void CodeViewDebug::emitCompilerInformation() { 737 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 738 uint32_t Flags = 0; 739 740 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 741 const MDNode *Node = *CUs->operands().begin(); 742 const auto *CU = cast<DICompileUnit>(Node); 743 744 // The low byte of the flags indicates the source language. 745 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 746 // TODO: Figure out which other flags need to be set. 747 748 OS.AddComment("Flags and language"); 749 OS.EmitIntValue(Flags, 4); 750 751 OS.AddComment("CPUType"); 752 OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2); 753 754 StringRef CompilerVersion = CU->getProducer(); 755 Version FrontVer = parseVersion(CompilerVersion); 756 OS.AddComment("Frontend version"); 757 for (int N = 0; N < 4; ++N) 758 OS.EmitIntValue(FrontVer.Part[N], 2); 759 760 // Some Microsoft tools, like Binscope, expect a backend version number of at 761 // least 8.something, so we'll coerce the LLVM version into a form that 762 // guarantees it'll be big enough without really lying about the version. 763 int Major = 1000 * LLVM_VERSION_MAJOR + 764 10 * LLVM_VERSION_MINOR + 765 LLVM_VERSION_PATCH; 766 // Clamp it for builds that use unusually large version numbers. 767 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 768 Version BackVer = {{ Major, 0, 0, 0 }}; 769 OS.AddComment("Backend version"); 770 for (int N = 0; N < 4; ++N) 771 OS.EmitIntValue(BackVer.Part[N], 2); 772 773 OS.AddComment("Null-terminated compiler version string"); 774 emitNullTerminatedSymbolName(OS, CompilerVersion); 775 776 endSymbolRecord(CompilerEnd); 777 } 778 779 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 780 StringRef S) { 781 StringIdRecord SIR(TypeIndex(0x0), S); 782 return TypeTable.writeLeafType(SIR); 783 } 784 785 void CodeViewDebug::emitBuildInfo() { 786 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 787 // build info. The known prefix is: 788 // - Absolute path of current directory 789 // - Compiler path 790 // - Main source file path, relative to CWD or absolute 791 // - Type server PDB file 792 // - Canonical compiler command line 793 // If frontend and backend compilation are separated (think llc or LTO), it's 794 // not clear if the compiler path should refer to the executable for the 795 // frontend or the backend. Leave it blank for now. 796 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 797 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 798 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 799 const auto *CU = cast<DICompileUnit>(Node); 800 const DIFile *MainSourceFile = CU->getFile(); 801 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 802 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 803 BuildInfoArgs[BuildInfoRecord::SourceFile] = 804 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 805 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 806 // we implement /Zi type servers. 807 BuildInfoRecord BIR(BuildInfoArgs); 808 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 809 810 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 811 // from the module symbols into the type stream. 812 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 813 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 814 OS.AddComment("LF_BUILDINFO index"); 815 OS.EmitIntValue(BuildInfoIndex.getIndex(), 4); 816 endSymbolRecord(BIEnd); 817 endCVSubsection(BISubsecEnd); 818 } 819 820 void CodeViewDebug::emitInlineeLinesSubsection() { 821 if (InlinedSubprograms.empty()) 822 return; 823 824 OS.AddComment("Inlinee lines subsection"); 825 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 826 827 // We emit the checksum info for files. This is used by debuggers to 828 // determine if a pdb matches the source before loading it. Visual Studio, 829 // for instance, will display a warning that the breakpoints are not valid if 830 // the pdb does not match the source. 831 OS.AddComment("Inlinee lines signature"); 832 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 833 834 for (const DISubprogram *SP : InlinedSubprograms) { 835 assert(TypeIndices.count({SP, nullptr})); 836 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 837 838 OS.AddBlankLine(); 839 unsigned FileId = maybeRecordFile(SP->getFile()); 840 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 841 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 842 OS.AddBlankLine(); 843 OS.AddComment("Type index of inlined function"); 844 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 845 OS.AddComment("Offset into filechecksum table"); 846 OS.EmitCVFileChecksumOffsetDirective(FileId); 847 OS.AddComment("Starting line number"); 848 OS.EmitIntValue(SP->getLine(), 4); 849 } 850 851 endCVSubsection(InlineEnd); 852 } 853 854 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 855 const DILocation *InlinedAt, 856 const InlineSite &Site) { 857 assert(TypeIndices.count({Site.Inlinee, nullptr})); 858 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 859 860 // SymbolRecord 861 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 862 863 OS.AddComment("PtrParent"); 864 OS.EmitIntValue(0, 4); 865 OS.AddComment("PtrEnd"); 866 OS.EmitIntValue(0, 4); 867 OS.AddComment("Inlinee type index"); 868 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 869 870 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 871 unsigned StartLineNum = Site.Inlinee->getLine(); 872 873 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 874 FI.Begin, FI.End); 875 876 endSymbolRecord(InlineEnd); 877 878 emitLocalVariableList(FI, Site.InlinedLocals); 879 880 // Recurse on child inlined call sites before closing the scope. 881 for (const DILocation *ChildSite : Site.ChildSites) { 882 auto I = FI.InlineSites.find(ChildSite); 883 assert(I != FI.InlineSites.end() && 884 "child site not in function inline site map"); 885 emitInlinedCallSite(FI, ChildSite, I->second); 886 } 887 888 // Close the scope. 889 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 890 } 891 892 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 893 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 894 // comdat key. A section may be comdat because of -ffunction-sections or 895 // because it is comdat in the IR. 896 MCSectionCOFF *GVSec = 897 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 898 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 899 900 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 901 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 902 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 903 904 OS.SwitchSection(DebugSec); 905 906 // Emit the magic version number if this is the first time we've switched to 907 // this section. 908 if (ComdatDebugSections.insert(DebugSec).second) 909 emitCodeViewMagicVersion(); 910 } 911 912 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 913 // The only supported thunk ordinal is currently the standard type. 914 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 915 FunctionInfo &FI, 916 const MCSymbol *Fn) { 917 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 918 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 919 920 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 921 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 922 923 // Emit S_THUNK32 924 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 925 OS.AddComment("PtrParent"); 926 OS.EmitIntValue(0, 4); 927 OS.AddComment("PtrEnd"); 928 OS.EmitIntValue(0, 4); 929 OS.AddComment("PtrNext"); 930 OS.EmitIntValue(0, 4); 931 OS.AddComment("Thunk section relative address"); 932 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 933 OS.AddComment("Thunk section index"); 934 OS.EmitCOFFSectionIndex(Fn); 935 OS.AddComment("Code size"); 936 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 937 OS.AddComment("Ordinal"); 938 OS.EmitIntValue(unsigned(ordinal), 1); 939 OS.AddComment("Function name"); 940 emitNullTerminatedSymbolName(OS, FuncName); 941 // Additional fields specific to the thunk ordinal would go here. 942 endSymbolRecord(ThunkRecordEnd); 943 944 // Local variables/inlined routines are purposely omitted here. The point of 945 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 946 947 // Emit S_PROC_ID_END 948 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 949 950 endCVSubsection(SymbolsEnd); 951 } 952 953 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 954 FunctionInfo &FI) { 955 // For each function there is a separate subsection which holds the PC to 956 // file:line table. 957 const MCSymbol *Fn = Asm->getSymbol(GV); 958 assert(Fn); 959 960 // Switch to the to a comdat section, if appropriate. 961 switchToDebugSectionForSymbol(Fn); 962 963 std::string FuncName; 964 auto *SP = GV->getSubprogram(); 965 assert(SP); 966 setCurrentSubprogram(SP); 967 968 if (SP->isThunk()) { 969 emitDebugInfoForThunk(GV, FI, Fn); 970 return; 971 } 972 973 // If we have a display name, build the fully qualified name by walking the 974 // chain of scopes. 975 if (!SP->getName().empty()) 976 FuncName = 977 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 978 979 // If our DISubprogram name is empty, use the mangled name. 980 if (FuncName.empty()) 981 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 982 983 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 984 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 985 OS.EmitCVFPOData(Fn); 986 987 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 988 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 989 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 990 { 991 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 992 : SymbolKind::S_GPROC32_ID; 993 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 994 995 // These fields are filled in by tools like CVPACK which run after the fact. 996 OS.AddComment("PtrParent"); 997 OS.EmitIntValue(0, 4); 998 OS.AddComment("PtrEnd"); 999 OS.EmitIntValue(0, 4); 1000 OS.AddComment("PtrNext"); 1001 OS.EmitIntValue(0, 4); 1002 // This is the important bit that tells the debugger where the function 1003 // code is located and what's its size: 1004 OS.AddComment("Code size"); 1005 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1006 OS.AddComment("Offset after prologue"); 1007 OS.EmitIntValue(0, 4); 1008 OS.AddComment("Offset before epilogue"); 1009 OS.EmitIntValue(0, 4); 1010 OS.AddComment("Function type index"); 1011 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 1012 OS.AddComment("Function section relative address"); 1013 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1014 OS.AddComment("Function section index"); 1015 OS.EmitCOFFSectionIndex(Fn); 1016 OS.AddComment("Flags"); 1017 OS.EmitIntValue(0, 1); 1018 // Emit the function display name as a null-terminated string. 1019 OS.AddComment("Function name"); 1020 // Truncate the name so we won't overflow the record length field. 1021 emitNullTerminatedSymbolName(OS, FuncName); 1022 endSymbolRecord(ProcRecordEnd); 1023 1024 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1025 // Subtract out the CSR size since MSVC excludes that and we include it. 1026 OS.AddComment("FrameSize"); 1027 OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4); 1028 OS.AddComment("Padding"); 1029 OS.EmitIntValue(0, 4); 1030 OS.AddComment("Offset of padding"); 1031 OS.EmitIntValue(0, 4); 1032 OS.AddComment("Bytes of callee saved registers"); 1033 OS.EmitIntValue(FI.CSRSize, 4); 1034 OS.AddComment("Exception handler offset"); 1035 OS.EmitIntValue(0, 4); 1036 OS.AddComment("Exception handler section"); 1037 OS.EmitIntValue(0, 2); 1038 OS.AddComment("Flags (defines frame register)"); 1039 OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4); 1040 endSymbolRecord(FrameProcEnd); 1041 1042 emitLocalVariableList(FI, FI.Locals); 1043 emitGlobalVariableList(FI.Globals); 1044 emitLexicalBlockList(FI.ChildBlocks, FI); 1045 1046 // Emit inlined call site information. Only emit functions inlined directly 1047 // into the parent function. We'll emit the other sites recursively as part 1048 // of their parent inline site. 1049 for (const DILocation *InlinedAt : FI.ChildSites) { 1050 auto I = FI.InlineSites.find(InlinedAt); 1051 assert(I != FI.InlineSites.end() && 1052 "child site not in function inline site map"); 1053 emitInlinedCallSite(FI, InlinedAt, I->second); 1054 } 1055 1056 for (auto Annot : FI.Annotations) { 1057 MCSymbol *Label = Annot.first; 1058 MDTuple *Strs = cast<MDTuple>(Annot.second); 1059 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1060 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1061 // FIXME: Make sure we don't overflow the max record size. 1062 OS.EmitCOFFSectionIndex(Label); 1063 OS.EmitIntValue(Strs->getNumOperands(), 2); 1064 for (Metadata *MD : Strs->operands()) { 1065 // MDStrings are null terminated, so we can do EmitBytes and get the 1066 // nice .asciz directive. 1067 StringRef Str = cast<MDString>(MD)->getString(); 1068 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1069 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 1070 } 1071 endSymbolRecord(AnnotEnd); 1072 } 1073 1074 if (SP != nullptr) 1075 emitDebugInfoForUDTs(LocalUDTs); 1076 1077 // We're done with this function. 1078 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1079 } 1080 endCVSubsection(SymbolsEnd); 1081 1082 // We have an assembler directive that takes care of the whole line table. 1083 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1084 } 1085 1086 CodeViewDebug::LocalVarDefRange 1087 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1088 LocalVarDefRange DR; 1089 DR.InMemory = -1; 1090 DR.DataOffset = Offset; 1091 assert(DR.DataOffset == Offset && "truncation"); 1092 DR.IsSubfield = 0; 1093 DR.StructOffset = 0; 1094 DR.CVRegister = CVRegister; 1095 return DR; 1096 } 1097 1098 void CodeViewDebug::collectVariableInfoFromMFTable( 1099 DenseSet<InlinedEntity> &Processed) { 1100 const MachineFunction &MF = *Asm->MF; 1101 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1102 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1103 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1104 1105 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1106 if (!VI.Var) 1107 continue; 1108 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1109 "Expected inlined-at fields to agree"); 1110 1111 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1112 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1113 1114 // If variable scope is not found then skip this variable. 1115 if (!Scope) 1116 continue; 1117 1118 // If the variable has an attached offset expression, extract it. 1119 // FIXME: Try to handle DW_OP_deref as well. 1120 int64_t ExprOffset = 0; 1121 if (VI.Expr) 1122 if (!VI.Expr->extractIfOffset(ExprOffset)) 1123 continue; 1124 1125 // Get the frame register used and the offset. 1126 unsigned FrameReg = 0; 1127 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1128 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1129 1130 // Calculate the label ranges. 1131 LocalVarDefRange DefRange = 1132 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1133 for (const InsnRange &Range : Scope->getRanges()) { 1134 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1135 const MCSymbol *End = getLabelAfterInsn(Range.second); 1136 End = End ? End : Asm->getFunctionEnd(); 1137 DefRange.Ranges.emplace_back(Begin, End); 1138 } 1139 1140 LocalVariable Var; 1141 Var.DIVar = VI.Var; 1142 Var.DefRanges.emplace_back(std::move(DefRange)); 1143 recordLocalVariable(std::move(Var), Scope); 1144 } 1145 } 1146 1147 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1148 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1149 } 1150 1151 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1152 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1153 } 1154 1155 void CodeViewDebug::calculateRanges( 1156 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 1157 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1158 1159 // Calculate the definition ranges. 1160 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1161 const InsnRange &Range = *I; 1162 const MachineInstr *DVInst = Range.first; 1163 assert(DVInst->isDebugValue() && "Invalid History entry"); 1164 // FIXME: Find a way to represent constant variables, since they are 1165 // relatively common. 1166 Optional<DbgVariableLocation> Location = 1167 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1168 if (!Location) 1169 continue; 1170 1171 // CodeView can only express variables in register and variables in memory 1172 // at a constant offset from a register. However, for variables passed 1173 // indirectly by pointer, it is common for that pointer to be spilled to a 1174 // stack location. For the special case of one offseted load followed by a 1175 // zero offset load (a pointer spilled to the stack), we change the type of 1176 // the local variable from a value type to a reference type. This tricks the 1177 // debugger into doing the load for us. 1178 if (Var.UseReferenceType) { 1179 // We're using a reference type. Drop the last zero offset load. 1180 if (canUseReferenceType(*Location)) 1181 Location->LoadChain.pop_back(); 1182 else 1183 continue; 1184 } else if (needsReferenceType(*Location)) { 1185 // This location can't be expressed without switching to a reference type. 1186 // Start over using that. 1187 Var.UseReferenceType = true; 1188 Var.DefRanges.clear(); 1189 calculateRanges(Var, Ranges); 1190 return; 1191 } 1192 1193 // We can only handle a register or an offseted load of a register. 1194 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1195 continue; 1196 { 1197 LocalVarDefRange DR; 1198 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1199 DR.InMemory = !Location->LoadChain.empty(); 1200 DR.DataOffset = 1201 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1202 if (Location->FragmentInfo) { 1203 DR.IsSubfield = true; 1204 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1205 } else { 1206 DR.IsSubfield = false; 1207 DR.StructOffset = 0; 1208 } 1209 1210 if (Var.DefRanges.empty() || 1211 Var.DefRanges.back().isDifferentLocation(DR)) { 1212 Var.DefRanges.emplace_back(std::move(DR)); 1213 } 1214 } 1215 1216 // Compute the label range. 1217 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1218 const MCSymbol *End = getLabelAfterInsn(Range.second); 1219 if (!End) { 1220 // This range is valid until the next overlapping bitpiece. In the 1221 // common case, ranges will not be bitpieces, so they will overlap. 1222 auto J = std::next(I); 1223 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1224 while (J != E && 1225 !DIExpr->fragmentsOverlap(J->first->getDebugExpression())) 1226 ++J; 1227 if (J != E) 1228 End = getLabelBeforeInsn(J->first); 1229 else 1230 End = Asm->getFunctionEnd(); 1231 } 1232 1233 // If the last range end is our begin, just extend the last range. 1234 // Otherwise make a new range. 1235 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1236 Var.DefRanges.back().Ranges; 1237 if (!R.empty() && R.back().second == Begin) 1238 R.back().second = End; 1239 else 1240 R.emplace_back(Begin, End); 1241 1242 // FIXME: Do more range combining. 1243 } 1244 } 1245 1246 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1247 DenseSet<InlinedEntity> Processed; 1248 // Grab the variable info that was squirreled away in the MMI side-table. 1249 collectVariableInfoFromMFTable(Processed); 1250 1251 for (const auto &I : DbgValues) { 1252 InlinedEntity IV = I.first; 1253 if (Processed.count(IV)) 1254 continue; 1255 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1256 const DILocation *InlinedAt = IV.second; 1257 1258 // Instruction ranges, specifying where IV is accessible. 1259 const auto &Ranges = I.second; 1260 1261 LexicalScope *Scope = nullptr; 1262 if (InlinedAt) 1263 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1264 else 1265 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1266 // If variable scope is not found then skip this variable. 1267 if (!Scope) 1268 continue; 1269 1270 LocalVariable Var; 1271 Var.DIVar = DIVar; 1272 1273 calculateRanges(Var, Ranges); 1274 recordLocalVariable(std::move(Var), Scope); 1275 } 1276 } 1277 1278 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1279 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1280 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1281 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1282 const Function &GV = MF->getFunction(); 1283 auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()}); 1284 assert(Insertion.second && "function already has info"); 1285 CurFn = Insertion.first->second.get(); 1286 CurFn->FuncId = NextFuncId++; 1287 CurFn->Begin = Asm->getFunctionBegin(); 1288 1289 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1290 // callee-saved registers were used. For targets that don't use a PUSH 1291 // instruction (AArch64), this will be zero. 1292 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1293 CurFn->FrameSize = MFI.getStackSize(); 1294 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1295 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1296 1297 // For this function S_FRAMEPROC record, figure out which codeview register 1298 // will be the frame pointer. 1299 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1300 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1301 if (CurFn->FrameSize > 0) { 1302 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1303 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1304 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1305 } else { 1306 // If there is an FP, parameters are always relative to it. 1307 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1308 if (CurFn->HasStackRealignment) { 1309 // If the stack needs realignment, locals are relative to SP or VFRAME. 1310 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1311 } else { 1312 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1313 // other stack adjustments. 1314 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1315 } 1316 } 1317 } 1318 1319 // Compute other frame procedure options. 1320 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1321 if (MFI.hasVarSizedObjects()) 1322 FPO |= FrameProcedureOptions::HasAlloca; 1323 if (MF->exposesReturnsTwice()) 1324 FPO |= FrameProcedureOptions::HasSetJmp; 1325 // FIXME: Set HasLongJmp if we ever track that info. 1326 if (MF->hasInlineAsm()) 1327 FPO |= FrameProcedureOptions::HasInlineAssembly; 1328 if (GV.hasPersonalityFn()) { 1329 if (isAsynchronousEHPersonality( 1330 classifyEHPersonality(GV.getPersonalityFn()))) 1331 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1332 else 1333 FPO |= FrameProcedureOptions::HasExceptionHandling; 1334 } 1335 if (GV.hasFnAttribute(Attribute::InlineHint)) 1336 FPO |= FrameProcedureOptions::MarkedInline; 1337 if (GV.hasFnAttribute(Attribute::Naked)) 1338 FPO |= FrameProcedureOptions::Naked; 1339 if (MFI.hasStackProtectorIndex()) 1340 FPO |= FrameProcedureOptions::SecurityChecks; 1341 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1342 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1343 if (Asm->TM.getOptLevel() != CodeGenOpt::None && !GV.optForSize() && 1344 !GV.hasFnAttribute(Attribute::OptimizeNone)) 1345 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1346 // FIXME: Set GuardCfg when it is implemented. 1347 CurFn->FrameProcOpts = FPO; 1348 1349 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1350 1351 // Find the end of the function prolog. First known non-DBG_VALUE and 1352 // non-frame setup location marks the beginning of the function body. 1353 // FIXME: is there a simpler a way to do this? Can we just search 1354 // for the first instruction of the function, not the last of the prolog? 1355 DebugLoc PrologEndLoc; 1356 bool EmptyPrologue = true; 1357 for (const auto &MBB : *MF) { 1358 for (const auto &MI : MBB) { 1359 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1360 MI.getDebugLoc()) { 1361 PrologEndLoc = MI.getDebugLoc(); 1362 break; 1363 } else if (!MI.isMetaInstruction()) { 1364 EmptyPrologue = false; 1365 } 1366 } 1367 } 1368 1369 // Record beginning of function if we have a non-empty prologue. 1370 if (PrologEndLoc && !EmptyPrologue) { 1371 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1372 maybeRecordLocation(FnStartDL, MF); 1373 } 1374 } 1375 1376 static bool shouldEmitUdt(const DIType *T) { 1377 if (!T) 1378 return false; 1379 1380 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1381 if (T->getTag() == dwarf::DW_TAG_typedef) { 1382 if (DIScope *Scope = T->getScope().resolve()) { 1383 switch (Scope->getTag()) { 1384 case dwarf::DW_TAG_structure_type: 1385 case dwarf::DW_TAG_class_type: 1386 case dwarf::DW_TAG_union_type: 1387 return false; 1388 } 1389 } 1390 } 1391 1392 while (true) { 1393 if (!T || T->isForwardDecl()) 1394 return false; 1395 1396 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1397 if (!DT) 1398 return true; 1399 T = DT->getBaseType().resolve(); 1400 } 1401 return true; 1402 } 1403 1404 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1405 // Don't record empty UDTs. 1406 if (Ty->getName().empty()) 1407 return; 1408 if (!shouldEmitUdt(Ty)) 1409 return; 1410 1411 SmallVector<StringRef, 5> QualifiedNameComponents; 1412 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1413 Ty->getScope().resolve(), QualifiedNameComponents); 1414 1415 std::string FullyQualifiedName = 1416 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1417 1418 if (ClosestSubprogram == nullptr) { 1419 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1420 } else if (ClosestSubprogram == CurrentSubprogram) { 1421 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1422 } 1423 1424 // TODO: What if the ClosestSubprogram is neither null or the current 1425 // subprogram? Currently, the UDT just gets dropped on the floor. 1426 // 1427 // The current behavior is not desirable. To get maximal fidelity, we would 1428 // need to perform all type translation before beginning emission of .debug$S 1429 // and then make LocalUDTs a member of FunctionInfo 1430 } 1431 1432 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1433 // Generic dispatch for lowering an unknown type. 1434 switch (Ty->getTag()) { 1435 case dwarf::DW_TAG_array_type: 1436 return lowerTypeArray(cast<DICompositeType>(Ty)); 1437 case dwarf::DW_TAG_typedef: 1438 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1439 case dwarf::DW_TAG_base_type: 1440 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1441 case dwarf::DW_TAG_pointer_type: 1442 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1443 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1444 LLVM_FALLTHROUGH; 1445 case dwarf::DW_TAG_reference_type: 1446 case dwarf::DW_TAG_rvalue_reference_type: 1447 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1448 case dwarf::DW_TAG_ptr_to_member_type: 1449 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1450 case dwarf::DW_TAG_restrict_type: 1451 case dwarf::DW_TAG_const_type: 1452 case dwarf::DW_TAG_volatile_type: 1453 // TODO: add support for DW_TAG_atomic_type here 1454 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1455 case dwarf::DW_TAG_subroutine_type: 1456 if (ClassTy) { 1457 // The member function type of a member function pointer has no 1458 // ThisAdjustment. 1459 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1460 /*ThisAdjustment=*/0, 1461 /*IsStaticMethod=*/false); 1462 } 1463 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1464 case dwarf::DW_TAG_enumeration_type: 1465 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1466 case dwarf::DW_TAG_class_type: 1467 case dwarf::DW_TAG_structure_type: 1468 return lowerTypeClass(cast<DICompositeType>(Ty)); 1469 case dwarf::DW_TAG_union_type: 1470 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1471 case dwarf::DW_TAG_unspecified_type: 1472 if (Ty->getName() == "decltype(nullptr)") 1473 return TypeIndex::NullptrT(); 1474 return TypeIndex::None(); 1475 default: 1476 // Use the null type index. 1477 return TypeIndex(); 1478 } 1479 } 1480 1481 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1482 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1483 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1484 StringRef TypeName = Ty->getName(); 1485 1486 addToUDTs(Ty); 1487 1488 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1489 TypeName == "HRESULT") 1490 return TypeIndex(SimpleTypeKind::HResult); 1491 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1492 TypeName == "wchar_t") 1493 return TypeIndex(SimpleTypeKind::WideCharacter); 1494 1495 return UnderlyingTypeIndex; 1496 } 1497 1498 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1499 DITypeRef ElementTypeRef = Ty->getBaseType(); 1500 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1501 // IndexType is size_t, which depends on the bitness of the target. 1502 TypeIndex IndexType = getPointerSizeInBytes() == 8 1503 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1504 : TypeIndex(SimpleTypeKind::UInt32Long); 1505 1506 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1507 1508 // Add subranges to array type. 1509 DINodeArray Elements = Ty->getElements(); 1510 for (int i = Elements.size() - 1; i >= 0; --i) { 1511 const DINode *Element = Elements[i]; 1512 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1513 1514 const DISubrange *Subrange = cast<DISubrange>(Element); 1515 assert(Subrange->getLowerBound() == 0 && 1516 "codeview doesn't support subranges with lower bounds"); 1517 int64_t Count = -1; 1518 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1519 Count = CI->getSExtValue(); 1520 1521 // Forward declarations of arrays without a size and VLAs use a count of -1. 1522 // Emit a count of zero in these cases to match what MSVC does for arrays 1523 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1524 // should do for them even if we could distinguish them. 1525 if (Count == -1) 1526 Count = 0; 1527 1528 // Update the element size and element type index for subsequent subranges. 1529 ElementSize *= Count; 1530 1531 // If this is the outermost array, use the size from the array. It will be 1532 // more accurate if we had a VLA or an incomplete element type size. 1533 uint64_t ArraySize = 1534 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1535 1536 StringRef Name = (i == 0) ? Ty->getName() : ""; 1537 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1538 ElementTypeIndex = TypeTable.writeLeafType(AR); 1539 } 1540 1541 return ElementTypeIndex; 1542 } 1543 1544 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1545 TypeIndex Index; 1546 dwarf::TypeKind Kind; 1547 uint32_t ByteSize; 1548 1549 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1550 ByteSize = Ty->getSizeInBits() / 8; 1551 1552 SimpleTypeKind STK = SimpleTypeKind::None; 1553 switch (Kind) { 1554 case dwarf::DW_ATE_address: 1555 // FIXME: Translate 1556 break; 1557 case dwarf::DW_ATE_boolean: 1558 switch (ByteSize) { 1559 case 1: STK = SimpleTypeKind::Boolean8; break; 1560 case 2: STK = SimpleTypeKind::Boolean16; break; 1561 case 4: STK = SimpleTypeKind::Boolean32; break; 1562 case 8: STK = SimpleTypeKind::Boolean64; break; 1563 case 16: STK = SimpleTypeKind::Boolean128; break; 1564 } 1565 break; 1566 case dwarf::DW_ATE_complex_float: 1567 switch (ByteSize) { 1568 case 2: STK = SimpleTypeKind::Complex16; break; 1569 case 4: STK = SimpleTypeKind::Complex32; break; 1570 case 8: STK = SimpleTypeKind::Complex64; break; 1571 case 10: STK = SimpleTypeKind::Complex80; break; 1572 case 16: STK = SimpleTypeKind::Complex128; break; 1573 } 1574 break; 1575 case dwarf::DW_ATE_float: 1576 switch (ByteSize) { 1577 case 2: STK = SimpleTypeKind::Float16; break; 1578 case 4: STK = SimpleTypeKind::Float32; break; 1579 case 6: STK = SimpleTypeKind::Float48; break; 1580 case 8: STK = SimpleTypeKind::Float64; break; 1581 case 10: STK = SimpleTypeKind::Float80; break; 1582 case 16: STK = SimpleTypeKind::Float128; break; 1583 } 1584 break; 1585 case dwarf::DW_ATE_signed: 1586 switch (ByteSize) { 1587 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1588 case 2: STK = SimpleTypeKind::Int16Short; break; 1589 case 4: STK = SimpleTypeKind::Int32; break; 1590 case 8: STK = SimpleTypeKind::Int64Quad; break; 1591 case 16: STK = SimpleTypeKind::Int128Oct; break; 1592 } 1593 break; 1594 case dwarf::DW_ATE_unsigned: 1595 switch (ByteSize) { 1596 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1597 case 2: STK = SimpleTypeKind::UInt16Short; break; 1598 case 4: STK = SimpleTypeKind::UInt32; break; 1599 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1600 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1601 } 1602 break; 1603 case dwarf::DW_ATE_UTF: 1604 switch (ByteSize) { 1605 case 2: STK = SimpleTypeKind::Character16; break; 1606 case 4: STK = SimpleTypeKind::Character32; break; 1607 } 1608 break; 1609 case dwarf::DW_ATE_signed_char: 1610 if (ByteSize == 1) 1611 STK = SimpleTypeKind::SignedCharacter; 1612 break; 1613 case dwarf::DW_ATE_unsigned_char: 1614 if (ByteSize == 1) 1615 STK = SimpleTypeKind::UnsignedCharacter; 1616 break; 1617 default: 1618 break; 1619 } 1620 1621 // Apply some fixups based on the source-level type name. 1622 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1623 STK = SimpleTypeKind::Int32Long; 1624 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1625 STK = SimpleTypeKind::UInt32Long; 1626 if (STK == SimpleTypeKind::UInt16Short && 1627 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1628 STK = SimpleTypeKind::WideCharacter; 1629 if ((STK == SimpleTypeKind::SignedCharacter || 1630 STK == SimpleTypeKind::UnsignedCharacter) && 1631 Ty->getName() == "char") 1632 STK = SimpleTypeKind::NarrowCharacter; 1633 1634 return TypeIndex(STK); 1635 } 1636 1637 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1638 PointerOptions PO) { 1639 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1640 1641 // Pointers to simple types without any options can use SimpleTypeMode, rather 1642 // than having a dedicated pointer type record. 1643 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1644 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1645 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1646 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1647 ? SimpleTypeMode::NearPointer64 1648 : SimpleTypeMode::NearPointer32; 1649 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1650 } 1651 1652 PointerKind PK = 1653 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1654 PointerMode PM = PointerMode::Pointer; 1655 switch (Ty->getTag()) { 1656 default: llvm_unreachable("not a pointer tag type"); 1657 case dwarf::DW_TAG_pointer_type: 1658 PM = PointerMode::Pointer; 1659 break; 1660 case dwarf::DW_TAG_reference_type: 1661 PM = PointerMode::LValueReference; 1662 break; 1663 case dwarf::DW_TAG_rvalue_reference_type: 1664 PM = PointerMode::RValueReference; 1665 break; 1666 } 1667 1668 if (Ty->isObjectPointer()) 1669 PO |= PointerOptions::Const; 1670 1671 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1672 return TypeTable.writeLeafType(PR); 1673 } 1674 1675 static PointerToMemberRepresentation 1676 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1677 // SizeInBytes being zero generally implies that the member pointer type was 1678 // incomplete, which can happen if it is part of a function prototype. In this 1679 // case, use the unknown model instead of the general model. 1680 if (IsPMF) { 1681 switch (Flags & DINode::FlagPtrToMemberRep) { 1682 case 0: 1683 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1684 : PointerToMemberRepresentation::GeneralFunction; 1685 case DINode::FlagSingleInheritance: 1686 return PointerToMemberRepresentation::SingleInheritanceFunction; 1687 case DINode::FlagMultipleInheritance: 1688 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1689 case DINode::FlagVirtualInheritance: 1690 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1691 } 1692 } else { 1693 switch (Flags & DINode::FlagPtrToMemberRep) { 1694 case 0: 1695 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1696 : PointerToMemberRepresentation::GeneralData; 1697 case DINode::FlagSingleInheritance: 1698 return PointerToMemberRepresentation::SingleInheritanceData; 1699 case DINode::FlagMultipleInheritance: 1700 return PointerToMemberRepresentation::MultipleInheritanceData; 1701 case DINode::FlagVirtualInheritance: 1702 return PointerToMemberRepresentation::VirtualInheritanceData; 1703 } 1704 } 1705 llvm_unreachable("invalid ptr to member representation"); 1706 } 1707 1708 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1709 PointerOptions PO) { 1710 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1711 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1712 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1713 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1714 : PointerKind::Near32; 1715 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1716 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1717 : PointerMode::PointerToDataMember; 1718 1719 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1720 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1721 MemberPointerInfo MPI( 1722 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1723 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1724 return TypeTable.writeLeafType(PR); 1725 } 1726 1727 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1728 /// have a translation, use the NearC convention. 1729 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1730 switch (DwarfCC) { 1731 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1732 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1733 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1734 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1735 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1736 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1737 } 1738 return CallingConvention::NearC; 1739 } 1740 1741 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1742 ModifierOptions Mods = ModifierOptions::None; 1743 PointerOptions PO = PointerOptions::None; 1744 bool IsModifier = true; 1745 const DIType *BaseTy = Ty; 1746 while (IsModifier && BaseTy) { 1747 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1748 switch (BaseTy->getTag()) { 1749 case dwarf::DW_TAG_const_type: 1750 Mods |= ModifierOptions::Const; 1751 PO |= PointerOptions::Const; 1752 break; 1753 case dwarf::DW_TAG_volatile_type: 1754 Mods |= ModifierOptions::Volatile; 1755 PO |= PointerOptions::Volatile; 1756 break; 1757 case dwarf::DW_TAG_restrict_type: 1758 // Only pointer types be marked with __restrict. There is no known flag 1759 // for __restrict in LF_MODIFIER records. 1760 PO |= PointerOptions::Restrict; 1761 break; 1762 default: 1763 IsModifier = false; 1764 break; 1765 } 1766 if (IsModifier) 1767 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1768 } 1769 1770 // Check if the inner type will use an LF_POINTER record. If so, the 1771 // qualifiers will go in the LF_POINTER record. This comes up for types like 1772 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1773 // char *'. 1774 if (BaseTy) { 1775 switch (BaseTy->getTag()) { 1776 case dwarf::DW_TAG_pointer_type: 1777 case dwarf::DW_TAG_reference_type: 1778 case dwarf::DW_TAG_rvalue_reference_type: 1779 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1780 case dwarf::DW_TAG_ptr_to_member_type: 1781 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1782 default: 1783 break; 1784 } 1785 } 1786 1787 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1788 1789 // Return the base type index if there aren't any modifiers. For example, the 1790 // metadata could contain restrict wrappers around non-pointer types. 1791 if (Mods == ModifierOptions::None) 1792 return ModifiedTI; 1793 1794 ModifierRecord MR(ModifiedTI, Mods); 1795 return TypeTable.writeLeafType(MR); 1796 } 1797 1798 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1799 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1800 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1801 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1802 1803 // MSVC uses type none for variadic argument. 1804 if (ReturnAndArgTypeIndices.size() > 1 && 1805 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1806 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1807 } 1808 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1809 ArrayRef<TypeIndex> ArgTypeIndices = None; 1810 if (!ReturnAndArgTypeIndices.empty()) { 1811 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1812 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1813 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1814 } 1815 1816 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1817 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1818 1819 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1820 1821 FunctionOptions FO = getFunctionOptions(Ty); 1822 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1823 ArgListIndex); 1824 return TypeTable.writeLeafType(Procedure); 1825 } 1826 1827 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1828 const DIType *ClassTy, 1829 int ThisAdjustment, 1830 bool IsStaticMethod, 1831 FunctionOptions FO) { 1832 // Lower the containing class type. 1833 TypeIndex ClassType = getTypeIndex(ClassTy); 1834 1835 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 1836 1837 unsigned Index = 0; 1838 SmallVector<TypeIndex, 8> ArgTypeIndices; 1839 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1840 if (ReturnAndArgs.size() > Index) { 1841 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 1842 } 1843 1844 // If the first argument is a pointer type and this isn't a static method, 1845 // treat it as the special 'this' parameter, which is encoded separately from 1846 // the arguments. 1847 TypeIndex ThisTypeIndex; 1848 if (!IsStaticMethod && ReturnAndArgs.size() > Index) { 1849 if (const DIDerivedType *PtrTy = 1850 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index].resolve())) { 1851 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { 1852 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); 1853 Index++; 1854 } 1855 } 1856 } 1857 1858 while (Index < ReturnAndArgs.size()) 1859 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 1860 1861 // MSVC uses type none for variadic argument. 1862 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 1863 ArgTypeIndices.back() = TypeIndex::None(); 1864 1865 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1866 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1867 1868 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1869 1870 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1871 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1872 return TypeTable.writeLeafType(MFR); 1873 } 1874 1875 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1876 unsigned VSlotCount = 1877 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1878 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1879 1880 VFTableShapeRecord VFTSR(Slots); 1881 return TypeTable.writeLeafType(VFTSR); 1882 } 1883 1884 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1885 switch (Flags & DINode::FlagAccessibility) { 1886 case DINode::FlagPrivate: return MemberAccess::Private; 1887 case DINode::FlagPublic: return MemberAccess::Public; 1888 case DINode::FlagProtected: return MemberAccess::Protected; 1889 case 0: 1890 // If there was no explicit access control, provide the default for the tag. 1891 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1892 : MemberAccess::Public; 1893 } 1894 llvm_unreachable("access flags are exclusive"); 1895 } 1896 1897 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1898 if (SP->isArtificial()) 1899 return MethodOptions::CompilerGenerated; 1900 1901 // FIXME: Handle other MethodOptions. 1902 1903 return MethodOptions::None; 1904 } 1905 1906 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1907 bool Introduced) { 1908 if (SP->getFlags() & DINode::FlagStaticMember) 1909 return MethodKind::Static; 1910 1911 switch (SP->getVirtuality()) { 1912 case dwarf::DW_VIRTUALITY_none: 1913 break; 1914 case dwarf::DW_VIRTUALITY_virtual: 1915 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1916 case dwarf::DW_VIRTUALITY_pure_virtual: 1917 return Introduced ? MethodKind::PureIntroducingVirtual 1918 : MethodKind::PureVirtual; 1919 default: 1920 llvm_unreachable("unhandled virtuality case"); 1921 } 1922 1923 return MethodKind::Vanilla; 1924 } 1925 1926 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1927 switch (Ty->getTag()) { 1928 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1929 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1930 } 1931 llvm_unreachable("unexpected tag"); 1932 } 1933 1934 /// Return ClassOptions that should be present on both the forward declaration 1935 /// and the defintion of a tag type. 1936 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1937 ClassOptions CO = ClassOptions::None; 1938 1939 // MSVC always sets this flag, even for local types. Clang doesn't always 1940 // appear to give every type a linkage name, which may be problematic for us. 1941 // FIXME: Investigate the consequences of not following them here. 1942 if (!Ty->getIdentifier().empty()) 1943 CO |= ClassOptions::HasUniqueName; 1944 1945 // Put the Nested flag on a type if it appears immediately inside a tag type. 1946 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1947 // here. That flag is only set on definitions, and not forward declarations. 1948 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1949 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1950 CO |= ClassOptions::Nested; 1951 1952 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 1953 // type only when it has an immediate function scope. Clang never puts enums 1954 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 1955 // always in function, class, or file scopes. 1956 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 1957 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 1958 CO |= ClassOptions::Scoped; 1959 } else { 1960 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1961 Scope = Scope->getScope().resolve()) { 1962 if (isa<DISubprogram>(Scope)) { 1963 CO |= ClassOptions::Scoped; 1964 break; 1965 } 1966 } 1967 } 1968 1969 return CO; 1970 } 1971 1972 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 1973 switch (Ty->getTag()) { 1974 case dwarf::DW_TAG_class_type: 1975 case dwarf::DW_TAG_structure_type: 1976 case dwarf::DW_TAG_union_type: 1977 case dwarf::DW_TAG_enumeration_type: 1978 break; 1979 default: 1980 return; 1981 } 1982 1983 if (const auto *File = Ty->getFile()) { 1984 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1985 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 1986 1987 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 1988 TypeTable.writeLeafType(USLR); 1989 } 1990 } 1991 1992 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1993 ClassOptions CO = getCommonClassOptions(Ty); 1994 TypeIndex FTI; 1995 unsigned EnumeratorCount = 0; 1996 1997 if (Ty->isForwardDecl()) { 1998 CO |= ClassOptions::ForwardReference; 1999 } else { 2000 ContinuationRecordBuilder ContinuationBuilder; 2001 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2002 for (const DINode *Element : Ty->getElements()) { 2003 // We assume that the frontend provides all members in source declaration 2004 // order, which is what MSVC does. 2005 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2006 EnumeratorRecord ER(MemberAccess::Public, 2007 APSInt::getUnsigned(Enumerator->getValue()), 2008 Enumerator->getName()); 2009 ContinuationBuilder.writeMemberType(ER); 2010 EnumeratorCount++; 2011 } 2012 } 2013 FTI = TypeTable.insertRecord(ContinuationBuilder); 2014 } 2015 2016 std::string FullName = getFullyQualifiedName(Ty); 2017 2018 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2019 getTypeIndex(Ty->getBaseType())); 2020 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2021 2022 addUDTSrcLine(Ty, EnumTI); 2023 2024 return EnumTI; 2025 } 2026 2027 //===----------------------------------------------------------------------===// 2028 // ClassInfo 2029 //===----------------------------------------------------------------------===// 2030 2031 struct llvm::ClassInfo { 2032 struct MemberInfo { 2033 const DIDerivedType *MemberTypeNode; 2034 uint64_t BaseOffset; 2035 }; 2036 // [MemberInfo] 2037 using MemberList = std::vector<MemberInfo>; 2038 2039 using MethodsList = TinyPtrVector<const DISubprogram *>; 2040 // MethodName -> MethodsList 2041 using MethodsMap = MapVector<MDString *, MethodsList>; 2042 2043 /// Base classes. 2044 std::vector<const DIDerivedType *> Inheritance; 2045 2046 /// Direct members. 2047 MemberList Members; 2048 // Direct overloaded methods gathered by name. 2049 MethodsMap Methods; 2050 2051 TypeIndex VShapeTI; 2052 2053 std::vector<const DIType *> NestedTypes; 2054 }; 2055 2056 void CodeViewDebug::clear() { 2057 assert(CurFn == nullptr); 2058 FileIdMap.clear(); 2059 FnDebugInfo.clear(); 2060 FileToFilepathMap.clear(); 2061 LocalUDTs.clear(); 2062 GlobalUDTs.clear(); 2063 TypeIndices.clear(); 2064 CompleteTypeIndices.clear(); 2065 ScopeGlobals.clear(); 2066 } 2067 2068 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2069 const DIDerivedType *DDTy) { 2070 if (!DDTy->getName().empty()) { 2071 Info.Members.push_back({DDTy, 0}); 2072 return; 2073 } 2074 2075 // An unnamed member may represent a nested struct or union. Attempt to 2076 // interpret the unnamed member as a DICompositeType possibly wrapped in 2077 // qualifier types. Add all the indirect fields to the current record if that 2078 // succeeds, and drop the member if that fails. 2079 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2080 uint64_t Offset = DDTy->getOffsetInBits(); 2081 const DIType *Ty = DDTy->getBaseType().resolve(); 2082 bool FullyResolved = false; 2083 while (!FullyResolved) { 2084 switch (Ty->getTag()) { 2085 case dwarf::DW_TAG_const_type: 2086 case dwarf::DW_TAG_volatile_type: 2087 // FIXME: we should apply the qualifier types to the indirect fields 2088 // rather than dropping them. 2089 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); 2090 break; 2091 default: 2092 FullyResolved = true; 2093 break; 2094 } 2095 } 2096 2097 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2098 if (!DCTy) 2099 return; 2100 2101 ClassInfo NestedInfo = collectClassInfo(DCTy); 2102 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2103 Info.Members.push_back( 2104 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2105 } 2106 2107 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2108 ClassInfo Info; 2109 // Add elements to structure type. 2110 DINodeArray Elements = Ty->getElements(); 2111 for (auto *Element : Elements) { 2112 // We assume that the frontend provides all members in source declaration 2113 // order, which is what MSVC does. 2114 if (!Element) 2115 continue; 2116 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2117 Info.Methods[SP->getRawName()].push_back(SP); 2118 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2119 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2120 collectMemberInfo(Info, DDTy); 2121 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2122 Info.Inheritance.push_back(DDTy); 2123 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2124 DDTy->getName() == "__vtbl_ptr_type") { 2125 Info.VShapeTI = getTypeIndex(DDTy); 2126 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2127 Info.NestedTypes.push_back(DDTy); 2128 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2129 // Ignore friend members. It appears that MSVC emitted info about 2130 // friends in the past, but modern versions do not. 2131 } 2132 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2133 Info.NestedTypes.push_back(Composite); 2134 } 2135 // Skip other unrecognized kinds of elements. 2136 } 2137 return Info; 2138 } 2139 2140 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2141 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2142 // if a complete type should be emitted instead of a forward reference. 2143 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2144 !Ty->isForwardDecl(); 2145 } 2146 2147 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2148 // Emit the complete type for unnamed structs. C++ classes with methods 2149 // which have a circular reference back to the class type are expected to 2150 // be named by the front-end and should not be "unnamed". C unnamed 2151 // structs should not have circular references. 2152 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2153 // If this unnamed complete type is already in the process of being defined 2154 // then the description of the type is malformed and cannot be emitted 2155 // into CodeView correctly so report a fatal error. 2156 auto I = CompleteTypeIndices.find(Ty); 2157 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2158 report_fatal_error("cannot debug circular reference to unnamed type"); 2159 return getCompleteTypeIndex(Ty); 2160 } 2161 2162 // First, construct the forward decl. Don't look into Ty to compute the 2163 // forward decl options, since it might not be available in all TUs. 2164 TypeRecordKind Kind = getRecordKind(Ty); 2165 ClassOptions CO = 2166 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2167 std::string FullName = getFullyQualifiedName(Ty); 2168 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2169 FullName, Ty->getIdentifier()); 2170 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2171 if (!Ty->isForwardDecl()) 2172 DeferredCompleteTypes.push_back(Ty); 2173 return FwdDeclTI; 2174 } 2175 2176 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2177 // Construct the field list and complete type record. 2178 TypeRecordKind Kind = getRecordKind(Ty); 2179 ClassOptions CO = getCommonClassOptions(Ty); 2180 TypeIndex FieldTI; 2181 TypeIndex VShapeTI; 2182 unsigned FieldCount; 2183 bool ContainsNestedClass; 2184 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2185 lowerRecordFieldList(Ty); 2186 2187 if (ContainsNestedClass) 2188 CO |= ClassOptions::ContainsNestedClass; 2189 2190 std::string FullName = getFullyQualifiedName(Ty); 2191 2192 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2193 2194 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2195 SizeInBytes, FullName, Ty->getIdentifier()); 2196 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2197 2198 addUDTSrcLine(Ty, ClassTI); 2199 2200 addToUDTs(Ty); 2201 2202 return ClassTI; 2203 } 2204 2205 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2206 // Emit the complete type for unnamed unions. 2207 if (shouldAlwaysEmitCompleteClassType(Ty)) 2208 return getCompleteTypeIndex(Ty); 2209 2210 ClassOptions CO = 2211 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2212 std::string FullName = getFullyQualifiedName(Ty); 2213 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2214 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2215 if (!Ty->isForwardDecl()) 2216 DeferredCompleteTypes.push_back(Ty); 2217 return FwdDeclTI; 2218 } 2219 2220 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2221 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2222 TypeIndex FieldTI; 2223 unsigned FieldCount; 2224 bool ContainsNestedClass; 2225 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2226 lowerRecordFieldList(Ty); 2227 2228 if (ContainsNestedClass) 2229 CO |= ClassOptions::ContainsNestedClass; 2230 2231 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2232 std::string FullName = getFullyQualifiedName(Ty); 2233 2234 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2235 Ty->getIdentifier()); 2236 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2237 2238 addUDTSrcLine(Ty, UnionTI); 2239 2240 addToUDTs(Ty); 2241 2242 return UnionTI; 2243 } 2244 2245 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2246 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2247 // Manually count members. MSVC appears to count everything that generates a 2248 // field list record. Each individual overload in a method overload group 2249 // contributes to this count, even though the overload group is a single field 2250 // list record. 2251 unsigned MemberCount = 0; 2252 ClassInfo Info = collectClassInfo(Ty); 2253 ContinuationRecordBuilder ContinuationBuilder; 2254 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2255 2256 // Create base classes. 2257 for (const DIDerivedType *I : Info.Inheritance) { 2258 if (I->getFlags() & DINode::FlagVirtual) { 2259 // Virtual base. 2260 unsigned VBPtrOffset = I->getVBPtrOffset(); 2261 // FIXME: Despite the accessor name, the offset is really in bytes. 2262 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2263 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2264 ? TypeRecordKind::IndirectVirtualBaseClass 2265 : TypeRecordKind::VirtualBaseClass; 2266 VirtualBaseClassRecord VBCR( 2267 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2268 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2269 VBTableIndex); 2270 2271 ContinuationBuilder.writeMemberType(VBCR); 2272 MemberCount++; 2273 } else { 2274 assert(I->getOffsetInBits() % 8 == 0 && 2275 "bases must be on byte boundaries"); 2276 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2277 getTypeIndex(I->getBaseType()), 2278 I->getOffsetInBits() / 8); 2279 ContinuationBuilder.writeMemberType(BCR); 2280 MemberCount++; 2281 } 2282 } 2283 2284 // Create members. 2285 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2286 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2287 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2288 StringRef MemberName = Member->getName(); 2289 MemberAccess Access = 2290 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2291 2292 if (Member->isStaticMember()) { 2293 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2294 ContinuationBuilder.writeMemberType(SDMR); 2295 MemberCount++; 2296 continue; 2297 } 2298 2299 // Virtual function pointer member. 2300 if ((Member->getFlags() & DINode::FlagArtificial) && 2301 Member->getName().startswith("_vptr$")) { 2302 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2303 ContinuationBuilder.writeMemberType(VFPR); 2304 MemberCount++; 2305 continue; 2306 } 2307 2308 // Data member. 2309 uint64_t MemberOffsetInBits = 2310 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2311 if (Member->isBitField()) { 2312 uint64_t StartBitOffset = MemberOffsetInBits; 2313 if (const auto *CI = 2314 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2315 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2316 } 2317 StartBitOffset -= MemberOffsetInBits; 2318 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2319 StartBitOffset); 2320 MemberBaseType = TypeTable.writeLeafType(BFR); 2321 } 2322 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2323 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2324 MemberName); 2325 ContinuationBuilder.writeMemberType(DMR); 2326 MemberCount++; 2327 } 2328 2329 // Create methods 2330 for (auto &MethodItr : Info.Methods) { 2331 StringRef Name = MethodItr.first->getString(); 2332 2333 std::vector<OneMethodRecord> Methods; 2334 for (const DISubprogram *SP : MethodItr.second) { 2335 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2336 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2337 2338 unsigned VFTableOffset = -1; 2339 if (Introduced) 2340 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2341 2342 Methods.push_back(OneMethodRecord( 2343 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2344 translateMethodKindFlags(SP, Introduced), 2345 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2346 MemberCount++; 2347 } 2348 assert(!Methods.empty() && "Empty methods map entry"); 2349 if (Methods.size() == 1) 2350 ContinuationBuilder.writeMemberType(Methods[0]); 2351 else { 2352 // FIXME: Make this use its own ContinuationBuilder so that 2353 // MethodOverloadList can be split correctly. 2354 MethodOverloadListRecord MOLR(Methods); 2355 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2356 2357 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2358 ContinuationBuilder.writeMemberType(OMR); 2359 } 2360 } 2361 2362 // Create nested classes. 2363 for (const DIType *Nested : Info.NestedTypes) { 2364 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2365 ContinuationBuilder.writeMemberType(R); 2366 MemberCount++; 2367 } 2368 2369 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2370 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2371 !Info.NestedTypes.empty()); 2372 } 2373 2374 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2375 if (!VBPType.getIndex()) { 2376 // Make a 'const int *' type. 2377 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2378 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2379 2380 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2381 : PointerKind::Near32; 2382 PointerMode PM = PointerMode::Pointer; 2383 PointerOptions PO = PointerOptions::None; 2384 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2385 VBPType = TypeTable.writeLeafType(PR); 2386 } 2387 2388 return VBPType; 2389 } 2390 2391 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2392 const DIType *Ty = TypeRef.resolve(); 2393 const DIType *ClassTy = ClassTyRef.resolve(); 2394 2395 // The null DIType is the void type. Don't try to hash it. 2396 if (!Ty) 2397 return TypeIndex::Void(); 2398 2399 // Check if we've already translated this type. Don't try to do a 2400 // get-or-create style insertion that caches the hash lookup across the 2401 // lowerType call. It will update the TypeIndices map. 2402 auto I = TypeIndices.find({Ty, ClassTy}); 2403 if (I != TypeIndices.end()) 2404 return I->second; 2405 2406 TypeLoweringScope S(*this); 2407 TypeIndex TI = lowerType(Ty, ClassTy); 2408 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2409 } 2410 2411 codeview::TypeIndex 2412 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, 2413 const DISubroutineType *SubroutineTy) { 2414 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && 2415 "this type must be a pointer type"); 2416 2417 PointerOptions Options = PointerOptions::None; 2418 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2419 Options = PointerOptions::LValueRefThisPointer; 2420 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2421 Options = PointerOptions::RValueRefThisPointer; 2422 2423 // Check if we've already translated this type. If there is no ref qualifier 2424 // on the function then we look up this pointer type with no associated class 2425 // so that the TypeIndex for the this pointer can be shared with the type 2426 // index for other pointers to this class type. If there is a ref qualifier 2427 // then we lookup the pointer using the subroutine as the parent type. 2428 auto I = TypeIndices.find({PtrTy, SubroutineTy}); 2429 if (I != TypeIndices.end()) 2430 return I->second; 2431 2432 TypeLoweringScope S(*this); 2433 TypeIndex TI = lowerTypePointer(PtrTy, Options); 2434 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); 2435 } 2436 2437 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2438 DIType *Ty = TypeRef.resolve(); 2439 PointerRecord PR(getTypeIndex(Ty), 2440 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2441 : PointerKind::Near32, 2442 PointerMode::LValueReference, PointerOptions::None, 2443 Ty->getSizeInBits() / 8); 2444 return TypeTable.writeLeafType(PR); 2445 } 2446 2447 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2448 const DIType *Ty = TypeRef.resolve(); 2449 2450 // The null DIType is the void type. Don't try to hash it. 2451 if (!Ty) 2452 return TypeIndex::Void(); 2453 2454 // Look through typedefs when getting the complete type index. Call 2455 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2456 // emitted only once. 2457 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2458 (void)getTypeIndex(Ty); 2459 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2460 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); 2461 2462 // If this is a non-record type, the complete type index is the same as the 2463 // normal type index. Just call getTypeIndex. 2464 switch (Ty->getTag()) { 2465 case dwarf::DW_TAG_class_type: 2466 case dwarf::DW_TAG_structure_type: 2467 case dwarf::DW_TAG_union_type: 2468 break; 2469 default: 2470 return getTypeIndex(Ty); 2471 } 2472 2473 // Check if we've already translated the complete record type. 2474 const auto *CTy = cast<DICompositeType>(Ty); 2475 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2476 if (!InsertResult.second) 2477 return InsertResult.first->second; 2478 2479 TypeLoweringScope S(*this); 2480 2481 // Make sure the forward declaration is emitted first. It's unclear if this 2482 // is necessary, but MSVC does it, and we should follow suit until we can show 2483 // otherwise. 2484 // We only emit a forward declaration for named types. 2485 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2486 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2487 2488 // Just use the forward decl if we don't have complete type info. This 2489 // might happen if the frontend is using modules and expects the complete 2490 // definition to be emitted elsewhere. 2491 if (CTy->isForwardDecl()) 2492 return FwdDeclTI; 2493 } 2494 2495 TypeIndex TI; 2496 switch (CTy->getTag()) { 2497 case dwarf::DW_TAG_class_type: 2498 case dwarf::DW_TAG_structure_type: 2499 TI = lowerCompleteTypeClass(CTy); 2500 break; 2501 case dwarf::DW_TAG_union_type: 2502 TI = lowerCompleteTypeUnion(CTy); 2503 break; 2504 default: 2505 llvm_unreachable("not a record"); 2506 } 2507 2508 // Update the type index associated with this CompositeType. This cannot 2509 // use the 'InsertResult' iterator above because it is potentially 2510 // invalidated by map insertions which can occur while lowering the class 2511 // type above. 2512 CompleteTypeIndices[CTy] = TI; 2513 return TI; 2514 } 2515 2516 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2517 /// and do this until fixpoint, as each complete record type typically 2518 /// references 2519 /// many other record types. 2520 void CodeViewDebug::emitDeferredCompleteTypes() { 2521 SmallVector<const DICompositeType *, 4> TypesToEmit; 2522 while (!DeferredCompleteTypes.empty()) { 2523 std::swap(DeferredCompleteTypes, TypesToEmit); 2524 for (const DICompositeType *RecordTy : TypesToEmit) 2525 getCompleteTypeIndex(RecordTy); 2526 TypesToEmit.clear(); 2527 } 2528 } 2529 2530 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2531 ArrayRef<LocalVariable> Locals) { 2532 // Get the sorted list of parameters and emit them first. 2533 SmallVector<const LocalVariable *, 6> Params; 2534 for (const LocalVariable &L : Locals) 2535 if (L.DIVar->isParameter()) 2536 Params.push_back(&L); 2537 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2538 return L->DIVar->getArg() < R->DIVar->getArg(); 2539 }); 2540 for (const LocalVariable *L : Params) 2541 emitLocalVariable(FI, *L); 2542 2543 // Next emit all non-parameters in the order that we found them. 2544 for (const LocalVariable &L : Locals) 2545 if (!L.DIVar->isParameter()) 2546 emitLocalVariable(FI, L); 2547 } 2548 2549 /// Only call this on endian-specific types like ulittle16_t and little32_t, or 2550 /// structs composed of them. 2551 template <typename T> 2552 static void copyBytesForDefRange(SmallString<20> &BytePrefix, 2553 SymbolKind SymKind, const T &DefRangeHeader) { 2554 BytePrefix.resize(2 + sizeof(T)); 2555 ulittle16_t SymKindLE = ulittle16_t(SymKind); 2556 memcpy(&BytePrefix[0], &SymKindLE, 2); 2557 memcpy(&BytePrefix[2], &DefRangeHeader, sizeof(T)); 2558 } 2559 2560 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2561 const LocalVariable &Var) { 2562 // LocalSym record, see SymbolRecord.h for more info. 2563 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2564 2565 LocalSymFlags Flags = LocalSymFlags::None; 2566 if (Var.DIVar->isParameter()) 2567 Flags |= LocalSymFlags::IsParameter; 2568 if (Var.DefRanges.empty()) 2569 Flags |= LocalSymFlags::IsOptimizedOut; 2570 2571 OS.AddComment("TypeIndex"); 2572 TypeIndex TI = Var.UseReferenceType 2573 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2574 : getCompleteTypeIndex(Var.DIVar->getType()); 2575 OS.EmitIntValue(TI.getIndex(), 4); 2576 OS.AddComment("Flags"); 2577 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2578 // Truncate the name so we won't overflow the record length field. 2579 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2580 endSymbolRecord(LocalEnd); 2581 2582 // Calculate the on disk prefix of the appropriate def range record. The 2583 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2584 // should be big enough to hold all forms without memory allocation. 2585 SmallString<20> BytePrefix; 2586 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2587 BytePrefix.clear(); 2588 if (DefRange.InMemory) { 2589 int Offset = DefRange.DataOffset; 2590 unsigned Reg = DefRange.CVRegister; 2591 2592 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2593 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2594 // instead. In frames without stack realignment, $T0 will be the CFA. 2595 if (RegisterId(Reg) == RegisterId::ESP) { 2596 Reg = unsigned(RegisterId::VFRAME); 2597 Offset += FI.OffsetAdjustment; 2598 } 2599 2600 // If we can use the chosen frame pointer for the frame and this isn't a 2601 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2602 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2603 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2604 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2605 (bool(Flags & LocalSymFlags::IsParameter) 2606 ? (EncFP == FI.EncodedParamFramePtrReg) 2607 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2608 little32_t FPOffset = little32_t(Offset); 2609 copyBytesForDefRange(BytePrefix, S_DEFRANGE_FRAMEPOINTER_REL, FPOffset); 2610 } else { 2611 uint16_t RegRelFlags = 0; 2612 if (DefRange.IsSubfield) { 2613 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2614 (DefRange.StructOffset 2615 << DefRangeRegisterRelSym::OffsetInParentShift); 2616 } 2617 DefRangeRegisterRelSym::Header DRHdr; 2618 DRHdr.Register = Reg; 2619 DRHdr.Flags = RegRelFlags; 2620 DRHdr.BasePointerOffset = Offset; 2621 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER_REL, DRHdr); 2622 } 2623 } else { 2624 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2625 if (DefRange.IsSubfield) { 2626 DefRangeSubfieldRegisterSym::Header DRHdr; 2627 DRHdr.Register = DefRange.CVRegister; 2628 DRHdr.MayHaveNoName = 0; 2629 DRHdr.OffsetInParent = DefRange.StructOffset; 2630 copyBytesForDefRange(BytePrefix, S_DEFRANGE_SUBFIELD_REGISTER, DRHdr); 2631 } else { 2632 DefRangeRegisterSym::Header DRHdr; 2633 DRHdr.Register = DefRange.CVRegister; 2634 DRHdr.MayHaveNoName = 0; 2635 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER, DRHdr); 2636 } 2637 } 2638 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2639 } 2640 } 2641 2642 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2643 const FunctionInfo& FI) { 2644 for (LexicalBlock *Block : Blocks) 2645 emitLexicalBlock(*Block, FI); 2646 } 2647 2648 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2649 /// lexical block scope. 2650 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2651 const FunctionInfo& FI) { 2652 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2653 OS.AddComment("PtrParent"); 2654 OS.EmitIntValue(0, 4); // PtrParent 2655 OS.AddComment("PtrEnd"); 2656 OS.EmitIntValue(0, 4); // PtrEnd 2657 OS.AddComment("Code size"); 2658 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2659 OS.AddComment("Function section relative address"); 2660 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2661 OS.AddComment("Function section index"); 2662 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2663 OS.AddComment("Lexical block name"); 2664 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2665 endSymbolRecord(RecordEnd); 2666 2667 // Emit variables local to this lexical block. 2668 emitLocalVariableList(FI, Block.Locals); 2669 emitGlobalVariableList(Block.Globals); 2670 2671 // Emit lexical blocks contained within this block. 2672 emitLexicalBlockList(Block.Children, FI); 2673 2674 // Close the lexical block scope. 2675 emitEndSymbolRecord(SymbolKind::S_END); 2676 } 2677 2678 /// Convenience routine for collecting lexical block information for a list 2679 /// of lexical scopes. 2680 void CodeViewDebug::collectLexicalBlockInfo( 2681 SmallVectorImpl<LexicalScope *> &Scopes, 2682 SmallVectorImpl<LexicalBlock *> &Blocks, 2683 SmallVectorImpl<LocalVariable> &Locals, 2684 SmallVectorImpl<CVGlobalVariable> &Globals) { 2685 for (LexicalScope *Scope : Scopes) 2686 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); 2687 } 2688 2689 /// Populate the lexical blocks and local variable lists of the parent with 2690 /// information about the specified lexical scope. 2691 void CodeViewDebug::collectLexicalBlockInfo( 2692 LexicalScope &Scope, 2693 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2694 SmallVectorImpl<LocalVariable> &ParentLocals, 2695 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { 2696 if (Scope.isAbstractScope()) 2697 return; 2698 2699 // Gather information about the lexical scope including local variables, 2700 // global variables, and address ranges. 2701 bool IgnoreScope = false; 2702 auto LI = ScopeVariables.find(&Scope); 2703 SmallVectorImpl<LocalVariable> *Locals = 2704 LI != ScopeVariables.end() ? &LI->second : nullptr; 2705 auto GI = ScopeGlobals.find(Scope.getScopeNode()); 2706 SmallVectorImpl<CVGlobalVariable> *Globals = 2707 GI != ScopeGlobals.end() ? GI->second.get() : nullptr; 2708 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2709 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2710 2711 // Ignore lexical scopes which do not contain variables. 2712 if (!Locals && !Globals) 2713 IgnoreScope = true; 2714 2715 // Ignore lexical scopes which are not lexical blocks. 2716 if (!DILB) 2717 IgnoreScope = true; 2718 2719 // Ignore scopes which have too many address ranges to represent in the 2720 // current CodeView format or do not have a valid address range. 2721 // 2722 // For lexical scopes with multiple address ranges you may be tempted to 2723 // construct a single range covering every instruction where the block is 2724 // live and everything in between. Unfortunately, Visual Studio only 2725 // displays variables from the first matching lexical block scope. If the 2726 // first lexical block contains exception handling code or cold code which 2727 // is moved to the bottom of the routine creating a single range covering 2728 // nearly the entire routine, then it will hide all other lexical blocks 2729 // and the variables they contain. 2730 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) 2731 IgnoreScope = true; 2732 2733 if (IgnoreScope) { 2734 // This scope can be safely ignored and eliminating it will reduce the 2735 // size of the debug information. Be sure to collect any variable and scope 2736 // information from the this scope or any of its children and collapse them 2737 // into the parent scope. 2738 if (Locals) 2739 ParentLocals.append(Locals->begin(), Locals->end()); 2740 if (Globals) 2741 ParentGlobals.append(Globals->begin(), Globals->end()); 2742 collectLexicalBlockInfo(Scope.getChildren(), 2743 ParentBlocks, 2744 ParentLocals, 2745 ParentGlobals); 2746 return; 2747 } 2748 2749 // Create a new CodeView lexical block for this lexical scope. If we've 2750 // seen this DILexicalBlock before then the scope tree is malformed and 2751 // we can handle this gracefully by not processing it a second time. 2752 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2753 if (!BlockInsertion.second) 2754 return; 2755 2756 // Create a lexical block containing the variables and collect the the 2757 // lexical block information for the children. 2758 const InsnRange &Range = Ranges.front(); 2759 assert(Range.first && Range.second); 2760 LexicalBlock &Block = BlockInsertion.first->second; 2761 Block.Begin = getLabelBeforeInsn(Range.first); 2762 Block.End = getLabelAfterInsn(Range.second); 2763 assert(Block.Begin && "missing label for scope begin"); 2764 assert(Block.End && "missing label for scope end"); 2765 Block.Name = DILB->getName(); 2766 if (Locals) 2767 Block.Locals = std::move(*Locals); 2768 if (Globals) 2769 Block.Globals = std::move(*Globals); 2770 ParentBlocks.push_back(&Block); 2771 collectLexicalBlockInfo(Scope.getChildren(), 2772 Block.Children, 2773 Block.Locals, 2774 Block.Globals); 2775 } 2776 2777 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2778 const Function &GV = MF->getFunction(); 2779 assert(FnDebugInfo.count(&GV)); 2780 assert(CurFn == FnDebugInfo[&GV].get()); 2781 2782 collectVariableInfo(GV.getSubprogram()); 2783 2784 // Build the lexical block structure to emit for this routine. 2785 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2786 collectLexicalBlockInfo(*CFS, 2787 CurFn->ChildBlocks, 2788 CurFn->Locals, 2789 CurFn->Globals); 2790 2791 // Clear the scope and variable information from the map which will not be 2792 // valid after we have finished processing this routine. This also prepares 2793 // the map for the subsequent routine. 2794 ScopeVariables.clear(); 2795 2796 // Don't emit anything if we don't have any line tables. 2797 // Thunks are compiler-generated and probably won't have source correlation. 2798 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2799 FnDebugInfo.erase(&GV); 2800 CurFn = nullptr; 2801 return; 2802 } 2803 2804 CurFn->Annotations = MF->getCodeViewAnnotations(); 2805 2806 CurFn->End = Asm->getFunctionEnd(); 2807 2808 CurFn = nullptr; 2809 } 2810 2811 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2812 DebugHandlerBase::beginInstruction(MI); 2813 2814 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2815 if (!Asm || !CurFn || MI->isDebugInstr() || 2816 MI->getFlag(MachineInstr::FrameSetup)) 2817 return; 2818 2819 // If the first instruction of a new MBB has no location, find the first 2820 // instruction with a location and use that. 2821 DebugLoc DL = MI->getDebugLoc(); 2822 if (!DL && MI->getParent() != PrevInstBB) { 2823 for (const auto &NextMI : *MI->getParent()) { 2824 if (NextMI.isDebugInstr()) 2825 continue; 2826 DL = NextMI.getDebugLoc(); 2827 if (DL) 2828 break; 2829 } 2830 } 2831 PrevInstBB = MI->getParent(); 2832 2833 // If we still don't have a debug location, don't record a location. 2834 if (!DL) 2835 return; 2836 2837 maybeRecordLocation(DL, Asm->MF); 2838 } 2839 2840 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2841 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2842 *EndLabel = MMI->getContext().createTempSymbol(); 2843 OS.EmitIntValue(unsigned(Kind), 4); 2844 OS.AddComment("Subsection size"); 2845 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2846 OS.EmitLabel(BeginLabel); 2847 return EndLabel; 2848 } 2849 2850 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2851 OS.EmitLabel(EndLabel); 2852 // Every subsection must be aligned to a 4-byte boundary. 2853 OS.EmitValueToAlignment(4); 2854 } 2855 2856 static StringRef getSymbolName(SymbolKind SymKind) { 2857 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 2858 if (EE.Value == SymKind) 2859 return EE.Name; 2860 return ""; 2861 } 2862 2863 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 2864 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2865 *EndLabel = MMI->getContext().createTempSymbol(); 2866 OS.AddComment("Record length"); 2867 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 2868 OS.EmitLabel(BeginLabel); 2869 if (OS.isVerboseAsm()) 2870 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 2871 OS.EmitIntValue(unsigned(SymKind), 2); 2872 return EndLabel; 2873 } 2874 2875 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 2876 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 2877 // an extra copy of every symbol record in LLD. This increases object file 2878 // size by less than 1% in the clang build, and is compatible with the Visual 2879 // C++ linker. 2880 OS.EmitValueToAlignment(4); 2881 OS.EmitLabel(SymEnd); 2882 } 2883 2884 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 2885 OS.AddComment("Record length"); 2886 OS.EmitIntValue(2, 2); 2887 if (OS.isVerboseAsm()) 2888 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 2889 OS.EmitIntValue(unsigned(EndKind), 2); // Record Kind 2890 } 2891 2892 void CodeViewDebug::emitDebugInfoForUDTs( 2893 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2894 for (const auto &UDT : UDTs) { 2895 const DIType *T = UDT.second; 2896 assert(shouldEmitUdt(T)); 2897 2898 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 2899 OS.AddComment("Type"); 2900 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2901 emitNullTerminatedSymbolName(OS, UDT.first); 2902 endSymbolRecord(UDTRecordEnd); 2903 } 2904 } 2905 2906 void CodeViewDebug::collectGlobalVariableInfo() { 2907 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2908 GlobalMap; 2909 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2910 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2911 GV.getDebugInfo(GVEs); 2912 for (const auto *GVE : GVEs) 2913 GlobalMap[GVE] = &GV; 2914 } 2915 2916 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2917 for (const MDNode *Node : CUs->operands()) { 2918 const auto *CU = cast<DICompileUnit>(Node); 2919 for (const auto *GVE : CU->getGlobalVariables()) { 2920 const auto *GV = GlobalMap.lookup(GVE); 2921 if (!GV || GV->isDeclarationForLinker()) 2922 continue; 2923 const DIGlobalVariable *DIGV = GVE->getVariable(); 2924 DIScope *Scope = DIGV->getScope(); 2925 SmallVector<CVGlobalVariable, 1> *VariableList; 2926 if (Scope && isa<DILocalScope>(Scope)) { 2927 // Locate a global variable list for this scope, creating one if 2928 // necessary. 2929 auto Insertion = ScopeGlobals.insert( 2930 {Scope, std::unique_ptr<GlobalVariableList>()}); 2931 if (Insertion.second) 2932 Insertion.first->second = llvm::make_unique<GlobalVariableList>(); 2933 VariableList = Insertion.first->second.get(); 2934 } else if (GV->hasComdat()) 2935 // Emit this global variable into a COMDAT section. 2936 VariableList = &ComdatVariables; 2937 else 2938 // Emit this globla variable in a single global symbol section. 2939 VariableList = &GlobalVariables; 2940 CVGlobalVariable CVGV = {DIGV, GV}; 2941 VariableList->emplace_back(std::move(CVGV)); 2942 } 2943 } 2944 } 2945 2946 void CodeViewDebug::emitDebugInfoForGlobals() { 2947 // First, emit all globals that are not in a comdat in a single symbol 2948 // substream. MSVC doesn't like it if the substream is empty, so only open 2949 // it if we have at least one global to emit. 2950 switchToDebugSectionForSymbol(nullptr); 2951 if (!GlobalVariables.empty()) { 2952 OS.AddComment("Symbol subsection for globals"); 2953 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2954 emitGlobalVariableList(GlobalVariables); 2955 endCVSubsection(EndLabel); 2956 } 2957 2958 // Second, emit each global that is in a comdat into its own .debug$S 2959 // section along with its own symbol substream. 2960 for (const CVGlobalVariable &CVGV : ComdatVariables) { 2961 MCSymbol *GVSym = Asm->getSymbol(CVGV.GV); 2962 OS.AddComment("Symbol subsection for " + 2963 Twine(GlobalValue::dropLLVMManglingEscape(CVGV.GV->getName()))); 2964 switchToDebugSectionForSymbol(GVSym); 2965 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2966 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2967 emitDebugInfoForGlobal(CVGV.DIGV, CVGV.GV, GVSym); 2968 endCVSubsection(EndLabel); 2969 } 2970 } 2971 2972 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2973 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2974 for (const MDNode *Node : CUs->operands()) { 2975 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2976 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2977 getTypeIndex(RT); 2978 // FIXME: Add to global/local DTU list. 2979 } 2980 } 2981 } 2982 } 2983 2984 // Emit each global variable in the specified array. 2985 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { 2986 for (const CVGlobalVariable &CVGV : Globals) { 2987 MCSymbol *GVSym = Asm->getSymbol(CVGV.GV); 2988 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2989 emitDebugInfoForGlobal(CVGV.DIGV, CVGV.GV, GVSym); 2990 } 2991 } 2992 2993 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2994 const GlobalVariable *GV, 2995 MCSymbol *GVSym) { 2996 // DataSym record, see SymbolRecord.h for more info. Thread local data 2997 // happens to have the same format as global data. 2998 SymbolKind DataSym = GV->isThreadLocal() 2999 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 3000 : SymbolKind::S_GTHREAD32) 3001 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 3002 : SymbolKind::S_GDATA32); 3003 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 3004 OS.AddComment("Type"); 3005 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 3006 OS.AddComment("DataOffset"); 3007 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 3008 OS.AddComment("Segment"); 3009 OS.EmitCOFFSectionIndex(GVSym); 3010 OS.AddComment("Name"); 3011 const unsigned LengthOfDataRecord = 12; 3012 emitNullTerminatedSymbolName(OS, DIGV->getName(), LengthOfDataRecord); 3013 endSymbolRecord(DataEnd); 3014 } 3015