1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/TargetFrameLowering.h" 39 #include "llvm/CodeGen/TargetLoweringObjectFile.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 44 #include "llvm/DebugInfo/CodeView/CodeView.h" 45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 47 #include "llvm/DebugInfo/CodeView/Line.h" 48 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 49 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 50 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 51 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 52 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugInfoMetadata.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GlobalValue.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/MC/MCAsmInfo.h" 63 #include "llvm/MC/MCContext.h" 64 #include "llvm/MC/MCSectionCOFF.h" 65 #include "llvm/MC/MCStreamer.h" 66 #include "llvm/MC/MCSymbol.h" 67 #include "llvm/Support/BinaryByteStream.h" 68 #include "llvm/Support/BinaryStreamReader.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/Endian.h" 73 #include "llvm/Support/Error.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/FormatVariadic.h" 76 #include "llvm/Support/SMLoc.h" 77 #include "llvm/Support/ScopedPrinter.h" 78 #include "llvm/Target/TargetMachine.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cctype> 82 #include <cstddef> 83 #include <cstdint> 84 #include <iterator> 85 #include <limits> 86 #include <string> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace llvm::codeview; 92 93 static cl::opt<bool> EmitDebugGlobalHashes("emit-codeview-ghash-section", 94 cl::ReallyHidden, cl::init(false)); 95 96 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 97 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 98 // If module doesn't have named metadata anchors or COFF debug section 99 // is not available, skip any debug info related stuff. 100 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 101 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 102 Asm = nullptr; 103 return; 104 } 105 106 // Tell MMI that we have debug info. 107 MMI->setDebugInfoAvailability(true); 108 } 109 110 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 111 std::string &Filepath = FileToFilepathMap[File]; 112 if (!Filepath.empty()) 113 return Filepath; 114 115 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 116 117 // Clang emits directory and relative filename info into the IR, but CodeView 118 // operates on full paths. We could change Clang to emit full paths too, but 119 // that would increase the IR size and probably not needed for other users. 120 // For now, just concatenate and canonicalize the path here. 121 if (Filename.find(':') == 1) 122 Filepath = Filename; 123 else 124 Filepath = (Dir + "\\" + Filename).str(); 125 126 // Canonicalize the path. We have to do it textually because we may no longer 127 // have access the file in the filesystem. 128 // First, replace all slashes with backslashes. 129 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 130 131 // Remove all "\.\" with "\". 132 size_t Cursor = 0; 133 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 134 Filepath.erase(Cursor, 2); 135 136 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 137 // path should be well-formatted, e.g. start with a drive letter, etc. 138 Cursor = 0; 139 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 140 // Something's wrong if the path starts with "\..\", abort. 141 if (Cursor == 0) 142 break; 143 144 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 145 if (PrevSlash == std::string::npos) 146 // Something's wrong, abort. 147 break; 148 149 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 150 // The next ".." might be following the one we've just erased. 151 Cursor = PrevSlash; 152 } 153 154 // Remove all duplicate backslashes. 155 Cursor = 0; 156 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 157 Filepath.erase(Cursor, 1); 158 159 return Filepath; 160 } 161 162 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 163 StringRef FullPath = getFullFilepath(F); 164 unsigned NextId = FileIdMap.size() + 1; 165 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 166 if (Insertion.second) { 167 // We have to compute the full filepath and emit a .cv_file directive. 168 std::string Checksum = fromHex(F->getChecksum()); 169 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 170 memcpy(CKMem, Checksum.data(), Checksum.size()); 171 ArrayRef<uint8_t> ChecksumAsBytes(reinterpret_cast<const uint8_t *>(CKMem), 172 Checksum.size()); 173 DIFile::ChecksumKind ChecksumKind = F->getChecksumKind(); 174 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 175 static_cast<unsigned>(ChecksumKind)); 176 (void)Success; 177 assert(Success && ".cv_file directive failed"); 178 } 179 return Insertion.first->second; 180 } 181 182 CodeViewDebug::InlineSite & 183 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 184 const DISubprogram *Inlinee) { 185 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 186 InlineSite *Site = &SiteInsertion.first->second; 187 if (SiteInsertion.second) { 188 unsigned ParentFuncId = CurFn->FuncId; 189 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 190 ParentFuncId = 191 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 192 .SiteFuncId; 193 194 Site->SiteFuncId = NextFuncId++; 195 OS.EmitCVInlineSiteIdDirective( 196 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 197 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 198 Site->Inlinee = Inlinee; 199 InlinedSubprograms.insert(Inlinee); 200 getFuncIdForSubprogram(Inlinee); 201 } 202 return *Site; 203 } 204 205 static StringRef getPrettyScopeName(const DIScope *Scope) { 206 StringRef ScopeName = Scope->getName(); 207 if (!ScopeName.empty()) 208 return ScopeName; 209 210 switch (Scope->getTag()) { 211 case dwarf::DW_TAG_enumeration_type: 212 case dwarf::DW_TAG_class_type: 213 case dwarf::DW_TAG_structure_type: 214 case dwarf::DW_TAG_union_type: 215 return "<unnamed-tag>"; 216 case dwarf::DW_TAG_namespace: 217 return "`anonymous namespace'"; 218 } 219 220 return StringRef(); 221 } 222 223 static const DISubprogram *getQualifiedNameComponents( 224 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 225 const DISubprogram *ClosestSubprogram = nullptr; 226 while (Scope != nullptr) { 227 if (ClosestSubprogram == nullptr) 228 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 229 StringRef ScopeName = getPrettyScopeName(Scope); 230 if (!ScopeName.empty()) 231 QualifiedNameComponents.push_back(ScopeName); 232 Scope = Scope->getScope().resolve(); 233 } 234 return ClosestSubprogram; 235 } 236 237 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 238 StringRef TypeName) { 239 std::string FullyQualifiedName; 240 for (StringRef QualifiedNameComponent : 241 llvm::reverse(QualifiedNameComponents)) { 242 FullyQualifiedName.append(QualifiedNameComponent); 243 FullyQualifiedName.append("::"); 244 } 245 FullyQualifiedName.append(TypeName); 246 return FullyQualifiedName; 247 } 248 249 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 250 SmallVector<StringRef, 5> QualifiedNameComponents; 251 getQualifiedNameComponents(Scope, QualifiedNameComponents); 252 return getQualifiedName(QualifiedNameComponents, Name); 253 } 254 255 struct CodeViewDebug::TypeLoweringScope { 256 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 257 ~TypeLoweringScope() { 258 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 259 // inner TypeLoweringScopes don't attempt to emit deferred types. 260 if (CVD.TypeEmissionLevel == 1) 261 CVD.emitDeferredCompleteTypes(); 262 --CVD.TypeEmissionLevel; 263 } 264 CodeViewDebug &CVD; 265 }; 266 267 static std::string getFullyQualifiedName(const DIScope *Ty) { 268 const DIScope *Scope = Ty->getScope().resolve(); 269 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 270 } 271 272 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 273 // No scope means global scope and that uses the zero index. 274 if (!Scope || isa<DIFile>(Scope)) 275 return TypeIndex(); 276 277 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 278 279 // Check if we've already translated this scope. 280 auto I = TypeIndices.find({Scope, nullptr}); 281 if (I != TypeIndices.end()) 282 return I->second; 283 284 // Build the fully qualified name of the scope. 285 std::string ScopeName = getFullyQualifiedName(Scope); 286 StringIdRecord SID(TypeIndex(), ScopeName); 287 auto TI = TypeTable.writeLeafType(SID); 288 return recordTypeIndexForDINode(Scope, TI); 289 } 290 291 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 292 assert(SP); 293 294 // Check if we've already translated this subprogram. 295 auto I = TypeIndices.find({SP, nullptr}); 296 if (I != TypeIndices.end()) 297 return I->second; 298 299 // The display name includes function template arguments. Drop them to match 300 // MSVC. 301 StringRef DisplayName = SP->getName().split('<').first; 302 303 const DIScope *Scope = SP->getScope().resolve(); 304 TypeIndex TI; 305 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 306 // If the scope is a DICompositeType, then this must be a method. Member 307 // function types take some special handling, and require access to the 308 // subprogram. 309 TypeIndex ClassType = getTypeIndex(Class); 310 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 311 DisplayName); 312 TI = TypeTable.writeLeafType(MFuncId); 313 } else { 314 // Otherwise, this must be a free function. 315 TypeIndex ParentScope = getScopeIndex(Scope); 316 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 317 TI = TypeTable.writeLeafType(FuncId); 318 } 319 320 return recordTypeIndexForDINode(SP, TI); 321 } 322 323 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 324 const DICompositeType *Class) { 325 // Always use the method declaration as the key for the function type. The 326 // method declaration contains the this adjustment. 327 if (SP->getDeclaration()) 328 SP = SP->getDeclaration(); 329 assert(!SP->getDeclaration() && "should use declaration as key"); 330 331 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 332 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 333 auto I = TypeIndices.find({SP, Class}); 334 if (I != TypeIndices.end()) 335 return I->second; 336 337 // Make sure complete type info for the class is emitted *after* the member 338 // function type, as the complete class type is likely to reference this 339 // member function type. 340 TypeLoweringScope S(*this); 341 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 342 TypeIndex TI = lowerTypeMemberFunction( 343 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod); 344 return recordTypeIndexForDINode(SP, TI, Class); 345 } 346 347 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 348 TypeIndex TI, 349 const DIType *ClassTy) { 350 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 351 (void)InsertResult; 352 assert(InsertResult.second && "DINode was already assigned a type index"); 353 return TI; 354 } 355 356 unsigned CodeViewDebug::getPointerSizeInBytes() { 357 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 358 } 359 360 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 361 const DILocation *InlinedAt) { 362 if (InlinedAt) { 363 // This variable was inlined. Associate it with the InlineSite. 364 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 365 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 366 Site.InlinedLocals.emplace_back(Var); 367 } else { 368 // This variable goes in the main ProcSym. 369 CurFn->Locals.emplace_back(Var); 370 } 371 } 372 373 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 374 const DILocation *Loc) { 375 auto B = Locs.begin(), E = Locs.end(); 376 if (std::find(B, E, Loc) == E) 377 Locs.push_back(Loc); 378 } 379 380 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 381 const MachineFunction *MF) { 382 // Skip this instruction if it has the same location as the previous one. 383 if (!DL || DL == PrevInstLoc) 384 return; 385 386 const DIScope *Scope = DL.get()->getScope(); 387 if (!Scope) 388 return; 389 390 // Skip this line if it is longer than the maximum we can record. 391 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 392 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 393 LI.isNeverStepInto()) 394 return; 395 396 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 397 if (CI.getStartColumn() != DL.getCol()) 398 return; 399 400 if (!CurFn->HaveLineInfo) 401 CurFn->HaveLineInfo = true; 402 unsigned FileId = 0; 403 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 404 FileId = CurFn->LastFileId; 405 else 406 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 407 PrevInstLoc = DL; 408 409 unsigned FuncId = CurFn->FuncId; 410 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 411 const DILocation *Loc = DL.get(); 412 413 // If this location was actually inlined from somewhere else, give it the ID 414 // of the inline call site. 415 FuncId = 416 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 417 418 // Ensure we have links in the tree of inline call sites. 419 bool FirstLoc = true; 420 while ((SiteLoc = Loc->getInlinedAt())) { 421 InlineSite &Site = 422 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 423 if (!FirstLoc) 424 addLocIfNotPresent(Site.ChildSites, Loc); 425 FirstLoc = false; 426 Loc = SiteLoc; 427 } 428 addLocIfNotPresent(CurFn->ChildSites, Loc); 429 } 430 431 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 432 /*PrologueEnd=*/false, /*IsStmt=*/false, 433 DL->getFilename(), SMLoc()); 434 } 435 436 void CodeViewDebug::emitCodeViewMagicVersion() { 437 OS.EmitValueToAlignment(4); 438 OS.AddComment("Debug section magic"); 439 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 440 } 441 442 void CodeViewDebug::endModule() { 443 if (!Asm || !MMI->hasDebugInfo()) 444 return; 445 446 assert(Asm != nullptr); 447 448 // The COFF .debug$S section consists of several subsections, each starting 449 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 450 // of the payload followed by the payload itself. The subsections are 4-byte 451 // aligned. 452 453 // Use the generic .debug$S section, and make a subsection for all the inlined 454 // subprograms. 455 switchToDebugSectionForSymbol(nullptr); 456 457 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 458 emitCompilerInformation(); 459 endCVSubsection(CompilerInfo); 460 461 emitInlineeLinesSubsection(); 462 463 // Emit per-function debug information. 464 for (auto &P : FnDebugInfo) 465 if (!P.first->isDeclarationForLinker()) 466 emitDebugInfoForFunction(P.first, P.second); 467 468 // Emit global variable debug information. 469 setCurrentSubprogram(nullptr); 470 emitDebugInfoForGlobals(); 471 472 // Emit retained types. 473 emitDebugInfoForRetainedTypes(); 474 475 // Switch back to the generic .debug$S section after potentially processing 476 // comdat symbol sections. 477 switchToDebugSectionForSymbol(nullptr); 478 479 // Emit UDT records for any types used by global variables. 480 if (!GlobalUDTs.empty()) { 481 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 482 emitDebugInfoForUDTs(GlobalUDTs); 483 endCVSubsection(SymbolsEnd); 484 } 485 486 // This subsection holds a file index to offset in string table table. 487 OS.AddComment("File index to string table offset subsection"); 488 OS.EmitCVFileChecksumsDirective(); 489 490 // This subsection holds the string table. 491 OS.AddComment("String table"); 492 OS.EmitCVStringTableDirective(); 493 494 // Emit type information and hashes last, so that any types we translate while 495 // emitting function info are included. 496 emitTypeInformation(); 497 498 if (EmitDebugGlobalHashes) 499 emitTypeGlobalHashes(); 500 501 clear(); 502 } 503 504 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 505 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 506 // after a fixed length portion of the record. The fixed length portion should 507 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 508 // overall record size is less than the maximum allowed. 509 unsigned MaxFixedRecordLength = 0xF00; 510 SmallString<32> NullTerminatedString( 511 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 512 NullTerminatedString.push_back('\0'); 513 OS.EmitBytes(NullTerminatedString); 514 } 515 516 void CodeViewDebug::emitTypeInformation() { 517 if (TypeTable.empty()) 518 return; 519 520 // Start the .debug$T section with 0x4. 521 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 522 emitCodeViewMagicVersion(); 523 524 SmallString<8> CommentPrefix; 525 if (OS.isVerboseAsm()) { 526 CommentPrefix += '\t'; 527 CommentPrefix += Asm->MAI->getCommentString(); 528 CommentPrefix += ' '; 529 } 530 531 TypeTableCollection Table(TypeTable.records()); 532 Optional<TypeIndex> B = Table.getFirst(); 533 while (B) { 534 // This will fail if the record data is invalid. 535 CVType Record = Table.getType(*B); 536 537 if (OS.isVerboseAsm()) { 538 // Emit a block comment describing the type record for readability. 539 SmallString<512> CommentBlock; 540 raw_svector_ostream CommentOS(CommentBlock); 541 ScopedPrinter SP(CommentOS); 542 SP.setPrefix(CommentPrefix); 543 TypeDumpVisitor TDV(Table, &SP, false); 544 545 Error E = codeview::visitTypeRecord(Record, *B, TDV); 546 if (E) { 547 logAllUnhandledErrors(std::move(E), errs(), "error: "); 548 llvm_unreachable("produced malformed type record"); 549 } 550 // emitRawComment will insert its own tab and comment string before 551 // the first line, so strip off our first one. It also prints its own 552 // newline. 553 OS.emitRawComment( 554 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 555 } 556 OS.EmitBinaryData(Record.str_data()); 557 B = Table.getNext(*B); 558 } 559 } 560 561 void CodeViewDebug::emitTypeGlobalHashes() { 562 if (TypeTable.empty()) 563 return; 564 565 // Start the .debug$H section with the version and hash algorithm, currently 566 // hardcoded to version 0, SHA1. 567 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 568 569 OS.EmitValueToAlignment(4); 570 OS.AddComment("Magic"); 571 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); 572 OS.AddComment("Section Version"); 573 OS.EmitIntValue(0, 2); 574 OS.AddComment("Hash Algorithm"); 575 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1), 2); 576 577 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 578 for (const auto &GHR : TypeTable.hashes()) { 579 if (OS.isVerboseAsm()) { 580 // Emit an EOL-comment describing which TypeIndex this hash corresponds 581 // to, as well as the stringified SHA1 hash. 582 SmallString<32> Comment; 583 raw_svector_ostream CommentOS(Comment); 584 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 585 OS.AddComment(Comment); 586 ++TI; 587 } 588 assert(GHR.Hash.size() % 20 == 0); 589 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 590 GHR.Hash.size()); 591 OS.EmitBinaryData(S); 592 } 593 } 594 595 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 596 switch (DWLang) { 597 case dwarf::DW_LANG_C: 598 case dwarf::DW_LANG_C89: 599 case dwarf::DW_LANG_C99: 600 case dwarf::DW_LANG_C11: 601 case dwarf::DW_LANG_ObjC: 602 return SourceLanguage::C; 603 case dwarf::DW_LANG_C_plus_plus: 604 case dwarf::DW_LANG_C_plus_plus_03: 605 case dwarf::DW_LANG_C_plus_plus_11: 606 case dwarf::DW_LANG_C_plus_plus_14: 607 return SourceLanguage::Cpp; 608 case dwarf::DW_LANG_Fortran77: 609 case dwarf::DW_LANG_Fortran90: 610 case dwarf::DW_LANG_Fortran03: 611 case dwarf::DW_LANG_Fortran08: 612 return SourceLanguage::Fortran; 613 case dwarf::DW_LANG_Pascal83: 614 return SourceLanguage::Pascal; 615 case dwarf::DW_LANG_Cobol74: 616 case dwarf::DW_LANG_Cobol85: 617 return SourceLanguage::Cobol; 618 case dwarf::DW_LANG_Java: 619 return SourceLanguage::Java; 620 case dwarf::DW_LANG_D: 621 return SourceLanguage::D; 622 default: 623 // There's no CodeView representation for this language, and CV doesn't 624 // have an "unknown" option for the language field, so we'll use MASM, 625 // as it's very low level. 626 return SourceLanguage::Masm; 627 } 628 } 629 630 namespace { 631 struct Version { 632 int Part[4]; 633 }; 634 } // end anonymous namespace 635 636 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 637 // the version number. 638 static Version parseVersion(StringRef Name) { 639 Version V = {{0}}; 640 int N = 0; 641 for (const char C : Name) { 642 if (isdigit(C)) { 643 V.Part[N] *= 10; 644 V.Part[N] += C - '0'; 645 } else if (C == '.') { 646 ++N; 647 if (N >= 4) 648 return V; 649 } else if (N > 0) 650 return V; 651 } 652 return V; 653 } 654 655 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 656 switch (Type) { 657 case Triple::ArchType::x86: 658 return CPUType::Pentium3; 659 case Triple::ArchType::x86_64: 660 return CPUType::X64; 661 case Triple::ArchType::thumb: 662 return CPUType::Thumb; 663 case Triple::ArchType::aarch64: 664 return CPUType::ARM64; 665 default: 666 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 667 } 668 } 669 670 void CodeViewDebug::emitCompilerInformation() { 671 MCContext &Context = MMI->getContext(); 672 MCSymbol *CompilerBegin = Context.createTempSymbol(), 673 *CompilerEnd = Context.createTempSymbol(); 674 OS.AddComment("Record length"); 675 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 676 OS.EmitLabel(CompilerBegin); 677 OS.AddComment("Record kind: S_COMPILE3"); 678 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 679 uint32_t Flags = 0; 680 681 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 682 const MDNode *Node = *CUs->operands().begin(); 683 const auto *CU = cast<DICompileUnit>(Node); 684 685 // The low byte of the flags indicates the source language. 686 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 687 // TODO: Figure out which other flags need to be set. 688 689 OS.AddComment("Flags and language"); 690 OS.EmitIntValue(Flags, 4); 691 692 OS.AddComment("CPUType"); 693 CPUType CPU = 694 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 695 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 696 697 StringRef CompilerVersion = CU->getProducer(); 698 Version FrontVer = parseVersion(CompilerVersion); 699 OS.AddComment("Frontend version"); 700 for (int N = 0; N < 4; ++N) 701 OS.EmitIntValue(FrontVer.Part[N], 2); 702 703 // Some Microsoft tools, like Binscope, expect a backend version number of at 704 // least 8.something, so we'll coerce the LLVM version into a form that 705 // guarantees it'll be big enough without really lying about the version. 706 int Major = 1000 * LLVM_VERSION_MAJOR + 707 10 * LLVM_VERSION_MINOR + 708 LLVM_VERSION_PATCH; 709 // Clamp it for builds that use unusually large version numbers. 710 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 711 Version BackVer = {{ Major, 0, 0, 0 }}; 712 OS.AddComment("Backend version"); 713 for (int N = 0; N < 4; ++N) 714 OS.EmitIntValue(BackVer.Part[N], 2); 715 716 OS.AddComment("Null-terminated compiler version string"); 717 emitNullTerminatedSymbolName(OS, CompilerVersion); 718 719 OS.EmitLabel(CompilerEnd); 720 } 721 722 void CodeViewDebug::emitInlineeLinesSubsection() { 723 if (InlinedSubprograms.empty()) 724 return; 725 726 OS.AddComment("Inlinee lines subsection"); 727 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 728 729 // We emit the checksum info for files. This is used by debuggers to 730 // determine if a pdb matches the source before loading it. Visual Studio, 731 // for instance, will display a warning that the breakpoints are not valid if 732 // the pdb does not match the source. 733 OS.AddComment("Inlinee lines signature"); 734 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 735 736 for (const DISubprogram *SP : InlinedSubprograms) { 737 assert(TypeIndices.count({SP, nullptr})); 738 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 739 740 OS.AddBlankLine(); 741 unsigned FileId = maybeRecordFile(SP->getFile()); 742 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 743 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 744 OS.AddBlankLine(); 745 OS.AddComment("Type index of inlined function"); 746 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 747 OS.AddComment("Offset into filechecksum table"); 748 OS.EmitCVFileChecksumOffsetDirective(FileId); 749 OS.AddComment("Starting line number"); 750 OS.EmitIntValue(SP->getLine(), 4); 751 } 752 753 endCVSubsection(InlineEnd); 754 } 755 756 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 757 const DILocation *InlinedAt, 758 const InlineSite &Site) { 759 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 760 *InlineEnd = MMI->getContext().createTempSymbol(); 761 762 assert(TypeIndices.count({Site.Inlinee, nullptr})); 763 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 764 765 // SymbolRecord 766 OS.AddComment("Record length"); 767 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 768 OS.EmitLabel(InlineBegin); 769 OS.AddComment("Record kind: S_INLINESITE"); 770 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 771 772 OS.AddComment("PtrParent"); 773 OS.EmitIntValue(0, 4); 774 OS.AddComment("PtrEnd"); 775 OS.EmitIntValue(0, 4); 776 OS.AddComment("Inlinee type index"); 777 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 778 779 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 780 unsigned StartLineNum = Site.Inlinee->getLine(); 781 782 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 783 FI.Begin, FI.End); 784 785 OS.EmitLabel(InlineEnd); 786 787 emitLocalVariableList(Site.InlinedLocals); 788 789 // Recurse on child inlined call sites before closing the scope. 790 for (const DILocation *ChildSite : Site.ChildSites) { 791 auto I = FI.InlineSites.find(ChildSite); 792 assert(I != FI.InlineSites.end() && 793 "child site not in function inline site map"); 794 emitInlinedCallSite(FI, ChildSite, I->second); 795 } 796 797 // Close the scope. 798 OS.AddComment("Record length"); 799 OS.EmitIntValue(2, 2); // RecordLength 800 OS.AddComment("Record kind: S_INLINESITE_END"); 801 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 802 } 803 804 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 805 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 806 // comdat key. A section may be comdat because of -ffunction-sections or 807 // because it is comdat in the IR. 808 MCSectionCOFF *GVSec = 809 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 810 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 811 812 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 813 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 814 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 815 816 OS.SwitchSection(DebugSec); 817 818 // Emit the magic version number if this is the first time we've switched to 819 // this section. 820 if (ComdatDebugSections.insert(DebugSec).second) 821 emitCodeViewMagicVersion(); 822 } 823 824 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 825 FunctionInfo &FI) { 826 // For each function there is a separate subsection 827 // which holds the PC to file:line table. 828 const MCSymbol *Fn = Asm->getSymbol(GV); 829 assert(Fn); 830 831 // Switch to the to a comdat section, if appropriate. 832 switchToDebugSectionForSymbol(Fn); 833 834 std::string FuncName; 835 auto *SP = GV->getSubprogram(); 836 assert(SP); 837 setCurrentSubprogram(SP); 838 839 // If we have a display name, build the fully qualified name by walking the 840 // chain of scopes. 841 if (!SP->getName().empty()) 842 FuncName = 843 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 844 845 // If our DISubprogram name is empty, use the mangled name. 846 if (FuncName.empty()) 847 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 848 849 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 850 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 851 OS.EmitCVFPOData(Fn); 852 853 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 854 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 855 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 856 { 857 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 858 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 859 OS.AddComment("Record length"); 860 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 861 OS.EmitLabel(ProcRecordBegin); 862 863 if (GV->hasLocalLinkage()) { 864 OS.AddComment("Record kind: S_LPROC32_ID"); 865 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 866 } else { 867 OS.AddComment("Record kind: S_GPROC32_ID"); 868 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 869 } 870 871 // These fields are filled in by tools like CVPACK which run after the fact. 872 OS.AddComment("PtrParent"); 873 OS.EmitIntValue(0, 4); 874 OS.AddComment("PtrEnd"); 875 OS.EmitIntValue(0, 4); 876 OS.AddComment("PtrNext"); 877 OS.EmitIntValue(0, 4); 878 // This is the important bit that tells the debugger where the function 879 // code is located and what's its size: 880 OS.AddComment("Code size"); 881 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 882 OS.AddComment("Offset after prologue"); 883 OS.EmitIntValue(0, 4); 884 OS.AddComment("Offset before epilogue"); 885 OS.EmitIntValue(0, 4); 886 OS.AddComment("Function type index"); 887 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 888 OS.AddComment("Function section relative address"); 889 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 890 OS.AddComment("Function section index"); 891 OS.EmitCOFFSectionIndex(Fn); 892 OS.AddComment("Flags"); 893 OS.EmitIntValue(0, 1); 894 // Emit the function display name as a null-terminated string. 895 OS.AddComment("Function name"); 896 // Truncate the name so we won't overflow the record length field. 897 emitNullTerminatedSymbolName(OS, FuncName); 898 OS.EmitLabel(ProcRecordEnd); 899 900 emitLocalVariableList(FI.Locals); 901 902 // Emit inlined call site information. Only emit functions inlined directly 903 // into the parent function. We'll emit the other sites recursively as part 904 // of their parent inline site. 905 for (const DILocation *InlinedAt : FI.ChildSites) { 906 auto I = FI.InlineSites.find(InlinedAt); 907 assert(I != FI.InlineSites.end() && 908 "child site not in function inline site map"); 909 emitInlinedCallSite(FI, InlinedAt, I->second); 910 } 911 912 for (auto Annot : FI.Annotations) { 913 MCSymbol *Label = Annot.first; 914 MDTuple *Strs = cast<MDTuple>(Annot.second); 915 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(), 916 *AnnotEnd = MMI->getContext().createTempSymbol(); 917 OS.AddComment("Record length"); 918 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2); 919 OS.EmitLabel(AnnotBegin); 920 OS.AddComment("Record kind: S_ANNOTATION"); 921 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2); 922 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 923 // FIXME: Make sure we don't overflow the max record size. 924 OS.EmitCOFFSectionIndex(Label); 925 OS.EmitIntValue(Strs->getNumOperands(), 2); 926 for (Metadata *MD : Strs->operands()) { 927 // MDStrings are null terminated, so we can do EmitBytes and get the 928 // nice .asciz directive. 929 StringRef Str = cast<MDString>(MD)->getString(); 930 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 931 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 932 } 933 OS.EmitLabel(AnnotEnd); 934 } 935 936 if (SP != nullptr) 937 emitDebugInfoForUDTs(LocalUDTs); 938 939 // We're done with this function. 940 OS.AddComment("Record length"); 941 OS.EmitIntValue(0x0002, 2); 942 OS.AddComment("Record kind: S_PROC_ID_END"); 943 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 944 } 945 endCVSubsection(SymbolsEnd); 946 947 // We have an assembler directive that takes care of the whole line table. 948 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 949 } 950 951 CodeViewDebug::LocalVarDefRange 952 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 953 LocalVarDefRange DR; 954 DR.InMemory = -1; 955 DR.DataOffset = Offset; 956 assert(DR.DataOffset == Offset && "truncation"); 957 DR.IsSubfield = 0; 958 DR.StructOffset = 0; 959 DR.CVRegister = CVRegister; 960 return DR; 961 } 962 963 CodeViewDebug::LocalVarDefRange 964 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 965 int Offset, bool IsSubfield, 966 uint16_t StructOffset) { 967 LocalVarDefRange DR; 968 DR.InMemory = InMemory; 969 DR.DataOffset = Offset; 970 DR.IsSubfield = IsSubfield; 971 DR.StructOffset = StructOffset; 972 DR.CVRegister = CVRegister; 973 return DR; 974 } 975 976 void CodeViewDebug::collectVariableInfoFromMFTable( 977 DenseSet<InlinedVariable> &Processed) { 978 const MachineFunction &MF = *Asm->MF; 979 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 980 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 981 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 982 983 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 984 if (!VI.Var) 985 continue; 986 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 987 "Expected inlined-at fields to agree"); 988 989 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 990 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 991 992 // If variable scope is not found then skip this variable. 993 if (!Scope) 994 continue; 995 996 // If the variable has an attached offset expression, extract it. 997 // FIXME: Try to handle DW_OP_deref as well. 998 int64_t ExprOffset = 0; 999 if (VI.Expr) 1000 if (!VI.Expr->extractIfOffset(ExprOffset)) 1001 continue; 1002 1003 // Get the frame register used and the offset. 1004 unsigned FrameReg = 0; 1005 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1006 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1007 1008 // Calculate the label ranges. 1009 LocalVarDefRange DefRange = 1010 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1011 for (const InsnRange &Range : Scope->getRanges()) { 1012 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1013 const MCSymbol *End = getLabelAfterInsn(Range.second); 1014 End = End ? End : Asm->getFunctionEnd(); 1015 DefRange.Ranges.emplace_back(Begin, End); 1016 } 1017 1018 LocalVariable Var; 1019 Var.DIVar = VI.Var; 1020 Var.DefRanges.emplace_back(std::move(DefRange)); 1021 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 1022 } 1023 } 1024 1025 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1026 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1027 } 1028 1029 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1030 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1031 } 1032 1033 void CodeViewDebug::calculateRanges( 1034 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 1035 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1036 1037 // Calculate the definition ranges. 1038 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1039 const InsnRange &Range = *I; 1040 const MachineInstr *DVInst = Range.first; 1041 assert(DVInst->isDebugValue() && "Invalid History entry"); 1042 // FIXME: Find a way to represent constant variables, since they are 1043 // relatively common. 1044 Optional<DbgVariableLocation> Location = 1045 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1046 if (!Location) 1047 continue; 1048 1049 // CodeView can only express variables in register and variables in memory 1050 // at a constant offset from a register. However, for variables passed 1051 // indirectly by pointer, it is common for that pointer to be spilled to a 1052 // stack location. For the special case of one offseted load followed by a 1053 // zero offset load (a pointer spilled to the stack), we change the type of 1054 // the local variable from a value type to a reference type. This tricks the 1055 // debugger into doing the load for us. 1056 if (Var.UseReferenceType) { 1057 // We're using a reference type. Drop the last zero offset load. 1058 if (canUseReferenceType(*Location)) 1059 Location->LoadChain.pop_back(); 1060 else 1061 continue; 1062 } else if (needsReferenceType(*Location)) { 1063 // This location can't be expressed without switching to a reference type. 1064 // Start over using that. 1065 Var.UseReferenceType = true; 1066 Var.DefRanges.clear(); 1067 calculateRanges(Var, Ranges); 1068 return; 1069 } 1070 1071 // We can only handle a register or an offseted load of a register. 1072 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1073 continue; 1074 { 1075 LocalVarDefRange DR; 1076 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1077 DR.InMemory = !Location->LoadChain.empty(); 1078 DR.DataOffset = 1079 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1080 if (Location->FragmentInfo) { 1081 DR.IsSubfield = true; 1082 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1083 } else { 1084 DR.IsSubfield = false; 1085 DR.StructOffset = 0; 1086 } 1087 1088 if (Var.DefRanges.empty() || 1089 Var.DefRanges.back().isDifferentLocation(DR)) { 1090 Var.DefRanges.emplace_back(std::move(DR)); 1091 } 1092 } 1093 1094 // Compute the label range. 1095 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1096 const MCSymbol *End = getLabelAfterInsn(Range.second); 1097 if (!End) { 1098 // This range is valid until the next overlapping bitpiece. In the 1099 // common case, ranges will not be bitpieces, so they will overlap. 1100 auto J = std::next(I); 1101 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1102 while (J != E && 1103 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1104 ++J; 1105 if (J != E) 1106 End = getLabelBeforeInsn(J->first); 1107 else 1108 End = Asm->getFunctionEnd(); 1109 } 1110 1111 // If the last range end is our begin, just extend the last range. 1112 // Otherwise make a new range. 1113 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1114 Var.DefRanges.back().Ranges; 1115 if (!R.empty() && R.back().second == Begin) 1116 R.back().second = End; 1117 else 1118 R.emplace_back(Begin, End); 1119 1120 // FIXME: Do more range combining. 1121 } 1122 } 1123 1124 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1125 DenseSet<InlinedVariable> Processed; 1126 // Grab the variable info that was squirreled away in the MMI side-table. 1127 collectVariableInfoFromMFTable(Processed); 1128 1129 for (const auto &I : DbgValues) { 1130 InlinedVariable IV = I.first; 1131 if (Processed.count(IV)) 1132 continue; 1133 const DILocalVariable *DIVar = IV.first; 1134 const DILocation *InlinedAt = IV.second; 1135 1136 // Instruction ranges, specifying where IV is accessible. 1137 const auto &Ranges = I.second; 1138 1139 LexicalScope *Scope = nullptr; 1140 if (InlinedAt) 1141 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1142 else 1143 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1144 // If variable scope is not found then skip this variable. 1145 if (!Scope) 1146 continue; 1147 1148 LocalVariable Var; 1149 Var.DIVar = DIVar; 1150 1151 calculateRanges(Var, Ranges); 1152 recordLocalVariable(std::move(Var), InlinedAt); 1153 } 1154 } 1155 1156 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1157 const Function &GV = MF->getFunction(); 1158 assert(FnDebugInfo.count(&GV) == false); 1159 CurFn = &FnDebugInfo[&GV]; 1160 CurFn->FuncId = NextFuncId++; 1161 CurFn->Begin = Asm->getFunctionBegin(); 1162 1163 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1164 1165 // Find the end of the function prolog. First known non-DBG_VALUE and 1166 // non-frame setup location marks the beginning of the function body. 1167 // FIXME: is there a simpler a way to do this? Can we just search 1168 // for the first instruction of the function, not the last of the prolog? 1169 DebugLoc PrologEndLoc; 1170 bool EmptyPrologue = true; 1171 for (const auto &MBB : *MF) { 1172 for (const auto &MI : MBB) { 1173 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1174 MI.getDebugLoc()) { 1175 PrologEndLoc = MI.getDebugLoc(); 1176 break; 1177 } else if (!MI.isMetaInstruction()) { 1178 EmptyPrologue = false; 1179 } 1180 } 1181 } 1182 1183 // Record beginning of function if we have a non-empty prologue. 1184 if (PrologEndLoc && !EmptyPrologue) { 1185 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1186 maybeRecordLocation(FnStartDL, MF); 1187 } 1188 } 1189 1190 static bool shouldEmitUdt(const DIType *T) { 1191 if (!T) 1192 return false; 1193 1194 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1195 if (T->getTag() == dwarf::DW_TAG_typedef) { 1196 if (DIScope *Scope = T->getScope().resolve()) { 1197 switch (Scope->getTag()) { 1198 case dwarf::DW_TAG_structure_type: 1199 case dwarf::DW_TAG_class_type: 1200 case dwarf::DW_TAG_union_type: 1201 return false; 1202 } 1203 } 1204 } 1205 1206 while (true) { 1207 if (!T || T->isForwardDecl()) 1208 return false; 1209 1210 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1211 if (!DT) 1212 return true; 1213 T = DT->getBaseType().resolve(); 1214 } 1215 return true; 1216 } 1217 1218 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1219 // Don't record empty UDTs. 1220 if (Ty->getName().empty()) 1221 return; 1222 if (!shouldEmitUdt(Ty)) 1223 return; 1224 1225 SmallVector<StringRef, 5> QualifiedNameComponents; 1226 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1227 Ty->getScope().resolve(), QualifiedNameComponents); 1228 1229 std::string FullyQualifiedName = 1230 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1231 1232 if (ClosestSubprogram == nullptr) { 1233 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1234 } else if (ClosestSubprogram == CurrentSubprogram) { 1235 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1236 } 1237 1238 // TODO: What if the ClosestSubprogram is neither null or the current 1239 // subprogram? Currently, the UDT just gets dropped on the floor. 1240 // 1241 // The current behavior is not desirable. To get maximal fidelity, we would 1242 // need to perform all type translation before beginning emission of .debug$S 1243 // and then make LocalUDTs a member of FunctionInfo 1244 } 1245 1246 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1247 // Generic dispatch for lowering an unknown type. 1248 switch (Ty->getTag()) { 1249 case dwarf::DW_TAG_array_type: 1250 return lowerTypeArray(cast<DICompositeType>(Ty)); 1251 case dwarf::DW_TAG_typedef: 1252 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1253 case dwarf::DW_TAG_base_type: 1254 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1255 case dwarf::DW_TAG_pointer_type: 1256 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1257 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1258 LLVM_FALLTHROUGH; 1259 case dwarf::DW_TAG_reference_type: 1260 case dwarf::DW_TAG_rvalue_reference_type: 1261 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1262 case dwarf::DW_TAG_ptr_to_member_type: 1263 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1264 case dwarf::DW_TAG_const_type: 1265 case dwarf::DW_TAG_volatile_type: 1266 // TODO: add support for DW_TAG_atomic_type here 1267 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1268 case dwarf::DW_TAG_subroutine_type: 1269 if (ClassTy) { 1270 // The member function type of a member function pointer has no 1271 // ThisAdjustment. 1272 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1273 /*ThisAdjustment=*/0, 1274 /*IsStaticMethod=*/false); 1275 } 1276 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1277 case dwarf::DW_TAG_enumeration_type: 1278 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1279 case dwarf::DW_TAG_class_type: 1280 case dwarf::DW_TAG_structure_type: 1281 return lowerTypeClass(cast<DICompositeType>(Ty)); 1282 case dwarf::DW_TAG_union_type: 1283 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1284 default: 1285 // Use the null type index. 1286 return TypeIndex(); 1287 } 1288 } 1289 1290 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1291 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1292 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1293 StringRef TypeName = Ty->getName(); 1294 1295 addToUDTs(Ty); 1296 1297 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1298 TypeName == "HRESULT") 1299 return TypeIndex(SimpleTypeKind::HResult); 1300 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1301 TypeName == "wchar_t") 1302 return TypeIndex(SimpleTypeKind::WideCharacter); 1303 1304 return UnderlyingTypeIndex; 1305 } 1306 1307 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1308 DITypeRef ElementTypeRef = Ty->getBaseType(); 1309 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1310 // IndexType is size_t, which depends on the bitness of the target. 1311 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1312 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1313 : TypeIndex(SimpleTypeKind::UInt32Long); 1314 1315 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1316 1317 // Add subranges to array type. 1318 DINodeArray Elements = Ty->getElements(); 1319 for (int i = Elements.size() - 1; i >= 0; --i) { 1320 const DINode *Element = Elements[i]; 1321 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1322 1323 const DISubrange *Subrange = cast<DISubrange>(Element); 1324 assert(Subrange->getLowerBound() == 0 && 1325 "codeview doesn't support subranges with lower bounds"); 1326 int64_t Count = Subrange->getCount(); 1327 1328 // Forward declarations of arrays without a size and VLAs use a count of -1. 1329 // Emit a count of zero in these cases to match what MSVC does for arrays 1330 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1331 // should do for them even if we could distinguish them. 1332 if (Count == -1) 1333 Count = 0; 1334 1335 // Update the element size and element type index for subsequent subranges. 1336 ElementSize *= Count; 1337 1338 // If this is the outermost array, use the size from the array. It will be 1339 // more accurate if we had a VLA or an incomplete element type size. 1340 uint64_t ArraySize = 1341 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1342 1343 StringRef Name = (i == 0) ? Ty->getName() : ""; 1344 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1345 ElementTypeIndex = TypeTable.writeLeafType(AR); 1346 } 1347 1348 return ElementTypeIndex; 1349 } 1350 1351 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1352 TypeIndex Index; 1353 dwarf::TypeKind Kind; 1354 uint32_t ByteSize; 1355 1356 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1357 ByteSize = Ty->getSizeInBits() / 8; 1358 1359 SimpleTypeKind STK = SimpleTypeKind::None; 1360 switch (Kind) { 1361 case dwarf::DW_ATE_address: 1362 // FIXME: Translate 1363 break; 1364 case dwarf::DW_ATE_boolean: 1365 switch (ByteSize) { 1366 case 1: STK = SimpleTypeKind::Boolean8; break; 1367 case 2: STK = SimpleTypeKind::Boolean16; break; 1368 case 4: STK = SimpleTypeKind::Boolean32; break; 1369 case 8: STK = SimpleTypeKind::Boolean64; break; 1370 case 16: STK = SimpleTypeKind::Boolean128; break; 1371 } 1372 break; 1373 case dwarf::DW_ATE_complex_float: 1374 switch (ByteSize) { 1375 case 2: STK = SimpleTypeKind::Complex16; break; 1376 case 4: STK = SimpleTypeKind::Complex32; break; 1377 case 8: STK = SimpleTypeKind::Complex64; break; 1378 case 10: STK = SimpleTypeKind::Complex80; break; 1379 case 16: STK = SimpleTypeKind::Complex128; break; 1380 } 1381 break; 1382 case dwarf::DW_ATE_float: 1383 switch (ByteSize) { 1384 case 2: STK = SimpleTypeKind::Float16; break; 1385 case 4: STK = SimpleTypeKind::Float32; break; 1386 case 6: STK = SimpleTypeKind::Float48; break; 1387 case 8: STK = SimpleTypeKind::Float64; break; 1388 case 10: STK = SimpleTypeKind::Float80; break; 1389 case 16: STK = SimpleTypeKind::Float128; break; 1390 } 1391 break; 1392 case dwarf::DW_ATE_signed: 1393 switch (ByteSize) { 1394 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1395 case 2: STK = SimpleTypeKind::Int16Short; break; 1396 case 4: STK = SimpleTypeKind::Int32; break; 1397 case 8: STK = SimpleTypeKind::Int64Quad; break; 1398 case 16: STK = SimpleTypeKind::Int128Oct; break; 1399 } 1400 break; 1401 case dwarf::DW_ATE_unsigned: 1402 switch (ByteSize) { 1403 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1404 case 2: STK = SimpleTypeKind::UInt16Short; break; 1405 case 4: STK = SimpleTypeKind::UInt32; break; 1406 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1407 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1408 } 1409 break; 1410 case dwarf::DW_ATE_UTF: 1411 switch (ByteSize) { 1412 case 2: STK = SimpleTypeKind::Character16; break; 1413 case 4: STK = SimpleTypeKind::Character32; break; 1414 } 1415 break; 1416 case dwarf::DW_ATE_signed_char: 1417 if (ByteSize == 1) 1418 STK = SimpleTypeKind::SignedCharacter; 1419 break; 1420 case dwarf::DW_ATE_unsigned_char: 1421 if (ByteSize == 1) 1422 STK = SimpleTypeKind::UnsignedCharacter; 1423 break; 1424 default: 1425 break; 1426 } 1427 1428 // Apply some fixups based on the source-level type name. 1429 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1430 STK = SimpleTypeKind::Int32Long; 1431 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1432 STK = SimpleTypeKind::UInt32Long; 1433 if (STK == SimpleTypeKind::UInt16Short && 1434 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1435 STK = SimpleTypeKind::WideCharacter; 1436 if ((STK == SimpleTypeKind::SignedCharacter || 1437 STK == SimpleTypeKind::UnsignedCharacter) && 1438 Ty->getName() == "char") 1439 STK = SimpleTypeKind::NarrowCharacter; 1440 1441 return TypeIndex(STK); 1442 } 1443 1444 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1445 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1446 1447 // Pointers to simple types can use SimpleTypeMode, rather than having a 1448 // dedicated pointer type record. 1449 if (PointeeTI.isSimple() && 1450 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1451 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1452 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1453 ? SimpleTypeMode::NearPointer64 1454 : SimpleTypeMode::NearPointer32; 1455 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1456 } 1457 1458 PointerKind PK = 1459 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1460 PointerMode PM = PointerMode::Pointer; 1461 switch (Ty->getTag()) { 1462 default: llvm_unreachable("not a pointer tag type"); 1463 case dwarf::DW_TAG_pointer_type: 1464 PM = PointerMode::Pointer; 1465 break; 1466 case dwarf::DW_TAG_reference_type: 1467 PM = PointerMode::LValueReference; 1468 break; 1469 case dwarf::DW_TAG_rvalue_reference_type: 1470 PM = PointerMode::RValueReference; 1471 break; 1472 } 1473 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1474 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1475 // do. 1476 PointerOptions PO = PointerOptions::None; 1477 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1478 return TypeTable.writeLeafType(PR); 1479 } 1480 1481 static PointerToMemberRepresentation 1482 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1483 // SizeInBytes being zero generally implies that the member pointer type was 1484 // incomplete, which can happen if it is part of a function prototype. In this 1485 // case, use the unknown model instead of the general model. 1486 if (IsPMF) { 1487 switch (Flags & DINode::FlagPtrToMemberRep) { 1488 case 0: 1489 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1490 : PointerToMemberRepresentation::GeneralFunction; 1491 case DINode::FlagSingleInheritance: 1492 return PointerToMemberRepresentation::SingleInheritanceFunction; 1493 case DINode::FlagMultipleInheritance: 1494 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1495 case DINode::FlagVirtualInheritance: 1496 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1497 } 1498 } else { 1499 switch (Flags & DINode::FlagPtrToMemberRep) { 1500 case 0: 1501 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1502 : PointerToMemberRepresentation::GeneralData; 1503 case DINode::FlagSingleInheritance: 1504 return PointerToMemberRepresentation::SingleInheritanceData; 1505 case DINode::FlagMultipleInheritance: 1506 return PointerToMemberRepresentation::MultipleInheritanceData; 1507 case DINode::FlagVirtualInheritance: 1508 return PointerToMemberRepresentation::VirtualInheritanceData; 1509 } 1510 } 1511 llvm_unreachable("invalid ptr to member representation"); 1512 } 1513 1514 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1515 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1516 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1517 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1518 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1519 : PointerKind::Near32; 1520 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1521 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1522 : PointerMode::PointerToDataMember; 1523 PointerOptions PO = PointerOptions::None; // FIXME 1524 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1525 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1526 MemberPointerInfo MPI( 1527 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1528 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1529 return TypeTable.writeLeafType(PR); 1530 } 1531 1532 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1533 /// have a translation, use the NearC convention. 1534 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1535 switch (DwarfCC) { 1536 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1537 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1538 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1539 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1540 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1541 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1542 } 1543 return CallingConvention::NearC; 1544 } 1545 1546 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1547 ModifierOptions Mods = ModifierOptions::None; 1548 bool IsModifier = true; 1549 const DIType *BaseTy = Ty; 1550 while (IsModifier && BaseTy) { 1551 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1552 switch (BaseTy->getTag()) { 1553 case dwarf::DW_TAG_const_type: 1554 Mods |= ModifierOptions::Const; 1555 break; 1556 case dwarf::DW_TAG_volatile_type: 1557 Mods |= ModifierOptions::Volatile; 1558 break; 1559 default: 1560 IsModifier = false; 1561 break; 1562 } 1563 if (IsModifier) 1564 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1565 } 1566 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1567 ModifierRecord MR(ModifiedTI, Mods); 1568 return TypeTable.writeLeafType(MR); 1569 } 1570 1571 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1572 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1573 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1574 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1575 1576 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1577 ArrayRef<TypeIndex> ArgTypeIndices = None; 1578 if (!ReturnAndArgTypeIndices.empty()) { 1579 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1580 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1581 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1582 } 1583 1584 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1585 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1586 1587 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1588 1589 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1590 ArgTypeIndices.size(), ArgListIndex); 1591 return TypeTable.writeLeafType(Procedure); 1592 } 1593 1594 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1595 const DIType *ClassTy, 1596 int ThisAdjustment, 1597 bool IsStaticMethod) { 1598 // Lower the containing class type. 1599 TypeIndex ClassType = getTypeIndex(ClassTy); 1600 1601 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1602 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1603 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1604 1605 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1606 ArrayRef<TypeIndex> ArgTypeIndices = None; 1607 if (!ReturnAndArgTypeIndices.empty()) { 1608 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1609 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1610 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1611 } 1612 TypeIndex ThisTypeIndex; 1613 if (!IsStaticMethod && !ArgTypeIndices.empty()) { 1614 ThisTypeIndex = ArgTypeIndices.front(); 1615 ArgTypeIndices = ArgTypeIndices.drop_front(); 1616 } 1617 1618 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1619 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1620 1621 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1622 1623 // TODO: Need to use the correct values for FunctionOptions. 1624 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1625 FunctionOptions::None, ArgTypeIndices.size(), 1626 ArgListIndex, ThisAdjustment); 1627 return TypeTable.writeLeafType(MFR); 1628 } 1629 1630 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1631 unsigned VSlotCount = 1632 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1633 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1634 1635 VFTableShapeRecord VFTSR(Slots); 1636 return TypeTable.writeLeafType(VFTSR); 1637 } 1638 1639 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1640 switch (Flags & DINode::FlagAccessibility) { 1641 case DINode::FlagPrivate: return MemberAccess::Private; 1642 case DINode::FlagPublic: return MemberAccess::Public; 1643 case DINode::FlagProtected: return MemberAccess::Protected; 1644 case 0: 1645 // If there was no explicit access control, provide the default for the tag. 1646 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1647 : MemberAccess::Public; 1648 } 1649 llvm_unreachable("access flags are exclusive"); 1650 } 1651 1652 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1653 if (SP->isArtificial()) 1654 return MethodOptions::CompilerGenerated; 1655 1656 // FIXME: Handle other MethodOptions. 1657 1658 return MethodOptions::None; 1659 } 1660 1661 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1662 bool Introduced) { 1663 if (SP->getFlags() & DINode::FlagStaticMember) 1664 return MethodKind::Static; 1665 1666 switch (SP->getVirtuality()) { 1667 case dwarf::DW_VIRTUALITY_none: 1668 break; 1669 case dwarf::DW_VIRTUALITY_virtual: 1670 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1671 case dwarf::DW_VIRTUALITY_pure_virtual: 1672 return Introduced ? MethodKind::PureIntroducingVirtual 1673 : MethodKind::PureVirtual; 1674 default: 1675 llvm_unreachable("unhandled virtuality case"); 1676 } 1677 1678 return MethodKind::Vanilla; 1679 } 1680 1681 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1682 switch (Ty->getTag()) { 1683 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1684 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1685 } 1686 llvm_unreachable("unexpected tag"); 1687 } 1688 1689 /// Return ClassOptions that should be present on both the forward declaration 1690 /// and the defintion of a tag type. 1691 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1692 ClassOptions CO = ClassOptions::None; 1693 1694 // MSVC always sets this flag, even for local types. Clang doesn't always 1695 // appear to give every type a linkage name, which may be problematic for us. 1696 // FIXME: Investigate the consequences of not following them here. 1697 if (!Ty->getIdentifier().empty()) 1698 CO |= ClassOptions::HasUniqueName; 1699 1700 // Put the Nested flag on a type if it appears immediately inside a tag type. 1701 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1702 // here. That flag is only set on definitions, and not forward declarations. 1703 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1704 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1705 CO |= ClassOptions::Nested; 1706 1707 // Put the Scoped flag on function-local types. 1708 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1709 Scope = Scope->getScope().resolve()) { 1710 if (isa<DISubprogram>(Scope)) { 1711 CO |= ClassOptions::Scoped; 1712 break; 1713 } 1714 } 1715 1716 return CO; 1717 } 1718 1719 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1720 ClassOptions CO = getCommonClassOptions(Ty); 1721 TypeIndex FTI; 1722 unsigned EnumeratorCount = 0; 1723 1724 if (Ty->isForwardDecl()) { 1725 CO |= ClassOptions::ForwardReference; 1726 } else { 1727 ContinuationRecordBuilder ContinuationBuilder; 1728 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 1729 for (const DINode *Element : Ty->getElements()) { 1730 // We assume that the frontend provides all members in source declaration 1731 // order, which is what MSVC does. 1732 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1733 EnumeratorRecord ER(MemberAccess::Public, 1734 APSInt::getUnsigned(Enumerator->getValue()), 1735 Enumerator->getName()); 1736 ContinuationBuilder.writeMemberType(ER); 1737 EnumeratorCount++; 1738 } 1739 } 1740 FTI = TypeTable.insertRecord(ContinuationBuilder); 1741 } 1742 1743 std::string FullName = getFullyQualifiedName(Ty); 1744 1745 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1746 getTypeIndex(Ty->getBaseType())); 1747 return TypeTable.writeLeafType(ER); 1748 } 1749 1750 //===----------------------------------------------------------------------===// 1751 // ClassInfo 1752 //===----------------------------------------------------------------------===// 1753 1754 struct llvm::ClassInfo { 1755 struct MemberInfo { 1756 const DIDerivedType *MemberTypeNode; 1757 uint64_t BaseOffset; 1758 }; 1759 // [MemberInfo] 1760 using MemberList = std::vector<MemberInfo>; 1761 1762 using MethodsList = TinyPtrVector<const DISubprogram *>; 1763 // MethodName -> MethodsList 1764 using MethodsMap = MapVector<MDString *, MethodsList>; 1765 1766 /// Base classes. 1767 std::vector<const DIDerivedType *> Inheritance; 1768 1769 /// Direct members. 1770 MemberList Members; 1771 // Direct overloaded methods gathered by name. 1772 MethodsMap Methods; 1773 1774 TypeIndex VShapeTI; 1775 1776 std::vector<const DIType *> NestedTypes; 1777 }; 1778 1779 void CodeViewDebug::clear() { 1780 assert(CurFn == nullptr); 1781 FileIdMap.clear(); 1782 FnDebugInfo.clear(); 1783 FileToFilepathMap.clear(); 1784 LocalUDTs.clear(); 1785 GlobalUDTs.clear(); 1786 TypeIndices.clear(); 1787 CompleteTypeIndices.clear(); 1788 } 1789 1790 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1791 const DIDerivedType *DDTy) { 1792 if (!DDTy->getName().empty()) { 1793 Info.Members.push_back({DDTy, 0}); 1794 return; 1795 } 1796 // An unnamed member must represent a nested struct or union. Add all the 1797 // indirect fields to the current record. 1798 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1799 uint64_t Offset = DDTy->getOffsetInBits(); 1800 const DIType *Ty = DDTy->getBaseType().resolve(); 1801 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1802 ClassInfo NestedInfo = collectClassInfo(DCTy); 1803 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1804 Info.Members.push_back( 1805 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1806 } 1807 1808 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1809 ClassInfo Info; 1810 // Add elements to structure type. 1811 DINodeArray Elements = Ty->getElements(); 1812 for (auto *Element : Elements) { 1813 // We assume that the frontend provides all members in source declaration 1814 // order, which is what MSVC does. 1815 if (!Element) 1816 continue; 1817 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1818 Info.Methods[SP->getRawName()].push_back(SP); 1819 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1820 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1821 collectMemberInfo(Info, DDTy); 1822 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1823 Info.Inheritance.push_back(DDTy); 1824 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1825 DDTy->getName() == "__vtbl_ptr_type") { 1826 Info.VShapeTI = getTypeIndex(DDTy); 1827 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1828 Info.NestedTypes.push_back(DDTy); 1829 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1830 // Ignore friend members. It appears that MSVC emitted info about 1831 // friends in the past, but modern versions do not. 1832 } 1833 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1834 Info.NestedTypes.push_back(Composite); 1835 } 1836 // Skip other unrecognized kinds of elements. 1837 } 1838 return Info; 1839 } 1840 1841 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1842 // First, construct the forward decl. Don't look into Ty to compute the 1843 // forward decl options, since it might not be available in all TUs. 1844 TypeRecordKind Kind = getRecordKind(Ty); 1845 ClassOptions CO = 1846 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1847 std::string FullName = getFullyQualifiedName(Ty); 1848 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1849 FullName, Ty->getIdentifier()); 1850 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 1851 if (!Ty->isForwardDecl()) 1852 DeferredCompleteTypes.push_back(Ty); 1853 return FwdDeclTI; 1854 } 1855 1856 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1857 // Construct the field list and complete type record. 1858 TypeRecordKind Kind = getRecordKind(Ty); 1859 ClassOptions CO = getCommonClassOptions(Ty); 1860 TypeIndex FieldTI; 1861 TypeIndex VShapeTI; 1862 unsigned FieldCount; 1863 bool ContainsNestedClass; 1864 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1865 lowerRecordFieldList(Ty); 1866 1867 if (ContainsNestedClass) 1868 CO |= ClassOptions::ContainsNestedClass; 1869 1870 std::string FullName = getFullyQualifiedName(Ty); 1871 1872 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1873 1874 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1875 SizeInBytes, FullName, Ty->getIdentifier()); 1876 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 1877 1878 if (const auto *File = Ty->getFile()) { 1879 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1880 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 1881 1882 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1883 TypeTable.writeLeafType(USLR); 1884 } 1885 1886 addToUDTs(Ty); 1887 1888 return ClassTI; 1889 } 1890 1891 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1892 ClassOptions CO = 1893 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1894 std::string FullName = getFullyQualifiedName(Ty); 1895 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1896 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 1897 if (!Ty->isForwardDecl()) 1898 DeferredCompleteTypes.push_back(Ty); 1899 return FwdDeclTI; 1900 } 1901 1902 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1903 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1904 TypeIndex FieldTI; 1905 unsigned FieldCount; 1906 bool ContainsNestedClass; 1907 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1908 lowerRecordFieldList(Ty); 1909 1910 if (ContainsNestedClass) 1911 CO |= ClassOptions::ContainsNestedClass; 1912 1913 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1914 std::string FullName = getFullyQualifiedName(Ty); 1915 1916 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1917 Ty->getIdentifier()); 1918 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 1919 1920 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1921 TypeIndex SIRI = TypeTable.writeLeafType(SIR); 1922 1923 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1924 TypeTable.writeLeafType(USLR); 1925 1926 addToUDTs(Ty); 1927 1928 return UnionTI; 1929 } 1930 1931 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1932 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1933 // Manually count members. MSVC appears to count everything that generates a 1934 // field list record. Each individual overload in a method overload group 1935 // contributes to this count, even though the overload group is a single field 1936 // list record. 1937 unsigned MemberCount = 0; 1938 ClassInfo Info = collectClassInfo(Ty); 1939 ContinuationRecordBuilder ContinuationBuilder; 1940 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 1941 1942 // Create base classes. 1943 for (const DIDerivedType *I : Info.Inheritance) { 1944 if (I->getFlags() & DINode::FlagVirtual) { 1945 // Virtual base. 1946 // FIXME: Emit VBPtrOffset when the frontend provides it. 1947 unsigned VBPtrOffset = 0; 1948 // FIXME: Despite the accessor name, the offset is really in bytes. 1949 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1950 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1951 ? TypeRecordKind::IndirectVirtualBaseClass 1952 : TypeRecordKind::VirtualBaseClass; 1953 VirtualBaseClassRecord VBCR( 1954 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1955 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1956 VBTableIndex); 1957 1958 ContinuationBuilder.writeMemberType(VBCR); 1959 } else { 1960 assert(I->getOffsetInBits() % 8 == 0 && 1961 "bases must be on byte boundaries"); 1962 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1963 getTypeIndex(I->getBaseType()), 1964 I->getOffsetInBits() / 8); 1965 ContinuationBuilder.writeMemberType(BCR); 1966 } 1967 } 1968 1969 // Create members. 1970 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1971 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1972 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1973 StringRef MemberName = Member->getName(); 1974 MemberAccess Access = 1975 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1976 1977 if (Member->isStaticMember()) { 1978 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1979 ContinuationBuilder.writeMemberType(SDMR); 1980 MemberCount++; 1981 continue; 1982 } 1983 1984 // Virtual function pointer member. 1985 if ((Member->getFlags() & DINode::FlagArtificial) && 1986 Member->getName().startswith("_vptr$")) { 1987 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1988 ContinuationBuilder.writeMemberType(VFPR); 1989 MemberCount++; 1990 continue; 1991 } 1992 1993 // Data member. 1994 uint64_t MemberOffsetInBits = 1995 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1996 if (Member->isBitField()) { 1997 uint64_t StartBitOffset = MemberOffsetInBits; 1998 if (const auto *CI = 1999 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2000 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2001 } 2002 StartBitOffset -= MemberOffsetInBits; 2003 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2004 StartBitOffset); 2005 MemberBaseType = TypeTable.writeLeafType(BFR); 2006 } 2007 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2008 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2009 MemberName); 2010 ContinuationBuilder.writeMemberType(DMR); 2011 MemberCount++; 2012 } 2013 2014 // Create methods 2015 for (auto &MethodItr : Info.Methods) { 2016 StringRef Name = MethodItr.first->getString(); 2017 2018 std::vector<OneMethodRecord> Methods; 2019 for (const DISubprogram *SP : MethodItr.second) { 2020 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2021 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2022 2023 unsigned VFTableOffset = -1; 2024 if (Introduced) 2025 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2026 2027 Methods.push_back(OneMethodRecord( 2028 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2029 translateMethodKindFlags(SP, Introduced), 2030 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2031 MemberCount++; 2032 } 2033 assert(!Methods.empty() && "Empty methods map entry"); 2034 if (Methods.size() == 1) 2035 ContinuationBuilder.writeMemberType(Methods[0]); 2036 else { 2037 // FIXME: Make this use its own ContinuationBuilder so that 2038 // MethodOverloadList can be split correctly. 2039 MethodOverloadListRecord MOLR(Methods); 2040 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2041 2042 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2043 ContinuationBuilder.writeMemberType(OMR); 2044 } 2045 } 2046 2047 // Create nested classes. 2048 for (const DIType *Nested : Info.NestedTypes) { 2049 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2050 ContinuationBuilder.writeMemberType(R); 2051 MemberCount++; 2052 } 2053 2054 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2055 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2056 !Info.NestedTypes.empty()); 2057 } 2058 2059 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2060 if (!VBPType.getIndex()) { 2061 // Make a 'const int *' type. 2062 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2063 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2064 2065 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2066 : PointerKind::Near32; 2067 PointerMode PM = PointerMode::Pointer; 2068 PointerOptions PO = PointerOptions::None; 2069 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2070 VBPType = TypeTable.writeLeafType(PR); 2071 } 2072 2073 return VBPType; 2074 } 2075 2076 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2077 const DIType *Ty = TypeRef.resolve(); 2078 const DIType *ClassTy = ClassTyRef.resolve(); 2079 2080 // The null DIType is the void type. Don't try to hash it. 2081 if (!Ty) 2082 return TypeIndex::Void(); 2083 2084 // Check if we've already translated this type. Don't try to do a 2085 // get-or-create style insertion that caches the hash lookup across the 2086 // lowerType call. It will update the TypeIndices map. 2087 auto I = TypeIndices.find({Ty, ClassTy}); 2088 if (I != TypeIndices.end()) 2089 return I->second; 2090 2091 TypeLoweringScope S(*this); 2092 TypeIndex TI = lowerType(Ty, ClassTy); 2093 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2094 } 2095 2096 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2097 DIType *Ty = TypeRef.resolve(); 2098 PointerRecord PR(getTypeIndex(Ty), 2099 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2100 : PointerKind::Near32, 2101 PointerMode::LValueReference, PointerOptions::None, 2102 Ty->getSizeInBits() / 8); 2103 return TypeTable.writeLeafType(PR); 2104 } 2105 2106 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2107 const DIType *Ty = TypeRef.resolve(); 2108 2109 // The null DIType is the void type. Don't try to hash it. 2110 if (!Ty) 2111 return TypeIndex::Void(); 2112 2113 // If this is a non-record type, the complete type index is the same as the 2114 // normal type index. Just call getTypeIndex. 2115 switch (Ty->getTag()) { 2116 case dwarf::DW_TAG_class_type: 2117 case dwarf::DW_TAG_structure_type: 2118 case dwarf::DW_TAG_union_type: 2119 break; 2120 default: 2121 return getTypeIndex(Ty); 2122 } 2123 2124 // Check if we've already translated the complete record type. Lowering a 2125 // complete type should never trigger lowering another complete type, so we 2126 // can reuse the hash table lookup result. 2127 const auto *CTy = cast<DICompositeType>(Ty); 2128 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2129 if (!InsertResult.second) 2130 return InsertResult.first->second; 2131 2132 TypeLoweringScope S(*this); 2133 2134 // Make sure the forward declaration is emitted first. It's unclear if this 2135 // is necessary, but MSVC does it, and we should follow suit until we can show 2136 // otherwise. 2137 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2138 2139 // Just use the forward decl if we don't have complete type info. This might 2140 // happen if the frontend is using modules and expects the complete definition 2141 // to be emitted elsewhere. 2142 if (CTy->isForwardDecl()) 2143 return FwdDeclTI; 2144 2145 TypeIndex TI; 2146 switch (CTy->getTag()) { 2147 case dwarf::DW_TAG_class_type: 2148 case dwarf::DW_TAG_structure_type: 2149 TI = lowerCompleteTypeClass(CTy); 2150 break; 2151 case dwarf::DW_TAG_union_type: 2152 TI = lowerCompleteTypeUnion(CTy); 2153 break; 2154 default: 2155 llvm_unreachable("not a record"); 2156 } 2157 2158 InsertResult.first->second = TI; 2159 return TI; 2160 } 2161 2162 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2163 /// and do this until fixpoint, as each complete record type typically 2164 /// references 2165 /// many other record types. 2166 void CodeViewDebug::emitDeferredCompleteTypes() { 2167 SmallVector<const DICompositeType *, 4> TypesToEmit; 2168 while (!DeferredCompleteTypes.empty()) { 2169 std::swap(DeferredCompleteTypes, TypesToEmit); 2170 for (const DICompositeType *RecordTy : TypesToEmit) 2171 getCompleteTypeIndex(RecordTy); 2172 TypesToEmit.clear(); 2173 } 2174 } 2175 2176 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2177 // Get the sorted list of parameters and emit them first. 2178 SmallVector<const LocalVariable *, 6> Params; 2179 for (const LocalVariable &L : Locals) 2180 if (L.DIVar->isParameter()) 2181 Params.push_back(&L); 2182 std::sort(Params.begin(), Params.end(), 2183 [](const LocalVariable *L, const LocalVariable *R) { 2184 return L->DIVar->getArg() < R->DIVar->getArg(); 2185 }); 2186 for (const LocalVariable *L : Params) 2187 emitLocalVariable(*L); 2188 2189 // Next emit all non-parameters in the order that we found them. 2190 for (const LocalVariable &L : Locals) 2191 if (!L.DIVar->isParameter()) 2192 emitLocalVariable(L); 2193 } 2194 2195 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2196 // LocalSym record, see SymbolRecord.h for more info. 2197 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2198 *LocalEnd = MMI->getContext().createTempSymbol(); 2199 OS.AddComment("Record length"); 2200 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2201 OS.EmitLabel(LocalBegin); 2202 2203 OS.AddComment("Record kind: S_LOCAL"); 2204 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2205 2206 LocalSymFlags Flags = LocalSymFlags::None; 2207 if (Var.DIVar->isParameter()) 2208 Flags |= LocalSymFlags::IsParameter; 2209 if (Var.DefRanges.empty()) 2210 Flags |= LocalSymFlags::IsOptimizedOut; 2211 2212 OS.AddComment("TypeIndex"); 2213 TypeIndex TI = Var.UseReferenceType 2214 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2215 : getCompleteTypeIndex(Var.DIVar->getType()); 2216 OS.EmitIntValue(TI.getIndex(), 4); 2217 OS.AddComment("Flags"); 2218 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2219 // Truncate the name so we won't overflow the record length field. 2220 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2221 OS.EmitLabel(LocalEnd); 2222 2223 // Calculate the on disk prefix of the appropriate def range record. The 2224 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2225 // should be big enough to hold all forms without memory allocation. 2226 SmallString<20> BytePrefix; 2227 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2228 BytePrefix.clear(); 2229 if (DefRange.InMemory) { 2230 uint16_t RegRelFlags = 0; 2231 if (DefRange.IsSubfield) { 2232 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2233 (DefRange.StructOffset 2234 << DefRangeRegisterRelSym::OffsetInParentShift); 2235 } 2236 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2237 Sym.Hdr.Register = DefRange.CVRegister; 2238 Sym.Hdr.Flags = RegRelFlags; 2239 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2240 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2241 BytePrefix += 2242 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2243 BytePrefix += 2244 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2245 } else { 2246 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2247 if (DefRange.IsSubfield) { 2248 // Unclear what matters here. 2249 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2250 Sym.Hdr.Register = DefRange.CVRegister; 2251 Sym.Hdr.MayHaveNoName = 0; 2252 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2253 2254 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2255 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2256 sizeof(SymKind)); 2257 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2258 sizeof(Sym.Hdr)); 2259 } else { 2260 // Unclear what matters here. 2261 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2262 Sym.Hdr.Register = DefRange.CVRegister; 2263 Sym.Hdr.MayHaveNoName = 0; 2264 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2265 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2266 sizeof(SymKind)); 2267 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2268 sizeof(Sym.Hdr)); 2269 } 2270 } 2271 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2272 } 2273 } 2274 2275 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2276 const Function &GV = MF->getFunction(); 2277 assert(FnDebugInfo.count(&GV)); 2278 assert(CurFn == &FnDebugInfo[&GV]); 2279 2280 collectVariableInfo(GV.getSubprogram()); 2281 2282 // Don't emit anything if we don't have any line tables. 2283 if (!CurFn->HaveLineInfo) { 2284 FnDebugInfo.erase(&GV); 2285 CurFn = nullptr; 2286 return; 2287 } 2288 2289 CurFn->Annotations = MF->getCodeViewAnnotations(); 2290 2291 CurFn->End = Asm->getFunctionEnd(); 2292 2293 CurFn = nullptr; 2294 } 2295 2296 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2297 DebugHandlerBase::beginInstruction(MI); 2298 2299 // Ignore DBG_VALUE locations and function prologue. 2300 if (!Asm || !CurFn || MI->isDebugValue() || 2301 MI->getFlag(MachineInstr::FrameSetup)) 2302 return; 2303 2304 // If the first instruction of a new MBB has no location, find the first 2305 // instruction with a location and use that. 2306 DebugLoc DL = MI->getDebugLoc(); 2307 if (!DL && MI->getParent() != PrevInstBB) { 2308 for (const auto &NextMI : *MI->getParent()) { 2309 if (NextMI.isDebugValue()) 2310 continue; 2311 DL = NextMI.getDebugLoc(); 2312 if (DL) 2313 break; 2314 } 2315 } 2316 PrevInstBB = MI->getParent(); 2317 2318 // If we still don't have a debug location, don't record a location. 2319 if (!DL) 2320 return; 2321 2322 maybeRecordLocation(DL, Asm->MF); 2323 } 2324 2325 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2326 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2327 *EndLabel = MMI->getContext().createTempSymbol(); 2328 OS.EmitIntValue(unsigned(Kind), 4); 2329 OS.AddComment("Subsection size"); 2330 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2331 OS.EmitLabel(BeginLabel); 2332 return EndLabel; 2333 } 2334 2335 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2336 OS.EmitLabel(EndLabel); 2337 // Every subsection must be aligned to a 4-byte boundary. 2338 OS.EmitValueToAlignment(4); 2339 } 2340 2341 void CodeViewDebug::emitDebugInfoForUDTs( 2342 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2343 for (const auto &UDT : UDTs) { 2344 const DIType *T = UDT.second; 2345 assert(shouldEmitUdt(T)); 2346 2347 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2348 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2349 OS.AddComment("Record length"); 2350 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2351 OS.EmitLabel(UDTRecordBegin); 2352 2353 OS.AddComment("Record kind: S_UDT"); 2354 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2355 2356 OS.AddComment("Type"); 2357 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2358 2359 emitNullTerminatedSymbolName(OS, UDT.first); 2360 OS.EmitLabel(UDTRecordEnd); 2361 } 2362 } 2363 2364 void CodeViewDebug::emitDebugInfoForGlobals() { 2365 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2366 GlobalMap; 2367 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2368 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2369 GV.getDebugInfo(GVEs); 2370 for (const auto *GVE : GVEs) 2371 GlobalMap[GVE] = &GV; 2372 } 2373 2374 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2375 for (const MDNode *Node : CUs->operands()) { 2376 const auto *CU = cast<DICompileUnit>(Node); 2377 2378 // First, emit all globals that are not in a comdat in a single symbol 2379 // substream. MSVC doesn't like it if the substream is empty, so only open 2380 // it if we have at least one global to emit. 2381 switchToDebugSectionForSymbol(nullptr); 2382 MCSymbol *EndLabel = nullptr; 2383 for (const auto *GVE : CU->getGlobalVariables()) { 2384 if (const auto *GV = GlobalMap.lookup(GVE)) 2385 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2386 if (!EndLabel) { 2387 OS.AddComment("Symbol subsection for globals"); 2388 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2389 } 2390 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2391 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2392 } 2393 } 2394 if (EndLabel) 2395 endCVSubsection(EndLabel); 2396 2397 // Second, emit each global that is in a comdat into its own .debug$S 2398 // section along with its own symbol substream. 2399 for (const auto *GVE : CU->getGlobalVariables()) { 2400 if (const auto *GV = GlobalMap.lookup(GVE)) { 2401 if (GV->hasComdat()) { 2402 MCSymbol *GVSym = Asm->getSymbol(GV); 2403 OS.AddComment("Symbol subsection for " + 2404 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2405 switchToDebugSectionForSymbol(GVSym); 2406 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2407 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2408 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2409 endCVSubsection(EndLabel); 2410 } 2411 } 2412 } 2413 } 2414 } 2415 2416 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2417 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2418 for (const MDNode *Node : CUs->operands()) { 2419 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2420 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2421 getTypeIndex(RT); 2422 // FIXME: Add to global/local DTU list. 2423 } 2424 } 2425 } 2426 } 2427 2428 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2429 const GlobalVariable *GV, 2430 MCSymbol *GVSym) { 2431 // DataSym record, see SymbolRecord.h for more info. 2432 // FIXME: Thread local data, etc 2433 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2434 *DataEnd = MMI->getContext().createTempSymbol(); 2435 OS.AddComment("Record length"); 2436 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2437 OS.EmitLabel(DataBegin); 2438 if (DIGV->isLocalToUnit()) { 2439 if (GV->isThreadLocal()) { 2440 OS.AddComment("Record kind: S_LTHREAD32"); 2441 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2442 } else { 2443 OS.AddComment("Record kind: S_LDATA32"); 2444 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2445 } 2446 } else { 2447 if (GV->isThreadLocal()) { 2448 OS.AddComment("Record kind: S_GTHREAD32"); 2449 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2450 } else { 2451 OS.AddComment("Record kind: S_GDATA32"); 2452 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2453 } 2454 } 2455 OS.AddComment("Type"); 2456 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2457 OS.AddComment("DataOffset"); 2458 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2459 OS.AddComment("Segment"); 2460 OS.EmitCOFFSectionIndex(GVSym); 2461 OS.AddComment("Name"); 2462 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2463 OS.EmitLabel(DataEnd); 2464 } 2465