1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/CVTypeDumper.h" 17 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 18 #include "llvm/DebugInfo/CodeView/CodeView.h" 19 #include "llvm/DebugInfo/CodeView/Line.h" 20 #include "llvm/DebugInfo/CodeView/ModuleDebugInlineeLinesFragment.h" 21 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 22 #include "llvm/DebugInfo/CodeView/TypeDatabase.h" 23 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 24 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 25 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 26 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/MC/MCSectionCOFF.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Support/BinaryByteStream.h" 33 #include "llvm/Support/BinaryStreamReader.h" 34 #include "llvm/Support/COFF.h" 35 #include "llvm/Support/ScopedPrinter.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 40 using namespace llvm; 41 using namespace llvm::codeview; 42 43 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 44 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(), 45 TypeTable(Allocator), CurFn(nullptr) { 46 // If module doesn't have named metadata anchors or COFF debug section 47 // is not available, skip any debug info related stuff. 48 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 49 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 50 Asm = nullptr; 51 return; 52 } 53 54 // Tell MMI that we have debug info. 55 MMI->setDebugInfoAvailability(true); 56 } 57 58 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 59 std::string &Filepath = FileToFilepathMap[File]; 60 if (!Filepath.empty()) 61 return Filepath; 62 63 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 64 65 // Clang emits directory and relative filename info into the IR, but CodeView 66 // operates on full paths. We could change Clang to emit full paths too, but 67 // that would increase the IR size and probably not needed for other users. 68 // For now, just concatenate and canonicalize the path here. 69 if (Filename.find(':') == 1) 70 Filepath = Filename; 71 else 72 Filepath = (Dir + "\\" + Filename).str(); 73 74 // Canonicalize the path. We have to do it textually because we may no longer 75 // have access the file in the filesystem. 76 // First, replace all slashes with backslashes. 77 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 78 79 // Remove all "\.\" with "\". 80 size_t Cursor = 0; 81 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 82 Filepath.erase(Cursor, 2); 83 84 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 85 // path should be well-formatted, e.g. start with a drive letter, etc. 86 Cursor = 0; 87 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 88 // Something's wrong if the path starts with "\..\", abort. 89 if (Cursor == 0) 90 break; 91 92 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 93 if (PrevSlash == std::string::npos) 94 // Something's wrong, abort. 95 break; 96 97 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 98 // The next ".." might be following the one we've just erased. 99 Cursor = PrevSlash; 100 } 101 102 // Remove all duplicate backslashes. 103 Cursor = 0; 104 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 105 Filepath.erase(Cursor, 1); 106 107 return Filepath; 108 } 109 110 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 111 unsigned NextId = FileIdMap.size() + 1; 112 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 113 if (Insertion.second) { 114 // We have to compute the full filepath and emit a .cv_file directive. 115 StringRef FullPath = getFullFilepath(F); 116 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 117 (void)Success; 118 assert(Success && ".cv_file directive failed"); 119 } 120 return Insertion.first->second; 121 } 122 123 CodeViewDebug::InlineSite & 124 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 125 const DISubprogram *Inlinee) { 126 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 127 InlineSite *Site = &SiteInsertion.first->second; 128 if (SiteInsertion.second) { 129 unsigned ParentFuncId = CurFn->FuncId; 130 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 131 ParentFuncId = 132 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 133 .SiteFuncId; 134 135 Site->SiteFuncId = NextFuncId++; 136 OS.EmitCVInlineSiteIdDirective( 137 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 138 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 139 Site->Inlinee = Inlinee; 140 InlinedSubprograms.insert(Inlinee); 141 getFuncIdForSubprogram(Inlinee); 142 } 143 return *Site; 144 } 145 146 static StringRef getPrettyScopeName(const DIScope *Scope) { 147 StringRef ScopeName = Scope->getName(); 148 if (!ScopeName.empty()) 149 return ScopeName; 150 151 switch (Scope->getTag()) { 152 case dwarf::DW_TAG_enumeration_type: 153 case dwarf::DW_TAG_class_type: 154 case dwarf::DW_TAG_structure_type: 155 case dwarf::DW_TAG_union_type: 156 return "<unnamed-tag>"; 157 case dwarf::DW_TAG_namespace: 158 return "`anonymous namespace'"; 159 } 160 161 return StringRef(); 162 } 163 164 static const DISubprogram *getQualifiedNameComponents( 165 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 166 const DISubprogram *ClosestSubprogram = nullptr; 167 while (Scope != nullptr) { 168 if (ClosestSubprogram == nullptr) 169 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 170 StringRef ScopeName = getPrettyScopeName(Scope); 171 if (!ScopeName.empty()) 172 QualifiedNameComponents.push_back(ScopeName); 173 Scope = Scope->getScope().resolve(); 174 } 175 return ClosestSubprogram; 176 } 177 178 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 179 StringRef TypeName) { 180 std::string FullyQualifiedName; 181 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 182 FullyQualifiedName.append(QualifiedNameComponent); 183 FullyQualifiedName.append("::"); 184 } 185 FullyQualifiedName.append(TypeName); 186 return FullyQualifiedName; 187 } 188 189 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 190 SmallVector<StringRef, 5> QualifiedNameComponents; 191 getQualifiedNameComponents(Scope, QualifiedNameComponents); 192 return getQualifiedName(QualifiedNameComponents, Name); 193 } 194 195 struct CodeViewDebug::TypeLoweringScope { 196 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 197 ~TypeLoweringScope() { 198 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 199 // inner TypeLoweringScopes don't attempt to emit deferred types. 200 if (CVD.TypeEmissionLevel == 1) 201 CVD.emitDeferredCompleteTypes(); 202 --CVD.TypeEmissionLevel; 203 } 204 CodeViewDebug &CVD; 205 }; 206 207 static std::string getFullyQualifiedName(const DIScope *Ty) { 208 const DIScope *Scope = Ty->getScope().resolve(); 209 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 210 } 211 212 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 213 // No scope means global scope and that uses the zero index. 214 if (!Scope || isa<DIFile>(Scope)) 215 return TypeIndex(); 216 217 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 218 219 // Check if we've already translated this scope. 220 auto I = TypeIndices.find({Scope, nullptr}); 221 if (I != TypeIndices.end()) 222 return I->second; 223 224 // Build the fully qualified name of the scope. 225 std::string ScopeName = getFullyQualifiedName(Scope); 226 StringIdRecord SID(TypeIndex(), ScopeName); 227 auto TI = TypeTable.writeKnownType(SID); 228 return recordTypeIndexForDINode(Scope, TI); 229 } 230 231 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 232 assert(SP); 233 234 // Check if we've already translated this subprogram. 235 auto I = TypeIndices.find({SP, nullptr}); 236 if (I != TypeIndices.end()) 237 return I->second; 238 239 // The display name includes function template arguments. Drop them to match 240 // MSVC. 241 StringRef DisplayName = SP->getName().split('<').first; 242 243 const DIScope *Scope = SP->getScope().resolve(); 244 TypeIndex TI; 245 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 246 // If the scope is a DICompositeType, then this must be a method. Member 247 // function types take some special handling, and require access to the 248 // subprogram. 249 TypeIndex ClassType = getTypeIndex(Class); 250 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 251 DisplayName); 252 TI = TypeTable.writeKnownType(MFuncId); 253 } else { 254 // Otherwise, this must be a free function. 255 TypeIndex ParentScope = getScopeIndex(Scope); 256 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 257 TI = TypeTable.writeKnownType(FuncId); 258 } 259 260 return recordTypeIndexForDINode(SP, TI); 261 } 262 263 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 264 const DICompositeType *Class) { 265 // Always use the method declaration as the key for the function type. The 266 // method declaration contains the this adjustment. 267 if (SP->getDeclaration()) 268 SP = SP->getDeclaration(); 269 assert(!SP->getDeclaration() && "should use declaration as key"); 270 271 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 272 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 273 auto I = TypeIndices.find({SP, Class}); 274 if (I != TypeIndices.end()) 275 return I->second; 276 277 // Make sure complete type info for the class is emitted *after* the member 278 // function type, as the complete class type is likely to reference this 279 // member function type. 280 TypeLoweringScope S(*this); 281 TypeIndex TI = 282 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 283 return recordTypeIndexForDINode(SP, TI, Class); 284 } 285 286 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 287 TypeIndex TI, 288 const DIType *ClassTy) { 289 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 290 (void)InsertResult; 291 assert(InsertResult.second && "DINode was already assigned a type index"); 292 return TI; 293 } 294 295 unsigned CodeViewDebug::getPointerSizeInBytes() { 296 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 297 } 298 299 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 300 const DILocation *InlinedAt) { 301 if (InlinedAt) { 302 // This variable was inlined. Associate it with the InlineSite. 303 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 304 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 305 Site.InlinedLocals.emplace_back(Var); 306 } else { 307 // This variable goes in the main ProcSym. 308 CurFn->Locals.emplace_back(Var); 309 } 310 } 311 312 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 313 const DILocation *Loc) { 314 auto B = Locs.begin(), E = Locs.end(); 315 if (std::find(B, E, Loc) == E) 316 Locs.push_back(Loc); 317 } 318 319 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 320 const MachineFunction *MF) { 321 // Skip this instruction if it has the same location as the previous one. 322 if (DL == CurFn->LastLoc) 323 return; 324 325 const DIScope *Scope = DL.get()->getScope(); 326 if (!Scope) 327 return; 328 329 // Skip this line if it is longer than the maximum we can record. 330 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 331 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 332 LI.isNeverStepInto()) 333 return; 334 335 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 336 if (CI.getStartColumn() != DL.getCol()) 337 return; 338 339 if (!CurFn->HaveLineInfo) 340 CurFn->HaveLineInfo = true; 341 unsigned FileId = 0; 342 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 343 FileId = CurFn->LastFileId; 344 else 345 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 346 CurFn->LastLoc = DL; 347 348 unsigned FuncId = CurFn->FuncId; 349 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 350 const DILocation *Loc = DL.get(); 351 352 // If this location was actually inlined from somewhere else, give it the ID 353 // of the inline call site. 354 FuncId = 355 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 356 357 // Ensure we have links in the tree of inline call sites. 358 bool FirstLoc = true; 359 while ((SiteLoc = Loc->getInlinedAt())) { 360 InlineSite &Site = 361 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 362 if (!FirstLoc) 363 addLocIfNotPresent(Site.ChildSites, Loc); 364 FirstLoc = false; 365 Loc = SiteLoc; 366 } 367 addLocIfNotPresent(CurFn->ChildSites, Loc); 368 } 369 370 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 371 /*PrologueEnd=*/false, /*IsStmt=*/false, 372 DL->getFilename(), SMLoc()); 373 } 374 375 void CodeViewDebug::emitCodeViewMagicVersion() { 376 OS.EmitValueToAlignment(4); 377 OS.AddComment("Debug section magic"); 378 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 379 } 380 381 void CodeViewDebug::endModule() { 382 if (!Asm || !MMI->hasDebugInfo()) 383 return; 384 385 assert(Asm != nullptr); 386 387 // The COFF .debug$S section consists of several subsections, each starting 388 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 389 // of the payload followed by the payload itself. The subsections are 4-byte 390 // aligned. 391 392 // Use the generic .debug$S section, and make a subsection for all the inlined 393 // subprograms. 394 switchToDebugSectionForSymbol(nullptr); 395 396 MCSymbol *CompilerInfo = beginCVSubsection(ModuleDebugFragmentKind::Symbols); 397 emitCompilerInformation(); 398 endCVSubsection(CompilerInfo); 399 400 emitInlineeLinesSubsection(); 401 402 // Emit per-function debug information. 403 for (auto &P : FnDebugInfo) 404 if (!P.first->isDeclarationForLinker()) 405 emitDebugInfoForFunction(P.first, P.second); 406 407 // Emit global variable debug information. 408 setCurrentSubprogram(nullptr); 409 emitDebugInfoForGlobals(); 410 411 // Emit retained types. 412 emitDebugInfoForRetainedTypes(); 413 414 // Switch back to the generic .debug$S section after potentially processing 415 // comdat symbol sections. 416 switchToDebugSectionForSymbol(nullptr); 417 418 // Emit UDT records for any types used by global variables. 419 if (!GlobalUDTs.empty()) { 420 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleDebugFragmentKind::Symbols); 421 emitDebugInfoForUDTs(GlobalUDTs); 422 endCVSubsection(SymbolsEnd); 423 } 424 425 // This subsection holds a file index to offset in string table table. 426 OS.AddComment("File index to string table offset subsection"); 427 OS.EmitCVFileChecksumsDirective(); 428 429 // This subsection holds the string table. 430 OS.AddComment("String table"); 431 OS.EmitCVStringTableDirective(); 432 433 // Emit type information last, so that any types we translate while emitting 434 // function info are included. 435 emitTypeInformation(); 436 437 clear(); 438 } 439 440 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 441 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 442 // after a fixed length portion of the record. The fixed length portion should 443 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 444 // overall record size is less than the maximum allowed. 445 unsigned MaxFixedRecordLength = 0xF00; 446 SmallString<32> NullTerminatedString( 447 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 448 NullTerminatedString.push_back('\0'); 449 OS.EmitBytes(NullTerminatedString); 450 } 451 452 void CodeViewDebug::emitTypeInformation() { 453 // Do nothing if we have no debug info or if no non-trivial types were emitted 454 // to TypeTable during codegen. 455 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 456 if (!CU_Nodes) 457 return; 458 if (TypeTable.empty()) 459 return; 460 461 // Start the .debug$T section with 0x4. 462 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 463 emitCodeViewMagicVersion(); 464 465 SmallString<8> CommentPrefix; 466 if (OS.isVerboseAsm()) { 467 CommentPrefix += '\t'; 468 CommentPrefix += Asm->MAI->getCommentString(); 469 CommentPrefix += ' '; 470 } 471 472 TypeDatabase TypeDB(TypeTable.records().size()); 473 CVTypeDumper CVTD(TypeDB); 474 TypeTable.ForEachRecord([&](TypeIndex Index, ArrayRef<uint8_t> Record) { 475 if (OS.isVerboseAsm()) { 476 // Emit a block comment describing the type record for readability. 477 SmallString<512> CommentBlock; 478 raw_svector_ostream CommentOS(CommentBlock); 479 ScopedPrinter SP(CommentOS); 480 SP.setPrefix(CommentPrefix); 481 TypeDumpVisitor TDV(TypeDB, &SP, false); 482 Error E = CVTD.dump(Record, TDV); 483 if (E) { 484 logAllUnhandledErrors(std::move(E), errs(), "error: "); 485 llvm_unreachable("produced malformed type record"); 486 } 487 // emitRawComment will insert its own tab and comment string before 488 // the first line, so strip off our first one. It also prints its own 489 // newline. 490 OS.emitRawComment( 491 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 492 } else { 493 #ifndef NDEBUG 494 // Assert that the type data is valid even if we aren't dumping 495 // comments. The MSVC linker doesn't do much type record validation, 496 // so the first link of an invalid type record can succeed while 497 // subsequent links will fail with LNK1285. 498 BinaryByteStream Stream(Record, llvm::support::little); 499 CVTypeArray Types; 500 BinaryStreamReader Reader(Stream); 501 Error E = Reader.readArray(Types, Reader.getLength()); 502 if (!E) { 503 TypeVisitorCallbacks C; 504 E = CVTypeVisitor(C).visitTypeStream(Types); 505 } 506 if (E) { 507 logAllUnhandledErrors(std::move(E), errs(), "error: "); 508 llvm_unreachable("produced malformed type record"); 509 } 510 #endif 511 } 512 StringRef S(reinterpret_cast<const char *>(Record.data()), Record.size()); 513 OS.EmitBinaryData(S); 514 }); 515 } 516 517 namespace { 518 519 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 520 switch (DWLang) { 521 case dwarf::DW_LANG_C: 522 case dwarf::DW_LANG_C89: 523 case dwarf::DW_LANG_C99: 524 case dwarf::DW_LANG_C11: 525 case dwarf::DW_LANG_ObjC: 526 return SourceLanguage::C; 527 case dwarf::DW_LANG_C_plus_plus: 528 case dwarf::DW_LANG_C_plus_plus_03: 529 case dwarf::DW_LANG_C_plus_plus_11: 530 case dwarf::DW_LANG_C_plus_plus_14: 531 return SourceLanguage::Cpp; 532 case dwarf::DW_LANG_Fortran77: 533 case dwarf::DW_LANG_Fortran90: 534 case dwarf::DW_LANG_Fortran03: 535 case dwarf::DW_LANG_Fortran08: 536 return SourceLanguage::Fortran; 537 case dwarf::DW_LANG_Pascal83: 538 return SourceLanguage::Pascal; 539 case dwarf::DW_LANG_Cobol74: 540 case dwarf::DW_LANG_Cobol85: 541 return SourceLanguage::Cobol; 542 case dwarf::DW_LANG_Java: 543 return SourceLanguage::Java; 544 default: 545 // There's no CodeView representation for this language, and CV doesn't 546 // have an "unknown" option for the language field, so we'll use MASM, 547 // as it's very low level. 548 return SourceLanguage::Masm; 549 } 550 } 551 552 struct Version { 553 int Part[4]; 554 }; 555 556 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 557 // the version number. 558 static Version parseVersion(StringRef Name) { 559 Version V = {{0}}; 560 int N = 0; 561 for (const char C : Name) { 562 if (isdigit(C)) { 563 V.Part[N] *= 10; 564 V.Part[N] += C - '0'; 565 } else if (C == '.') { 566 ++N; 567 if (N >= 4) 568 return V; 569 } else if (N > 0) 570 return V; 571 } 572 return V; 573 } 574 575 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 576 switch (Type) { 577 case Triple::ArchType::x86: 578 return CPUType::Pentium3; 579 case Triple::ArchType::x86_64: 580 return CPUType::X64; 581 case Triple::ArchType::thumb: 582 return CPUType::Thumb; 583 default: 584 report_fatal_error("target architecture doesn't map to a CodeView " 585 "CPUType"); 586 } 587 } 588 589 } // anonymous namespace 590 591 void CodeViewDebug::emitCompilerInformation() { 592 MCContext &Context = MMI->getContext(); 593 MCSymbol *CompilerBegin = Context.createTempSymbol(), 594 *CompilerEnd = Context.createTempSymbol(); 595 OS.AddComment("Record length"); 596 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 597 OS.EmitLabel(CompilerBegin); 598 OS.AddComment("Record kind: S_COMPILE3"); 599 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 600 uint32_t Flags = 0; 601 602 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 603 const MDNode *Node = *CUs->operands().begin(); 604 const auto *CU = cast<DICompileUnit>(Node); 605 606 // The low byte of the flags indicates the source language. 607 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 608 // TODO: Figure out which other flags need to be set. 609 610 OS.AddComment("Flags and language"); 611 OS.EmitIntValue(Flags, 4); 612 613 OS.AddComment("CPUType"); 614 CPUType CPU = 615 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 616 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 617 618 StringRef CompilerVersion = CU->getProducer(); 619 Version FrontVer = parseVersion(CompilerVersion); 620 OS.AddComment("Frontend version"); 621 for (int N = 0; N < 4; ++N) 622 OS.EmitIntValue(FrontVer.Part[N], 2); 623 624 // Some Microsoft tools, like Binscope, expect a backend version number of at 625 // least 8.something, so we'll coerce the LLVM version into a form that 626 // guarantees it'll be big enough without really lying about the version. 627 int Major = 1000 * LLVM_VERSION_MAJOR + 628 10 * LLVM_VERSION_MINOR + 629 LLVM_VERSION_PATCH; 630 // Clamp it for builds that use unusually large version numbers. 631 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 632 Version BackVer = {{ Major, 0, 0, 0 }}; 633 OS.AddComment("Backend version"); 634 for (int N = 0; N < 4; ++N) 635 OS.EmitIntValue(BackVer.Part[N], 2); 636 637 OS.AddComment("Null-terminated compiler version string"); 638 emitNullTerminatedSymbolName(OS, CompilerVersion); 639 640 OS.EmitLabel(CompilerEnd); 641 } 642 643 void CodeViewDebug::emitInlineeLinesSubsection() { 644 if (InlinedSubprograms.empty()) 645 return; 646 647 OS.AddComment("Inlinee lines subsection"); 648 MCSymbol *InlineEnd = 649 beginCVSubsection(ModuleDebugFragmentKind::InlineeLines); 650 651 // We don't provide any extra file info. 652 // FIXME: Find out if debuggers use this info. 653 OS.AddComment("Inlinee lines signature"); 654 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 655 656 for (const DISubprogram *SP : InlinedSubprograms) { 657 assert(TypeIndices.count({SP, nullptr})); 658 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 659 660 OS.AddBlankLine(); 661 unsigned FileId = maybeRecordFile(SP->getFile()); 662 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 663 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 664 OS.AddBlankLine(); 665 // The filechecksum table uses 8 byte entries for now, and file ids start at 666 // 1. 667 unsigned FileOffset = (FileId - 1) * 8; 668 OS.AddComment("Type index of inlined function"); 669 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 670 OS.AddComment("Offset into filechecksum table"); 671 OS.EmitIntValue(FileOffset, 4); 672 OS.AddComment("Starting line number"); 673 OS.EmitIntValue(SP->getLine(), 4); 674 } 675 676 endCVSubsection(InlineEnd); 677 } 678 679 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 680 const DILocation *InlinedAt, 681 const InlineSite &Site) { 682 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 683 *InlineEnd = MMI->getContext().createTempSymbol(); 684 685 assert(TypeIndices.count({Site.Inlinee, nullptr})); 686 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 687 688 // SymbolRecord 689 OS.AddComment("Record length"); 690 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 691 OS.EmitLabel(InlineBegin); 692 OS.AddComment("Record kind: S_INLINESITE"); 693 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 694 695 OS.AddComment("PtrParent"); 696 OS.EmitIntValue(0, 4); 697 OS.AddComment("PtrEnd"); 698 OS.EmitIntValue(0, 4); 699 OS.AddComment("Inlinee type index"); 700 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 701 702 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 703 unsigned StartLineNum = Site.Inlinee->getLine(); 704 705 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 706 FI.Begin, FI.End); 707 708 OS.EmitLabel(InlineEnd); 709 710 emitLocalVariableList(Site.InlinedLocals); 711 712 // Recurse on child inlined call sites before closing the scope. 713 for (const DILocation *ChildSite : Site.ChildSites) { 714 auto I = FI.InlineSites.find(ChildSite); 715 assert(I != FI.InlineSites.end() && 716 "child site not in function inline site map"); 717 emitInlinedCallSite(FI, ChildSite, I->second); 718 } 719 720 // Close the scope. 721 OS.AddComment("Record length"); 722 OS.EmitIntValue(2, 2); // RecordLength 723 OS.AddComment("Record kind: S_INLINESITE_END"); 724 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 725 } 726 727 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 728 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 729 // comdat key. A section may be comdat because of -ffunction-sections or 730 // because it is comdat in the IR. 731 MCSectionCOFF *GVSec = 732 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 733 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 734 735 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 736 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 737 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 738 739 OS.SwitchSection(DebugSec); 740 741 // Emit the magic version number if this is the first time we've switched to 742 // this section. 743 if (ComdatDebugSections.insert(DebugSec).second) 744 emitCodeViewMagicVersion(); 745 } 746 747 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 748 FunctionInfo &FI) { 749 // For each function there is a separate subsection 750 // which holds the PC to file:line table. 751 const MCSymbol *Fn = Asm->getSymbol(GV); 752 assert(Fn); 753 754 // Switch to the to a comdat section, if appropriate. 755 switchToDebugSectionForSymbol(Fn); 756 757 std::string FuncName; 758 auto *SP = GV->getSubprogram(); 759 assert(SP); 760 setCurrentSubprogram(SP); 761 762 // If we have a display name, build the fully qualified name by walking the 763 // chain of scopes. 764 if (!SP->getName().empty()) 765 FuncName = 766 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 767 768 // If our DISubprogram name is empty, use the mangled name. 769 if (FuncName.empty()) 770 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 771 772 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 773 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 774 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleDebugFragmentKind::Symbols); 775 { 776 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 777 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 778 OS.AddComment("Record length"); 779 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 780 OS.EmitLabel(ProcRecordBegin); 781 782 if (GV->hasLocalLinkage()) { 783 OS.AddComment("Record kind: S_LPROC32_ID"); 784 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 785 } else { 786 OS.AddComment("Record kind: S_GPROC32_ID"); 787 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 788 } 789 790 // These fields are filled in by tools like CVPACK which run after the fact. 791 OS.AddComment("PtrParent"); 792 OS.EmitIntValue(0, 4); 793 OS.AddComment("PtrEnd"); 794 OS.EmitIntValue(0, 4); 795 OS.AddComment("PtrNext"); 796 OS.EmitIntValue(0, 4); 797 // This is the important bit that tells the debugger where the function 798 // code is located and what's its size: 799 OS.AddComment("Code size"); 800 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 801 OS.AddComment("Offset after prologue"); 802 OS.EmitIntValue(0, 4); 803 OS.AddComment("Offset before epilogue"); 804 OS.EmitIntValue(0, 4); 805 OS.AddComment("Function type index"); 806 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 807 OS.AddComment("Function section relative address"); 808 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 809 OS.AddComment("Function section index"); 810 OS.EmitCOFFSectionIndex(Fn); 811 OS.AddComment("Flags"); 812 OS.EmitIntValue(0, 1); 813 // Emit the function display name as a null-terminated string. 814 OS.AddComment("Function name"); 815 // Truncate the name so we won't overflow the record length field. 816 emitNullTerminatedSymbolName(OS, FuncName); 817 OS.EmitLabel(ProcRecordEnd); 818 819 emitLocalVariableList(FI.Locals); 820 821 // Emit inlined call site information. Only emit functions inlined directly 822 // into the parent function. We'll emit the other sites recursively as part 823 // of their parent inline site. 824 for (const DILocation *InlinedAt : FI.ChildSites) { 825 auto I = FI.InlineSites.find(InlinedAt); 826 assert(I != FI.InlineSites.end() && 827 "child site not in function inline site map"); 828 emitInlinedCallSite(FI, InlinedAt, I->second); 829 } 830 831 if (SP != nullptr) 832 emitDebugInfoForUDTs(LocalUDTs); 833 834 // We're done with this function. 835 OS.AddComment("Record length"); 836 OS.EmitIntValue(0x0002, 2); 837 OS.AddComment("Record kind: S_PROC_ID_END"); 838 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 839 } 840 endCVSubsection(SymbolsEnd); 841 842 // We have an assembler directive that takes care of the whole line table. 843 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 844 } 845 846 CodeViewDebug::LocalVarDefRange 847 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 848 LocalVarDefRange DR; 849 DR.InMemory = -1; 850 DR.DataOffset = Offset; 851 assert(DR.DataOffset == Offset && "truncation"); 852 DR.IsSubfield = 0; 853 DR.StructOffset = 0; 854 DR.CVRegister = CVRegister; 855 return DR; 856 } 857 858 CodeViewDebug::LocalVarDefRange 859 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 860 int Offset, bool IsSubfield, 861 uint16_t StructOffset) { 862 LocalVarDefRange DR; 863 DR.InMemory = InMemory; 864 DR.DataOffset = Offset; 865 DR.IsSubfield = IsSubfield; 866 DR.StructOffset = StructOffset; 867 DR.CVRegister = CVRegister; 868 return DR; 869 } 870 871 void CodeViewDebug::collectVariableInfoFromMFTable( 872 DenseSet<InlinedVariable> &Processed) { 873 const MachineFunction &MF = *Asm->MF; 874 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 875 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 876 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 877 878 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 879 if (!VI.Var) 880 continue; 881 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 882 "Expected inlined-at fields to agree"); 883 884 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 885 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 886 887 // If variable scope is not found then skip this variable. 888 if (!Scope) 889 continue; 890 891 // If the variable has an attached offset expression, extract it. 892 // FIXME: Try to handle DW_OP_deref as well. 893 int64_t ExprOffset = 0; 894 if (VI.Expr) 895 if (!VI.Expr->extractIfOffset(ExprOffset)) 896 continue; 897 898 // Get the frame register used and the offset. 899 unsigned FrameReg = 0; 900 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 901 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 902 903 // Calculate the label ranges. 904 LocalVarDefRange DefRange = 905 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 906 for (const InsnRange &Range : Scope->getRanges()) { 907 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 908 const MCSymbol *End = getLabelAfterInsn(Range.second); 909 End = End ? End : Asm->getFunctionEnd(); 910 DefRange.Ranges.emplace_back(Begin, End); 911 } 912 913 LocalVariable Var; 914 Var.DIVar = VI.Var; 915 Var.DefRanges.emplace_back(std::move(DefRange)); 916 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 917 } 918 } 919 920 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 921 DenseSet<InlinedVariable> Processed; 922 // Grab the variable info that was squirreled away in the MMI side-table. 923 collectVariableInfoFromMFTable(Processed); 924 925 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 926 927 for (const auto &I : DbgValues) { 928 InlinedVariable IV = I.first; 929 if (Processed.count(IV)) 930 continue; 931 const DILocalVariable *DIVar = IV.first; 932 const DILocation *InlinedAt = IV.second; 933 934 // Instruction ranges, specifying where IV is accessible. 935 const auto &Ranges = I.second; 936 937 LexicalScope *Scope = nullptr; 938 if (InlinedAt) 939 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 940 else 941 Scope = LScopes.findLexicalScope(DIVar->getScope()); 942 // If variable scope is not found then skip this variable. 943 if (!Scope) 944 continue; 945 946 LocalVariable Var; 947 Var.DIVar = DIVar; 948 949 // Calculate the definition ranges. 950 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 951 const InsnRange &Range = *I; 952 const MachineInstr *DVInst = Range.first; 953 assert(DVInst->isDebugValue() && "Invalid History entry"); 954 const DIExpression *DIExpr = DVInst->getDebugExpression(); 955 bool IsSubfield = false; 956 unsigned StructOffset = 0; 957 958 // Handle fragments. 959 auto Fragment = DIExpr->getFragmentInfo(); 960 if (Fragment) { 961 IsSubfield = true; 962 StructOffset = Fragment->OffsetInBits / 8; 963 } else if (DIExpr->getNumElements() > 0) { 964 continue; // Ignore unrecognized exprs. 965 } 966 967 // Bail if operand 0 is not a valid register. This means the variable is a 968 // simple constant, or is described by a complex expression. 969 // FIXME: Find a way to represent constant variables, since they are 970 // relatively common. 971 unsigned Reg = 972 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 973 if (Reg == 0) 974 continue; 975 976 // Handle the two cases we can handle: indirect in memory and in register. 977 unsigned CVReg = TRI->getCodeViewRegNum(Reg); 978 bool InMemory = DVInst->getOperand(1).isImm(); 979 int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0; 980 { 981 LocalVarDefRange DR; 982 DR.CVRegister = CVReg; 983 DR.InMemory = InMemory; 984 DR.DataOffset = Offset; 985 DR.IsSubfield = IsSubfield; 986 DR.StructOffset = StructOffset; 987 988 if (Var.DefRanges.empty() || 989 Var.DefRanges.back().isDifferentLocation(DR)) { 990 Var.DefRanges.emplace_back(std::move(DR)); 991 } 992 } 993 994 // Compute the label range. 995 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 996 const MCSymbol *End = getLabelAfterInsn(Range.second); 997 if (!End) { 998 // This range is valid until the next overlapping bitpiece. In the 999 // common case, ranges will not be bitpieces, so they will overlap. 1000 auto J = std::next(I); 1001 while (J != E && 1002 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1003 ++J; 1004 if (J != E) 1005 End = getLabelBeforeInsn(J->first); 1006 else 1007 End = Asm->getFunctionEnd(); 1008 } 1009 1010 // If the last range end is our begin, just extend the last range. 1011 // Otherwise make a new range. 1012 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 1013 Var.DefRanges.back().Ranges; 1014 if (!Ranges.empty() && Ranges.back().second == Begin) 1015 Ranges.back().second = End; 1016 else 1017 Ranges.emplace_back(Begin, End); 1018 1019 // FIXME: Do more range combining. 1020 } 1021 1022 recordLocalVariable(std::move(Var), InlinedAt); 1023 } 1024 } 1025 1026 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1027 const Function *GV = MF->getFunction(); 1028 assert(FnDebugInfo.count(GV) == false); 1029 CurFn = &FnDebugInfo[GV]; 1030 CurFn->FuncId = NextFuncId++; 1031 CurFn->Begin = Asm->getFunctionBegin(); 1032 1033 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1034 1035 // Find the end of the function prolog. First known non-DBG_VALUE and 1036 // non-frame setup location marks the beginning of the function body. 1037 // FIXME: is there a simpler a way to do this? Can we just search 1038 // for the first instruction of the function, not the last of the prolog? 1039 DebugLoc PrologEndLoc; 1040 bool EmptyPrologue = true; 1041 for (const auto &MBB : *MF) { 1042 for (const auto &MI : MBB) { 1043 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 1044 MI.getDebugLoc()) { 1045 PrologEndLoc = MI.getDebugLoc(); 1046 break; 1047 } else if (!MI.isDebugValue()) { 1048 EmptyPrologue = false; 1049 } 1050 } 1051 } 1052 1053 // Record beginning of function if we have a non-empty prologue. 1054 if (PrologEndLoc && !EmptyPrologue) { 1055 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1056 maybeRecordLocation(FnStartDL, MF); 1057 } 1058 } 1059 1060 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 1061 // Don't record empty UDTs. 1062 if (Ty->getName().empty()) 1063 return; 1064 1065 SmallVector<StringRef, 5> QualifiedNameComponents; 1066 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1067 Ty->getScope().resolve(), QualifiedNameComponents); 1068 1069 std::string FullyQualifiedName = 1070 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1071 1072 if (ClosestSubprogram == nullptr) 1073 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1074 else if (ClosestSubprogram == CurrentSubprogram) 1075 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1076 1077 // TODO: What if the ClosestSubprogram is neither null or the current 1078 // subprogram? Currently, the UDT just gets dropped on the floor. 1079 // 1080 // The current behavior is not desirable. To get maximal fidelity, we would 1081 // need to perform all type translation before beginning emission of .debug$S 1082 // and then make LocalUDTs a member of FunctionInfo 1083 } 1084 1085 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1086 // Generic dispatch for lowering an unknown type. 1087 switch (Ty->getTag()) { 1088 case dwarf::DW_TAG_array_type: 1089 return lowerTypeArray(cast<DICompositeType>(Ty)); 1090 case dwarf::DW_TAG_typedef: 1091 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1092 case dwarf::DW_TAG_base_type: 1093 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1094 case dwarf::DW_TAG_pointer_type: 1095 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1096 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1097 LLVM_FALLTHROUGH; 1098 case dwarf::DW_TAG_reference_type: 1099 case dwarf::DW_TAG_rvalue_reference_type: 1100 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1101 case dwarf::DW_TAG_ptr_to_member_type: 1102 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1103 case dwarf::DW_TAG_const_type: 1104 case dwarf::DW_TAG_volatile_type: 1105 // TODO: add support for DW_TAG_atomic_type here 1106 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1107 case dwarf::DW_TAG_subroutine_type: 1108 if (ClassTy) { 1109 // The member function type of a member function pointer has no 1110 // ThisAdjustment. 1111 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1112 /*ThisAdjustment=*/0); 1113 } 1114 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1115 case dwarf::DW_TAG_enumeration_type: 1116 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1117 case dwarf::DW_TAG_class_type: 1118 case dwarf::DW_TAG_structure_type: 1119 return lowerTypeClass(cast<DICompositeType>(Ty)); 1120 case dwarf::DW_TAG_union_type: 1121 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1122 default: 1123 // Use the null type index. 1124 return TypeIndex(); 1125 } 1126 } 1127 1128 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1129 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1130 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1131 StringRef TypeName = Ty->getName(); 1132 1133 addToUDTs(Ty, UnderlyingTypeIndex); 1134 1135 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1136 TypeName == "HRESULT") 1137 return TypeIndex(SimpleTypeKind::HResult); 1138 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1139 TypeName == "wchar_t") 1140 return TypeIndex(SimpleTypeKind::WideCharacter); 1141 1142 return UnderlyingTypeIndex; 1143 } 1144 1145 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1146 DITypeRef ElementTypeRef = Ty->getBaseType(); 1147 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1148 // IndexType is size_t, which depends on the bitness of the target. 1149 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1150 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1151 : TypeIndex(SimpleTypeKind::UInt32Long); 1152 1153 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1154 1155 // Add subranges to array type. 1156 DINodeArray Elements = Ty->getElements(); 1157 for (int i = Elements.size() - 1; i >= 0; --i) { 1158 const DINode *Element = Elements[i]; 1159 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1160 1161 const DISubrange *Subrange = cast<DISubrange>(Element); 1162 assert(Subrange->getLowerBound() == 0 && 1163 "codeview doesn't support subranges with lower bounds"); 1164 int64_t Count = Subrange->getCount(); 1165 1166 // Variable Length Array (VLA) has Count equal to '-1'. 1167 // Replace with Count '1', assume it is the minimum VLA length. 1168 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1169 if (Count == -1) 1170 Count = 1; 1171 1172 // Update the element size and element type index for subsequent subranges. 1173 ElementSize *= Count; 1174 1175 // If this is the outermost array, use the size from the array. It will be 1176 // more accurate if we had a VLA or an incomplete element type size. 1177 uint64_t ArraySize = 1178 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1179 1180 StringRef Name = (i == 0) ? Ty->getName() : ""; 1181 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1182 ElementTypeIndex = TypeTable.writeKnownType(AR); 1183 } 1184 1185 return ElementTypeIndex; 1186 } 1187 1188 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1189 TypeIndex Index; 1190 dwarf::TypeKind Kind; 1191 uint32_t ByteSize; 1192 1193 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1194 ByteSize = Ty->getSizeInBits() / 8; 1195 1196 SimpleTypeKind STK = SimpleTypeKind::None; 1197 switch (Kind) { 1198 case dwarf::DW_ATE_address: 1199 // FIXME: Translate 1200 break; 1201 case dwarf::DW_ATE_boolean: 1202 switch (ByteSize) { 1203 case 1: STK = SimpleTypeKind::Boolean8; break; 1204 case 2: STK = SimpleTypeKind::Boolean16; break; 1205 case 4: STK = SimpleTypeKind::Boolean32; break; 1206 case 8: STK = SimpleTypeKind::Boolean64; break; 1207 case 16: STK = SimpleTypeKind::Boolean128; break; 1208 } 1209 break; 1210 case dwarf::DW_ATE_complex_float: 1211 switch (ByteSize) { 1212 case 2: STK = SimpleTypeKind::Complex16; break; 1213 case 4: STK = SimpleTypeKind::Complex32; break; 1214 case 8: STK = SimpleTypeKind::Complex64; break; 1215 case 10: STK = SimpleTypeKind::Complex80; break; 1216 case 16: STK = SimpleTypeKind::Complex128; break; 1217 } 1218 break; 1219 case dwarf::DW_ATE_float: 1220 switch (ByteSize) { 1221 case 2: STK = SimpleTypeKind::Float16; break; 1222 case 4: STK = SimpleTypeKind::Float32; break; 1223 case 6: STK = SimpleTypeKind::Float48; break; 1224 case 8: STK = SimpleTypeKind::Float64; break; 1225 case 10: STK = SimpleTypeKind::Float80; break; 1226 case 16: STK = SimpleTypeKind::Float128; break; 1227 } 1228 break; 1229 case dwarf::DW_ATE_signed: 1230 switch (ByteSize) { 1231 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1232 case 2: STK = SimpleTypeKind::Int16Short; break; 1233 case 4: STK = SimpleTypeKind::Int32; break; 1234 case 8: STK = SimpleTypeKind::Int64Quad; break; 1235 case 16: STK = SimpleTypeKind::Int128Oct; break; 1236 } 1237 break; 1238 case dwarf::DW_ATE_unsigned: 1239 switch (ByteSize) { 1240 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1241 case 2: STK = SimpleTypeKind::UInt16Short; break; 1242 case 4: STK = SimpleTypeKind::UInt32; break; 1243 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1244 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1245 } 1246 break; 1247 case dwarf::DW_ATE_UTF: 1248 switch (ByteSize) { 1249 case 2: STK = SimpleTypeKind::Character16; break; 1250 case 4: STK = SimpleTypeKind::Character32; break; 1251 } 1252 break; 1253 case dwarf::DW_ATE_signed_char: 1254 if (ByteSize == 1) 1255 STK = SimpleTypeKind::SignedCharacter; 1256 break; 1257 case dwarf::DW_ATE_unsigned_char: 1258 if (ByteSize == 1) 1259 STK = SimpleTypeKind::UnsignedCharacter; 1260 break; 1261 default: 1262 break; 1263 } 1264 1265 // Apply some fixups based on the source-level type name. 1266 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1267 STK = SimpleTypeKind::Int32Long; 1268 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1269 STK = SimpleTypeKind::UInt32Long; 1270 if (STK == SimpleTypeKind::UInt16Short && 1271 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1272 STK = SimpleTypeKind::WideCharacter; 1273 if ((STK == SimpleTypeKind::SignedCharacter || 1274 STK == SimpleTypeKind::UnsignedCharacter) && 1275 Ty->getName() == "char") 1276 STK = SimpleTypeKind::NarrowCharacter; 1277 1278 return TypeIndex(STK); 1279 } 1280 1281 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1282 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1283 1284 // Pointers to simple types can use SimpleTypeMode, rather than having a 1285 // dedicated pointer type record. 1286 if (PointeeTI.isSimple() && 1287 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1288 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1289 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1290 ? SimpleTypeMode::NearPointer64 1291 : SimpleTypeMode::NearPointer32; 1292 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1293 } 1294 1295 PointerKind PK = 1296 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1297 PointerMode PM = PointerMode::Pointer; 1298 switch (Ty->getTag()) { 1299 default: llvm_unreachable("not a pointer tag type"); 1300 case dwarf::DW_TAG_pointer_type: 1301 PM = PointerMode::Pointer; 1302 break; 1303 case dwarf::DW_TAG_reference_type: 1304 PM = PointerMode::LValueReference; 1305 break; 1306 case dwarf::DW_TAG_rvalue_reference_type: 1307 PM = PointerMode::RValueReference; 1308 break; 1309 } 1310 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1311 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1312 // do. 1313 PointerOptions PO = PointerOptions::None; 1314 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1315 return TypeTable.writeKnownType(PR); 1316 } 1317 1318 static PointerToMemberRepresentation 1319 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1320 // SizeInBytes being zero generally implies that the member pointer type was 1321 // incomplete, which can happen if it is part of a function prototype. In this 1322 // case, use the unknown model instead of the general model. 1323 if (IsPMF) { 1324 switch (Flags & DINode::FlagPtrToMemberRep) { 1325 case 0: 1326 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1327 : PointerToMemberRepresentation::GeneralFunction; 1328 case DINode::FlagSingleInheritance: 1329 return PointerToMemberRepresentation::SingleInheritanceFunction; 1330 case DINode::FlagMultipleInheritance: 1331 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1332 case DINode::FlagVirtualInheritance: 1333 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1334 } 1335 } else { 1336 switch (Flags & DINode::FlagPtrToMemberRep) { 1337 case 0: 1338 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1339 : PointerToMemberRepresentation::GeneralData; 1340 case DINode::FlagSingleInheritance: 1341 return PointerToMemberRepresentation::SingleInheritanceData; 1342 case DINode::FlagMultipleInheritance: 1343 return PointerToMemberRepresentation::MultipleInheritanceData; 1344 case DINode::FlagVirtualInheritance: 1345 return PointerToMemberRepresentation::VirtualInheritanceData; 1346 } 1347 } 1348 llvm_unreachable("invalid ptr to member representation"); 1349 } 1350 1351 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1352 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1353 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1354 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1355 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1356 : PointerKind::Near32; 1357 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1358 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1359 : PointerMode::PointerToDataMember; 1360 PointerOptions PO = PointerOptions::None; // FIXME 1361 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1362 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1363 MemberPointerInfo MPI( 1364 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1365 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1366 return TypeTable.writeKnownType(PR); 1367 } 1368 1369 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1370 /// have a translation, use the NearC convention. 1371 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1372 switch (DwarfCC) { 1373 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1374 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1375 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1376 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1377 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1378 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1379 } 1380 return CallingConvention::NearC; 1381 } 1382 1383 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1384 ModifierOptions Mods = ModifierOptions::None; 1385 bool IsModifier = true; 1386 const DIType *BaseTy = Ty; 1387 while (IsModifier && BaseTy) { 1388 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1389 switch (BaseTy->getTag()) { 1390 case dwarf::DW_TAG_const_type: 1391 Mods |= ModifierOptions::Const; 1392 break; 1393 case dwarf::DW_TAG_volatile_type: 1394 Mods |= ModifierOptions::Volatile; 1395 break; 1396 default: 1397 IsModifier = false; 1398 break; 1399 } 1400 if (IsModifier) 1401 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1402 } 1403 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1404 ModifierRecord MR(ModifiedTI, Mods); 1405 return TypeTable.writeKnownType(MR); 1406 } 1407 1408 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1409 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1410 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1411 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1412 1413 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1414 ArrayRef<TypeIndex> ArgTypeIndices = None; 1415 if (!ReturnAndArgTypeIndices.empty()) { 1416 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1417 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1418 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1419 } 1420 1421 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1422 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1423 1424 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1425 1426 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1427 ArgTypeIndices.size(), ArgListIndex); 1428 return TypeTable.writeKnownType(Procedure); 1429 } 1430 1431 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1432 const DIType *ClassTy, 1433 int ThisAdjustment) { 1434 // Lower the containing class type. 1435 TypeIndex ClassType = getTypeIndex(ClassTy); 1436 1437 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1438 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1439 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1440 1441 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1442 ArrayRef<TypeIndex> ArgTypeIndices = None; 1443 if (!ReturnAndArgTypeIndices.empty()) { 1444 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1445 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1446 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1447 } 1448 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1449 if (!ArgTypeIndices.empty()) { 1450 ThisTypeIndex = ArgTypeIndices.front(); 1451 ArgTypeIndices = ArgTypeIndices.drop_front(); 1452 } 1453 1454 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1455 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1456 1457 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1458 1459 // TODO: Need to use the correct values for: 1460 // FunctionOptions 1461 // ThisPointerAdjustment. 1462 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1463 FunctionOptions::None, ArgTypeIndices.size(), 1464 ArgListIndex, ThisAdjustment); 1465 TypeIndex TI = TypeTable.writeKnownType(MFR); 1466 1467 return TI; 1468 } 1469 1470 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1471 unsigned VSlotCount = 1472 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1473 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1474 1475 VFTableShapeRecord VFTSR(Slots); 1476 return TypeTable.writeKnownType(VFTSR); 1477 } 1478 1479 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1480 switch (Flags & DINode::FlagAccessibility) { 1481 case DINode::FlagPrivate: return MemberAccess::Private; 1482 case DINode::FlagPublic: return MemberAccess::Public; 1483 case DINode::FlagProtected: return MemberAccess::Protected; 1484 case 0: 1485 // If there was no explicit access control, provide the default for the tag. 1486 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1487 : MemberAccess::Public; 1488 } 1489 llvm_unreachable("access flags are exclusive"); 1490 } 1491 1492 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1493 if (SP->isArtificial()) 1494 return MethodOptions::CompilerGenerated; 1495 1496 // FIXME: Handle other MethodOptions. 1497 1498 return MethodOptions::None; 1499 } 1500 1501 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1502 bool Introduced) { 1503 switch (SP->getVirtuality()) { 1504 case dwarf::DW_VIRTUALITY_none: 1505 break; 1506 case dwarf::DW_VIRTUALITY_virtual: 1507 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1508 case dwarf::DW_VIRTUALITY_pure_virtual: 1509 return Introduced ? MethodKind::PureIntroducingVirtual 1510 : MethodKind::PureVirtual; 1511 default: 1512 llvm_unreachable("unhandled virtuality case"); 1513 } 1514 1515 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1516 1517 return MethodKind::Vanilla; 1518 } 1519 1520 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1521 switch (Ty->getTag()) { 1522 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1523 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1524 } 1525 llvm_unreachable("unexpected tag"); 1526 } 1527 1528 /// Return ClassOptions that should be present on both the forward declaration 1529 /// and the defintion of a tag type. 1530 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1531 ClassOptions CO = ClassOptions::None; 1532 1533 // MSVC always sets this flag, even for local types. Clang doesn't always 1534 // appear to give every type a linkage name, which may be problematic for us. 1535 // FIXME: Investigate the consequences of not following them here. 1536 if (!Ty->getIdentifier().empty()) 1537 CO |= ClassOptions::HasUniqueName; 1538 1539 // Put the Nested flag on a type if it appears immediately inside a tag type. 1540 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1541 // here. That flag is only set on definitions, and not forward declarations. 1542 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1543 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1544 CO |= ClassOptions::Nested; 1545 1546 // Put the Scoped flag on function-local types. 1547 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1548 Scope = Scope->getScope().resolve()) { 1549 if (isa<DISubprogram>(Scope)) { 1550 CO |= ClassOptions::Scoped; 1551 break; 1552 } 1553 } 1554 1555 return CO; 1556 } 1557 1558 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1559 ClassOptions CO = getCommonClassOptions(Ty); 1560 TypeIndex FTI; 1561 unsigned EnumeratorCount = 0; 1562 1563 if (Ty->isForwardDecl()) { 1564 CO |= ClassOptions::ForwardReference; 1565 } else { 1566 FieldListRecordBuilder FLRB(TypeTable); 1567 1568 FLRB.begin(); 1569 for (const DINode *Element : Ty->getElements()) { 1570 // We assume that the frontend provides all members in source declaration 1571 // order, which is what MSVC does. 1572 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1573 EnumeratorRecord ER(MemberAccess::Public, 1574 APSInt::getUnsigned(Enumerator->getValue()), 1575 Enumerator->getName()); 1576 FLRB.writeMemberType(ER); 1577 EnumeratorCount++; 1578 } 1579 } 1580 FTI = FLRB.end(); 1581 } 1582 1583 std::string FullName = getFullyQualifiedName(Ty); 1584 1585 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1586 getTypeIndex(Ty->getBaseType())); 1587 return TypeTable.writeKnownType(ER); 1588 } 1589 1590 //===----------------------------------------------------------------------===// 1591 // ClassInfo 1592 //===----------------------------------------------------------------------===// 1593 1594 struct llvm::ClassInfo { 1595 struct MemberInfo { 1596 const DIDerivedType *MemberTypeNode; 1597 uint64_t BaseOffset; 1598 }; 1599 // [MemberInfo] 1600 typedef std::vector<MemberInfo> MemberList; 1601 1602 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1603 // MethodName -> MethodsList 1604 typedef MapVector<MDString *, MethodsList> MethodsMap; 1605 1606 /// Base classes. 1607 std::vector<const DIDerivedType *> Inheritance; 1608 1609 /// Direct members. 1610 MemberList Members; 1611 // Direct overloaded methods gathered by name. 1612 MethodsMap Methods; 1613 1614 TypeIndex VShapeTI; 1615 1616 std::vector<const DICompositeType *> NestedClasses; 1617 }; 1618 1619 void CodeViewDebug::clear() { 1620 assert(CurFn == nullptr); 1621 FileIdMap.clear(); 1622 FnDebugInfo.clear(); 1623 FileToFilepathMap.clear(); 1624 LocalUDTs.clear(); 1625 GlobalUDTs.clear(); 1626 TypeIndices.clear(); 1627 CompleteTypeIndices.clear(); 1628 } 1629 1630 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1631 const DIDerivedType *DDTy) { 1632 if (!DDTy->getName().empty()) { 1633 Info.Members.push_back({DDTy, 0}); 1634 return; 1635 } 1636 // An unnamed member must represent a nested struct or union. Add all the 1637 // indirect fields to the current record. 1638 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1639 uint64_t Offset = DDTy->getOffsetInBits(); 1640 const DIType *Ty = DDTy->getBaseType().resolve(); 1641 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1642 ClassInfo NestedInfo = collectClassInfo(DCTy); 1643 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1644 Info.Members.push_back( 1645 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1646 } 1647 1648 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1649 ClassInfo Info; 1650 // Add elements to structure type. 1651 DINodeArray Elements = Ty->getElements(); 1652 for (auto *Element : Elements) { 1653 // We assume that the frontend provides all members in source declaration 1654 // order, which is what MSVC does. 1655 if (!Element) 1656 continue; 1657 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1658 Info.Methods[SP->getRawName()].push_back(SP); 1659 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1660 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1661 collectMemberInfo(Info, DDTy); 1662 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1663 Info.Inheritance.push_back(DDTy); 1664 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1665 DDTy->getName() == "__vtbl_ptr_type") { 1666 Info.VShapeTI = getTypeIndex(DDTy); 1667 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1668 // Ignore friend members. It appears that MSVC emitted info about 1669 // friends in the past, but modern versions do not. 1670 } 1671 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1672 Info.NestedClasses.push_back(Composite); 1673 } 1674 // Skip other unrecognized kinds of elements. 1675 } 1676 return Info; 1677 } 1678 1679 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1680 // First, construct the forward decl. Don't look into Ty to compute the 1681 // forward decl options, since it might not be available in all TUs. 1682 TypeRecordKind Kind = getRecordKind(Ty); 1683 ClassOptions CO = 1684 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1685 std::string FullName = getFullyQualifiedName(Ty); 1686 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1687 FullName, Ty->getIdentifier()); 1688 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1689 if (!Ty->isForwardDecl()) 1690 DeferredCompleteTypes.push_back(Ty); 1691 return FwdDeclTI; 1692 } 1693 1694 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1695 // Construct the field list and complete type record. 1696 TypeRecordKind Kind = getRecordKind(Ty); 1697 ClassOptions CO = getCommonClassOptions(Ty); 1698 TypeIndex FieldTI; 1699 TypeIndex VShapeTI; 1700 unsigned FieldCount; 1701 bool ContainsNestedClass; 1702 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1703 lowerRecordFieldList(Ty); 1704 1705 if (ContainsNestedClass) 1706 CO |= ClassOptions::ContainsNestedClass; 1707 1708 std::string FullName = getFullyQualifiedName(Ty); 1709 1710 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1711 1712 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1713 SizeInBytes, FullName, Ty->getIdentifier()); 1714 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1715 1716 if (const auto *File = Ty->getFile()) { 1717 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1718 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1719 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1720 TypeTable.writeKnownType(USLR); 1721 } 1722 1723 addToUDTs(Ty, ClassTI); 1724 1725 return ClassTI; 1726 } 1727 1728 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1729 ClassOptions CO = 1730 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1731 std::string FullName = getFullyQualifiedName(Ty); 1732 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1733 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1734 if (!Ty->isForwardDecl()) 1735 DeferredCompleteTypes.push_back(Ty); 1736 return FwdDeclTI; 1737 } 1738 1739 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1740 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1741 TypeIndex FieldTI; 1742 unsigned FieldCount; 1743 bool ContainsNestedClass; 1744 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1745 lowerRecordFieldList(Ty); 1746 1747 if (ContainsNestedClass) 1748 CO |= ClassOptions::ContainsNestedClass; 1749 1750 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1751 std::string FullName = getFullyQualifiedName(Ty); 1752 1753 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1754 Ty->getIdentifier()); 1755 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1756 1757 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1758 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1759 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1760 TypeTable.writeKnownType(USLR); 1761 1762 addToUDTs(Ty, UnionTI); 1763 1764 return UnionTI; 1765 } 1766 1767 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1768 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1769 // Manually count members. MSVC appears to count everything that generates a 1770 // field list record. Each individual overload in a method overload group 1771 // contributes to this count, even though the overload group is a single field 1772 // list record. 1773 unsigned MemberCount = 0; 1774 ClassInfo Info = collectClassInfo(Ty); 1775 FieldListRecordBuilder FLBR(TypeTable); 1776 FLBR.begin(); 1777 1778 // Create base classes. 1779 for (const DIDerivedType *I : Info.Inheritance) { 1780 if (I->getFlags() & DINode::FlagVirtual) { 1781 // Virtual base. 1782 // FIXME: Emit VBPtrOffset when the frontend provides it. 1783 unsigned VBPtrOffset = 0; 1784 // FIXME: Despite the accessor name, the offset is really in bytes. 1785 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1786 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1787 ? TypeRecordKind::IndirectVirtualBaseClass 1788 : TypeRecordKind::VirtualBaseClass; 1789 VirtualBaseClassRecord VBCR( 1790 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1791 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1792 VBTableIndex); 1793 1794 FLBR.writeMemberType(VBCR); 1795 } else { 1796 assert(I->getOffsetInBits() % 8 == 0 && 1797 "bases must be on byte boundaries"); 1798 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1799 getTypeIndex(I->getBaseType()), 1800 I->getOffsetInBits() / 8); 1801 FLBR.writeMemberType(BCR); 1802 } 1803 } 1804 1805 // Create members. 1806 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1807 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1808 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1809 StringRef MemberName = Member->getName(); 1810 MemberAccess Access = 1811 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1812 1813 if (Member->isStaticMember()) { 1814 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1815 FLBR.writeMemberType(SDMR); 1816 MemberCount++; 1817 continue; 1818 } 1819 1820 // Virtual function pointer member. 1821 if ((Member->getFlags() & DINode::FlagArtificial) && 1822 Member->getName().startswith("_vptr$")) { 1823 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1824 FLBR.writeMemberType(VFPR); 1825 MemberCount++; 1826 continue; 1827 } 1828 1829 // Data member. 1830 uint64_t MemberOffsetInBits = 1831 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1832 if (Member->isBitField()) { 1833 uint64_t StartBitOffset = MemberOffsetInBits; 1834 if (const auto *CI = 1835 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1836 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1837 } 1838 StartBitOffset -= MemberOffsetInBits; 1839 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1840 StartBitOffset); 1841 MemberBaseType = TypeTable.writeKnownType(BFR); 1842 } 1843 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1844 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1845 MemberName); 1846 FLBR.writeMemberType(DMR); 1847 MemberCount++; 1848 } 1849 1850 // Create methods 1851 for (auto &MethodItr : Info.Methods) { 1852 StringRef Name = MethodItr.first->getString(); 1853 1854 std::vector<OneMethodRecord> Methods; 1855 for (const DISubprogram *SP : MethodItr.second) { 1856 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1857 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1858 1859 unsigned VFTableOffset = -1; 1860 if (Introduced) 1861 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1862 1863 Methods.push_back(OneMethodRecord( 1864 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1865 translateMethodKindFlags(SP, Introduced), 1866 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1867 MemberCount++; 1868 } 1869 assert(Methods.size() > 0 && "Empty methods map entry"); 1870 if (Methods.size() == 1) 1871 FLBR.writeMemberType(Methods[0]); 1872 else { 1873 MethodOverloadListRecord MOLR(Methods); 1874 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1875 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1876 FLBR.writeMemberType(OMR); 1877 } 1878 } 1879 1880 // Create nested classes. 1881 for (const DICompositeType *Nested : Info.NestedClasses) { 1882 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1883 FLBR.writeMemberType(R); 1884 MemberCount++; 1885 } 1886 1887 TypeIndex FieldTI = FLBR.end(); 1888 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1889 !Info.NestedClasses.empty()); 1890 } 1891 1892 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1893 if (!VBPType.getIndex()) { 1894 // Make a 'const int *' type. 1895 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1896 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1897 1898 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1899 : PointerKind::Near32; 1900 PointerMode PM = PointerMode::Pointer; 1901 PointerOptions PO = PointerOptions::None; 1902 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1903 1904 VBPType = TypeTable.writeKnownType(PR); 1905 } 1906 1907 return VBPType; 1908 } 1909 1910 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1911 const DIType *Ty = TypeRef.resolve(); 1912 const DIType *ClassTy = ClassTyRef.resolve(); 1913 1914 // The null DIType is the void type. Don't try to hash it. 1915 if (!Ty) 1916 return TypeIndex::Void(); 1917 1918 // Check if we've already translated this type. Don't try to do a 1919 // get-or-create style insertion that caches the hash lookup across the 1920 // lowerType call. It will update the TypeIndices map. 1921 auto I = TypeIndices.find({Ty, ClassTy}); 1922 if (I != TypeIndices.end()) 1923 return I->second; 1924 1925 TypeLoweringScope S(*this); 1926 TypeIndex TI = lowerType(Ty, ClassTy); 1927 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1928 } 1929 1930 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1931 const DIType *Ty = TypeRef.resolve(); 1932 1933 // The null DIType is the void type. Don't try to hash it. 1934 if (!Ty) 1935 return TypeIndex::Void(); 1936 1937 // If this is a non-record type, the complete type index is the same as the 1938 // normal type index. Just call getTypeIndex. 1939 switch (Ty->getTag()) { 1940 case dwarf::DW_TAG_class_type: 1941 case dwarf::DW_TAG_structure_type: 1942 case dwarf::DW_TAG_union_type: 1943 break; 1944 default: 1945 return getTypeIndex(Ty); 1946 } 1947 1948 // Check if we've already translated the complete record type. Lowering a 1949 // complete type should never trigger lowering another complete type, so we 1950 // can reuse the hash table lookup result. 1951 const auto *CTy = cast<DICompositeType>(Ty); 1952 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1953 if (!InsertResult.second) 1954 return InsertResult.first->second; 1955 1956 TypeLoweringScope S(*this); 1957 1958 // Make sure the forward declaration is emitted first. It's unclear if this 1959 // is necessary, but MSVC does it, and we should follow suit until we can show 1960 // otherwise. 1961 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1962 1963 // Just use the forward decl if we don't have complete type info. This might 1964 // happen if the frontend is using modules and expects the complete definition 1965 // to be emitted elsewhere. 1966 if (CTy->isForwardDecl()) 1967 return FwdDeclTI; 1968 1969 TypeIndex TI; 1970 switch (CTy->getTag()) { 1971 case dwarf::DW_TAG_class_type: 1972 case dwarf::DW_TAG_structure_type: 1973 TI = lowerCompleteTypeClass(CTy); 1974 break; 1975 case dwarf::DW_TAG_union_type: 1976 TI = lowerCompleteTypeUnion(CTy); 1977 break; 1978 default: 1979 llvm_unreachable("not a record"); 1980 } 1981 1982 InsertResult.first->second = TI; 1983 return TI; 1984 } 1985 1986 /// Emit all the deferred complete record types. Try to do this in FIFO order, 1987 /// and do this until fixpoint, as each complete record type typically 1988 /// references 1989 /// many other record types. 1990 void CodeViewDebug::emitDeferredCompleteTypes() { 1991 SmallVector<const DICompositeType *, 4> TypesToEmit; 1992 while (!DeferredCompleteTypes.empty()) { 1993 std::swap(DeferredCompleteTypes, TypesToEmit); 1994 for (const DICompositeType *RecordTy : TypesToEmit) 1995 getCompleteTypeIndex(RecordTy); 1996 TypesToEmit.clear(); 1997 } 1998 } 1999 2000 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2001 // Get the sorted list of parameters and emit them first. 2002 SmallVector<const LocalVariable *, 6> Params; 2003 for (const LocalVariable &L : Locals) 2004 if (L.DIVar->isParameter()) 2005 Params.push_back(&L); 2006 std::sort(Params.begin(), Params.end(), 2007 [](const LocalVariable *L, const LocalVariable *R) { 2008 return L->DIVar->getArg() < R->DIVar->getArg(); 2009 }); 2010 for (const LocalVariable *L : Params) 2011 emitLocalVariable(*L); 2012 2013 // Next emit all non-parameters in the order that we found them. 2014 for (const LocalVariable &L : Locals) 2015 if (!L.DIVar->isParameter()) 2016 emitLocalVariable(L); 2017 } 2018 2019 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2020 // LocalSym record, see SymbolRecord.h for more info. 2021 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2022 *LocalEnd = MMI->getContext().createTempSymbol(); 2023 OS.AddComment("Record length"); 2024 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2025 OS.EmitLabel(LocalBegin); 2026 2027 OS.AddComment("Record kind: S_LOCAL"); 2028 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2029 2030 LocalSymFlags Flags = LocalSymFlags::None; 2031 if (Var.DIVar->isParameter()) 2032 Flags |= LocalSymFlags::IsParameter; 2033 if (Var.DefRanges.empty()) 2034 Flags |= LocalSymFlags::IsOptimizedOut; 2035 2036 OS.AddComment("TypeIndex"); 2037 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 2038 OS.EmitIntValue(TI.getIndex(), 4); 2039 OS.AddComment("Flags"); 2040 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2041 // Truncate the name so we won't overflow the record length field. 2042 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2043 OS.EmitLabel(LocalEnd); 2044 2045 // Calculate the on disk prefix of the appropriate def range record. The 2046 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2047 // should be big enough to hold all forms without memory allocation. 2048 SmallString<20> BytePrefix; 2049 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2050 BytePrefix.clear(); 2051 if (DefRange.InMemory) { 2052 uint16_t RegRelFlags = 0; 2053 if (DefRange.IsSubfield) { 2054 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2055 (DefRange.StructOffset 2056 << DefRangeRegisterRelSym::OffsetInParentShift); 2057 } 2058 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2059 Sym.Hdr.Register = DefRange.CVRegister; 2060 Sym.Hdr.Flags = RegRelFlags; 2061 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2062 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2063 BytePrefix += 2064 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2065 BytePrefix += 2066 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2067 } else { 2068 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2069 if (DefRange.IsSubfield) { 2070 // Unclear what matters here. 2071 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2072 Sym.Hdr.Register = DefRange.CVRegister; 2073 Sym.Hdr.MayHaveNoName = 0; 2074 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2075 2076 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2077 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2078 sizeof(SymKind)); 2079 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2080 sizeof(Sym.Hdr)); 2081 } else { 2082 // Unclear what matters here. 2083 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2084 Sym.Hdr.Register = DefRange.CVRegister; 2085 Sym.Hdr.MayHaveNoName = 0; 2086 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2087 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2088 sizeof(SymKind)); 2089 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2090 sizeof(Sym.Hdr)); 2091 } 2092 } 2093 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2094 } 2095 } 2096 2097 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2098 const Function *GV = MF->getFunction(); 2099 assert(FnDebugInfo.count(GV)); 2100 assert(CurFn == &FnDebugInfo[GV]); 2101 2102 collectVariableInfo(GV->getSubprogram()); 2103 2104 // Don't emit anything if we don't have any line tables. 2105 if (!CurFn->HaveLineInfo) { 2106 FnDebugInfo.erase(GV); 2107 CurFn = nullptr; 2108 return; 2109 } 2110 2111 CurFn->End = Asm->getFunctionEnd(); 2112 2113 CurFn = nullptr; 2114 } 2115 2116 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2117 DebugHandlerBase::beginInstruction(MI); 2118 2119 // Ignore DBG_VALUE locations and function prologue. 2120 if (!Asm || !CurFn || MI->isDebugValue() || 2121 MI->getFlag(MachineInstr::FrameSetup)) 2122 return; 2123 DebugLoc DL = MI->getDebugLoc(); 2124 if (DL == PrevInstLoc || !DL) 2125 return; 2126 maybeRecordLocation(DL, Asm->MF); 2127 } 2128 2129 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleDebugFragmentKind Kind) { 2130 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2131 *EndLabel = MMI->getContext().createTempSymbol(); 2132 OS.EmitIntValue(unsigned(Kind), 4); 2133 OS.AddComment("Subsection size"); 2134 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2135 OS.EmitLabel(BeginLabel); 2136 return EndLabel; 2137 } 2138 2139 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2140 OS.EmitLabel(EndLabel); 2141 // Every subsection must be aligned to a 4-byte boundary. 2142 OS.EmitValueToAlignment(4); 2143 } 2144 2145 void CodeViewDebug::emitDebugInfoForUDTs( 2146 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 2147 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 2148 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2149 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2150 OS.AddComment("Record length"); 2151 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2152 OS.EmitLabel(UDTRecordBegin); 2153 2154 OS.AddComment("Record kind: S_UDT"); 2155 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2156 2157 OS.AddComment("Type"); 2158 OS.EmitIntValue(UDT.second.getIndex(), 4); 2159 2160 emitNullTerminatedSymbolName(OS, UDT.first); 2161 OS.EmitLabel(UDTRecordEnd); 2162 } 2163 } 2164 2165 void CodeViewDebug::emitDebugInfoForGlobals() { 2166 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2167 GlobalMap; 2168 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2169 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2170 GV.getDebugInfo(GVEs); 2171 for (const auto *GVE : GVEs) 2172 GlobalMap[GVE] = &GV; 2173 } 2174 2175 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2176 for (const MDNode *Node : CUs->operands()) { 2177 const auto *CU = cast<DICompileUnit>(Node); 2178 2179 // First, emit all globals that are not in a comdat in a single symbol 2180 // substream. MSVC doesn't like it if the substream is empty, so only open 2181 // it if we have at least one global to emit. 2182 switchToDebugSectionForSymbol(nullptr); 2183 MCSymbol *EndLabel = nullptr; 2184 for (const auto *GVE : CU->getGlobalVariables()) { 2185 if (const auto *GV = GlobalMap.lookup(GVE)) 2186 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2187 if (!EndLabel) { 2188 OS.AddComment("Symbol subsection for globals"); 2189 EndLabel = beginCVSubsection(ModuleDebugFragmentKind::Symbols); 2190 } 2191 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2192 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2193 } 2194 } 2195 if (EndLabel) 2196 endCVSubsection(EndLabel); 2197 2198 // Second, emit each global that is in a comdat into its own .debug$S 2199 // section along with its own symbol substream. 2200 for (const auto *GVE : CU->getGlobalVariables()) { 2201 if (const auto *GV = GlobalMap.lookup(GVE)) { 2202 if (GV->hasComdat()) { 2203 MCSymbol *GVSym = Asm->getSymbol(GV); 2204 OS.AddComment("Symbol subsection for " + 2205 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2206 switchToDebugSectionForSymbol(GVSym); 2207 EndLabel = beginCVSubsection(ModuleDebugFragmentKind::Symbols); 2208 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2209 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2210 endCVSubsection(EndLabel); 2211 } 2212 } 2213 } 2214 } 2215 } 2216 2217 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2218 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2219 for (const MDNode *Node : CUs->operands()) { 2220 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2221 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2222 getTypeIndex(RT); 2223 // FIXME: Add to global/local DTU list. 2224 } 2225 } 2226 } 2227 } 2228 2229 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2230 const GlobalVariable *GV, 2231 MCSymbol *GVSym) { 2232 // DataSym record, see SymbolRecord.h for more info. 2233 // FIXME: Thread local data, etc 2234 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2235 *DataEnd = MMI->getContext().createTempSymbol(); 2236 OS.AddComment("Record length"); 2237 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2238 OS.EmitLabel(DataBegin); 2239 if (DIGV->isLocalToUnit()) { 2240 if (GV->isThreadLocal()) { 2241 OS.AddComment("Record kind: S_LTHREAD32"); 2242 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2243 } else { 2244 OS.AddComment("Record kind: S_LDATA32"); 2245 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2246 } 2247 } else { 2248 if (GV->isThreadLocal()) { 2249 OS.AddComment("Record kind: S_GTHREAD32"); 2250 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2251 } else { 2252 OS.AddComment("Record kind: S_GDATA32"); 2253 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2254 } 2255 } 2256 OS.AddComment("Type"); 2257 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2258 OS.AddComment("DataOffset"); 2259 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2260 OS.AddComment("Segment"); 2261 OS.EmitCOFFSectionIndex(GVSym); 2262 OS.AddComment("Name"); 2263 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2264 OS.EmitLabel(DataEnd); 2265 } 2266