1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/ObjectUtils.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 54 #include "llvm/CodeGen/TargetFrameLowering.h" 55 #include "llvm/CodeGen/TargetInstrInfo.h" 56 #include "llvm/CodeGen/TargetLowering.h" 57 #include "llvm/CodeGen/TargetLoweringObjectFile.h" 58 #include "llvm/CodeGen/TargetOpcodes.h" 59 #include "llvm/CodeGen/TargetRegisterInfo.h" 60 #include "llvm/CodeGen/TargetSubtargetInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/MC/MCAsmInfo.h" 83 #include "llvm/MC/MCCodePadder.h" 84 #include "llvm/MC/MCContext.h" 85 #include "llvm/MC/MCDirectives.h" 86 #include "llvm/MC/MCDwarf.h" 87 #include "llvm/MC/MCExpr.h" 88 #include "llvm/MC/MCInst.h" 89 #include "llvm/MC/MCSection.h" 90 #include "llvm/MC/MCSectionELF.h" 91 #include "llvm/MC/MCSectionMachO.h" 92 #include "llvm/MC/MCStreamer.h" 93 #include "llvm/MC/MCSubtargetInfo.h" 94 #include "llvm/MC/MCSymbol.h" 95 #include "llvm/MC/MCSymbolELF.h" 96 #include "llvm/MC/MCTargetOptions.h" 97 #include "llvm/MC/MCValue.h" 98 #include "llvm/MC/SectionKind.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/ErrorHandling.h" 104 #include "llvm/Support/Format.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/Path.h" 107 #include "llvm/Support/TargetRegistry.h" 108 #include "llvm/Support/Timer.h" 109 #include "llvm/Support/raw_ostream.h" 110 #include "llvm/Target/TargetMachine.h" 111 #include "llvm/Target/TargetOptions.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cinttypes> 115 #include <cstdint> 116 #include <iterator> 117 #include <limits> 118 #include <memory> 119 #include <string> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "asm-printer" 126 127 static const char *const DWARFGroupName = "dwarf"; 128 static const char *const DWARFGroupDescription = "DWARF Emission"; 129 static const char *const DbgTimerName = "emit"; 130 static const char *const DbgTimerDescription = "Debug Info Emission"; 131 static const char *const EHTimerName = "write_exception"; 132 static const char *const EHTimerDescription = "DWARF Exception Writer"; 133 static const char *const CodeViewLineTablesGroupName = "linetables"; 134 static const char *const CodeViewLineTablesGroupDescription = 135 "CodeView Line Tables"; 136 137 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 138 139 static cl::opt<bool> 140 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 141 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 142 143 char AsmPrinter::ID = 0; 144 145 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 146 147 static gcp_map_type &getGCMap(void *&P) { 148 if (!P) 149 P = new gcp_map_type(); 150 return *(gcp_map_type*)P; 151 } 152 153 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 154 /// value in log2 form. This rounds up to the preferred alignment if possible 155 /// and legal. 156 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 157 unsigned InBits = 0) { 158 unsigned NumBits = 0; 159 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 160 NumBits = DL.getPreferredAlignmentLog(GVar); 161 162 // If InBits is specified, round it to it. 163 if (InBits > NumBits) 164 NumBits = InBits; 165 166 // If the GV has a specified alignment, take it into account. 167 if (GV->getAlignment() == 0) 168 return NumBits; 169 170 unsigned GVAlign = Log2_32(GV->getAlignment()); 171 172 // If the GVAlign is larger than NumBits, or if we are required to obey 173 // NumBits because the GV has an assigned section, obey it. 174 if (GVAlign > NumBits || GV->hasSection()) 175 NumBits = GVAlign; 176 return NumBits; 177 } 178 179 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 180 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 181 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 182 VerboseAsm = OutStreamer->isVerboseAsm(); 183 } 184 185 AsmPrinter::~AsmPrinter() { 186 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 187 188 if (GCMetadataPrinters) { 189 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 190 191 delete &GCMap; 192 GCMetadataPrinters = nullptr; 193 } 194 } 195 196 bool AsmPrinter::isPositionIndependent() const { 197 return TM.isPositionIndependent(); 198 } 199 200 /// getFunctionNumber - Return a unique ID for the current function. 201 unsigned AsmPrinter::getFunctionNumber() const { 202 return MF->getFunctionNumber(); 203 } 204 205 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 206 return *TM.getObjFileLowering(); 207 } 208 209 const DataLayout &AsmPrinter::getDataLayout() const { 210 return MMI->getModule()->getDataLayout(); 211 } 212 213 // Do not use the cached DataLayout because some client use it without a Module 214 // (llvm-dsymutil, llvm-dwarfdump). 215 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 216 217 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 218 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 219 return MF->getSubtarget<MCSubtargetInfo>(); 220 } 221 222 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 223 S.EmitInstruction(Inst, getSubtargetInfo()); 224 } 225 226 /// getCurrentSection() - Return the current section we are emitting to. 227 const MCSection *AsmPrinter::getCurrentSection() const { 228 return OutStreamer->getCurrentSectionOnly(); 229 } 230 231 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 232 AU.setPreservesAll(); 233 MachineFunctionPass::getAnalysisUsage(AU); 234 AU.addRequired<MachineModuleInfo>(); 235 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 236 AU.addRequired<GCModuleInfo>(); 237 AU.addRequired<MachineLoopInfo>(); 238 } 239 240 bool AsmPrinter::doInitialization(Module &M) { 241 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 242 243 // Initialize TargetLoweringObjectFile. 244 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 245 .Initialize(OutContext, TM); 246 247 OutStreamer->InitSections(false); 248 249 // Emit the version-min deplyment target directive if needed. 250 // 251 // FIXME: If we end up with a collection of these sorts of Darwin-specific 252 // or ELF-specific things, it may make sense to have a platform helper class 253 // that will work with the target helper class. For now keep it here, as the 254 // alternative is duplicated code in each of the target asm printers that 255 // use the directive, where it would need the same conditionalization 256 // anyway. 257 const Triple &Target = TM.getTargetTriple(); 258 OutStreamer->EmitVersionForTarget(Target); 259 260 // Allow the target to emit any magic that it wants at the start of the file. 261 EmitStartOfAsmFile(M); 262 263 // Very minimal debug info. It is ignored if we emit actual debug info. If we 264 // don't, this at least helps the user find where a global came from. 265 if (MAI->hasSingleParameterDotFile()) { 266 // .file "foo.c" 267 OutStreamer->EmitFileDirective( 268 llvm::sys::path::filename(M.getSourceFileName())); 269 } 270 271 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 272 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 273 for (auto &I : *MI) 274 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 275 MP->beginAssembly(M, *MI, *this); 276 277 // Emit module-level inline asm if it exists. 278 if (!M.getModuleInlineAsm().empty()) { 279 // We're at the module level. Construct MCSubtarget from the default CPU 280 // and target triple. 281 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 282 TM.getTargetTriple().str(), TM.getTargetCPU(), 283 TM.getTargetFeatureString())); 284 OutStreamer->AddComment("Start of file scope inline assembly"); 285 OutStreamer->AddBlankLine(); 286 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 287 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 288 OutStreamer->AddComment("End of file scope inline assembly"); 289 OutStreamer->AddBlankLine(); 290 } 291 292 if (MAI->doesSupportDebugInformation()) { 293 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 294 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 295 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 296 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 297 DbgTimerName, DbgTimerDescription, 298 CodeViewLineTablesGroupName, 299 CodeViewLineTablesGroupDescription)); 300 } 301 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 302 DD = new DwarfDebug(this, &M); 303 DD->beginModule(); 304 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 305 DWARFGroupName, DWARFGroupDescription)); 306 } 307 } 308 309 switch (MAI->getExceptionHandlingType()) { 310 case ExceptionHandling::SjLj: 311 case ExceptionHandling::DwarfCFI: 312 case ExceptionHandling::ARM: 313 isCFIMoveForDebugging = true; 314 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 315 break; 316 for (auto &F: M.getFunctionList()) { 317 // If the module contains any function with unwind data, 318 // .eh_frame has to be emitted. 319 // Ignore functions that won't get emitted. 320 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 321 isCFIMoveForDebugging = false; 322 break; 323 } 324 } 325 break; 326 default: 327 isCFIMoveForDebugging = false; 328 break; 329 } 330 331 EHStreamer *ES = nullptr; 332 switch (MAI->getExceptionHandlingType()) { 333 case ExceptionHandling::None: 334 break; 335 case ExceptionHandling::SjLj: 336 case ExceptionHandling::DwarfCFI: 337 ES = new DwarfCFIException(this); 338 break; 339 case ExceptionHandling::ARM: 340 ES = new ARMException(this); 341 break; 342 case ExceptionHandling::WinEH: 343 switch (MAI->getWinEHEncodingType()) { 344 default: llvm_unreachable("unsupported unwinding information encoding"); 345 case WinEH::EncodingType::Invalid: 346 break; 347 case WinEH::EncodingType::X86: 348 case WinEH::EncodingType::Itanium: 349 ES = new WinException(this); 350 break; 351 } 352 break; 353 } 354 if (ES) 355 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 356 DWARFGroupName, DWARFGroupDescription)); 357 return false; 358 } 359 360 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 361 if (!MAI.hasWeakDefCanBeHiddenDirective()) 362 return false; 363 364 return canBeOmittedFromSymbolTable(GV); 365 } 366 367 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 368 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 369 switch (Linkage) { 370 case GlobalValue::CommonLinkage: 371 case GlobalValue::LinkOnceAnyLinkage: 372 case GlobalValue::LinkOnceODRLinkage: 373 case GlobalValue::WeakAnyLinkage: 374 case GlobalValue::WeakODRLinkage: 375 if (MAI->hasWeakDefDirective()) { 376 // .globl _foo 377 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 378 379 if (!canBeHidden(GV, *MAI)) 380 // .weak_definition _foo 381 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 382 else 383 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 384 } else if (MAI->hasLinkOnceDirective()) { 385 // .globl _foo 386 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 387 //NOTE: linkonce is handled by the section the symbol was assigned to. 388 } else { 389 // .weak _foo 390 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 391 } 392 return; 393 case GlobalValue::ExternalLinkage: 394 // If external, declare as a global symbol: .globl _foo 395 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 396 return; 397 case GlobalValue::PrivateLinkage: 398 case GlobalValue::InternalLinkage: 399 return; 400 case GlobalValue::AppendingLinkage: 401 case GlobalValue::AvailableExternallyLinkage: 402 case GlobalValue::ExternalWeakLinkage: 403 llvm_unreachable("Should never emit this"); 404 } 405 llvm_unreachable("Unknown linkage type!"); 406 } 407 408 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 409 const GlobalValue *GV) const { 410 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 411 } 412 413 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 414 return TM.getSymbol(GV); 415 } 416 417 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 418 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 419 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 420 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 421 "No emulated TLS variables in the common section"); 422 423 // Never emit TLS variable xyz in emulated TLS model. 424 // The initialization value is in __emutls_t.xyz instead of xyz. 425 if (IsEmuTLSVar) 426 return; 427 428 if (GV->hasInitializer()) { 429 // Check to see if this is a special global used by LLVM, if so, emit it. 430 if (EmitSpecialLLVMGlobal(GV)) 431 return; 432 433 // Skip the emission of global equivalents. The symbol can be emitted later 434 // on by emitGlobalGOTEquivs in case it turns out to be needed. 435 if (GlobalGOTEquivs.count(getSymbol(GV))) 436 return; 437 438 if (isVerbose()) { 439 // When printing the control variable __emutls_v.*, 440 // we don't need to print the original TLS variable name. 441 GV->printAsOperand(OutStreamer->GetCommentOS(), 442 /*PrintType=*/false, GV->getParent()); 443 OutStreamer->GetCommentOS() << '\n'; 444 } 445 } 446 447 MCSymbol *GVSym = getSymbol(GV); 448 MCSymbol *EmittedSym = GVSym; 449 450 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 451 // attributes. 452 // GV's or GVSym's attributes will be used for the EmittedSym. 453 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 454 455 if (!GV->hasInitializer()) // External globals require no extra code. 456 return; 457 458 GVSym->redefineIfPossible(); 459 if (GVSym->isDefined() || GVSym->isVariable()) 460 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 461 "' is already defined"); 462 463 if (MAI->hasDotTypeDotSizeDirective()) 464 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 465 466 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 467 468 const DataLayout &DL = GV->getParent()->getDataLayout(); 469 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 470 471 // If the alignment is specified, we *must* obey it. Overaligning a global 472 // with a specified alignment is a prompt way to break globals emitted to 473 // sections and expected to be contiguous (e.g. ObjC metadata). 474 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 475 476 for (const HandlerInfo &HI : Handlers) { 477 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 478 HI.TimerGroupName, HI.TimerGroupDescription, 479 TimePassesIsEnabled); 480 HI.Handler->setSymbolSize(GVSym, Size); 481 } 482 483 // Handle common symbols 484 if (GVKind.isCommon()) { 485 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 486 unsigned Align = 1 << AlignLog; 487 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 488 Align = 0; 489 490 // .comm _foo, 42, 4 491 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 492 return; 493 } 494 495 // Determine to which section this global should be emitted. 496 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 497 498 // If we have a bss global going to a section that supports the 499 // zerofill directive, do so here. 500 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 501 TheSection->isVirtualSection()) { 502 if (Size == 0) 503 Size = 1; // zerofill of 0 bytes is undefined. 504 unsigned Align = 1 << AlignLog; 505 EmitLinkage(GV, GVSym); 506 // .zerofill __DATA, __bss, _foo, 400, 5 507 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 508 return; 509 } 510 511 // If this is a BSS local symbol and we are emitting in the BSS 512 // section use .lcomm/.comm directive. 513 if (GVKind.isBSSLocal() && 514 getObjFileLowering().getBSSSection() == TheSection) { 515 if (Size == 0) 516 Size = 1; // .comm Foo, 0 is undefined, avoid it. 517 unsigned Align = 1 << AlignLog; 518 519 // Use .lcomm only if it supports user-specified alignment. 520 // Otherwise, while it would still be correct to use .lcomm in some 521 // cases (e.g. when Align == 1), the external assembler might enfore 522 // some -unknown- default alignment behavior, which could cause 523 // spurious differences between external and integrated assembler. 524 // Prefer to simply fall back to .local / .comm in this case. 525 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 526 // .lcomm _foo, 42 527 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 528 return; 529 } 530 531 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 532 Align = 0; 533 534 // .local _foo 535 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 536 // .comm _foo, 42, 4 537 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 538 return; 539 } 540 541 // Handle thread local data for mach-o which requires us to output an 542 // additional structure of data and mangle the original symbol so that we 543 // can reference it later. 544 // 545 // TODO: This should become an "emit thread local global" method on TLOF. 546 // All of this macho specific stuff should be sunk down into TLOFMachO and 547 // stuff like "TLSExtraDataSection" should no longer be part of the parent 548 // TLOF class. This will also make it more obvious that stuff like 549 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 550 // specific code. 551 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 552 // Emit the .tbss symbol 553 MCSymbol *MangSym = 554 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 555 556 if (GVKind.isThreadBSS()) { 557 TheSection = getObjFileLowering().getTLSBSSSection(); 558 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 559 } else if (GVKind.isThreadData()) { 560 OutStreamer->SwitchSection(TheSection); 561 562 EmitAlignment(AlignLog, GV); 563 OutStreamer->EmitLabel(MangSym); 564 565 EmitGlobalConstant(GV->getParent()->getDataLayout(), 566 GV->getInitializer()); 567 } 568 569 OutStreamer->AddBlankLine(); 570 571 // Emit the variable struct for the runtime. 572 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 573 574 OutStreamer->SwitchSection(TLVSect); 575 // Emit the linkage here. 576 EmitLinkage(GV, GVSym); 577 OutStreamer->EmitLabel(GVSym); 578 579 // Three pointers in size: 580 // - __tlv_bootstrap - used to make sure support exists 581 // - spare pointer, used when mapped by the runtime 582 // - pointer to mangled symbol above with initializer 583 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 584 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 585 PtrSize); 586 OutStreamer->EmitIntValue(0, PtrSize); 587 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 588 589 OutStreamer->AddBlankLine(); 590 return; 591 } 592 593 MCSymbol *EmittedInitSym = GVSym; 594 595 OutStreamer->SwitchSection(TheSection); 596 597 EmitLinkage(GV, EmittedInitSym); 598 EmitAlignment(AlignLog, GV); 599 600 OutStreamer->EmitLabel(EmittedInitSym); 601 602 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 603 604 if (MAI->hasDotTypeDotSizeDirective()) 605 // .size foo, 42 606 OutStreamer->emitELFSize(EmittedInitSym, 607 MCConstantExpr::create(Size, OutContext)); 608 609 OutStreamer->AddBlankLine(); 610 } 611 612 /// Emit the directive and value for debug thread local expression 613 /// 614 /// \p Value - The value to emit. 615 /// \p Size - The size of the integer (in bytes) to emit. 616 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 617 unsigned Size) const { 618 OutStreamer->EmitValue(Value, Size); 619 } 620 621 /// EmitFunctionHeader - This method emits the header for the current 622 /// function. 623 void AsmPrinter::EmitFunctionHeader() { 624 const Function &F = MF->getFunction(); 625 626 if (isVerbose()) 627 OutStreamer->GetCommentOS() 628 << "-- Begin function " 629 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 630 631 // Print out constants referenced by the function 632 EmitConstantPool(); 633 634 // Print the 'header' of function. 635 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 636 EmitVisibility(CurrentFnSym, F.getVisibility()); 637 638 EmitLinkage(&F, CurrentFnSym); 639 if (MAI->hasFunctionAlignment()) 640 EmitAlignment(MF->getAlignment(), &F); 641 642 if (MAI->hasDotTypeDotSizeDirective()) 643 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 644 645 if (isVerbose()) { 646 F.printAsOperand(OutStreamer->GetCommentOS(), 647 /*PrintType=*/false, F.getParent()); 648 OutStreamer->GetCommentOS() << '\n'; 649 } 650 651 // Emit the prefix data. 652 if (F.hasPrefixData()) { 653 if (MAI->hasSubsectionsViaSymbols()) { 654 // Preserving prefix data on platforms which use subsections-via-symbols 655 // is a bit tricky. Here we introduce a symbol for the prefix data 656 // and use the .alt_entry attribute to mark the function's real entry point 657 // as an alternative entry point to the prefix-data symbol. 658 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 659 OutStreamer->EmitLabel(PrefixSym); 660 661 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 662 663 // Emit an .alt_entry directive for the actual function symbol. 664 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 665 } else { 666 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 667 } 668 } 669 670 // Emit the CurrentFnSym. This is a virtual function to allow targets to 671 // do their wild and crazy things as required. 672 EmitFunctionEntryLabel(); 673 674 // If the function had address-taken blocks that got deleted, then we have 675 // references to the dangling symbols. Emit them at the start of the function 676 // so that we don't get references to undefined symbols. 677 std::vector<MCSymbol*> DeadBlockSyms; 678 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 679 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 680 OutStreamer->AddComment("Address taken block that was later removed"); 681 OutStreamer->EmitLabel(DeadBlockSyms[i]); 682 } 683 684 if (CurrentFnBegin) { 685 if (MAI->useAssignmentForEHBegin()) { 686 MCSymbol *CurPos = OutContext.createTempSymbol(); 687 OutStreamer->EmitLabel(CurPos); 688 OutStreamer->EmitAssignment(CurrentFnBegin, 689 MCSymbolRefExpr::create(CurPos, OutContext)); 690 } else { 691 OutStreamer->EmitLabel(CurrentFnBegin); 692 } 693 } 694 695 // Emit pre-function debug and/or EH information. 696 for (const HandlerInfo &HI : Handlers) { 697 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 698 HI.TimerGroupDescription, TimePassesIsEnabled); 699 HI.Handler->beginFunction(MF); 700 } 701 702 // Emit the prologue data. 703 if (F.hasPrologueData()) 704 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 705 } 706 707 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 708 /// function. This can be overridden by targets as required to do custom stuff. 709 void AsmPrinter::EmitFunctionEntryLabel() { 710 CurrentFnSym->redefineIfPossible(); 711 712 // The function label could have already been emitted if two symbols end up 713 // conflicting due to asm renaming. Detect this and emit an error. 714 if (CurrentFnSym->isVariable()) 715 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 716 "' is a protected alias"); 717 if (CurrentFnSym->isDefined()) 718 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 719 "' label emitted multiple times to assembly file"); 720 721 return OutStreamer->EmitLabel(CurrentFnSym); 722 } 723 724 /// emitComments - Pretty-print comments for instructions. 725 /// It returns true iff the sched comment was emitted. 726 /// Otherwise it returns false. 727 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 728 AsmPrinter *AP) { 729 const MachineFunction *MF = MI.getMF(); 730 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 731 732 // Check for spills and reloads 733 int FI; 734 735 const MachineFrameInfo &MFI = MF->getFrameInfo(); 736 bool Commented = false; 737 738 // We assume a single instruction only has a spill or reload, not 739 // both. 740 const MachineMemOperand *MMO; 741 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 742 if (MFI.isSpillSlotObjectIndex(FI)) { 743 MMO = *MI.memoperands_begin(); 744 CommentOS << MMO->getSize() << "-byte Reload"; 745 Commented = true; 746 } 747 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 748 if (MFI.isSpillSlotObjectIndex(FI)) { 749 CommentOS << MMO->getSize() << "-byte Folded Reload"; 750 Commented = true; 751 } 752 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 753 if (MFI.isSpillSlotObjectIndex(FI)) { 754 MMO = *MI.memoperands_begin(); 755 CommentOS << MMO->getSize() << "-byte Spill"; 756 Commented = true; 757 } 758 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 759 if (MFI.isSpillSlotObjectIndex(FI)) { 760 CommentOS << MMO->getSize() << "-byte Folded Spill"; 761 Commented = true; 762 } 763 } 764 765 // Check for spill-induced copies 766 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 767 Commented = true; 768 CommentOS << " Reload Reuse"; 769 } 770 771 if (Commented) { 772 if (AP->EnablePrintSchedInfo) { 773 // If any comment was added above and we need sched info comment then add 774 // this new comment just after the above comment w/o "\n" between them. 775 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 776 return true; 777 } 778 CommentOS << "\n"; 779 } 780 return false; 781 } 782 783 /// emitImplicitDef - This method emits the specified machine instruction 784 /// that is an implicit def. 785 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 786 unsigned RegNo = MI->getOperand(0).getReg(); 787 788 SmallString<128> Str; 789 raw_svector_ostream OS(Str); 790 OS << "implicit-def: " 791 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 792 793 OutStreamer->AddComment(OS.str()); 794 OutStreamer->AddBlankLine(); 795 } 796 797 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 798 std::string Str; 799 raw_string_ostream OS(Str); 800 OS << "kill:"; 801 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 802 const MachineOperand &Op = MI->getOperand(i); 803 assert(Op.isReg() && "KILL instruction must have only register operands"); 804 OS << ' ' << (Op.isDef() ? "def " : "killed ") 805 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 806 } 807 AP.OutStreamer->AddComment(OS.str()); 808 AP.OutStreamer->AddBlankLine(); 809 } 810 811 /// emitDebugValueComment - This method handles the target-independent form 812 /// of DBG_VALUE, returning true if it was able to do so. A false return 813 /// means the target will need to handle MI in EmitInstruction. 814 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 815 // This code handles only the 4-operand target-independent form. 816 if (MI->getNumOperands() != 4) 817 return false; 818 819 SmallString<128> Str; 820 raw_svector_ostream OS(Str); 821 OS << "DEBUG_VALUE: "; 822 823 const DILocalVariable *V = MI->getDebugVariable(); 824 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 825 StringRef Name = SP->getName(); 826 if (!Name.empty()) 827 OS << Name << ":"; 828 } 829 OS << V->getName(); 830 OS << " <- "; 831 832 // The second operand is only an offset if it's an immediate. 833 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 834 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 835 const DIExpression *Expr = MI->getDebugExpression(); 836 if (Expr->getNumElements()) { 837 OS << '['; 838 bool NeedSep = false; 839 for (auto Op : Expr->expr_ops()) { 840 if (NeedSep) 841 OS << ", "; 842 else 843 NeedSep = true; 844 OS << dwarf::OperationEncodingString(Op.getOp()); 845 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 846 OS << ' ' << Op.getArg(I); 847 } 848 OS << "] "; 849 } 850 851 // Register or immediate value. Register 0 means undef. 852 if (MI->getOperand(0).isFPImm()) { 853 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 854 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 855 OS << (double)APF.convertToFloat(); 856 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 857 OS << APF.convertToDouble(); 858 } else { 859 // There is no good way to print long double. Convert a copy to 860 // double. Ah well, it's only a comment. 861 bool ignored; 862 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 863 &ignored); 864 OS << "(long double) " << APF.convertToDouble(); 865 } 866 } else if (MI->getOperand(0).isImm()) { 867 OS << MI->getOperand(0).getImm(); 868 } else if (MI->getOperand(0).isCImm()) { 869 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 870 } else { 871 unsigned Reg; 872 if (MI->getOperand(0).isReg()) { 873 Reg = MI->getOperand(0).getReg(); 874 } else { 875 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 876 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 877 Offset += TFI->getFrameIndexReference(*AP.MF, 878 MI->getOperand(0).getIndex(), Reg); 879 MemLoc = true; 880 } 881 if (Reg == 0) { 882 // Suppress offset, it is not meaningful here. 883 OS << "undef"; 884 // NOTE: Want this comment at start of line, don't emit with AddComment. 885 AP.OutStreamer->emitRawComment(OS.str()); 886 return true; 887 } 888 if (MemLoc) 889 OS << '['; 890 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 891 } 892 893 if (MemLoc) 894 OS << '+' << Offset << ']'; 895 896 // NOTE: Want this comment at start of line, don't emit with AddComment. 897 AP.OutStreamer->emitRawComment(OS.str()); 898 return true; 899 } 900 901 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 902 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 903 MF->getFunction().needsUnwindTableEntry()) 904 return CFI_M_EH; 905 906 if (MMI->hasDebugInfo()) 907 return CFI_M_Debug; 908 909 return CFI_M_None; 910 } 911 912 bool AsmPrinter::needsSEHMoves() { 913 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 914 } 915 916 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 917 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 918 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 919 ExceptionHandlingType != ExceptionHandling::ARM) 920 return; 921 922 if (needsCFIMoves() == CFI_M_None) 923 return; 924 925 // If there is no "real" instruction following this CFI instruction, skip 926 // emitting it; it would be beyond the end of the function's FDE range. 927 auto *MBB = MI.getParent(); 928 auto I = std::next(MI.getIterator()); 929 while (I != MBB->end() && I->isTransient()) 930 ++I; 931 if (I == MBB->instr_end() && 932 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 933 return; 934 935 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 936 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 937 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 938 emitCFIInstruction(CFI); 939 } 940 941 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 942 // The operands are the MCSymbol and the frame offset of the allocation. 943 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 944 int FrameOffset = MI.getOperand(1).getImm(); 945 946 // Emit a symbol assignment. 947 OutStreamer->EmitAssignment(FrameAllocSym, 948 MCConstantExpr::create(FrameOffset, OutContext)); 949 } 950 951 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 952 if (!MF.getTarget().Options.EmitStackSizeSection) 953 return; 954 955 MCSection *StackSizeSection = getObjFileLowering().getStackSizesSection(); 956 if (!StackSizeSection) 957 return; 958 959 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 960 // Don't emit functions with dynamic stack allocations. 961 if (FrameInfo.hasVarSizedObjects()) 962 return; 963 964 OutStreamer->PushSection(); 965 OutStreamer->SwitchSection(StackSizeSection); 966 967 const MCSymbol *FunctionSymbol = getSymbol(&MF.getFunction()); 968 uint64_t StackSize = FrameInfo.getStackSize(); 969 OutStreamer->EmitValue(MCSymbolRefExpr::create(FunctionSymbol, OutContext), 970 /* size = */ 8); 971 OutStreamer->EmitULEB128IntValue(StackSize); 972 973 OutStreamer->PopSection(); 974 } 975 976 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 977 MachineModuleInfo *MMI) { 978 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 979 return true; 980 981 // We might emit an EH table that uses function begin and end labels even if 982 // we don't have any landingpads. 983 if (!MF.getFunction().hasPersonalityFn()) 984 return false; 985 return !isNoOpWithoutInvoke( 986 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 987 } 988 989 /// EmitFunctionBody - This method emits the body and trailer for a 990 /// function. 991 void AsmPrinter::EmitFunctionBody() { 992 EmitFunctionHeader(); 993 994 // Emit target-specific gunk before the function body. 995 EmitFunctionBodyStart(); 996 997 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 998 999 // Print out code for the function. 1000 bool HasAnyRealCode = false; 1001 int NumInstsInFunction = 0; 1002 for (auto &MBB : *MF) { 1003 // Print a label for the basic block. 1004 EmitBasicBlockStart(MBB); 1005 for (auto &MI : MBB) { 1006 // Print the assembly for the instruction. 1007 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1008 !MI.isDebugValue()) { 1009 HasAnyRealCode = true; 1010 ++NumInstsInFunction; 1011 } 1012 1013 if (ShouldPrintDebugScopes) { 1014 for (const HandlerInfo &HI : Handlers) { 1015 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1016 HI.TimerGroupName, HI.TimerGroupDescription, 1017 TimePassesIsEnabled); 1018 HI.Handler->beginInstruction(&MI); 1019 } 1020 } 1021 1022 if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) { 1023 MachineInstr *MIP = const_cast<MachineInstr *>(&MI); 1024 MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment); 1025 } 1026 1027 switch (MI.getOpcode()) { 1028 case TargetOpcode::CFI_INSTRUCTION: 1029 emitCFIInstruction(MI); 1030 break; 1031 case TargetOpcode::LOCAL_ESCAPE: 1032 emitFrameAlloc(MI); 1033 break; 1034 case TargetOpcode::EH_LABEL: 1035 case TargetOpcode::GC_LABEL: 1036 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1037 break; 1038 case TargetOpcode::INLINEASM: 1039 EmitInlineAsm(&MI); 1040 break; 1041 case TargetOpcode::DBG_VALUE: 1042 if (isVerbose()) { 1043 if (!emitDebugValueComment(&MI, *this)) 1044 EmitInstruction(&MI); 1045 } 1046 break; 1047 case TargetOpcode::IMPLICIT_DEF: 1048 if (isVerbose()) emitImplicitDef(&MI); 1049 break; 1050 case TargetOpcode::KILL: 1051 if (isVerbose()) emitKill(&MI, *this); 1052 break; 1053 default: 1054 EmitInstruction(&MI); 1055 break; 1056 } 1057 1058 if (ShouldPrintDebugScopes) { 1059 for (const HandlerInfo &HI : Handlers) { 1060 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1061 HI.TimerGroupName, HI.TimerGroupDescription, 1062 TimePassesIsEnabled); 1063 HI.Handler->endInstruction(); 1064 } 1065 } 1066 } 1067 1068 EmitBasicBlockEnd(MBB); 1069 } 1070 1071 EmittedInsts += NumInstsInFunction; 1072 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1073 MF->getFunction().getSubprogram(), 1074 &MF->front()); 1075 R << ore::NV("NumInstructions", NumInstsInFunction) 1076 << " instructions in function"; 1077 ORE->emit(R); 1078 1079 // If the function is empty and the object file uses .subsections_via_symbols, 1080 // then we need to emit *something* to the function body to prevent the 1081 // labels from collapsing together. Just emit a noop. 1082 // Similarly, don't emit empty functions on Windows either. It can lead to 1083 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1084 // after linking, causing the kernel not to load the binary: 1085 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1086 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1087 const Triple &TT = TM.getTargetTriple(); 1088 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1089 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1090 MCInst Noop; 1091 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1092 1093 // Targets can opt-out of emitting the noop here by leaving the opcode 1094 // unspecified. 1095 if (Noop.getOpcode()) { 1096 OutStreamer->AddComment("avoids zero-length function"); 1097 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1098 } 1099 } 1100 1101 const Function &F = MF->getFunction(); 1102 for (const auto &BB : F) { 1103 if (!BB.hasAddressTaken()) 1104 continue; 1105 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1106 if (Sym->isDefined()) 1107 continue; 1108 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1109 OutStreamer->EmitLabel(Sym); 1110 } 1111 1112 // Emit target-specific gunk after the function body. 1113 EmitFunctionBodyEnd(); 1114 1115 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1116 MAI->hasDotTypeDotSizeDirective()) { 1117 // Create a symbol for the end of function. 1118 CurrentFnEnd = createTempSymbol("func_end"); 1119 OutStreamer->EmitLabel(CurrentFnEnd); 1120 } 1121 1122 // If the target wants a .size directive for the size of the function, emit 1123 // it. 1124 if (MAI->hasDotTypeDotSizeDirective()) { 1125 // We can get the size as difference between the function label and the 1126 // temp label. 1127 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1128 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1129 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1130 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1131 } 1132 1133 for (const HandlerInfo &HI : Handlers) { 1134 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1135 HI.TimerGroupDescription, TimePassesIsEnabled); 1136 HI.Handler->markFunctionEnd(); 1137 } 1138 1139 // Print out jump tables referenced by the function. 1140 EmitJumpTableInfo(); 1141 1142 // Emit post-function debug and/or EH information. 1143 for (const HandlerInfo &HI : Handlers) { 1144 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1145 HI.TimerGroupDescription, TimePassesIsEnabled); 1146 HI.Handler->endFunction(MF); 1147 } 1148 1149 // Emit section containing stack size metadata. 1150 emitStackSizeSection(*MF); 1151 1152 if (isVerbose()) 1153 OutStreamer->GetCommentOS() << "-- End function\n"; 1154 1155 OutStreamer->AddBlankLine(); 1156 } 1157 1158 /// \brief Compute the number of Global Variables that uses a Constant. 1159 static unsigned getNumGlobalVariableUses(const Constant *C) { 1160 if (!C) 1161 return 0; 1162 1163 if (isa<GlobalVariable>(C)) 1164 return 1; 1165 1166 unsigned NumUses = 0; 1167 for (auto *CU : C->users()) 1168 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1169 1170 return NumUses; 1171 } 1172 1173 /// \brief Only consider global GOT equivalents if at least one user is a 1174 /// cstexpr inside an initializer of another global variables. Also, don't 1175 /// handle cstexpr inside instructions. During global variable emission, 1176 /// candidates are skipped and are emitted later in case at least one cstexpr 1177 /// isn't replaced by a PC relative GOT entry access. 1178 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1179 unsigned &NumGOTEquivUsers) { 1180 // Global GOT equivalents are unnamed private globals with a constant 1181 // pointer initializer to another global symbol. They must point to a 1182 // GlobalVariable or Function, i.e., as GlobalValue. 1183 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1184 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1185 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1186 return false; 1187 1188 // To be a got equivalent, at least one of its users need to be a constant 1189 // expression used by another global variable. 1190 for (auto *U : GV->users()) 1191 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1192 1193 return NumGOTEquivUsers > 0; 1194 } 1195 1196 /// \brief Unnamed constant global variables solely contaning a pointer to 1197 /// another globals variable is equivalent to a GOT table entry; it contains the 1198 /// the address of another symbol. Optimize it and replace accesses to these 1199 /// "GOT equivalents" by using the GOT entry for the final global instead. 1200 /// Compute GOT equivalent candidates among all global variables to avoid 1201 /// emitting them if possible later on, after it use is replaced by a GOT entry 1202 /// access. 1203 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1204 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1205 return; 1206 1207 for (const auto &G : M.globals()) { 1208 unsigned NumGOTEquivUsers = 0; 1209 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1210 continue; 1211 1212 const MCSymbol *GOTEquivSym = getSymbol(&G); 1213 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1214 } 1215 } 1216 1217 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1218 /// for PC relative GOT entry conversion, in such cases we need to emit such 1219 /// globals we previously omitted in EmitGlobalVariable. 1220 void AsmPrinter::emitGlobalGOTEquivs() { 1221 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1222 return; 1223 1224 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1225 for (auto &I : GlobalGOTEquivs) { 1226 const GlobalVariable *GV = I.second.first; 1227 unsigned Cnt = I.second.second; 1228 if (Cnt) 1229 FailedCandidates.push_back(GV); 1230 } 1231 GlobalGOTEquivs.clear(); 1232 1233 for (auto *GV : FailedCandidates) 1234 EmitGlobalVariable(GV); 1235 } 1236 1237 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1238 const GlobalIndirectSymbol& GIS) { 1239 MCSymbol *Name = getSymbol(&GIS); 1240 1241 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1242 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1243 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1244 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1245 else 1246 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1247 1248 // Set the symbol type to function if the alias has a function type. 1249 // This affects codegen when the aliasee is not a function. 1250 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1251 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1252 if (isa<GlobalIFunc>(GIS)) 1253 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1254 } 1255 1256 EmitVisibility(Name, GIS.getVisibility()); 1257 1258 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1259 1260 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1261 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1262 1263 // Emit the directives as assignments aka .set: 1264 OutStreamer->EmitAssignment(Name, Expr); 1265 1266 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1267 // If the aliasee does not correspond to a symbol in the output, i.e. the 1268 // alias is not of an object or the aliased object is private, then set the 1269 // size of the alias symbol from the type of the alias. We don't do this in 1270 // other situations as the alias and aliasee having differing types but same 1271 // size may be intentional. 1272 const GlobalObject *BaseObject = GA->getBaseObject(); 1273 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1274 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1275 const DataLayout &DL = M.getDataLayout(); 1276 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1277 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1278 } 1279 } 1280 } 1281 1282 bool AsmPrinter::doFinalization(Module &M) { 1283 // Set the MachineFunction to nullptr so that we can catch attempted 1284 // accesses to MF specific features at the module level and so that 1285 // we can conditionalize accesses based on whether or not it is nullptr. 1286 MF = nullptr; 1287 1288 // Gather all GOT equivalent globals in the module. We really need two 1289 // passes over the globals: one to compute and another to avoid its emission 1290 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1291 // where the got equivalent shows up before its use. 1292 computeGlobalGOTEquivs(M); 1293 1294 // Emit global variables. 1295 for (const auto &G : M.globals()) 1296 EmitGlobalVariable(&G); 1297 1298 // Emit remaining GOT equivalent globals. 1299 emitGlobalGOTEquivs(); 1300 1301 // Emit visibility info for declarations 1302 for (const Function &F : M) { 1303 if (!F.isDeclarationForLinker()) 1304 continue; 1305 GlobalValue::VisibilityTypes V = F.getVisibility(); 1306 if (V == GlobalValue::DefaultVisibility) 1307 continue; 1308 1309 MCSymbol *Name = getSymbol(&F); 1310 EmitVisibility(Name, V, false); 1311 } 1312 1313 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1314 1315 TLOF.emitModuleMetadata(*OutStreamer, M, TM); 1316 1317 if (TM.getTargetTriple().isOSBinFormatELF()) { 1318 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1319 1320 // Output stubs for external and common global variables. 1321 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1322 if (!Stubs.empty()) { 1323 OutStreamer->SwitchSection(TLOF.getDataSection()); 1324 const DataLayout &DL = M.getDataLayout(); 1325 1326 for (const auto &Stub : Stubs) { 1327 OutStreamer->EmitLabel(Stub.first); 1328 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1329 DL.getPointerSize()); 1330 } 1331 } 1332 } 1333 1334 // Finalize debug and EH information. 1335 for (const HandlerInfo &HI : Handlers) { 1336 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1337 HI.TimerGroupDescription, TimePassesIsEnabled); 1338 HI.Handler->endModule(); 1339 delete HI.Handler; 1340 } 1341 Handlers.clear(); 1342 DD = nullptr; 1343 1344 // If the target wants to know about weak references, print them all. 1345 if (MAI->getWeakRefDirective()) { 1346 // FIXME: This is not lazy, it would be nice to only print weak references 1347 // to stuff that is actually used. Note that doing so would require targets 1348 // to notice uses in operands (due to constant exprs etc). This should 1349 // happen with the MC stuff eventually. 1350 1351 // Print out module-level global objects here. 1352 for (const auto &GO : M.global_objects()) { 1353 if (!GO.hasExternalWeakLinkage()) 1354 continue; 1355 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1356 } 1357 } 1358 1359 OutStreamer->AddBlankLine(); 1360 1361 // Print aliases in topological order, that is, for each alias a = b, 1362 // b must be printed before a. 1363 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1364 // such an order to generate correct TOC information. 1365 SmallVector<const GlobalAlias *, 16> AliasStack; 1366 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1367 for (const auto &Alias : M.aliases()) { 1368 for (const GlobalAlias *Cur = &Alias; Cur; 1369 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1370 if (!AliasVisited.insert(Cur).second) 1371 break; 1372 AliasStack.push_back(Cur); 1373 } 1374 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1375 emitGlobalIndirectSymbol(M, *AncestorAlias); 1376 AliasStack.clear(); 1377 } 1378 for (const auto &IFunc : M.ifuncs()) 1379 emitGlobalIndirectSymbol(M, IFunc); 1380 1381 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1382 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1383 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1384 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1385 MP->finishAssembly(M, *MI, *this); 1386 1387 // Emit llvm.ident metadata in an '.ident' directive. 1388 EmitModuleIdents(M); 1389 1390 // Emit __morestack address if needed for indirect calls. 1391 if (MMI->usesMorestackAddr()) { 1392 unsigned Align = 1; 1393 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1394 getDataLayout(), SectionKind::getReadOnly(), 1395 /*C=*/nullptr, Align); 1396 OutStreamer->SwitchSection(ReadOnlySection); 1397 1398 MCSymbol *AddrSymbol = 1399 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1400 OutStreamer->EmitLabel(AddrSymbol); 1401 1402 unsigned PtrSize = MAI->getCodePointerSize(); 1403 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1404 PtrSize); 1405 } 1406 1407 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1408 // split-stack is used. 1409 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1410 OutStreamer->SwitchSection( 1411 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1412 if (MMI->hasNosplitStack()) 1413 OutStreamer->SwitchSection( 1414 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1415 } 1416 1417 // If we don't have any trampolines, then we don't require stack memory 1418 // to be executable. Some targets have a directive to declare this. 1419 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1420 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1421 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1422 OutStreamer->SwitchSection(S); 1423 1424 // Allow the target to emit any magic that it wants at the end of the file, 1425 // after everything else has gone out. 1426 EmitEndOfAsmFile(M); 1427 1428 MMI = nullptr; 1429 1430 OutStreamer->Finish(); 1431 OutStreamer->reset(); 1432 1433 return false; 1434 } 1435 1436 MCSymbol *AsmPrinter::getCurExceptionSym() { 1437 if (!CurExceptionSym) 1438 CurExceptionSym = createTempSymbol("exception"); 1439 return CurExceptionSym; 1440 } 1441 1442 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1443 this->MF = &MF; 1444 // Get the function symbol. 1445 CurrentFnSym = getSymbol(&MF.getFunction()); 1446 CurrentFnSymForSize = CurrentFnSym; 1447 CurrentFnBegin = nullptr; 1448 CurExceptionSym = nullptr; 1449 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1450 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) { 1451 CurrentFnBegin = createTempSymbol("func_begin"); 1452 if (NeedsLocalForSize) 1453 CurrentFnSymForSize = CurrentFnBegin; 1454 } 1455 1456 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1457 LI = &getAnalysis<MachineLoopInfo>(); 1458 1459 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1460 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1461 ? PrintSchedule 1462 : STI.supportPrintSchedInfo(); 1463 } 1464 1465 namespace { 1466 1467 // Keep track the alignment, constpool entries per Section. 1468 struct SectionCPs { 1469 MCSection *S; 1470 unsigned Alignment; 1471 SmallVector<unsigned, 4> CPEs; 1472 1473 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1474 }; 1475 1476 } // end anonymous namespace 1477 1478 /// EmitConstantPool - Print to the current output stream assembly 1479 /// representations of the constants in the constant pool MCP. This is 1480 /// used to print out constants which have been "spilled to memory" by 1481 /// the code generator. 1482 void AsmPrinter::EmitConstantPool() { 1483 const MachineConstantPool *MCP = MF->getConstantPool(); 1484 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1485 if (CP.empty()) return; 1486 1487 // Calculate sections for constant pool entries. We collect entries to go into 1488 // the same section together to reduce amount of section switch statements. 1489 SmallVector<SectionCPs, 4> CPSections; 1490 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1491 const MachineConstantPoolEntry &CPE = CP[i]; 1492 unsigned Align = CPE.getAlignment(); 1493 1494 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1495 1496 const Constant *C = nullptr; 1497 if (!CPE.isMachineConstantPoolEntry()) 1498 C = CPE.Val.ConstVal; 1499 1500 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1501 Kind, C, Align); 1502 1503 // The number of sections are small, just do a linear search from the 1504 // last section to the first. 1505 bool Found = false; 1506 unsigned SecIdx = CPSections.size(); 1507 while (SecIdx != 0) { 1508 if (CPSections[--SecIdx].S == S) { 1509 Found = true; 1510 break; 1511 } 1512 } 1513 if (!Found) { 1514 SecIdx = CPSections.size(); 1515 CPSections.push_back(SectionCPs(S, Align)); 1516 } 1517 1518 if (Align > CPSections[SecIdx].Alignment) 1519 CPSections[SecIdx].Alignment = Align; 1520 CPSections[SecIdx].CPEs.push_back(i); 1521 } 1522 1523 // Now print stuff into the calculated sections. 1524 const MCSection *CurSection = nullptr; 1525 unsigned Offset = 0; 1526 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1527 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1528 unsigned CPI = CPSections[i].CPEs[j]; 1529 MCSymbol *Sym = GetCPISymbol(CPI); 1530 if (!Sym->isUndefined()) 1531 continue; 1532 1533 if (CurSection != CPSections[i].S) { 1534 OutStreamer->SwitchSection(CPSections[i].S); 1535 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1536 CurSection = CPSections[i].S; 1537 Offset = 0; 1538 } 1539 1540 MachineConstantPoolEntry CPE = CP[CPI]; 1541 1542 // Emit inter-object padding for alignment. 1543 unsigned AlignMask = CPE.getAlignment() - 1; 1544 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1545 OutStreamer->EmitZeros(NewOffset - Offset); 1546 1547 Type *Ty = CPE.getType(); 1548 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1549 1550 OutStreamer->EmitLabel(Sym); 1551 if (CPE.isMachineConstantPoolEntry()) 1552 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1553 else 1554 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1555 } 1556 } 1557 } 1558 1559 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1560 /// by the current function to the current output stream. 1561 void AsmPrinter::EmitJumpTableInfo() { 1562 const DataLayout &DL = MF->getDataLayout(); 1563 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1564 if (!MJTI) return; 1565 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1566 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1567 if (JT.empty()) return; 1568 1569 // Pick the directive to use to print the jump table entries, and switch to 1570 // the appropriate section. 1571 const Function &F = MF->getFunction(); 1572 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1573 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1574 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1575 F); 1576 if (JTInDiffSection) { 1577 // Drop it in the readonly section. 1578 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1579 OutStreamer->SwitchSection(ReadOnlySection); 1580 } 1581 1582 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1583 1584 // Jump tables in code sections are marked with a data_region directive 1585 // where that's supported. 1586 if (!JTInDiffSection) 1587 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1588 1589 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1590 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1591 1592 // If this jump table was deleted, ignore it. 1593 if (JTBBs.empty()) continue; 1594 1595 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1596 /// emit a .set directive for each unique entry. 1597 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1598 MAI->doesSetDirectiveSuppressReloc()) { 1599 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1600 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1601 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1602 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1603 const MachineBasicBlock *MBB = JTBBs[ii]; 1604 if (!EmittedSets.insert(MBB).second) 1605 continue; 1606 1607 // .set LJTSet, LBB32-base 1608 const MCExpr *LHS = 1609 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1610 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1611 MCBinaryExpr::createSub(LHS, Base, 1612 OutContext)); 1613 } 1614 } 1615 1616 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1617 // before each jump table. The first label is never referenced, but tells 1618 // the assembler and linker the extents of the jump table object. The 1619 // second label is actually referenced by the code. 1620 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1621 // FIXME: This doesn't have to have any specific name, just any randomly 1622 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1623 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1624 1625 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1626 1627 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1628 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1629 } 1630 if (!JTInDiffSection) 1631 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1632 } 1633 1634 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1635 /// current stream. 1636 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1637 const MachineBasicBlock *MBB, 1638 unsigned UID) const { 1639 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1640 const MCExpr *Value = nullptr; 1641 switch (MJTI->getEntryKind()) { 1642 case MachineJumpTableInfo::EK_Inline: 1643 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1644 case MachineJumpTableInfo::EK_Custom32: 1645 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1646 MJTI, MBB, UID, OutContext); 1647 break; 1648 case MachineJumpTableInfo::EK_BlockAddress: 1649 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1650 // .word LBB123 1651 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1652 break; 1653 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1654 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1655 // with a relocation as gp-relative, e.g.: 1656 // .gprel32 LBB123 1657 MCSymbol *MBBSym = MBB->getSymbol(); 1658 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1659 return; 1660 } 1661 1662 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1663 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1664 // with a relocation as gp-relative, e.g.: 1665 // .gpdword LBB123 1666 MCSymbol *MBBSym = MBB->getSymbol(); 1667 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1668 return; 1669 } 1670 1671 case MachineJumpTableInfo::EK_LabelDifference32: { 1672 // Each entry is the address of the block minus the address of the jump 1673 // table. This is used for PIC jump tables where gprel32 is not supported. 1674 // e.g.: 1675 // .word LBB123 - LJTI1_2 1676 // If the .set directive avoids relocations, this is emitted as: 1677 // .set L4_5_set_123, LBB123 - LJTI1_2 1678 // .word L4_5_set_123 1679 if (MAI->doesSetDirectiveSuppressReloc()) { 1680 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1681 OutContext); 1682 break; 1683 } 1684 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1685 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1686 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1687 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1688 break; 1689 } 1690 } 1691 1692 assert(Value && "Unknown entry kind!"); 1693 1694 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1695 OutStreamer->EmitValue(Value, EntrySize); 1696 } 1697 1698 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1699 /// special global used by LLVM. If so, emit it and return true, otherwise 1700 /// do nothing and return false. 1701 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1702 if (GV->getName() == "llvm.used") { 1703 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1704 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1705 return true; 1706 } 1707 1708 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1709 if (GV->getSection() == "llvm.metadata" || 1710 GV->hasAvailableExternallyLinkage()) 1711 return true; 1712 1713 if (!GV->hasAppendingLinkage()) return false; 1714 1715 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1716 1717 if (GV->getName() == "llvm.global_ctors") { 1718 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1719 /* isCtor */ true); 1720 1721 return true; 1722 } 1723 1724 if (GV->getName() == "llvm.global_dtors") { 1725 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1726 /* isCtor */ false); 1727 1728 return true; 1729 } 1730 1731 report_fatal_error("unknown special variable"); 1732 } 1733 1734 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1735 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1736 /// is true, as being used with this directive. 1737 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1738 // Should be an array of 'i8*'. 1739 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1740 const GlobalValue *GV = 1741 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1742 if (GV) 1743 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1744 } 1745 } 1746 1747 namespace { 1748 1749 struct Structor { 1750 int Priority = 0; 1751 Constant *Func = nullptr; 1752 GlobalValue *ComdatKey = nullptr; 1753 1754 Structor() = default; 1755 }; 1756 1757 } // end anonymous namespace 1758 1759 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1760 /// priority. 1761 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1762 bool isCtor) { 1763 // Should be an array of '{ int, void ()* }' structs. The first value is the 1764 // init priority. 1765 if (!isa<ConstantArray>(List)) return; 1766 1767 // Sanity check the structors list. 1768 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1769 if (!InitList) return; // Not an array! 1770 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1771 // FIXME: Only allow the 3-field form in LLVM 4.0. 1772 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1773 return; // Not an array of two or three elements! 1774 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1775 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1776 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1777 return; // Not (int, ptr, ptr). 1778 1779 // Gather the structors in a form that's convenient for sorting by priority. 1780 SmallVector<Structor, 8> Structors; 1781 for (Value *O : InitList->operands()) { 1782 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1783 if (!CS) continue; // Malformed. 1784 if (CS->getOperand(1)->isNullValue()) 1785 break; // Found a null terminator, skip the rest. 1786 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1787 if (!Priority) continue; // Malformed. 1788 Structors.push_back(Structor()); 1789 Structor &S = Structors.back(); 1790 S.Priority = Priority->getLimitedValue(65535); 1791 S.Func = CS->getOperand(1); 1792 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1793 S.ComdatKey = 1794 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1795 } 1796 1797 // Emit the function pointers in the target-specific order 1798 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1799 std::stable_sort(Structors.begin(), Structors.end(), 1800 [](const Structor &L, 1801 const Structor &R) { return L.Priority < R.Priority; }); 1802 for (Structor &S : Structors) { 1803 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1804 const MCSymbol *KeySym = nullptr; 1805 if (GlobalValue *GV = S.ComdatKey) { 1806 if (GV->isDeclarationForLinker()) 1807 // If the associated variable is not defined in this module 1808 // (it might be available_externally, or have been an 1809 // available_externally definition that was dropped by the 1810 // EliminateAvailableExternally pass), some other TU 1811 // will provide its dynamic initializer. 1812 continue; 1813 1814 KeySym = getSymbol(GV); 1815 } 1816 MCSection *OutputSection = 1817 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1818 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1819 OutStreamer->SwitchSection(OutputSection); 1820 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1821 EmitAlignment(Align); 1822 EmitXXStructor(DL, S.Func); 1823 } 1824 } 1825 1826 void AsmPrinter::EmitModuleIdents(Module &M) { 1827 if (!MAI->hasIdentDirective()) 1828 return; 1829 1830 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1831 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1832 const MDNode *N = NMD->getOperand(i); 1833 assert(N->getNumOperands() == 1 && 1834 "llvm.ident metadata entry can have only one operand"); 1835 const MDString *S = cast<MDString>(N->getOperand(0)); 1836 OutStreamer->EmitIdent(S->getString()); 1837 } 1838 } 1839 } 1840 1841 //===--------------------------------------------------------------------===// 1842 // Emission and print routines 1843 // 1844 1845 /// EmitInt8 - Emit a byte directive and value. 1846 /// 1847 void AsmPrinter::EmitInt8(int Value) const { 1848 OutStreamer->EmitIntValue(Value, 1); 1849 } 1850 1851 /// EmitInt16 - Emit a short directive and value. 1852 void AsmPrinter::EmitInt16(int Value) const { 1853 OutStreamer->EmitIntValue(Value, 2); 1854 } 1855 1856 /// EmitInt32 - Emit a long directive and value. 1857 void AsmPrinter::EmitInt32(int Value) const { 1858 OutStreamer->EmitIntValue(Value, 4); 1859 } 1860 1861 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1862 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1863 /// .set if it avoids relocations. 1864 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1865 unsigned Size) const { 1866 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1867 } 1868 1869 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1870 /// where the size in bytes of the directive is specified by Size and Label 1871 /// specifies the label. This implicitly uses .set if it is available. 1872 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1873 unsigned Size, 1874 bool IsSectionRelative) const { 1875 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1876 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1877 if (Size > 4) 1878 OutStreamer->EmitZeros(Size - 4); 1879 return; 1880 } 1881 1882 // Emit Label+Offset (or just Label if Offset is zero) 1883 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1884 if (Offset) 1885 Expr = MCBinaryExpr::createAdd( 1886 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1887 1888 OutStreamer->EmitValue(Expr, Size); 1889 } 1890 1891 //===----------------------------------------------------------------------===// 1892 1893 // EmitAlignment - Emit an alignment directive to the specified power of 1894 // two boundary. For example, if you pass in 3 here, you will get an 8 1895 // byte alignment. If a global value is specified, and if that global has 1896 // an explicit alignment requested, it will override the alignment request 1897 // if required for correctness. 1898 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1899 if (GV) 1900 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1901 1902 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1903 1904 assert(NumBits < 1905 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1906 "undefined behavior"); 1907 if (getCurrentSection()->getKind().isText()) 1908 OutStreamer->EmitCodeAlignment(1u << NumBits); 1909 else 1910 OutStreamer->EmitValueToAlignment(1u << NumBits); 1911 } 1912 1913 //===----------------------------------------------------------------------===// 1914 // Constant emission. 1915 //===----------------------------------------------------------------------===// 1916 1917 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1918 MCContext &Ctx = OutContext; 1919 1920 if (CV->isNullValue() || isa<UndefValue>(CV)) 1921 return MCConstantExpr::create(0, Ctx); 1922 1923 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1924 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1925 1926 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1927 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1928 1929 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1930 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1931 1932 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1933 if (!CE) { 1934 llvm_unreachable("Unknown constant value to lower!"); 1935 } 1936 1937 switch (CE->getOpcode()) { 1938 default: 1939 // If the code isn't optimized, there may be outstanding folding 1940 // opportunities. Attempt to fold the expression using DataLayout as a 1941 // last resort before giving up. 1942 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1943 if (C != CE) 1944 return lowerConstant(C); 1945 1946 // Otherwise report the problem to the user. 1947 { 1948 std::string S; 1949 raw_string_ostream OS(S); 1950 OS << "Unsupported expression in static initializer: "; 1951 CE->printAsOperand(OS, /*PrintType=*/false, 1952 !MF ? nullptr : MF->getFunction().getParent()); 1953 report_fatal_error(OS.str()); 1954 } 1955 case Instruction::GetElementPtr: { 1956 // Generate a symbolic expression for the byte address 1957 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1958 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1959 1960 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1961 if (!OffsetAI) 1962 return Base; 1963 1964 int64_t Offset = OffsetAI.getSExtValue(); 1965 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1966 Ctx); 1967 } 1968 1969 case Instruction::Trunc: 1970 // We emit the value and depend on the assembler to truncate the generated 1971 // expression properly. This is important for differences between 1972 // blockaddress labels. Since the two labels are in the same function, it 1973 // is reasonable to treat their delta as a 32-bit value. 1974 LLVM_FALLTHROUGH; 1975 case Instruction::BitCast: 1976 return lowerConstant(CE->getOperand(0)); 1977 1978 case Instruction::IntToPtr: { 1979 const DataLayout &DL = getDataLayout(); 1980 1981 // Handle casts to pointers by changing them into casts to the appropriate 1982 // integer type. This promotes constant folding and simplifies this code. 1983 Constant *Op = CE->getOperand(0); 1984 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1985 false/*ZExt*/); 1986 return lowerConstant(Op); 1987 } 1988 1989 case Instruction::PtrToInt: { 1990 const DataLayout &DL = getDataLayout(); 1991 1992 // Support only foldable casts to/from pointers that can be eliminated by 1993 // changing the pointer to the appropriately sized integer type. 1994 Constant *Op = CE->getOperand(0); 1995 Type *Ty = CE->getType(); 1996 1997 const MCExpr *OpExpr = lowerConstant(Op); 1998 1999 // We can emit the pointer value into this slot if the slot is an 2000 // integer slot equal to the size of the pointer. 2001 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2002 return OpExpr; 2003 2004 // Otherwise the pointer is smaller than the resultant integer, mask off 2005 // the high bits so we are sure to get a proper truncation if the input is 2006 // a constant expr. 2007 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2008 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2009 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2010 } 2011 2012 case Instruction::Sub: { 2013 GlobalValue *LHSGV; 2014 APInt LHSOffset; 2015 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2016 getDataLayout())) { 2017 GlobalValue *RHSGV; 2018 APInt RHSOffset; 2019 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2020 getDataLayout())) { 2021 const MCExpr *RelocExpr = 2022 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2023 if (!RelocExpr) 2024 RelocExpr = MCBinaryExpr::createSub( 2025 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2026 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2027 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2028 if (Addend != 0) 2029 RelocExpr = MCBinaryExpr::createAdd( 2030 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2031 return RelocExpr; 2032 } 2033 } 2034 } 2035 // else fallthrough 2036 LLVM_FALLTHROUGH; 2037 2038 // The MC library also has a right-shift operator, but it isn't consistently 2039 // signed or unsigned between different targets. 2040 case Instruction::Add: 2041 case Instruction::Mul: 2042 case Instruction::SDiv: 2043 case Instruction::SRem: 2044 case Instruction::Shl: 2045 case Instruction::And: 2046 case Instruction::Or: 2047 case Instruction::Xor: { 2048 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2049 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2050 switch (CE->getOpcode()) { 2051 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2052 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2053 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2054 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2055 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2056 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2057 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2058 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2059 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2060 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2061 } 2062 } 2063 } 2064 } 2065 2066 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2067 AsmPrinter &AP, 2068 const Constant *BaseCV = nullptr, 2069 uint64_t Offset = 0); 2070 2071 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2072 2073 /// isRepeatedByteSequence - Determine whether the given value is 2074 /// composed of a repeated sequence of identical bytes and return the 2075 /// byte value. If it is not a repeated sequence, return -1. 2076 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2077 StringRef Data = V->getRawDataValues(); 2078 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2079 char C = Data[0]; 2080 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2081 if (Data[i] != C) return -1; 2082 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2083 } 2084 2085 /// isRepeatedByteSequence - Determine whether the given value is 2086 /// composed of a repeated sequence of identical bytes and return the 2087 /// byte value. If it is not a repeated sequence, return -1. 2088 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2089 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2090 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2091 assert(Size % 8 == 0); 2092 2093 // Extend the element to take zero padding into account. 2094 APInt Value = CI->getValue().zextOrSelf(Size); 2095 if (!Value.isSplat(8)) 2096 return -1; 2097 2098 return Value.zextOrTrunc(8).getZExtValue(); 2099 } 2100 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2101 // Make sure all array elements are sequences of the same repeated 2102 // byte. 2103 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2104 Constant *Op0 = CA->getOperand(0); 2105 int Byte = isRepeatedByteSequence(Op0, DL); 2106 if (Byte == -1) 2107 return -1; 2108 2109 // All array elements must be equal. 2110 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2111 if (CA->getOperand(i) != Op0) 2112 return -1; 2113 return Byte; 2114 } 2115 2116 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2117 return isRepeatedByteSequence(CDS); 2118 2119 return -1; 2120 } 2121 2122 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2123 const ConstantDataSequential *CDS, 2124 AsmPrinter &AP) { 2125 // See if we can aggregate this into a .fill, if so, emit it as such. 2126 int Value = isRepeatedByteSequence(CDS, DL); 2127 if (Value != -1) { 2128 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2129 // Don't emit a 1-byte object as a .fill. 2130 if (Bytes > 1) 2131 return AP.OutStreamer->emitFill(Bytes, Value); 2132 } 2133 2134 // If this can be emitted with .ascii/.asciz, emit it as such. 2135 if (CDS->isString()) 2136 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2137 2138 // Otherwise, emit the values in successive locations. 2139 unsigned ElementByteSize = CDS->getElementByteSize(); 2140 if (isa<IntegerType>(CDS->getElementType())) { 2141 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2142 if (AP.isVerbose()) 2143 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2144 CDS->getElementAsInteger(i)); 2145 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2146 ElementByteSize); 2147 } 2148 } else { 2149 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2150 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2151 } 2152 2153 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2154 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2155 CDS->getNumElements(); 2156 if (unsigned Padding = Size - EmittedSize) 2157 AP.OutStreamer->EmitZeros(Padding); 2158 } 2159 2160 static void emitGlobalConstantArray(const DataLayout &DL, 2161 const ConstantArray *CA, AsmPrinter &AP, 2162 const Constant *BaseCV, uint64_t Offset) { 2163 // See if we can aggregate some values. Make sure it can be 2164 // represented as a series of bytes of the constant value. 2165 int Value = isRepeatedByteSequence(CA, DL); 2166 2167 if (Value != -1) { 2168 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2169 AP.OutStreamer->emitFill(Bytes, Value); 2170 } 2171 else { 2172 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2173 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2174 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2175 } 2176 } 2177 } 2178 2179 static void emitGlobalConstantVector(const DataLayout &DL, 2180 const ConstantVector *CV, AsmPrinter &AP) { 2181 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2182 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2183 2184 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2185 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2186 CV->getType()->getNumElements(); 2187 if (unsigned Padding = Size - EmittedSize) 2188 AP.OutStreamer->EmitZeros(Padding); 2189 } 2190 2191 static void emitGlobalConstantStruct(const DataLayout &DL, 2192 const ConstantStruct *CS, AsmPrinter &AP, 2193 const Constant *BaseCV, uint64_t Offset) { 2194 // Print the fields in successive locations. Pad to align if needed! 2195 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2196 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2197 uint64_t SizeSoFar = 0; 2198 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2199 const Constant *Field = CS->getOperand(i); 2200 2201 // Print the actual field value. 2202 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2203 2204 // Check if padding is needed and insert one or more 0s. 2205 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2206 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2207 - Layout->getElementOffset(i)) - FieldSize; 2208 SizeSoFar += FieldSize + PadSize; 2209 2210 // Insert padding - this may include padding to increase the size of the 2211 // current field up to the ABI size (if the struct is not packed) as well 2212 // as padding to ensure that the next field starts at the right offset. 2213 AP.OutStreamer->EmitZeros(PadSize); 2214 } 2215 assert(SizeSoFar == Layout->getSizeInBytes() && 2216 "Layout of constant struct may be incorrect!"); 2217 } 2218 2219 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2220 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2221 2222 // First print a comment with what we think the original floating-point value 2223 // should have been. 2224 if (AP.isVerbose()) { 2225 SmallString<8> StrVal; 2226 CFP->getValueAPF().toString(StrVal); 2227 2228 if (CFP->getType()) 2229 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2230 else 2231 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2232 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2233 } 2234 2235 // Now iterate through the APInt chunks, emitting them in endian-correct 2236 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2237 // floats). 2238 unsigned NumBytes = API.getBitWidth() / 8; 2239 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2240 const uint64_t *p = API.getRawData(); 2241 2242 // PPC's long double has odd notions of endianness compared to how LLVM 2243 // handles it: p[0] goes first for *big* endian on PPC. 2244 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2245 int Chunk = API.getNumWords() - 1; 2246 2247 if (TrailingBytes) 2248 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2249 2250 for (; Chunk >= 0; --Chunk) 2251 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2252 } else { 2253 unsigned Chunk; 2254 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2255 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2256 2257 if (TrailingBytes) 2258 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2259 } 2260 2261 // Emit the tail padding for the long double. 2262 const DataLayout &DL = AP.getDataLayout(); 2263 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2264 DL.getTypeStoreSize(CFP->getType())); 2265 } 2266 2267 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2268 const DataLayout &DL = AP.getDataLayout(); 2269 unsigned BitWidth = CI->getBitWidth(); 2270 2271 // Copy the value as we may massage the layout for constants whose bit width 2272 // is not a multiple of 64-bits. 2273 APInt Realigned(CI->getValue()); 2274 uint64_t ExtraBits = 0; 2275 unsigned ExtraBitsSize = BitWidth & 63; 2276 2277 if (ExtraBitsSize) { 2278 // The bit width of the data is not a multiple of 64-bits. 2279 // The extra bits are expected to be at the end of the chunk of the memory. 2280 // Little endian: 2281 // * Nothing to be done, just record the extra bits to emit. 2282 // Big endian: 2283 // * Record the extra bits to emit. 2284 // * Realign the raw data to emit the chunks of 64-bits. 2285 if (DL.isBigEndian()) { 2286 // Basically the structure of the raw data is a chunk of 64-bits cells: 2287 // 0 1 BitWidth / 64 2288 // [chunk1][chunk2] ... [chunkN]. 2289 // The most significant chunk is chunkN and it should be emitted first. 2290 // However, due to the alignment issue chunkN contains useless bits. 2291 // Realign the chunks so that they contain only useless information: 2292 // ExtraBits 0 1 (BitWidth / 64) - 1 2293 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2294 ExtraBits = Realigned.getRawData()[0] & 2295 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2296 Realigned.lshrInPlace(ExtraBitsSize); 2297 } else 2298 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2299 } 2300 2301 // We don't expect assemblers to support integer data directives 2302 // for more than 64 bits, so we emit the data in at most 64-bit 2303 // quantities at a time. 2304 const uint64_t *RawData = Realigned.getRawData(); 2305 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2306 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2307 AP.OutStreamer->EmitIntValue(Val, 8); 2308 } 2309 2310 if (ExtraBitsSize) { 2311 // Emit the extra bits after the 64-bits chunks. 2312 2313 // Emit a directive that fills the expected size. 2314 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2315 Size -= (BitWidth / 64) * 8; 2316 assert(Size && Size * 8 >= ExtraBitsSize && 2317 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2318 == ExtraBits && "Directive too small for extra bits."); 2319 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2320 } 2321 } 2322 2323 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2324 /// equivalent global, by a target specific GOT pc relative access to the 2325 /// final symbol. 2326 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2327 const Constant *BaseCst, 2328 uint64_t Offset) { 2329 // The global @foo below illustrates a global that uses a got equivalent. 2330 // 2331 // @bar = global i32 42 2332 // @gotequiv = private unnamed_addr constant i32* @bar 2333 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2334 // i64 ptrtoint (i32* @foo to i64)) 2335 // to i32) 2336 // 2337 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2338 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2339 // form: 2340 // 2341 // foo = cstexpr, where 2342 // cstexpr := <gotequiv> - "." + <cst> 2343 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2344 // 2345 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2346 // 2347 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2348 // gotpcrelcst := <offset from @foo base> + <cst> 2349 MCValue MV; 2350 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2351 return; 2352 const MCSymbolRefExpr *SymA = MV.getSymA(); 2353 if (!SymA) 2354 return; 2355 2356 // Check that GOT equivalent symbol is cached. 2357 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2358 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2359 return; 2360 2361 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2362 if (!BaseGV) 2363 return; 2364 2365 // Check for a valid base symbol 2366 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2367 const MCSymbolRefExpr *SymB = MV.getSymB(); 2368 2369 if (!SymB || BaseSym != &SymB->getSymbol()) 2370 return; 2371 2372 // Make sure to match: 2373 // 2374 // gotpcrelcst := <offset from @foo base> + <cst> 2375 // 2376 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2377 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2378 // if the target knows how to encode it. 2379 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2380 if (GOTPCRelCst < 0) 2381 return; 2382 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2383 return; 2384 2385 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2386 // 2387 // bar: 2388 // .long 42 2389 // gotequiv: 2390 // .quad bar 2391 // foo: 2392 // .long gotequiv - "." + <cst> 2393 // 2394 // is replaced by the target specific equivalent to: 2395 // 2396 // bar: 2397 // .long 42 2398 // foo: 2399 // .long bar@GOTPCREL+<gotpcrelcst> 2400 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2401 const GlobalVariable *GV = Result.first; 2402 int NumUses = (int)Result.second; 2403 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2404 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2405 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2406 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2407 2408 // Update GOT equivalent usage information 2409 --NumUses; 2410 if (NumUses >= 0) 2411 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2412 } 2413 2414 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2415 AsmPrinter &AP, const Constant *BaseCV, 2416 uint64_t Offset) { 2417 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2418 2419 // Globals with sub-elements such as combinations of arrays and structs 2420 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2421 // constant symbol base and the current position with BaseCV and Offset. 2422 if (!BaseCV && CV->hasOneUse()) 2423 BaseCV = dyn_cast<Constant>(CV->user_back()); 2424 2425 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2426 return AP.OutStreamer->EmitZeros(Size); 2427 2428 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2429 switch (Size) { 2430 case 1: 2431 case 2: 2432 case 4: 2433 case 8: 2434 if (AP.isVerbose()) 2435 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2436 CI->getZExtValue()); 2437 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2438 return; 2439 default: 2440 emitGlobalConstantLargeInt(CI, AP); 2441 return; 2442 } 2443 } 2444 2445 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2446 return emitGlobalConstantFP(CFP, AP); 2447 2448 if (isa<ConstantPointerNull>(CV)) { 2449 AP.OutStreamer->EmitIntValue(0, Size); 2450 return; 2451 } 2452 2453 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2454 return emitGlobalConstantDataSequential(DL, CDS, AP); 2455 2456 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2457 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2458 2459 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2460 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2461 2462 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2463 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2464 // vectors). 2465 if (CE->getOpcode() == Instruction::BitCast) 2466 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2467 2468 if (Size > 8) { 2469 // If the constant expression's size is greater than 64-bits, then we have 2470 // to emit the value in chunks. Try to constant fold the value and emit it 2471 // that way. 2472 Constant *New = ConstantFoldConstant(CE, DL); 2473 if (New && New != CE) 2474 return emitGlobalConstantImpl(DL, New, AP); 2475 } 2476 } 2477 2478 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2479 return emitGlobalConstantVector(DL, V, AP); 2480 2481 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2482 // thread the streamer with EmitValue. 2483 const MCExpr *ME = AP.lowerConstant(CV); 2484 2485 // Since lowerConstant already folded and got rid of all IR pointer and 2486 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2487 // directly. 2488 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2489 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2490 2491 AP.OutStreamer->EmitValue(ME, Size); 2492 } 2493 2494 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2495 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2496 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2497 if (Size) 2498 emitGlobalConstantImpl(DL, CV, *this); 2499 else if (MAI->hasSubsectionsViaSymbols()) { 2500 // If the global has zero size, emit a single byte so that two labels don't 2501 // look like they are at the same location. 2502 OutStreamer->EmitIntValue(0, 1); 2503 } 2504 } 2505 2506 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2507 // Target doesn't support this yet! 2508 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2509 } 2510 2511 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2512 if (Offset > 0) 2513 OS << '+' << Offset; 2514 else if (Offset < 0) 2515 OS << Offset; 2516 } 2517 2518 //===----------------------------------------------------------------------===// 2519 // Symbol Lowering Routines. 2520 //===----------------------------------------------------------------------===// 2521 2522 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2523 return OutContext.createTempSymbol(Name, true); 2524 } 2525 2526 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2527 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2528 } 2529 2530 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2531 return MMI->getAddrLabelSymbol(BB); 2532 } 2533 2534 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2535 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2536 const DataLayout &DL = getDataLayout(); 2537 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2538 "CPI" + Twine(getFunctionNumber()) + "_" + 2539 Twine(CPID)); 2540 } 2541 2542 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2543 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2544 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2545 } 2546 2547 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2548 /// FIXME: privatize to AsmPrinter. 2549 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2550 const DataLayout &DL = getDataLayout(); 2551 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2552 Twine(getFunctionNumber()) + "_" + 2553 Twine(UID) + "_set_" + Twine(MBBID)); 2554 } 2555 2556 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2557 StringRef Suffix) const { 2558 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2559 } 2560 2561 /// Return the MCSymbol for the specified ExternalSymbol. 2562 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2563 SmallString<60> NameStr; 2564 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2565 return OutContext.getOrCreateSymbol(NameStr); 2566 } 2567 2568 /// PrintParentLoopComment - Print comments about parent loops of this one. 2569 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2570 unsigned FunctionNumber) { 2571 if (!Loop) return; 2572 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2573 OS.indent(Loop->getLoopDepth()*2) 2574 << "Parent Loop BB" << FunctionNumber << "_" 2575 << Loop->getHeader()->getNumber() 2576 << " Depth=" << Loop->getLoopDepth() << '\n'; 2577 } 2578 2579 /// PrintChildLoopComment - Print comments about child loops within 2580 /// the loop for this basic block, with nesting. 2581 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2582 unsigned FunctionNumber) { 2583 // Add child loop information 2584 for (const MachineLoop *CL : *Loop) { 2585 OS.indent(CL->getLoopDepth()*2) 2586 << "Child Loop BB" << FunctionNumber << "_" 2587 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2588 << '\n'; 2589 PrintChildLoopComment(OS, CL, FunctionNumber); 2590 } 2591 } 2592 2593 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2594 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2595 const MachineLoopInfo *LI, 2596 const AsmPrinter &AP) { 2597 // Add loop depth information 2598 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2599 if (!Loop) return; 2600 2601 MachineBasicBlock *Header = Loop->getHeader(); 2602 assert(Header && "No header for loop"); 2603 2604 // If this block is not a loop header, just print out what is the loop header 2605 // and return. 2606 if (Header != &MBB) { 2607 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2608 Twine(AP.getFunctionNumber())+"_" + 2609 Twine(Loop->getHeader()->getNumber())+ 2610 " Depth="+Twine(Loop->getLoopDepth())); 2611 return; 2612 } 2613 2614 // Otherwise, it is a loop header. Print out information about child and 2615 // parent loops. 2616 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2617 2618 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2619 2620 OS << "=>"; 2621 OS.indent(Loop->getLoopDepth()*2-2); 2622 2623 OS << "This "; 2624 if (Loop->empty()) 2625 OS << "Inner "; 2626 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2627 2628 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2629 } 2630 2631 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2632 MCCodePaddingContext &Context) const { 2633 assert(MF != nullptr && "Machine function must be valid"); 2634 assert(LI != nullptr && "Loop info must be valid"); 2635 Context.IsPaddingActive = !MF->hasInlineAsm() && 2636 !MF->getFunction().optForSize() && 2637 TM.getOptLevel() != CodeGenOpt::None; 2638 const MachineLoop *CurrentLoop = LI->getLoopFor(&MBB); 2639 Context.IsBasicBlockInsideInnermostLoop = 2640 CurrentLoop != nullptr && CurrentLoop->getSubLoops().empty(); 2641 Context.IsBasicBlockReachableViaFallthrough = 2642 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2643 MBB.pred_end(); 2644 Context.IsBasicBlockReachableViaBranch = 2645 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2646 } 2647 2648 /// EmitBasicBlockStart - This method prints the label for the specified 2649 /// MachineBasicBlock, an alignment (if present) and a comment describing 2650 /// it if appropriate. 2651 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2652 // End the previous funclet and start a new one. 2653 if (MBB.isEHFuncletEntry()) { 2654 for (const HandlerInfo &HI : Handlers) { 2655 HI.Handler->endFunclet(); 2656 HI.Handler->beginFunclet(MBB); 2657 } 2658 } 2659 2660 // Emit an alignment directive for this block, if needed. 2661 if (unsigned Align = MBB.getAlignment()) 2662 EmitAlignment(Align); 2663 MCCodePaddingContext Context; 2664 setupCodePaddingContext(MBB, Context); 2665 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2666 2667 // If the block has its address taken, emit any labels that were used to 2668 // reference the block. It is possible that there is more than one label 2669 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2670 // the references were generated. 2671 if (MBB.hasAddressTaken()) { 2672 const BasicBlock *BB = MBB.getBasicBlock(); 2673 if (isVerbose()) 2674 OutStreamer->AddComment("Block address taken"); 2675 2676 // MBBs can have their address taken as part of CodeGen without having 2677 // their corresponding BB's address taken in IR 2678 if (BB->hasAddressTaken()) 2679 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2680 OutStreamer->EmitLabel(Sym); 2681 } 2682 2683 // Print some verbose block comments. 2684 if (isVerbose()) { 2685 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2686 if (BB->hasName()) { 2687 BB->printAsOperand(OutStreamer->GetCommentOS(), 2688 /*PrintType=*/false, BB->getModule()); 2689 OutStreamer->GetCommentOS() << '\n'; 2690 } 2691 } 2692 emitBasicBlockLoopComments(MBB, LI, *this); 2693 } 2694 2695 // Print the main label for the block. 2696 if (MBB.pred_empty() || 2697 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2698 if (isVerbose()) { 2699 // NOTE: Want this comment at start of line, don't emit with AddComment. 2700 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2701 false); 2702 } 2703 } else { 2704 OutStreamer->EmitLabel(MBB.getSymbol()); 2705 } 2706 } 2707 2708 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2709 MCCodePaddingContext Context; 2710 setupCodePaddingContext(MBB, Context); 2711 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2712 } 2713 2714 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2715 bool IsDefinition) const { 2716 MCSymbolAttr Attr = MCSA_Invalid; 2717 2718 switch (Visibility) { 2719 default: break; 2720 case GlobalValue::HiddenVisibility: 2721 if (IsDefinition) 2722 Attr = MAI->getHiddenVisibilityAttr(); 2723 else 2724 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2725 break; 2726 case GlobalValue::ProtectedVisibility: 2727 Attr = MAI->getProtectedVisibilityAttr(); 2728 break; 2729 } 2730 2731 if (Attr != MCSA_Invalid) 2732 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2733 } 2734 2735 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2736 /// exactly one predecessor and the control transfer mechanism between 2737 /// the predecessor and this block is a fall-through. 2738 bool AsmPrinter:: 2739 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2740 // If this is a landing pad, it isn't a fall through. If it has no preds, 2741 // then nothing falls through to it. 2742 if (MBB->isEHPad() || MBB->pred_empty()) 2743 return false; 2744 2745 // If there isn't exactly one predecessor, it can't be a fall through. 2746 if (MBB->pred_size() > 1) 2747 return false; 2748 2749 // The predecessor has to be immediately before this block. 2750 MachineBasicBlock *Pred = *MBB->pred_begin(); 2751 if (!Pred->isLayoutSuccessor(MBB)) 2752 return false; 2753 2754 // If the block is completely empty, then it definitely does fall through. 2755 if (Pred->empty()) 2756 return true; 2757 2758 // Check the terminators in the previous blocks 2759 for (const auto &MI : Pred->terminators()) { 2760 // If it is not a simple branch, we are in a table somewhere. 2761 if (!MI.isBranch() || MI.isIndirectBranch()) 2762 return false; 2763 2764 // If we are the operands of one of the branches, this is not a fall 2765 // through. Note that targets with delay slots will usually bundle 2766 // terminators with the delay slot instruction. 2767 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2768 if (OP->isJTI()) 2769 return false; 2770 if (OP->isMBB() && OP->getMBB() == MBB) 2771 return false; 2772 } 2773 } 2774 2775 return true; 2776 } 2777 2778 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2779 if (!S.usesMetadata()) 2780 return nullptr; 2781 2782 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2783 " stackmap formats, please see the documentation for a description of" 2784 " the default format. If you really need a custom serialized format," 2785 " please file a bug"); 2786 2787 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2788 gcp_map_type::iterator GCPI = GCMap.find(&S); 2789 if (GCPI != GCMap.end()) 2790 return GCPI->second.get(); 2791 2792 auto Name = S.getName(); 2793 2794 for (GCMetadataPrinterRegistry::iterator 2795 I = GCMetadataPrinterRegistry::begin(), 2796 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2797 if (Name == I->getName()) { 2798 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2799 GMP->S = &S; 2800 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2801 return IterBool.first->second.get(); 2802 } 2803 2804 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2805 } 2806 2807 /// Pin vtable to this file. 2808 AsmPrinterHandler::~AsmPrinterHandler() = default; 2809 2810 void AsmPrinterHandler::markFunctionEnd() {} 2811 2812 // In the binary's "xray_instr_map" section, an array of these function entries 2813 // describes each instrumentation point. When XRay patches your code, the index 2814 // into this table will be given to your handler as a patch point identifier. 2815 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2816 const MCSymbol *CurrentFnSym) const { 2817 Out->EmitSymbolValue(Sled, Bytes); 2818 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2819 auto Kind8 = static_cast<uint8_t>(Kind); 2820 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2821 Out->EmitBinaryData( 2822 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2823 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 2824 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 2825 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 2826 Out->EmitZeros(Padding); 2827 } 2828 2829 void AsmPrinter::emitXRayTable() { 2830 if (Sleds.empty()) 2831 return; 2832 2833 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2834 const Function &F = MF->getFunction(); 2835 MCSection *InstMap = nullptr; 2836 MCSection *FnSledIndex = nullptr; 2837 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2838 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 2839 assert(Associated != nullptr); 2840 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 2841 std::string GroupName; 2842 if (F.hasComdat()) { 2843 Flags |= ELF::SHF_GROUP; 2844 GroupName = F.getComdat()->getName(); 2845 } 2846 2847 auto UniqueID = ++XRayFnUniqueID; 2848 InstMap = 2849 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 2850 GroupName, UniqueID, Associated); 2851 FnSledIndex = 2852 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 2853 GroupName, UniqueID, Associated); 2854 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2855 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2856 SectionKind::getReadOnlyWithRel()); 2857 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 2858 SectionKind::getReadOnlyWithRel()); 2859 } else { 2860 llvm_unreachable("Unsupported target"); 2861 } 2862 2863 auto WordSizeBytes = MAI->getCodePointerSize(); 2864 2865 // Now we switch to the instrumentation map section. Because this is done 2866 // per-function, we are able to create an index entry that will represent the 2867 // range of sleds associated with a function. 2868 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 2869 OutStreamer->SwitchSection(InstMap); 2870 OutStreamer->EmitLabel(SledsStart); 2871 for (const auto &Sled : Sleds) 2872 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2873 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 2874 OutStreamer->EmitLabel(SledsEnd); 2875 2876 // We then emit a single entry in the index per function. We use the symbols 2877 // that bound the instrumentation map as the range for a specific function. 2878 // Each entry here will be 2 * word size aligned, as we're writing down two 2879 // pointers. This should work for both 32-bit and 64-bit platforms. 2880 OutStreamer->SwitchSection(FnSledIndex); 2881 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 2882 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 2883 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 2884 OutStreamer->SwitchSection(PrevSection); 2885 Sleds.clear(); 2886 } 2887 2888 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2889 SledKind Kind, uint8_t Version) { 2890 const Function &F = MI.getMF()->getFunction(); 2891 auto Attr = F.getFnAttribute("function-instrument"); 2892 bool LogArgs = F.hasFnAttribute("xray-log-args"); 2893 bool AlwaysInstrument = 2894 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2895 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2896 Kind = SledKind::LOG_ARGS_ENTER; 2897 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 2898 AlwaysInstrument, &F, Version}); 2899 } 2900 2901 uint16_t AsmPrinter::getDwarfVersion() const { 2902 return OutStreamer->getContext().getDwarfVersion(); 2903 } 2904 2905 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2906 OutStreamer->getContext().setDwarfVersion(Version); 2907 } 2908