1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "CodeViewDebug.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/BinaryFormat/COFF.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/BinaryFormat/ELF.h" 38 #include "llvm/CodeGen/AsmPrinterHandler.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/GCStrategy.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConstantPool.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineJumpTableInfo.h" 51 #include "llvm/CodeGen/MachineLoopInfo.h" 52 #include "llvm/CodeGen/MachineMemOperand.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 55 #include "llvm/CodeGen/MachineOperand.h" 56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/Comdat.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DebugInfoMetadata.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GlobalAlias.h" 73 #include "llvm/IR/GlobalIFunc.h" 74 #include "llvm/IR/GlobalIndirectSymbol.h" 75 #include "llvm/IR/GlobalObject.h" 76 #include "llvm/IR/GlobalValue.h" 77 #include "llvm/IR/GlobalVariable.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Mangler.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/Operator.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/MC/MCAsmInfo.h" 86 #include "llvm/MC/MCCodePadder.h" 87 #include "llvm/MC/MCContext.h" 88 #include "llvm/MC/MCDirectives.h" 89 #include "llvm/MC/MCDwarf.h" 90 #include "llvm/MC/MCExpr.h" 91 #include "llvm/MC/MCInst.h" 92 #include "llvm/MC/MCSection.h" 93 #include "llvm/MC/MCSectionCOFF.h" 94 #include "llvm/MC/MCSectionELF.h" 95 #include "llvm/MC/MCSectionMachO.h" 96 #include "llvm/MC/MCStreamer.h" 97 #include "llvm/MC/MCSubtargetInfo.h" 98 #include "llvm/MC/MCSymbol.h" 99 #include "llvm/MC/MCSymbolELF.h" 100 #include "llvm/MC/MCTargetOptions.h" 101 #include "llvm/MC/MCValue.h" 102 #include "llvm/MC/SectionKind.h" 103 #include "llvm/Pass.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CommandLine.h" 106 #include "llvm/Support/Compiler.h" 107 #include "llvm/Support/ErrorHandling.h" 108 #include "llvm/Support/Format.h" 109 #include "llvm/Support/MathExtras.h" 110 #include "llvm/Support/Path.h" 111 #include "llvm/Support/TargetRegistry.h" 112 #include "llvm/Support/Timer.h" 113 #include "llvm/Support/raw_ostream.h" 114 #include "llvm/Target/TargetLoweringObjectFile.h" 115 #include "llvm/Target/TargetMachine.h" 116 #include "llvm/Target/TargetOptions.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cinttypes> 120 #include <cstdint> 121 #include <iterator> 122 #include <limits> 123 #include <memory> 124 #include <string> 125 #include <utility> 126 #include <vector> 127 128 using namespace llvm; 129 130 #define DEBUG_TYPE "asm-printer" 131 132 static const char *const DWARFGroupName = "dwarf"; 133 static const char *const DWARFGroupDescription = "DWARF Emission"; 134 static const char *const DbgTimerName = "emit"; 135 static const char *const DbgTimerDescription = "Debug Info Emission"; 136 static const char *const EHTimerName = "write_exception"; 137 static const char *const EHTimerDescription = "DWARF Exception Writer"; 138 static const char *const CFGuardName = "Control Flow Guard"; 139 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 140 static const char *const CodeViewLineTablesGroupName = "linetables"; 141 static const char *const CodeViewLineTablesGroupDescription = 142 "CodeView Line Tables"; 143 144 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 145 146 static cl::opt<bool> 147 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 148 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 149 150 char AsmPrinter::ID = 0; 151 152 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 153 154 static gcp_map_type &getGCMap(void *&P) { 155 if (!P) 156 P = new gcp_map_type(); 157 return *(gcp_map_type*)P; 158 } 159 160 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 161 /// value in log2 form. This rounds up to the preferred alignment if possible 162 /// and legal. 163 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 164 unsigned InBits = 0) { 165 unsigned NumBits = 0; 166 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 167 NumBits = DL.getPreferredAlignmentLog(GVar); 168 169 // If InBits is specified, round it to it. 170 if (InBits > NumBits) 171 NumBits = InBits; 172 173 // If the GV has a specified alignment, take it into account. 174 if (GV->getAlignment() == 0) 175 return NumBits; 176 177 unsigned GVAlign = Log2_32(GV->getAlignment()); 178 179 // If the GVAlign is larger than NumBits, or if we are required to obey 180 // NumBits because the GV has an assigned section, obey it. 181 if (GVAlign > NumBits || GV->hasSection()) 182 NumBits = GVAlign; 183 return NumBits; 184 } 185 186 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 187 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 188 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 189 VerboseAsm = OutStreamer->isVerboseAsm(); 190 } 191 192 AsmPrinter::~AsmPrinter() { 193 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 194 195 if (GCMetadataPrinters) { 196 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 197 198 delete &GCMap; 199 GCMetadataPrinters = nullptr; 200 } 201 } 202 203 bool AsmPrinter::isPositionIndependent() const { 204 return TM.isPositionIndependent(); 205 } 206 207 /// getFunctionNumber - Return a unique ID for the current function. 208 unsigned AsmPrinter::getFunctionNumber() const { 209 return MF->getFunctionNumber(); 210 } 211 212 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 213 return *TM.getObjFileLowering(); 214 } 215 216 const DataLayout &AsmPrinter::getDataLayout() const { 217 return MMI->getModule()->getDataLayout(); 218 } 219 220 // Do not use the cached DataLayout because some client use it without a Module 221 // (dsymutil, llvm-dwarfdump). 222 unsigned AsmPrinter::getPointerSize() const { 223 return TM.getPointerSize(0); // FIXME: Default address space 224 } 225 226 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 227 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 228 return MF->getSubtarget<MCSubtargetInfo>(); 229 } 230 231 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 232 S.EmitInstruction(Inst, getSubtargetInfo()); 233 } 234 235 /// getCurrentSection() - Return the current section we are emitting to. 236 const MCSection *AsmPrinter::getCurrentSection() const { 237 return OutStreamer->getCurrentSectionOnly(); 238 } 239 240 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 241 AU.setPreservesAll(); 242 MachineFunctionPass::getAnalysisUsage(AU); 243 AU.addRequired<MachineModuleInfo>(); 244 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 245 AU.addRequired<GCModuleInfo>(); 246 } 247 248 bool AsmPrinter::doInitialization(Module &M) { 249 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 250 251 // Initialize TargetLoweringObjectFile. 252 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 253 .Initialize(OutContext, TM); 254 255 OutStreamer->InitSections(false); 256 257 // Emit the version-min deployment target directive if needed. 258 // 259 // FIXME: If we end up with a collection of these sorts of Darwin-specific 260 // or ELF-specific things, it may make sense to have a platform helper class 261 // that will work with the target helper class. For now keep it here, as the 262 // alternative is duplicated code in each of the target asm printers that 263 // use the directive, where it would need the same conditionalization 264 // anyway. 265 const Triple &Target = TM.getTargetTriple(); 266 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 267 268 // Allow the target to emit any magic that it wants at the start of the file. 269 EmitStartOfAsmFile(M); 270 271 // Very minimal debug info. It is ignored if we emit actual debug info. If we 272 // don't, this at least helps the user find where a global came from. 273 if (MAI->hasSingleParameterDotFile()) { 274 // .file "foo.c" 275 OutStreamer->EmitFileDirective( 276 llvm::sys::path::filename(M.getSourceFileName())); 277 } 278 279 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 280 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 281 for (auto &I : *MI) 282 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 283 MP->beginAssembly(M, *MI, *this); 284 285 // Emit module-level inline asm if it exists. 286 if (!M.getModuleInlineAsm().empty()) { 287 // We're at the module level. Construct MCSubtarget from the default CPU 288 // and target triple. 289 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 290 TM.getTargetTriple().str(), TM.getTargetCPU(), 291 TM.getTargetFeatureString())); 292 OutStreamer->AddComment("Start of file scope inline assembly"); 293 OutStreamer->AddBlankLine(); 294 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 295 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 296 OutStreamer->AddComment("End of file scope inline assembly"); 297 OutStreamer->AddBlankLine(); 298 } 299 300 if (MAI->doesSupportDebugInformation()) { 301 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 302 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 303 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 304 DbgTimerName, DbgTimerDescription, 305 CodeViewLineTablesGroupName, 306 CodeViewLineTablesGroupDescription)); 307 } 308 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 309 DD = new DwarfDebug(this, &M); 310 DD->beginModule(); 311 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 312 DWARFGroupName, DWARFGroupDescription)); 313 } 314 } 315 316 switch (MAI->getExceptionHandlingType()) { 317 case ExceptionHandling::SjLj: 318 case ExceptionHandling::DwarfCFI: 319 case ExceptionHandling::ARM: 320 isCFIMoveForDebugging = true; 321 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 322 break; 323 for (auto &F: M.getFunctionList()) { 324 // If the module contains any function with unwind data, 325 // .eh_frame has to be emitted. 326 // Ignore functions that won't get emitted. 327 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 328 isCFIMoveForDebugging = false; 329 break; 330 } 331 } 332 break; 333 default: 334 isCFIMoveForDebugging = false; 335 break; 336 } 337 338 EHStreamer *ES = nullptr; 339 switch (MAI->getExceptionHandlingType()) { 340 case ExceptionHandling::None: 341 break; 342 case ExceptionHandling::SjLj: 343 case ExceptionHandling::DwarfCFI: 344 ES = new DwarfCFIException(this); 345 break; 346 case ExceptionHandling::ARM: 347 ES = new ARMException(this); 348 break; 349 case ExceptionHandling::WinEH: 350 switch (MAI->getWinEHEncodingType()) { 351 default: llvm_unreachable("unsupported unwinding information encoding"); 352 case WinEH::EncodingType::Invalid: 353 break; 354 case WinEH::EncodingType::X86: 355 case WinEH::EncodingType::Itanium: 356 ES = new WinException(this); 357 break; 358 } 359 break; 360 case ExceptionHandling::Wasm: 361 ES = new WasmException(this); 362 break; 363 } 364 if (ES) 365 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 366 DWARFGroupName, DWARFGroupDescription)); 367 368 if (mdconst::extract_or_null<ConstantInt>( 369 MMI->getModule()->getModuleFlag("cfguardtable"))) 370 Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName, 371 CFGuardDescription, DWARFGroupName, 372 DWARFGroupDescription)); 373 374 return false; 375 } 376 377 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 378 if (!MAI.hasWeakDefCanBeHiddenDirective()) 379 return false; 380 381 return GV->canBeOmittedFromSymbolTable(); 382 } 383 384 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 385 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 386 switch (Linkage) { 387 case GlobalValue::CommonLinkage: 388 case GlobalValue::LinkOnceAnyLinkage: 389 case GlobalValue::LinkOnceODRLinkage: 390 case GlobalValue::WeakAnyLinkage: 391 case GlobalValue::WeakODRLinkage: 392 if (MAI->hasWeakDefDirective()) { 393 // .globl _foo 394 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 395 396 if (!canBeHidden(GV, *MAI)) 397 // .weak_definition _foo 398 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 399 else 400 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 401 } else if (MAI->hasLinkOnceDirective()) { 402 // .globl _foo 403 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 404 //NOTE: linkonce is handled by the section the symbol was assigned to. 405 } else { 406 // .weak _foo 407 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 408 } 409 return; 410 case GlobalValue::ExternalLinkage: 411 // If external, declare as a global symbol: .globl _foo 412 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 413 return; 414 case GlobalValue::PrivateLinkage: 415 case GlobalValue::InternalLinkage: 416 return; 417 case GlobalValue::AppendingLinkage: 418 case GlobalValue::AvailableExternallyLinkage: 419 case GlobalValue::ExternalWeakLinkage: 420 llvm_unreachable("Should never emit this"); 421 } 422 llvm_unreachable("Unknown linkage type!"); 423 } 424 425 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 426 const GlobalValue *GV) const { 427 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 428 } 429 430 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 431 return TM.getSymbol(GV); 432 } 433 434 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 435 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 436 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 437 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 438 "No emulated TLS variables in the common section"); 439 440 // Never emit TLS variable xyz in emulated TLS model. 441 // The initialization value is in __emutls_t.xyz instead of xyz. 442 if (IsEmuTLSVar) 443 return; 444 445 if (GV->hasInitializer()) { 446 // Check to see if this is a special global used by LLVM, if so, emit it. 447 if (EmitSpecialLLVMGlobal(GV)) 448 return; 449 450 // Skip the emission of global equivalents. The symbol can be emitted later 451 // on by emitGlobalGOTEquivs in case it turns out to be needed. 452 if (GlobalGOTEquivs.count(getSymbol(GV))) 453 return; 454 455 if (isVerbose()) { 456 // When printing the control variable __emutls_v.*, 457 // we don't need to print the original TLS variable name. 458 GV->printAsOperand(OutStreamer->GetCommentOS(), 459 /*PrintType=*/false, GV->getParent()); 460 OutStreamer->GetCommentOS() << '\n'; 461 } 462 } 463 464 MCSymbol *GVSym = getSymbol(GV); 465 MCSymbol *EmittedSym = GVSym; 466 467 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 468 // attributes. 469 // GV's or GVSym's attributes will be used for the EmittedSym. 470 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 471 472 if (!GV->hasInitializer()) // External globals require no extra code. 473 return; 474 475 GVSym->redefineIfPossible(); 476 if (GVSym->isDefined() || GVSym->isVariable()) 477 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 478 "' is already defined"); 479 480 if (MAI->hasDotTypeDotSizeDirective()) 481 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 482 483 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 484 485 const DataLayout &DL = GV->getParent()->getDataLayout(); 486 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 487 488 // If the alignment is specified, we *must* obey it. Overaligning a global 489 // with a specified alignment is a prompt way to break globals emitted to 490 // sections and expected to be contiguous (e.g. ObjC metadata). 491 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 492 493 for (const HandlerInfo &HI : Handlers) { 494 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 495 HI.TimerGroupName, HI.TimerGroupDescription, 496 TimePassesIsEnabled); 497 HI.Handler->setSymbolSize(GVSym, Size); 498 } 499 500 // Handle common symbols 501 if (GVKind.isCommon()) { 502 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 503 unsigned Align = 1 << AlignLog; 504 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 505 Align = 0; 506 507 // .comm _foo, 42, 4 508 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 509 return; 510 } 511 512 // Determine to which section this global should be emitted. 513 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 514 515 // If we have a bss global going to a section that supports the 516 // zerofill directive, do so here. 517 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 518 TheSection->isVirtualSection()) { 519 if (Size == 0) 520 Size = 1; // zerofill of 0 bytes is undefined. 521 unsigned Align = 1 << AlignLog; 522 EmitLinkage(GV, GVSym); 523 // .zerofill __DATA, __bss, _foo, 400, 5 524 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 525 return; 526 } 527 528 // If this is a BSS local symbol and we are emitting in the BSS 529 // section use .lcomm/.comm directive. 530 if (GVKind.isBSSLocal() && 531 getObjFileLowering().getBSSSection() == TheSection) { 532 if (Size == 0) 533 Size = 1; // .comm Foo, 0 is undefined, avoid it. 534 unsigned Align = 1 << AlignLog; 535 536 // Use .lcomm only if it supports user-specified alignment. 537 // Otherwise, while it would still be correct to use .lcomm in some 538 // cases (e.g. when Align == 1), the external assembler might enfore 539 // some -unknown- default alignment behavior, which could cause 540 // spurious differences between external and integrated assembler. 541 // Prefer to simply fall back to .local / .comm in this case. 542 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 543 // .lcomm _foo, 42 544 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 545 return; 546 } 547 548 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 549 Align = 0; 550 551 // .local _foo 552 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 553 // .comm _foo, 42, 4 554 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 555 return; 556 } 557 558 // Handle thread local data for mach-o which requires us to output an 559 // additional structure of data and mangle the original symbol so that we 560 // can reference it later. 561 // 562 // TODO: This should become an "emit thread local global" method on TLOF. 563 // All of this macho specific stuff should be sunk down into TLOFMachO and 564 // stuff like "TLSExtraDataSection" should no longer be part of the parent 565 // TLOF class. This will also make it more obvious that stuff like 566 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 567 // specific code. 568 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 569 // Emit the .tbss symbol 570 MCSymbol *MangSym = 571 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 572 573 if (GVKind.isThreadBSS()) { 574 TheSection = getObjFileLowering().getTLSBSSSection(); 575 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 576 } else if (GVKind.isThreadData()) { 577 OutStreamer->SwitchSection(TheSection); 578 579 EmitAlignment(AlignLog, GV); 580 OutStreamer->EmitLabel(MangSym); 581 582 EmitGlobalConstant(GV->getParent()->getDataLayout(), 583 GV->getInitializer()); 584 } 585 586 OutStreamer->AddBlankLine(); 587 588 // Emit the variable struct for the runtime. 589 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 590 591 OutStreamer->SwitchSection(TLVSect); 592 // Emit the linkage here. 593 EmitLinkage(GV, GVSym); 594 OutStreamer->EmitLabel(GVSym); 595 596 // Three pointers in size: 597 // - __tlv_bootstrap - used to make sure support exists 598 // - spare pointer, used when mapped by the runtime 599 // - pointer to mangled symbol above with initializer 600 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 601 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 602 PtrSize); 603 OutStreamer->EmitIntValue(0, PtrSize); 604 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 605 606 OutStreamer->AddBlankLine(); 607 return; 608 } 609 610 MCSymbol *EmittedInitSym = GVSym; 611 612 OutStreamer->SwitchSection(TheSection); 613 614 EmitLinkage(GV, EmittedInitSym); 615 EmitAlignment(AlignLog, GV); 616 617 OutStreamer->EmitLabel(EmittedInitSym); 618 619 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 620 621 if (MAI->hasDotTypeDotSizeDirective()) 622 // .size foo, 42 623 OutStreamer->emitELFSize(EmittedInitSym, 624 MCConstantExpr::create(Size, OutContext)); 625 626 OutStreamer->AddBlankLine(); 627 } 628 629 /// Emit the directive and value for debug thread local expression 630 /// 631 /// \p Value - The value to emit. 632 /// \p Size - The size of the integer (in bytes) to emit. 633 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 634 OutStreamer->EmitValue(Value, Size); 635 } 636 637 /// EmitFunctionHeader - This method emits the header for the current 638 /// function. 639 void AsmPrinter::EmitFunctionHeader() { 640 const Function &F = MF->getFunction(); 641 642 if (isVerbose()) 643 OutStreamer->GetCommentOS() 644 << "-- Begin function " 645 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 646 647 // Print out constants referenced by the function 648 EmitConstantPool(); 649 650 // Print the 'header' of function. 651 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 652 EmitVisibility(CurrentFnSym, F.getVisibility()); 653 654 EmitLinkage(&F, CurrentFnSym); 655 if (MAI->hasFunctionAlignment()) 656 EmitAlignment(MF->getAlignment(), &F); 657 658 if (MAI->hasDotTypeDotSizeDirective()) 659 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 660 661 if (isVerbose()) { 662 F.printAsOperand(OutStreamer->GetCommentOS(), 663 /*PrintType=*/false, F.getParent()); 664 OutStreamer->GetCommentOS() << '\n'; 665 } 666 667 // Emit the prefix data. 668 if (F.hasPrefixData()) { 669 if (MAI->hasSubsectionsViaSymbols()) { 670 // Preserving prefix data on platforms which use subsections-via-symbols 671 // is a bit tricky. Here we introduce a symbol for the prefix data 672 // and use the .alt_entry attribute to mark the function's real entry point 673 // as an alternative entry point to the prefix-data symbol. 674 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 675 OutStreamer->EmitLabel(PrefixSym); 676 677 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 678 679 // Emit an .alt_entry directive for the actual function symbol. 680 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 681 } else { 682 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 683 } 684 } 685 686 // Emit the CurrentFnSym. This is a virtual function to allow targets to 687 // do their wild and crazy things as required. 688 EmitFunctionEntryLabel(); 689 690 // If the function had address-taken blocks that got deleted, then we have 691 // references to the dangling symbols. Emit them at the start of the function 692 // so that we don't get references to undefined symbols. 693 std::vector<MCSymbol*> DeadBlockSyms; 694 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 695 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 696 OutStreamer->AddComment("Address taken block that was later removed"); 697 OutStreamer->EmitLabel(DeadBlockSyms[i]); 698 } 699 700 if (CurrentFnBegin) { 701 if (MAI->useAssignmentForEHBegin()) { 702 MCSymbol *CurPos = OutContext.createTempSymbol(); 703 OutStreamer->EmitLabel(CurPos); 704 OutStreamer->EmitAssignment(CurrentFnBegin, 705 MCSymbolRefExpr::create(CurPos, OutContext)); 706 } else { 707 OutStreamer->EmitLabel(CurrentFnBegin); 708 } 709 } 710 711 // Emit pre-function debug and/or EH information. 712 for (const HandlerInfo &HI : Handlers) { 713 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 714 HI.TimerGroupDescription, TimePassesIsEnabled); 715 HI.Handler->beginFunction(MF); 716 } 717 718 // Emit the prologue data. 719 if (F.hasPrologueData()) 720 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 721 } 722 723 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 724 /// function. This can be overridden by targets as required to do custom stuff. 725 void AsmPrinter::EmitFunctionEntryLabel() { 726 CurrentFnSym->redefineIfPossible(); 727 728 // The function label could have already been emitted if two symbols end up 729 // conflicting due to asm renaming. Detect this and emit an error. 730 if (CurrentFnSym->isVariable()) 731 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 732 "' is a protected alias"); 733 if (CurrentFnSym->isDefined()) 734 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 735 "' label emitted multiple times to assembly file"); 736 737 return OutStreamer->EmitLabel(CurrentFnSym); 738 } 739 740 /// emitComments - Pretty-print comments for instructions. 741 /// It returns true iff the sched comment was emitted. 742 /// Otherwise it returns false. 743 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 744 AsmPrinter *AP) { 745 const MachineFunction *MF = MI.getMF(); 746 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 747 748 // Check for spills and reloads 749 int FI; 750 751 const MachineFrameInfo &MFI = MF->getFrameInfo(); 752 bool Commented = false; 753 754 auto getSize = 755 [&MFI](const SmallVectorImpl<const MachineMemOperand *> &Accesses) { 756 unsigned Size = 0; 757 for (auto A : Accesses) 758 if (MFI.isSpillSlotObjectIndex( 759 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 760 ->getFrameIndex())) 761 Size += A->getSize(); 762 return Size; 763 }; 764 765 // We assume a single instruction only has a spill or reload, not 766 // both. 767 const MachineMemOperand *MMO; 768 SmallVector<const MachineMemOperand *, 2> Accesses; 769 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 770 if (MFI.isSpillSlotObjectIndex(FI)) { 771 MMO = *MI.memoperands_begin(); 772 CommentOS << MMO->getSize() << "-byte Reload"; 773 Commented = true; 774 } 775 } else if (TII->hasLoadFromStackSlot(MI, Accesses)) { 776 if (auto Size = getSize(Accesses)) { 777 CommentOS << Size << "-byte Folded Reload"; 778 Commented = true; 779 } 780 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 781 if (MFI.isSpillSlotObjectIndex(FI)) { 782 MMO = *MI.memoperands_begin(); 783 CommentOS << MMO->getSize() << "-byte Spill"; 784 Commented = true; 785 } 786 } else if (TII->hasStoreToStackSlot(MI, Accesses)) { 787 if (auto Size = getSize(Accesses)) { 788 CommentOS << Size << "-byte Folded Spill"; 789 Commented = true; 790 } 791 } 792 793 // Check for spill-induced copies 794 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 795 Commented = true; 796 CommentOS << " Reload Reuse"; 797 } 798 799 if (Commented) { 800 if (AP->EnablePrintSchedInfo) { 801 // If any comment was added above and we need sched info comment then add 802 // this new comment just after the above comment w/o "\n" between them. 803 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 804 return true; 805 } 806 CommentOS << "\n"; 807 } 808 return false; 809 } 810 811 /// emitImplicitDef - This method emits the specified machine instruction 812 /// that is an implicit def. 813 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 814 unsigned RegNo = MI->getOperand(0).getReg(); 815 816 SmallString<128> Str; 817 raw_svector_ostream OS(Str); 818 OS << "implicit-def: " 819 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 820 821 OutStreamer->AddComment(OS.str()); 822 OutStreamer->AddBlankLine(); 823 } 824 825 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 826 std::string Str; 827 raw_string_ostream OS(Str); 828 OS << "kill:"; 829 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 830 const MachineOperand &Op = MI->getOperand(i); 831 assert(Op.isReg() && "KILL instruction must have only register operands"); 832 OS << ' ' << (Op.isDef() ? "def " : "killed ") 833 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 834 } 835 AP.OutStreamer->AddComment(OS.str()); 836 AP.OutStreamer->AddBlankLine(); 837 } 838 839 /// emitDebugValueComment - This method handles the target-independent form 840 /// of DBG_VALUE, returning true if it was able to do so. A false return 841 /// means the target will need to handle MI in EmitInstruction. 842 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 843 // This code handles only the 4-operand target-independent form. 844 if (MI->getNumOperands() != 4) 845 return false; 846 847 SmallString<128> Str; 848 raw_svector_ostream OS(Str); 849 OS << "DEBUG_VALUE: "; 850 851 const DILocalVariable *V = MI->getDebugVariable(); 852 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 853 StringRef Name = SP->getName(); 854 if (!Name.empty()) 855 OS << Name << ":"; 856 } 857 OS << V->getName(); 858 OS << " <- "; 859 860 // The second operand is only an offset if it's an immediate. 861 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 862 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 863 const DIExpression *Expr = MI->getDebugExpression(); 864 if (Expr->getNumElements()) { 865 OS << '['; 866 bool NeedSep = false; 867 for (auto Op : Expr->expr_ops()) { 868 if (NeedSep) 869 OS << ", "; 870 else 871 NeedSep = true; 872 OS << dwarf::OperationEncodingString(Op.getOp()); 873 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 874 OS << ' ' << Op.getArg(I); 875 } 876 OS << "] "; 877 } 878 879 // Register or immediate value. Register 0 means undef. 880 if (MI->getOperand(0).isFPImm()) { 881 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 882 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 883 OS << (double)APF.convertToFloat(); 884 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 885 OS << APF.convertToDouble(); 886 } else { 887 // There is no good way to print long double. Convert a copy to 888 // double. Ah well, it's only a comment. 889 bool ignored; 890 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 891 &ignored); 892 OS << "(long double) " << APF.convertToDouble(); 893 } 894 } else if (MI->getOperand(0).isImm()) { 895 OS << MI->getOperand(0).getImm(); 896 } else if (MI->getOperand(0).isCImm()) { 897 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 898 } else { 899 unsigned Reg; 900 if (MI->getOperand(0).isReg()) { 901 Reg = MI->getOperand(0).getReg(); 902 } else { 903 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 904 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 905 Offset += TFI->getFrameIndexReference(*AP.MF, 906 MI->getOperand(0).getIndex(), Reg); 907 MemLoc = true; 908 } 909 if (Reg == 0) { 910 // Suppress offset, it is not meaningful here. 911 OS << "undef"; 912 // NOTE: Want this comment at start of line, don't emit with AddComment. 913 AP.OutStreamer->emitRawComment(OS.str()); 914 return true; 915 } 916 if (MemLoc) 917 OS << '['; 918 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 919 } 920 921 if (MemLoc) 922 OS << '+' << Offset << ']'; 923 924 // NOTE: Want this comment at start of line, don't emit with AddComment. 925 AP.OutStreamer->emitRawComment(OS.str()); 926 return true; 927 } 928 929 /// This method handles the target-independent form of DBG_LABEL, returning 930 /// true if it was able to do so. A false return means the target will need 931 /// to handle MI in EmitInstruction. 932 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 933 if (MI->getNumOperands() != 1) 934 return false; 935 936 SmallString<128> Str; 937 raw_svector_ostream OS(Str); 938 OS << "DEBUG_LABEL: "; 939 940 const DILabel *V = MI->getDebugLabel(); 941 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 942 StringRef Name = SP->getName(); 943 if (!Name.empty()) 944 OS << Name << ":"; 945 } 946 OS << V->getName(); 947 948 // NOTE: Want this comment at start of line, don't emit with AddComment. 949 AP.OutStreamer->emitRawComment(OS.str()); 950 return true; 951 } 952 953 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 954 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 955 MF->getFunction().needsUnwindTableEntry()) 956 return CFI_M_EH; 957 958 if (MMI->hasDebugInfo()) 959 return CFI_M_Debug; 960 961 return CFI_M_None; 962 } 963 964 bool AsmPrinter::needsSEHMoves() { 965 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 966 } 967 968 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 969 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 970 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 971 ExceptionHandlingType != ExceptionHandling::ARM) 972 return; 973 974 if (needsCFIMoves() == CFI_M_None) 975 return; 976 977 // If there is no "real" instruction following this CFI instruction, skip 978 // emitting it; it would be beyond the end of the function's FDE range. 979 auto *MBB = MI.getParent(); 980 auto I = std::next(MI.getIterator()); 981 while (I != MBB->end() && I->isTransient()) 982 ++I; 983 if (I == MBB->instr_end() && 984 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 985 return; 986 987 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 988 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 989 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 990 emitCFIInstruction(CFI); 991 } 992 993 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 994 // The operands are the MCSymbol and the frame offset of the allocation. 995 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 996 int FrameOffset = MI.getOperand(1).getImm(); 997 998 // Emit a symbol assignment. 999 OutStreamer->EmitAssignment(FrameAllocSym, 1000 MCConstantExpr::create(FrameOffset, OutContext)); 1001 } 1002 1003 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1004 if (!MF.getTarget().Options.EmitStackSizeSection) 1005 return; 1006 1007 MCSection *StackSizeSection = 1008 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1009 if (!StackSizeSection) 1010 return; 1011 1012 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1013 // Don't emit functions with dynamic stack allocations. 1014 if (FrameInfo.hasVarSizedObjects()) 1015 return; 1016 1017 OutStreamer->PushSection(); 1018 OutStreamer->SwitchSection(StackSizeSection); 1019 1020 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1021 uint64_t StackSize = FrameInfo.getStackSize(); 1022 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1023 OutStreamer->EmitULEB128IntValue(StackSize); 1024 1025 OutStreamer->PopSection(); 1026 } 1027 1028 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1029 MachineModuleInfo *MMI) { 1030 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1031 return true; 1032 1033 // We might emit an EH table that uses function begin and end labels even if 1034 // we don't have any landingpads. 1035 if (!MF.getFunction().hasPersonalityFn()) 1036 return false; 1037 return !isNoOpWithoutInvoke( 1038 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1039 } 1040 1041 /// EmitFunctionBody - This method emits the body and trailer for a 1042 /// function. 1043 void AsmPrinter::EmitFunctionBody() { 1044 EmitFunctionHeader(); 1045 1046 // Emit target-specific gunk before the function body. 1047 EmitFunctionBodyStart(); 1048 1049 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1050 1051 if (isVerbose()) { 1052 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1053 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1054 if (!MDT) { 1055 OwnedMDT = make_unique<MachineDominatorTree>(); 1056 OwnedMDT->getBase().recalculate(*MF); 1057 MDT = OwnedMDT.get(); 1058 } 1059 1060 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1061 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1062 if (!MLI) { 1063 OwnedMLI = make_unique<MachineLoopInfo>(); 1064 OwnedMLI->getBase().analyze(MDT->getBase()); 1065 MLI = OwnedMLI.get(); 1066 } 1067 } 1068 1069 // Print out code for the function. 1070 bool HasAnyRealCode = false; 1071 int NumInstsInFunction = 0; 1072 for (auto &MBB : *MF) { 1073 // Print a label for the basic block. 1074 EmitBasicBlockStart(MBB); 1075 for (auto &MI : MBB) { 1076 // Print the assembly for the instruction. 1077 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1078 !MI.isDebugInstr()) { 1079 HasAnyRealCode = true; 1080 ++NumInstsInFunction; 1081 } 1082 1083 // If there is a pre-instruction symbol, emit a label for it here. 1084 if (MCSymbol *S = MI.getPreInstrSymbol()) 1085 OutStreamer->EmitLabel(S); 1086 1087 if (ShouldPrintDebugScopes) { 1088 for (const HandlerInfo &HI : Handlers) { 1089 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1090 HI.TimerGroupName, HI.TimerGroupDescription, 1091 TimePassesIsEnabled); 1092 HI.Handler->beginInstruction(&MI); 1093 } 1094 } 1095 1096 if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) { 1097 MachineInstr *MIP = const_cast<MachineInstr *>(&MI); 1098 MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment); 1099 } 1100 1101 switch (MI.getOpcode()) { 1102 case TargetOpcode::CFI_INSTRUCTION: 1103 emitCFIInstruction(MI); 1104 break; 1105 case TargetOpcode::LOCAL_ESCAPE: 1106 emitFrameAlloc(MI); 1107 break; 1108 case TargetOpcode::EH_LABEL: 1109 case TargetOpcode::GC_LABEL: 1110 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1111 break; 1112 case TargetOpcode::INLINEASM: 1113 EmitInlineAsm(&MI); 1114 break; 1115 case TargetOpcode::DBG_VALUE: 1116 if (isVerbose()) { 1117 if (!emitDebugValueComment(&MI, *this)) 1118 EmitInstruction(&MI); 1119 } 1120 break; 1121 case TargetOpcode::DBG_LABEL: 1122 if (isVerbose()) { 1123 if (!emitDebugLabelComment(&MI, *this)) 1124 EmitInstruction(&MI); 1125 } 1126 break; 1127 case TargetOpcode::IMPLICIT_DEF: 1128 if (isVerbose()) emitImplicitDef(&MI); 1129 break; 1130 case TargetOpcode::KILL: 1131 if (isVerbose()) emitKill(&MI, *this); 1132 break; 1133 default: 1134 EmitInstruction(&MI); 1135 break; 1136 } 1137 1138 // If there is a post-instruction symbol, emit a label for it here. 1139 if (MCSymbol *S = MI.getPostInstrSymbol()) 1140 OutStreamer->EmitLabel(S); 1141 1142 if (ShouldPrintDebugScopes) { 1143 for (const HandlerInfo &HI : Handlers) { 1144 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1145 HI.TimerGroupName, HI.TimerGroupDescription, 1146 TimePassesIsEnabled); 1147 HI.Handler->endInstruction(); 1148 } 1149 } 1150 } 1151 1152 EmitBasicBlockEnd(MBB); 1153 } 1154 1155 EmittedInsts += NumInstsInFunction; 1156 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1157 MF->getFunction().getSubprogram(), 1158 &MF->front()); 1159 R << ore::NV("NumInstructions", NumInstsInFunction) 1160 << " instructions in function"; 1161 ORE->emit(R); 1162 1163 // If the function is empty and the object file uses .subsections_via_symbols, 1164 // then we need to emit *something* to the function body to prevent the 1165 // labels from collapsing together. Just emit a noop. 1166 // Similarly, don't emit empty functions on Windows either. It can lead to 1167 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1168 // after linking, causing the kernel not to load the binary: 1169 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1170 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1171 const Triple &TT = TM.getTargetTriple(); 1172 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1173 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1174 MCInst Noop; 1175 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1176 1177 // Targets can opt-out of emitting the noop here by leaving the opcode 1178 // unspecified. 1179 if (Noop.getOpcode()) { 1180 OutStreamer->AddComment("avoids zero-length function"); 1181 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1182 } 1183 } 1184 1185 const Function &F = MF->getFunction(); 1186 for (const auto &BB : F) { 1187 if (!BB.hasAddressTaken()) 1188 continue; 1189 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1190 if (Sym->isDefined()) 1191 continue; 1192 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1193 OutStreamer->EmitLabel(Sym); 1194 } 1195 1196 // Emit target-specific gunk after the function body. 1197 EmitFunctionBodyEnd(); 1198 1199 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1200 MAI->hasDotTypeDotSizeDirective()) { 1201 // Create a symbol for the end of function. 1202 CurrentFnEnd = createTempSymbol("func_end"); 1203 OutStreamer->EmitLabel(CurrentFnEnd); 1204 } 1205 1206 // If the target wants a .size directive for the size of the function, emit 1207 // it. 1208 if (MAI->hasDotTypeDotSizeDirective()) { 1209 // We can get the size as difference between the function label and the 1210 // temp label. 1211 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1212 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1213 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1214 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1215 } 1216 1217 for (const HandlerInfo &HI : Handlers) { 1218 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1219 HI.TimerGroupDescription, TimePassesIsEnabled); 1220 HI.Handler->markFunctionEnd(); 1221 } 1222 1223 // Print out jump tables referenced by the function. 1224 EmitJumpTableInfo(); 1225 1226 // Emit post-function debug and/or EH information. 1227 for (const HandlerInfo &HI : Handlers) { 1228 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1229 HI.TimerGroupDescription, TimePassesIsEnabled); 1230 HI.Handler->endFunction(MF); 1231 } 1232 1233 // Emit section containing stack size metadata. 1234 emitStackSizeSection(*MF); 1235 1236 if (isVerbose()) 1237 OutStreamer->GetCommentOS() << "-- End function\n"; 1238 1239 OutStreamer->AddBlankLine(); 1240 } 1241 1242 /// Compute the number of Global Variables that uses a Constant. 1243 static unsigned getNumGlobalVariableUses(const Constant *C) { 1244 if (!C) 1245 return 0; 1246 1247 if (isa<GlobalVariable>(C)) 1248 return 1; 1249 1250 unsigned NumUses = 0; 1251 for (auto *CU : C->users()) 1252 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1253 1254 return NumUses; 1255 } 1256 1257 /// Only consider global GOT equivalents if at least one user is a 1258 /// cstexpr inside an initializer of another global variables. Also, don't 1259 /// handle cstexpr inside instructions. During global variable emission, 1260 /// candidates are skipped and are emitted later in case at least one cstexpr 1261 /// isn't replaced by a PC relative GOT entry access. 1262 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1263 unsigned &NumGOTEquivUsers) { 1264 // Global GOT equivalents are unnamed private globals with a constant 1265 // pointer initializer to another global symbol. They must point to a 1266 // GlobalVariable or Function, i.e., as GlobalValue. 1267 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1268 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1269 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1270 return false; 1271 1272 // To be a got equivalent, at least one of its users need to be a constant 1273 // expression used by another global variable. 1274 for (auto *U : GV->users()) 1275 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1276 1277 return NumGOTEquivUsers > 0; 1278 } 1279 1280 /// Unnamed constant global variables solely contaning a pointer to 1281 /// another globals variable is equivalent to a GOT table entry; it contains the 1282 /// the address of another symbol. Optimize it and replace accesses to these 1283 /// "GOT equivalents" by using the GOT entry for the final global instead. 1284 /// Compute GOT equivalent candidates among all global variables to avoid 1285 /// emitting them if possible later on, after it use is replaced by a GOT entry 1286 /// access. 1287 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1288 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1289 return; 1290 1291 for (const auto &G : M.globals()) { 1292 unsigned NumGOTEquivUsers = 0; 1293 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1294 continue; 1295 1296 const MCSymbol *GOTEquivSym = getSymbol(&G); 1297 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1298 } 1299 } 1300 1301 /// Constant expressions using GOT equivalent globals may not be eligible 1302 /// for PC relative GOT entry conversion, in such cases we need to emit such 1303 /// globals we previously omitted in EmitGlobalVariable. 1304 void AsmPrinter::emitGlobalGOTEquivs() { 1305 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1306 return; 1307 1308 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1309 for (auto &I : GlobalGOTEquivs) { 1310 const GlobalVariable *GV = I.second.first; 1311 unsigned Cnt = I.second.second; 1312 if (Cnt) 1313 FailedCandidates.push_back(GV); 1314 } 1315 GlobalGOTEquivs.clear(); 1316 1317 for (auto *GV : FailedCandidates) 1318 EmitGlobalVariable(GV); 1319 } 1320 1321 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1322 const GlobalIndirectSymbol& GIS) { 1323 MCSymbol *Name = getSymbol(&GIS); 1324 1325 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1326 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1327 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1328 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1329 else 1330 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1331 1332 // Set the symbol type to function if the alias has a function type. 1333 // This affects codegen when the aliasee is not a function. 1334 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1335 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1336 if (isa<GlobalIFunc>(GIS)) 1337 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1338 } 1339 1340 EmitVisibility(Name, GIS.getVisibility()); 1341 1342 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1343 1344 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1345 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1346 1347 // Emit the directives as assignments aka .set: 1348 OutStreamer->EmitAssignment(Name, Expr); 1349 1350 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1351 // If the aliasee does not correspond to a symbol in the output, i.e. the 1352 // alias is not of an object or the aliased object is private, then set the 1353 // size of the alias symbol from the type of the alias. We don't do this in 1354 // other situations as the alias and aliasee having differing types but same 1355 // size may be intentional. 1356 const GlobalObject *BaseObject = GA->getBaseObject(); 1357 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1358 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1359 const DataLayout &DL = M.getDataLayout(); 1360 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1361 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1362 } 1363 } 1364 } 1365 1366 bool AsmPrinter::doFinalization(Module &M) { 1367 // Set the MachineFunction to nullptr so that we can catch attempted 1368 // accesses to MF specific features at the module level and so that 1369 // we can conditionalize accesses based on whether or not it is nullptr. 1370 MF = nullptr; 1371 1372 // Gather all GOT equivalent globals in the module. We really need two 1373 // passes over the globals: one to compute and another to avoid its emission 1374 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1375 // where the got equivalent shows up before its use. 1376 computeGlobalGOTEquivs(M); 1377 1378 // Emit global variables. 1379 for (const auto &G : M.globals()) 1380 EmitGlobalVariable(&G); 1381 1382 // Emit remaining GOT equivalent globals. 1383 emitGlobalGOTEquivs(); 1384 1385 // Emit visibility info for declarations 1386 for (const Function &F : M) { 1387 if (!F.isDeclarationForLinker()) 1388 continue; 1389 GlobalValue::VisibilityTypes V = F.getVisibility(); 1390 if (V == GlobalValue::DefaultVisibility) 1391 continue; 1392 1393 MCSymbol *Name = getSymbol(&F); 1394 EmitVisibility(Name, V, false); 1395 } 1396 1397 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1398 1399 TLOF.emitModuleMetadata(*OutStreamer, M); 1400 1401 if (TM.getTargetTriple().isOSBinFormatELF()) { 1402 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1403 1404 // Output stubs for external and common global variables. 1405 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1406 if (!Stubs.empty()) { 1407 OutStreamer->SwitchSection(TLOF.getDataSection()); 1408 const DataLayout &DL = M.getDataLayout(); 1409 1410 EmitAlignment(Log2_32(DL.getPointerSize())); 1411 for (const auto &Stub : Stubs) { 1412 OutStreamer->EmitLabel(Stub.first); 1413 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1414 DL.getPointerSize()); 1415 } 1416 } 1417 } 1418 1419 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1420 MachineModuleInfoCOFF &MMICOFF = 1421 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1422 1423 // Output stubs for external and common global variables. 1424 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1425 if (!Stubs.empty()) { 1426 const DataLayout &DL = M.getDataLayout(); 1427 1428 for (const auto &Stub : Stubs) { 1429 SmallString<256> SectionName = StringRef(".rdata$"); 1430 SectionName += Stub.first->getName(); 1431 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1432 SectionName, 1433 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1434 COFF::IMAGE_SCN_LNK_COMDAT, 1435 SectionKind::getReadOnly(), Stub.first->getName(), 1436 COFF::IMAGE_COMDAT_SELECT_ANY)); 1437 EmitAlignment(Log2_32(DL.getPointerSize())); 1438 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1439 OutStreamer->EmitLabel(Stub.first); 1440 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1441 DL.getPointerSize()); 1442 } 1443 } 1444 } 1445 1446 // Finalize debug and EH information. 1447 for (const HandlerInfo &HI : Handlers) { 1448 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1449 HI.TimerGroupDescription, TimePassesIsEnabled); 1450 HI.Handler->endModule(); 1451 delete HI.Handler; 1452 } 1453 Handlers.clear(); 1454 DD = nullptr; 1455 1456 // If the target wants to know about weak references, print them all. 1457 if (MAI->getWeakRefDirective()) { 1458 // FIXME: This is not lazy, it would be nice to only print weak references 1459 // to stuff that is actually used. Note that doing so would require targets 1460 // to notice uses in operands (due to constant exprs etc). This should 1461 // happen with the MC stuff eventually. 1462 1463 // Print out module-level global objects here. 1464 for (const auto &GO : M.global_objects()) { 1465 if (!GO.hasExternalWeakLinkage()) 1466 continue; 1467 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1468 } 1469 } 1470 1471 OutStreamer->AddBlankLine(); 1472 1473 // Print aliases in topological order, that is, for each alias a = b, 1474 // b must be printed before a. 1475 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1476 // such an order to generate correct TOC information. 1477 SmallVector<const GlobalAlias *, 16> AliasStack; 1478 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1479 for (const auto &Alias : M.aliases()) { 1480 for (const GlobalAlias *Cur = &Alias; Cur; 1481 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1482 if (!AliasVisited.insert(Cur).second) 1483 break; 1484 AliasStack.push_back(Cur); 1485 } 1486 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1487 emitGlobalIndirectSymbol(M, *AncestorAlias); 1488 AliasStack.clear(); 1489 } 1490 for (const auto &IFunc : M.ifuncs()) 1491 emitGlobalIndirectSymbol(M, IFunc); 1492 1493 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1494 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1495 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1496 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1497 MP->finishAssembly(M, *MI, *this); 1498 1499 // Emit llvm.ident metadata in an '.ident' directive. 1500 EmitModuleIdents(M); 1501 1502 // Emit bytes for llvm.commandline metadata. 1503 EmitModuleCommandLines(M); 1504 1505 // Emit __morestack address if needed for indirect calls. 1506 if (MMI->usesMorestackAddr()) { 1507 unsigned Align = 1; 1508 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1509 getDataLayout(), SectionKind::getReadOnly(), 1510 /*C=*/nullptr, Align); 1511 OutStreamer->SwitchSection(ReadOnlySection); 1512 1513 MCSymbol *AddrSymbol = 1514 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1515 OutStreamer->EmitLabel(AddrSymbol); 1516 1517 unsigned PtrSize = MAI->getCodePointerSize(); 1518 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1519 PtrSize); 1520 } 1521 1522 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1523 // split-stack is used. 1524 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1525 OutStreamer->SwitchSection( 1526 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1527 if (MMI->hasNosplitStack()) 1528 OutStreamer->SwitchSection( 1529 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1530 } 1531 1532 // If we don't have any trampolines, then we don't require stack memory 1533 // to be executable. Some targets have a directive to declare this. 1534 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1535 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1536 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1537 OutStreamer->SwitchSection(S); 1538 1539 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1540 // Emit /EXPORT: flags for each exported global as necessary. 1541 const auto &TLOF = getObjFileLowering(); 1542 std::string Flags; 1543 1544 for (const GlobalValue &GV : M.global_values()) { 1545 raw_string_ostream OS(Flags); 1546 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1547 OS.flush(); 1548 if (!Flags.empty()) { 1549 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1550 OutStreamer->EmitBytes(Flags); 1551 } 1552 Flags.clear(); 1553 } 1554 1555 // Emit /INCLUDE: flags for each used global as necessary. 1556 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1557 assert(LU->hasInitializer() && 1558 "expected llvm.used to have an initializer"); 1559 assert(isa<ArrayType>(LU->getValueType()) && 1560 "expected llvm.used to be an array type"); 1561 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1562 for (const Value *Op : A->operands()) { 1563 const auto *GV = 1564 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 1565 // Global symbols with internal or private linkage are not visible to 1566 // the linker, and thus would cause an error when the linker tried to 1567 // preserve the symbol due to the `/include:` directive. 1568 if (GV->hasLocalLinkage()) 1569 continue; 1570 1571 raw_string_ostream OS(Flags); 1572 TLOF.emitLinkerFlagsForUsed(OS, GV); 1573 OS.flush(); 1574 1575 if (!Flags.empty()) { 1576 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1577 OutStreamer->EmitBytes(Flags); 1578 } 1579 Flags.clear(); 1580 } 1581 } 1582 } 1583 } 1584 1585 if (TM.Options.EmitAddrsig) { 1586 // Emit address-significance attributes for all globals. 1587 OutStreamer->EmitAddrsig(); 1588 for (const GlobalValue &GV : M.global_values()) 1589 if (!GV.use_empty() && !GV.isThreadLocal() && 1590 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1591 !GV.hasAtLeastLocalUnnamedAddr()) 1592 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1593 } 1594 1595 // Allow the target to emit any magic that it wants at the end of the file, 1596 // after everything else has gone out. 1597 EmitEndOfAsmFile(M); 1598 1599 MMI = nullptr; 1600 1601 OutStreamer->Finish(); 1602 OutStreamer->reset(); 1603 OwnedMLI.reset(); 1604 OwnedMDT.reset(); 1605 1606 return false; 1607 } 1608 1609 MCSymbol *AsmPrinter::getCurExceptionSym() { 1610 if (!CurExceptionSym) 1611 CurExceptionSym = createTempSymbol("exception"); 1612 return CurExceptionSym; 1613 } 1614 1615 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1616 this->MF = &MF; 1617 // Get the function symbol. 1618 CurrentFnSym = getSymbol(&MF.getFunction()); 1619 CurrentFnSymForSize = CurrentFnSym; 1620 CurrentFnBegin = nullptr; 1621 CurExceptionSym = nullptr; 1622 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1623 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1624 MF.getTarget().Options.EmitStackSizeSection) { 1625 CurrentFnBegin = createTempSymbol("func_begin"); 1626 if (NeedsLocalForSize) 1627 CurrentFnSymForSize = CurrentFnBegin; 1628 } 1629 1630 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1631 1632 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1633 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1634 ? PrintSchedule 1635 : STI.supportPrintSchedInfo(); 1636 } 1637 1638 namespace { 1639 1640 // Keep track the alignment, constpool entries per Section. 1641 struct SectionCPs { 1642 MCSection *S; 1643 unsigned Alignment; 1644 SmallVector<unsigned, 4> CPEs; 1645 1646 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1647 }; 1648 1649 } // end anonymous namespace 1650 1651 /// EmitConstantPool - Print to the current output stream assembly 1652 /// representations of the constants in the constant pool MCP. This is 1653 /// used to print out constants which have been "spilled to memory" by 1654 /// the code generator. 1655 void AsmPrinter::EmitConstantPool() { 1656 const MachineConstantPool *MCP = MF->getConstantPool(); 1657 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1658 if (CP.empty()) return; 1659 1660 // Calculate sections for constant pool entries. We collect entries to go into 1661 // the same section together to reduce amount of section switch statements. 1662 SmallVector<SectionCPs, 4> CPSections; 1663 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1664 const MachineConstantPoolEntry &CPE = CP[i]; 1665 unsigned Align = CPE.getAlignment(); 1666 1667 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1668 1669 const Constant *C = nullptr; 1670 if (!CPE.isMachineConstantPoolEntry()) 1671 C = CPE.Val.ConstVal; 1672 1673 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1674 Kind, C, Align); 1675 1676 // The number of sections are small, just do a linear search from the 1677 // last section to the first. 1678 bool Found = false; 1679 unsigned SecIdx = CPSections.size(); 1680 while (SecIdx != 0) { 1681 if (CPSections[--SecIdx].S == S) { 1682 Found = true; 1683 break; 1684 } 1685 } 1686 if (!Found) { 1687 SecIdx = CPSections.size(); 1688 CPSections.push_back(SectionCPs(S, Align)); 1689 } 1690 1691 if (Align > CPSections[SecIdx].Alignment) 1692 CPSections[SecIdx].Alignment = Align; 1693 CPSections[SecIdx].CPEs.push_back(i); 1694 } 1695 1696 // Now print stuff into the calculated sections. 1697 const MCSection *CurSection = nullptr; 1698 unsigned Offset = 0; 1699 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1700 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1701 unsigned CPI = CPSections[i].CPEs[j]; 1702 MCSymbol *Sym = GetCPISymbol(CPI); 1703 if (!Sym->isUndefined()) 1704 continue; 1705 1706 if (CurSection != CPSections[i].S) { 1707 OutStreamer->SwitchSection(CPSections[i].S); 1708 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1709 CurSection = CPSections[i].S; 1710 Offset = 0; 1711 } 1712 1713 MachineConstantPoolEntry CPE = CP[CPI]; 1714 1715 // Emit inter-object padding for alignment. 1716 unsigned AlignMask = CPE.getAlignment() - 1; 1717 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1718 OutStreamer->EmitZeros(NewOffset - Offset); 1719 1720 Type *Ty = CPE.getType(); 1721 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1722 1723 OutStreamer->EmitLabel(Sym); 1724 if (CPE.isMachineConstantPoolEntry()) 1725 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1726 else 1727 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1728 } 1729 } 1730 } 1731 1732 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1733 /// by the current function to the current output stream. 1734 void AsmPrinter::EmitJumpTableInfo() { 1735 const DataLayout &DL = MF->getDataLayout(); 1736 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1737 if (!MJTI) return; 1738 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1739 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1740 if (JT.empty()) return; 1741 1742 // Pick the directive to use to print the jump table entries, and switch to 1743 // the appropriate section. 1744 const Function &F = MF->getFunction(); 1745 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1746 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1747 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1748 F); 1749 if (JTInDiffSection) { 1750 // Drop it in the readonly section. 1751 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1752 OutStreamer->SwitchSection(ReadOnlySection); 1753 } 1754 1755 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1756 1757 // Jump tables in code sections are marked with a data_region directive 1758 // where that's supported. 1759 if (!JTInDiffSection) 1760 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1761 1762 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1763 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1764 1765 // If this jump table was deleted, ignore it. 1766 if (JTBBs.empty()) continue; 1767 1768 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1769 /// emit a .set directive for each unique entry. 1770 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1771 MAI->doesSetDirectiveSuppressReloc()) { 1772 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1773 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1774 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1775 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1776 const MachineBasicBlock *MBB = JTBBs[ii]; 1777 if (!EmittedSets.insert(MBB).second) 1778 continue; 1779 1780 // .set LJTSet, LBB32-base 1781 const MCExpr *LHS = 1782 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1783 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1784 MCBinaryExpr::createSub(LHS, Base, 1785 OutContext)); 1786 } 1787 } 1788 1789 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1790 // before each jump table. The first label is never referenced, but tells 1791 // the assembler and linker the extents of the jump table object. The 1792 // second label is actually referenced by the code. 1793 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1794 // FIXME: This doesn't have to have any specific name, just any randomly 1795 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1796 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1797 1798 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1799 1800 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1801 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1802 } 1803 if (!JTInDiffSection) 1804 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1805 } 1806 1807 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1808 /// current stream. 1809 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1810 const MachineBasicBlock *MBB, 1811 unsigned UID) const { 1812 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1813 const MCExpr *Value = nullptr; 1814 switch (MJTI->getEntryKind()) { 1815 case MachineJumpTableInfo::EK_Inline: 1816 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1817 case MachineJumpTableInfo::EK_Custom32: 1818 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1819 MJTI, MBB, UID, OutContext); 1820 break; 1821 case MachineJumpTableInfo::EK_BlockAddress: 1822 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1823 // .word LBB123 1824 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1825 break; 1826 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1827 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1828 // with a relocation as gp-relative, e.g.: 1829 // .gprel32 LBB123 1830 MCSymbol *MBBSym = MBB->getSymbol(); 1831 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1832 return; 1833 } 1834 1835 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1836 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1837 // with a relocation as gp-relative, e.g.: 1838 // .gpdword LBB123 1839 MCSymbol *MBBSym = MBB->getSymbol(); 1840 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1841 return; 1842 } 1843 1844 case MachineJumpTableInfo::EK_LabelDifference32: { 1845 // Each entry is the address of the block minus the address of the jump 1846 // table. This is used for PIC jump tables where gprel32 is not supported. 1847 // e.g.: 1848 // .word LBB123 - LJTI1_2 1849 // If the .set directive avoids relocations, this is emitted as: 1850 // .set L4_5_set_123, LBB123 - LJTI1_2 1851 // .word L4_5_set_123 1852 if (MAI->doesSetDirectiveSuppressReloc()) { 1853 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1854 OutContext); 1855 break; 1856 } 1857 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1858 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1859 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1860 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1861 break; 1862 } 1863 } 1864 1865 assert(Value && "Unknown entry kind!"); 1866 1867 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1868 OutStreamer->EmitValue(Value, EntrySize); 1869 } 1870 1871 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1872 /// special global used by LLVM. If so, emit it and return true, otherwise 1873 /// do nothing and return false. 1874 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1875 if (GV->getName() == "llvm.used") { 1876 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1877 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1878 return true; 1879 } 1880 1881 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1882 if (GV->getSection() == "llvm.metadata" || 1883 GV->hasAvailableExternallyLinkage()) 1884 return true; 1885 1886 if (!GV->hasAppendingLinkage()) return false; 1887 1888 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1889 1890 if (GV->getName() == "llvm.global_ctors") { 1891 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1892 /* isCtor */ true); 1893 1894 return true; 1895 } 1896 1897 if (GV->getName() == "llvm.global_dtors") { 1898 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1899 /* isCtor */ false); 1900 1901 return true; 1902 } 1903 1904 report_fatal_error("unknown special variable"); 1905 } 1906 1907 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1908 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1909 /// is true, as being used with this directive. 1910 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1911 // Should be an array of 'i8*'. 1912 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1913 const GlobalValue *GV = 1914 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1915 if (GV) 1916 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1917 } 1918 } 1919 1920 namespace { 1921 1922 struct Structor { 1923 int Priority = 0; 1924 Constant *Func = nullptr; 1925 GlobalValue *ComdatKey = nullptr; 1926 1927 Structor() = default; 1928 }; 1929 1930 } // end anonymous namespace 1931 1932 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1933 /// priority. 1934 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1935 bool isCtor) { 1936 // Should be an array of '{ int, void ()* }' structs. The first value is the 1937 // init priority. 1938 if (!isa<ConstantArray>(List)) return; 1939 1940 // Sanity check the structors list. 1941 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1942 if (!InitList) return; // Not an array! 1943 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1944 // FIXME: Only allow the 3-field form in LLVM 4.0. 1945 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1946 return; // Not an array of two or three elements! 1947 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1948 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1949 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1950 return; // Not (int, ptr, ptr). 1951 1952 // Gather the structors in a form that's convenient for sorting by priority. 1953 SmallVector<Structor, 8> Structors; 1954 for (Value *O : InitList->operands()) { 1955 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1956 if (!CS) continue; // Malformed. 1957 if (CS->getOperand(1)->isNullValue()) 1958 break; // Found a null terminator, skip the rest. 1959 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1960 if (!Priority) continue; // Malformed. 1961 Structors.push_back(Structor()); 1962 Structor &S = Structors.back(); 1963 S.Priority = Priority->getLimitedValue(65535); 1964 S.Func = CS->getOperand(1); 1965 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1966 S.ComdatKey = 1967 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1968 } 1969 1970 // Emit the function pointers in the target-specific order 1971 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1972 std::stable_sort(Structors.begin(), Structors.end(), 1973 [](const Structor &L, 1974 const Structor &R) { return L.Priority < R.Priority; }); 1975 for (Structor &S : Structors) { 1976 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1977 const MCSymbol *KeySym = nullptr; 1978 if (GlobalValue *GV = S.ComdatKey) { 1979 if (GV->isDeclarationForLinker()) 1980 // If the associated variable is not defined in this module 1981 // (it might be available_externally, or have been an 1982 // available_externally definition that was dropped by the 1983 // EliminateAvailableExternally pass), some other TU 1984 // will provide its dynamic initializer. 1985 continue; 1986 1987 KeySym = getSymbol(GV); 1988 } 1989 MCSection *OutputSection = 1990 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1991 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1992 OutStreamer->SwitchSection(OutputSection); 1993 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1994 EmitAlignment(Align); 1995 EmitXXStructor(DL, S.Func); 1996 } 1997 } 1998 1999 void AsmPrinter::EmitModuleIdents(Module &M) { 2000 if (!MAI->hasIdentDirective()) 2001 return; 2002 2003 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2004 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2005 const MDNode *N = NMD->getOperand(i); 2006 assert(N->getNumOperands() == 1 && 2007 "llvm.ident metadata entry can have only one operand"); 2008 const MDString *S = cast<MDString>(N->getOperand(0)); 2009 OutStreamer->EmitIdent(S->getString()); 2010 } 2011 } 2012 } 2013 2014 void AsmPrinter::EmitModuleCommandLines(Module &M) { 2015 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2016 if (!CommandLine) 2017 return; 2018 2019 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2020 if (!NMD || !NMD->getNumOperands()) 2021 return; 2022 2023 OutStreamer->PushSection(); 2024 OutStreamer->SwitchSection(CommandLine); 2025 OutStreamer->EmitZeros(1); 2026 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2027 const MDNode *N = NMD->getOperand(i); 2028 assert(N->getNumOperands() == 1 && 2029 "llvm.commandline metadata entry can have only one operand"); 2030 const MDString *S = cast<MDString>(N->getOperand(0)); 2031 OutStreamer->EmitBytes(S->getString()); 2032 OutStreamer->EmitZeros(1); 2033 } 2034 OutStreamer->PopSection(); 2035 } 2036 2037 //===--------------------------------------------------------------------===// 2038 // Emission and print routines 2039 // 2040 2041 /// Emit a byte directive and value. 2042 /// 2043 void AsmPrinter::emitInt8(int Value) const { 2044 OutStreamer->EmitIntValue(Value, 1); 2045 } 2046 2047 /// Emit a short directive and value. 2048 void AsmPrinter::emitInt16(int Value) const { 2049 OutStreamer->EmitIntValue(Value, 2); 2050 } 2051 2052 /// Emit a long directive and value. 2053 void AsmPrinter::emitInt32(int Value) const { 2054 OutStreamer->EmitIntValue(Value, 4); 2055 } 2056 2057 /// Emit a long long directive and value. 2058 void AsmPrinter::emitInt64(uint64_t Value) const { 2059 OutStreamer->EmitIntValue(Value, 8); 2060 } 2061 2062 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2063 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2064 /// .set if it avoids relocations. 2065 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2066 unsigned Size) const { 2067 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2068 } 2069 2070 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2071 /// where the size in bytes of the directive is specified by Size and Label 2072 /// specifies the label. This implicitly uses .set if it is available. 2073 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2074 unsigned Size, 2075 bool IsSectionRelative) const { 2076 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2077 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2078 if (Size > 4) 2079 OutStreamer->EmitZeros(Size - 4); 2080 return; 2081 } 2082 2083 // Emit Label+Offset (or just Label if Offset is zero) 2084 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2085 if (Offset) 2086 Expr = MCBinaryExpr::createAdd( 2087 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2088 2089 OutStreamer->EmitValue(Expr, Size); 2090 } 2091 2092 //===----------------------------------------------------------------------===// 2093 2094 // EmitAlignment - Emit an alignment directive to the specified power of 2095 // two boundary. For example, if you pass in 3 here, you will get an 8 2096 // byte alignment. If a global value is specified, and if that global has 2097 // an explicit alignment requested, it will override the alignment request 2098 // if required for correctness. 2099 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 2100 if (GV) 2101 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 2102 2103 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 2104 2105 assert(NumBits < 2106 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 2107 "undefined behavior"); 2108 if (getCurrentSection()->getKind().isText()) 2109 OutStreamer->EmitCodeAlignment(1u << NumBits); 2110 else 2111 OutStreamer->EmitValueToAlignment(1u << NumBits); 2112 } 2113 2114 //===----------------------------------------------------------------------===// 2115 // Constant emission. 2116 //===----------------------------------------------------------------------===// 2117 2118 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2119 MCContext &Ctx = OutContext; 2120 2121 if (CV->isNullValue() || isa<UndefValue>(CV)) 2122 return MCConstantExpr::create(0, Ctx); 2123 2124 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2125 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2126 2127 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2128 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2129 2130 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2131 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2132 2133 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2134 if (!CE) { 2135 llvm_unreachable("Unknown constant value to lower!"); 2136 } 2137 2138 switch (CE->getOpcode()) { 2139 default: 2140 // If the code isn't optimized, there may be outstanding folding 2141 // opportunities. Attempt to fold the expression using DataLayout as a 2142 // last resort before giving up. 2143 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2144 if (C != CE) 2145 return lowerConstant(C); 2146 2147 // Otherwise report the problem to the user. 2148 { 2149 std::string S; 2150 raw_string_ostream OS(S); 2151 OS << "Unsupported expression in static initializer: "; 2152 CE->printAsOperand(OS, /*PrintType=*/false, 2153 !MF ? nullptr : MF->getFunction().getParent()); 2154 report_fatal_error(OS.str()); 2155 } 2156 case Instruction::GetElementPtr: { 2157 // Generate a symbolic expression for the byte address 2158 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2159 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2160 2161 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2162 if (!OffsetAI) 2163 return Base; 2164 2165 int64_t Offset = OffsetAI.getSExtValue(); 2166 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2167 Ctx); 2168 } 2169 2170 case Instruction::Trunc: 2171 // We emit the value and depend on the assembler to truncate the generated 2172 // expression properly. This is important for differences between 2173 // blockaddress labels. Since the two labels are in the same function, it 2174 // is reasonable to treat their delta as a 32-bit value. 2175 LLVM_FALLTHROUGH; 2176 case Instruction::BitCast: 2177 return lowerConstant(CE->getOperand(0)); 2178 2179 case Instruction::IntToPtr: { 2180 const DataLayout &DL = getDataLayout(); 2181 2182 // Handle casts to pointers by changing them into casts to the appropriate 2183 // integer type. This promotes constant folding and simplifies this code. 2184 Constant *Op = CE->getOperand(0); 2185 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2186 false/*ZExt*/); 2187 return lowerConstant(Op); 2188 } 2189 2190 case Instruction::PtrToInt: { 2191 const DataLayout &DL = getDataLayout(); 2192 2193 // Support only foldable casts to/from pointers that can be eliminated by 2194 // changing the pointer to the appropriately sized integer type. 2195 Constant *Op = CE->getOperand(0); 2196 Type *Ty = CE->getType(); 2197 2198 const MCExpr *OpExpr = lowerConstant(Op); 2199 2200 // We can emit the pointer value into this slot if the slot is an 2201 // integer slot equal to the size of the pointer. 2202 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2203 return OpExpr; 2204 2205 // Otherwise the pointer is smaller than the resultant integer, mask off 2206 // the high bits so we are sure to get a proper truncation if the input is 2207 // a constant expr. 2208 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2209 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2210 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2211 } 2212 2213 case Instruction::Sub: { 2214 GlobalValue *LHSGV; 2215 APInt LHSOffset; 2216 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2217 getDataLayout())) { 2218 GlobalValue *RHSGV; 2219 APInt RHSOffset; 2220 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2221 getDataLayout())) { 2222 const MCExpr *RelocExpr = 2223 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2224 if (!RelocExpr) 2225 RelocExpr = MCBinaryExpr::createSub( 2226 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2227 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2228 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2229 if (Addend != 0) 2230 RelocExpr = MCBinaryExpr::createAdd( 2231 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2232 return RelocExpr; 2233 } 2234 } 2235 } 2236 // else fallthrough 2237 LLVM_FALLTHROUGH; 2238 2239 // The MC library also has a right-shift operator, but it isn't consistently 2240 // signed or unsigned between different targets. 2241 case Instruction::Add: 2242 case Instruction::Mul: 2243 case Instruction::SDiv: 2244 case Instruction::SRem: 2245 case Instruction::Shl: 2246 case Instruction::And: 2247 case Instruction::Or: 2248 case Instruction::Xor: { 2249 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2250 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2251 switch (CE->getOpcode()) { 2252 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2253 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2254 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2255 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2256 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2257 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2258 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2259 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2260 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2261 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2262 } 2263 } 2264 } 2265 } 2266 2267 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2268 AsmPrinter &AP, 2269 const Constant *BaseCV = nullptr, 2270 uint64_t Offset = 0); 2271 2272 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2273 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2274 2275 /// isRepeatedByteSequence - Determine whether the given value is 2276 /// composed of a repeated sequence of identical bytes and return the 2277 /// byte value. If it is not a repeated sequence, return -1. 2278 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2279 StringRef Data = V->getRawDataValues(); 2280 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2281 char C = Data[0]; 2282 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2283 if (Data[i] != C) return -1; 2284 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2285 } 2286 2287 /// isRepeatedByteSequence - Determine whether the given value is 2288 /// composed of a repeated sequence of identical bytes and return the 2289 /// byte value. If it is not a repeated sequence, return -1. 2290 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2291 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2292 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2293 assert(Size % 8 == 0); 2294 2295 // Extend the element to take zero padding into account. 2296 APInt Value = CI->getValue().zextOrSelf(Size); 2297 if (!Value.isSplat(8)) 2298 return -1; 2299 2300 return Value.zextOrTrunc(8).getZExtValue(); 2301 } 2302 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2303 // Make sure all array elements are sequences of the same repeated 2304 // byte. 2305 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2306 Constant *Op0 = CA->getOperand(0); 2307 int Byte = isRepeatedByteSequence(Op0, DL); 2308 if (Byte == -1) 2309 return -1; 2310 2311 // All array elements must be equal. 2312 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2313 if (CA->getOperand(i) != Op0) 2314 return -1; 2315 return Byte; 2316 } 2317 2318 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2319 return isRepeatedByteSequence(CDS); 2320 2321 return -1; 2322 } 2323 2324 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2325 const ConstantDataSequential *CDS, 2326 AsmPrinter &AP) { 2327 // See if we can aggregate this into a .fill, if so, emit it as such. 2328 int Value = isRepeatedByteSequence(CDS, DL); 2329 if (Value != -1) { 2330 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2331 // Don't emit a 1-byte object as a .fill. 2332 if (Bytes > 1) 2333 return AP.OutStreamer->emitFill(Bytes, Value); 2334 } 2335 2336 // If this can be emitted with .ascii/.asciz, emit it as such. 2337 if (CDS->isString()) 2338 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2339 2340 // Otherwise, emit the values in successive locations. 2341 unsigned ElementByteSize = CDS->getElementByteSize(); 2342 if (isa<IntegerType>(CDS->getElementType())) { 2343 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2344 if (AP.isVerbose()) 2345 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2346 CDS->getElementAsInteger(i)); 2347 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2348 ElementByteSize); 2349 } 2350 } else { 2351 Type *ET = CDS->getElementType(); 2352 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2353 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2354 } 2355 2356 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2357 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2358 CDS->getNumElements(); 2359 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2360 if (unsigned Padding = Size - EmittedSize) 2361 AP.OutStreamer->EmitZeros(Padding); 2362 } 2363 2364 static void emitGlobalConstantArray(const DataLayout &DL, 2365 const ConstantArray *CA, AsmPrinter &AP, 2366 const Constant *BaseCV, uint64_t Offset) { 2367 // See if we can aggregate some values. Make sure it can be 2368 // represented as a series of bytes of the constant value. 2369 int Value = isRepeatedByteSequence(CA, DL); 2370 2371 if (Value != -1) { 2372 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2373 AP.OutStreamer->emitFill(Bytes, Value); 2374 } 2375 else { 2376 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2377 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2378 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2379 } 2380 } 2381 } 2382 2383 static void emitGlobalConstantVector(const DataLayout &DL, 2384 const ConstantVector *CV, AsmPrinter &AP) { 2385 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2386 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2387 2388 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2389 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2390 CV->getType()->getNumElements(); 2391 if (unsigned Padding = Size - EmittedSize) 2392 AP.OutStreamer->EmitZeros(Padding); 2393 } 2394 2395 static void emitGlobalConstantStruct(const DataLayout &DL, 2396 const ConstantStruct *CS, AsmPrinter &AP, 2397 const Constant *BaseCV, uint64_t Offset) { 2398 // Print the fields in successive locations. Pad to align if needed! 2399 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2400 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2401 uint64_t SizeSoFar = 0; 2402 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2403 const Constant *Field = CS->getOperand(i); 2404 2405 // Print the actual field value. 2406 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2407 2408 // Check if padding is needed and insert one or more 0s. 2409 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2410 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2411 - Layout->getElementOffset(i)) - FieldSize; 2412 SizeSoFar += FieldSize + PadSize; 2413 2414 // Insert padding - this may include padding to increase the size of the 2415 // current field up to the ABI size (if the struct is not packed) as well 2416 // as padding to ensure that the next field starts at the right offset. 2417 AP.OutStreamer->EmitZeros(PadSize); 2418 } 2419 assert(SizeSoFar == Layout->getSizeInBytes() && 2420 "Layout of constant struct may be incorrect!"); 2421 } 2422 2423 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2424 APInt API = APF.bitcastToAPInt(); 2425 2426 // First print a comment with what we think the original floating-point value 2427 // should have been. 2428 if (AP.isVerbose()) { 2429 SmallString<8> StrVal; 2430 APF.toString(StrVal); 2431 2432 if (ET) 2433 ET->print(AP.OutStreamer->GetCommentOS()); 2434 else 2435 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2436 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2437 } 2438 2439 // Now iterate through the APInt chunks, emitting them in endian-correct 2440 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2441 // floats). 2442 unsigned NumBytes = API.getBitWidth() / 8; 2443 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2444 const uint64_t *p = API.getRawData(); 2445 2446 // PPC's long double has odd notions of endianness compared to how LLVM 2447 // handles it: p[0] goes first for *big* endian on PPC. 2448 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2449 int Chunk = API.getNumWords() - 1; 2450 2451 if (TrailingBytes) 2452 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2453 2454 for (; Chunk >= 0; --Chunk) 2455 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2456 } else { 2457 unsigned Chunk; 2458 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2459 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2460 2461 if (TrailingBytes) 2462 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2463 } 2464 2465 // Emit the tail padding for the long double. 2466 const DataLayout &DL = AP.getDataLayout(); 2467 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2468 } 2469 2470 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2471 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2472 } 2473 2474 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2475 const DataLayout &DL = AP.getDataLayout(); 2476 unsigned BitWidth = CI->getBitWidth(); 2477 2478 // Copy the value as we may massage the layout for constants whose bit width 2479 // is not a multiple of 64-bits. 2480 APInt Realigned(CI->getValue()); 2481 uint64_t ExtraBits = 0; 2482 unsigned ExtraBitsSize = BitWidth & 63; 2483 2484 if (ExtraBitsSize) { 2485 // The bit width of the data is not a multiple of 64-bits. 2486 // The extra bits are expected to be at the end of the chunk of the memory. 2487 // Little endian: 2488 // * Nothing to be done, just record the extra bits to emit. 2489 // Big endian: 2490 // * Record the extra bits to emit. 2491 // * Realign the raw data to emit the chunks of 64-bits. 2492 if (DL.isBigEndian()) { 2493 // Basically the structure of the raw data is a chunk of 64-bits cells: 2494 // 0 1 BitWidth / 64 2495 // [chunk1][chunk2] ... [chunkN]. 2496 // The most significant chunk is chunkN and it should be emitted first. 2497 // However, due to the alignment issue chunkN contains useless bits. 2498 // Realign the chunks so that they contain only useless information: 2499 // ExtraBits 0 1 (BitWidth / 64) - 1 2500 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2501 ExtraBits = Realigned.getRawData()[0] & 2502 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2503 Realigned.lshrInPlace(ExtraBitsSize); 2504 } else 2505 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2506 } 2507 2508 // We don't expect assemblers to support integer data directives 2509 // for more than 64 bits, so we emit the data in at most 64-bit 2510 // quantities at a time. 2511 const uint64_t *RawData = Realigned.getRawData(); 2512 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2513 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2514 AP.OutStreamer->EmitIntValue(Val, 8); 2515 } 2516 2517 if (ExtraBitsSize) { 2518 // Emit the extra bits after the 64-bits chunks. 2519 2520 // Emit a directive that fills the expected size. 2521 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2522 Size -= (BitWidth / 64) * 8; 2523 assert(Size && Size * 8 >= ExtraBitsSize && 2524 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2525 == ExtraBits && "Directive too small for extra bits."); 2526 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2527 } 2528 } 2529 2530 /// Transform a not absolute MCExpr containing a reference to a GOT 2531 /// equivalent global, by a target specific GOT pc relative access to the 2532 /// final symbol. 2533 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2534 const Constant *BaseCst, 2535 uint64_t Offset) { 2536 // The global @foo below illustrates a global that uses a got equivalent. 2537 // 2538 // @bar = global i32 42 2539 // @gotequiv = private unnamed_addr constant i32* @bar 2540 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2541 // i64 ptrtoint (i32* @foo to i64)) 2542 // to i32) 2543 // 2544 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2545 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2546 // form: 2547 // 2548 // foo = cstexpr, where 2549 // cstexpr := <gotequiv> - "." + <cst> 2550 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2551 // 2552 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2553 // 2554 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2555 // gotpcrelcst := <offset from @foo base> + <cst> 2556 MCValue MV; 2557 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2558 return; 2559 const MCSymbolRefExpr *SymA = MV.getSymA(); 2560 if (!SymA) 2561 return; 2562 2563 // Check that GOT equivalent symbol is cached. 2564 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2565 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2566 return; 2567 2568 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2569 if (!BaseGV) 2570 return; 2571 2572 // Check for a valid base symbol 2573 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2574 const MCSymbolRefExpr *SymB = MV.getSymB(); 2575 2576 if (!SymB || BaseSym != &SymB->getSymbol()) 2577 return; 2578 2579 // Make sure to match: 2580 // 2581 // gotpcrelcst := <offset from @foo base> + <cst> 2582 // 2583 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2584 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2585 // if the target knows how to encode it. 2586 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2587 if (GOTPCRelCst < 0) 2588 return; 2589 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2590 return; 2591 2592 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2593 // 2594 // bar: 2595 // .long 42 2596 // gotequiv: 2597 // .quad bar 2598 // foo: 2599 // .long gotequiv - "." + <cst> 2600 // 2601 // is replaced by the target specific equivalent to: 2602 // 2603 // bar: 2604 // .long 42 2605 // foo: 2606 // .long bar@GOTPCREL+<gotpcrelcst> 2607 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2608 const GlobalVariable *GV = Result.first; 2609 int NumUses = (int)Result.second; 2610 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2611 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2612 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2613 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2614 2615 // Update GOT equivalent usage information 2616 --NumUses; 2617 if (NumUses >= 0) 2618 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2619 } 2620 2621 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2622 AsmPrinter &AP, const Constant *BaseCV, 2623 uint64_t Offset) { 2624 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2625 2626 // Globals with sub-elements such as combinations of arrays and structs 2627 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2628 // constant symbol base and the current position with BaseCV and Offset. 2629 if (!BaseCV && CV->hasOneUse()) 2630 BaseCV = dyn_cast<Constant>(CV->user_back()); 2631 2632 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2633 return AP.OutStreamer->EmitZeros(Size); 2634 2635 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2636 switch (Size) { 2637 case 1: 2638 case 2: 2639 case 4: 2640 case 8: 2641 if (AP.isVerbose()) 2642 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2643 CI->getZExtValue()); 2644 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2645 return; 2646 default: 2647 emitGlobalConstantLargeInt(CI, AP); 2648 return; 2649 } 2650 } 2651 2652 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2653 return emitGlobalConstantFP(CFP, AP); 2654 2655 if (isa<ConstantPointerNull>(CV)) { 2656 AP.OutStreamer->EmitIntValue(0, Size); 2657 return; 2658 } 2659 2660 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2661 return emitGlobalConstantDataSequential(DL, CDS, AP); 2662 2663 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2664 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2665 2666 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2667 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2668 2669 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2670 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2671 // vectors). 2672 if (CE->getOpcode() == Instruction::BitCast) 2673 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2674 2675 if (Size > 8) { 2676 // If the constant expression's size is greater than 64-bits, then we have 2677 // to emit the value in chunks. Try to constant fold the value and emit it 2678 // that way. 2679 Constant *New = ConstantFoldConstant(CE, DL); 2680 if (New && New != CE) 2681 return emitGlobalConstantImpl(DL, New, AP); 2682 } 2683 } 2684 2685 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2686 return emitGlobalConstantVector(DL, V, AP); 2687 2688 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2689 // thread the streamer with EmitValue. 2690 const MCExpr *ME = AP.lowerConstant(CV); 2691 2692 // Since lowerConstant already folded and got rid of all IR pointer and 2693 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2694 // directly. 2695 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2696 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2697 2698 AP.OutStreamer->EmitValue(ME, Size); 2699 } 2700 2701 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2702 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2703 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2704 if (Size) 2705 emitGlobalConstantImpl(DL, CV, *this); 2706 else if (MAI->hasSubsectionsViaSymbols()) { 2707 // If the global has zero size, emit a single byte so that two labels don't 2708 // look like they are at the same location. 2709 OutStreamer->EmitIntValue(0, 1); 2710 } 2711 } 2712 2713 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2714 // Target doesn't support this yet! 2715 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2716 } 2717 2718 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2719 if (Offset > 0) 2720 OS << '+' << Offset; 2721 else if (Offset < 0) 2722 OS << Offset; 2723 } 2724 2725 //===----------------------------------------------------------------------===// 2726 // Symbol Lowering Routines. 2727 //===----------------------------------------------------------------------===// 2728 2729 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2730 return OutContext.createTempSymbol(Name, true); 2731 } 2732 2733 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2734 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2735 } 2736 2737 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2738 return MMI->getAddrLabelSymbol(BB); 2739 } 2740 2741 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2742 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2743 if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) { 2744 const MachineConstantPoolEntry &CPE = 2745 MF->getConstantPool()->getConstants()[CPID]; 2746 if (!CPE.isMachineConstantPoolEntry()) { 2747 const DataLayout &DL = MF->getDataLayout(); 2748 SectionKind Kind = CPE.getSectionKind(&DL); 2749 const Constant *C = CPE.Val.ConstVal; 2750 unsigned Align = CPE.Alignment; 2751 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2752 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2753 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2754 if (Sym->isUndefined()) 2755 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2756 return Sym; 2757 } 2758 } 2759 } 2760 } 2761 2762 const DataLayout &DL = getDataLayout(); 2763 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2764 "CPI" + Twine(getFunctionNumber()) + "_" + 2765 Twine(CPID)); 2766 } 2767 2768 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2769 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2770 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2771 } 2772 2773 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2774 /// FIXME: privatize to AsmPrinter. 2775 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2776 const DataLayout &DL = getDataLayout(); 2777 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2778 Twine(getFunctionNumber()) + "_" + 2779 Twine(UID) + "_set_" + Twine(MBBID)); 2780 } 2781 2782 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2783 StringRef Suffix) const { 2784 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2785 } 2786 2787 /// Return the MCSymbol for the specified ExternalSymbol. 2788 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2789 SmallString<60> NameStr; 2790 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2791 return OutContext.getOrCreateSymbol(NameStr); 2792 } 2793 2794 /// PrintParentLoopComment - Print comments about parent loops of this one. 2795 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2796 unsigned FunctionNumber) { 2797 if (!Loop) return; 2798 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2799 OS.indent(Loop->getLoopDepth()*2) 2800 << "Parent Loop BB" << FunctionNumber << "_" 2801 << Loop->getHeader()->getNumber() 2802 << " Depth=" << Loop->getLoopDepth() << '\n'; 2803 } 2804 2805 /// PrintChildLoopComment - Print comments about child loops within 2806 /// the loop for this basic block, with nesting. 2807 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2808 unsigned FunctionNumber) { 2809 // Add child loop information 2810 for (const MachineLoop *CL : *Loop) { 2811 OS.indent(CL->getLoopDepth()*2) 2812 << "Child Loop BB" << FunctionNumber << "_" 2813 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2814 << '\n'; 2815 PrintChildLoopComment(OS, CL, FunctionNumber); 2816 } 2817 } 2818 2819 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2820 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2821 const MachineLoopInfo *LI, 2822 const AsmPrinter &AP) { 2823 // Add loop depth information 2824 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2825 if (!Loop) return; 2826 2827 MachineBasicBlock *Header = Loop->getHeader(); 2828 assert(Header && "No header for loop"); 2829 2830 // If this block is not a loop header, just print out what is the loop header 2831 // and return. 2832 if (Header != &MBB) { 2833 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2834 Twine(AP.getFunctionNumber())+"_" + 2835 Twine(Loop->getHeader()->getNumber())+ 2836 " Depth="+Twine(Loop->getLoopDepth())); 2837 return; 2838 } 2839 2840 // Otherwise, it is a loop header. Print out information about child and 2841 // parent loops. 2842 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2843 2844 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2845 2846 OS << "=>"; 2847 OS.indent(Loop->getLoopDepth()*2-2); 2848 2849 OS << "This "; 2850 if (Loop->empty()) 2851 OS << "Inner "; 2852 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2853 2854 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2855 } 2856 2857 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2858 MCCodePaddingContext &Context) const { 2859 assert(MF != nullptr && "Machine function must be valid"); 2860 Context.IsPaddingActive = !MF->hasInlineAsm() && 2861 !MF->getFunction().optForSize() && 2862 TM.getOptLevel() != CodeGenOpt::None; 2863 Context.IsBasicBlockReachableViaFallthrough = 2864 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2865 MBB.pred_end(); 2866 Context.IsBasicBlockReachableViaBranch = 2867 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2868 } 2869 2870 /// EmitBasicBlockStart - This method prints the label for the specified 2871 /// MachineBasicBlock, an alignment (if present) and a comment describing 2872 /// it if appropriate. 2873 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2874 // End the previous funclet and start a new one. 2875 if (MBB.isEHFuncletEntry()) { 2876 for (const HandlerInfo &HI : Handlers) { 2877 HI.Handler->endFunclet(); 2878 HI.Handler->beginFunclet(MBB); 2879 } 2880 } 2881 2882 // Emit an alignment directive for this block, if needed. 2883 if (unsigned Align = MBB.getAlignment()) 2884 EmitAlignment(Align); 2885 MCCodePaddingContext Context; 2886 setupCodePaddingContext(MBB, Context); 2887 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2888 2889 // If the block has its address taken, emit any labels that were used to 2890 // reference the block. It is possible that there is more than one label 2891 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2892 // the references were generated. 2893 if (MBB.hasAddressTaken()) { 2894 const BasicBlock *BB = MBB.getBasicBlock(); 2895 if (isVerbose()) 2896 OutStreamer->AddComment("Block address taken"); 2897 2898 // MBBs can have their address taken as part of CodeGen without having 2899 // their corresponding BB's address taken in IR 2900 if (BB->hasAddressTaken()) 2901 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2902 OutStreamer->EmitLabel(Sym); 2903 } 2904 2905 // Print some verbose block comments. 2906 if (isVerbose()) { 2907 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2908 if (BB->hasName()) { 2909 BB->printAsOperand(OutStreamer->GetCommentOS(), 2910 /*PrintType=*/false, BB->getModule()); 2911 OutStreamer->GetCommentOS() << '\n'; 2912 } 2913 } 2914 2915 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2916 emitBasicBlockLoopComments(MBB, MLI, *this); 2917 } 2918 2919 // Print the main label for the block. 2920 if (MBB.pred_empty() || 2921 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2922 if (isVerbose()) { 2923 // NOTE: Want this comment at start of line, don't emit with AddComment. 2924 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2925 false); 2926 } 2927 } else { 2928 OutStreamer->EmitLabel(MBB.getSymbol()); 2929 } 2930 } 2931 2932 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2933 MCCodePaddingContext Context; 2934 setupCodePaddingContext(MBB, Context); 2935 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2936 } 2937 2938 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2939 bool IsDefinition) const { 2940 MCSymbolAttr Attr = MCSA_Invalid; 2941 2942 switch (Visibility) { 2943 default: break; 2944 case GlobalValue::HiddenVisibility: 2945 if (IsDefinition) 2946 Attr = MAI->getHiddenVisibilityAttr(); 2947 else 2948 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2949 break; 2950 case GlobalValue::ProtectedVisibility: 2951 Attr = MAI->getProtectedVisibilityAttr(); 2952 break; 2953 } 2954 2955 if (Attr != MCSA_Invalid) 2956 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2957 } 2958 2959 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2960 /// exactly one predecessor and the control transfer mechanism between 2961 /// the predecessor and this block is a fall-through. 2962 bool AsmPrinter:: 2963 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2964 // If this is a landing pad, it isn't a fall through. If it has no preds, 2965 // then nothing falls through to it. 2966 if (MBB->isEHPad() || MBB->pred_empty()) 2967 return false; 2968 2969 // If there isn't exactly one predecessor, it can't be a fall through. 2970 if (MBB->pred_size() > 1) 2971 return false; 2972 2973 // The predecessor has to be immediately before this block. 2974 MachineBasicBlock *Pred = *MBB->pred_begin(); 2975 if (!Pred->isLayoutSuccessor(MBB)) 2976 return false; 2977 2978 // If the block is completely empty, then it definitely does fall through. 2979 if (Pred->empty()) 2980 return true; 2981 2982 // Check the terminators in the previous blocks 2983 for (const auto &MI : Pred->terminators()) { 2984 // If it is not a simple branch, we are in a table somewhere. 2985 if (!MI.isBranch() || MI.isIndirectBranch()) 2986 return false; 2987 2988 // If we are the operands of one of the branches, this is not a fall 2989 // through. Note that targets with delay slots will usually bundle 2990 // terminators with the delay slot instruction. 2991 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2992 if (OP->isJTI()) 2993 return false; 2994 if (OP->isMBB() && OP->getMBB() == MBB) 2995 return false; 2996 } 2997 } 2998 2999 return true; 3000 } 3001 3002 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3003 if (!S.usesMetadata()) 3004 return nullptr; 3005 3006 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3007 gcp_map_type::iterator GCPI = GCMap.find(&S); 3008 if (GCPI != GCMap.end()) 3009 return GCPI->second.get(); 3010 3011 auto Name = S.getName(); 3012 3013 for (GCMetadataPrinterRegistry::iterator 3014 I = GCMetadataPrinterRegistry::begin(), 3015 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3016 if (Name == I->getName()) { 3017 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3018 GMP->S = &S; 3019 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3020 return IterBool.first->second.get(); 3021 } 3022 3023 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3024 } 3025 3026 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3027 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3028 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3029 bool NeedsDefault = false; 3030 if (MI->begin() == MI->end()) 3031 // No GC strategy, use the default format. 3032 NeedsDefault = true; 3033 else 3034 for (auto &I : *MI) { 3035 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3036 if (MP->emitStackMaps(SM, *this)) 3037 continue; 3038 // The strategy doesn't have printer or doesn't emit custom stack maps. 3039 // Use the default format. 3040 NeedsDefault = true; 3041 } 3042 3043 if (NeedsDefault) 3044 SM.serializeToStackMapSection(); 3045 } 3046 3047 /// Pin vtable to this file. 3048 AsmPrinterHandler::~AsmPrinterHandler() = default; 3049 3050 void AsmPrinterHandler::markFunctionEnd() {} 3051 3052 // In the binary's "xray_instr_map" section, an array of these function entries 3053 // describes each instrumentation point. When XRay patches your code, the index 3054 // into this table will be given to your handler as a patch point identifier. 3055 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3056 const MCSymbol *CurrentFnSym) const { 3057 Out->EmitSymbolValue(Sled, Bytes); 3058 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3059 auto Kind8 = static_cast<uint8_t>(Kind); 3060 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3061 Out->EmitBinaryData( 3062 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3063 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3064 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3065 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3066 Out->EmitZeros(Padding); 3067 } 3068 3069 void AsmPrinter::emitXRayTable() { 3070 if (Sleds.empty()) 3071 return; 3072 3073 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3074 const Function &F = MF->getFunction(); 3075 MCSection *InstMap = nullptr; 3076 MCSection *FnSledIndex = nullptr; 3077 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3078 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3079 assert(Associated != nullptr); 3080 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3081 std::string GroupName; 3082 if (F.hasComdat()) { 3083 Flags |= ELF::SHF_GROUP; 3084 GroupName = F.getComdat()->getName(); 3085 } 3086 3087 auto UniqueID = ++XRayFnUniqueID; 3088 InstMap = 3089 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3090 GroupName, UniqueID, Associated); 3091 FnSledIndex = 3092 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3093 GroupName, UniqueID, Associated); 3094 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3095 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3096 SectionKind::getReadOnlyWithRel()); 3097 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3098 SectionKind::getReadOnlyWithRel()); 3099 } else { 3100 llvm_unreachable("Unsupported target"); 3101 } 3102 3103 auto WordSizeBytes = MAI->getCodePointerSize(); 3104 3105 // Now we switch to the instrumentation map section. Because this is done 3106 // per-function, we are able to create an index entry that will represent the 3107 // range of sleds associated with a function. 3108 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3109 OutStreamer->SwitchSection(InstMap); 3110 OutStreamer->EmitLabel(SledsStart); 3111 for (const auto &Sled : Sleds) 3112 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3113 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3114 OutStreamer->EmitLabel(SledsEnd); 3115 3116 // We then emit a single entry in the index per function. We use the symbols 3117 // that bound the instrumentation map as the range for a specific function. 3118 // Each entry here will be 2 * word size aligned, as we're writing down two 3119 // pointers. This should work for both 32-bit and 64-bit platforms. 3120 OutStreamer->SwitchSection(FnSledIndex); 3121 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3122 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3123 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3124 OutStreamer->SwitchSection(PrevSection); 3125 Sleds.clear(); 3126 } 3127 3128 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3129 SledKind Kind, uint8_t Version) { 3130 const Function &F = MI.getMF()->getFunction(); 3131 auto Attr = F.getFnAttribute("function-instrument"); 3132 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3133 bool AlwaysInstrument = 3134 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3135 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3136 Kind = SledKind::LOG_ARGS_ENTER; 3137 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3138 AlwaysInstrument, &F, Version}); 3139 } 3140 3141 uint16_t AsmPrinter::getDwarfVersion() const { 3142 return OutStreamer->getContext().getDwarfVersion(); 3143 } 3144 3145 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3146 OutStreamer->getContext().setDwarfVersion(Version); 3147 } 3148