1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines several CodeGen-specific LLVM IR analysis utilities. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/MachineModuleInfo.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetLowering.h" 29 #include "llvm/Target/TargetSubtargetInfo.h" 30 #include "llvm/Transforms/Utils/GlobalStatus.h" 31 32 using namespace llvm; 33 34 /// Compute the linearized index of a member in a nested aggregate/struct/array 35 /// by recursing and accumulating CurIndex as long as there are indices in the 36 /// index list. 37 unsigned llvm::ComputeLinearIndex(Type *Ty, 38 const unsigned *Indices, 39 const unsigned *IndicesEnd, 40 unsigned CurIndex) { 41 // Base case: We're done. 42 if (Indices && Indices == IndicesEnd) 43 return CurIndex; 44 45 // Given a struct type, recursively traverse the elements. 46 if (StructType *STy = dyn_cast<StructType>(Ty)) { 47 for (StructType::element_iterator EB = STy->element_begin(), 48 EI = EB, 49 EE = STy->element_end(); 50 EI != EE; ++EI) { 51 if (Indices && *Indices == unsigned(EI - EB)) 52 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 53 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 54 } 55 assert(!Indices && "Unexpected out of bound"); 56 return CurIndex; 57 } 58 // Given an array type, recursively traverse the elements. 59 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 60 Type *EltTy = ATy->getElementType(); 61 unsigned NumElts = ATy->getNumElements(); 62 // Compute the Linear offset when jumping one element of the array 63 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 64 if (Indices) { 65 assert(*Indices < NumElts && "Unexpected out of bound"); 66 // If the indice is inside the array, compute the index to the requested 67 // elt and recurse inside the element with the end of the indices list 68 CurIndex += EltLinearOffset* *Indices; 69 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 70 } 71 CurIndex += EltLinearOffset*NumElts; 72 return CurIndex; 73 } 74 // We haven't found the type we're looking for, so keep searching. 75 return CurIndex + 1; 76 } 77 78 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 79 /// EVTs that represent all the individual underlying 80 /// non-aggregate types that comprise it. 81 /// 82 /// If Offsets is non-null, it points to a vector to be filled in 83 /// with the in-memory offsets of each of the individual values. 84 /// 85 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 86 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 87 SmallVectorImpl<uint64_t> *Offsets, 88 uint64_t StartingOffset) { 89 // Given a struct type, recursively traverse the elements. 90 if (StructType *STy = dyn_cast<StructType>(Ty)) { 91 const StructLayout *SL = DL.getStructLayout(STy); 92 for (StructType::element_iterator EB = STy->element_begin(), 93 EI = EB, 94 EE = STy->element_end(); 95 EI != EE; ++EI) 96 ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets, 97 StartingOffset + SL->getElementOffset(EI - EB)); 98 return; 99 } 100 // Given an array type, recursively traverse the elements. 101 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 102 Type *EltTy = ATy->getElementType(); 103 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 104 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 105 ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets, 106 StartingOffset + i * EltSize); 107 return; 108 } 109 // Interpret void as zero return values. 110 if (Ty->isVoidTy()) 111 return; 112 // Base case: we can get an EVT for this LLVM IR type. 113 ValueVTs.push_back(TLI.getValueType(DL, Ty)); 114 if (Offsets) 115 Offsets->push_back(StartingOffset); 116 } 117 118 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 119 GlobalValue *llvm::ExtractTypeInfo(Value *V) { 120 V = V->stripPointerCasts(); 121 GlobalValue *GV = dyn_cast<GlobalValue>(V); 122 GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 123 124 if (Var && Var->getName() == "llvm.eh.catch.all.value") { 125 assert(Var->hasInitializer() && 126 "The EH catch-all value must have an initializer"); 127 Value *Init = Var->getInitializer(); 128 GV = dyn_cast<GlobalValue>(Init); 129 if (!GV) V = cast<ConstantPointerNull>(Init); 130 } 131 132 assert((GV || isa<ConstantPointerNull>(V)) && 133 "TypeInfo must be a global variable or NULL"); 134 return GV; 135 } 136 137 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 138 /// processed uses a memory 'm' constraint. 139 bool 140 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 141 const TargetLowering &TLI) { 142 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 143 InlineAsm::ConstraintInfo &CI = CInfos[i]; 144 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 145 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 146 if (CType == TargetLowering::C_Memory) 147 return true; 148 } 149 150 // Indirect operand accesses access memory. 151 if (CI.isIndirect) 152 return true; 153 } 154 155 return false; 156 } 157 158 /// getFCmpCondCode - Return the ISD condition code corresponding to 159 /// the given LLVM IR floating-point condition code. This includes 160 /// consideration of global floating-point math flags. 161 /// 162 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 163 switch (Pred) { 164 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 165 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 166 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 167 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 168 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 169 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 170 case FCmpInst::FCMP_ONE: return ISD::SETONE; 171 case FCmpInst::FCMP_ORD: return ISD::SETO; 172 case FCmpInst::FCMP_UNO: return ISD::SETUO; 173 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 174 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 175 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 176 case FCmpInst::FCMP_ULT: return ISD::SETULT; 177 case FCmpInst::FCMP_ULE: return ISD::SETULE; 178 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 179 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 180 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 181 } 182 } 183 184 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 185 switch (CC) { 186 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 187 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 188 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 189 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 190 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 191 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 192 default: return CC; 193 } 194 } 195 196 /// getICmpCondCode - Return the ISD condition code corresponding to 197 /// the given LLVM IR integer condition code. 198 /// 199 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 200 switch (Pred) { 201 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 202 case ICmpInst::ICMP_NE: return ISD::SETNE; 203 case ICmpInst::ICMP_SLE: return ISD::SETLE; 204 case ICmpInst::ICMP_ULE: return ISD::SETULE; 205 case ICmpInst::ICMP_SGE: return ISD::SETGE; 206 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 207 case ICmpInst::ICMP_SLT: return ISD::SETLT; 208 case ICmpInst::ICMP_ULT: return ISD::SETULT; 209 case ICmpInst::ICMP_SGT: return ISD::SETGT; 210 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 211 default: 212 llvm_unreachable("Invalid ICmp predicate opcode!"); 213 } 214 } 215 216 static bool isNoopBitcast(Type *T1, Type *T2, 217 const TargetLoweringBase& TLI) { 218 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 219 (isa<VectorType>(T1) && isa<VectorType>(T2) && 220 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 221 } 222 223 /// Look through operations that will be free to find the earliest source of 224 /// this value. 225 /// 226 /// @param ValLoc If V has aggegate type, we will be interested in a particular 227 /// scalar component. This records its address; the reverse of this list gives a 228 /// sequence of indices appropriate for an extractvalue to locate the important 229 /// value. This value is updated during the function and on exit will indicate 230 /// similar information for the Value returned. 231 /// 232 /// @param DataBits If this function looks through truncate instructions, this 233 /// will record the smallest size attained. 234 static const Value *getNoopInput(const Value *V, 235 SmallVectorImpl<unsigned> &ValLoc, 236 unsigned &DataBits, 237 const TargetLoweringBase &TLI, 238 const DataLayout &DL) { 239 while (true) { 240 // Try to look through V1; if V1 is not an instruction, it can't be looked 241 // through. 242 const Instruction *I = dyn_cast<Instruction>(V); 243 if (!I || I->getNumOperands() == 0) return V; 244 const Value *NoopInput = nullptr; 245 246 Value *Op = I->getOperand(0); 247 if (isa<BitCastInst>(I)) { 248 // Look through truly no-op bitcasts. 249 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 250 NoopInput = Op; 251 } else if (isa<GetElementPtrInst>(I)) { 252 // Look through getelementptr 253 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 254 NoopInput = Op; 255 } else if (isa<IntToPtrInst>(I)) { 256 // Look through inttoptr. 257 // Make sure this isn't a truncating or extending cast. We could 258 // support this eventually, but don't bother for now. 259 if (!isa<VectorType>(I->getType()) && 260 DL.getPointerSizeInBits() == 261 cast<IntegerType>(Op->getType())->getBitWidth()) 262 NoopInput = Op; 263 } else if (isa<PtrToIntInst>(I)) { 264 // Look through ptrtoint. 265 // Make sure this isn't a truncating or extending cast. We could 266 // support this eventually, but don't bother for now. 267 if (!isa<VectorType>(I->getType()) && 268 DL.getPointerSizeInBits() == 269 cast<IntegerType>(I->getType())->getBitWidth()) 270 NoopInput = Op; 271 } else if (isa<TruncInst>(I) && 272 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 273 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); 274 NoopInput = Op; 275 } else if (auto CS = ImmutableCallSite(I)) { 276 const Value *ReturnedOp = CS.getReturnedArgOperand(); 277 if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) 278 NoopInput = ReturnedOp; 279 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 280 // Value may come from either the aggregate or the scalar 281 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 282 if (ValLoc.size() >= InsertLoc.size() && 283 std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 284 // The type being inserted is a nested sub-type of the aggregate; we 285 // have to remove those initial indices to get the location we're 286 // interested in for the operand. 287 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 288 NoopInput = IVI->getInsertedValueOperand(); 289 } else { 290 // The struct we're inserting into has the value we're interested in, no 291 // change of address. 292 NoopInput = Op; 293 } 294 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 295 // The part we're interested in will inevitably be some sub-section of the 296 // previous aggregate. Combine the two paths to obtain the true address of 297 // our element. 298 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 299 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 300 NoopInput = Op; 301 } 302 // Terminate if we couldn't find anything to look through. 303 if (!NoopInput) 304 return V; 305 306 V = NoopInput; 307 } 308 } 309 310 /// Return true if this scalar return value only has bits discarded on its path 311 /// from the "tail call" to the "ret". This includes the obvious noop 312 /// instructions handled by getNoopInput above as well as free truncations (or 313 /// extensions prior to the call). 314 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 315 SmallVectorImpl<unsigned> &RetIndices, 316 SmallVectorImpl<unsigned> &CallIndices, 317 bool AllowDifferingSizes, 318 const TargetLoweringBase &TLI, 319 const DataLayout &DL) { 320 321 // Trace the sub-value needed by the return value as far back up the graph as 322 // possible, in the hope that it will intersect with the value produced by the 323 // call. In the simple case with no "returned" attribute, the hope is actually 324 // that we end up back at the tail call instruction itself. 325 unsigned BitsRequired = UINT_MAX; 326 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 327 328 // If this slot in the value returned is undef, it doesn't matter what the 329 // call puts there, it'll be fine. 330 if (isa<UndefValue>(RetVal)) 331 return true; 332 333 // Now do a similar search up through the graph to find where the value 334 // actually returned by the "tail call" comes from. In the simple case without 335 // a "returned" attribute, the search will be blocked immediately and the loop 336 // a Noop. 337 unsigned BitsProvided = UINT_MAX; 338 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 339 340 // There's no hope if we can't actually trace them to (the same part of!) the 341 // same value. 342 if (CallVal != RetVal || CallIndices != RetIndices) 343 return false; 344 345 // However, intervening truncates may have made the call non-tail. Make sure 346 // all the bits that are needed by the "ret" have been provided by the "tail 347 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 348 // extensions too. 349 if (BitsProvided < BitsRequired || 350 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 351 return false; 352 353 return true; 354 } 355 356 /// For an aggregate type, determine whether a given index is within bounds or 357 /// not. 358 static bool indexReallyValid(CompositeType *T, unsigned Idx) { 359 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 360 return Idx < AT->getNumElements(); 361 362 return Idx < cast<StructType>(T)->getNumElements(); 363 } 364 365 /// Move the given iterators to the next leaf type in depth first traversal. 366 /// 367 /// Performs a depth-first traversal of the type as specified by its arguments, 368 /// stopping at the next leaf node (which may be a legitimate scalar type or an 369 /// empty struct or array). 370 /// 371 /// @param SubTypes List of the partial components making up the type from 372 /// outermost to innermost non-empty aggregate. The element currently 373 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 374 /// 375 /// @param Path Set of extractvalue indices leading from the outermost type 376 /// (SubTypes[0]) to the leaf node currently represented. 377 /// 378 /// @returns true if a new type was found, false otherwise. Calling this 379 /// function again on a finished iterator will repeatedly return 380 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 381 /// aggregate or a non-aggregate 382 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 383 SmallVectorImpl<unsigned> &Path) { 384 // First march back up the tree until we can successfully increment one of the 385 // coordinates in Path. 386 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 387 Path.pop_back(); 388 SubTypes.pop_back(); 389 } 390 391 // If we reached the top, then the iterator is done. 392 if (Path.empty()) 393 return false; 394 395 // We know there's *some* valid leaf now, so march back down the tree picking 396 // out the left-most element at each node. 397 ++Path.back(); 398 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 399 while (DeeperType->isAggregateType()) { 400 CompositeType *CT = cast<CompositeType>(DeeperType); 401 if (!indexReallyValid(CT, 0)) 402 return true; 403 404 SubTypes.push_back(CT); 405 Path.push_back(0); 406 407 DeeperType = CT->getTypeAtIndex(0U); 408 } 409 410 return true; 411 } 412 413 /// Find the first non-empty, scalar-like type in Next and setup the iterator 414 /// components. 415 /// 416 /// Assuming Next is an aggregate of some kind, this function will traverse the 417 /// tree from left to right (i.e. depth-first) looking for the first 418 /// non-aggregate type which will play a role in function return. 419 /// 420 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 421 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 422 /// i32 in that type. 423 static bool firstRealType(Type *Next, 424 SmallVectorImpl<CompositeType *> &SubTypes, 425 SmallVectorImpl<unsigned> &Path) { 426 // First initialise the iterator components to the first "leaf" node 427 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 428 // despite nominally being an aggregate). 429 while (Next->isAggregateType() && 430 indexReallyValid(cast<CompositeType>(Next), 0)) { 431 SubTypes.push_back(cast<CompositeType>(Next)); 432 Path.push_back(0); 433 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 434 } 435 436 // If there's no Path now, Next was originally scalar already (or empty 437 // leaf). We're done. 438 if (Path.empty()) 439 return true; 440 441 // Otherwise, use normal iteration to keep looking through the tree until we 442 // find a non-aggregate type. 443 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 444 if (!advanceToNextLeafType(SubTypes, Path)) 445 return false; 446 } 447 448 return true; 449 } 450 451 /// Set the iterator data-structures to the next non-empty, non-aggregate 452 /// subtype. 453 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 454 SmallVectorImpl<unsigned> &Path) { 455 do { 456 if (!advanceToNextLeafType(SubTypes, Path)) 457 return false; 458 459 assert(!Path.empty() && "found a leaf but didn't set the path?"); 460 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 461 462 return true; 463 } 464 465 466 /// Test if the given instruction is in a position to be optimized 467 /// with a tail-call. This roughly means that it's in a block with 468 /// a return and there's nothing that needs to be scheduled 469 /// between it and the return. 470 /// 471 /// This function only tests target-independent requirements. 472 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { 473 const Instruction *I = CS.getInstruction(); 474 const BasicBlock *ExitBB = I->getParent(); 475 const TerminatorInst *Term = ExitBB->getTerminator(); 476 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 477 478 // The block must end in a return statement or unreachable. 479 // 480 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 481 // an unreachable, for now. The way tailcall optimization is currently 482 // implemented means it will add an epilogue followed by a jump. That is 483 // not profitable. Also, if the callee is a special function (e.g. 484 // longjmp on x86), it can end up causing miscompilation that has not 485 // been fully understood. 486 if (!Ret && 487 (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) 488 return false; 489 490 // If I will have a chain, make sure no other instruction that will have a 491 // chain interposes between I and the return. 492 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 493 !isSafeToSpeculativelyExecute(I)) 494 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 495 if (&*BBI == I) 496 break; 497 // Debug info intrinsics do not get in the way of tail call optimization. 498 if (isa<DbgInfoIntrinsic>(BBI)) 499 continue; 500 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 501 !isSafeToSpeculativelyExecute(&*BBI)) 502 return false; 503 } 504 505 const Function *F = ExitBB->getParent(); 506 return returnTypeIsEligibleForTailCall( 507 F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 508 } 509 510 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, 511 const ReturnInst *Ret, 512 const TargetLoweringBase &TLI, 513 bool *AllowDifferingSizes) { 514 // ADS may be null, so don't write to it directly. 515 bool DummyADS; 516 bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; 517 ADS = true; 518 519 AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex); 520 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 521 AttributeList::ReturnIndex); 522 523 // Noalias is completely benign as far as calling convention goes, it 524 // shouldn't affect whether the call is a tail call. 525 CallerAttrs.removeAttribute(Attribute::NoAlias); 526 CalleeAttrs.removeAttribute(Attribute::NoAlias); 527 528 if (CallerAttrs.contains(Attribute::ZExt)) { 529 if (!CalleeAttrs.contains(Attribute::ZExt)) 530 return false; 531 532 ADS = false; 533 CallerAttrs.removeAttribute(Attribute::ZExt); 534 CalleeAttrs.removeAttribute(Attribute::ZExt); 535 } else if (CallerAttrs.contains(Attribute::SExt)) { 536 if (!CalleeAttrs.contains(Attribute::SExt)) 537 return false; 538 539 ADS = false; 540 CallerAttrs.removeAttribute(Attribute::SExt); 541 CalleeAttrs.removeAttribute(Attribute::SExt); 542 } 543 544 // If they're still different, there's some facet we don't understand 545 // (currently only "inreg", but in future who knows). It may be OK but the 546 // only safe option is to reject the tail call. 547 return CallerAttrs == CalleeAttrs; 548 } 549 550 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 551 const Instruction *I, 552 const ReturnInst *Ret, 553 const TargetLoweringBase &TLI) { 554 // If the block ends with a void return or unreachable, it doesn't matter 555 // what the call's return type is. 556 if (!Ret || Ret->getNumOperands() == 0) return true; 557 558 // If the return value is undef, it doesn't matter what the call's 559 // return type is. 560 if (isa<UndefValue>(Ret->getOperand(0))) return true; 561 562 // Make sure the attributes attached to each return are compatible. 563 bool AllowDifferingSizes; 564 if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) 565 return false; 566 567 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 568 SmallVector<unsigned, 4> RetPath, CallPath; 569 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 570 571 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 572 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 573 574 // Nothing's actually returned, it doesn't matter what the callee put there 575 // it's a valid tail call. 576 if (RetEmpty) 577 return true; 578 579 // Iterate pairwise through each of the value types making up the tail call 580 // and the corresponding return. For each one we want to know whether it's 581 // essentially going directly from the tail call to the ret, via operations 582 // that end up not generating any code. 583 // 584 // We allow a certain amount of covariance here. For example it's permitted 585 // for the tail call to define more bits than the ret actually cares about 586 // (e.g. via a truncate). 587 do { 588 if (CallEmpty) { 589 // We've exhausted the values produced by the tail call instruction, the 590 // rest are essentially undef. The type doesn't really matter, but we need 591 // *something*. 592 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 593 CallVal = UndefValue::get(SlotType); 594 } 595 596 // The manipulations performed when we're looking through an insertvalue or 597 // an extractvalue would happen at the front of the RetPath list, so since 598 // we have to copy it anyway it's more efficient to create a reversed copy. 599 SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 600 SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 601 602 // Finally, we can check whether the value produced by the tail call at this 603 // index is compatible with the value we return. 604 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 605 AllowDifferingSizes, TLI, 606 F->getParent()->getDataLayout())) 607 return false; 608 609 CallEmpty = !nextRealType(CallSubTypes, CallPath); 610 } while(nextRealType(RetSubTypes, RetPath)); 611 612 return true; 613 } 614 615 static void collectFuncletMembers( 616 DenseMap<const MachineBasicBlock *, int> &FuncletMembership, int Funclet, 617 const MachineBasicBlock *MBB) { 618 SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; 619 while (!Worklist.empty()) { 620 const MachineBasicBlock *Visiting = Worklist.pop_back_val(); 621 // Don't follow blocks which start new funclets. 622 if (Visiting->isEHPad() && Visiting != MBB) 623 continue; 624 625 // Add this MBB to our funclet. 626 auto P = FuncletMembership.insert(std::make_pair(Visiting, Funclet)); 627 628 // Don't revisit blocks. 629 if (!P.second) { 630 assert(P.first->second == Funclet && "MBB is part of two funclets!"); 631 continue; 632 } 633 634 // Returns are boundaries where funclet transfer can occur, don't follow 635 // successors. 636 if (Visiting->isReturnBlock()) 637 continue; 638 639 for (const MachineBasicBlock *Succ : Visiting->successors()) 640 Worklist.push_back(Succ); 641 } 642 } 643 644 DenseMap<const MachineBasicBlock *, int> 645 llvm::getFuncletMembership(const MachineFunction &MF) { 646 DenseMap<const MachineBasicBlock *, int> FuncletMembership; 647 648 // We don't have anything to do if there aren't any EH pads. 649 if (!MF.hasEHFunclets()) 650 return FuncletMembership; 651 652 int EntryBBNumber = MF.front().getNumber(); 653 bool IsSEH = isAsynchronousEHPersonality( 654 classifyEHPersonality(MF.getFunction()->getPersonalityFn())); 655 656 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 657 SmallVector<const MachineBasicBlock *, 16> FuncletBlocks; 658 SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 659 SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 660 SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 661 for (const MachineBasicBlock &MBB : MF) { 662 if (MBB.isEHFuncletEntry()) { 663 FuncletBlocks.push_back(&MBB); 664 } else if (IsSEH && MBB.isEHPad()) { 665 SEHCatchPads.push_back(&MBB); 666 } else if (MBB.pred_empty()) { 667 UnreachableBlocks.push_back(&MBB); 668 } 669 670 MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 671 672 // CatchPads are not funclets for SEH so do not consider CatchRet to 673 // transfer control to another funclet. 674 if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) 675 continue; 676 677 // FIXME: SEH CatchPads are not necessarily in the parent function: 678 // they could be inside a finally block. 679 const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 680 const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 681 CatchRetSuccessors.push_back( 682 {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 683 } 684 685 // We don't have anything to do if there aren't any EH pads. 686 if (FuncletBlocks.empty()) 687 return FuncletMembership; 688 689 // Identify all the basic blocks reachable from the function entry. 690 collectFuncletMembers(FuncletMembership, EntryBBNumber, &MF.front()); 691 // All blocks not part of a funclet are in the parent function. 692 for (const MachineBasicBlock *MBB : UnreachableBlocks) 693 collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB); 694 // Next, identify all the blocks inside the funclets. 695 for (const MachineBasicBlock *MBB : FuncletBlocks) 696 collectFuncletMembers(FuncletMembership, MBB->getNumber(), MBB); 697 // SEH CatchPads aren't really funclets, handle them separately. 698 for (const MachineBasicBlock *MBB : SEHCatchPads) 699 collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB); 700 // Finally, identify all the targets of a catchret. 701 for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 702 CatchRetSuccessors) 703 collectFuncletMembers(FuncletMembership, CatchRetPair.second, 704 CatchRetPair.first); 705 return FuncletMembership; 706 } 707