1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ValueEnumerator class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/IR/Argument.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalAlias.h"
25 #include "llvm/IR/GlobalIFunc.h"
26 #include "llvm/IR/GlobalObject.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Use.h"
35 #include "llvm/IR/UseListOrder.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/ValueSymbolTable.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstddef>
47 #include <iterator>
48 #include <tuple>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 namespace {
55 
56 struct OrderMap {
57   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
58   unsigned LastGlobalConstantID = 0;
59   unsigned LastGlobalValueID = 0;
60 
61   OrderMap() = default;
62 
63   bool isGlobalConstant(unsigned ID) const {
64     return ID <= LastGlobalConstantID;
65   }
66 
67   bool isGlobalValue(unsigned ID) const {
68     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
69   }
70 
71   unsigned size() const { return IDs.size(); }
72   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
73 
74   std::pair<unsigned, bool> lookup(const Value *V) const {
75     return IDs.lookup(V);
76   }
77 
78   void index(const Value *V) {
79     // Explicitly sequence get-size and insert-value operations to avoid UB.
80     unsigned ID = IDs.size() + 1;
81     IDs[V].first = ID;
82   }
83 };
84 
85 } // end anonymous namespace
86 
87 static void orderValue(const Value *V, OrderMap &OM) {
88   if (OM.lookup(V).first)
89     return;
90 
91   if (const Constant *C = dyn_cast<Constant>(V))
92     if (C->getNumOperands() && !isa<GlobalValue>(C))
93       for (const Value *Op : C->operands())
94         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
95           orderValue(Op, OM);
96 
97   // Note: we cannot cache this lookup above, since inserting into the map
98   // changes the map's size, and thus affects the other IDs.
99   OM.index(V);
100 }
101 
102 static OrderMap orderModule(const Module &M) {
103   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
104   // and ValueEnumerator::incorporateFunction().
105   OrderMap OM;
106 
107   // In the reader, initializers of GlobalValues are set *after* all the
108   // globals have been read.  Rather than awkwardly modeling this behaviour
109   // directly in predictValueUseListOrderImpl(), just assign IDs to
110   // initializers of GlobalValues before GlobalValues themselves to model this
111   // implicitly.
112   for (const GlobalVariable &G : M.globals())
113     if (G.hasInitializer())
114       if (!isa<GlobalValue>(G.getInitializer()))
115         orderValue(G.getInitializer(), OM);
116   for (const GlobalAlias &A : M.aliases())
117     if (!isa<GlobalValue>(A.getAliasee()))
118       orderValue(A.getAliasee(), OM);
119   for (const GlobalIFunc &I : M.ifuncs())
120     if (!isa<GlobalValue>(I.getResolver()))
121       orderValue(I.getResolver(), OM);
122   for (const Function &F : M) {
123     for (const Use &U : F.operands())
124       if (!isa<GlobalValue>(U.get()))
125         orderValue(U.get(), OM);
126   }
127   OM.LastGlobalConstantID = OM.size();
128 
129   // Initializers of GlobalValues are processed in
130   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
131   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
132   // by giving IDs in reverse order.
133   //
134   // Since GlobalValues never reference each other directly (just through
135   // initializers), their relative IDs only matter for determining order of
136   // uses in their initializers.
137   for (const Function &F : M)
138     orderValue(&F, OM);
139   for (const GlobalAlias &A : M.aliases())
140     orderValue(&A, OM);
141   for (const GlobalIFunc &I : M.ifuncs())
142     orderValue(&I, OM);
143   for (const GlobalVariable &G : M.globals())
144     orderValue(&G, OM);
145   OM.LastGlobalValueID = OM.size();
146 
147   for (const Function &F : M) {
148     if (F.isDeclaration())
149       continue;
150     // Here we need to match the union of ValueEnumerator::incorporateFunction()
151     // and WriteFunction().  Basic blocks are implicitly declared before
152     // anything else (by declaring their size).
153     for (const BasicBlock &BB : F)
154       orderValue(&BB, OM);
155     for (const Argument &A : F.args())
156       orderValue(&A, OM);
157     for (const BasicBlock &BB : F)
158       for (const Instruction &I : BB)
159         for (const Value *Op : I.operands())
160           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
161               isa<InlineAsm>(*Op))
162             orderValue(Op, OM);
163     for (const BasicBlock &BB : F)
164       for (const Instruction &I : BB)
165         orderValue(&I, OM);
166   }
167   return OM;
168 }
169 
170 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
171                                          unsigned ID, const OrderMap &OM,
172                                          UseListOrderStack &Stack) {
173   // Predict use-list order for this one.
174   using Entry = std::pair<const Use *, unsigned>;
175   SmallVector<Entry, 64> List;
176   for (const Use &U : V->uses())
177     // Check if this user will be serialized.
178     if (OM.lookup(U.getUser()).first)
179       List.push_back(std::make_pair(&U, List.size()));
180 
181   if (List.size() < 2)
182     // We may have lost some users.
183     return;
184 
185   bool IsGlobalValue = OM.isGlobalValue(ID);
186   std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
187     const Use *LU = L.first;
188     const Use *RU = R.first;
189     if (LU == RU)
190       return false;
191 
192     auto LID = OM.lookup(LU->getUser()).first;
193     auto RID = OM.lookup(RU->getUser()).first;
194 
195     // Global values are processed in reverse order.
196     //
197     // Moreover, initializers of GlobalValues are set *after* all the globals
198     // have been read (despite having earlier IDs).  Rather than awkwardly
199     // modeling this behaviour here, orderModule() has assigned IDs to
200     // initializers of GlobalValues before GlobalValues themselves.
201     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
202       return LID < RID;
203 
204     // If ID is 4, then expect: 7 6 5 1 2 3.
205     if (LID < RID) {
206       if (RID <= ID)
207         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
208           return true;
209       return false;
210     }
211     if (RID < LID) {
212       if (LID <= ID)
213         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
214           return false;
215       return true;
216     }
217 
218     // LID and RID are equal, so we have different operands of the same user.
219     // Assume operands are added in order for all instructions.
220     if (LID <= ID)
221       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
222         return LU->getOperandNo() < RU->getOperandNo();
223     return LU->getOperandNo() > RU->getOperandNo();
224   });
225 
226   if (std::is_sorted(
227           List.begin(), List.end(),
228           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
229     // Order is already correct.
230     return;
231 
232   // Store the shuffle.
233   Stack.emplace_back(V, F, List.size());
234   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
235   for (size_t I = 0, E = List.size(); I != E; ++I)
236     Stack.back().Shuffle[I] = List[I].second;
237 }
238 
239 static void predictValueUseListOrder(const Value *V, const Function *F,
240                                      OrderMap &OM, UseListOrderStack &Stack) {
241   auto &IDPair = OM[V];
242   assert(IDPair.first && "Unmapped value");
243   if (IDPair.second)
244     // Already predicted.
245     return;
246 
247   // Do the actual prediction.
248   IDPair.second = true;
249   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
250     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
251 
252   // Recursive descent into constants.
253   if (const Constant *C = dyn_cast<Constant>(V))
254     if (C->getNumOperands()) // Visit GlobalValues.
255       for (const Value *Op : C->operands())
256         if (isa<Constant>(Op)) // Visit GlobalValues.
257           predictValueUseListOrder(Op, F, OM, Stack);
258 }
259 
260 static UseListOrderStack predictUseListOrder(const Module &M) {
261   OrderMap OM = orderModule(M);
262 
263   // Use-list orders need to be serialized after all the users have been added
264   // to a value, or else the shuffles will be incomplete.  Store them per
265   // function in a stack.
266   //
267   // Aside from function order, the order of values doesn't matter much here.
268   UseListOrderStack Stack;
269 
270   // We want to visit the functions backward now so we can list function-local
271   // constants in the last Function they're used in.  Module-level constants
272   // have already been visited above.
273   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
274     const Function &F = *I;
275     if (F.isDeclaration())
276       continue;
277     for (const BasicBlock &BB : F)
278       predictValueUseListOrder(&BB, &F, OM, Stack);
279     for (const Argument &A : F.args())
280       predictValueUseListOrder(&A, &F, OM, Stack);
281     for (const BasicBlock &BB : F)
282       for (const Instruction &I : BB)
283         for (const Value *Op : I.operands())
284           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
285             predictValueUseListOrder(Op, &F, OM, Stack);
286     for (const BasicBlock &BB : F)
287       for (const Instruction &I : BB)
288         predictValueUseListOrder(&I, &F, OM, Stack);
289   }
290 
291   // Visit globals last, since the module-level use-list block will be seen
292   // before the function bodies are processed.
293   for (const GlobalVariable &G : M.globals())
294     predictValueUseListOrder(&G, nullptr, OM, Stack);
295   for (const Function &F : M)
296     predictValueUseListOrder(&F, nullptr, OM, Stack);
297   for (const GlobalAlias &A : M.aliases())
298     predictValueUseListOrder(&A, nullptr, OM, Stack);
299   for (const GlobalIFunc &I : M.ifuncs())
300     predictValueUseListOrder(&I, nullptr, OM, Stack);
301   for (const GlobalVariable &G : M.globals())
302     if (G.hasInitializer())
303       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
304   for (const GlobalAlias &A : M.aliases())
305     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
306   for (const GlobalIFunc &I : M.ifuncs())
307     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
308   for (const Function &F : M) {
309     for (const Use &U : F.operands())
310       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
311   }
312 
313   return Stack;
314 }
315 
316 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
317   return V.first->getType()->isIntOrIntVectorTy();
318 }
319 
320 ValueEnumerator::ValueEnumerator(const Module &M,
321                                  bool ShouldPreserveUseListOrder)
322     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
323   if (ShouldPreserveUseListOrder)
324     UseListOrders = predictUseListOrder(M);
325 
326   // Enumerate the global variables.
327   for (const GlobalVariable &GV : M.globals())
328     EnumerateValue(&GV);
329 
330   // Enumerate the functions.
331   for (const Function & F : M) {
332     EnumerateValue(&F);
333     EnumerateAttributes(F.getAttributes());
334   }
335 
336   // Enumerate the aliases.
337   for (const GlobalAlias &GA : M.aliases())
338     EnumerateValue(&GA);
339 
340   // Enumerate the ifuncs.
341   for (const GlobalIFunc &GIF : M.ifuncs())
342     EnumerateValue(&GIF);
343 
344   // Remember what is the cutoff between globalvalue's and other constants.
345   unsigned FirstConstant = Values.size();
346 
347   // Enumerate the global variable initializers and attributes.
348   for (const GlobalVariable &GV : M.globals()) {
349     if (GV.hasInitializer())
350       EnumerateValue(GV.getInitializer());
351     if (GV.hasAttributes())
352       EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
353   }
354 
355   // Enumerate the aliasees.
356   for (const GlobalAlias &GA : M.aliases())
357     EnumerateValue(GA.getAliasee());
358 
359   // Enumerate the ifunc resolvers.
360   for (const GlobalIFunc &GIF : M.ifuncs())
361     EnumerateValue(GIF.getResolver());
362 
363   // Enumerate any optional Function data.
364   for (const Function &F : M)
365     for (const Use &U : F.operands())
366       EnumerateValue(U.get());
367 
368   // Enumerate the metadata type.
369   //
370   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
371   // only encodes the metadata type when it's used as a value.
372   EnumerateType(Type::getMetadataTy(M.getContext()));
373 
374   // Insert constants and metadata that are named at module level into the slot
375   // pool so that the module symbol table can refer to them...
376   EnumerateValueSymbolTable(M.getValueSymbolTable());
377   EnumerateNamedMetadata(M);
378 
379   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
380   for (const GlobalVariable &GV : M.globals()) {
381     MDs.clear();
382     GV.getAllMetadata(MDs);
383     for (const auto &I : MDs)
384       // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
385       // to write metadata to the global variable's own metadata block
386       // (PR28134).
387       EnumerateMetadata(nullptr, I.second);
388   }
389 
390   // Enumerate types used by function bodies and argument lists.
391   for (const Function &F : M) {
392     for (const Argument &A : F.args())
393       EnumerateType(A.getType());
394 
395     // Enumerate metadata attached to this function.
396     MDs.clear();
397     F.getAllMetadata(MDs);
398     for (const auto &I : MDs)
399       EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
400 
401     for (const BasicBlock &BB : F)
402       for (const Instruction &I : BB) {
403         for (const Use &Op : I.operands()) {
404           auto *MD = dyn_cast<MetadataAsValue>(&Op);
405           if (!MD) {
406             EnumerateOperandType(Op);
407             continue;
408           }
409 
410           // Local metadata is enumerated during function-incorporation.
411           if (isa<LocalAsMetadata>(MD->getMetadata()))
412             continue;
413 
414           EnumerateMetadata(&F, MD->getMetadata());
415         }
416         EnumerateType(I.getType());
417         if (const CallInst *CI = dyn_cast<CallInst>(&I))
418           EnumerateAttributes(CI->getAttributes());
419         else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
420           EnumerateAttributes(II->getAttributes());
421 
422         // Enumerate metadata attached with this instruction.
423         MDs.clear();
424         I.getAllMetadataOtherThanDebugLoc(MDs);
425         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
426           EnumerateMetadata(&F, MDs[i].second);
427 
428         // Don't enumerate the location directly -- it has a special record
429         // type -- but enumerate its operands.
430         if (DILocation *L = I.getDebugLoc())
431           for (const Metadata *Op : L->operands())
432             EnumerateMetadata(&F, Op);
433       }
434   }
435 
436   // Optimize constant ordering.
437   OptimizeConstants(FirstConstant, Values.size());
438 
439   // Organize metadata ordering.
440   organizeMetadata();
441 }
442 
443 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
444   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
445   assert(I != InstructionMap.end() && "Instruction is not mapped!");
446   return I->second;
447 }
448 
449 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
450   unsigned ComdatID = Comdats.idFor(C);
451   assert(ComdatID && "Comdat not found!");
452   return ComdatID;
453 }
454 
455 void ValueEnumerator::setInstructionID(const Instruction *I) {
456   InstructionMap[I] = InstructionCount++;
457 }
458 
459 unsigned ValueEnumerator::getValueID(const Value *V) const {
460   if (auto *MD = dyn_cast<MetadataAsValue>(V))
461     return getMetadataID(MD->getMetadata());
462 
463   ValueMapType::const_iterator I = ValueMap.find(V);
464   assert(I != ValueMap.end() && "Value not in slotcalculator!");
465   return I->second-1;
466 }
467 
468 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
469 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
470   print(dbgs(), ValueMap, "Default");
471   dbgs() << '\n';
472   print(dbgs(), MetadataMap, "MetaData");
473   dbgs() << '\n';
474 }
475 #endif
476 
477 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
478                             const char *Name) const {
479   OS << "Map Name: " << Name << "\n";
480   OS << "Size: " << Map.size() << "\n";
481   for (ValueMapType::const_iterator I = Map.begin(),
482          E = Map.end(); I != E; ++I) {
483     const Value *V = I->first;
484     if (V->hasName())
485       OS << "Value: " << V->getName();
486     else
487       OS << "Value: [null]\n";
488     V->print(errs());
489     errs() << '\n';
490 
491     OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
492     for (const Use &U : V->uses()) {
493       if (&U != &*V->use_begin())
494         OS << ",";
495       if(U->hasName())
496         OS << " " << U->getName();
497       else
498         OS << " [null]";
499 
500     }
501     OS <<  "\n\n";
502   }
503 }
504 
505 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
506                             const char *Name) const {
507   OS << "Map Name: " << Name << "\n";
508   OS << "Size: " << Map.size() << "\n";
509   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
510     const Metadata *MD = I->first;
511     OS << "Metadata: slot = " << I->second.ID << "\n";
512     OS << "Metadata: function = " << I->second.F << "\n";
513     MD->print(OS);
514     OS << "\n";
515   }
516 }
517 
518 /// OptimizeConstants - Reorder constant pool for denser encoding.
519 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
520   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
521 
522   if (ShouldPreserveUseListOrder)
523     // Optimizing constants makes the use-list order difficult to predict.
524     // Disable it for now when trying to preserve the order.
525     return;
526 
527   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
528                    [this](const std::pair<const Value *, unsigned> &LHS,
529                           const std::pair<const Value *, unsigned> &RHS) {
530     // Sort by plane.
531     if (LHS.first->getType() != RHS.first->getType())
532       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
533     // Then by frequency.
534     return LHS.second > RHS.second;
535   });
536 
537   // Ensure that integer and vector of integer constants are at the start of the
538   // constant pool.  This is important so that GEP structure indices come before
539   // gep constant exprs.
540   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
541                         isIntOrIntVectorValue);
542 
543   // Rebuild the modified portion of ValueMap.
544   for (; CstStart != CstEnd; ++CstStart)
545     ValueMap[Values[CstStart].first] = CstStart+1;
546 }
547 
548 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
549 /// table into the values table.
550 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
551   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
552        VI != VE; ++VI)
553     EnumerateValue(VI->getValue());
554 }
555 
556 /// Insert all of the values referenced by named metadata in the specified
557 /// module.
558 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
559   for (const auto &I : M.named_metadata())
560     EnumerateNamedMDNode(&I);
561 }
562 
563 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
564   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
565     EnumerateMetadata(nullptr, MD->getOperand(i));
566 }
567 
568 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
569   return F ? getValueID(F) + 1 : 0;
570 }
571 
572 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
573   EnumerateMetadata(getMetadataFunctionID(F), MD);
574 }
575 
576 void ValueEnumerator::EnumerateFunctionLocalMetadata(
577     const Function &F, const LocalAsMetadata *Local) {
578   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
579 }
580 
581 void ValueEnumerator::dropFunctionFromMetadata(
582     MetadataMapType::value_type &FirstMD) {
583   SmallVector<const MDNode *, 64> Worklist;
584   auto push = [&Worklist](MetadataMapType::value_type &MD) {
585     auto &Entry = MD.second;
586 
587     // Nothing to do if this metadata isn't tagged.
588     if (!Entry.F)
589       return;
590 
591     // Drop the function tag.
592     Entry.F = 0;
593 
594     // If this is has an ID and is an MDNode, then its operands have entries as
595     // well.  We need to drop the function from them too.
596     if (Entry.ID)
597       if (auto *N = dyn_cast<MDNode>(MD.first))
598         Worklist.push_back(N);
599   };
600   push(FirstMD);
601   while (!Worklist.empty())
602     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
603       if (!Op)
604         continue;
605       auto MD = MetadataMap.find(Op);
606       if (MD != MetadataMap.end())
607         push(*MD);
608     }
609 }
610 
611 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
612   // It's vital for reader efficiency that uniqued subgraphs are done in
613   // post-order; it's expensive when their operands have forward references.
614   // If a distinct node is referenced from a uniqued node, it'll be delayed
615   // until the uniqued subgraph has been completely traversed.
616   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
617 
618   // Start by enumerating MD, and then work through its transitive operands in
619   // post-order.  This requires a depth-first search.
620   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
621   if (const MDNode *N = enumerateMetadataImpl(F, MD))
622     Worklist.push_back(std::make_pair(N, N->op_begin()));
623 
624   while (!Worklist.empty()) {
625     const MDNode *N = Worklist.back().first;
626 
627     // Enumerate operands until we hit a new node.  We need to traverse these
628     // nodes' operands before visiting the rest of N's operands.
629     MDNode::op_iterator I = std::find_if(
630         Worklist.back().second, N->op_end(),
631         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
632     if (I != N->op_end()) {
633       auto *Op = cast<MDNode>(*I);
634       Worklist.back().second = ++I;
635 
636       // Delay traversing Op if it's a distinct node and N is uniqued.
637       if (Op->isDistinct() && !N->isDistinct())
638         DelayedDistinctNodes.push_back(Op);
639       else
640         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
641       continue;
642     }
643 
644     // All the operands have been visited.  Now assign an ID.
645     Worklist.pop_back();
646     MDs.push_back(N);
647     MetadataMap[N].ID = MDs.size();
648 
649     // Flush out any delayed distinct nodes; these are all the distinct nodes
650     // that are leaves in last uniqued subgraph.
651     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
652       for (const MDNode *N : DelayedDistinctNodes)
653         Worklist.push_back(std::make_pair(N, N->op_begin()));
654       DelayedDistinctNodes.clear();
655     }
656   }
657 }
658 
659 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
660   if (!MD)
661     return nullptr;
662 
663   assert(
664       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
665       "Invalid metadata kind");
666 
667   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
668   MDIndex &Entry = Insertion.first->second;
669   if (!Insertion.second) {
670     // Already mapped.  If F doesn't match the function tag, drop it.
671     if (Entry.hasDifferentFunction(F))
672       dropFunctionFromMetadata(*Insertion.first);
673     return nullptr;
674   }
675 
676   // Don't assign IDs to metadata nodes.
677   if (auto *N = dyn_cast<MDNode>(MD))
678     return N;
679 
680   // Save the metadata.
681   MDs.push_back(MD);
682   Entry.ID = MDs.size();
683 
684   // Enumerate the constant, if any.
685   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
686     EnumerateValue(C->getValue());
687 
688   return nullptr;
689 }
690 
691 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
692 /// information reachable from the metadata.
693 void ValueEnumerator::EnumerateFunctionLocalMetadata(
694     unsigned F, const LocalAsMetadata *Local) {
695   assert(F && "Expected a function");
696 
697   // Check to see if it's already in!
698   MDIndex &Index = MetadataMap[Local];
699   if (Index.ID) {
700     assert(Index.F == F && "Expected the same function");
701     return;
702   }
703 
704   MDs.push_back(Local);
705   Index.F = F;
706   Index.ID = MDs.size();
707 
708   EnumerateValue(Local->getValue());
709 }
710 
711 static unsigned getMetadataTypeOrder(const Metadata *MD) {
712   // Strings are emitted in bulk and must come first.
713   if (isa<MDString>(MD))
714     return 0;
715 
716   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
717   // to the front since we can detect it.
718   auto *N = dyn_cast<MDNode>(MD);
719   if (!N)
720     return 1;
721 
722   // The reader is fast forward references for distinct node operands, but slow
723   // when uniqued operands are unresolved.
724   return N->isDistinct() ? 2 : 3;
725 }
726 
727 void ValueEnumerator::organizeMetadata() {
728   assert(MetadataMap.size() == MDs.size() &&
729          "Metadata map and vector out of sync");
730 
731   if (MDs.empty())
732     return;
733 
734   // Copy out the index information from MetadataMap in order to choose a new
735   // order.
736   SmallVector<MDIndex, 64> Order;
737   Order.reserve(MetadataMap.size());
738   for (const Metadata *MD : MDs)
739     Order.push_back(MetadataMap.lookup(MD));
740 
741   // Partition:
742   //   - by function, then
743   //   - by isa<MDString>
744   // and then sort by the original/current ID.  Since the IDs are guaranteed to
745   // be unique, the result of std::sort will be deterministic.  There's no need
746   // for std::stable_sort.
747   std::sort(Order.begin(), Order.end(), [this](MDIndex LHS, MDIndex RHS) {
748     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
749            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
750   });
751 
752   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
753   // and fix up MetadataMap.
754   std::vector<const Metadata *> OldMDs = std::move(MDs);
755   MDs.reserve(OldMDs.size());
756   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
757     auto *MD = Order[I].get(OldMDs);
758     MDs.push_back(MD);
759     MetadataMap[MD].ID = I + 1;
760     if (isa<MDString>(MD))
761       ++NumMDStrings;
762   }
763 
764   // Return early if there's nothing for the functions.
765   if (MDs.size() == Order.size())
766     return;
767 
768   // Build the function metadata ranges.
769   MDRange R;
770   FunctionMDs.reserve(OldMDs.size());
771   unsigned PrevF = 0;
772   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
773        ++I) {
774     unsigned F = Order[I].F;
775     if (!PrevF) {
776       PrevF = F;
777     } else if (PrevF != F) {
778       R.Last = FunctionMDs.size();
779       std::swap(R, FunctionMDInfo[PrevF]);
780       R.First = FunctionMDs.size();
781 
782       ID = MDs.size();
783       PrevF = F;
784     }
785 
786     auto *MD = Order[I].get(OldMDs);
787     FunctionMDs.push_back(MD);
788     MetadataMap[MD].ID = ++ID;
789     if (isa<MDString>(MD))
790       ++R.NumStrings;
791   }
792   R.Last = FunctionMDs.size();
793   FunctionMDInfo[PrevF] = R;
794 }
795 
796 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
797   NumModuleMDs = MDs.size();
798 
799   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
800   NumMDStrings = R.NumStrings;
801   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
802              FunctionMDs.begin() + R.Last);
803 }
804 
805 void ValueEnumerator::EnumerateValue(const Value *V) {
806   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
807   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
808 
809   // Check to see if it's already in!
810   unsigned &ValueID = ValueMap[V];
811   if (ValueID) {
812     // Increment use count.
813     Values[ValueID-1].second++;
814     return;
815   }
816 
817   if (auto *GO = dyn_cast<GlobalObject>(V))
818     if (const Comdat *C = GO->getComdat())
819       Comdats.insert(C);
820 
821   // Enumerate the type of this value.
822   EnumerateType(V->getType());
823 
824   if (const Constant *C = dyn_cast<Constant>(V)) {
825     if (isa<GlobalValue>(C)) {
826       // Initializers for globals are handled explicitly elsewhere.
827     } else if (C->getNumOperands()) {
828       // If a constant has operands, enumerate them.  This makes sure that if a
829       // constant has uses (for example an array of const ints), that they are
830       // inserted also.
831 
832       // We prefer to enumerate them with values before we enumerate the user
833       // itself.  This makes it more likely that we can avoid forward references
834       // in the reader.  We know that there can be no cycles in the constants
835       // graph that don't go through a global variable.
836       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
837            I != E; ++I)
838         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
839           EnumerateValue(*I);
840 
841       // Finally, add the value.  Doing this could make the ValueID reference be
842       // dangling, don't reuse it.
843       Values.push_back(std::make_pair(V, 1U));
844       ValueMap[V] = Values.size();
845       return;
846     }
847   }
848 
849   // Add the value.
850   Values.push_back(std::make_pair(V, 1U));
851   ValueID = Values.size();
852 }
853 
854 
855 void ValueEnumerator::EnumerateType(Type *Ty) {
856   unsigned *TypeID = &TypeMap[Ty];
857 
858   // We've already seen this type.
859   if (*TypeID)
860     return;
861 
862   // If it is a non-anonymous struct, mark the type as being visited so that we
863   // don't recursively visit it.  This is safe because we allow forward
864   // references of these in the bitcode reader.
865   if (StructType *STy = dyn_cast<StructType>(Ty))
866     if (!STy->isLiteral())
867       *TypeID = ~0U;
868 
869   // Enumerate all of the subtypes before we enumerate this type.  This ensures
870   // that the type will be enumerated in an order that can be directly built.
871   for (Type *SubTy : Ty->subtypes())
872     EnumerateType(SubTy);
873 
874   // Refresh the TypeID pointer in case the table rehashed.
875   TypeID = &TypeMap[Ty];
876 
877   // Check to see if we got the pointer another way.  This can happen when
878   // enumerating recursive types that hit the base case deeper than they start.
879   //
880   // If this is actually a struct that we are treating as forward ref'able,
881   // then emit the definition now that all of its contents are available.
882   if (*TypeID && *TypeID != ~0U)
883     return;
884 
885   // Add this type now that its contents are all happily enumerated.
886   Types.push_back(Ty);
887 
888   *TypeID = Types.size();
889 }
890 
891 // Enumerate the types for the specified value.  If the value is a constant,
892 // walk through it, enumerating the types of the constant.
893 void ValueEnumerator::EnumerateOperandType(const Value *V) {
894   EnumerateType(V->getType());
895 
896   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
897 
898   const Constant *C = dyn_cast<Constant>(V);
899   if (!C)
900     return;
901 
902   // If this constant is already enumerated, ignore it, we know its type must
903   // be enumerated.
904   if (ValueMap.count(C))
905     return;
906 
907   // This constant may have operands, make sure to enumerate the types in
908   // them.
909   for (const Value *Op : C->operands()) {
910     // Don't enumerate basic blocks here, this happens as operands to
911     // blockaddress.
912     if (isa<BasicBlock>(Op))
913       continue;
914 
915     EnumerateOperandType(Op);
916   }
917 }
918 
919 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
920   if (PAL.isEmpty()) return;  // null is always 0.
921 
922   // Do a lookup.
923   unsigned &Entry = AttributeListMap[PAL];
924   if (Entry == 0) {
925     // Never saw this before, add it.
926     AttributeLists.push_back(PAL);
927     Entry = AttributeLists.size();
928   }
929 
930   // Do lookups for all attribute groups.
931   for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
932     AttributeSet AS = PAL.getAttributes(i);
933     if (!AS.hasAttributes())
934       continue;
935     IndexAndAttrSet Pair = {i, AS};
936     unsigned &Entry = AttributeGroupMap[Pair];
937     if (Entry == 0) {
938       AttributeGroups.push_back(Pair);
939       Entry = AttributeGroups.size();
940     }
941   }
942 }
943 
944 void ValueEnumerator::incorporateFunction(const Function &F) {
945   InstructionCount = 0;
946   NumModuleValues = Values.size();
947 
948   // Add global metadata to the function block.  This doesn't include
949   // LocalAsMetadata.
950   incorporateFunctionMetadata(F);
951 
952   // Adding function arguments to the value table.
953   for (const auto &I : F.args())
954     EnumerateValue(&I);
955 
956   FirstFuncConstantID = Values.size();
957 
958   // Add all function-level constants to the value table.
959   for (const BasicBlock &BB : F) {
960     for (const Instruction &I : BB)
961       for (const Use &OI : I.operands()) {
962         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
963           EnumerateValue(OI);
964       }
965     BasicBlocks.push_back(&BB);
966     ValueMap[&BB] = BasicBlocks.size();
967   }
968 
969   // Optimize the constant layout.
970   OptimizeConstants(FirstFuncConstantID, Values.size());
971 
972   // Add the function's parameter attributes so they are available for use in
973   // the function's instruction.
974   EnumerateAttributes(F.getAttributes());
975 
976   FirstInstID = Values.size();
977 
978   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
979   // Add all of the instructions.
980   for (const BasicBlock &BB : F) {
981     for (const Instruction &I : BB) {
982       for (const Use &OI : I.operands()) {
983         if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
984           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
985             // Enumerate metadata after the instructions they might refer to.
986             FnLocalMDVector.push_back(Local);
987       }
988 
989       if (!I.getType()->isVoidTy())
990         EnumerateValue(&I);
991     }
992   }
993 
994   // Add all of the function-local metadata.
995   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
996     // At this point, every local values have been incorporated, we shouldn't
997     // have a metadata operand that references a value that hasn't been seen.
998     assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
999            "Missing value for metadata operand");
1000     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
1001   }
1002 }
1003 
1004 void ValueEnumerator::purgeFunction() {
1005   /// Remove purged values from the ValueMap.
1006   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
1007     ValueMap.erase(Values[i].first);
1008   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
1009     MetadataMap.erase(MDs[i]);
1010   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
1011     ValueMap.erase(BasicBlocks[i]);
1012 
1013   Values.resize(NumModuleValues);
1014   MDs.resize(NumModuleMDs);
1015   BasicBlocks.clear();
1016   NumMDStrings = 0;
1017 }
1018 
1019 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
1020                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
1021   unsigned Counter = 0;
1022   for (const BasicBlock &BB : *F)
1023     IDMap[&BB] = ++Counter;
1024 }
1025 
1026 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1027 /// specified basic block.  This is relatively expensive information, so it
1028 /// should only be used by rare constructs such as address-of-label.
1029 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1030   unsigned &Idx = GlobalBasicBlockIDs[BB];
1031   if (Idx != 0)
1032     return Idx-1;
1033 
1034   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1035   return getGlobalBasicBlockID(BB);
1036 }
1037 
1038 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
1039   return Log2_32_Ceil(getTypes().size() + 1);
1040 }
1041