1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ValueEnumerator class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/IR/Argument.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalAlias.h" 25 #include "llvm/IR/GlobalIFunc.h" 26 #include "llvm/IR/GlobalObject.h" 27 #include "llvm/IR/GlobalValue.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Use.h" 35 #include "llvm/IR/UseListOrder.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/ValueSymbolTable.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <algorithm> 45 #include <cassert> 46 #include <cstddef> 47 #include <iterator> 48 #include <tuple> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 namespace { 55 56 struct OrderMap { 57 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 58 unsigned LastGlobalConstantID = 0; 59 unsigned LastGlobalValueID = 0; 60 61 OrderMap() = default; 62 63 bool isGlobalConstant(unsigned ID) const { 64 return ID <= LastGlobalConstantID; 65 } 66 67 bool isGlobalValue(unsigned ID) const { 68 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 69 } 70 71 unsigned size() const { return IDs.size(); } 72 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 73 74 std::pair<unsigned, bool> lookup(const Value *V) const { 75 return IDs.lookup(V); 76 } 77 78 void index(const Value *V) { 79 // Explicitly sequence get-size and insert-value operations to avoid UB. 80 unsigned ID = IDs.size() + 1; 81 IDs[V].first = ID; 82 } 83 }; 84 85 } // end anonymous namespace 86 87 static void orderValue(const Value *V, OrderMap &OM) { 88 if (OM.lookup(V).first) 89 return; 90 91 if (const Constant *C = dyn_cast<Constant>(V)) 92 if (C->getNumOperands() && !isa<GlobalValue>(C)) 93 for (const Value *Op : C->operands()) 94 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 95 orderValue(Op, OM); 96 97 // Note: we cannot cache this lookup above, since inserting into the map 98 // changes the map's size, and thus affects the other IDs. 99 OM.index(V); 100 } 101 102 static OrderMap orderModule(const Module &M) { 103 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 104 // and ValueEnumerator::incorporateFunction(). 105 OrderMap OM; 106 107 // In the reader, initializers of GlobalValues are set *after* all the 108 // globals have been read. Rather than awkwardly modeling this behaviour 109 // directly in predictValueUseListOrderImpl(), just assign IDs to 110 // initializers of GlobalValues before GlobalValues themselves to model this 111 // implicitly. 112 for (const GlobalVariable &G : M.globals()) 113 if (G.hasInitializer()) 114 if (!isa<GlobalValue>(G.getInitializer())) 115 orderValue(G.getInitializer(), OM); 116 for (const GlobalAlias &A : M.aliases()) 117 if (!isa<GlobalValue>(A.getAliasee())) 118 orderValue(A.getAliasee(), OM); 119 for (const GlobalIFunc &I : M.ifuncs()) 120 if (!isa<GlobalValue>(I.getResolver())) 121 orderValue(I.getResolver(), OM); 122 for (const Function &F : M) { 123 for (const Use &U : F.operands()) 124 if (!isa<GlobalValue>(U.get())) 125 orderValue(U.get(), OM); 126 } 127 OM.LastGlobalConstantID = OM.size(); 128 129 // Initializers of GlobalValues are processed in 130 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 131 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 132 // by giving IDs in reverse order. 133 // 134 // Since GlobalValues never reference each other directly (just through 135 // initializers), their relative IDs only matter for determining order of 136 // uses in their initializers. 137 for (const Function &F : M) 138 orderValue(&F, OM); 139 for (const GlobalAlias &A : M.aliases()) 140 orderValue(&A, OM); 141 for (const GlobalIFunc &I : M.ifuncs()) 142 orderValue(&I, OM); 143 for (const GlobalVariable &G : M.globals()) 144 orderValue(&G, OM); 145 OM.LastGlobalValueID = OM.size(); 146 147 for (const Function &F : M) { 148 if (F.isDeclaration()) 149 continue; 150 // Here we need to match the union of ValueEnumerator::incorporateFunction() 151 // and WriteFunction(). Basic blocks are implicitly declared before 152 // anything else (by declaring their size). 153 for (const BasicBlock &BB : F) 154 orderValue(&BB, OM); 155 for (const Argument &A : F.args()) 156 orderValue(&A, OM); 157 for (const BasicBlock &BB : F) 158 for (const Instruction &I : BB) 159 for (const Value *Op : I.operands()) 160 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 161 isa<InlineAsm>(*Op)) 162 orderValue(Op, OM); 163 for (const BasicBlock &BB : F) 164 for (const Instruction &I : BB) 165 orderValue(&I, OM); 166 } 167 return OM; 168 } 169 170 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 171 unsigned ID, const OrderMap &OM, 172 UseListOrderStack &Stack) { 173 // Predict use-list order for this one. 174 using Entry = std::pair<const Use *, unsigned>; 175 SmallVector<Entry, 64> List; 176 for (const Use &U : V->uses()) 177 // Check if this user will be serialized. 178 if (OM.lookup(U.getUser()).first) 179 List.push_back(std::make_pair(&U, List.size())); 180 181 if (List.size() < 2) 182 // We may have lost some users. 183 return; 184 185 bool IsGlobalValue = OM.isGlobalValue(ID); 186 std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) { 187 const Use *LU = L.first; 188 const Use *RU = R.first; 189 if (LU == RU) 190 return false; 191 192 auto LID = OM.lookup(LU->getUser()).first; 193 auto RID = OM.lookup(RU->getUser()).first; 194 195 // Global values are processed in reverse order. 196 // 197 // Moreover, initializers of GlobalValues are set *after* all the globals 198 // have been read (despite having earlier IDs). Rather than awkwardly 199 // modeling this behaviour here, orderModule() has assigned IDs to 200 // initializers of GlobalValues before GlobalValues themselves. 201 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) 202 return LID < RID; 203 204 // If ID is 4, then expect: 7 6 5 1 2 3. 205 if (LID < RID) { 206 if (RID <= ID) 207 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 208 return true; 209 return false; 210 } 211 if (RID < LID) { 212 if (LID <= ID) 213 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 214 return false; 215 return true; 216 } 217 218 // LID and RID are equal, so we have different operands of the same user. 219 // Assume operands are added in order for all instructions. 220 if (LID <= ID) 221 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 222 return LU->getOperandNo() < RU->getOperandNo(); 223 return LU->getOperandNo() > RU->getOperandNo(); 224 }); 225 226 if (std::is_sorted( 227 List.begin(), List.end(), 228 [](const Entry &L, const Entry &R) { return L.second < R.second; })) 229 // Order is already correct. 230 return; 231 232 // Store the shuffle. 233 Stack.emplace_back(V, F, List.size()); 234 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 235 for (size_t I = 0, E = List.size(); I != E; ++I) 236 Stack.back().Shuffle[I] = List[I].second; 237 } 238 239 static void predictValueUseListOrder(const Value *V, const Function *F, 240 OrderMap &OM, UseListOrderStack &Stack) { 241 auto &IDPair = OM[V]; 242 assert(IDPair.first && "Unmapped value"); 243 if (IDPair.second) 244 // Already predicted. 245 return; 246 247 // Do the actual prediction. 248 IDPair.second = true; 249 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 250 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 251 252 // Recursive descent into constants. 253 if (const Constant *C = dyn_cast<Constant>(V)) 254 if (C->getNumOperands()) // Visit GlobalValues. 255 for (const Value *Op : C->operands()) 256 if (isa<Constant>(Op)) // Visit GlobalValues. 257 predictValueUseListOrder(Op, F, OM, Stack); 258 } 259 260 static UseListOrderStack predictUseListOrder(const Module &M) { 261 OrderMap OM = orderModule(M); 262 263 // Use-list orders need to be serialized after all the users have been added 264 // to a value, or else the shuffles will be incomplete. Store them per 265 // function in a stack. 266 // 267 // Aside from function order, the order of values doesn't matter much here. 268 UseListOrderStack Stack; 269 270 // We want to visit the functions backward now so we can list function-local 271 // constants in the last Function they're used in. Module-level constants 272 // have already been visited above. 273 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { 274 const Function &F = *I; 275 if (F.isDeclaration()) 276 continue; 277 for (const BasicBlock &BB : F) 278 predictValueUseListOrder(&BB, &F, OM, Stack); 279 for (const Argument &A : F.args()) 280 predictValueUseListOrder(&A, &F, OM, Stack); 281 for (const BasicBlock &BB : F) 282 for (const Instruction &I : BB) 283 for (const Value *Op : I.operands()) 284 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 285 predictValueUseListOrder(Op, &F, OM, Stack); 286 for (const BasicBlock &BB : F) 287 for (const Instruction &I : BB) 288 predictValueUseListOrder(&I, &F, OM, Stack); 289 } 290 291 // Visit globals last, since the module-level use-list block will be seen 292 // before the function bodies are processed. 293 for (const GlobalVariable &G : M.globals()) 294 predictValueUseListOrder(&G, nullptr, OM, Stack); 295 for (const Function &F : M) 296 predictValueUseListOrder(&F, nullptr, OM, Stack); 297 for (const GlobalAlias &A : M.aliases()) 298 predictValueUseListOrder(&A, nullptr, OM, Stack); 299 for (const GlobalIFunc &I : M.ifuncs()) 300 predictValueUseListOrder(&I, nullptr, OM, Stack); 301 for (const GlobalVariable &G : M.globals()) 302 if (G.hasInitializer()) 303 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 304 for (const GlobalAlias &A : M.aliases()) 305 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 306 for (const GlobalIFunc &I : M.ifuncs()) 307 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 308 for (const Function &F : M) { 309 for (const Use &U : F.operands()) 310 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 311 } 312 313 return Stack; 314 } 315 316 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { 317 return V.first->getType()->isIntOrIntVectorTy(); 318 } 319 320 ValueEnumerator::ValueEnumerator(const Module &M, 321 bool ShouldPreserveUseListOrder) 322 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 323 if (ShouldPreserveUseListOrder) 324 UseListOrders = predictUseListOrder(M); 325 326 // Enumerate the global variables. 327 for (const GlobalVariable &GV : M.globals()) 328 EnumerateValue(&GV); 329 330 // Enumerate the functions. 331 for (const Function & F : M) { 332 EnumerateValue(&F); 333 EnumerateAttributes(F.getAttributes()); 334 } 335 336 // Enumerate the aliases. 337 for (const GlobalAlias &GA : M.aliases()) 338 EnumerateValue(&GA); 339 340 // Enumerate the ifuncs. 341 for (const GlobalIFunc &GIF : M.ifuncs()) 342 EnumerateValue(&GIF); 343 344 // Remember what is the cutoff between globalvalue's and other constants. 345 unsigned FirstConstant = Values.size(); 346 347 // Enumerate the global variable initializers and attributes. 348 for (const GlobalVariable &GV : M.globals()) { 349 if (GV.hasInitializer()) 350 EnumerateValue(GV.getInitializer()); 351 if (GV.hasAttributes()) 352 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); 353 } 354 355 // Enumerate the aliasees. 356 for (const GlobalAlias &GA : M.aliases()) 357 EnumerateValue(GA.getAliasee()); 358 359 // Enumerate the ifunc resolvers. 360 for (const GlobalIFunc &GIF : M.ifuncs()) 361 EnumerateValue(GIF.getResolver()); 362 363 // Enumerate any optional Function data. 364 for (const Function &F : M) 365 for (const Use &U : F.operands()) 366 EnumerateValue(U.get()); 367 368 // Enumerate the metadata type. 369 // 370 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 371 // only encodes the metadata type when it's used as a value. 372 EnumerateType(Type::getMetadataTy(M.getContext())); 373 374 // Insert constants and metadata that are named at module level into the slot 375 // pool so that the module symbol table can refer to them... 376 EnumerateValueSymbolTable(M.getValueSymbolTable()); 377 EnumerateNamedMetadata(M); 378 379 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 380 for (const GlobalVariable &GV : M.globals()) { 381 MDs.clear(); 382 GV.getAllMetadata(MDs); 383 for (const auto &I : MDs) 384 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer 385 // to write metadata to the global variable's own metadata block 386 // (PR28134). 387 EnumerateMetadata(nullptr, I.second); 388 } 389 390 // Enumerate types used by function bodies and argument lists. 391 for (const Function &F : M) { 392 for (const Argument &A : F.args()) 393 EnumerateType(A.getType()); 394 395 // Enumerate metadata attached to this function. 396 MDs.clear(); 397 F.getAllMetadata(MDs); 398 for (const auto &I : MDs) 399 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); 400 401 for (const BasicBlock &BB : F) 402 for (const Instruction &I : BB) { 403 for (const Use &Op : I.operands()) { 404 auto *MD = dyn_cast<MetadataAsValue>(&Op); 405 if (!MD) { 406 EnumerateOperandType(Op); 407 continue; 408 } 409 410 // Local metadata is enumerated during function-incorporation. 411 if (isa<LocalAsMetadata>(MD->getMetadata())) 412 continue; 413 414 EnumerateMetadata(&F, MD->getMetadata()); 415 } 416 EnumerateType(I.getType()); 417 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 418 EnumerateAttributes(CI->getAttributes()); 419 else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) 420 EnumerateAttributes(II->getAttributes()); 421 422 // Enumerate metadata attached with this instruction. 423 MDs.clear(); 424 I.getAllMetadataOtherThanDebugLoc(MDs); 425 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 426 EnumerateMetadata(&F, MDs[i].second); 427 428 // Don't enumerate the location directly -- it has a special record 429 // type -- but enumerate its operands. 430 if (DILocation *L = I.getDebugLoc()) 431 for (const Metadata *Op : L->operands()) 432 EnumerateMetadata(&F, Op); 433 } 434 } 435 436 // Optimize constant ordering. 437 OptimizeConstants(FirstConstant, Values.size()); 438 439 // Organize metadata ordering. 440 organizeMetadata(); 441 } 442 443 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 444 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 445 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 446 return I->second; 447 } 448 449 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 450 unsigned ComdatID = Comdats.idFor(C); 451 assert(ComdatID && "Comdat not found!"); 452 return ComdatID; 453 } 454 455 void ValueEnumerator::setInstructionID(const Instruction *I) { 456 InstructionMap[I] = InstructionCount++; 457 } 458 459 unsigned ValueEnumerator::getValueID(const Value *V) const { 460 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 461 return getMetadataID(MD->getMetadata()); 462 463 ValueMapType::const_iterator I = ValueMap.find(V); 464 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 465 return I->second-1; 466 } 467 468 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 469 LLVM_DUMP_METHOD void ValueEnumerator::dump() const { 470 print(dbgs(), ValueMap, "Default"); 471 dbgs() << '\n'; 472 print(dbgs(), MetadataMap, "MetaData"); 473 dbgs() << '\n'; 474 } 475 #endif 476 477 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 478 const char *Name) const { 479 OS << "Map Name: " << Name << "\n"; 480 OS << "Size: " << Map.size() << "\n"; 481 for (ValueMapType::const_iterator I = Map.begin(), 482 E = Map.end(); I != E; ++I) { 483 const Value *V = I->first; 484 if (V->hasName()) 485 OS << "Value: " << V->getName(); 486 else 487 OS << "Value: [null]\n"; 488 V->print(errs()); 489 errs() << '\n'; 490 491 OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):"; 492 for (const Use &U : V->uses()) { 493 if (&U != &*V->use_begin()) 494 OS << ","; 495 if(U->hasName()) 496 OS << " " << U->getName(); 497 else 498 OS << " [null]"; 499 500 } 501 OS << "\n\n"; 502 } 503 } 504 505 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 506 const char *Name) const { 507 OS << "Map Name: " << Name << "\n"; 508 OS << "Size: " << Map.size() << "\n"; 509 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { 510 const Metadata *MD = I->first; 511 OS << "Metadata: slot = " << I->second.ID << "\n"; 512 OS << "Metadata: function = " << I->second.F << "\n"; 513 MD->print(OS); 514 OS << "\n"; 515 } 516 } 517 518 /// OptimizeConstants - Reorder constant pool for denser encoding. 519 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 520 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 521 522 if (ShouldPreserveUseListOrder) 523 // Optimizing constants makes the use-list order difficult to predict. 524 // Disable it for now when trying to preserve the order. 525 return; 526 527 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, 528 [this](const std::pair<const Value *, unsigned> &LHS, 529 const std::pair<const Value *, unsigned> &RHS) { 530 // Sort by plane. 531 if (LHS.first->getType() != RHS.first->getType()) 532 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); 533 // Then by frequency. 534 return LHS.second > RHS.second; 535 }); 536 537 // Ensure that integer and vector of integer constants are at the start of the 538 // constant pool. This is important so that GEP structure indices come before 539 // gep constant exprs. 540 std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, 541 isIntOrIntVectorValue); 542 543 // Rebuild the modified portion of ValueMap. 544 for (; CstStart != CstEnd; ++CstStart) 545 ValueMap[Values[CstStart].first] = CstStart+1; 546 } 547 548 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 549 /// table into the values table. 550 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 551 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 552 VI != VE; ++VI) 553 EnumerateValue(VI->getValue()); 554 } 555 556 /// Insert all of the values referenced by named metadata in the specified 557 /// module. 558 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 559 for (const auto &I : M.named_metadata()) 560 EnumerateNamedMDNode(&I); 561 } 562 563 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 564 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 565 EnumerateMetadata(nullptr, MD->getOperand(i)); 566 } 567 568 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { 569 return F ? getValueID(F) + 1 : 0; 570 } 571 572 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { 573 EnumerateMetadata(getMetadataFunctionID(F), MD); 574 } 575 576 void ValueEnumerator::EnumerateFunctionLocalMetadata( 577 const Function &F, const LocalAsMetadata *Local) { 578 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); 579 } 580 581 void ValueEnumerator::dropFunctionFromMetadata( 582 MetadataMapType::value_type &FirstMD) { 583 SmallVector<const MDNode *, 64> Worklist; 584 auto push = [&Worklist](MetadataMapType::value_type &MD) { 585 auto &Entry = MD.second; 586 587 // Nothing to do if this metadata isn't tagged. 588 if (!Entry.F) 589 return; 590 591 // Drop the function tag. 592 Entry.F = 0; 593 594 // If this is has an ID and is an MDNode, then its operands have entries as 595 // well. We need to drop the function from them too. 596 if (Entry.ID) 597 if (auto *N = dyn_cast<MDNode>(MD.first)) 598 Worklist.push_back(N); 599 }; 600 push(FirstMD); 601 while (!Worklist.empty()) 602 for (const Metadata *Op : Worklist.pop_back_val()->operands()) { 603 if (!Op) 604 continue; 605 auto MD = MetadataMap.find(Op); 606 if (MD != MetadataMap.end()) 607 push(*MD); 608 } 609 } 610 611 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { 612 // It's vital for reader efficiency that uniqued subgraphs are done in 613 // post-order; it's expensive when their operands have forward references. 614 // If a distinct node is referenced from a uniqued node, it'll be delayed 615 // until the uniqued subgraph has been completely traversed. 616 SmallVector<const MDNode *, 32> DelayedDistinctNodes; 617 618 // Start by enumerating MD, and then work through its transitive operands in 619 // post-order. This requires a depth-first search. 620 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; 621 if (const MDNode *N = enumerateMetadataImpl(F, MD)) 622 Worklist.push_back(std::make_pair(N, N->op_begin())); 623 624 while (!Worklist.empty()) { 625 const MDNode *N = Worklist.back().first; 626 627 // Enumerate operands until we hit a new node. We need to traverse these 628 // nodes' operands before visiting the rest of N's operands. 629 MDNode::op_iterator I = std::find_if( 630 Worklist.back().second, N->op_end(), 631 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); 632 if (I != N->op_end()) { 633 auto *Op = cast<MDNode>(*I); 634 Worklist.back().second = ++I; 635 636 // Delay traversing Op if it's a distinct node and N is uniqued. 637 if (Op->isDistinct() && !N->isDistinct()) 638 DelayedDistinctNodes.push_back(Op); 639 else 640 Worklist.push_back(std::make_pair(Op, Op->op_begin())); 641 continue; 642 } 643 644 // All the operands have been visited. Now assign an ID. 645 Worklist.pop_back(); 646 MDs.push_back(N); 647 MetadataMap[N].ID = MDs.size(); 648 649 // Flush out any delayed distinct nodes; these are all the distinct nodes 650 // that are leaves in last uniqued subgraph. 651 if (Worklist.empty() || Worklist.back().first->isDistinct()) { 652 for (const MDNode *N : DelayedDistinctNodes) 653 Worklist.push_back(std::make_pair(N, N->op_begin())); 654 DelayedDistinctNodes.clear(); 655 } 656 } 657 } 658 659 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) { 660 if (!MD) 661 return nullptr; 662 663 assert( 664 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 665 "Invalid metadata kind"); 666 667 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); 668 MDIndex &Entry = Insertion.first->second; 669 if (!Insertion.second) { 670 // Already mapped. If F doesn't match the function tag, drop it. 671 if (Entry.hasDifferentFunction(F)) 672 dropFunctionFromMetadata(*Insertion.first); 673 return nullptr; 674 } 675 676 // Don't assign IDs to metadata nodes. 677 if (auto *N = dyn_cast<MDNode>(MD)) 678 return N; 679 680 // Save the metadata. 681 MDs.push_back(MD); 682 Entry.ID = MDs.size(); 683 684 // Enumerate the constant, if any. 685 if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 686 EnumerateValue(C->getValue()); 687 688 return nullptr; 689 } 690 691 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata 692 /// information reachable from the metadata. 693 void ValueEnumerator::EnumerateFunctionLocalMetadata( 694 unsigned F, const LocalAsMetadata *Local) { 695 assert(F && "Expected a function"); 696 697 // Check to see if it's already in! 698 MDIndex &Index = MetadataMap[Local]; 699 if (Index.ID) { 700 assert(Index.F == F && "Expected the same function"); 701 return; 702 } 703 704 MDs.push_back(Local); 705 Index.F = F; 706 Index.ID = MDs.size(); 707 708 EnumerateValue(Local->getValue()); 709 } 710 711 static unsigned getMetadataTypeOrder(const Metadata *MD) { 712 // Strings are emitted in bulk and must come first. 713 if (isa<MDString>(MD)) 714 return 0; 715 716 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it 717 // to the front since we can detect it. 718 auto *N = dyn_cast<MDNode>(MD); 719 if (!N) 720 return 1; 721 722 // The reader is fast forward references for distinct node operands, but slow 723 // when uniqued operands are unresolved. 724 return N->isDistinct() ? 2 : 3; 725 } 726 727 void ValueEnumerator::organizeMetadata() { 728 assert(MetadataMap.size() == MDs.size() && 729 "Metadata map and vector out of sync"); 730 731 if (MDs.empty()) 732 return; 733 734 // Copy out the index information from MetadataMap in order to choose a new 735 // order. 736 SmallVector<MDIndex, 64> Order; 737 Order.reserve(MetadataMap.size()); 738 for (const Metadata *MD : MDs) 739 Order.push_back(MetadataMap.lookup(MD)); 740 741 // Partition: 742 // - by function, then 743 // - by isa<MDString> 744 // and then sort by the original/current ID. Since the IDs are guaranteed to 745 // be unique, the result of std::sort will be deterministic. There's no need 746 // for std::stable_sort. 747 std::sort(Order.begin(), Order.end(), [this](MDIndex LHS, MDIndex RHS) { 748 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < 749 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); 750 }); 751 752 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, 753 // and fix up MetadataMap. 754 std::vector<const Metadata *> OldMDs = std::move(MDs); 755 MDs.reserve(OldMDs.size()); 756 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { 757 auto *MD = Order[I].get(OldMDs); 758 MDs.push_back(MD); 759 MetadataMap[MD].ID = I + 1; 760 if (isa<MDString>(MD)) 761 ++NumMDStrings; 762 } 763 764 // Return early if there's nothing for the functions. 765 if (MDs.size() == Order.size()) 766 return; 767 768 // Build the function metadata ranges. 769 MDRange R; 770 FunctionMDs.reserve(OldMDs.size()); 771 unsigned PrevF = 0; 772 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; 773 ++I) { 774 unsigned F = Order[I].F; 775 if (!PrevF) { 776 PrevF = F; 777 } else if (PrevF != F) { 778 R.Last = FunctionMDs.size(); 779 std::swap(R, FunctionMDInfo[PrevF]); 780 R.First = FunctionMDs.size(); 781 782 ID = MDs.size(); 783 PrevF = F; 784 } 785 786 auto *MD = Order[I].get(OldMDs); 787 FunctionMDs.push_back(MD); 788 MetadataMap[MD].ID = ++ID; 789 if (isa<MDString>(MD)) 790 ++R.NumStrings; 791 } 792 R.Last = FunctionMDs.size(); 793 FunctionMDInfo[PrevF] = R; 794 } 795 796 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { 797 NumModuleMDs = MDs.size(); 798 799 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); 800 NumMDStrings = R.NumStrings; 801 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, 802 FunctionMDs.begin() + R.Last); 803 } 804 805 void ValueEnumerator::EnumerateValue(const Value *V) { 806 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 807 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 808 809 // Check to see if it's already in! 810 unsigned &ValueID = ValueMap[V]; 811 if (ValueID) { 812 // Increment use count. 813 Values[ValueID-1].second++; 814 return; 815 } 816 817 if (auto *GO = dyn_cast<GlobalObject>(V)) 818 if (const Comdat *C = GO->getComdat()) 819 Comdats.insert(C); 820 821 // Enumerate the type of this value. 822 EnumerateType(V->getType()); 823 824 if (const Constant *C = dyn_cast<Constant>(V)) { 825 if (isa<GlobalValue>(C)) { 826 // Initializers for globals are handled explicitly elsewhere. 827 } else if (C->getNumOperands()) { 828 // If a constant has operands, enumerate them. This makes sure that if a 829 // constant has uses (for example an array of const ints), that they are 830 // inserted also. 831 832 // We prefer to enumerate them with values before we enumerate the user 833 // itself. This makes it more likely that we can avoid forward references 834 // in the reader. We know that there can be no cycles in the constants 835 // graph that don't go through a global variable. 836 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); 837 I != E; ++I) 838 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 839 EnumerateValue(*I); 840 841 // Finally, add the value. Doing this could make the ValueID reference be 842 // dangling, don't reuse it. 843 Values.push_back(std::make_pair(V, 1U)); 844 ValueMap[V] = Values.size(); 845 return; 846 } 847 } 848 849 // Add the value. 850 Values.push_back(std::make_pair(V, 1U)); 851 ValueID = Values.size(); 852 } 853 854 855 void ValueEnumerator::EnumerateType(Type *Ty) { 856 unsigned *TypeID = &TypeMap[Ty]; 857 858 // We've already seen this type. 859 if (*TypeID) 860 return; 861 862 // If it is a non-anonymous struct, mark the type as being visited so that we 863 // don't recursively visit it. This is safe because we allow forward 864 // references of these in the bitcode reader. 865 if (StructType *STy = dyn_cast<StructType>(Ty)) 866 if (!STy->isLiteral()) 867 *TypeID = ~0U; 868 869 // Enumerate all of the subtypes before we enumerate this type. This ensures 870 // that the type will be enumerated in an order that can be directly built. 871 for (Type *SubTy : Ty->subtypes()) 872 EnumerateType(SubTy); 873 874 // Refresh the TypeID pointer in case the table rehashed. 875 TypeID = &TypeMap[Ty]; 876 877 // Check to see if we got the pointer another way. This can happen when 878 // enumerating recursive types that hit the base case deeper than they start. 879 // 880 // If this is actually a struct that we are treating as forward ref'able, 881 // then emit the definition now that all of its contents are available. 882 if (*TypeID && *TypeID != ~0U) 883 return; 884 885 // Add this type now that its contents are all happily enumerated. 886 Types.push_back(Ty); 887 888 *TypeID = Types.size(); 889 } 890 891 // Enumerate the types for the specified value. If the value is a constant, 892 // walk through it, enumerating the types of the constant. 893 void ValueEnumerator::EnumerateOperandType(const Value *V) { 894 EnumerateType(V->getType()); 895 896 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); 897 898 const Constant *C = dyn_cast<Constant>(V); 899 if (!C) 900 return; 901 902 // If this constant is already enumerated, ignore it, we know its type must 903 // be enumerated. 904 if (ValueMap.count(C)) 905 return; 906 907 // This constant may have operands, make sure to enumerate the types in 908 // them. 909 for (const Value *Op : C->operands()) { 910 // Don't enumerate basic blocks here, this happens as operands to 911 // blockaddress. 912 if (isa<BasicBlock>(Op)) 913 continue; 914 915 EnumerateOperandType(Op); 916 } 917 } 918 919 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { 920 if (PAL.isEmpty()) return; // null is always 0. 921 922 // Do a lookup. 923 unsigned &Entry = AttributeListMap[PAL]; 924 if (Entry == 0) { 925 // Never saw this before, add it. 926 AttributeLists.push_back(PAL); 927 Entry = AttributeLists.size(); 928 } 929 930 // Do lookups for all attribute groups. 931 for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) { 932 AttributeSet AS = PAL.getAttributes(i); 933 if (!AS.hasAttributes()) 934 continue; 935 IndexAndAttrSet Pair = {i, AS}; 936 unsigned &Entry = AttributeGroupMap[Pair]; 937 if (Entry == 0) { 938 AttributeGroups.push_back(Pair); 939 Entry = AttributeGroups.size(); 940 } 941 } 942 } 943 944 void ValueEnumerator::incorporateFunction(const Function &F) { 945 InstructionCount = 0; 946 NumModuleValues = Values.size(); 947 948 // Add global metadata to the function block. This doesn't include 949 // LocalAsMetadata. 950 incorporateFunctionMetadata(F); 951 952 // Adding function arguments to the value table. 953 for (const auto &I : F.args()) 954 EnumerateValue(&I); 955 956 FirstFuncConstantID = Values.size(); 957 958 // Add all function-level constants to the value table. 959 for (const BasicBlock &BB : F) { 960 for (const Instruction &I : BB) 961 for (const Use &OI : I.operands()) { 962 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 963 EnumerateValue(OI); 964 } 965 BasicBlocks.push_back(&BB); 966 ValueMap[&BB] = BasicBlocks.size(); 967 } 968 969 // Optimize the constant layout. 970 OptimizeConstants(FirstFuncConstantID, Values.size()); 971 972 // Add the function's parameter attributes so they are available for use in 973 // the function's instruction. 974 EnumerateAttributes(F.getAttributes()); 975 976 FirstInstID = Values.size(); 977 978 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 979 // Add all of the instructions. 980 for (const BasicBlock &BB : F) { 981 for (const Instruction &I : BB) { 982 for (const Use &OI : I.operands()) { 983 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) 984 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) 985 // Enumerate metadata after the instructions they might refer to. 986 FnLocalMDVector.push_back(Local); 987 } 988 989 if (!I.getType()->isVoidTy()) 990 EnumerateValue(&I); 991 } 992 } 993 994 // Add all of the function-local metadata. 995 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { 996 // At this point, every local values have been incorporated, we shouldn't 997 // have a metadata operand that references a value that hasn't been seen. 998 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && 999 "Missing value for metadata operand"); 1000 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); 1001 } 1002 } 1003 1004 void ValueEnumerator::purgeFunction() { 1005 /// Remove purged values from the ValueMap. 1006 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 1007 ValueMap.erase(Values[i].first); 1008 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 1009 MetadataMap.erase(MDs[i]); 1010 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) 1011 ValueMap.erase(BasicBlocks[i]); 1012 1013 Values.resize(NumModuleValues); 1014 MDs.resize(NumModuleMDs); 1015 BasicBlocks.clear(); 1016 NumMDStrings = 0; 1017 } 1018 1019 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 1020 DenseMap<const BasicBlock*, unsigned> &IDMap) { 1021 unsigned Counter = 0; 1022 for (const BasicBlock &BB : *F) 1023 IDMap[&BB] = ++Counter; 1024 } 1025 1026 /// getGlobalBasicBlockID - This returns the function-specific ID for the 1027 /// specified basic block. This is relatively expensive information, so it 1028 /// should only be used by rare constructs such as address-of-label. 1029 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 1030 unsigned &Idx = GlobalBasicBlockIDs[BB]; 1031 if (Idx != 0) 1032 return Idx-1; 1033 1034 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 1035 return getGlobalBasicBlockID(BB); 1036 } 1037 1038 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { 1039 return Log2_32_Ceil(getTypes().size() + 1); 1040 } 1041