1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ValueEnumerator class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/UseListOrder.h" 23 #include "llvm/IR/ValueSymbolTable.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 using namespace llvm; 28 29 namespace { 30 struct OrderMap { 31 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 32 unsigned LastGlobalConstantID; 33 unsigned LastGlobalValueID; 34 35 OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {} 36 37 bool isGlobalConstant(unsigned ID) const { 38 return ID <= LastGlobalConstantID; 39 } 40 bool isGlobalValue(unsigned ID) const { 41 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 42 } 43 44 unsigned size() const { return IDs.size(); } 45 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 46 std::pair<unsigned, bool> lookup(const Value *V) const { 47 return IDs.lookup(V); 48 } 49 void index(const Value *V) { 50 // Explicitly sequence get-size and insert-value operations to avoid UB. 51 unsigned ID = IDs.size() + 1; 52 IDs[V].first = ID; 53 } 54 }; 55 } 56 57 static void orderValue(const Value *V, OrderMap &OM) { 58 if (OM.lookup(V).first) 59 return; 60 61 if (const Constant *C = dyn_cast<Constant>(V)) 62 if (C->getNumOperands() && !isa<GlobalValue>(C)) 63 for (const Value *Op : C->operands()) 64 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 65 orderValue(Op, OM); 66 67 // Note: we cannot cache this lookup above, since inserting into the map 68 // changes the map's size, and thus affects the other IDs. 69 OM.index(V); 70 } 71 72 static OrderMap orderModule(const Module &M) { 73 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 74 // and ValueEnumerator::incorporateFunction(). 75 OrderMap OM; 76 77 // In the reader, initializers of GlobalValues are set *after* all the 78 // globals have been read. Rather than awkwardly modeling this behaviour 79 // directly in predictValueUseListOrderImpl(), just assign IDs to 80 // initializers of GlobalValues before GlobalValues themselves to model this 81 // implicitly. 82 for (const GlobalVariable &G : M.globals()) 83 if (G.hasInitializer()) 84 if (!isa<GlobalValue>(G.getInitializer())) 85 orderValue(G.getInitializer(), OM); 86 for (const GlobalAlias &A : M.aliases()) 87 if (!isa<GlobalValue>(A.getAliasee())) 88 orderValue(A.getAliasee(), OM); 89 for (const GlobalIFunc &I : M.ifuncs()) 90 if (!isa<GlobalValue>(I.getResolver())) 91 orderValue(I.getResolver(), OM); 92 for (const Function &F : M) { 93 for (const Use &U : F.operands()) 94 if (!isa<GlobalValue>(U.get())) 95 orderValue(U.get(), OM); 96 } 97 OM.LastGlobalConstantID = OM.size(); 98 99 // Initializers of GlobalValues are processed in 100 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 101 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 102 // by giving IDs in reverse order. 103 // 104 // Since GlobalValues never reference each other directly (just through 105 // initializers), their relative IDs only matter for determining order of 106 // uses in their initializers. 107 for (const Function &F : M) 108 orderValue(&F, OM); 109 for (const GlobalAlias &A : M.aliases()) 110 orderValue(&A, OM); 111 for (const GlobalIFunc &I : M.ifuncs()) 112 orderValue(&I, OM); 113 for (const GlobalVariable &G : M.globals()) 114 orderValue(&G, OM); 115 OM.LastGlobalValueID = OM.size(); 116 117 for (const Function &F : M) { 118 if (F.isDeclaration()) 119 continue; 120 // Here we need to match the union of ValueEnumerator::incorporateFunction() 121 // and WriteFunction(). Basic blocks are implicitly declared before 122 // anything else (by declaring their size). 123 for (const BasicBlock &BB : F) 124 orderValue(&BB, OM); 125 for (const Argument &A : F.args()) 126 orderValue(&A, OM); 127 for (const BasicBlock &BB : F) 128 for (const Instruction &I : BB) 129 for (const Value *Op : I.operands()) 130 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 131 isa<InlineAsm>(*Op)) 132 orderValue(Op, OM); 133 for (const BasicBlock &BB : F) 134 for (const Instruction &I : BB) 135 orderValue(&I, OM); 136 } 137 return OM; 138 } 139 140 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 141 unsigned ID, const OrderMap &OM, 142 UseListOrderStack &Stack) { 143 // Predict use-list order for this one. 144 typedef std::pair<const Use *, unsigned> Entry; 145 SmallVector<Entry, 64> List; 146 for (const Use &U : V->uses()) 147 // Check if this user will be serialized. 148 if (OM.lookup(U.getUser()).first) 149 List.push_back(std::make_pair(&U, List.size())); 150 151 if (List.size() < 2) 152 // We may have lost some users. 153 return; 154 155 bool IsGlobalValue = OM.isGlobalValue(ID); 156 std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) { 157 const Use *LU = L.first; 158 const Use *RU = R.first; 159 if (LU == RU) 160 return false; 161 162 auto LID = OM.lookup(LU->getUser()).first; 163 auto RID = OM.lookup(RU->getUser()).first; 164 165 // Global values are processed in reverse order. 166 // 167 // Moreover, initializers of GlobalValues are set *after* all the globals 168 // have been read (despite having earlier IDs). Rather than awkwardly 169 // modeling this behaviour here, orderModule() has assigned IDs to 170 // initializers of GlobalValues before GlobalValues themselves. 171 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) 172 return LID < RID; 173 174 // If ID is 4, then expect: 7 6 5 1 2 3. 175 if (LID < RID) { 176 if (RID <= ID) 177 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 178 return true; 179 return false; 180 } 181 if (RID < LID) { 182 if (LID <= ID) 183 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 184 return false; 185 return true; 186 } 187 188 // LID and RID are equal, so we have different operands of the same user. 189 // Assume operands are added in order for all instructions. 190 if (LID <= ID) 191 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 192 return LU->getOperandNo() < RU->getOperandNo(); 193 return LU->getOperandNo() > RU->getOperandNo(); 194 }); 195 196 if (std::is_sorted( 197 List.begin(), List.end(), 198 [](const Entry &L, const Entry &R) { return L.second < R.second; })) 199 // Order is already correct. 200 return; 201 202 // Store the shuffle. 203 Stack.emplace_back(V, F, List.size()); 204 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 205 for (size_t I = 0, E = List.size(); I != E; ++I) 206 Stack.back().Shuffle[I] = List[I].second; 207 } 208 209 static void predictValueUseListOrder(const Value *V, const Function *F, 210 OrderMap &OM, UseListOrderStack &Stack) { 211 auto &IDPair = OM[V]; 212 assert(IDPair.first && "Unmapped value"); 213 if (IDPair.second) 214 // Already predicted. 215 return; 216 217 // Do the actual prediction. 218 IDPair.second = true; 219 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 220 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 221 222 // Recursive descent into constants. 223 if (const Constant *C = dyn_cast<Constant>(V)) 224 if (C->getNumOperands()) // Visit GlobalValues. 225 for (const Value *Op : C->operands()) 226 if (isa<Constant>(Op)) // Visit GlobalValues. 227 predictValueUseListOrder(Op, F, OM, Stack); 228 } 229 230 static UseListOrderStack predictUseListOrder(const Module &M) { 231 OrderMap OM = orderModule(M); 232 233 // Use-list orders need to be serialized after all the users have been added 234 // to a value, or else the shuffles will be incomplete. Store them per 235 // function in a stack. 236 // 237 // Aside from function order, the order of values doesn't matter much here. 238 UseListOrderStack Stack; 239 240 // We want to visit the functions backward now so we can list function-local 241 // constants in the last Function they're used in. Module-level constants 242 // have already been visited above. 243 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { 244 const Function &F = *I; 245 if (F.isDeclaration()) 246 continue; 247 for (const BasicBlock &BB : F) 248 predictValueUseListOrder(&BB, &F, OM, Stack); 249 for (const Argument &A : F.args()) 250 predictValueUseListOrder(&A, &F, OM, Stack); 251 for (const BasicBlock &BB : F) 252 for (const Instruction &I : BB) 253 for (const Value *Op : I.operands()) 254 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 255 predictValueUseListOrder(Op, &F, OM, Stack); 256 for (const BasicBlock &BB : F) 257 for (const Instruction &I : BB) 258 predictValueUseListOrder(&I, &F, OM, Stack); 259 } 260 261 // Visit globals last, since the module-level use-list block will be seen 262 // before the function bodies are processed. 263 for (const GlobalVariable &G : M.globals()) 264 predictValueUseListOrder(&G, nullptr, OM, Stack); 265 for (const Function &F : M) 266 predictValueUseListOrder(&F, nullptr, OM, Stack); 267 for (const GlobalAlias &A : M.aliases()) 268 predictValueUseListOrder(&A, nullptr, OM, Stack); 269 for (const GlobalIFunc &I : M.ifuncs()) 270 predictValueUseListOrder(&I, nullptr, OM, Stack); 271 for (const GlobalVariable &G : M.globals()) 272 if (G.hasInitializer()) 273 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 274 for (const GlobalAlias &A : M.aliases()) 275 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 276 for (const GlobalIFunc &I : M.ifuncs()) 277 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 278 for (const Function &F : M) { 279 for (const Use &U : F.operands()) 280 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 281 } 282 283 return Stack; 284 } 285 286 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { 287 return V.first->getType()->isIntOrIntVectorTy(); 288 } 289 290 ValueEnumerator::ValueEnumerator(const Module &M, 291 bool ShouldPreserveUseListOrder) 292 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 293 if (ShouldPreserveUseListOrder) 294 UseListOrders = predictUseListOrder(M); 295 296 // Enumerate the global variables. 297 for (const GlobalVariable &GV : M.globals()) 298 EnumerateValue(&GV); 299 300 // Enumerate the functions. 301 for (const Function & F : M) { 302 EnumerateValue(&F); 303 EnumerateAttributes(F.getAttributes()); 304 } 305 306 // Enumerate the aliases. 307 for (const GlobalAlias &GA : M.aliases()) 308 EnumerateValue(&GA); 309 310 // Enumerate the ifuncs. 311 for (const GlobalIFunc &GIF : M.ifuncs()) 312 EnumerateValue(&GIF); 313 314 // Remember what is the cutoff between globalvalue's and other constants. 315 unsigned FirstConstant = Values.size(); 316 317 // Enumerate the global variable initializers and attributes. 318 for (const GlobalVariable &GV : M.globals()) { 319 if (GV.hasInitializer()) 320 EnumerateValue(GV.getInitializer()); 321 if (GV.hasAttributes()) 322 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); 323 } 324 325 // Enumerate the aliasees. 326 for (const GlobalAlias &GA : M.aliases()) 327 EnumerateValue(GA.getAliasee()); 328 329 // Enumerate the ifunc resolvers. 330 for (const GlobalIFunc &GIF : M.ifuncs()) 331 EnumerateValue(GIF.getResolver()); 332 333 // Enumerate any optional Function data. 334 for (const Function &F : M) 335 for (const Use &U : F.operands()) 336 EnumerateValue(U.get()); 337 338 // Enumerate the metadata type. 339 // 340 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 341 // only encodes the metadata type when it's used as a value. 342 EnumerateType(Type::getMetadataTy(M.getContext())); 343 344 // Insert constants and metadata that are named at module level into the slot 345 // pool so that the module symbol table can refer to them... 346 EnumerateValueSymbolTable(M.getValueSymbolTable()); 347 EnumerateNamedMetadata(M); 348 349 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 350 for (const GlobalVariable &GV : M.globals()) { 351 MDs.clear(); 352 GV.getAllMetadata(MDs); 353 for (const auto &I : MDs) 354 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer 355 // to write metadata to the global variable's own metadata block 356 // (PR28134). 357 EnumerateMetadata(nullptr, I.second); 358 } 359 360 // Enumerate types used by function bodies and argument lists. 361 for (const Function &F : M) { 362 for (const Argument &A : F.args()) 363 EnumerateType(A.getType()); 364 365 // Enumerate metadata attached to this function. 366 MDs.clear(); 367 F.getAllMetadata(MDs); 368 for (const auto &I : MDs) 369 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); 370 371 for (const BasicBlock &BB : F) 372 for (const Instruction &I : BB) { 373 for (const Use &Op : I.operands()) { 374 auto *MD = dyn_cast<MetadataAsValue>(&Op); 375 if (!MD) { 376 EnumerateOperandType(Op); 377 continue; 378 } 379 380 // Local metadata is enumerated during function-incorporation. 381 if (isa<LocalAsMetadata>(MD->getMetadata())) 382 continue; 383 384 EnumerateMetadata(&F, MD->getMetadata()); 385 } 386 EnumerateType(I.getType()); 387 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 388 EnumerateAttributes(CI->getAttributes()); 389 else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) 390 EnumerateAttributes(II->getAttributes()); 391 392 // Enumerate metadata attached with this instruction. 393 MDs.clear(); 394 I.getAllMetadataOtherThanDebugLoc(MDs); 395 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 396 EnumerateMetadata(&F, MDs[i].second); 397 398 // Don't enumerate the location directly -- it has a special record 399 // type -- but enumerate its operands. 400 if (DILocation *L = I.getDebugLoc()) 401 for (const Metadata *Op : L->operands()) 402 EnumerateMetadata(&F, Op); 403 } 404 } 405 406 // Optimize constant ordering. 407 OptimizeConstants(FirstConstant, Values.size()); 408 409 // Organize metadata ordering. 410 organizeMetadata(); 411 } 412 413 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 414 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 415 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 416 return I->second; 417 } 418 419 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 420 unsigned ComdatID = Comdats.idFor(C); 421 assert(ComdatID && "Comdat not found!"); 422 return ComdatID; 423 } 424 425 void ValueEnumerator::setInstructionID(const Instruction *I) { 426 InstructionMap[I] = InstructionCount++; 427 } 428 429 unsigned ValueEnumerator::getValueID(const Value *V) const { 430 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 431 return getMetadataID(MD->getMetadata()); 432 433 ValueMapType::const_iterator I = ValueMap.find(V); 434 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 435 return I->second-1; 436 } 437 438 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 439 LLVM_DUMP_METHOD void ValueEnumerator::dump() const { 440 print(dbgs(), ValueMap, "Default"); 441 dbgs() << '\n'; 442 print(dbgs(), MetadataMap, "MetaData"); 443 dbgs() << '\n'; 444 } 445 #endif 446 447 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 448 const char *Name) const { 449 450 OS << "Map Name: " << Name << "\n"; 451 OS << "Size: " << Map.size() << "\n"; 452 for (ValueMapType::const_iterator I = Map.begin(), 453 E = Map.end(); I != E; ++I) { 454 455 const Value *V = I->first; 456 if (V->hasName()) 457 OS << "Value: " << V->getName(); 458 else 459 OS << "Value: [null]\n"; 460 V->print(errs()); 461 errs() << '\n'; 462 463 OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):"; 464 for (const Use &U : V->uses()) { 465 if (&U != &*V->use_begin()) 466 OS << ","; 467 if(U->hasName()) 468 OS << " " << U->getName(); 469 else 470 OS << " [null]"; 471 472 } 473 OS << "\n\n"; 474 } 475 } 476 477 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 478 const char *Name) const { 479 480 OS << "Map Name: " << Name << "\n"; 481 OS << "Size: " << Map.size() << "\n"; 482 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { 483 const Metadata *MD = I->first; 484 OS << "Metadata: slot = " << I->second.ID << "\n"; 485 OS << "Metadata: function = " << I->second.F << "\n"; 486 MD->print(OS); 487 OS << "\n"; 488 } 489 } 490 491 /// OptimizeConstants - Reorder constant pool for denser encoding. 492 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 493 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 494 495 if (ShouldPreserveUseListOrder) 496 // Optimizing constants makes the use-list order difficult to predict. 497 // Disable it for now when trying to preserve the order. 498 return; 499 500 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, 501 [this](const std::pair<const Value *, unsigned> &LHS, 502 const std::pair<const Value *, unsigned> &RHS) { 503 // Sort by plane. 504 if (LHS.first->getType() != RHS.first->getType()) 505 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); 506 // Then by frequency. 507 return LHS.second > RHS.second; 508 }); 509 510 // Ensure that integer and vector of integer constants are at the start of the 511 // constant pool. This is important so that GEP structure indices come before 512 // gep constant exprs. 513 std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, 514 isIntOrIntVectorValue); 515 516 // Rebuild the modified portion of ValueMap. 517 for (; CstStart != CstEnd; ++CstStart) 518 ValueMap[Values[CstStart].first] = CstStart+1; 519 } 520 521 522 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 523 /// table into the values table. 524 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 525 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 526 VI != VE; ++VI) 527 EnumerateValue(VI->getValue()); 528 } 529 530 /// Insert all of the values referenced by named metadata in the specified 531 /// module. 532 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 533 for (const auto &I : M.named_metadata()) 534 EnumerateNamedMDNode(&I); 535 } 536 537 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 538 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 539 EnumerateMetadata(nullptr, MD->getOperand(i)); 540 } 541 542 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { 543 return F ? getValueID(F) + 1 : 0; 544 } 545 546 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { 547 EnumerateMetadata(getMetadataFunctionID(F), MD); 548 } 549 550 void ValueEnumerator::EnumerateFunctionLocalMetadata( 551 const Function &F, const LocalAsMetadata *Local) { 552 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); 553 } 554 555 void ValueEnumerator::dropFunctionFromMetadata( 556 MetadataMapType::value_type &FirstMD) { 557 SmallVector<const MDNode *, 64> Worklist; 558 auto push = [&Worklist](MetadataMapType::value_type &MD) { 559 auto &Entry = MD.second; 560 561 // Nothing to do if this metadata isn't tagged. 562 if (!Entry.F) 563 return; 564 565 // Drop the function tag. 566 Entry.F = 0; 567 568 // If this is has an ID and is an MDNode, then its operands have entries as 569 // well. We need to drop the function from them too. 570 if (Entry.ID) 571 if (auto *N = dyn_cast<MDNode>(MD.first)) 572 Worklist.push_back(N); 573 }; 574 push(FirstMD); 575 while (!Worklist.empty()) 576 for (const Metadata *Op : Worklist.pop_back_val()->operands()) { 577 if (!Op) 578 continue; 579 auto MD = MetadataMap.find(Op); 580 if (MD != MetadataMap.end()) 581 push(*MD); 582 } 583 } 584 585 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { 586 // It's vital for reader efficiency that uniqued subgraphs are done in 587 // post-order; it's expensive when their operands have forward references. 588 // If a distinct node is referenced from a uniqued node, it'll be delayed 589 // until the uniqued subgraph has been completely traversed. 590 SmallVector<const MDNode *, 32> DelayedDistinctNodes; 591 592 // Start by enumerating MD, and then work through its transitive operands in 593 // post-order. This requires a depth-first search. 594 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; 595 if (const MDNode *N = enumerateMetadataImpl(F, MD)) 596 Worklist.push_back(std::make_pair(N, N->op_begin())); 597 598 while (!Worklist.empty()) { 599 const MDNode *N = Worklist.back().first; 600 601 // Enumerate operands until we hit a new node. We need to traverse these 602 // nodes' operands before visiting the rest of N's operands. 603 MDNode::op_iterator I = std::find_if( 604 Worklist.back().second, N->op_end(), 605 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); 606 if (I != N->op_end()) { 607 auto *Op = cast<MDNode>(*I); 608 Worklist.back().second = ++I; 609 610 // Delay traversing Op if it's a distinct node and N is uniqued. 611 if (Op->isDistinct() && !N->isDistinct()) 612 DelayedDistinctNodes.push_back(Op); 613 else 614 Worklist.push_back(std::make_pair(Op, Op->op_begin())); 615 continue; 616 } 617 618 // All the operands have been visited. Now assign an ID. 619 Worklist.pop_back(); 620 MDs.push_back(N); 621 MetadataMap[N].ID = MDs.size(); 622 623 // Flush out any delayed distinct nodes; these are all the distinct nodes 624 // that are leaves in last uniqued subgraph. 625 if (Worklist.empty() || Worklist.back().first->isDistinct()) { 626 for (const MDNode *N : DelayedDistinctNodes) 627 Worklist.push_back(std::make_pair(N, N->op_begin())); 628 DelayedDistinctNodes.clear(); 629 } 630 } 631 } 632 633 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) { 634 if (!MD) 635 return nullptr; 636 637 assert( 638 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 639 "Invalid metadata kind"); 640 641 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); 642 MDIndex &Entry = Insertion.first->second; 643 if (!Insertion.second) { 644 // Already mapped. If F doesn't match the function tag, drop it. 645 if (Entry.hasDifferentFunction(F)) 646 dropFunctionFromMetadata(*Insertion.first); 647 return nullptr; 648 } 649 650 // Don't assign IDs to metadata nodes. 651 if (auto *N = dyn_cast<MDNode>(MD)) 652 return N; 653 654 // Save the metadata. 655 MDs.push_back(MD); 656 Entry.ID = MDs.size(); 657 658 // Enumerate the constant, if any. 659 if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 660 EnumerateValue(C->getValue()); 661 662 return nullptr; 663 } 664 665 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata 666 /// information reachable from the metadata. 667 void ValueEnumerator::EnumerateFunctionLocalMetadata( 668 unsigned F, const LocalAsMetadata *Local) { 669 assert(F && "Expected a function"); 670 671 // Check to see if it's already in! 672 MDIndex &Index = MetadataMap[Local]; 673 if (Index.ID) { 674 assert(Index.F == F && "Expected the same function"); 675 return; 676 } 677 678 MDs.push_back(Local); 679 Index.F = F; 680 Index.ID = MDs.size(); 681 682 EnumerateValue(Local->getValue()); 683 } 684 685 static unsigned getMetadataTypeOrder(const Metadata *MD) { 686 // Strings are emitted in bulk and must come first. 687 if (isa<MDString>(MD)) 688 return 0; 689 690 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it 691 // to the front since we can detect it. 692 auto *N = dyn_cast<MDNode>(MD); 693 if (!N) 694 return 1; 695 696 // The reader is fast forward references for distinct node operands, but slow 697 // when uniqued operands are unresolved. 698 return N->isDistinct() ? 2 : 3; 699 } 700 701 void ValueEnumerator::organizeMetadata() { 702 assert(MetadataMap.size() == MDs.size() && 703 "Metadata map and vector out of sync"); 704 705 if (MDs.empty()) 706 return; 707 708 // Copy out the index information from MetadataMap in order to choose a new 709 // order. 710 SmallVector<MDIndex, 64> Order; 711 Order.reserve(MetadataMap.size()); 712 for (const Metadata *MD : MDs) 713 Order.push_back(MetadataMap.lookup(MD)); 714 715 // Partition: 716 // - by function, then 717 // - by isa<MDString> 718 // and then sort by the original/current ID. Since the IDs are guaranteed to 719 // be unique, the result of std::sort will be deterministic. There's no need 720 // for std::stable_sort. 721 std::sort(Order.begin(), Order.end(), [this](MDIndex LHS, MDIndex RHS) { 722 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < 723 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); 724 }); 725 726 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, 727 // and fix up MetadataMap. 728 std::vector<const Metadata *> OldMDs = std::move(MDs); 729 MDs.reserve(OldMDs.size()); 730 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { 731 auto *MD = Order[I].get(OldMDs); 732 MDs.push_back(MD); 733 MetadataMap[MD].ID = I + 1; 734 if (isa<MDString>(MD)) 735 ++NumMDStrings; 736 } 737 738 // Return early if there's nothing for the functions. 739 if (MDs.size() == Order.size()) 740 return; 741 742 // Build the function metadata ranges. 743 MDRange R; 744 FunctionMDs.reserve(OldMDs.size()); 745 unsigned PrevF = 0; 746 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; 747 ++I) { 748 unsigned F = Order[I].F; 749 if (!PrevF) { 750 PrevF = F; 751 } else if (PrevF != F) { 752 R.Last = FunctionMDs.size(); 753 std::swap(R, FunctionMDInfo[PrevF]); 754 R.First = FunctionMDs.size(); 755 756 ID = MDs.size(); 757 PrevF = F; 758 } 759 760 auto *MD = Order[I].get(OldMDs); 761 FunctionMDs.push_back(MD); 762 MetadataMap[MD].ID = ++ID; 763 if (isa<MDString>(MD)) 764 ++R.NumStrings; 765 } 766 R.Last = FunctionMDs.size(); 767 FunctionMDInfo[PrevF] = R; 768 } 769 770 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { 771 NumModuleMDs = MDs.size(); 772 773 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); 774 NumMDStrings = R.NumStrings; 775 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, 776 FunctionMDs.begin() + R.Last); 777 } 778 779 void ValueEnumerator::EnumerateValue(const Value *V) { 780 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 781 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 782 783 // Check to see if it's already in! 784 unsigned &ValueID = ValueMap[V]; 785 if (ValueID) { 786 // Increment use count. 787 Values[ValueID-1].second++; 788 return; 789 } 790 791 if (auto *GO = dyn_cast<GlobalObject>(V)) 792 if (const Comdat *C = GO->getComdat()) 793 Comdats.insert(C); 794 795 // Enumerate the type of this value. 796 EnumerateType(V->getType()); 797 798 if (const Constant *C = dyn_cast<Constant>(V)) { 799 if (isa<GlobalValue>(C)) { 800 // Initializers for globals are handled explicitly elsewhere. 801 } else if (C->getNumOperands()) { 802 // If a constant has operands, enumerate them. This makes sure that if a 803 // constant has uses (for example an array of const ints), that they are 804 // inserted also. 805 806 // We prefer to enumerate them with values before we enumerate the user 807 // itself. This makes it more likely that we can avoid forward references 808 // in the reader. We know that there can be no cycles in the constants 809 // graph that don't go through a global variable. 810 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); 811 I != E; ++I) 812 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 813 EnumerateValue(*I); 814 815 // Finally, add the value. Doing this could make the ValueID reference be 816 // dangling, don't reuse it. 817 Values.push_back(std::make_pair(V, 1U)); 818 ValueMap[V] = Values.size(); 819 return; 820 } 821 } 822 823 // Add the value. 824 Values.push_back(std::make_pair(V, 1U)); 825 ValueID = Values.size(); 826 } 827 828 829 void ValueEnumerator::EnumerateType(Type *Ty) { 830 unsigned *TypeID = &TypeMap[Ty]; 831 832 // We've already seen this type. 833 if (*TypeID) 834 return; 835 836 // If it is a non-anonymous struct, mark the type as being visited so that we 837 // don't recursively visit it. This is safe because we allow forward 838 // references of these in the bitcode reader. 839 if (StructType *STy = dyn_cast<StructType>(Ty)) 840 if (!STy->isLiteral()) 841 *TypeID = ~0U; 842 843 // Enumerate all of the subtypes before we enumerate this type. This ensures 844 // that the type will be enumerated in an order that can be directly built. 845 for (Type *SubTy : Ty->subtypes()) 846 EnumerateType(SubTy); 847 848 // Refresh the TypeID pointer in case the table rehashed. 849 TypeID = &TypeMap[Ty]; 850 851 // Check to see if we got the pointer another way. This can happen when 852 // enumerating recursive types that hit the base case deeper than they start. 853 // 854 // If this is actually a struct that we are treating as forward ref'able, 855 // then emit the definition now that all of its contents are available. 856 if (*TypeID && *TypeID != ~0U) 857 return; 858 859 // Add this type now that its contents are all happily enumerated. 860 Types.push_back(Ty); 861 862 *TypeID = Types.size(); 863 } 864 865 // Enumerate the types for the specified value. If the value is a constant, 866 // walk through it, enumerating the types of the constant. 867 void ValueEnumerator::EnumerateOperandType(const Value *V) { 868 EnumerateType(V->getType()); 869 870 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); 871 872 const Constant *C = dyn_cast<Constant>(V); 873 if (!C) 874 return; 875 876 // If this constant is already enumerated, ignore it, we know its type must 877 // be enumerated. 878 if (ValueMap.count(C)) 879 return; 880 881 // This constant may have operands, make sure to enumerate the types in 882 // them. 883 for (const Value *Op : C->operands()) { 884 // Don't enumerate basic blocks here, this happens as operands to 885 // blockaddress. 886 if (isa<BasicBlock>(Op)) 887 continue; 888 889 EnumerateOperandType(Op); 890 } 891 } 892 893 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { 894 if (PAL.isEmpty()) return; // null is always 0. 895 896 // Do a lookup. 897 unsigned &Entry = AttributeListMap[PAL]; 898 if (Entry == 0) { 899 // Never saw this before, add it. 900 AttributeLists.push_back(PAL); 901 Entry = AttributeLists.size(); 902 } 903 904 // Do lookups for all attribute groups. 905 for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) { 906 AttributeSet AS = PAL.getAttributes(i); 907 if (!AS.hasAttributes()) 908 continue; 909 IndexAndAttrSet Pair = {i, AS}; 910 unsigned &Entry = AttributeGroupMap[Pair]; 911 if (Entry == 0) { 912 AttributeGroups.push_back(Pair); 913 Entry = AttributeGroups.size(); 914 } 915 } 916 } 917 918 void ValueEnumerator::incorporateFunction(const Function &F) { 919 InstructionCount = 0; 920 NumModuleValues = Values.size(); 921 922 // Add global metadata to the function block. This doesn't include 923 // LocalAsMetadata. 924 incorporateFunctionMetadata(F); 925 926 // Adding function arguments to the value table. 927 for (const auto &I : F.args()) 928 EnumerateValue(&I); 929 930 FirstFuncConstantID = Values.size(); 931 932 // Add all function-level constants to the value table. 933 for (const BasicBlock &BB : F) { 934 for (const Instruction &I : BB) 935 for (const Use &OI : I.operands()) { 936 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 937 EnumerateValue(OI); 938 } 939 BasicBlocks.push_back(&BB); 940 ValueMap[&BB] = BasicBlocks.size(); 941 } 942 943 // Optimize the constant layout. 944 OptimizeConstants(FirstFuncConstantID, Values.size()); 945 946 // Add the function's parameter attributes so they are available for use in 947 // the function's instruction. 948 EnumerateAttributes(F.getAttributes()); 949 950 FirstInstID = Values.size(); 951 952 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 953 // Add all of the instructions. 954 for (const BasicBlock &BB : F) { 955 for (const Instruction &I : BB) { 956 for (const Use &OI : I.operands()) { 957 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) 958 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) 959 // Enumerate metadata after the instructions they might refer to. 960 FnLocalMDVector.push_back(Local); 961 } 962 963 if (!I.getType()->isVoidTy()) 964 EnumerateValue(&I); 965 } 966 } 967 968 // Add all of the function-local metadata. 969 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { 970 // At this point, every local values have been incorporated, we shouldn't 971 // have a metadata operand that references a value that hasn't been seen. 972 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && 973 "Missing value for metadata operand"); 974 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); 975 } 976 } 977 978 void ValueEnumerator::purgeFunction() { 979 /// Remove purged values from the ValueMap. 980 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 981 ValueMap.erase(Values[i].first); 982 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 983 MetadataMap.erase(MDs[i]); 984 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) 985 ValueMap.erase(BasicBlocks[i]); 986 987 Values.resize(NumModuleValues); 988 MDs.resize(NumModuleMDs); 989 BasicBlocks.clear(); 990 NumMDStrings = 0; 991 } 992 993 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 994 DenseMap<const BasicBlock*, unsigned> &IDMap) { 995 unsigned Counter = 0; 996 for (const BasicBlock &BB : *F) 997 IDMap[&BB] = ++Counter; 998 } 999 1000 /// getGlobalBasicBlockID - This returns the function-specific ID for the 1001 /// specified basic block. This is relatively expensive information, so it 1002 /// should only be used by rare constructs such as address-of-label. 1003 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 1004 unsigned &Idx = GlobalBasicBlockIDs[BB]; 1005 if (Idx != 0) 1006 return Idx-1; 1007 1008 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 1009 return getGlobalBasicBlockID(BB); 1010 } 1011 1012 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { 1013 return Log2_32_Ceil(getTypes().size() + 1); 1014 } 1015