1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/UseListOrder.h" 26 #include "llvm/IR/ValueSymbolTable.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/Program.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <cctype> 33 #include <map> 34 using namespace llvm; 35 36 /// These are manifest constants used by the bitcode writer. They do not need to 37 /// be kept in sync with the reader, but need to be consistent within this file. 38 enum { 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 62 switch (Opcode) { 63 default: llvm_unreachable("Unknown cast instruction!"); 64 case Instruction::Trunc : return bitc::CAST_TRUNC; 65 case Instruction::ZExt : return bitc::CAST_ZEXT; 66 case Instruction::SExt : return bitc::CAST_SEXT; 67 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 68 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 69 case Instruction::UIToFP : return bitc::CAST_UITOFP; 70 case Instruction::SIToFP : return bitc::CAST_SITOFP; 71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 72 case Instruction::FPExt : return bitc::CAST_FPEXT; 73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 75 case Instruction::BitCast : return bitc::CAST_BITCAST; 76 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 77 } 78 } 79 80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 81 switch (Opcode) { 82 default: llvm_unreachable("Unknown binary instruction!"); 83 case Instruction::Add: 84 case Instruction::FAdd: return bitc::BINOP_ADD; 85 case Instruction::Sub: 86 case Instruction::FSub: return bitc::BINOP_SUB; 87 case Instruction::Mul: 88 case Instruction::FMul: return bitc::BINOP_MUL; 89 case Instruction::UDiv: return bitc::BINOP_UDIV; 90 case Instruction::FDiv: 91 case Instruction::SDiv: return bitc::BINOP_SDIV; 92 case Instruction::URem: return bitc::BINOP_UREM; 93 case Instruction::FRem: 94 case Instruction::SRem: return bitc::BINOP_SREM; 95 case Instruction::Shl: return bitc::BINOP_SHL; 96 case Instruction::LShr: return bitc::BINOP_LSHR; 97 case Instruction::AShr: return bitc::BINOP_ASHR; 98 case Instruction::And: return bitc::BINOP_AND; 99 case Instruction::Or: return bitc::BINOP_OR; 100 case Instruction::Xor: return bitc::BINOP_XOR; 101 } 102 } 103 104 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 105 switch (Op) { 106 default: llvm_unreachable("Unknown RMW operation!"); 107 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 108 case AtomicRMWInst::Add: return bitc::RMW_ADD; 109 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 110 case AtomicRMWInst::And: return bitc::RMW_AND; 111 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 112 case AtomicRMWInst::Or: return bitc::RMW_OR; 113 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 114 case AtomicRMWInst::Max: return bitc::RMW_MAX; 115 case AtomicRMWInst::Min: return bitc::RMW_MIN; 116 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 117 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 118 } 119 } 120 121 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 122 switch (Ordering) { 123 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 124 case Unordered: return bitc::ORDERING_UNORDERED; 125 case Monotonic: return bitc::ORDERING_MONOTONIC; 126 case Acquire: return bitc::ORDERING_ACQUIRE; 127 case Release: return bitc::ORDERING_RELEASE; 128 case AcquireRelease: return bitc::ORDERING_ACQREL; 129 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 130 } 131 llvm_unreachable("Invalid ordering"); 132 } 133 134 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 135 switch (SynchScope) { 136 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 137 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 138 } 139 llvm_unreachable("Invalid synch scope"); 140 } 141 142 static void WriteStringRecord(unsigned Code, StringRef Str, 143 unsigned AbbrevToUse, BitstreamWriter &Stream) { 144 SmallVector<unsigned, 64> Vals; 145 146 // Code: [strchar x N] 147 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 148 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 149 AbbrevToUse = 0; 150 Vals.push_back(Str[i]); 151 } 152 153 // Emit the finished record. 154 Stream.EmitRecord(Code, Vals, AbbrevToUse); 155 } 156 157 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 158 switch (Kind) { 159 case Attribute::Alignment: 160 return bitc::ATTR_KIND_ALIGNMENT; 161 case Attribute::AlwaysInline: 162 return bitc::ATTR_KIND_ALWAYS_INLINE; 163 case Attribute::Builtin: 164 return bitc::ATTR_KIND_BUILTIN; 165 case Attribute::ByVal: 166 return bitc::ATTR_KIND_BY_VAL; 167 case Attribute::InAlloca: 168 return bitc::ATTR_KIND_IN_ALLOCA; 169 case Attribute::Cold: 170 return bitc::ATTR_KIND_COLD; 171 case Attribute::InlineHint: 172 return bitc::ATTR_KIND_INLINE_HINT; 173 case Attribute::InReg: 174 return bitc::ATTR_KIND_IN_REG; 175 case Attribute::JumpTable: 176 return bitc::ATTR_KIND_JUMP_TABLE; 177 case Attribute::MinSize: 178 return bitc::ATTR_KIND_MIN_SIZE; 179 case Attribute::Naked: 180 return bitc::ATTR_KIND_NAKED; 181 case Attribute::Nest: 182 return bitc::ATTR_KIND_NEST; 183 case Attribute::NoAlias: 184 return bitc::ATTR_KIND_NO_ALIAS; 185 case Attribute::NoBuiltin: 186 return bitc::ATTR_KIND_NO_BUILTIN; 187 case Attribute::NoCapture: 188 return bitc::ATTR_KIND_NO_CAPTURE; 189 case Attribute::NoDuplicate: 190 return bitc::ATTR_KIND_NO_DUPLICATE; 191 case Attribute::NoImplicitFloat: 192 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 193 case Attribute::NoInline: 194 return bitc::ATTR_KIND_NO_INLINE; 195 case Attribute::NonLazyBind: 196 return bitc::ATTR_KIND_NON_LAZY_BIND; 197 case Attribute::NonNull: 198 return bitc::ATTR_KIND_NON_NULL; 199 case Attribute::Dereferenceable: 200 return bitc::ATTR_KIND_DEREFERENCEABLE; 201 case Attribute::NoRedZone: 202 return bitc::ATTR_KIND_NO_RED_ZONE; 203 case Attribute::NoReturn: 204 return bitc::ATTR_KIND_NO_RETURN; 205 case Attribute::NoUnwind: 206 return bitc::ATTR_KIND_NO_UNWIND; 207 case Attribute::OptimizeForSize: 208 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 209 case Attribute::OptimizeNone: 210 return bitc::ATTR_KIND_OPTIMIZE_NONE; 211 case Attribute::ReadNone: 212 return bitc::ATTR_KIND_READ_NONE; 213 case Attribute::ReadOnly: 214 return bitc::ATTR_KIND_READ_ONLY; 215 case Attribute::Returned: 216 return bitc::ATTR_KIND_RETURNED; 217 case Attribute::ReturnsTwice: 218 return bitc::ATTR_KIND_RETURNS_TWICE; 219 case Attribute::SExt: 220 return bitc::ATTR_KIND_S_EXT; 221 case Attribute::StackAlignment: 222 return bitc::ATTR_KIND_STACK_ALIGNMENT; 223 case Attribute::StackProtect: 224 return bitc::ATTR_KIND_STACK_PROTECT; 225 case Attribute::StackProtectReq: 226 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 227 case Attribute::StackProtectStrong: 228 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 229 case Attribute::StructRet: 230 return bitc::ATTR_KIND_STRUCT_RET; 231 case Attribute::SanitizeAddress: 232 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 233 case Attribute::SanitizeThread: 234 return bitc::ATTR_KIND_SANITIZE_THREAD; 235 case Attribute::SanitizeMemory: 236 return bitc::ATTR_KIND_SANITIZE_MEMORY; 237 case Attribute::UWTable: 238 return bitc::ATTR_KIND_UW_TABLE; 239 case Attribute::ZExt: 240 return bitc::ATTR_KIND_Z_EXT; 241 case Attribute::EndAttrKinds: 242 llvm_unreachable("Can not encode end-attribute kinds marker."); 243 case Attribute::None: 244 llvm_unreachable("Can not encode none-attribute."); 245 } 246 247 llvm_unreachable("Trying to encode unknown attribute"); 248 } 249 250 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 251 BitstreamWriter &Stream) { 252 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 253 if (AttrGrps.empty()) return; 254 255 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 256 257 SmallVector<uint64_t, 64> Record; 258 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 259 AttributeSet AS = AttrGrps[i]; 260 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 261 AttributeSet A = AS.getSlotAttributes(i); 262 263 Record.push_back(VE.getAttributeGroupID(A)); 264 Record.push_back(AS.getSlotIndex(i)); 265 266 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 267 I != E; ++I) { 268 Attribute Attr = *I; 269 if (Attr.isEnumAttribute()) { 270 Record.push_back(0); 271 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 272 } else if (Attr.isIntAttribute()) { 273 Record.push_back(1); 274 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 275 Record.push_back(Attr.getValueAsInt()); 276 } else { 277 StringRef Kind = Attr.getKindAsString(); 278 StringRef Val = Attr.getValueAsString(); 279 280 Record.push_back(Val.empty() ? 3 : 4); 281 Record.append(Kind.begin(), Kind.end()); 282 Record.push_back(0); 283 if (!Val.empty()) { 284 Record.append(Val.begin(), Val.end()); 285 Record.push_back(0); 286 } 287 } 288 } 289 290 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 291 Record.clear(); 292 } 293 } 294 295 Stream.ExitBlock(); 296 } 297 298 static void WriteAttributeTable(const ValueEnumerator &VE, 299 BitstreamWriter &Stream) { 300 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 301 if (Attrs.empty()) return; 302 303 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 304 305 SmallVector<uint64_t, 64> Record; 306 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 307 const AttributeSet &A = Attrs[i]; 308 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 309 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 310 311 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 312 Record.clear(); 313 } 314 315 Stream.ExitBlock(); 316 } 317 318 /// WriteTypeTable - Write out the type table for a module. 319 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 320 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 321 322 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 323 SmallVector<uint64_t, 64> TypeVals; 324 325 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 326 327 // Abbrev for TYPE_CODE_POINTER. 328 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 329 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 331 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 332 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 333 334 // Abbrev for TYPE_CODE_FUNCTION. 335 Abbv = new BitCodeAbbrev(); 336 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 340 341 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 342 343 // Abbrev for TYPE_CODE_STRUCT_ANON. 344 Abbv = new BitCodeAbbrev(); 345 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 349 350 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 351 352 // Abbrev for TYPE_CODE_STRUCT_NAME. 353 Abbv = new BitCodeAbbrev(); 354 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 357 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 358 359 // Abbrev for TYPE_CODE_STRUCT_NAMED. 360 Abbv = new BitCodeAbbrev(); 361 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 365 366 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 367 368 // Abbrev for TYPE_CODE_ARRAY. 369 Abbv = new BitCodeAbbrev(); 370 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 373 374 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 375 376 // Emit an entry count so the reader can reserve space. 377 TypeVals.push_back(TypeList.size()); 378 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 379 TypeVals.clear(); 380 381 // Loop over all of the types, emitting each in turn. 382 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 383 Type *T = TypeList[i]; 384 int AbbrevToUse = 0; 385 unsigned Code = 0; 386 387 switch (T->getTypeID()) { 388 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 389 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 390 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 391 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 392 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 393 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 394 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 395 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 396 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 397 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 398 case Type::IntegerTyID: 399 // INTEGER: [width] 400 Code = bitc::TYPE_CODE_INTEGER; 401 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 402 break; 403 case Type::PointerTyID: { 404 PointerType *PTy = cast<PointerType>(T); 405 // POINTER: [pointee type, address space] 406 Code = bitc::TYPE_CODE_POINTER; 407 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 408 unsigned AddressSpace = PTy->getAddressSpace(); 409 TypeVals.push_back(AddressSpace); 410 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 411 break; 412 } 413 case Type::FunctionTyID: { 414 FunctionType *FT = cast<FunctionType>(T); 415 // FUNCTION: [isvararg, retty, paramty x N] 416 Code = bitc::TYPE_CODE_FUNCTION; 417 TypeVals.push_back(FT->isVarArg()); 418 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 419 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 420 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 421 AbbrevToUse = FunctionAbbrev; 422 break; 423 } 424 case Type::StructTyID: { 425 StructType *ST = cast<StructType>(T); 426 // STRUCT: [ispacked, eltty x N] 427 TypeVals.push_back(ST->isPacked()); 428 // Output all of the element types. 429 for (StructType::element_iterator I = ST->element_begin(), 430 E = ST->element_end(); I != E; ++I) 431 TypeVals.push_back(VE.getTypeID(*I)); 432 433 if (ST->isLiteral()) { 434 Code = bitc::TYPE_CODE_STRUCT_ANON; 435 AbbrevToUse = StructAnonAbbrev; 436 } else { 437 if (ST->isOpaque()) { 438 Code = bitc::TYPE_CODE_OPAQUE; 439 } else { 440 Code = bitc::TYPE_CODE_STRUCT_NAMED; 441 AbbrevToUse = StructNamedAbbrev; 442 } 443 444 // Emit the name if it is present. 445 if (!ST->getName().empty()) 446 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 447 StructNameAbbrev, Stream); 448 } 449 break; 450 } 451 case Type::ArrayTyID: { 452 ArrayType *AT = cast<ArrayType>(T); 453 // ARRAY: [numelts, eltty] 454 Code = bitc::TYPE_CODE_ARRAY; 455 TypeVals.push_back(AT->getNumElements()); 456 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 457 AbbrevToUse = ArrayAbbrev; 458 break; 459 } 460 case Type::VectorTyID: { 461 VectorType *VT = cast<VectorType>(T); 462 // VECTOR [numelts, eltty] 463 Code = bitc::TYPE_CODE_VECTOR; 464 TypeVals.push_back(VT->getNumElements()); 465 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 466 break; 467 } 468 } 469 470 // Emit the finished record. 471 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 472 TypeVals.clear(); 473 } 474 475 Stream.ExitBlock(); 476 } 477 478 static unsigned getEncodedLinkage(const GlobalValue &GV) { 479 switch (GV.getLinkage()) { 480 case GlobalValue::ExternalLinkage: 481 return 0; 482 case GlobalValue::WeakAnyLinkage: 483 return 1; 484 case GlobalValue::AppendingLinkage: 485 return 2; 486 case GlobalValue::InternalLinkage: 487 return 3; 488 case GlobalValue::LinkOnceAnyLinkage: 489 return 4; 490 case GlobalValue::ExternalWeakLinkage: 491 return 7; 492 case GlobalValue::CommonLinkage: 493 return 8; 494 case GlobalValue::PrivateLinkage: 495 return 9; 496 case GlobalValue::WeakODRLinkage: 497 return 10; 498 case GlobalValue::LinkOnceODRLinkage: 499 return 11; 500 case GlobalValue::AvailableExternallyLinkage: 501 return 12; 502 } 503 llvm_unreachable("Invalid linkage"); 504 } 505 506 static unsigned getEncodedVisibility(const GlobalValue &GV) { 507 switch (GV.getVisibility()) { 508 case GlobalValue::DefaultVisibility: return 0; 509 case GlobalValue::HiddenVisibility: return 1; 510 case GlobalValue::ProtectedVisibility: return 2; 511 } 512 llvm_unreachable("Invalid visibility"); 513 } 514 515 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 516 switch (GV.getDLLStorageClass()) { 517 case GlobalValue::DefaultStorageClass: return 0; 518 case GlobalValue::DLLImportStorageClass: return 1; 519 case GlobalValue::DLLExportStorageClass: return 2; 520 } 521 llvm_unreachable("Invalid DLL storage class"); 522 } 523 524 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 525 switch (GV.getThreadLocalMode()) { 526 case GlobalVariable::NotThreadLocal: return 0; 527 case GlobalVariable::GeneralDynamicTLSModel: return 1; 528 case GlobalVariable::LocalDynamicTLSModel: return 2; 529 case GlobalVariable::InitialExecTLSModel: return 3; 530 case GlobalVariable::LocalExecTLSModel: return 4; 531 } 532 llvm_unreachable("Invalid TLS model"); 533 } 534 535 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 536 switch (C.getSelectionKind()) { 537 case Comdat::Any: 538 return bitc::COMDAT_SELECTION_KIND_ANY; 539 case Comdat::ExactMatch: 540 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 541 case Comdat::Largest: 542 return bitc::COMDAT_SELECTION_KIND_LARGEST; 543 case Comdat::NoDuplicates: 544 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 545 case Comdat::SameSize: 546 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 547 } 548 llvm_unreachable("Invalid selection kind"); 549 } 550 551 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 552 SmallVector<uint8_t, 64> Vals; 553 for (const Comdat *C : VE.getComdats()) { 554 // COMDAT: [selection_kind, name] 555 Vals.push_back(getEncodedComdatSelectionKind(*C)); 556 Vals.push_back(C->getName().size()); 557 for (char Chr : C->getName()) 558 Vals.push_back((unsigned char)Chr); 559 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 560 Vals.clear(); 561 } 562 } 563 564 // Emit top-level description of module, including target triple, inline asm, 565 // descriptors for global variables, and function prototype info. 566 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 567 BitstreamWriter &Stream) { 568 // Emit various pieces of data attached to a module. 569 if (!M->getTargetTriple().empty()) 570 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 571 0/*TODO*/, Stream); 572 const std::string &DL = M->getDataLayoutStr(); 573 if (!DL.empty()) 574 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 575 if (!M->getModuleInlineAsm().empty()) 576 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 577 0/*TODO*/, Stream); 578 579 // Emit information about sections and GC, computing how many there are. Also 580 // compute the maximum alignment value. 581 std::map<std::string, unsigned> SectionMap; 582 std::map<std::string, unsigned> GCMap; 583 unsigned MaxAlignment = 0; 584 unsigned MaxGlobalType = 0; 585 for (const GlobalValue &GV : M->globals()) { 586 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 587 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 588 if (GV.hasSection()) { 589 // Give section names unique ID's. 590 unsigned &Entry = SectionMap[GV.getSection()]; 591 if (!Entry) { 592 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 593 0/*TODO*/, Stream); 594 Entry = SectionMap.size(); 595 } 596 } 597 } 598 for (const Function &F : *M) { 599 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 600 if (F.hasSection()) { 601 // Give section names unique ID's. 602 unsigned &Entry = SectionMap[F.getSection()]; 603 if (!Entry) { 604 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 605 0/*TODO*/, Stream); 606 Entry = SectionMap.size(); 607 } 608 } 609 if (F.hasGC()) { 610 // Same for GC names. 611 unsigned &Entry = GCMap[F.getGC()]; 612 if (!Entry) { 613 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 614 0/*TODO*/, Stream); 615 Entry = GCMap.size(); 616 } 617 } 618 } 619 620 // Emit abbrev for globals, now that we know # sections and max alignment. 621 unsigned SimpleGVarAbbrev = 0; 622 if (!M->global_empty()) { 623 // Add an abbrev for common globals with no visibility or thread localness. 624 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 625 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 627 Log2_32_Ceil(MaxGlobalType+1))); 628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 631 if (MaxAlignment == 0) // Alignment. 632 Abbv->Add(BitCodeAbbrevOp(0)); 633 else { 634 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 636 Log2_32_Ceil(MaxEncAlignment+1))); 637 } 638 if (SectionMap.empty()) // Section. 639 Abbv->Add(BitCodeAbbrevOp(0)); 640 else 641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 642 Log2_32_Ceil(SectionMap.size()+1))); 643 // Don't bother emitting vis + thread local. 644 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 645 } 646 647 // Emit the global variable information. 648 SmallVector<unsigned, 64> Vals; 649 for (const GlobalVariable &GV : M->globals()) { 650 unsigned AbbrevToUse = 0; 651 652 // GLOBALVAR: [type, isconst, initid, 653 // linkage, alignment, section, visibility, threadlocal, 654 // unnamed_addr, externally_initialized, dllstorageclass] 655 Vals.push_back(VE.getTypeID(GV.getType())); 656 Vals.push_back(GV.isConstant()); 657 Vals.push_back(GV.isDeclaration() ? 0 : 658 (VE.getValueID(GV.getInitializer()) + 1)); 659 Vals.push_back(getEncodedLinkage(GV)); 660 Vals.push_back(Log2_32(GV.getAlignment())+1); 661 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 662 if (GV.isThreadLocal() || 663 GV.getVisibility() != GlobalValue::DefaultVisibility || 664 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 665 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 666 GV.hasComdat()) { 667 Vals.push_back(getEncodedVisibility(GV)); 668 Vals.push_back(getEncodedThreadLocalMode(GV)); 669 Vals.push_back(GV.hasUnnamedAddr()); 670 Vals.push_back(GV.isExternallyInitialized()); 671 Vals.push_back(getEncodedDLLStorageClass(GV)); 672 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 673 } else { 674 AbbrevToUse = SimpleGVarAbbrev; 675 } 676 677 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 678 Vals.clear(); 679 } 680 681 // Emit the function proto information. 682 for (const Function &F : *M) { 683 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 684 // section, visibility, gc, unnamed_addr, prologuedata, 685 // dllstorageclass, comdat, prefixdata] 686 Vals.push_back(VE.getTypeID(F.getType())); 687 Vals.push_back(F.getCallingConv()); 688 Vals.push_back(F.isDeclaration()); 689 Vals.push_back(getEncodedLinkage(F)); 690 Vals.push_back(VE.getAttributeID(F.getAttributes())); 691 Vals.push_back(Log2_32(F.getAlignment())+1); 692 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 693 Vals.push_back(getEncodedVisibility(F)); 694 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 695 Vals.push_back(F.hasUnnamedAddr()); 696 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 697 : 0); 698 Vals.push_back(getEncodedDLLStorageClass(F)); 699 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 700 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 701 : 0); 702 703 unsigned AbbrevToUse = 0; 704 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 705 Vals.clear(); 706 } 707 708 // Emit the alias information. 709 for (const GlobalAlias &A : M->aliases()) { 710 // ALIAS: [alias type, aliasee val#, linkage, visibility] 711 Vals.push_back(VE.getTypeID(A.getType())); 712 Vals.push_back(VE.getValueID(A.getAliasee())); 713 Vals.push_back(getEncodedLinkage(A)); 714 Vals.push_back(getEncodedVisibility(A)); 715 Vals.push_back(getEncodedDLLStorageClass(A)); 716 Vals.push_back(getEncodedThreadLocalMode(A)); 717 Vals.push_back(A.hasUnnamedAddr()); 718 unsigned AbbrevToUse = 0; 719 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 720 Vals.clear(); 721 } 722 } 723 724 static uint64_t GetOptimizationFlags(const Value *V) { 725 uint64_t Flags = 0; 726 727 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 728 if (OBO->hasNoSignedWrap()) 729 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 730 if (OBO->hasNoUnsignedWrap()) 731 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 732 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 733 if (PEO->isExact()) 734 Flags |= 1 << bitc::PEO_EXACT; 735 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 736 if (FPMO->hasUnsafeAlgebra()) 737 Flags |= FastMathFlags::UnsafeAlgebra; 738 if (FPMO->hasNoNaNs()) 739 Flags |= FastMathFlags::NoNaNs; 740 if (FPMO->hasNoInfs()) 741 Flags |= FastMathFlags::NoInfs; 742 if (FPMO->hasNoSignedZeros()) 743 Flags |= FastMathFlags::NoSignedZeros; 744 if (FPMO->hasAllowReciprocal()) 745 Flags |= FastMathFlags::AllowReciprocal; 746 } 747 748 return Flags; 749 } 750 751 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 752 const ValueEnumerator &VE, 753 BitstreamWriter &Stream, 754 SmallVectorImpl<uint64_t> &Record) { 755 // Mimic an MDNode with a value as one operand. 756 Value *V = MD->getValue(); 757 Record.push_back(VE.getTypeID(V->getType())); 758 Record.push_back(VE.getValueID(V)); 759 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 760 Record.clear(); 761 } 762 763 static void WriteMDNode(const MDNode *N, 764 const ValueEnumerator &VE, 765 BitstreamWriter &Stream, 766 SmallVectorImpl<uint64_t> &Record) { 767 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 768 Metadata *MD = N->getOperand(i); 769 if (!MD) { 770 Record.push_back(0); 771 continue; 772 } 773 assert(!isa<LocalAsMetadata>(MD) && "Unexpected function-local metadata"); 774 Record.push_back(VE.getMetadataID(MD) + 1); 775 } 776 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 777 : bitc::METADATA_NODE, 778 Record); 779 Record.clear(); 780 } 781 782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 783 BitstreamWriter &Stream, 784 SmallVectorImpl<uint64_t> &Record, 785 unsigned Abbrev) { 786 Record.push_back(N->isDistinct()); 787 Record.push_back(N->getLine()); 788 Record.push_back(N->getColumn()); 789 Record.push_back(VE.getMetadataID(N->getScope())); 790 791 // Always emit the inlined-at location, even though it's optional. 792 if (Metadata *InlinedAt = N->getInlinedAt()) 793 Record.push_back(VE.getMetadataID(InlinedAt) + 1); 794 else 795 Record.push_back(0); 796 797 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 798 Record.clear(); 799 } 800 801 static void WriteModuleMetadata(const Module *M, 802 const ValueEnumerator &VE, 803 BitstreamWriter &Stream) { 804 const auto &MDs = VE.getMDs(); 805 if (MDs.empty() && M->named_metadata_empty()) 806 return; 807 808 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 809 810 unsigned MDSAbbrev = 0; 811 if (VE.hasMDString()) { 812 // Abbrev for METADATA_STRING. 813 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 814 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 817 MDSAbbrev = Stream.EmitAbbrev(Abbv); 818 } 819 820 unsigned LocAbbrev = 0; 821 if (VE.hasMDLocation()) { 822 // Abbrev for METADATA_LOCATION. 823 // 824 // Assume the column is usually under 128, and always output the inlined-at 825 // location (it's never more expensive than building an array size 1). 826 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 827 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 833 LocAbbrev = Stream.EmitAbbrev(Abbv); 834 } 835 836 unsigned NameAbbrev = 0; 837 if (!M->named_metadata_empty()) { 838 // Abbrev for METADATA_NAME. 839 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 840 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 843 NameAbbrev = Stream.EmitAbbrev(Abbv); 844 } 845 846 SmallVector<uint64_t, 64> Record; 847 for (const Metadata *MD : MDs) { 848 if (const MDLocation *Loc = dyn_cast<MDLocation>(MD)) { 849 WriteMDLocation(Loc, VE, Stream, Record, LocAbbrev); 850 continue; 851 } 852 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 853 WriteMDNode(N, VE, Stream, Record); 854 continue; 855 } 856 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 857 WriteValueAsMetadata(MDC, VE, Stream, Record); 858 continue; 859 } 860 const MDString *MDS = cast<MDString>(MD); 861 // Code: [strchar x N] 862 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 863 864 // Emit the finished record. 865 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 866 Record.clear(); 867 } 868 869 // Write named metadata. 870 for (const NamedMDNode &NMD : M->named_metadata()) { 871 // Write name. 872 StringRef Str = NMD.getName(); 873 Record.append(Str.bytes_begin(), Str.bytes_end()); 874 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 875 Record.clear(); 876 877 // Write named metadata operands. 878 for (const MDNode *N : NMD.operands()) 879 Record.push_back(VE.getMetadataID(N)); 880 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 881 Record.clear(); 882 } 883 884 Stream.ExitBlock(); 885 } 886 887 static void WriteFunctionLocalMetadata(const Function &F, 888 const ValueEnumerator &VE, 889 BitstreamWriter &Stream) { 890 bool StartedMetadataBlock = false; 891 SmallVector<uint64_t, 64> Record; 892 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 893 VE.getFunctionLocalMDs(); 894 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 895 assert(MDs[i] && "Expected valid function-local metadata"); 896 if (!StartedMetadataBlock) { 897 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 898 StartedMetadataBlock = true; 899 } 900 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 901 } 902 903 if (StartedMetadataBlock) 904 Stream.ExitBlock(); 905 } 906 907 static void WriteMetadataAttachment(const Function &F, 908 const ValueEnumerator &VE, 909 BitstreamWriter &Stream) { 910 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 911 912 SmallVector<uint64_t, 64> Record; 913 914 // Write metadata attachments 915 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 916 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 917 918 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 919 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 920 I != E; ++I) { 921 MDs.clear(); 922 I->getAllMetadataOtherThanDebugLoc(MDs); 923 924 // If no metadata, ignore instruction. 925 if (MDs.empty()) continue; 926 927 Record.push_back(VE.getInstructionID(I)); 928 929 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 930 Record.push_back(MDs[i].first); 931 Record.push_back(VE.getMetadataID(MDs[i].second)); 932 } 933 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 934 Record.clear(); 935 } 936 937 Stream.ExitBlock(); 938 } 939 940 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 941 SmallVector<uint64_t, 64> Record; 942 943 // Write metadata kinds 944 // METADATA_KIND - [n x [id, name]] 945 SmallVector<StringRef, 8> Names; 946 M->getMDKindNames(Names); 947 948 if (Names.empty()) return; 949 950 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 951 952 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 953 Record.push_back(MDKindID); 954 StringRef KName = Names[MDKindID]; 955 Record.append(KName.begin(), KName.end()); 956 957 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 958 Record.clear(); 959 } 960 961 Stream.ExitBlock(); 962 } 963 964 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 965 if ((int64_t)V >= 0) 966 Vals.push_back(V << 1); 967 else 968 Vals.push_back((-V << 1) | 1); 969 } 970 971 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 972 const ValueEnumerator &VE, 973 BitstreamWriter &Stream, bool isGlobal) { 974 if (FirstVal == LastVal) return; 975 976 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 977 978 unsigned AggregateAbbrev = 0; 979 unsigned String8Abbrev = 0; 980 unsigned CString7Abbrev = 0; 981 unsigned CString6Abbrev = 0; 982 // If this is a constant pool for the module, emit module-specific abbrevs. 983 if (isGlobal) { 984 // Abbrev for CST_CODE_AGGREGATE. 985 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 986 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 989 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 990 991 // Abbrev for CST_CODE_STRING. 992 Abbv = new BitCodeAbbrev(); 993 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 996 String8Abbrev = Stream.EmitAbbrev(Abbv); 997 // Abbrev for CST_CODE_CSTRING. 998 Abbv = new BitCodeAbbrev(); 999 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1002 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1003 // Abbrev for CST_CODE_CSTRING. 1004 Abbv = new BitCodeAbbrev(); 1005 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1008 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1009 } 1010 1011 SmallVector<uint64_t, 64> Record; 1012 1013 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1014 Type *LastTy = nullptr; 1015 for (unsigned i = FirstVal; i != LastVal; ++i) { 1016 const Value *V = Vals[i].first; 1017 // If we need to switch types, do so now. 1018 if (V->getType() != LastTy) { 1019 LastTy = V->getType(); 1020 Record.push_back(VE.getTypeID(LastTy)); 1021 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1022 CONSTANTS_SETTYPE_ABBREV); 1023 Record.clear(); 1024 } 1025 1026 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1027 Record.push_back(unsigned(IA->hasSideEffects()) | 1028 unsigned(IA->isAlignStack()) << 1 | 1029 unsigned(IA->getDialect()&1) << 2); 1030 1031 // Add the asm string. 1032 const std::string &AsmStr = IA->getAsmString(); 1033 Record.push_back(AsmStr.size()); 1034 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 1035 Record.push_back(AsmStr[i]); 1036 1037 // Add the constraint string. 1038 const std::string &ConstraintStr = IA->getConstraintString(); 1039 Record.push_back(ConstraintStr.size()); 1040 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1041 Record.push_back(ConstraintStr[i]); 1042 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1043 Record.clear(); 1044 continue; 1045 } 1046 const Constant *C = cast<Constant>(V); 1047 unsigned Code = -1U; 1048 unsigned AbbrevToUse = 0; 1049 if (C->isNullValue()) { 1050 Code = bitc::CST_CODE_NULL; 1051 } else if (isa<UndefValue>(C)) { 1052 Code = bitc::CST_CODE_UNDEF; 1053 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1054 if (IV->getBitWidth() <= 64) { 1055 uint64_t V = IV->getSExtValue(); 1056 emitSignedInt64(Record, V); 1057 Code = bitc::CST_CODE_INTEGER; 1058 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1059 } else { // Wide integers, > 64 bits in size. 1060 // We have an arbitrary precision integer value to write whose 1061 // bit width is > 64. However, in canonical unsigned integer 1062 // format it is likely that the high bits are going to be zero. 1063 // So, we only write the number of active words. 1064 unsigned NWords = IV->getValue().getActiveWords(); 1065 const uint64_t *RawWords = IV->getValue().getRawData(); 1066 for (unsigned i = 0; i != NWords; ++i) { 1067 emitSignedInt64(Record, RawWords[i]); 1068 } 1069 Code = bitc::CST_CODE_WIDE_INTEGER; 1070 } 1071 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1072 Code = bitc::CST_CODE_FLOAT; 1073 Type *Ty = CFP->getType(); 1074 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1075 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1076 } else if (Ty->isX86_FP80Ty()) { 1077 // api needed to prevent premature destruction 1078 // bits are not in the same order as a normal i80 APInt, compensate. 1079 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1080 const uint64_t *p = api.getRawData(); 1081 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1082 Record.push_back(p[0] & 0xffffLL); 1083 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1084 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1085 const uint64_t *p = api.getRawData(); 1086 Record.push_back(p[0]); 1087 Record.push_back(p[1]); 1088 } else { 1089 assert (0 && "Unknown FP type!"); 1090 } 1091 } else if (isa<ConstantDataSequential>(C) && 1092 cast<ConstantDataSequential>(C)->isString()) { 1093 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1094 // Emit constant strings specially. 1095 unsigned NumElts = Str->getNumElements(); 1096 // If this is a null-terminated string, use the denser CSTRING encoding. 1097 if (Str->isCString()) { 1098 Code = bitc::CST_CODE_CSTRING; 1099 --NumElts; // Don't encode the null, which isn't allowed by char6. 1100 } else { 1101 Code = bitc::CST_CODE_STRING; 1102 AbbrevToUse = String8Abbrev; 1103 } 1104 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1105 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1106 for (unsigned i = 0; i != NumElts; ++i) { 1107 unsigned char V = Str->getElementAsInteger(i); 1108 Record.push_back(V); 1109 isCStr7 &= (V & 128) == 0; 1110 if (isCStrChar6) 1111 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1112 } 1113 1114 if (isCStrChar6) 1115 AbbrevToUse = CString6Abbrev; 1116 else if (isCStr7) 1117 AbbrevToUse = CString7Abbrev; 1118 } else if (const ConstantDataSequential *CDS = 1119 dyn_cast<ConstantDataSequential>(C)) { 1120 Code = bitc::CST_CODE_DATA; 1121 Type *EltTy = CDS->getType()->getElementType(); 1122 if (isa<IntegerType>(EltTy)) { 1123 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1124 Record.push_back(CDS->getElementAsInteger(i)); 1125 } else if (EltTy->isFloatTy()) { 1126 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1127 union { float F; uint32_t I; }; 1128 F = CDS->getElementAsFloat(i); 1129 Record.push_back(I); 1130 } 1131 } else { 1132 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1133 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1134 union { double F; uint64_t I; }; 1135 F = CDS->getElementAsDouble(i); 1136 Record.push_back(I); 1137 } 1138 } 1139 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1140 isa<ConstantVector>(C)) { 1141 Code = bitc::CST_CODE_AGGREGATE; 1142 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1143 Record.push_back(VE.getValueID(C->getOperand(i))); 1144 AbbrevToUse = AggregateAbbrev; 1145 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1146 switch (CE->getOpcode()) { 1147 default: 1148 if (Instruction::isCast(CE->getOpcode())) { 1149 Code = bitc::CST_CODE_CE_CAST; 1150 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1151 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1152 Record.push_back(VE.getValueID(C->getOperand(0))); 1153 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1154 } else { 1155 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1156 Code = bitc::CST_CODE_CE_BINOP; 1157 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1158 Record.push_back(VE.getValueID(C->getOperand(0))); 1159 Record.push_back(VE.getValueID(C->getOperand(1))); 1160 uint64_t Flags = GetOptimizationFlags(CE); 1161 if (Flags != 0) 1162 Record.push_back(Flags); 1163 } 1164 break; 1165 case Instruction::GetElementPtr: 1166 Code = bitc::CST_CODE_CE_GEP; 1167 if (cast<GEPOperator>(C)->isInBounds()) 1168 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1169 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1170 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1171 Record.push_back(VE.getValueID(C->getOperand(i))); 1172 } 1173 break; 1174 case Instruction::Select: 1175 Code = bitc::CST_CODE_CE_SELECT; 1176 Record.push_back(VE.getValueID(C->getOperand(0))); 1177 Record.push_back(VE.getValueID(C->getOperand(1))); 1178 Record.push_back(VE.getValueID(C->getOperand(2))); 1179 break; 1180 case Instruction::ExtractElement: 1181 Code = bitc::CST_CODE_CE_EXTRACTELT; 1182 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1183 Record.push_back(VE.getValueID(C->getOperand(0))); 1184 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1185 Record.push_back(VE.getValueID(C->getOperand(1))); 1186 break; 1187 case Instruction::InsertElement: 1188 Code = bitc::CST_CODE_CE_INSERTELT; 1189 Record.push_back(VE.getValueID(C->getOperand(0))); 1190 Record.push_back(VE.getValueID(C->getOperand(1))); 1191 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1192 Record.push_back(VE.getValueID(C->getOperand(2))); 1193 break; 1194 case Instruction::ShuffleVector: 1195 // If the return type and argument types are the same, this is a 1196 // standard shufflevector instruction. If the types are different, 1197 // then the shuffle is widening or truncating the input vectors, and 1198 // the argument type must also be encoded. 1199 if (C->getType() == C->getOperand(0)->getType()) { 1200 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1201 } else { 1202 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1203 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1204 } 1205 Record.push_back(VE.getValueID(C->getOperand(0))); 1206 Record.push_back(VE.getValueID(C->getOperand(1))); 1207 Record.push_back(VE.getValueID(C->getOperand(2))); 1208 break; 1209 case Instruction::ICmp: 1210 case Instruction::FCmp: 1211 Code = bitc::CST_CODE_CE_CMP; 1212 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1213 Record.push_back(VE.getValueID(C->getOperand(0))); 1214 Record.push_back(VE.getValueID(C->getOperand(1))); 1215 Record.push_back(CE->getPredicate()); 1216 break; 1217 } 1218 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1219 Code = bitc::CST_CODE_BLOCKADDRESS; 1220 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1221 Record.push_back(VE.getValueID(BA->getFunction())); 1222 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1223 } else { 1224 #ifndef NDEBUG 1225 C->dump(); 1226 #endif 1227 llvm_unreachable("Unknown constant!"); 1228 } 1229 Stream.EmitRecord(Code, Record, AbbrevToUse); 1230 Record.clear(); 1231 } 1232 1233 Stream.ExitBlock(); 1234 } 1235 1236 static void WriteModuleConstants(const ValueEnumerator &VE, 1237 BitstreamWriter &Stream) { 1238 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1239 1240 // Find the first constant to emit, which is the first non-globalvalue value. 1241 // We know globalvalues have been emitted by WriteModuleInfo. 1242 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1243 if (!isa<GlobalValue>(Vals[i].first)) { 1244 WriteConstants(i, Vals.size(), VE, Stream, true); 1245 return; 1246 } 1247 } 1248 } 1249 1250 /// PushValueAndType - The file has to encode both the value and type id for 1251 /// many values, because we need to know what type to create for forward 1252 /// references. However, most operands are not forward references, so this type 1253 /// field is not needed. 1254 /// 1255 /// This function adds V's value ID to Vals. If the value ID is higher than the 1256 /// instruction ID, then it is a forward reference, and it also includes the 1257 /// type ID. The value ID that is written is encoded relative to the InstID. 1258 static bool PushValueAndType(const Value *V, unsigned InstID, 1259 SmallVectorImpl<unsigned> &Vals, 1260 ValueEnumerator &VE) { 1261 unsigned ValID = VE.getValueID(V); 1262 // Make encoding relative to the InstID. 1263 Vals.push_back(InstID - ValID); 1264 if (ValID >= InstID) { 1265 Vals.push_back(VE.getTypeID(V->getType())); 1266 return true; 1267 } 1268 return false; 1269 } 1270 1271 /// pushValue - Like PushValueAndType, but where the type of the value is 1272 /// omitted (perhaps it was already encoded in an earlier operand). 1273 static void pushValue(const Value *V, unsigned InstID, 1274 SmallVectorImpl<unsigned> &Vals, 1275 ValueEnumerator &VE) { 1276 unsigned ValID = VE.getValueID(V); 1277 Vals.push_back(InstID - ValID); 1278 } 1279 1280 static void pushValueSigned(const Value *V, unsigned InstID, 1281 SmallVectorImpl<uint64_t> &Vals, 1282 ValueEnumerator &VE) { 1283 unsigned ValID = VE.getValueID(V); 1284 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1285 emitSignedInt64(Vals, diff); 1286 } 1287 1288 /// WriteInstruction - Emit an instruction to the specified stream. 1289 static void WriteInstruction(const Instruction &I, unsigned InstID, 1290 ValueEnumerator &VE, BitstreamWriter &Stream, 1291 SmallVectorImpl<unsigned> &Vals) { 1292 unsigned Code = 0; 1293 unsigned AbbrevToUse = 0; 1294 VE.setInstructionID(&I); 1295 switch (I.getOpcode()) { 1296 default: 1297 if (Instruction::isCast(I.getOpcode())) { 1298 Code = bitc::FUNC_CODE_INST_CAST; 1299 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1300 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1301 Vals.push_back(VE.getTypeID(I.getType())); 1302 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1303 } else { 1304 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1305 Code = bitc::FUNC_CODE_INST_BINOP; 1306 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1307 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1308 pushValue(I.getOperand(1), InstID, Vals, VE); 1309 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1310 uint64_t Flags = GetOptimizationFlags(&I); 1311 if (Flags != 0) { 1312 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1313 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1314 Vals.push_back(Flags); 1315 } 1316 } 1317 break; 1318 1319 case Instruction::GetElementPtr: 1320 Code = bitc::FUNC_CODE_INST_GEP; 1321 if (cast<GEPOperator>(&I)->isInBounds()) 1322 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1323 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1324 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1325 break; 1326 case Instruction::ExtractValue: { 1327 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1328 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1329 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1330 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1331 Vals.push_back(*i); 1332 break; 1333 } 1334 case Instruction::InsertValue: { 1335 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1336 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1337 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1338 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1339 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1340 Vals.push_back(*i); 1341 break; 1342 } 1343 case Instruction::Select: 1344 Code = bitc::FUNC_CODE_INST_VSELECT; 1345 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1346 pushValue(I.getOperand(2), InstID, Vals, VE); 1347 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1348 break; 1349 case Instruction::ExtractElement: 1350 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1351 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1352 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1353 break; 1354 case Instruction::InsertElement: 1355 Code = bitc::FUNC_CODE_INST_INSERTELT; 1356 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1357 pushValue(I.getOperand(1), InstID, Vals, VE); 1358 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1359 break; 1360 case Instruction::ShuffleVector: 1361 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1362 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1363 pushValue(I.getOperand(1), InstID, Vals, VE); 1364 pushValue(I.getOperand(2), InstID, Vals, VE); 1365 break; 1366 case Instruction::ICmp: 1367 case Instruction::FCmp: 1368 // compare returning Int1Ty or vector of Int1Ty 1369 Code = bitc::FUNC_CODE_INST_CMP2; 1370 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1371 pushValue(I.getOperand(1), InstID, Vals, VE); 1372 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1373 break; 1374 1375 case Instruction::Ret: 1376 { 1377 Code = bitc::FUNC_CODE_INST_RET; 1378 unsigned NumOperands = I.getNumOperands(); 1379 if (NumOperands == 0) 1380 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1381 else if (NumOperands == 1) { 1382 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1383 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1384 } else { 1385 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1386 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1387 } 1388 } 1389 break; 1390 case Instruction::Br: 1391 { 1392 Code = bitc::FUNC_CODE_INST_BR; 1393 const BranchInst &II = cast<BranchInst>(I); 1394 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1395 if (II.isConditional()) { 1396 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1397 pushValue(II.getCondition(), InstID, Vals, VE); 1398 } 1399 } 1400 break; 1401 case Instruction::Switch: 1402 { 1403 Code = bitc::FUNC_CODE_INST_SWITCH; 1404 const SwitchInst &SI = cast<SwitchInst>(I); 1405 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1406 pushValue(SI.getCondition(), InstID, Vals, VE); 1407 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1408 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1409 i != e; ++i) { 1410 Vals.push_back(VE.getValueID(i.getCaseValue())); 1411 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1412 } 1413 } 1414 break; 1415 case Instruction::IndirectBr: 1416 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1417 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1418 // Encode the address operand as relative, but not the basic blocks. 1419 pushValue(I.getOperand(0), InstID, Vals, VE); 1420 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1421 Vals.push_back(VE.getValueID(I.getOperand(i))); 1422 break; 1423 1424 case Instruction::Invoke: { 1425 const InvokeInst *II = cast<InvokeInst>(&I); 1426 const Value *Callee(II->getCalledValue()); 1427 PointerType *PTy = cast<PointerType>(Callee->getType()); 1428 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1429 Code = bitc::FUNC_CODE_INST_INVOKE; 1430 1431 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1432 Vals.push_back(II->getCallingConv()); 1433 Vals.push_back(VE.getValueID(II->getNormalDest())); 1434 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1435 PushValueAndType(Callee, InstID, Vals, VE); 1436 1437 // Emit value #'s for the fixed parameters. 1438 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1439 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1440 1441 // Emit type/value pairs for varargs params. 1442 if (FTy->isVarArg()) { 1443 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1444 i != e; ++i) 1445 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1446 } 1447 break; 1448 } 1449 case Instruction::Resume: 1450 Code = bitc::FUNC_CODE_INST_RESUME; 1451 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1452 break; 1453 case Instruction::Unreachable: 1454 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1455 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1456 break; 1457 1458 case Instruction::PHI: { 1459 const PHINode &PN = cast<PHINode>(I); 1460 Code = bitc::FUNC_CODE_INST_PHI; 1461 // With the newer instruction encoding, forward references could give 1462 // negative valued IDs. This is most common for PHIs, so we use 1463 // signed VBRs. 1464 SmallVector<uint64_t, 128> Vals64; 1465 Vals64.push_back(VE.getTypeID(PN.getType())); 1466 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1467 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1468 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1469 } 1470 // Emit a Vals64 vector and exit. 1471 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1472 Vals64.clear(); 1473 return; 1474 } 1475 1476 case Instruction::LandingPad: { 1477 const LandingPadInst &LP = cast<LandingPadInst>(I); 1478 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1479 Vals.push_back(VE.getTypeID(LP.getType())); 1480 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1481 Vals.push_back(LP.isCleanup()); 1482 Vals.push_back(LP.getNumClauses()); 1483 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1484 if (LP.isCatch(I)) 1485 Vals.push_back(LandingPadInst::Catch); 1486 else 1487 Vals.push_back(LandingPadInst::Filter); 1488 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1489 } 1490 break; 1491 } 1492 1493 case Instruction::Alloca: { 1494 Code = bitc::FUNC_CODE_INST_ALLOCA; 1495 Vals.push_back(VE.getTypeID(I.getType())); 1496 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1497 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1498 const AllocaInst &AI = cast<AllocaInst>(I); 1499 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1500 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1501 "not enough bits for maximum alignment"); 1502 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1503 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1504 Vals.push_back(AlignRecord); 1505 break; 1506 } 1507 1508 case Instruction::Load: 1509 if (cast<LoadInst>(I).isAtomic()) { 1510 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1511 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1512 } else { 1513 Code = bitc::FUNC_CODE_INST_LOAD; 1514 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1515 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1516 } 1517 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1518 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1519 if (cast<LoadInst>(I).isAtomic()) { 1520 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1521 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1522 } 1523 break; 1524 case Instruction::Store: 1525 if (cast<StoreInst>(I).isAtomic()) 1526 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1527 else 1528 Code = bitc::FUNC_CODE_INST_STORE; 1529 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1530 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1531 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1532 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1533 if (cast<StoreInst>(I).isAtomic()) { 1534 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1535 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1536 } 1537 break; 1538 case Instruction::AtomicCmpXchg: 1539 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1540 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1541 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1542 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1543 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1544 Vals.push_back(GetEncodedOrdering( 1545 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1546 Vals.push_back(GetEncodedSynchScope( 1547 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1548 Vals.push_back(GetEncodedOrdering( 1549 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1550 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1551 break; 1552 case Instruction::AtomicRMW: 1553 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1554 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1555 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1556 Vals.push_back(GetEncodedRMWOperation( 1557 cast<AtomicRMWInst>(I).getOperation())); 1558 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1559 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1560 Vals.push_back(GetEncodedSynchScope( 1561 cast<AtomicRMWInst>(I).getSynchScope())); 1562 break; 1563 case Instruction::Fence: 1564 Code = bitc::FUNC_CODE_INST_FENCE; 1565 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1566 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1567 break; 1568 case Instruction::Call: { 1569 const CallInst &CI = cast<CallInst>(I); 1570 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1571 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1572 1573 Code = bitc::FUNC_CODE_INST_CALL; 1574 1575 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1576 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1577 unsigned(CI.isMustTailCall()) << 14); 1578 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1579 1580 // Emit value #'s for the fixed parameters. 1581 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1582 // Check for labels (can happen with asm labels). 1583 if (FTy->getParamType(i)->isLabelTy()) 1584 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1585 else 1586 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1587 } 1588 1589 // Emit type/value pairs for varargs params. 1590 if (FTy->isVarArg()) { 1591 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1592 i != e; ++i) 1593 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1594 } 1595 break; 1596 } 1597 case Instruction::VAArg: 1598 Code = bitc::FUNC_CODE_INST_VAARG; 1599 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1600 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1601 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1602 break; 1603 } 1604 1605 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1606 Vals.clear(); 1607 } 1608 1609 // Emit names for globals/functions etc. 1610 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1611 const ValueEnumerator &VE, 1612 BitstreamWriter &Stream) { 1613 if (VST.empty()) return; 1614 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1615 1616 // FIXME: Set up the abbrev, we know how many values there are! 1617 // FIXME: We know if the type names can use 7-bit ascii. 1618 SmallVector<unsigned, 64> NameVals; 1619 1620 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1621 SI != SE; ++SI) { 1622 1623 const ValueName &Name = *SI; 1624 1625 // Figure out the encoding to use for the name. 1626 bool is7Bit = true; 1627 bool isChar6 = true; 1628 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1629 C != E; ++C) { 1630 if (isChar6) 1631 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1632 if ((unsigned char)*C & 128) { 1633 is7Bit = false; 1634 break; // don't bother scanning the rest. 1635 } 1636 } 1637 1638 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1639 1640 // VST_ENTRY: [valueid, namechar x N] 1641 // VST_BBENTRY: [bbid, namechar x N] 1642 unsigned Code; 1643 if (isa<BasicBlock>(SI->getValue())) { 1644 Code = bitc::VST_CODE_BBENTRY; 1645 if (isChar6) 1646 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1647 } else { 1648 Code = bitc::VST_CODE_ENTRY; 1649 if (isChar6) 1650 AbbrevToUse = VST_ENTRY_6_ABBREV; 1651 else if (is7Bit) 1652 AbbrevToUse = VST_ENTRY_7_ABBREV; 1653 } 1654 1655 NameVals.push_back(VE.getValueID(SI->getValue())); 1656 for (const char *P = Name.getKeyData(), 1657 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1658 NameVals.push_back((unsigned char)*P); 1659 1660 // Emit the finished record. 1661 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1662 NameVals.clear(); 1663 } 1664 Stream.ExitBlock(); 1665 } 1666 1667 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1668 BitstreamWriter &Stream) { 1669 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1670 unsigned Code; 1671 if (isa<BasicBlock>(Order.V)) 1672 Code = bitc::USELIST_CODE_BB; 1673 else 1674 Code = bitc::USELIST_CODE_DEFAULT; 1675 1676 SmallVector<uint64_t, 64> Record; 1677 for (unsigned I : Order.Shuffle) 1678 Record.push_back(I); 1679 Record.push_back(VE.getValueID(Order.V)); 1680 Stream.EmitRecord(Code, Record); 1681 } 1682 1683 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1684 BitstreamWriter &Stream) { 1685 auto hasMore = [&]() { 1686 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1687 }; 1688 if (!hasMore()) 1689 // Nothing to do. 1690 return; 1691 1692 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1693 while (hasMore()) { 1694 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1695 VE.UseListOrders.pop_back(); 1696 } 1697 Stream.ExitBlock(); 1698 } 1699 1700 /// WriteFunction - Emit a function body to the module stream. 1701 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1702 BitstreamWriter &Stream) { 1703 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1704 VE.incorporateFunction(F); 1705 1706 SmallVector<unsigned, 64> Vals; 1707 1708 // Emit the number of basic blocks, so the reader can create them ahead of 1709 // time. 1710 Vals.push_back(VE.getBasicBlocks().size()); 1711 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1712 Vals.clear(); 1713 1714 // If there are function-local constants, emit them now. 1715 unsigned CstStart, CstEnd; 1716 VE.getFunctionConstantRange(CstStart, CstEnd); 1717 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1718 1719 // If there is function-local metadata, emit it now. 1720 WriteFunctionLocalMetadata(F, VE, Stream); 1721 1722 // Keep a running idea of what the instruction ID is. 1723 unsigned InstID = CstEnd; 1724 1725 bool NeedsMetadataAttachment = false; 1726 1727 DebugLoc LastDL; 1728 1729 // Finally, emit all the instructions, in order. 1730 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1731 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1732 I != E; ++I) { 1733 WriteInstruction(*I, InstID, VE, Stream, Vals); 1734 1735 if (!I->getType()->isVoidTy()) 1736 ++InstID; 1737 1738 // If the instruction has metadata, write a metadata attachment later. 1739 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1740 1741 // If the instruction has a debug location, emit it. 1742 DebugLoc DL = I->getDebugLoc(); 1743 if (DL.isUnknown()) { 1744 // nothing todo. 1745 } else if (DL == LastDL) { 1746 // Just repeat the same debug loc as last time. 1747 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1748 } else { 1749 MDNode *Scope, *IA; 1750 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1751 assert(Scope && "Expected valid scope"); 1752 1753 Vals.push_back(DL.getLine()); 1754 Vals.push_back(DL.getCol()); 1755 Vals.push_back(Scope ? VE.getMetadataID(Scope) + 1 : 0); 1756 Vals.push_back(IA ? VE.getMetadataID(IA) + 1 : 0); 1757 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1758 Vals.clear(); 1759 1760 LastDL = DL; 1761 } 1762 } 1763 1764 // Emit names for all the instructions etc. 1765 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1766 1767 if (NeedsMetadataAttachment) 1768 WriteMetadataAttachment(F, VE, Stream); 1769 if (shouldPreserveBitcodeUseListOrder()) 1770 WriteUseListBlock(&F, VE, Stream); 1771 VE.purgeFunction(); 1772 Stream.ExitBlock(); 1773 } 1774 1775 // Emit blockinfo, which defines the standard abbreviations etc. 1776 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1777 // We only want to emit block info records for blocks that have multiple 1778 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1779 // Other blocks can define their abbrevs inline. 1780 Stream.EnterBlockInfoBlock(2); 1781 1782 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1783 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1788 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1789 Abbv) != VST_ENTRY_8_ABBREV) 1790 llvm_unreachable("Unexpected abbrev ordering!"); 1791 } 1792 1793 { // 7-bit fixed width VST_ENTRY strings. 1794 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1795 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1799 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1800 Abbv) != VST_ENTRY_7_ABBREV) 1801 llvm_unreachable("Unexpected abbrev ordering!"); 1802 } 1803 { // 6-bit char6 VST_ENTRY strings. 1804 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1805 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1809 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1810 Abbv) != VST_ENTRY_6_ABBREV) 1811 llvm_unreachable("Unexpected abbrev ordering!"); 1812 } 1813 { // 6-bit char6 VST_BBENTRY strings. 1814 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1815 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1819 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1820 Abbv) != VST_BBENTRY_6_ABBREV) 1821 llvm_unreachable("Unexpected abbrev ordering!"); 1822 } 1823 1824 1825 1826 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1827 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1828 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1830 Log2_32_Ceil(VE.getTypes().size()+1))); 1831 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1832 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1833 llvm_unreachable("Unexpected abbrev ordering!"); 1834 } 1835 1836 { // INTEGER abbrev for CONSTANTS_BLOCK. 1837 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1838 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1840 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1841 Abbv) != CONSTANTS_INTEGER_ABBREV) 1842 llvm_unreachable("Unexpected abbrev ordering!"); 1843 } 1844 1845 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1846 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1847 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1850 Log2_32_Ceil(VE.getTypes().size()+1))); 1851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1852 1853 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1854 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1855 llvm_unreachable("Unexpected abbrev ordering!"); 1856 } 1857 { // NULL abbrev for CONSTANTS_BLOCK. 1858 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1859 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1860 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1861 Abbv) != CONSTANTS_NULL_Abbrev) 1862 llvm_unreachable("Unexpected abbrev ordering!"); 1863 } 1864 1865 // FIXME: This should only use space for first class types! 1866 1867 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1868 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1869 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1873 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1874 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1875 llvm_unreachable("Unexpected abbrev ordering!"); 1876 } 1877 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1878 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1879 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1883 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1884 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1885 llvm_unreachable("Unexpected abbrev ordering!"); 1886 } 1887 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1888 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1889 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1894 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1895 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1896 llvm_unreachable("Unexpected abbrev ordering!"); 1897 } 1898 { // INST_CAST abbrev for FUNCTION_BLOCK. 1899 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1900 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1903 Log2_32_Ceil(VE.getTypes().size()+1))); 1904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1905 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1906 Abbv) != FUNCTION_INST_CAST_ABBREV) 1907 llvm_unreachable("Unexpected abbrev ordering!"); 1908 } 1909 1910 { // INST_RET abbrev for FUNCTION_BLOCK. 1911 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1912 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1913 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1914 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1915 llvm_unreachable("Unexpected abbrev ordering!"); 1916 } 1917 { // INST_RET abbrev for FUNCTION_BLOCK. 1918 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1919 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1921 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1922 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1923 llvm_unreachable("Unexpected abbrev ordering!"); 1924 } 1925 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1926 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1927 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1928 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1929 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1930 llvm_unreachable("Unexpected abbrev ordering!"); 1931 } 1932 1933 Stream.ExitBlock(); 1934 } 1935 1936 /// WriteModule - Emit the specified module to the bitstream. 1937 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1938 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1939 1940 SmallVector<unsigned, 1> Vals; 1941 unsigned CurVersion = 1; 1942 Vals.push_back(CurVersion); 1943 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1944 1945 // Analyze the module, enumerating globals, functions, etc. 1946 ValueEnumerator VE(*M); 1947 1948 // Emit blockinfo, which defines the standard abbreviations etc. 1949 WriteBlockInfo(VE, Stream); 1950 1951 // Emit information about attribute groups. 1952 WriteAttributeGroupTable(VE, Stream); 1953 1954 // Emit information about parameter attributes. 1955 WriteAttributeTable(VE, Stream); 1956 1957 // Emit information describing all of the types in the module. 1958 WriteTypeTable(VE, Stream); 1959 1960 writeComdats(VE, Stream); 1961 1962 // Emit top-level description of module, including target triple, inline asm, 1963 // descriptors for global variables, and function prototype info. 1964 WriteModuleInfo(M, VE, Stream); 1965 1966 // Emit constants. 1967 WriteModuleConstants(VE, Stream); 1968 1969 // Emit metadata. 1970 WriteModuleMetadata(M, VE, Stream); 1971 1972 // Emit metadata. 1973 WriteModuleMetadataStore(M, Stream); 1974 1975 // Emit names for globals/functions etc. 1976 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1977 1978 // Emit module-level use-lists. 1979 if (shouldPreserveBitcodeUseListOrder()) 1980 WriteUseListBlock(nullptr, VE, Stream); 1981 1982 // Emit function bodies. 1983 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1984 if (!F->isDeclaration()) 1985 WriteFunction(*F, VE, Stream); 1986 1987 Stream.ExitBlock(); 1988 } 1989 1990 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1991 /// header and trailer to make it compatible with the system archiver. To do 1992 /// this we emit the following header, and then emit a trailer that pads the 1993 /// file out to be a multiple of 16 bytes. 1994 /// 1995 /// struct bc_header { 1996 /// uint32_t Magic; // 0x0B17C0DE 1997 /// uint32_t Version; // Version, currently always 0. 1998 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1999 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2000 /// uint32_t CPUType; // CPU specifier. 2001 /// ... potentially more later ... 2002 /// }; 2003 enum { 2004 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2005 DarwinBCHeaderSize = 5*4 2006 }; 2007 2008 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2009 uint32_t &Position) { 2010 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2011 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2012 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2013 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2014 Position += 4; 2015 } 2016 2017 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2018 const Triple &TT) { 2019 unsigned CPUType = ~0U; 2020 2021 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2022 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2023 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2024 // specific constants here because they are implicitly part of the Darwin ABI. 2025 enum { 2026 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2027 DARWIN_CPU_TYPE_X86 = 7, 2028 DARWIN_CPU_TYPE_ARM = 12, 2029 DARWIN_CPU_TYPE_POWERPC = 18 2030 }; 2031 2032 Triple::ArchType Arch = TT.getArch(); 2033 if (Arch == Triple::x86_64) 2034 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2035 else if (Arch == Triple::x86) 2036 CPUType = DARWIN_CPU_TYPE_X86; 2037 else if (Arch == Triple::ppc) 2038 CPUType = DARWIN_CPU_TYPE_POWERPC; 2039 else if (Arch == Triple::ppc64) 2040 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2041 else if (Arch == Triple::arm || Arch == Triple::thumb) 2042 CPUType = DARWIN_CPU_TYPE_ARM; 2043 2044 // Traditional Bitcode starts after header. 2045 assert(Buffer.size() >= DarwinBCHeaderSize && 2046 "Expected header size to be reserved"); 2047 unsigned BCOffset = DarwinBCHeaderSize; 2048 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2049 2050 // Write the magic and version. 2051 unsigned Position = 0; 2052 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2053 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2054 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2055 WriteInt32ToBuffer(BCSize , Buffer, Position); 2056 WriteInt32ToBuffer(CPUType , Buffer, Position); 2057 2058 // If the file is not a multiple of 16 bytes, insert dummy padding. 2059 while (Buffer.size() & 15) 2060 Buffer.push_back(0); 2061 } 2062 2063 /// WriteBitcodeToFile - Write the specified module to the specified output 2064 /// stream. 2065 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2066 SmallVector<char, 0> Buffer; 2067 Buffer.reserve(256*1024); 2068 2069 // If this is darwin or another generic macho target, reserve space for the 2070 // header. 2071 Triple TT(M->getTargetTriple()); 2072 if (TT.isOSDarwin()) 2073 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2074 2075 // Emit the module into the buffer. 2076 { 2077 BitstreamWriter Stream(Buffer); 2078 2079 // Emit the file header. 2080 Stream.Emit((unsigned)'B', 8); 2081 Stream.Emit((unsigned)'C', 8); 2082 Stream.Emit(0x0, 4); 2083 Stream.Emit(0xC, 4); 2084 Stream.Emit(0xE, 4); 2085 Stream.Emit(0xD, 4); 2086 2087 // Emit the module. 2088 WriteModule(M, Stream); 2089 } 2090 2091 if (TT.isOSDarwin()) 2092 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2093 2094 // Write the generated bitstream to "Out". 2095 Out.write((char*)&Buffer.front(), Buffer.size()); 2096 } 2097