1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueSymbolTable.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Program.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV 64 }; 65 66 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 67 switch (Opcode) { 68 default: llvm_unreachable("Unknown cast instruction!"); 69 case Instruction::Trunc : return bitc::CAST_TRUNC; 70 case Instruction::ZExt : return bitc::CAST_ZEXT; 71 case Instruction::SExt : return bitc::CAST_SEXT; 72 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 73 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 74 case Instruction::UIToFP : return bitc::CAST_UITOFP; 75 case Instruction::SIToFP : return bitc::CAST_SITOFP; 76 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 77 case Instruction::FPExt : return bitc::CAST_FPEXT; 78 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 79 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 80 case Instruction::BitCast : return bitc::CAST_BITCAST; 81 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 82 } 83 } 84 85 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 86 switch (Opcode) { 87 default: llvm_unreachable("Unknown binary instruction!"); 88 case Instruction::Add: 89 case Instruction::FAdd: return bitc::BINOP_ADD; 90 case Instruction::Sub: 91 case Instruction::FSub: return bitc::BINOP_SUB; 92 case Instruction::Mul: 93 case Instruction::FMul: return bitc::BINOP_MUL; 94 case Instruction::UDiv: return bitc::BINOP_UDIV; 95 case Instruction::FDiv: 96 case Instruction::SDiv: return bitc::BINOP_SDIV; 97 case Instruction::URem: return bitc::BINOP_UREM; 98 case Instruction::FRem: 99 case Instruction::SRem: return bitc::BINOP_SREM; 100 case Instruction::Shl: return bitc::BINOP_SHL; 101 case Instruction::LShr: return bitc::BINOP_LSHR; 102 case Instruction::AShr: return bitc::BINOP_ASHR; 103 case Instruction::And: return bitc::BINOP_AND; 104 case Instruction::Or: return bitc::BINOP_OR; 105 case Instruction::Xor: return bitc::BINOP_XOR; 106 } 107 } 108 109 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 110 switch (Op) { 111 default: llvm_unreachable("Unknown RMW operation!"); 112 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 113 case AtomicRMWInst::Add: return bitc::RMW_ADD; 114 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 115 case AtomicRMWInst::And: return bitc::RMW_AND; 116 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 117 case AtomicRMWInst::Or: return bitc::RMW_OR; 118 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 119 case AtomicRMWInst::Max: return bitc::RMW_MAX; 120 case AtomicRMWInst::Min: return bitc::RMW_MIN; 121 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 122 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 123 } 124 } 125 126 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 127 switch (Ordering) { 128 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 129 case Unordered: return bitc::ORDERING_UNORDERED; 130 case Monotonic: return bitc::ORDERING_MONOTONIC; 131 case Acquire: return bitc::ORDERING_ACQUIRE; 132 case Release: return bitc::ORDERING_RELEASE; 133 case AcquireRelease: return bitc::ORDERING_ACQREL; 134 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 135 } 136 llvm_unreachable("Invalid ordering"); 137 } 138 139 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 140 switch (SynchScope) { 141 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 142 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 143 } 144 llvm_unreachable("Invalid synch scope"); 145 } 146 147 static void WriteStringRecord(unsigned Code, StringRef Str, 148 unsigned AbbrevToUse, BitstreamWriter &Stream) { 149 SmallVector<unsigned, 64> Vals; 150 151 // Code: [strchar x N] 152 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 153 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 154 AbbrevToUse = 0; 155 Vals.push_back(Str[i]); 156 } 157 158 // Emit the finished record. 159 Stream.EmitRecord(Code, Vals, AbbrevToUse); 160 } 161 162 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 163 switch (Kind) { 164 case Attribute::Alignment: 165 return bitc::ATTR_KIND_ALIGNMENT; 166 case Attribute::AlwaysInline: 167 return bitc::ATTR_KIND_ALWAYS_INLINE; 168 case Attribute::Builtin: 169 return bitc::ATTR_KIND_BUILTIN; 170 case Attribute::ByVal: 171 return bitc::ATTR_KIND_BY_VAL; 172 case Attribute::InAlloca: 173 return bitc::ATTR_KIND_IN_ALLOCA; 174 case Attribute::Cold: 175 return bitc::ATTR_KIND_COLD; 176 case Attribute::InlineHint: 177 return bitc::ATTR_KIND_INLINE_HINT; 178 case Attribute::InReg: 179 return bitc::ATTR_KIND_IN_REG; 180 case Attribute::JumpTable: 181 return bitc::ATTR_KIND_JUMP_TABLE; 182 case Attribute::MinSize: 183 return bitc::ATTR_KIND_MIN_SIZE; 184 case Attribute::Naked: 185 return bitc::ATTR_KIND_NAKED; 186 case Attribute::Nest: 187 return bitc::ATTR_KIND_NEST; 188 case Attribute::NoAlias: 189 return bitc::ATTR_KIND_NO_ALIAS; 190 case Attribute::NoBuiltin: 191 return bitc::ATTR_KIND_NO_BUILTIN; 192 case Attribute::NoCapture: 193 return bitc::ATTR_KIND_NO_CAPTURE; 194 case Attribute::NoDuplicate: 195 return bitc::ATTR_KIND_NO_DUPLICATE; 196 case Attribute::NoImplicitFloat: 197 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 198 case Attribute::NoInline: 199 return bitc::ATTR_KIND_NO_INLINE; 200 case Attribute::NonLazyBind: 201 return bitc::ATTR_KIND_NON_LAZY_BIND; 202 case Attribute::NonNull: 203 return bitc::ATTR_KIND_NON_NULL; 204 case Attribute::Dereferenceable: 205 return bitc::ATTR_KIND_DEREFERENCEABLE; 206 case Attribute::NoRedZone: 207 return bitc::ATTR_KIND_NO_RED_ZONE; 208 case Attribute::NoReturn: 209 return bitc::ATTR_KIND_NO_RETURN; 210 case Attribute::NoUnwind: 211 return bitc::ATTR_KIND_NO_UNWIND; 212 case Attribute::OptimizeForSize: 213 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 214 case Attribute::OptimizeNone: 215 return bitc::ATTR_KIND_OPTIMIZE_NONE; 216 case Attribute::ReadNone: 217 return bitc::ATTR_KIND_READ_NONE; 218 case Attribute::ReadOnly: 219 return bitc::ATTR_KIND_READ_ONLY; 220 case Attribute::Returned: 221 return bitc::ATTR_KIND_RETURNED; 222 case Attribute::ReturnsTwice: 223 return bitc::ATTR_KIND_RETURNS_TWICE; 224 case Attribute::SExt: 225 return bitc::ATTR_KIND_S_EXT; 226 case Attribute::StackAlignment: 227 return bitc::ATTR_KIND_STACK_ALIGNMENT; 228 case Attribute::StackProtect: 229 return bitc::ATTR_KIND_STACK_PROTECT; 230 case Attribute::StackProtectReq: 231 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 232 case Attribute::StackProtectStrong: 233 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 234 case Attribute::StructRet: 235 return bitc::ATTR_KIND_STRUCT_RET; 236 case Attribute::SanitizeAddress: 237 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 238 case Attribute::SanitizeThread: 239 return bitc::ATTR_KIND_SANITIZE_THREAD; 240 case Attribute::SanitizeMemory: 241 return bitc::ATTR_KIND_SANITIZE_MEMORY; 242 case Attribute::UWTable: 243 return bitc::ATTR_KIND_UW_TABLE; 244 case Attribute::ZExt: 245 return bitc::ATTR_KIND_Z_EXT; 246 case Attribute::EndAttrKinds: 247 llvm_unreachable("Can not encode end-attribute kinds marker."); 248 case Attribute::None: 249 llvm_unreachable("Can not encode none-attribute."); 250 } 251 252 llvm_unreachable("Trying to encode unknown attribute"); 253 } 254 255 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 256 BitstreamWriter &Stream) { 257 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 258 if (AttrGrps.empty()) return; 259 260 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 261 262 SmallVector<uint64_t, 64> Record; 263 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 264 AttributeSet AS = AttrGrps[i]; 265 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 266 AttributeSet A = AS.getSlotAttributes(i); 267 268 Record.push_back(VE.getAttributeGroupID(A)); 269 Record.push_back(AS.getSlotIndex(i)); 270 271 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 272 I != E; ++I) { 273 Attribute Attr = *I; 274 if (Attr.isEnumAttribute()) { 275 Record.push_back(0); 276 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 277 } else if (Attr.isIntAttribute()) { 278 Record.push_back(1); 279 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 280 Record.push_back(Attr.getValueAsInt()); 281 } else { 282 StringRef Kind = Attr.getKindAsString(); 283 StringRef Val = Attr.getValueAsString(); 284 285 Record.push_back(Val.empty() ? 3 : 4); 286 Record.append(Kind.begin(), Kind.end()); 287 Record.push_back(0); 288 if (!Val.empty()) { 289 Record.append(Val.begin(), Val.end()); 290 Record.push_back(0); 291 } 292 } 293 } 294 295 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 296 Record.clear(); 297 } 298 } 299 300 Stream.ExitBlock(); 301 } 302 303 static void WriteAttributeTable(const ValueEnumerator &VE, 304 BitstreamWriter &Stream) { 305 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 306 if (Attrs.empty()) return; 307 308 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 309 310 SmallVector<uint64_t, 64> Record; 311 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 312 const AttributeSet &A = Attrs[i]; 313 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 314 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 315 316 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 317 Record.clear(); 318 } 319 320 Stream.ExitBlock(); 321 } 322 323 /// WriteTypeTable - Write out the type table for a module. 324 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 325 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 326 327 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 328 SmallVector<uint64_t, 64> TypeVals; 329 330 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 331 332 // Abbrev for TYPE_CODE_POINTER. 333 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 334 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 336 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 337 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 338 339 // Abbrev for TYPE_CODE_FUNCTION. 340 Abbv = new BitCodeAbbrev(); 341 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 345 346 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 347 348 // Abbrev for TYPE_CODE_STRUCT_ANON. 349 Abbv = new BitCodeAbbrev(); 350 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 354 355 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 356 357 // Abbrev for TYPE_CODE_STRUCT_NAME. 358 Abbv = new BitCodeAbbrev(); 359 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 362 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 363 364 // Abbrev for TYPE_CODE_STRUCT_NAMED. 365 Abbv = new BitCodeAbbrev(); 366 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 370 371 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 372 373 // Abbrev for TYPE_CODE_ARRAY. 374 Abbv = new BitCodeAbbrev(); 375 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 378 379 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 380 381 // Emit an entry count so the reader can reserve space. 382 TypeVals.push_back(TypeList.size()); 383 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 384 TypeVals.clear(); 385 386 // Loop over all of the types, emitting each in turn. 387 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 388 Type *T = TypeList[i]; 389 int AbbrevToUse = 0; 390 unsigned Code = 0; 391 392 switch (T->getTypeID()) { 393 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 394 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 395 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 396 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 397 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 398 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 399 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 400 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 401 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 402 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 403 case Type::IntegerTyID: 404 // INTEGER: [width] 405 Code = bitc::TYPE_CODE_INTEGER; 406 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 407 break; 408 case Type::PointerTyID: { 409 PointerType *PTy = cast<PointerType>(T); 410 // POINTER: [pointee type, address space] 411 Code = bitc::TYPE_CODE_POINTER; 412 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 413 unsigned AddressSpace = PTy->getAddressSpace(); 414 TypeVals.push_back(AddressSpace); 415 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 416 break; 417 } 418 case Type::FunctionTyID: { 419 FunctionType *FT = cast<FunctionType>(T); 420 // FUNCTION: [isvararg, retty, paramty x N] 421 Code = bitc::TYPE_CODE_FUNCTION; 422 TypeVals.push_back(FT->isVarArg()); 423 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 424 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 425 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 426 AbbrevToUse = FunctionAbbrev; 427 break; 428 } 429 case Type::StructTyID: { 430 StructType *ST = cast<StructType>(T); 431 // STRUCT: [ispacked, eltty x N] 432 TypeVals.push_back(ST->isPacked()); 433 // Output all of the element types. 434 for (StructType::element_iterator I = ST->element_begin(), 435 E = ST->element_end(); I != E; ++I) 436 TypeVals.push_back(VE.getTypeID(*I)); 437 438 if (ST->isLiteral()) { 439 Code = bitc::TYPE_CODE_STRUCT_ANON; 440 AbbrevToUse = StructAnonAbbrev; 441 } else { 442 if (ST->isOpaque()) { 443 Code = bitc::TYPE_CODE_OPAQUE; 444 } else { 445 Code = bitc::TYPE_CODE_STRUCT_NAMED; 446 AbbrevToUse = StructNamedAbbrev; 447 } 448 449 // Emit the name if it is present. 450 if (!ST->getName().empty()) 451 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 452 StructNameAbbrev, Stream); 453 } 454 break; 455 } 456 case Type::ArrayTyID: { 457 ArrayType *AT = cast<ArrayType>(T); 458 // ARRAY: [numelts, eltty] 459 Code = bitc::TYPE_CODE_ARRAY; 460 TypeVals.push_back(AT->getNumElements()); 461 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 462 AbbrevToUse = ArrayAbbrev; 463 break; 464 } 465 case Type::VectorTyID: { 466 VectorType *VT = cast<VectorType>(T); 467 // VECTOR [numelts, eltty] 468 Code = bitc::TYPE_CODE_VECTOR; 469 TypeVals.push_back(VT->getNumElements()); 470 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 471 break; 472 } 473 } 474 475 // Emit the finished record. 476 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 477 TypeVals.clear(); 478 } 479 480 Stream.ExitBlock(); 481 } 482 483 static unsigned getEncodedLinkage(const GlobalValue &GV) { 484 switch (GV.getLinkage()) { 485 case GlobalValue::ExternalLinkage: return 0; 486 case GlobalValue::WeakAnyLinkage: return 1; 487 case GlobalValue::AppendingLinkage: return 2; 488 case GlobalValue::InternalLinkage: return 3; 489 case GlobalValue::LinkOnceAnyLinkage: return 4; 490 case GlobalValue::ExternalWeakLinkage: return 7; 491 case GlobalValue::CommonLinkage: return 8; 492 case GlobalValue::PrivateLinkage: return 9; 493 case GlobalValue::WeakODRLinkage: return 10; 494 case GlobalValue::LinkOnceODRLinkage: return 11; 495 case GlobalValue::AvailableExternallyLinkage: return 12; 496 } 497 llvm_unreachable("Invalid linkage"); 498 } 499 500 static unsigned getEncodedVisibility(const GlobalValue &GV) { 501 switch (GV.getVisibility()) { 502 case GlobalValue::DefaultVisibility: return 0; 503 case GlobalValue::HiddenVisibility: return 1; 504 case GlobalValue::ProtectedVisibility: return 2; 505 } 506 llvm_unreachable("Invalid visibility"); 507 } 508 509 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 510 switch (GV.getDLLStorageClass()) { 511 case GlobalValue::DefaultStorageClass: return 0; 512 case GlobalValue::DLLImportStorageClass: return 1; 513 case GlobalValue::DLLExportStorageClass: return 2; 514 } 515 llvm_unreachable("Invalid DLL storage class"); 516 } 517 518 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 519 switch (GV.getThreadLocalMode()) { 520 case GlobalVariable::NotThreadLocal: return 0; 521 case GlobalVariable::GeneralDynamicTLSModel: return 1; 522 case GlobalVariable::LocalDynamicTLSModel: return 2; 523 case GlobalVariable::InitialExecTLSModel: return 3; 524 case GlobalVariable::LocalExecTLSModel: return 4; 525 } 526 llvm_unreachable("Invalid TLS model"); 527 } 528 529 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 530 switch (C.getSelectionKind()) { 531 case Comdat::Any: 532 return bitc::COMDAT_SELECTION_KIND_ANY; 533 case Comdat::ExactMatch: 534 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 535 case Comdat::Largest: 536 return bitc::COMDAT_SELECTION_KIND_LARGEST; 537 case Comdat::NoDuplicates: 538 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 539 case Comdat::SameSize: 540 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 541 } 542 llvm_unreachable("Invalid selection kind"); 543 } 544 545 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 546 SmallVector<uint8_t, 64> Vals; 547 for (const Comdat *C : VE.getComdats()) { 548 // COMDAT: [selection_kind, name] 549 Vals.push_back(getEncodedComdatSelectionKind(*C)); 550 Vals.push_back(C->getName().size()); 551 for (char Chr : C->getName()) 552 Vals.push_back((unsigned char)Chr); 553 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 554 Vals.clear(); 555 } 556 } 557 558 // Emit top-level description of module, including target triple, inline asm, 559 // descriptors for global variables, and function prototype info. 560 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 561 BitstreamWriter &Stream) { 562 // Emit various pieces of data attached to a module. 563 if (!M->getTargetTriple().empty()) 564 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 565 0/*TODO*/, Stream); 566 const std::string &DL = M->getDataLayoutStr(); 567 if (!DL.empty()) 568 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 569 if (!M->getModuleInlineAsm().empty()) 570 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 571 0/*TODO*/, Stream); 572 573 // Emit information about sections and GC, computing how many there are. Also 574 // compute the maximum alignment value. 575 std::map<std::string, unsigned> SectionMap; 576 std::map<std::string, unsigned> GCMap; 577 unsigned MaxAlignment = 0; 578 unsigned MaxGlobalType = 0; 579 for (const GlobalValue &GV : M->globals()) { 580 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 581 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 582 if (GV.hasSection()) { 583 // Give section names unique ID's. 584 unsigned &Entry = SectionMap[GV.getSection()]; 585 if (!Entry) { 586 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 587 0/*TODO*/, Stream); 588 Entry = SectionMap.size(); 589 } 590 } 591 } 592 for (const Function &F : *M) { 593 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 594 if (F.hasSection()) { 595 // Give section names unique ID's. 596 unsigned &Entry = SectionMap[F.getSection()]; 597 if (!Entry) { 598 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 599 0/*TODO*/, Stream); 600 Entry = SectionMap.size(); 601 } 602 } 603 if (F.hasGC()) { 604 // Same for GC names. 605 unsigned &Entry = GCMap[F.getGC()]; 606 if (!Entry) { 607 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 608 0/*TODO*/, Stream); 609 Entry = GCMap.size(); 610 } 611 } 612 } 613 614 // Emit abbrev for globals, now that we know # sections and max alignment. 615 unsigned SimpleGVarAbbrev = 0; 616 if (!M->global_empty()) { 617 // Add an abbrev for common globals with no visibility or thread localness. 618 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 619 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 621 Log2_32_Ceil(MaxGlobalType+1))); 622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 625 if (MaxAlignment == 0) // Alignment. 626 Abbv->Add(BitCodeAbbrevOp(0)); 627 else { 628 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 630 Log2_32_Ceil(MaxEncAlignment+1))); 631 } 632 if (SectionMap.empty()) // Section. 633 Abbv->Add(BitCodeAbbrevOp(0)); 634 else 635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 636 Log2_32_Ceil(SectionMap.size()+1))); 637 // Don't bother emitting vis + thread local. 638 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 639 } 640 641 // Emit the global variable information. 642 SmallVector<unsigned, 64> Vals; 643 for (const GlobalVariable &GV : M->globals()) { 644 unsigned AbbrevToUse = 0; 645 646 // GLOBALVAR: [type, isconst, initid, 647 // linkage, alignment, section, visibility, threadlocal, 648 // unnamed_addr, externally_initialized, dllstorageclass] 649 Vals.push_back(VE.getTypeID(GV.getType())); 650 Vals.push_back(GV.isConstant()); 651 Vals.push_back(GV.isDeclaration() ? 0 : 652 (VE.getValueID(GV.getInitializer()) + 1)); 653 Vals.push_back(getEncodedLinkage(GV)); 654 Vals.push_back(Log2_32(GV.getAlignment())+1); 655 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 656 if (GV.isThreadLocal() || 657 GV.getVisibility() != GlobalValue::DefaultVisibility || 658 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 659 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 660 GV.hasComdat()) { 661 Vals.push_back(getEncodedVisibility(GV)); 662 Vals.push_back(getEncodedThreadLocalMode(GV)); 663 Vals.push_back(GV.hasUnnamedAddr()); 664 Vals.push_back(GV.isExternallyInitialized()); 665 Vals.push_back(getEncodedDLLStorageClass(GV)); 666 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 667 } else { 668 AbbrevToUse = SimpleGVarAbbrev; 669 } 670 671 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 672 Vals.clear(); 673 } 674 675 // Emit the function proto information. 676 for (const Function &F : *M) { 677 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 678 // section, visibility, gc, unnamed_addr, prefix] 679 Vals.push_back(VE.getTypeID(F.getType())); 680 Vals.push_back(F.getCallingConv()); 681 Vals.push_back(F.isDeclaration()); 682 Vals.push_back(getEncodedLinkage(F)); 683 Vals.push_back(VE.getAttributeID(F.getAttributes())); 684 Vals.push_back(Log2_32(F.getAlignment())+1); 685 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 686 Vals.push_back(getEncodedVisibility(F)); 687 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 688 Vals.push_back(F.hasUnnamedAddr()); 689 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 690 : 0); 691 Vals.push_back(getEncodedDLLStorageClass(F)); 692 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 693 694 unsigned AbbrevToUse = 0; 695 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 696 Vals.clear(); 697 } 698 699 // Emit the alias information. 700 for (const GlobalAlias &A : M->aliases()) { 701 // ALIAS: [alias type, aliasee val#, linkage, visibility] 702 Vals.push_back(VE.getTypeID(A.getType())); 703 Vals.push_back(VE.getValueID(A.getAliasee())); 704 Vals.push_back(getEncodedLinkage(A)); 705 Vals.push_back(getEncodedVisibility(A)); 706 Vals.push_back(getEncodedDLLStorageClass(A)); 707 Vals.push_back(getEncodedThreadLocalMode(A)); 708 Vals.push_back(A.hasUnnamedAddr()); 709 unsigned AbbrevToUse = 0; 710 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 711 Vals.clear(); 712 } 713 } 714 715 static uint64_t GetOptimizationFlags(const Value *V) { 716 uint64_t Flags = 0; 717 718 if (const OverflowingBinaryOperator *OBO = 719 dyn_cast<OverflowingBinaryOperator>(V)) { 720 if (OBO->hasNoSignedWrap()) 721 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 722 if (OBO->hasNoUnsignedWrap()) 723 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 724 } else if (const PossiblyExactOperator *PEO = 725 dyn_cast<PossiblyExactOperator>(V)) { 726 if (PEO->isExact()) 727 Flags |= 1 << bitc::PEO_EXACT; 728 } else if (const FPMathOperator *FPMO = 729 dyn_cast<const FPMathOperator>(V)) { 730 if (FPMO->hasUnsafeAlgebra()) 731 Flags |= FastMathFlags::UnsafeAlgebra; 732 if (FPMO->hasNoNaNs()) 733 Flags |= FastMathFlags::NoNaNs; 734 if (FPMO->hasNoInfs()) 735 Flags |= FastMathFlags::NoInfs; 736 if (FPMO->hasNoSignedZeros()) 737 Flags |= FastMathFlags::NoSignedZeros; 738 if (FPMO->hasAllowReciprocal()) 739 Flags |= FastMathFlags::AllowReciprocal; 740 } 741 742 return Flags; 743 } 744 745 static void WriteMDNode(const MDNode *N, 746 const ValueEnumerator &VE, 747 BitstreamWriter &Stream, 748 SmallVectorImpl<uint64_t> &Record) { 749 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 750 if (N->getOperand(i)) { 751 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 752 Record.push_back(VE.getValueID(N->getOperand(i))); 753 } else { 754 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 755 Record.push_back(0); 756 } 757 } 758 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 759 bitc::METADATA_NODE; 760 Stream.EmitRecord(MDCode, Record, 0); 761 Record.clear(); 762 } 763 764 static void WriteModuleMetadata(const Module *M, 765 const ValueEnumerator &VE, 766 BitstreamWriter &Stream) { 767 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 768 bool StartedMetadataBlock = false; 769 unsigned MDSAbbrev = 0; 770 SmallVector<uint64_t, 64> Record; 771 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 772 773 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 774 if (!N->isFunctionLocal() || !N->getFunction()) { 775 if (!StartedMetadataBlock) { 776 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 777 StartedMetadataBlock = true; 778 } 779 WriteMDNode(N, VE, Stream, Record); 780 } 781 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 782 if (!StartedMetadataBlock) { 783 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 784 785 // Abbrev for METADATA_STRING. 786 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 787 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 790 MDSAbbrev = Stream.EmitAbbrev(Abbv); 791 StartedMetadataBlock = true; 792 } 793 794 // Code: [strchar x N] 795 Record.append(MDS->begin(), MDS->end()); 796 797 // Emit the finished record. 798 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 799 Record.clear(); 800 } 801 } 802 803 // Write named metadata. 804 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 805 E = M->named_metadata_end(); I != E; ++I) { 806 const NamedMDNode *NMD = I; 807 if (!StartedMetadataBlock) { 808 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 809 StartedMetadataBlock = true; 810 } 811 812 // Write name. 813 StringRef Str = NMD->getName(); 814 for (unsigned i = 0, e = Str.size(); i != e; ++i) 815 Record.push_back(Str[i]); 816 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 817 Record.clear(); 818 819 // Write named metadata operands. 820 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 821 Record.push_back(VE.getValueID(NMD->getOperand(i))); 822 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 823 Record.clear(); 824 } 825 826 if (StartedMetadataBlock) 827 Stream.ExitBlock(); 828 } 829 830 static void WriteFunctionLocalMetadata(const Function &F, 831 const ValueEnumerator &VE, 832 BitstreamWriter &Stream) { 833 bool StartedMetadataBlock = false; 834 SmallVector<uint64_t, 64> Record; 835 const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues(); 836 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 837 if (const MDNode *N = Vals[i]) 838 if (N->isFunctionLocal() && N->getFunction() == &F) { 839 if (!StartedMetadataBlock) { 840 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 841 StartedMetadataBlock = true; 842 } 843 WriteMDNode(N, VE, Stream, Record); 844 } 845 846 if (StartedMetadataBlock) 847 Stream.ExitBlock(); 848 } 849 850 static void WriteMetadataAttachment(const Function &F, 851 const ValueEnumerator &VE, 852 BitstreamWriter &Stream) { 853 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 854 855 SmallVector<uint64_t, 64> Record; 856 857 // Write metadata attachments 858 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 859 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 860 861 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 862 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 863 I != E; ++I) { 864 MDs.clear(); 865 I->getAllMetadataOtherThanDebugLoc(MDs); 866 867 // If no metadata, ignore instruction. 868 if (MDs.empty()) continue; 869 870 Record.push_back(VE.getInstructionID(I)); 871 872 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 873 Record.push_back(MDs[i].first); 874 Record.push_back(VE.getValueID(MDs[i].second)); 875 } 876 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 877 Record.clear(); 878 } 879 880 Stream.ExitBlock(); 881 } 882 883 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 884 SmallVector<uint64_t, 64> Record; 885 886 // Write metadata kinds 887 // METADATA_KIND - [n x [id, name]] 888 SmallVector<StringRef, 8> Names; 889 M->getMDKindNames(Names); 890 891 if (Names.empty()) return; 892 893 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 894 895 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 896 Record.push_back(MDKindID); 897 StringRef KName = Names[MDKindID]; 898 Record.append(KName.begin(), KName.end()); 899 900 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 901 Record.clear(); 902 } 903 904 Stream.ExitBlock(); 905 } 906 907 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 908 if ((int64_t)V >= 0) 909 Vals.push_back(V << 1); 910 else 911 Vals.push_back((-V << 1) | 1); 912 } 913 914 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 915 const ValueEnumerator &VE, 916 BitstreamWriter &Stream, bool isGlobal) { 917 if (FirstVal == LastVal) return; 918 919 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 920 921 unsigned AggregateAbbrev = 0; 922 unsigned String8Abbrev = 0; 923 unsigned CString7Abbrev = 0; 924 unsigned CString6Abbrev = 0; 925 // If this is a constant pool for the module, emit module-specific abbrevs. 926 if (isGlobal) { 927 // Abbrev for CST_CODE_AGGREGATE. 928 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 929 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 932 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 933 934 // Abbrev for CST_CODE_STRING. 935 Abbv = new BitCodeAbbrev(); 936 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 939 String8Abbrev = Stream.EmitAbbrev(Abbv); 940 // Abbrev for CST_CODE_CSTRING. 941 Abbv = new BitCodeAbbrev(); 942 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 945 CString7Abbrev = Stream.EmitAbbrev(Abbv); 946 // Abbrev for CST_CODE_CSTRING. 947 Abbv = new BitCodeAbbrev(); 948 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 951 CString6Abbrev = Stream.EmitAbbrev(Abbv); 952 } 953 954 SmallVector<uint64_t, 64> Record; 955 956 const ValueEnumerator::ValueList &Vals = VE.getValues(); 957 Type *LastTy = nullptr; 958 for (unsigned i = FirstVal; i != LastVal; ++i) { 959 const Value *V = Vals[i].first; 960 // If we need to switch types, do so now. 961 if (V->getType() != LastTy) { 962 LastTy = V->getType(); 963 Record.push_back(VE.getTypeID(LastTy)); 964 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 965 CONSTANTS_SETTYPE_ABBREV); 966 Record.clear(); 967 } 968 969 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 970 Record.push_back(unsigned(IA->hasSideEffects()) | 971 unsigned(IA->isAlignStack()) << 1 | 972 unsigned(IA->getDialect()&1) << 2); 973 974 // Add the asm string. 975 const std::string &AsmStr = IA->getAsmString(); 976 Record.push_back(AsmStr.size()); 977 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 978 Record.push_back(AsmStr[i]); 979 980 // Add the constraint string. 981 const std::string &ConstraintStr = IA->getConstraintString(); 982 Record.push_back(ConstraintStr.size()); 983 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 984 Record.push_back(ConstraintStr[i]); 985 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 986 Record.clear(); 987 continue; 988 } 989 const Constant *C = cast<Constant>(V); 990 unsigned Code = -1U; 991 unsigned AbbrevToUse = 0; 992 if (C->isNullValue()) { 993 Code = bitc::CST_CODE_NULL; 994 } else if (isa<UndefValue>(C)) { 995 Code = bitc::CST_CODE_UNDEF; 996 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 997 if (IV->getBitWidth() <= 64) { 998 uint64_t V = IV->getSExtValue(); 999 emitSignedInt64(Record, V); 1000 Code = bitc::CST_CODE_INTEGER; 1001 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1002 } else { // Wide integers, > 64 bits in size. 1003 // We have an arbitrary precision integer value to write whose 1004 // bit width is > 64. However, in canonical unsigned integer 1005 // format it is likely that the high bits are going to be zero. 1006 // So, we only write the number of active words. 1007 unsigned NWords = IV->getValue().getActiveWords(); 1008 const uint64_t *RawWords = IV->getValue().getRawData(); 1009 for (unsigned i = 0; i != NWords; ++i) { 1010 emitSignedInt64(Record, RawWords[i]); 1011 } 1012 Code = bitc::CST_CODE_WIDE_INTEGER; 1013 } 1014 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1015 Code = bitc::CST_CODE_FLOAT; 1016 Type *Ty = CFP->getType(); 1017 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1018 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1019 } else if (Ty->isX86_FP80Ty()) { 1020 // api needed to prevent premature destruction 1021 // bits are not in the same order as a normal i80 APInt, compensate. 1022 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1023 const uint64_t *p = api.getRawData(); 1024 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1025 Record.push_back(p[0] & 0xffffLL); 1026 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1027 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1028 const uint64_t *p = api.getRawData(); 1029 Record.push_back(p[0]); 1030 Record.push_back(p[1]); 1031 } else { 1032 assert (0 && "Unknown FP type!"); 1033 } 1034 } else if (isa<ConstantDataSequential>(C) && 1035 cast<ConstantDataSequential>(C)->isString()) { 1036 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1037 // Emit constant strings specially. 1038 unsigned NumElts = Str->getNumElements(); 1039 // If this is a null-terminated string, use the denser CSTRING encoding. 1040 if (Str->isCString()) { 1041 Code = bitc::CST_CODE_CSTRING; 1042 --NumElts; // Don't encode the null, which isn't allowed by char6. 1043 } else { 1044 Code = bitc::CST_CODE_STRING; 1045 AbbrevToUse = String8Abbrev; 1046 } 1047 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1048 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1049 for (unsigned i = 0; i != NumElts; ++i) { 1050 unsigned char V = Str->getElementAsInteger(i); 1051 Record.push_back(V); 1052 isCStr7 &= (V & 128) == 0; 1053 if (isCStrChar6) 1054 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1055 } 1056 1057 if (isCStrChar6) 1058 AbbrevToUse = CString6Abbrev; 1059 else if (isCStr7) 1060 AbbrevToUse = CString7Abbrev; 1061 } else if (const ConstantDataSequential *CDS = 1062 dyn_cast<ConstantDataSequential>(C)) { 1063 Code = bitc::CST_CODE_DATA; 1064 Type *EltTy = CDS->getType()->getElementType(); 1065 if (isa<IntegerType>(EltTy)) { 1066 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1067 Record.push_back(CDS->getElementAsInteger(i)); 1068 } else if (EltTy->isFloatTy()) { 1069 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1070 union { float F; uint32_t I; }; 1071 F = CDS->getElementAsFloat(i); 1072 Record.push_back(I); 1073 } 1074 } else { 1075 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1076 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1077 union { double F; uint64_t I; }; 1078 F = CDS->getElementAsDouble(i); 1079 Record.push_back(I); 1080 } 1081 } 1082 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1083 isa<ConstantVector>(C)) { 1084 Code = bitc::CST_CODE_AGGREGATE; 1085 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1086 Record.push_back(VE.getValueID(C->getOperand(i))); 1087 AbbrevToUse = AggregateAbbrev; 1088 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1089 switch (CE->getOpcode()) { 1090 default: 1091 if (Instruction::isCast(CE->getOpcode())) { 1092 Code = bitc::CST_CODE_CE_CAST; 1093 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1094 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1095 Record.push_back(VE.getValueID(C->getOperand(0))); 1096 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1097 } else { 1098 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1099 Code = bitc::CST_CODE_CE_BINOP; 1100 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1101 Record.push_back(VE.getValueID(C->getOperand(0))); 1102 Record.push_back(VE.getValueID(C->getOperand(1))); 1103 uint64_t Flags = GetOptimizationFlags(CE); 1104 if (Flags != 0) 1105 Record.push_back(Flags); 1106 } 1107 break; 1108 case Instruction::GetElementPtr: 1109 Code = bitc::CST_CODE_CE_GEP; 1110 if (cast<GEPOperator>(C)->isInBounds()) 1111 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1112 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1113 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1114 Record.push_back(VE.getValueID(C->getOperand(i))); 1115 } 1116 break; 1117 case Instruction::Select: 1118 Code = bitc::CST_CODE_CE_SELECT; 1119 Record.push_back(VE.getValueID(C->getOperand(0))); 1120 Record.push_back(VE.getValueID(C->getOperand(1))); 1121 Record.push_back(VE.getValueID(C->getOperand(2))); 1122 break; 1123 case Instruction::ExtractElement: 1124 Code = bitc::CST_CODE_CE_EXTRACTELT; 1125 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1126 Record.push_back(VE.getValueID(C->getOperand(0))); 1127 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1128 Record.push_back(VE.getValueID(C->getOperand(1))); 1129 break; 1130 case Instruction::InsertElement: 1131 Code = bitc::CST_CODE_CE_INSERTELT; 1132 Record.push_back(VE.getValueID(C->getOperand(0))); 1133 Record.push_back(VE.getValueID(C->getOperand(1))); 1134 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1135 Record.push_back(VE.getValueID(C->getOperand(2))); 1136 break; 1137 case Instruction::ShuffleVector: 1138 // If the return type and argument types are the same, this is a 1139 // standard shufflevector instruction. If the types are different, 1140 // then the shuffle is widening or truncating the input vectors, and 1141 // the argument type must also be encoded. 1142 if (C->getType() == C->getOperand(0)->getType()) { 1143 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1144 } else { 1145 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1146 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1147 } 1148 Record.push_back(VE.getValueID(C->getOperand(0))); 1149 Record.push_back(VE.getValueID(C->getOperand(1))); 1150 Record.push_back(VE.getValueID(C->getOperand(2))); 1151 break; 1152 case Instruction::ICmp: 1153 case Instruction::FCmp: 1154 Code = bitc::CST_CODE_CE_CMP; 1155 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1156 Record.push_back(VE.getValueID(C->getOperand(0))); 1157 Record.push_back(VE.getValueID(C->getOperand(1))); 1158 Record.push_back(CE->getPredicate()); 1159 break; 1160 } 1161 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1162 Code = bitc::CST_CODE_BLOCKADDRESS; 1163 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1164 Record.push_back(VE.getValueID(BA->getFunction())); 1165 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1166 } else { 1167 #ifndef NDEBUG 1168 C->dump(); 1169 #endif 1170 llvm_unreachable("Unknown constant!"); 1171 } 1172 Stream.EmitRecord(Code, Record, AbbrevToUse); 1173 Record.clear(); 1174 } 1175 1176 Stream.ExitBlock(); 1177 } 1178 1179 static void WriteModuleConstants(const ValueEnumerator &VE, 1180 BitstreamWriter &Stream) { 1181 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1182 1183 // Find the first constant to emit, which is the first non-globalvalue value. 1184 // We know globalvalues have been emitted by WriteModuleInfo. 1185 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1186 if (!isa<GlobalValue>(Vals[i].first)) { 1187 WriteConstants(i, Vals.size(), VE, Stream, true); 1188 return; 1189 } 1190 } 1191 } 1192 1193 /// PushValueAndType - The file has to encode both the value and type id for 1194 /// many values, because we need to know what type to create for forward 1195 /// references. However, most operands are not forward references, so this type 1196 /// field is not needed. 1197 /// 1198 /// This function adds V's value ID to Vals. If the value ID is higher than the 1199 /// instruction ID, then it is a forward reference, and it also includes the 1200 /// type ID. The value ID that is written is encoded relative to the InstID. 1201 static bool PushValueAndType(const Value *V, unsigned InstID, 1202 SmallVectorImpl<unsigned> &Vals, 1203 ValueEnumerator &VE) { 1204 unsigned ValID = VE.getValueID(V); 1205 // Make encoding relative to the InstID. 1206 Vals.push_back(InstID - ValID); 1207 if (ValID >= InstID) { 1208 Vals.push_back(VE.getTypeID(V->getType())); 1209 return true; 1210 } 1211 return false; 1212 } 1213 1214 /// pushValue - Like PushValueAndType, but where the type of the value is 1215 /// omitted (perhaps it was already encoded in an earlier operand). 1216 static void pushValue(const Value *V, unsigned InstID, 1217 SmallVectorImpl<unsigned> &Vals, 1218 ValueEnumerator &VE) { 1219 unsigned ValID = VE.getValueID(V); 1220 Vals.push_back(InstID - ValID); 1221 } 1222 1223 static void pushValueSigned(const Value *V, unsigned InstID, 1224 SmallVectorImpl<uint64_t> &Vals, 1225 ValueEnumerator &VE) { 1226 unsigned ValID = VE.getValueID(V); 1227 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1228 emitSignedInt64(Vals, diff); 1229 } 1230 1231 /// WriteInstruction - Emit an instruction to the specified stream. 1232 static void WriteInstruction(const Instruction &I, unsigned InstID, 1233 ValueEnumerator &VE, BitstreamWriter &Stream, 1234 SmallVectorImpl<unsigned> &Vals) { 1235 unsigned Code = 0; 1236 unsigned AbbrevToUse = 0; 1237 VE.setInstructionID(&I); 1238 switch (I.getOpcode()) { 1239 default: 1240 if (Instruction::isCast(I.getOpcode())) { 1241 Code = bitc::FUNC_CODE_INST_CAST; 1242 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1243 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1244 Vals.push_back(VE.getTypeID(I.getType())); 1245 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1246 } else { 1247 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1248 Code = bitc::FUNC_CODE_INST_BINOP; 1249 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1250 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1251 pushValue(I.getOperand(1), InstID, Vals, VE); 1252 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1253 uint64_t Flags = GetOptimizationFlags(&I); 1254 if (Flags != 0) { 1255 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1256 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1257 Vals.push_back(Flags); 1258 } 1259 } 1260 break; 1261 1262 case Instruction::GetElementPtr: 1263 Code = bitc::FUNC_CODE_INST_GEP; 1264 if (cast<GEPOperator>(&I)->isInBounds()) 1265 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1266 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1267 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1268 break; 1269 case Instruction::ExtractValue: { 1270 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1271 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1272 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1273 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1274 Vals.push_back(*i); 1275 break; 1276 } 1277 case Instruction::InsertValue: { 1278 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1279 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1280 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1281 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1282 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1283 Vals.push_back(*i); 1284 break; 1285 } 1286 case Instruction::Select: 1287 Code = bitc::FUNC_CODE_INST_VSELECT; 1288 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1289 pushValue(I.getOperand(2), InstID, Vals, VE); 1290 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1291 break; 1292 case Instruction::ExtractElement: 1293 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1294 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1295 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1296 break; 1297 case Instruction::InsertElement: 1298 Code = bitc::FUNC_CODE_INST_INSERTELT; 1299 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1300 pushValue(I.getOperand(1), InstID, Vals, VE); 1301 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1302 break; 1303 case Instruction::ShuffleVector: 1304 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1305 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1306 pushValue(I.getOperand(1), InstID, Vals, VE); 1307 pushValue(I.getOperand(2), InstID, Vals, VE); 1308 break; 1309 case Instruction::ICmp: 1310 case Instruction::FCmp: 1311 // compare returning Int1Ty or vector of Int1Ty 1312 Code = bitc::FUNC_CODE_INST_CMP2; 1313 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1314 pushValue(I.getOperand(1), InstID, Vals, VE); 1315 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1316 break; 1317 1318 case Instruction::Ret: 1319 { 1320 Code = bitc::FUNC_CODE_INST_RET; 1321 unsigned NumOperands = I.getNumOperands(); 1322 if (NumOperands == 0) 1323 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1324 else if (NumOperands == 1) { 1325 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1326 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1327 } else { 1328 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1329 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1330 } 1331 } 1332 break; 1333 case Instruction::Br: 1334 { 1335 Code = bitc::FUNC_CODE_INST_BR; 1336 const BranchInst &II = cast<BranchInst>(I); 1337 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1338 if (II.isConditional()) { 1339 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1340 pushValue(II.getCondition(), InstID, Vals, VE); 1341 } 1342 } 1343 break; 1344 case Instruction::Switch: 1345 { 1346 Code = bitc::FUNC_CODE_INST_SWITCH; 1347 const SwitchInst &SI = cast<SwitchInst>(I); 1348 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1349 pushValue(SI.getCondition(), InstID, Vals, VE); 1350 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1351 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1352 i != e; ++i) { 1353 Vals.push_back(VE.getValueID(i.getCaseValue())); 1354 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1355 } 1356 } 1357 break; 1358 case Instruction::IndirectBr: 1359 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1360 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1361 // Encode the address operand as relative, but not the basic blocks. 1362 pushValue(I.getOperand(0), InstID, Vals, VE); 1363 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1364 Vals.push_back(VE.getValueID(I.getOperand(i))); 1365 break; 1366 1367 case Instruction::Invoke: { 1368 const InvokeInst *II = cast<InvokeInst>(&I); 1369 const Value *Callee(II->getCalledValue()); 1370 PointerType *PTy = cast<PointerType>(Callee->getType()); 1371 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1372 Code = bitc::FUNC_CODE_INST_INVOKE; 1373 1374 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1375 Vals.push_back(II->getCallingConv()); 1376 Vals.push_back(VE.getValueID(II->getNormalDest())); 1377 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1378 PushValueAndType(Callee, InstID, Vals, VE); 1379 1380 // Emit value #'s for the fixed parameters. 1381 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1382 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1383 1384 // Emit type/value pairs for varargs params. 1385 if (FTy->isVarArg()) { 1386 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1387 i != e; ++i) 1388 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1389 } 1390 break; 1391 } 1392 case Instruction::Resume: 1393 Code = bitc::FUNC_CODE_INST_RESUME; 1394 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1395 break; 1396 case Instruction::Unreachable: 1397 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1398 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1399 break; 1400 1401 case Instruction::PHI: { 1402 const PHINode &PN = cast<PHINode>(I); 1403 Code = bitc::FUNC_CODE_INST_PHI; 1404 // With the newer instruction encoding, forward references could give 1405 // negative valued IDs. This is most common for PHIs, so we use 1406 // signed VBRs. 1407 SmallVector<uint64_t, 128> Vals64; 1408 Vals64.push_back(VE.getTypeID(PN.getType())); 1409 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1410 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1411 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1412 } 1413 // Emit a Vals64 vector and exit. 1414 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1415 Vals64.clear(); 1416 return; 1417 } 1418 1419 case Instruction::LandingPad: { 1420 const LandingPadInst &LP = cast<LandingPadInst>(I); 1421 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1422 Vals.push_back(VE.getTypeID(LP.getType())); 1423 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1424 Vals.push_back(LP.isCleanup()); 1425 Vals.push_back(LP.getNumClauses()); 1426 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1427 if (LP.isCatch(I)) 1428 Vals.push_back(LandingPadInst::Catch); 1429 else 1430 Vals.push_back(LandingPadInst::Filter); 1431 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1432 } 1433 break; 1434 } 1435 1436 case Instruction::Alloca: { 1437 Code = bitc::FUNC_CODE_INST_ALLOCA; 1438 Vals.push_back(VE.getTypeID(I.getType())); 1439 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1440 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1441 const AllocaInst &AI = cast<AllocaInst>(I); 1442 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1443 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1444 "not enough bits for maximum alignment"); 1445 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1446 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1447 Vals.push_back(AlignRecord); 1448 break; 1449 } 1450 1451 case Instruction::Load: 1452 if (cast<LoadInst>(I).isAtomic()) { 1453 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1454 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1455 } else { 1456 Code = bitc::FUNC_CODE_INST_LOAD; 1457 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1458 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1459 } 1460 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1461 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1462 if (cast<LoadInst>(I).isAtomic()) { 1463 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1464 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1465 } 1466 break; 1467 case Instruction::Store: 1468 if (cast<StoreInst>(I).isAtomic()) 1469 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1470 else 1471 Code = bitc::FUNC_CODE_INST_STORE; 1472 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1473 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1474 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1475 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1476 if (cast<StoreInst>(I).isAtomic()) { 1477 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1478 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1479 } 1480 break; 1481 case Instruction::AtomicCmpXchg: 1482 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1483 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1484 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1485 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1486 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1487 Vals.push_back(GetEncodedOrdering( 1488 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1489 Vals.push_back(GetEncodedSynchScope( 1490 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1491 Vals.push_back(GetEncodedOrdering( 1492 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1493 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1494 break; 1495 case Instruction::AtomicRMW: 1496 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1497 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1498 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1499 Vals.push_back(GetEncodedRMWOperation( 1500 cast<AtomicRMWInst>(I).getOperation())); 1501 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1502 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1503 Vals.push_back(GetEncodedSynchScope( 1504 cast<AtomicRMWInst>(I).getSynchScope())); 1505 break; 1506 case Instruction::Fence: 1507 Code = bitc::FUNC_CODE_INST_FENCE; 1508 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1509 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1510 break; 1511 case Instruction::Call: { 1512 const CallInst &CI = cast<CallInst>(I); 1513 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1514 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1515 1516 Code = bitc::FUNC_CODE_INST_CALL; 1517 1518 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1519 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1520 unsigned(CI.isMustTailCall()) << 14); 1521 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1522 1523 // Emit value #'s for the fixed parameters. 1524 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1525 // Check for labels (can happen with asm labels). 1526 if (FTy->getParamType(i)->isLabelTy()) 1527 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1528 else 1529 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1530 } 1531 1532 // Emit type/value pairs for varargs params. 1533 if (FTy->isVarArg()) { 1534 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1535 i != e; ++i) 1536 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1537 } 1538 break; 1539 } 1540 case Instruction::VAArg: 1541 Code = bitc::FUNC_CODE_INST_VAARG; 1542 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1543 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1544 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1545 break; 1546 } 1547 1548 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1549 Vals.clear(); 1550 } 1551 1552 // Emit names for globals/functions etc. 1553 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1554 const ValueEnumerator &VE, 1555 BitstreamWriter &Stream) { 1556 if (VST.empty()) return; 1557 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1558 1559 // FIXME: Set up the abbrev, we know how many values there are! 1560 // FIXME: We know if the type names can use 7-bit ascii. 1561 SmallVector<unsigned, 64> NameVals; 1562 1563 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1564 SI != SE; ++SI) { 1565 1566 const ValueName &Name = *SI; 1567 1568 // Figure out the encoding to use for the name. 1569 bool is7Bit = true; 1570 bool isChar6 = true; 1571 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1572 C != E; ++C) { 1573 if (isChar6) 1574 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1575 if ((unsigned char)*C & 128) { 1576 is7Bit = false; 1577 break; // don't bother scanning the rest. 1578 } 1579 } 1580 1581 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1582 1583 // VST_ENTRY: [valueid, namechar x N] 1584 // VST_BBENTRY: [bbid, namechar x N] 1585 unsigned Code; 1586 if (isa<BasicBlock>(SI->getValue())) { 1587 Code = bitc::VST_CODE_BBENTRY; 1588 if (isChar6) 1589 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1590 } else { 1591 Code = bitc::VST_CODE_ENTRY; 1592 if (isChar6) 1593 AbbrevToUse = VST_ENTRY_6_ABBREV; 1594 else if (is7Bit) 1595 AbbrevToUse = VST_ENTRY_7_ABBREV; 1596 } 1597 1598 NameVals.push_back(VE.getValueID(SI->getValue())); 1599 for (const char *P = Name.getKeyData(), 1600 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1601 NameVals.push_back((unsigned char)*P); 1602 1603 // Emit the finished record. 1604 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1605 NameVals.clear(); 1606 } 1607 Stream.ExitBlock(); 1608 } 1609 1610 /// WriteFunction - Emit a function body to the module stream. 1611 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1612 BitstreamWriter &Stream) { 1613 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1614 VE.incorporateFunction(F); 1615 1616 SmallVector<unsigned, 64> Vals; 1617 1618 // Emit the number of basic blocks, so the reader can create them ahead of 1619 // time. 1620 Vals.push_back(VE.getBasicBlocks().size()); 1621 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1622 Vals.clear(); 1623 1624 // If there are function-local constants, emit them now. 1625 unsigned CstStart, CstEnd; 1626 VE.getFunctionConstantRange(CstStart, CstEnd); 1627 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1628 1629 // If there is function-local metadata, emit it now. 1630 WriteFunctionLocalMetadata(F, VE, Stream); 1631 1632 // Keep a running idea of what the instruction ID is. 1633 unsigned InstID = CstEnd; 1634 1635 bool NeedsMetadataAttachment = false; 1636 1637 DebugLoc LastDL; 1638 1639 // Finally, emit all the instructions, in order. 1640 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1641 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1642 I != E; ++I) { 1643 WriteInstruction(*I, InstID, VE, Stream, Vals); 1644 1645 if (!I->getType()->isVoidTy()) 1646 ++InstID; 1647 1648 // If the instruction has metadata, write a metadata attachment later. 1649 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1650 1651 // If the instruction has a debug location, emit it. 1652 DebugLoc DL = I->getDebugLoc(); 1653 if (DL.isUnknown()) { 1654 // nothing todo. 1655 } else if (DL == LastDL) { 1656 // Just repeat the same debug loc as last time. 1657 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1658 } else { 1659 MDNode *Scope, *IA; 1660 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1661 1662 Vals.push_back(DL.getLine()); 1663 Vals.push_back(DL.getCol()); 1664 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1665 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1666 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1667 Vals.clear(); 1668 1669 LastDL = DL; 1670 } 1671 } 1672 1673 // Emit names for all the instructions etc. 1674 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1675 1676 if (NeedsMetadataAttachment) 1677 WriteMetadataAttachment(F, VE, Stream); 1678 VE.purgeFunction(); 1679 Stream.ExitBlock(); 1680 } 1681 1682 // Emit blockinfo, which defines the standard abbreviations etc. 1683 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1684 // We only want to emit block info records for blocks that have multiple 1685 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1686 // Other blocks can define their abbrevs inline. 1687 Stream.EnterBlockInfoBlock(2); 1688 1689 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1690 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1695 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1696 Abbv) != VST_ENTRY_8_ABBREV) 1697 llvm_unreachable("Unexpected abbrev ordering!"); 1698 } 1699 1700 { // 7-bit fixed width VST_ENTRY strings. 1701 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1702 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1706 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1707 Abbv) != VST_ENTRY_7_ABBREV) 1708 llvm_unreachable("Unexpected abbrev ordering!"); 1709 } 1710 { // 6-bit char6 VST_ENTRY strings. 1711 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1712 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1716 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1717 Abbv) != VST_ENTRY_6_ABBREV) 1718 llvm_unreachable("Unexpected abbrev ordering!"); 1719 } 1720 { // 6-bit char6 VST_BBENTRY strings. 1721 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1722 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1726 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1727 Abbv) != VST_BBENTRY_6_ABBREV) 1728 llvm_unreachable("Unexpected abbrev ordering!"); 1729 } 1730 1731 1732 1733 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1734 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1735 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1737 Log2_32_Ceil(VE.getTypes().size()+1))); 1738 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1739 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1740 llvm_unreachable("Unexpected abbrev ordering!"); 1741 } 1742 1743 { // INTEGER abbrev for CONSTANTS_BLOCK. 1744 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1745 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1747 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1748 Abbv) != CONSTANTS_INTEGER_ABBREV) 1749 llvm_unreachable("Unexpected abbrev ordering!"); 1750 } 1751 1752 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1753 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1754 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1757 Log2_32_Ceil(VE.getTypes().size()+1))); 1758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1759 1760 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1761 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1762 llvm_unreachable("Unexpected abbrev ordering!"); 1763 } 1764 { // NULL abbrev for CONSTANTS_BLOCK. 1765 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1766 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1767 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1768 Abbv) != CONSTANTS_NULL_Abbrev) 1769 llvm_unreachable("Unexpected abbrev ordering!"); 1770 } 1771 1772 // FIXME: This should only use space for first class types! 1773 1774 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1775 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1776 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1780 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1781 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1782 llvm_unreachable("Unexpected abbrev ordering!"); 1783 } 1784 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1785 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1786 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1790 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1791 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1792 llvm_unreachable("Unexpected abbrev ordering!"); 1793 } 1794 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1795 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1796 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1801 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1802 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1803 llvm_unreachable("Unexpected abbrev ordering!"); 1804 } 1805 { // INST_CAST abbrev for FUNCTION_BLOCK. 1806 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1807 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1810 Log2_32_Ceil(VE.getTypes().size()+1))); 1811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1812 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1813 Abbv) != FUNCTION_INST_CAST_ABBREV) 1814 llvm_unreachable("Unexpected abbrev ordering!"); 1815 } 1816 1817 { // INST_RET abbrev for FUNCTION_BLOCK. 1818 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1819 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1820 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1821 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1822 llvm_unreachable("Unexpected abbrev ordering!"); 1823 } 1824 { // INST_RET abbrev for FUNCTION_BLOCK. 1825 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1826 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1828 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1829 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1830 llvm_unreachable("Unexpected abbrev ordering!"); 1831 } 1832 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1833 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1834 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1835 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1836 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1837 llvm_unreachable("Unexpected abbrev ordering!"); 1838 } 1839 1840 Stream.ExitBlock(); 1841 } 1842 1843 // Sort the Users based on the order in which the reader parses the bitcode 1844 // file. 1845 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1846 // TODO: Implement. 1847 return true; 1848 } 1849 1850 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1851 BitstreamWriter &Stream) { 1852 1853 // One or zero uses can't get out of order. 1854 if (V->use_empty() || V->hasNUses(1)) 1855 return; 1856 1857 // Make a copy of the in-memory use-list for sorting. 1858 SmallVector<const User*, 8> UserList(V->user_begin(), V->user_end()); 1859 1860 // Sort the copy based on the order read by the BitcodeReader. 1861 std::sort(UserList.begin(), UserList.end(), bitcodereader_order); 1862 1863 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1864 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1865 1866 // TODO: Emit the USELIST_CODE_ENTRYs. 1867 } 1868 1869 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1870 BitstreamWriter &Stream) { 1871 VE.incorporateFunction(*F); 1872 1873 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1874 AI != AE; ++AI) 1875 WriteUseList(AI, VE, Stream); 1876 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1877 ++BB) { 1878 WriteUseList(BB, VE, Stream); 1879 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1880 ++II) { 1881 WriteUseList(II, VE, Stream); 1882 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1883 OI != E; ++OI) { 1884 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1885 isa<InlineAsm>(*OI)) 1886 WriteUseList(*OI, VE, Stream); 1887 } 1888 } 1889 } 1890 VE.purgeFunction(); 1891 } 1892 1893 // Emit use-lists. 1894 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1895 BitstreamWriter &Stream) { 1896 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1897 1898 // XXX: this modifies the module, but in a way that should never change the 1899 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1900 // contain entries in the use_list that do not exist in the Module and are 1901 // not stored in the .bc file. 1902 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1903 I != E; ++I) 1904 I->removeDeadConstantUsers(); 1905 1906 // Write the global variables. 1907 for (Module::const_global_iterator GI = M->global_begin(), 1908 GE = M->global_end(); GI != GE; ++GI) { 1909 WriteUseList(GI, VE, Stream); 1910 1911 // Write the global variable initializers. 1912 if (GI->hasInitializer()) 1913 WriteUseList(GI->getInitializer(), VE, Stream); 1914 } 1915 1916 // Write the functions. 1917 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1918 WriteUseList(FI, VE, Stream); 1919 if (!FI->isDeclaration()) 1920 WriteFunctionUseList(FI, VE, Stream); 1921 if (FI->hasPrefixData()) 1922 WriteUseList(FI->getPrefixData(), VE, Stream); 1923 } 1924 1925 // Write the aliases. 1926 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1927 AI != AE; ++AI) { 1928 WriteUseList(AI, VE, Stream); 1929 WriteUseList(AI->getAliasee(), VE, Stream); 1930 } 1931 1932 Stream.ExitBlock(); 1933 } 1934 1935 /// WriteModule - Emit the specified module to the bitstream. 1936 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1937 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1938 1939 SmallVector<unsigned, 1> Vals; 1940 unsigned CurVersion = 1; 1941 Vals.push_back(CurVersion); 1942 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1943 1944 // Analyze the module, enumerating globals, functions, etc. 1945 ValueEnumerator VE(M); 1946 1947 // Emit blockinfo, which defines the standard abbreviations etc. 1948 WriteBlockInfo(VE, Stream); 1949 1950 // Emit information about attribute groups. 1951 WriteAttributeGroupTable(VE, Stream); 1952 1953 // Emit information about parameter attributes. 1954 WriteAttributeTable(VE, Stream); 1955 1956 // Emit information describing all of the types in the module. 1957 WriteTypeTable(VE, Stream); 1958 1959 writeComdats(VE, Stream); 1960 1961 // Emit top-level description of module, including target triple, inline asm, 1962 // descriptors for global variables, and function prototype info. 1963 WriteModuleInfo(M, VE, Stream); 1964 1965 // Emit constants. 1966 WriteModuleConstants(VE, Stream); 1967 1968 // Emit metadata. 1969 WriteModuleMetadata(M, VE, Stream); 1970 1971 // Emit metadata. 1972 WriteModuleMetadataStore(M, Stream); 1973 1974 // Emit names for globals/functions etc. 1975 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1976 1977 // Emit use-lists. 1978 if (EnablePreserveUseListOrdering) 1979 WriteModuleUseLists(M, VE, Stream); 1980 1981 // Emit function bodies. 1982 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1983 if (!F->isDeclaration()) 1984 WriteFunction(*F, VE, Stream); 1985 1986 Stream.ExitBlock(); 1987 } 1988 1989 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1990 /// header and trailer to make it compatible with the system archiver. To do 1991 /// this we emit the following header, and then emit a trailer that pads the 1992 /// file out to be a multiple of 16 bytes. 1993 /// 1994 /// struct bc_header { 1995 /// uint32_t Magic; // 0x0B17C0DE 1996 /// uint32_t Version; // Version, currently always 0. 1997 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1998 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1999 /// uint32_t CPUType; // CPU specifier. 2000 /// ... potentially more later ... 2001 /// }; 2002 enum { 2003 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2004 DarwinBCHeaderSize = 5*4 2005 }; 2006 2007 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2008 uint32_t &Position) { 2009 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2010 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2011 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2012 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2013 Position += 4; 2014 } 2015 2016 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2017 const Triple &TT) { 2018 unsigned CPUType = ~0U; 2019 2020 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2021 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2022 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2023 // specific constants here because they are implicitly part of the Darwin ABI. 2024 enum { 2025 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2026 DARWIN_CPU_TYPE_X86 = 7, 2027 DARWIN_CPU_TYPE_ARM = 12, 2028 DARWIN_CPU_TYPE_POWERPC = 18 2029 }; 2030 2031 Triple::ArchType Arch = TT.getArch(); 2032 if (Arch == Triple::x86_64) 2033 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2034 else if (Arch == Triple::x86) 2035 CPUType = DARWIN_CPU_TYPE_X86; 2036 else if (Arch == Triple::ppc) 2037 CPUType = DARWIN_CPU_TYPE_POWERPC; 2038 else if (Arch == Triple::ppc64) 2039 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2040 else if (Arch == Triple::arm || Arch == Triple::thumb) 2041 CPUType = DARWIN_CPU_TYPE_ARM; 2042 2043 // Traditional Bitcode starts after header. 2044 assert(Buffer.size() >= DarwinBCHeaderSize && 2045 "Expected header size to be reserved"); 2046 unsigned BCOffset = DarwinBCHeaderSize; 2047 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2048 2049 // Write the magic and version. 2050 unsigned Position = 0; 2051 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2052 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2053 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2054 WriteInt32ToBuffer(BCSize , Buffer, Position); 2055 WriteInt32ToBuffer(CPUType , Buffer, Position); 2056 2057 // If the file is not a multiple of 16 bytes, insert dummy padding. 2058 while (Buffer.size() & 15) 2059 Buffer.push_back(0); 2060 } 2061 2062 /// WriteBitcodeToFile - Write the specified module to the specified output 2063 /// stream. 2064 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2065 SmallVector<char, 0> Buffer; 2066 Buffer.reserve(256*1024); 2067 2068 // If this is darwin or another generic macho target, reserve space for the 2069 // header. 2070 Triple TT(M->getTargetTriple()); 2071 if (TT.isOSDarwin()) 2072 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2073 2074 // Emit the module into the buffer. 2075 { 2076 BitstreamWriter Stream(Buffer); 2077 2078 // Emit the file header. 2079 Stream.Emit((unsigned)'B', 8); 2080 Stream.Emit((unsigned)'C', 8); 2081 Stream.Emit(0x0, 4); 2082 Stream.Emit(0xC, 4); 2083 Stream.Emit(0xE, 4); 2084 Stream.Emit(0xD, 4); 2085 2086 // Emit the module. 2087 WriteModule(M, Stream); 2088 } 2089 2090 if (TT.isOSDarwin()) 2091 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2092 2093 // Write the generated bitstream to "Out". 2094 Out.write((char*)&Buffer.front(), Buffer.size()); 2095 } 2096