1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
29 
30 void BitcodeReader::FreeState() {
31   if (BufferOwned)
32     delete Buffer;
33   Buffer = 0;
34   std::vector<PATypeHolder>().swap(TypeList);
35   ValueList.clear();
36   MDValueList.clear();
37 
38   std::vector<AttrListPtr>().swap(MAttributes);
39   std::vector<BasicBlock*>().swap(FunctionBBs);
40   std::vector<Function*>().swap(FunctionsWithBodies);
41   DeferredFunctionInfo.clear();
42   MDKindMap.clear();
43 }
44 
45 //===----------------------------------------------------------------------===//
46 //  Helper functions to implement forward reference resolution, etc.
47 //===----------------------------------------------------------------------===//
48 
49 /// ConvertToString - Convert a string from a record into an std::string, return
50 /// true on failure.
51 template<typename StrTy>
52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                             StrTy &Result) {
54   if (Idx > Record.size())
55     return true;
56 
57   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58     Result += (char)Record[i];
59   return false;
60 }
61 
62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63   switch (Val) {
64   default: // Map unknown/new linkages to external
65   case 0:  return GlobalValue::ExternalLinkage;
66   case 1:  return GlobalValue::WeakAnyLinkage;
67   case 2:  return GlobalValue::AppendingLinkage;
68   case 3:  return GlobalValue::InternalLinkage;
69   case 4:  return GlobalValue::LinkOnceAnyLinkage;
70   case 5:  return GlobalValue::DLLImportLinkage;
71   case 6:  return GlobalValue::DLLExportLinkage;
72   case 7:  return GlobalValue::ExternalWeakLinkage;
73   case 8:  return GlobalValue::CommonLinkage;
74   case 9:  return GlobalValue::PrivateLinkage;
75   case 10: return GlobalValue::WeakODRLinkage;
76   case 11: return GlobalValue::LinkOnceODRLinkage;
77   case 12: return GlobalValue::AvailableExternallyLinkage;
78   case 13: return GlobalValue::LinkerPrivateLinkage;
79   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80   case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81   }
82 }
83 
84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85   switch (Val) {
86   default: // Map unknown visibilities to default.
87   case 0: return GlobalValue::DefaultVisibility;
88   case 1: return GlobalValue::HiddenVisibility;
89   case 2: return GlobalValue::ProtectedVisibility;
90   }
91 }
92 
93 static int GetDecodedCastOpcode(unsigned Val) {
94   switch (Val) {
95   default: return -1;
96   case bitc::CAST_TRUNC   : return Instruction::Trunc;
97   case bitc::CAST_ZEXT    : return Instruction::ZExt;
98   case bitc::CAST_SEXT    : return Instruction::SExt;
99   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104   case bitc::CAST_FPEXT   : return Instruction::FPExt;
105   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107   case bitc::CAST_BITCAST : return Instruction::BitCast;
108   }
109 }
110 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
111   switch (Val) {
112   default: return -1;
113   case bitc::BINOP_ADD:
114     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115   case bitc::BINOP_SUB:
116     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117   case bitc::BINOP_MUL:
118     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119   case bitc::BINOP_UDIV: return Instruction::UDiv;
120   case bitc::BINOP_SDIV:
121     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122   case bitc::BINOP_UREM: return Instruction::URem;
123   case bitc::BINOP_SREM:
124     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125   case bitc::BINOP_SHL:  return Instruction::Shl;
126   case bitc::BINOP_LSHR: return Instruction::LShr;
127   case bitc::BINOP_ASHR: return Instruction::AShr;
128   case bitc::BINOP_AND:  return Instruction::And;
129   case bitc::BINOP_OR:   return Instruction::Or;
130   case bitc::BINOP_XOR:  return Instruction::Xor;
131   }
132 }
133 
134 namespace llvm {
135 namespace {
136   /// @brief A class for maintaining the slot number definition
137   /// as a placeholder for the actual definition for forward constants defs.
138   class ConstantPlaceHolder : public ConstantExpr {
139     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
140     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
141   public:
142     // allocate space for exactly one operand
143     void *operator new(size_t s) {
144       return User::operator new(s, 1);
145     }
146     explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
147       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
148       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
149     }
150 
151     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
152     static inline bool classof(const ConstantPlaceHolder *) { return true; }
153     static bool classof(const Value *V) {
154       return isa<ConstantExpr>(V) &&
155              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
156     }
157 
158 
159     /// Provide fast operand accessors
160     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
161   };
162 }
163 
164 // FIXME: can we inherit this from ConstantExpr?
165 template <>
166 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
167 };
168 }
169 
170 
171 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
172   if (Idx == size()) {
173     push_back(V);
174     return;
175   }
176 
177   if (Idx >= size())
178     resize(Idx+1);
179 
180   WeakVH &OldV = ValuePtrs[Idx];
181   if (OldV == 0) {
182     OldV = V;
183     return;
184   }
185 
186   // Handle constants and non-constants (e.g. instrs) differently for
187   // efficiency.
188   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
189     ResolveConstants.push_back(std::make_pair(PHC, Idx));
190     OldV = V;
191   } else {
192     // If there was a forward reference to this value, replace it.
193     Value *PrevVal = OldV;
194     OldV->replaceAllUsesWith(V);
195     delete PrevVal;
196   }
197 }
198 
199 
200 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
201                                                     const Type *Ty) {
202   if (Idx >= size())
203     resize(Idx + 1);
204 
205   if (Value *V = ValuePtrs[Idx]) {
206     assert(Ty == V->getType() && "Type mismatch in constant table!");
207     return cast<Constant>(V);
208   }
209 
210   // Create and return a placeholder, which will later be RAUW'd.
211   Constant *C = new ConstantPlaceHolder(Ty, Context);
212   ValuePtrs[Idx] = C;
213   return C;
214 }
215 
216 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
217   if (Idx >= size())
218     resize(Idx + 1);
219 
220   if (Value *V = ValuePtrs[Idx]) {
221     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
222     return V;
223   }
224 
225   // No type specified, must be invalid reference.
226   if (Ty == 0) return 0;
227 
228   // Create and return a placeholder, which will later be RAUW'd.
229   Value *V = new Argument(Ty);
230   ValuePtrs[Idx] = V;
231   return V;
232 }
233 
234 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
235 /// resolves any forward references.  The idea behind this is that we sometimes
236 /// get constants (such as large arrays) which reference *many* forward ref
237 /// constants.  Replacing each of these causes a lot of thrashing when
238 /// building/reuniquing the constant.  Instead of doing this, we look at all the
239 /// uses and rewrite all the place holders at once for any constant that uses
240 /// a placeholder.
241 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
242   // Sort the values by-pointer so that they are efficient to look up with a
243   // binary search.
244   std::sort(ResolveConstants.begin(), ResolveConstants.end());
245 
246   SmallVector<Constant*, 64> NewOps;
247 
248   while (!ResolveConstants.empty()) {
249     Value *RealVal = operator[](ResolveConstants.back().second);
250     Constant *Placeholder = ResolveConstants.back().first;
251     ResolveConstants.pop_back();
252 
253     // Loop over all users of the placeholder, updating them to reference the
254     // new value.  If they reference more than one placeholder, update them all
255     // at once.
256     while (!Placeholder->use_empty()) {
257       Value::use_iterator UI = Placeholder->use_begin();
258       User *U = *UI;
259 
260       // If the using object isn't uniqued, just update the operands.  This
261       // handles instructions and initializers for global variables.
262       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
263         UI.getUse().set(RealVal);
264         continue;
265       }
266 
267       // Otherwise, we have a constant that uses the placeholder.  Replace that
268       // constant with a new constant that has *all* placeholder uses updated.
269       Constant *UserC = cast<Constant>(U);
270       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
271            I != E; ++I) {
272         Value *NewOp;
273         if (!isa<ConstantPlaceHolder>(*I)) {
274           // Not a placeholder reference.
275           NewOp = *I;
276         } else if (*I == Placeholder) {
277           // Common case is that it just references this one placeholder.
278           NewOp = RealVal;
279         } else {
280           // Otherwise, look up the placeholder in ResolveConstants.
281           ResolveConstantsTy::iterator It =
282             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
283                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
284                                                             0));
285           assert(It != ResolveConstants.end() && It->first == *I);
286           NewOp = operator[](It->second);
287         }
288 
289         NewOps.push_back(cast<Constant>(NewOp));
290       }
291 
292       // Make the new constant.
293       Constant *NewC;
294       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
295         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
296                                         NewOps.size());
297       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
298         NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
299                                          UserCS->getType()->isPacked());
300       } else if (isa<ConstantVector>(UserC)) {
301         NewC = ConstantVector::get(&NewOps[0], NewOps.size());
302       } else {
303         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
304         NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
305                                                           NewOps.size());
306       }
307 
308       UserC->replaceAllUsesWith(NewC);
309       UserC->destroyConstant();
310       NewOps.clear();
311     }
312 
313     // Update all ValueHandles, they should be the only users at this point.
314     Placeholder->replaceAllUsesWith(RealVal);
315     delete Placeholder;
316   }
317 }
318 
319 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
320   if (Idx == size()) {
321     push_back(V);
322     return;
323   }
324 
325   if (Idx >= size())
326     resize(Idx+1);
327 
328   WeakVH &OldV = MDValuePtrs[Idx];
329   if (OldV == 0) {
330     OldV = V;
331     return;
332   }
333 
334   // If there was a forward reference to this value, replace it.
335   MDNode *PrevVal = cast<MDNode>(OldV);
336   OldV->replaceAllUsesWith(V);
337   MDNode::deleteTemporary(PrevVal);
338   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
339   // value for Idx.
340   MDValuePtrs[Idx] = V;
341 }
342 
343 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
344   if (Idx >= size())
345     resize(Idx + 1);
346 
347   if (Value *V = MDValuePtrs[Idx]) {
348     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
349     return V;
350   }
351 
352   // Create and return a placeholder, which will later be RAUW'd.
353   Value *V = MDNode::getTemporary(Context, 0, 0);
354   MDValuePtrs[Idx] = V;
355   return V;
356 }
357 
358 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
359   // If the TypeID is in range, return it.
360   if (ID < TypeList.size())
361     return TypeList[ID].get();
362   if (!isTypeTable) return 0;
363 
364   // The type table allows forward references.  Push as many Opaque types as
365   // needed to get up to ID.
366   while (TypeList.size() <= ID)
367     TypeList.push_back(OpaqueType::get(Context));
368   return TypeList.back().get();
369 }
370 
371 //===----------------------------------------------------------------------===//
372 //  Functions for parsing blocks from the bitcode file
373 //===----------------------------------------------------------------------===//
374 
375 bool BitcodeReader::ParseAttributeBlock() {
376   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
377     return Error("Malformed block record");
378 
379   if (!MAttributes.empty())
380     return Error("Multiple PARAMATTR blocks found!");
381 
382   SmallVector<uint64_t, 64> Record;
383 
384   SmallVector<AttributeWithIndex, 8> Attrs;
385 
386   // Read all the records.
387   while (1) {
388     unsigned Code = Stream.ReadCode();
389     if (Code == bitc::END_BLOCK) {
390       if (Stream.ReadBlockEnd())
391         return Error("Error at end of PARAMATTR block");
392       return false;
393     }
394 
395     if (Code == bitc::ENTER_SUBBLOCK) {
396       // No known subblocks, always skip them.
397       Stream.ReadSubBlockID();
398       if (Stream.SkipBlock())
399         return Error("Malformed block record");
400       continue;
401     }
402 
403     if (Code == bitc::DEFINE_ABBREV) {
404       Stream.ReadAbbrevRecord();
405       continue;
406     }
407 
408     // Read a record.
409     Record.clear();
410     switch (Stream.ReadRecord(Code, Record)) {
411     default:  // Default behavior: ignore.
412       break;
413     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
414       if (Record.size() & 1)
415         return Error("Invalid ENTRY record");
416 
417       // FIXME : Remove this autoupgrade code in LLVM 3.0.
418       // If Function attributes are using index 0 then transfer them
419       // to index ~0. Index 0 is used for return value attributes but used to be
420       // used for function attributes.
421       Attributes RetAttribute = Attribute::None;
422       Attributes FnAttribute = Attribute::None;
423       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
424         // FIXME: remove in LLVM 3.0
425         // The alignment is stored as a 16-bit raw value from bits 31--16.
426         // We shift the bits above 31 down by 11 bits.
427 
428         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
429         if (Alignment && !isPowerOf2_32(Alignment))
430           return Error("Alignment is not a power of two.");
431 
432         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
433         if (Alignment)
434           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
435         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
436         Record[i+1] = ReconstitutedAttr;
437 
438         if (Record[i] == 0)
439           RetAttribute = Record[i+1];
440         else if (Record[i] == ~0U)
441           FnAttribute = Record[i+1];
442       }
443 
444       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
445                               Attribute::ReadOnly|Attribute::ReadNone);
446 
447       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
448           (RetAttribute & OldRetAttrs) != 0) {
449         if (FnAttribute == Attribute::None) { // add a slot so they get added.
450           Record.push_back(~0U);
451           Record.push_back(0);
452         }
453 
454         FnAttribute  |= RetAttribute & OldRetAttrs;
455         RetAttribute &= ~OldRetAttrs;
456       }
457 
458       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
459         if (Record[i] == 0) {
460           if (RetAttribute != Attribute::None)
461             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
462         } else if (Record[i] == ~0U) {
463           if (FnAttribute != Attribute::None)
464             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
465         } else if (Record[i+1] != Attribute::None)
466           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
467       }
468 
469       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
470       Attrs.clear();
471       break;
472     }
473     }
474   }
475 }
476 
477 
478 bool BitcodeReader::ParseTypeTable() {
479   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
480     return Error("Malformed block record");
481 
482   if (!TypeList.empty())
483     return Error("Multiple TYPE_BLOCKs found!");
484 
485   SmallVector<uint64_t, 64> Record;
486   unsigned NumRecords = 0;
487 
488   // Read all the records for this type table.
489   while (1) {
490     unsigned Code = Stream.ReadCode();
491     if (Code == bitc::END_BLOCK) {
492       if (NumRecords != TypeList.size())
493         return Error("Invalid type forward reference in TYPE_BLOCK");
494       if (Stream.ReadBlockEnd())
495         return Error("Error at end of type table block");
496       return false;
497     }
498 
499     if (Code == bitc::ENTER_SUBBLOCK) {
500       // No known subblocks, always skip them.
501       Stream.ReadSubBlockID();
502       if (Stream.SkipBlock())
503         return Error("Malformed block record");
504       continue;
505     }
506 
507     if (Code == bitc::DEFINE_ABBREV) {
508       Stream.ReadAbbrevRecord();
509       continue;
510     }
511 
512     // Read a record.
513     Record.clear();
514     const Type *ResultTy = 0;
515     switch (Stream.ReadRecord(Code, Record)) {
516     default:  // Default behavior: unknown type.
517       ResultTy = 0;
518       break;
519     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
520       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
521       // type list.  This allows us to reserve space.
522       if (Record.size() < 1)
523         return Error("Invalid TYPE_CODE_NUMENTRY record");
524       TypeList.reserve(Record[0]);
525       continue;
526     case bitc::TYPE_CODE_VOID:      // VOID
527       ResultTy = Type::getVoidTy(Context);
528       break;
529     case bitc::TYPE_CODE_FLOAT:     // FLOAT
530       ResultTy = Type::getFloatTy(Context);
531       break;
532     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
533       ResultTy = Type::getDoubleTy(Context);
534       break;
535     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
536       ResultTy = Type::getX86_FP80Ty(Context);
537       break;
538     case bitc::TYPE_CODE_FP128:     // FP128
539       ResultTy = Type::getFP128Ty(Context);
540       break;
541     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
542       ResultTy = Type::getPPC_FP128Ty(Context);
543       break;
544     case bitc::TYPE_CODE_LABEL:     // LABEL
545       ResultTy = Type::getLabelTy(Context);
546       break;
547     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
548       ResultTy = 0;
549       break;
550     case bitc::TYPE_CODE_METADATA:  // METADATA
551       ResultTy = Type::getMetadataTy(Context);
552       break;
553     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
554       if (Record.size() < 1)
555         return Error("Invalid Integer type record");
556 
557       ResultTy = IntegerType::get(Context, Record[0]);
558       break;
559     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
560                                     //          [pointee type, address space]
561       if (Record.size() < 1)
562         return Error("Invalid POINTER type record");
563       unsigned AddressSpace = 0;
564       if (Record.size() == 2)
565         AddressSpace = Record[1];
566       ResultTy = PointerType::get(getTypeByID(Record[0], true),
567                                         AddressSpace);
568       break;
569     }
570     case bitc::TYPE_CODE_FUNCTION: {
571       // FIXME: attrid is dead, remove it in LLVM 3.0
572       // FUNCTION: [vararg, attrid, retty, paramty x N]
573       if (Record.size() < 3)
574         return Error("Invalid FUNCTION type record");
575       std::vector<const Type*> ArgTys;
576       for (unsigned i = 3, e = Record.size(); i != e; ++i)
577         ArgTys.push_back(getTypeByID(Record[i], true));
578 
579       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
580                                    Record[0]);
581       break;
582     }
583     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
584       if (Record.size() < 1)
585         return Error("Invalid STRUCT type record");
586       std::vector<const Type*> EltTys;
587       for (unsigned i = 1, e = Record.size(); i != e; ++i)
588         EltTys.push_back(getTypeByID(Record[i], true));
589       ResultTy = StructType::get(Context, EltTys, Record[0]);
590       break;
591     }
592     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
593       if (Record.size() < 2)
594         return Error("Invalid ARRAY type record");
595       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
596       break;
597     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
598       if (Record.size() < 2)
599         return Error("Invalid VECTOR type record");
600       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
601       break;
602     }
603 
604     if (NumRecords == TypeList.size()) {
605       // If this is a new type slot, just append it.
606       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
607       ++NumRecords;
608     } else if (ResultTy == 0) {
609       // Otherwise, this was forward referenced, so an opaque type was created,
610       // but the result type is actually just an opaque.  Leave the one we
611       // created previously.
612       ++NumRecords;
613     } else {
614       // Otherwise, this was forward referenced, so an opaque type was created.
615       // Resolve the opaque type to the real type now.
616       assert(NumRecords < TypeList.size() && "Typelist imbalance");
617       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
618 
619       // Don't directly push the new type on the Tab. Instead we want to replace
620       // the opaque type we previously inserted with the new concrete value. The
621       // refinement from the abstract (opaque) type to the new type causes all
622       // uses of the abstract type to use the concrete type (NewTy). This will
623       // also cause the opaque type to be deleted.
624       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
625 
626       // This should have replaced the old opaque type with the new type in the
627       // value table... or with a preexisting type that was already in the
628       // system.  Let's just make sure it did.
629       assert(TypeList[NumRecords-1].get() != OldTy &&
630              "refineAbstractType didn't work!");
631     }
632   }
633 }
634 
635 
636 bool BitcodeReader::ParseTypeSymbolTable() {
637   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
638     return Error("Malformed block record");
639 
640   SmallVector<uint64_t, 64> Record;
641 
642   // Read all the records for this type table.
643   std::string TypeName;
644   while (1) {
645     unsigned Code = Stream.ReadCode();
646     if (Code == bitc::END_BLOCK) {
647       if (Stream.ReadBlockEnd())
648         return Error("Error at end of type symbol table block");
649       return false;
650     }
651 
652     if (Code == bitc::ENTER_SUBBLOCK) {
653       // No known subblocks, always skip them.
654       Stream.ReadSubBlockID();
655       if (Stream.SkipBlock())
656         return Error("Malformed block record");
657       continue;
658     }
659 
660     if (Code == bitc::DEFINE_ABBREV) {
661       Stream.ReadAbbrevRecord();
662       continue;
663     }
664 
665     // Read a record.
666     Record.clear();
667     switch (Stream.ReadRecord(Code, Record)) {
668     default:  // Default behavior: unknown type.
669       break;
670     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
671       if (ConvertToString(Record, 1, TypeName))
672         return Error("Invalid TST_ENTRY record");
673       unsigned TypeID = Record[0];
674       if (TypeID >= TypeList.size())
675         return Error("Invalid Type ID in TST_ENTRY record");
676 
677       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
678       TypeName.clear();
679       break;
680     }
681   }
682 }
683 
684 bool BitcodeReader::ParseValueSymbolTable() {
685   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
686     return Error("Malformed block record");
687 
688   SmallVector<uint64_t, 64> Record;
689 
690   // Read all the records for this value table.
691   SmallString<128> ValueName;
692   while (1) {
693     unsigned Code = Stream.ReadCode();
694     if (Code == bitc::END_BLOCK) {
695       if (Stream.ReadBlockEnd())
696         return Error("Error at end of value symbol table block");
697       return false;
698     }
699     if (Code == bitc::ENTER_SUBBLOCK) {
700       // No known subblocks, always skip them.
701       Stream.ReadSubBlockID();
702       if (Stream.SkipBlock())
703         return Error("Malformed block record");
704       continue;
705     }
706 
707     if (Code == bitc::DEFINE_ABBREV) {
708       Stream.ReadAbbrevRecord();
709       continue;
710     }
711 
712     // Read a record.
713     Record.clear();
714     switch (Stream.ReadRecord(Code, Record)) {
715     default:  // Default behavior: unknown type.
716       break;
717     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
718       if (ConvertToString(Record, 1, ValueName))
719         return Error("Invalid VST_ENTRY record");
720       unsigned ValueID = Record[0];
721       if (ValueID >= ValueList.size())
722         return Error("Invalid Value ID in VST_ENTRY record");
723       Value *V = ValueList[ValueID];
724 
725       V->setName(StringRef(ValueName.data(), ValueName.size()));
726       ValueName.clear();
727       break;
728     }
729     case bitc::VST_CODE_BBENTRY: {
730       if (ConvertToString(Record, 1, ValueName))
731         return Error("Invalid VST_BBENTRY record");
732       BasicBlock *BB = getBasicBlock(Record[0]);
733       if (BB == 0)
734         return Error("Invalid BB ID in VST_BBENTRY record");
735 
736       BB->setName(StringRef(ValueName.data(), ValueName.size()));
737       ValueName.clear();
738       break;
739     }
740     }
741   }
742 }
743 
744 bool BitcodeReader::ParseMetadata() {
745   unsigned NextMDValueNo = MDValueList.size();
746 
747   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
748     return Error("Malformed block record");
749 
750   SmallVector<uint64_t, 64> Record;
751 
752   // Read all the records.
753   while (1) {
754     unsigned Code = Stream.ReadCode();
755     if (Code == bitc::END_BLOCK) {
756       if (Stream.ReadBlockEnd())
757         return Error("Error at end of PARAMATTR block");
758       return false;
759     }
760 
761     if (Code == bitc::ENTER_SUBBLOCK) {
762       // No known subblocks, always skip them.
763       Stream.ReadSubBlockID();
764       if (Stream.SkipBlock())
765         return Error("Malformed block record");
766       continue;
767     }
768 
769     if (Code == bitc::DEFINE_ABBREV) {
770       Stream.ReadAbbrevRecord();
771       continue;
772     }
773 
774     bool IsFunctionLocal = false;
775     // Read a record.
776     Record.clear();
777     Code = Stream.ReadRecord(Code, Record);
778     switch (Code) {
779     default:  // Default behavior: ignore.
780       break;
781     case bitc::METADATA_NAME: {
782       // Read named of the named metadata.
783       unsigned NameLength = Record.size();
784       SmallString<8> Name;
785       Name.resize(NameLength);
786       for (unsigned i = 0; i != NameLength; ++i)
787         Name[i] = Record[i];
788       Record.clear();
789       Code = Stream.ReadCode();
790 
791       // METADATA_NAME is always followed by METADATA_NAMED_NODE2.
792       // Or METADATA_NAMED_NODE in LLVM 2.7. FIXME: Remove this in LLVM 3.0.
793       unsigned NextBitCode = Stream.ReadRecord(Code, Record);
794       if (NextBitCode == bitc::METADATA_NAMED_NODE) {
795         LLVM2_7MetadataDetected = true;
796       } else if (NextBitCode != bitc::METADATA_NAMED_NODE2)
797         assert ( 0 && "Inavlid Named Metadata record");
798 
799       // Read named metadata elements.
800       unsigned Size = Record.size();
801       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
802       for (unsigned i = 0; i != Size; ++i) {
803         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
804         if (MD == 0)
805           return Error("Malformed metadata record");
806         NMD->addOperand(MD);
807       }
808       // Backwards compatibility hack: NamedMDValues used to be Values,
809       // and they got their own slots in the value numbering. They are no
810       // longer Values, however we still need to account for them in the
811       // numbering in order to be able to read old bitcode files.
812       // FIXME: Remove this in LLVM 3.0.
813       if (LLVM2_7MetadataDetected)
814         MDValueList.AssignValue(0, NextMDValueNo++);
815       break;
816     }
817     case bitc::METADATA_FN_NODE: // FIXME: Remove in LLVM 3.0.
818     case bitc::METADATA_FN_NODE2:
819       IsFunctionLocal = true;
820       // fall-through
821     case bitc::METADATA_NODE:    // FIXME: Remove in LLVM 3.0.
822     case bitc::METADATA_NODE2: {
823 
824       // Detect 2.7-era metadata.
825       // FIXME: Remove in LLVM 3.0.
826       if (Code == bitc::METADATA_FN_NODE || Code == bitc::METADATA_NODE)
827         LLVM2_7MetadataDetected = true;
828 
829       if (Record.size() % 2 == 1)
830         return Error("Invalid METADATA_NODE2 record");
831 
832       unsigned Size = Record.size();
833       SmallVector<Value*, 8> Elts;
834       for (unsigned i = 0; i != Size; i += 2) {
835         const Type *Ty = getTypeByID(Record[i], false);
836         if (Ty->isMetadataTy())
837           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
838         else if (!Ty->isVoidTy())
839           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
840         else
841           Elts.push_back(NULL);
842       }
843       Value *V = MDNode::getWhenValsUnresolved(Context,
844                                                Elts.data(), Elts.size(),
845                                                IsFunctionLocal);
846       IsFunctionLocal = false;
847       MDValueList.AssignValue(V, NextMDValueNo++);
848       break;
849     }
850     case bitc::METADATA_STRING: {
851       unsigned MDStringLength = Record.size();
852       SmallString<8> String;
853       String.resize(MDStringLength);
854       for (unsigned i = 0; i != MDStringLength; ++i)
855         String[i] = Record[i];
856       Value *V = MDString::get(Context,
857                                StringRef(String.data(), String.size()));
858       MDValueList.AssignValue(V, NextMDValueNo++);
859       break;
860     }
861     case bitc::METADATA_KIND: {
862       unsigned RecordLength = Record.size();
863       if (Record.empty() || RecordLength < 2)
864         return Error("Invalid METADATA_KIND record");
865       SmallString<8> Name;
866       Name.resize(RecordLength-1);
867       unsigned Kind = Record[0];
868       for (unsigned i = 1; i != RecordLength; ++i)
869         Name[i-1] = Record[i];
870 
871       unsigned NewKind = TheModule->getMDKindID(Name.str());
872       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
873         return Error("Conflicting METADATA_KIND records");
874       break;
875     }
876     }
877   }
878 }
879 
880 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
881 /// the LSB for dense VBR encoding.
882 static uint64_t DecodeSignRotatedValue(uint64_t V) {
883   if ((V & 1) == 0)
884     return V >> 1;
885   if (V != 1)
886     return -(V >> 1);
887   // There is no such thing as -0 with integers.  "-0" really means MININT.
888   return 1ULL << 63;
889 }
890 
891 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
892 /// values and aliases that we can.
893 bool BitcodeReader::ResolveGlobalAndAliasInits() {
894   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
895   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
896 
897   GlobalInitWorklist.swap(GlobalInits);
898   AliasInitWorklist.swap(AliasInits);
899 
900   while (!GlobalInitWorklist.empty()) {
901     unsigned ValID = GlobalInitWorklist.back().second;
902     if (ValID >= ValueList.size()) {
903       // Not ready to resolve this yet, it requires something later in the file.
904       GlobalInits.push_back(GlobalInitWorklist.back());
905     } else {
906       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
907         GlobalInitWorklist.back().first->setInitializer(C);
908       else
909         return Error("Global variable initializer is not a constant!");
910     }
911     GlobalInitWorklist.pop_back();
912   }
913 
914   while (!AliasInitWorklist.empty()) {
915     unsigned ValID = AliasInitWorklist.back().second;
916     if (ValID >= ValueList.size()) {
917       AliasInits.push_back(AliasInitWorklist.back());
918     } else {
919       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
920         AliasInitWorklist.back().first->setAliasee(C);
921       else
922         return Error("Alias initializer is not a constant!");
923     }
924     AliasInitWorklist.pop_back();
925   }
926   return false;
927 }
928 
929 bool BitcodeReader::ParseConstants() {
930   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
931     return Error("Malformed block record");
932 
933   SmallVector<uint64_t, 64> Record;
934 
935   // Read all the records for this value table.
936   const Type *CurTy = Type::getInt32Ty(Context);
937   unsigned NextCstNo = ValueList.size();
938   while (1) {
939     unsigned Code = Stream.ReadCode();
940     if (Code == bitc::END_BLOCK)
941       break;
942 
943     if (Code == bitc::ENTER_SUBBLOCK) {
944       // No known subblocks, always skip them.
945       Stream.ReadSubBlockID();
946       if (Stream.SkipBlock())
947         return Error("Malformed block record");
948       continue;
949     }
950 
951     if (Code == bitc::DEFINE_ABBREV) {
952       Stream.ReadAbbrevRecord();
953       continue;
954     }
955 
956     // Read a record.
957     Record.clear();
958     Value *V = 0;
959     unsigned BitCode = Stream.ReadRecord(Code, Record);
960     switch (BitCode) {
961     default:  // Default behavior: unknown constant
962     case bitc::CST_CODE_UNDEF:     // UNDEF
963       V = UndefValue::get(CurTy);
964       break;
965     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
966       if (Record.empty())
967         return Error("Malformed CST_SETTYPE record");
968       if (Record[0] >= TypeList.size())
969         return Error("Invalid Type ID in CST_SETTYPE record");
970       CurTy = TypeList[Record[0]];
971       continue;  // Skip the ValueList manipulation.
972     case bitc::CST_CODE_NULL:      // NULL
973       V = Constant::getNullValue(CurTy);
974       break;
975     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
976       if (!CurTy->isIntegerTy() || Record.empty())
977         return Error("Invalid CST_INTEGER record");
978       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
979       break;
980     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
981       if (!CurTy->isIntegerTy() || Record.empty())
982         return Error("Invalid WIDE_INTEGER record");
983 
984       unsigned NumWords = Record.size();
985       SmallVector<uint64_t, 8> Words;
986       Words.resize(NumWords);
987       for (unsigned i = 0; i != NumWords; ++i)
988         Words[i] = DecodeSignRotatedValue(Record[i]);
989       V = ConstantInt::get(Context,
990                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
991                            NumWords, &Words[0]));
992       break;
993     }
994     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
995       if (Record.empty())
996         return Error("Invalid FLOAT record");
997       if (CurTy->isFloatTy())
998         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
999       else if (CurTy->isDoubleTy())
1000         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1001       else if (CurTy->isX86_FP80Ty()) {
1002         // Bits are not stored the same way as a normal i80 APInt, compensate.
1003         uint64_t Rearrange[2];
1004         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1005         Rearrange[1] = Record[0] >> 48;
1006         V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
1007       } else if (CurTy->isFP128Ty())
1008         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1009       else if (CurTy->isPPC_FP128Ty())
1010         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1011       else
1012         V = UndefValue::get(CurTy);
1013       break;
1014     }
1015 
1016     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1017       if (Record.empty())
1018         return Error("Invalid CST_AGGREGATE record");
1019 
1020       unsigned Size = Record.size();
1021       std::vector<Constant*> Elts;
1022 
1023       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1024         for (unsigned i = 0; i != Size; ++i)
1025           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1026                                                      STy->getElementType(i)));
1027         V = ConstantStruct::get(STy, Elts);
1028       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1029         const Type *EltTy = ATy->getElementType();
1030         for (unsigned i = 0; i != Size; ++i)
1031           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1032         V = ConstantArray::get(ATy, Elts);
1033       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1034         const Type *EltTy = VTy->getElementType();
1035         for (unsigned i = 0; i != Size; ++i)
1036           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1037         V = ConstantVector::get(Elts);
1038       } else {
1039         V = UndefValue::get(CurTy);
1040       }
1041       break;
1042     }
1043     case bitc::CST_CODE_STRING: { // STRING: [values]
1044       if (Record.empty())
1045         return Error("Invalid CST_AGGREGATE record");
1046 
1047       const ArrayType *ATy = cast<ArrayType>(CurTy);
1048       const Type *EltTy = ATy->getElementType();
1049 
1050       unsigned Size = Record.size();
1051       std::vector<Constant*> Elts;
1052       for (unsigned i = 0; i != Size; ++i)
1053         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1054       V = ConstantArray::get(ATy, Elts);
1055       break;
1056     }
1057     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1058       if (Record.empty())
1059         return Error("Invalid CST_AGGREGATE record");
1060 
1061       const ArrayType *ATy = cast<ArrayType>(CurTy);
1062       const Type *EltTy = ATy->getElementType();
1063 
1064       unsigned Size = Record.size();
1065       std::vector<Constant*> Elts;
1066       for (unsigned i = 0; i != Size; ++i)
1067         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1068       Elts.push_back(Constant::getNullValue(EltTy));
1069       V = ConstantArray::get(ATy, Elts);
1070       break;
1071     }
1072     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1073       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1074       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1075       if (Opc < 0) {
1076         V = UndefValue::get(CurTy);  // Unknown binop.
1077       } else {
1078         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1079         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1080         unsigned Flags = 0;
1081         if (Record.size() >= 4) {
1082           if (Opc == Instruction::Add ||
1083               Opc == Instruction::Sub ||
1084               Opc == Instruction::Mul) {
1085             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1086               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1087             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1088               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1089           } else if (Opc == Instruction::SDiv) {
1090             if (Record[3] & (1 << bitc::SDIV_EXACT))
1091               Flags |= SDivOperator::IsExact;
1092           }
1093         }
1094         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1095       }
1096       break;
1097     }
1098     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1099       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1100       int Opc = GetDecodedCastOpcode(Record[0]);
1101       if (Opc < 0) {
1102         V = UndefValue::get(CurTy);  // Unknown cast.
1103       } else {
1104         const Type *OpTy = getTypeByID(Record[1]);
1105         if (!OpTy) return Error("Invalid CE_CAST record");
1106         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1107         V = ConstantExpr::getCast(Opc, Op, CurTy);
1108       }
1109       break;
1110     }
1111     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1112     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1113       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1114       SmallVector<Constant*, 16> Elts;
1115       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1116         const Type *ElTy = getTypeByID(Record[i]);
1117         if (!ElTy) return Error("Invalid CE_GEP record");
1118         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1119       }
1120       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1121         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1122                                                    Elts.size()-1);
1123       else
1124         V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1125                                            Elts.size()-1);
1126       break;
1127     }
1128     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1129       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1130       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1131                                                               Type::getInt1Ty(Context)),
1132                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1133                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1134       break;
1135     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1136       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1137       const VectorType *OpTy =
1138         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1139       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1140       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1141       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1142       V = ConstantExpr::getExtractElement(Op0, Op1);
1143       break;
1144     }
1145     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1146       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1147       if (Record.size() < 3 || OpTy == 0)
1148         return Error("Invalid CE_INSERTELT record");
1149       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1150       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1151                                                   OpTy->getElementType());
1152       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1153       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1154       break;
1155     }
1156     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1157       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1158       if (Record.size() < 3 || OpTy == 0)
1159         return Error("Invalid CE_SHUFFLEVEC record");
1160       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1161       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1162       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1163                                                  OpTy->getNumElements());
1164       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1165       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1166       break;
1167     }
1168     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1169       const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1170       const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1171       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1172         return Error("Invalid CE_SHUFVEC_EX record");
1173       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1174       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1175       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1176                                                  RTy->getNumElements());
1177       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1178       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1179       break;
1180     }
1181     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1182       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1183       const Type *OpTy = getTypeByID(Record[0]);
1184       if (OpTy == 0) return Error("Invalid CE_CMP record");
1185       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1186       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1187 
1188       if (OpTy->isFPOrFPVectorTy())
1189         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1190       else
1191         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1192       break;
1193     }
1194     case bitc::CST_CODE_INLINEASM: {
1195       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1196       std::string AsmStr, ConstrStr;
1197       bool HasSideEffects = Record[0] & 1;
1198       bool IsAlignStack = Record[0] >> 1;
1199       unsigned AsmStrSize = Record[1];
1200       if (2+AsmStrSize >= Record.size())
1201         return Error("Invalid INLINEASM record");
1202       unsigned ConstStrSize = Record[2+AsmStrSize];
1203       if (3+AsmStrSize+ConstStrSize > Record.size())
1204         return Error("Invalid INLINEASM record");
1205 
1206       for (unsigned i = 0; i != AsmStrSize; ++i)
1207         AsmStr += (char)Record[2+i];
1208       for (unsigned i = 0; i != ConstStrSize; ++i)
1209         ConstrStr += (char)Record[3+AsmStrSize+i];
1210       const PointerType *PTy = cast<PointerType>(CurTy);
1211       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1212                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1213       break;
1214     }
1215     case bitc::CST_CODE_BLOCKADDRESS:{
1216       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1217       const Type *FnTy = getTypeByID(Record[0]);
1218       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1219       Function *Fn =
1220         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1221       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1222 
1223       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1224                                                   Type::getInt8Ty(Context),
1225                                             false, GlobalValue::InternalLinkage,
1226                                                   0, "");
1227       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1228       V = FwdRef;
1229       break;
1230     }
1231     }
1232 
1233     ValueList.AssignValue(V, NextCstNo);
1234     ++NextCstNo;
1235   }
1236 
1237   if (NextCstNo != ValueList.size())
1238     return Error("Invalid constant reference!");
1239 
1240   if (Stream.ReadBlockEnd())
1241     return Error("Error at end of constants block");
1242 
1243   // Once all the constants have been read, go through and resolve forward
1244   // references.
1245   ValueList.ResolveConstantForwardRefs();
1246   return false;
1247 }
1248 
1249 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1250 /// remember where it is and then skip it.  This lets us lazily deserialize the
1251 /// functions.
1252 bool BitcodeReader::RememberAndSkipFunctionBody() {
1253   // Get the function we are talking about.
1254   if (FunctionsWithBodies.empty())
1255     return Error("Insufficient function protos");
1256 
1257   Function *Fn = FunctionsWithBodies.back();
1258   FunctionsWithBodies.pop_back();
1259 
1260   // Save the current stream state.
1261   uint64_t CurBit = Stream.GetCurrentBitNo();
1262   DeferredFunctionInfo[Fn] = CurBit;
1263 
1264   // Skip over the function block for now.
1265   if (Stream.SkipBlock())
1266     return Error("Malformed block record");
1267   return false;
1268 }
1269 
1270 bool BitcodeReader::ParseModule() {
1271   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1272     return Error("Malformed block record");
1273 
1274   SmallVector<uint64_t, 64> Record;
1275   std::vector<std::string> SectionTable;
1276   std::vector<std::string> GCTable;
1277 
1278   // Read all the records for this module.
1279   while (!Stream.AtEndOfStream()) {
1280     unsigned Code = Stream.ReadCode();
1281     if (Code == bitc::END_BLOCK) {
1282       if (Stream.ReadBlockEnd())
1283         return Error("Error at end of module block");
1284 
1285       // Patch the initializers for globals and aliases up.
1286       ResolveGlobalAndAliasInits();
1287       if (!GlobalInits.empty() || !AliasInits.empty())
1288         return Error("Malformed global initializer set");
1289       if (!FunctionsWithBodies.empty())
1290         return Error("Too few function bodies found");
1291 
1292       // Look for intrinsic functions which need to be upgraded at some point
1293       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1294            FI != FE; ++FI) {
1295         Function* NewFn;
1296         if (UpgradeIntrinsicFunction(FI, NewFn))
1297           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1298       }
1299 
1300       // Look for global variables which need to be renamed.
1301       for (Module::global_iterator
1302              GI = TheModule->global_begin(), GE = TheModule->global_end();
1303            GI != GE; ++GI)
1304         UpgradeGlobalVariable(GI);
1305 
1306       // Force deallocation of memory for these vectors to favor the client that
1307       // want lazy deserialization.
1308       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1309       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1310       std::vector<Function*>().swap(FunctionsWithBodies);
1311       return false;
1312     }
1313 
1314     if (Code == bitc::ENTER_SUBBLOCK) {
1315       switch (Stream.ReadSubBlockID()) {
1316       default:  // Skip unknown content.
1317         if (Stream.SkipBlock())
1318           return Error("Malformed block record");
1319         break;
1320       case bitc::BLOCKINFO_BLOCK_ID:
1321         if (Stream.ReadBlockInfoBlock())
1322           return Error("Malformed BlockInfoBlock");
1323         break;
1324       case bitc::PARAMATTR_BLOCK_ID:
1325         if (ParseAttributeBlock())
1326           return true;
1327         break;
1328       case bitc::TYPE_BLOCK_ID:
1329         if (ParseTypeTable())
1330           return true;
1331         break;
1332       case bitc::TYPE_SYMTAB_BLOCK_ID:
1333         if (ParseTypeSymbolTable())
1334           return true;
1335         break;
1336       case bitc::VALUE_SYMTAB_BLOCK_ID:
1337         if (ParseValueSymbolTable())
1338           return true;
1339         break;
1340       case bitc::CONSTANTS_BLOCK_ID:
1341         if (ParseConstants() || ResolveGlobalAndAliasInits())
1342           return true;
1343         break;
1344       case bitc::METADATA_BLOCK_ID:
1345         if (ParseMetadata())
1346           return true;
1347         break;
1348       case bitc::FUNCTION_BLOCK_ID:
1349         // If this is the first function body we've seen, reverse the
1350         // FunctionsWithBodies list.
1351         if (!HasReversedFunctionsWithBodies) {
1352           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1353           HasReversedFunctionsWithBodies = true;
1354         }
1355 
1356         if (RememberAndSkipFunctionBody())
1357           return true;
1358         break;
1359       }
1360       continue;
1361     }
1362 
1363     if (Code == bitc::DEFINE_ABBREV) {
1364       Stream.ReadAbbrevRecord();
1365       continue;
1366     }
1367 
1368     // Read a record.
1369     switch (Stream.ReadRecord(Code, Record)) {
1370     default: break;  // Default behavior, ignore unknown content.
1371     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1372       if (Record.size() < 1)
1373         return Error("Malformed MODULE_CODE_VERSION");
1374       // Only version #0 is supported so far.
1375       if (Record[0] != 0)
1376         return Error("Unknown bitstream version!");
1377       break;
1378     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1379       std::string S;
1380       if (ConvertToString(Record, 0, S))
1381         return Error("Invalid MODULE_CODE_TRIPLE record");
1382       TheModule->setTargetTriple(S);
1383       break;
1384     }
1385     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1386       std::string S;
1387       if (ConvertToString(Record, 0, S))
1388         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1389       TheModule->setDataLayout(S);
1390       break;
1391     }
1392     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1393       std::string S;
1394       if (ConvertToString(Record, 0, S))
1395         return Error("Invalid MODULE_CODE_ASM record");
1396       TheModule->setModuleInlineAsm(S);
1397       break;
1398     }
1399     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1400       std::string S;
1401       if (ConvertToString(Record, 0, S))
1402         return Error("Invalid MODULE_CODE_DEPLIB record");
1403       TheModule->addLibrary(S);
1404       break;
1405     }
1406     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1407       std::string S;
1408       if (ConvertToString(Record, 0, S))
1409         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1410       SectionTable.push_back(S);
1411       break;
1412     }
1413     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1414       std::string S;
1415       if (ConvertToString(Record, 0, S))
1416         return Error("Invalid MODULE_CODE_GCNAME record");
1417       GCTable.push_back(S);
1418       break;
1419     }
1420     // GLOBALVAR: [pointer type, isconst, initid,
1421     //             linkage, alignment, section, visibility, threadlocal]
1422     case bitc::MODULE_CODE_GLOBALVAR: {
1423       if (Record.size() < 6)
1424         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1425       const Type *Ty = getTypeByID(Record[0]);
1426       if (!Ty->isPointerTy())
1427         return Error("Global not a pointer type!");
1428       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1429       Ty = cast<PointerType>(Ty)->getElementType();
1430 
1431       bool isConstant = Record[1];
1432       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1433       unsigned Alignment = (1 << Record[4]) >> 1;
1434       std::string Section;
1435       if (Record[5]) {
1436         if (Record[5]-1 >= SectionTable.size())
1437           return Error("Invalid section ID");
1438         Section = SectionTable[Record[5]-1];
1439       }
1440       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1441       if (Record.size() > 6)
1442         Visibility = GetDecodedVisibility(Record[6]);
1443       bool isThreadLocal = false;
1444       if (Record.size() > 7)
1445         isThreadLocal = Record[7];
1446 
1447       GlobalVariable *NewGV =
1448         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1449                            isThreadLocal, AddressSpace);
1450       NewGV->setAlignment(Alignment);
1451       if (!Section.empty())
1452         NewGV->setSection(Section);
1453       NewGV->setVisibility(Visibility);
1454       NewGV->setThreadLocal(isThreadLocal);
1455 
1456       ValueList.push_back(NewGV);
1457 
1458       // Remember which value to use for the global initializer.
1459       if (unsigned InitID = Record[2])
1460         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1461       break;
1462     }
1463     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1464     //             alignment, section, visibility, gc]
1465     case bitc::MODULE_CODE_FUNCTION: {
1466       if (Record.size() < 8)
1467         return Error("Invalid MODULE_CODE_FUNCTION record");
1468       const Type *Ty = getTypeByID(Record[0]);
1469       if (!Ty->isPointerTy())
1470         return Error("Function not a pointer type!");
1471       const FunctionType *FTy =
1472         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1473       if (!FTy)
1474         return Error("Function not a pointer to function type!");
1475 
1476       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1477                                         "", TheModule);
1478 
1479       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1480       bool isProto = Record[2];
1481       Func->setLinkage(GetDecodedLinkage(Record[3]));
1482       Func->setAttributes(getAttributes(Record[4]));
1483 
1484       Func->setAlignment((1 << Record[5]) >> 1);
1485       if (Record[6]) {
1486         if (Record[6]-1 >= SectionTable.size())
1487           return Error("Invalid section ID");
1488         Func->setSection(SectionTable[Record[6]-1]);
1489       }
1490       Func->setVisibility(GetDecodedVisibility(Record[7]));
1491       if (Record.size() > 8 && Record[8]) {
1492         if (Record[8]-1 > GCTable.size())
1493           return Error("Invalid GC ID");
1494         Func->setGC(GCTable[Record[8]-1].c_str());
1495       }
1496       ValueList.push_back(Func);
1497 
1498       // If this is a function with a body, remember the prototype we are
1499       // creating now, so that we can match up the body with them later.
1500       if (!isProto)
1501         FunctionsWithBodies.push_back(Func);
1502       break;
1503     }
1504     // ALIAS: [alias type, aliasee val#, linkage]
1505     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1506     case bitc::MODULE_CODE_ALIAS: {
1507       if (Record.size() < 3)
1508         return Error("Invalid MODULE_ALIAS record");
1509       const Type *Ty = getTypeByID(Record[0]);
1510       if (!Ty->isPointerTy())
1511         return Error("Function not a pointer type!");
1512 
1513       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1514                                            "", 0, TheModule);
1515       // Old bitcode files didn't have visibility field.
1516       if (Record.size() > 3)
1517         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1518       ValueList.push_back(NewGA);
1519       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1520       break;
1521     }
1522     /// MODULE_CODE_PURGEVALS: [numvals]
1523     case bitc::MODULE_CODE_PURGEVALS:
1524       // Trim down the value list to the specified size.
1525       if (Record.size() < 1 || Record[0] > ValueList.size())
1526         return Error("Invalid MODULE_PURGEVALS record");
1527       ValueList.shrinkTo(Record[0]);
1528       break;
1529     }
1530     Record.clear();
1531   }
1532 
1533   return Error("Premature end of bitstream");
1534 }
1535 
1536 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1537   TheModule = 0;
1538 
1539   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1540   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1541 
1542   if (Buffer->getBufferSize() & 3) {
1543     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1544       return Error("Invalid bitcode signature");
1545     else
1546       return Error("Bitcode stream should be a multiple of 4 bytes in length");
1547   }
1548 
1549   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1550   // The magic number is 0x0B17C0DE stored in little endian.
1551   if (isBitcodeWrapper(BufPtr, BufEnd))
1552     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1553       return Error("Invalid bitcode wrapper header");
1554 
1555   StreamFile.init(BufPtr, BufEnd);
1556   Stream.init(StreamFile);
1557 
1558   // Sniff for the signature.
1559   if (Stream.Read(8) != 'B' ||
1560       Stream.Read(8) != 'C' ||
1561       Stream.Read(4) != 0x0 ||
1562       Stream.Read(4) != 0xC ||
1563       Stream.Read(4) != 0xE ||
1564       Stream.Read(4) != 0xD)
1565     return Error("Invalid bitcode signature");
1566 
1567   // We expect a number of well-defined blocks, though we don't necessarily
1568   // need to understand them all.
1569   while (!Stream.AtEndOfStream()) {
1570     unsigned Code = Stream.ReadCode();
1571 
1572     if (Code != bitc::ENTER_SUBBLOCK)
1573       return Error("Invalid record at top-level");
1574 
1575     unsigned BlockID = Stream.ReadSubBlockID();
1576 
1577     // We only know the MODULE subblock ID.
1578     switch (BlockID) {
1579     case bitc::BLOCKINFO_BLOCK_ID:
1580       if (Stream.ReadBlockInfoBlock())
1581         return Error("Malformed BlockInfoBlock");
1582       break;
1583     case bitc::MODULE_BLOCK_ID:
1584       // Reject multiple MODULE_BLOCK's in a single bitstream.
1585       if (TheModule)
1586         return Error("Multiple MODULE_BLOCKs in same stream");
1587       TheModule = M;
1588       if (ParseModule())
1589         return true;
1590       break;
1591     default:
1592       if (Stream.SkipBlock())
1593         return Error("Malformed block record");
1594       break;
1595     }
1596   }
1597 
1598   return false;
1599 }
1600 
1601 /// ParseMetadataAttachment - Parse metadata attachments.
1602 bool BitcodeReader::ParseMetadataAttachment() {
1603   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1604     return Error("Malformed block record");
1605 
1606   SmallVector<uint64_t, 64> Record;
1607   while(1) {
1608     unsigned Code = Stream.ReadCode();
1609     if (Code == bitc::END_BLOCK) {
1610       if (Stream.ReadBlockEnd())
1611         return Error("Error at end of PARAMATTR block");
1612       break;
1613     }
1614     if (Code == bitc::DEFINE_ABBREV) {
1615       Stream.ReadAbbrevRecord();
1616       continue;
1617     }
1618     // Read a metadata attachment record.
1619     Record.clear();
1620     switch (Stream.ReadRecord(Code, Record)) {
1621     default:  // Default behavior: ignore.
1622       break;
1623     // FIXME: Remove in LLVM 3.0.
1624     case bitc::METADATA_ATTACHMENT:
1625       LLVM2_7MetadataDetected = true;
1626     case bitc::METADATA_ATTACHMENT2: {
1627       unsigned RecordLength = Record.size();
1628       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1629         return Error ("Invalid METADATA_ATTACHMENT reader!");
1630       Instruction *Inst = InstructionList[Record[0]];
1631       for (unsigned i = 1; i != RecordLength; i = i+2) {
1632         unsigned Kind = Record[i];
1633         DenseMap<unsigned, unsigned>::iterator I =
1634           MDKindMap.find(Kind);
1635         if (I == MDKindMap.end())
1636           return Error("Invalid metadata kind ID");
1637         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1638         Inst->setMetadata(I->second, cast<MDNode>(Node));
1639       }
1640       break;
1641     }
1642     }
1643   }
1644   return false;
1645 }
1646 
1647 /// ParseFunctionBody - Lazily parse the specified function body block.
1648 bool BitcodeReader::ParseFunctionBody(Function *F) {
1649   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1650     return Error("Malformed block record");
1651 
1652   InstructionList.clear();
1653   unsigned ModuleValueListSize = ValueList.size();
1654   unsigned ModuleMDValueListSize = MDValueList.size();
1655 
1656   // Add all the function arguments to the value table.
1657   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1658     ValueList.push_back(I);
1659 
1660   unsigned NextValueNo = ValueList.size();
1661   BasicBlock *CurBB = 0;
1662   unsigned CurBBNo = 0;
1663 
1664   DebugLoc LastLoc;
1665 
1666   // Read all the records.
1667   SmallVector<uint64_t, 64> Record;
1668   while (1) {
1669     unsigned Code = Stream.ReadCode();
1670     if (Code == bitc::END_BLOCK) {
1671       if (Stream.ReadBlockEnd())
1672         return Error("Error at end of function block");
1673       break;
1674     }
1675 
1676     if (Code == bitc::ENTER_SUBBLOCK) {
1677       switch (Stream.ReadSubBlockID()) {
1678       default:  // Skip unknown content.
1679         if (Stream.SkipBlock())
1680           return Error("Malformed block record");
1681         break;
1682       case bitc::CONSTANTS_BLOCK_ID:
1683         if (ParseConstants()) return true;
1684         NextValueNo = ValueList.size();
1685         break;
1686       case bitc::VALUE_SYMTAB_BLOCK_ID:
1687         if (ParseValueSymbolTable()) return true;
1688         break;
1689       case bitc::METADATA_ATTACHMENT_ID:
1690         if (ParseMetadataAttachment()) return true;
1691         break;
1692       case bitc::METADATA_BLOCK_ID:
1693         if (ParseMetadata()) return true;
1694         break;
1695       }
1696       continue;
1697     }
1698 
1699     if (Code == bitc::DEFINE_ABBREV) {
1700       Stream.ReadAbbrevRecord();
1701       continue;
1702     }
1703 
1704     // Read a record.
1705     Record.clear();
1706     Instruction *I = 0;
1707     unsigned BitCode = Stream.ReadRecord(Code, Record);
1708     switch (BitCode) {
1709     default: // Default behavior: reject
1710       return Error("Unknown instruction");
1711     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1712       if (Record.size() < 1 || Record[0] == 0)
1713         return Error("Invalid DECLAREBLOCKS record");
1714       // Create all the basic blocks for the function.
1715       FunctionBBs.resize(Record[0]);
1716       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1717         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1718       CurBB = FunctionBBs[0];
1719       continue;
1720 
1721 
1722     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1723       // This record indicates that the last instruction is at the same
1724       // location as the previous instruction with a location.
1725       I = 0;
1726 
1727       // Get the last instruction emitted.
1728       if (CurBB && !CurBB->empty())
1729         I = &CurBB->back();
1730       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1731                !FunctionBBs[CurBBNo-1]->empty())
1732         I = &FunctionBBs[CurBBNo-1]->back();
1733 
1734       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1735       I->setDebugLoc(LastLoc);
1736       I = 0;
1737       continue;
1738 
1739     // FIXME: Remove this in LLVM 3.0.
1740     case bitc::FUNC_CODE_DEBUG_LOC:
1741       LLVM2_7MetadataDetected = true;
1742     case bitc::FUNC_CODE_DEBUG_LOC2: {      // DEBUG_LOC: [line, col, scope, ia]
1743       I = 0;     // Get the last instruction emitted.
1744       if (CurBB && !CurBB->empty())
1745         I = &CurBB->back();
1746       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1747                !FunctionBBs[CurBBNo-1]->empty())
1748         I = &FunctionBBs[CurBBNo-1]->back();
1749       if (I == 0 || Record.size() < 4)
1750         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1751 
1752       unsigned Line = Record[0], Col = Record[1];
1753       unsigned ScopeID = Record[2], IAID = Record[3];
1754 
1755       MDNode *Scope = 0, *IA = 0;
1756       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1757       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1758       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1759       I->setDebugLoc(LastLoc);
1760       I = 0;
1761       continue;
1762     }
1763 
1764     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1765       unsigned OpNum = 0;
1766       Value *LHS, *RHS;
1767       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1768           getValue(Record, OpNum, LHS->getType(), RHS) ||
1769           OpNum+1 > Record.size())
1770         return Error("Invalid BINOP record");
1771 
1772       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1773       if (Opc == -1) return Error("Invalid BINOP record");
1774       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1775       InstructionList.push_back(I);
1776       if (OpNum < Record.size()) {
1777         if (Opc == Instruction::Add ||
1778             Opc == Instruction::Sub ||
1779             Opc == Instruction::Mul) {
1780           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1781             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1782           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1783             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1784         } else if (Opc == Instruction::SDiv) {
1785           if (Record[OpNum] & (1 << bitc::SDIV_EXACT))
1786             cast<BinaryOperator>(I)->setIsExact(true);
1787         }
1788       }
1789       break;
1790     }
1791     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1792       unsigned OpNum = 0;
1793       Value *Op;
1794       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1795           OpNum+2 != Record.size())
1796         return Error("Invalid CAST record");
1797 
1798       const Type *ResTy = getTypeByID(Record[OpNum]);
1799       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1800       if (Opc == -1 || ResTy == 0)
1801         return Error("Invalid CAST record");
1802       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1803       InstructionList.push_back(I);
1804       break;
1805     }
1806     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1807     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1808       unsigned OpNum = 0;
1809       Value *BasePtr;
1810       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1811         return Error("Invalid GEP record");
1812 
1813       SmallVector<Value*, 16> GEPIdx;
1814       while (OpNum != Record.size()) {
1815         Value *Op;
1816         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1817           return Error("Invalid GEP record");
1818         GEPIdx.push_back(Op);
1819       }
1820 
1821       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1822       InstructionList.push_back(I);
1823       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1824         cast<GetElementPtrInst>(I)->setIsInBounds(true);
1825       break;
1826     }
1827 
1828     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1829                                        // EXTRACTVAL: [opty, opval, n x indices]
1830       unsigned OpNum = 0;
1831       Value *Agg;
1832       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1833         return Error("Invalid EXTRACTVAL record");
1834 
1835       SmallVector<unsigned, 4> EXTRACTVALIdx;
1836       for (unsigned RecSize = Record.size();
1837            OpNum != RecSize; ++OpNum) {
1838         uint64_t Index = Record[OpNum];
1839         if ((unsigned)Index != Index)
1840           return Error("Invalid EXTRACTVAL index");
1841         EXTRACTVALIdx.push_back((unsigned)Index);
1842       }
1843 
1844       I = ExtractValueInst::Create(Agg,
1845                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1846       InstructionList.push_back(I);
1847       break;
1848     }
1849 
1850     case bitc::FUNC_CODE_INST_INSERTVAL: {
1851                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1852       unsigned OpNum = 0;
1853       Value *Agg;
1854       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1855         return Error("Invalid INSERTVAL record");
1856       Value *Val;
1857       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1858         return Error("Invalid INSERTVAL record");
1859 
1860       SmallVector<unsigned, 4> INSERTVALIdx;
1861       for (unsigned RecSize = Record.size();
1862            OpNum != RecSize; ++OpNum) {
1863         uint64_t Index = Record[OpNum];
1864         if ((unsigned)Index != Index)
1865           return Error("Invalid INSERTVAL index");
1866         INSERTVALIdx.push_back((unsigned)Index);
1867       }
1868 
1869       I = InsertValueInst::Create(Agg, Val,
1870                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
1871       InstructionList.push_back(I);
1872       break;
1873     }
1874 
1875     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1876       // obsolete form of select
1877       // handles select i1 ... in old bitcode
1878       unsigned OpNum = 0;
1879       Value *TrueVal, *FalseVal, *Cond;
1880       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1881           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1882           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1883         return Error("Invalid SELECT record");
1884 
1885       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1886       InstructionList.push_back(I);
1887       break;
1888     }
1889 
1890     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1891       // new form of select
1892       // handles select i1 or select [N x i1]
1893       unsigned OpNum = 0;
1894       Value *TrueVal, *FalseVal, *Cond;
1895       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1896           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1897           getValueTypePair(Record, OpNum, NextValueNo, Cond))
1898         return Error("Invalid SELECT record");
1899 
1900       // select condition can be either i1 or [N x i1]
1901       if (const VectorType* vector_type =
1902           dyn_cast<const VectorType>(Cond->getType())) {
1903         // expect <n x i1>
1904         if (vector_type->getElementType() != Type::getInt1Ty(Context))
1905           return Error("Invalid SELECT condition type");
1906       } else {
1907         // expect i1
1908         if (Cond->getType() != Type::getInt1Ty(Context))
1909           return Error("Invalid SELECT condition type");
1910       }
1911 
1912       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1913       InstructionList.push_back(I);
1914       break;
1915     }
1916 
1917     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1918       unsigned OpNum = 0;
1919       Value *Vec, *Idx;
1920       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1921           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1922         return Error("Invalid EXTRACTELT record");
1923       I = ExtractElementInst::Create(Vec, Idx);
1924       InstructionList.push_back(I);
1925       break;
1926     }
1927 
1928     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1929       unsigned OpNum = 0;
1930       Value *Vec, *Elt, *Idx;
1931       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1932           getValue(Record, OpNum,
1933                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1934           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1935         return Error("Invalid INSERTELT record");
1936       I = InsertElementInst::Create(Vec, Elt, Idx);
1937       InstructionList.push_back(I);
1938       break;
1939     }
1940 
1941     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1942       unsigned OpNum = 0;
1943       Value *Vec1, *Vec2, *Mask;
1944       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1945           getValue(Record, OpNum, Vec1->getType(), Vec2))
1946         return Error("Invalid SHUFFLEVEC record");
1947 
1948       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1949         return Error("Invalid SHUFFLEVEC record");
1950       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1951       InstructionList.push_back(I);
1952       break;
1953     }
1954 
1955     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1956       // Old form of ICmp/FCmp returning bool
1957       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1958       // both legal on vectors but had different behaviour.
1959     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1960       // FCmp/ICmp returning bool or vector of bool
1961 
1962       unsigned OpNum = 0;
1963       Value *LHS, *RHS;
1964       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1965           getValue(Record, OpNum, LHS->getType(), RHS) ||
1966           OpNum+1 != Record.size())
1967         return Error("Invalid CMP record");
1968 
1969       if (LHS->getType()->isFPOrFPVectorTy())
1970         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1971       else
1972         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1973       InstructionList.push_back(I);
1974       break;
1975     }
1976 
1977     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1978       if (Record.size() != 2)
1979         return Error("Invalid GETRESULT record");
1980       unsigned OpNum = 0;
1981       Value *Op;
1982       getValueTypePair(Record, OpNum, NextValueNo, Op);
1983       unsigned Index = Record[1];
1984       I = ExtractValueInst::Create(Op, Index);
1985       InstructionList.push_back(I);
1986       break;
1987     }
1988 
1989     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1990       {
1991         unsigned Size = Record.size();
1992         if (Size == 0) {
1993           I = ReturnInst::Create(Context);
1994           InstructionList.push_back(I);
1995           break;
1996         }
1997 
1998         unsigned OpNum = 0;
1999         SmallVector<Value *,4> Vs;
2000         do {
2001           Value *Op = NULL;
2002           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2003             return Error("Invalid RET record");
2004           Vs.push_back(Op);
2005         } while(OpNum != Record.size());
2006 
2007         const Type *ReturnType = F->getReturnType();
2008         // Handle multiple return values. FIXME: Remove in LLVM 3.0.
2009         if (Vs.size() > 1 ||
2010             (ReturnType->isStructTy() &&
2011              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
2012           Value *RV = UndefValue::get(ReturnType);
2013           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
2014             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
2015             InstructionList.push_back(I);
2016             CurBB->getInstList().push_back(I);
2017             ValueList.AssignValue(I, NextValueNo++);
2018             RV = I;
2019           }
2020           I = ReturnInst::Create(Context, RV);
2021           InstructionList.push_back(I);
2022           break;
2023         }
2024 
2025         I = ReturnInst::Create(Context, Vs[0]);
2026         InstructionList.push_back(I);
2027         break;
2028       }
2029     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2030       if (Record.size() != 1 && Record.size() != 3)
2031         return Error("Invalid BR record");
2032       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2033       if (TrueDest == 0)
2034         return Error("Invalid BR record");
2035 
2036       if (Record.size() == 1) {
2037         I = BranchInst::Create(TrueDest);
2038         InstructionList.push_back(I);
2039       }
2040       else {
2041         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2042         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2043         if (FalseDest == 0 || Cond == 0)
2044           return Error("Invalid BR record");
2045         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2046         InstructionList.push_back(I);
2047       }
2048       break;
2049     }
2050     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2051       if (Record.size() < 3 || (Record.size() & 1) == 0)
2052         return Error("Invalid SWITCH record");
2053       const Type *OpTy = getTypeByID(Record[0]);
2054       Value *Cond = getFnValueByID(Record[1], OpTy);
2055       BasicBlock *Default = getBasicBlock(Record[2]);
2056       if (OpTy == 0 || Cond == 0 || Default == 0)
2057         return Error("Invalid SWITCH record");
2058       unsigned NumCases = (Record.size()-3)/2;
2059       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2060       InstructionList.push_back(SI);
2061       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2062         ConstantInt *CaseVal =
2063           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2064         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2065         if (CaseVal == 0 || DestBB == 0) {
2066           delete SI;
2067           return Error("Invalid SWITCH record!");
2068         }
2069         SI->addCase(CaseVal, DestBB);
2070       }
2071       I = SI;
2072       break;
2073     }
2074     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2075       if (Record.size() < 2)
2076         return Error("Invalid INDIRECTBR record");
2077       const Type *OpTy = getTypeByID(Record[0]);
2078       Value *Address = getFnValueByID(Record[1], OpTy);
2079       if (OpTy == 0 || Address == 0)
2080         return Error("Invalid INDIRECTBR record");
2081       unsigned NumDests = Record.size()-2;
2082       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2083       InstructionList.push_back(IBI);
2084       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2085         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2086           IBI->addDestination(DestBB);
2087         } else {
2088           delete IBI;
2089           return Error("Invalid INDIRECTBR record!");
2090         }
2091       }
2092       I = IBI;
2093       break;
2094     }
2095 
2096     case bitc::FUNC_CODE_INST_INVOKE: {
2097       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2098       if (Record.size() < 4) return Error("Invalid INVOKE record");
2099       AttrListPtr PAL = getAttributes(Record[0]);
2100       unsigned CCInfo = Record[1];
2101       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2102       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2103 
2104       unsigned OpNum = 4;
2105       Value *Callee;
2106       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2107         return Error("Invalid INVOKE record");
2108 
2109       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2110       const FunctionType *FTy = !CalleeTy ? 0 :
2111         dyn_cast<FunctionType>(CalleeTy->getElementType());
2112 
2113       // Check that the right number of fixed parameters are here.
2114       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2115           Record.size() < OpNum+FTy->getNumParams())
2116         return Error("Invalid INVOKE record");
2117 
2118       SmallVector<Value*, 16> Ops;
2119       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2120         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2121         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2122       }
2123 
2124       if (!FTy->isVarArg()) {
2125         if (Record.size() != OpNum)
2126           return Error("Invalid INVOKE record");
2127       } else {
2128         // Read type/value pairs for varargs params.
2129         while (OpNum != Record.size()) {
2130           Value *Op;
2131           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2132             return Error("Invalid INVOKE record");
2133           Ops.push_back(Op);
2134         }
2135       }
2136 
2137       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2138                              Ops.begin(), Ops.end());
2139       InstructionList.push_back(I);
2140       cast<InvokeInst>(I)->setCallingConv(
2141         static_cast<CallingConv::ID>(CCInfo));
2142       cast<InvokeInst>(I)->setAttributes(PAL);
2143       break;
2144     }
2145     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2146       I = new UnwindInst(Context);
2147       InstructionList.push_back(I);
2148       break;
2149     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2150       I = new UnreachableInst(Context);
2151       InstructionList.push_back(I);
2152       break;
2153     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2154       if (Record.size() < 1 || ((Record.size()-1)&1))
2155         return Error("Invalid PHI record");
2156       const Type *Ty = getTypeByID(Record[0]);
2157       if (!Ty) return Error("Invalid PHI record");
2158 
2159       PHINode *PN = PHINode::Create(Ty);
2160       InstructionList.push_back(PN);
2161       PN->reserveOperandSpace((Record.size()-1)/2);
2162 
2163       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2164         Value *V = getFnValueByID(Record[1+i], Ty);
2165         BasicBlock *BB = getBasicBlock(Record[2+i]);
2166         if (!V || !BB) return Error("Invalid PHI record");
2167         PN->addIncoming(V, BB);
2168       }
2169       I = PN;
2170       break;
2171     }
2172 
2173     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2174       // Autoupgrade malloc instruction to malloc call.
2175       // FIXME: Remove in LLVM 3.0.
2176       if (Record.size() < 3)
2177         return Error("Invalid MALLOC record");
2178       const PointerType *Ty =
2179         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2180       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2181       if (!Ty || !Size) return Error("Invalid MALLOC record");
2182       if (!CurBB) return Error("Invalid malloc instruction with no BB");
2183       const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2184       Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2185       AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2186       I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2187                                  AllocSize, Size, NULL);
2188       InstructionList.push_back(I);
2189       break;
2190     }
2191     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2192       unsigned OpNum = 0;
2193       Value *Op;
2194       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2195           OpNum != Record.size())
2196         return Error("Invalid FREE record");
2197       if (!CurBB) return Error("Invalid free instruction with no BB");
2198       I = CallInst::CreateFree(Op, CurBB);
2199       InstructionList.push_back(I);
2200       break;
2201     }
2202     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2203       // For backward compatibility, tolerate a lack of an opty, and use i32.
2204       // Remove this in LLVM 3.0.
2205       if (Record.size() < 3 || Record.size() > 4)
2206         return Error("Invalid ALLOCA record");
2207       unsigned OpNum = 0;
2208       const PointerType *Ty =
2209         dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2210       const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2211                                               Type::getInt32Ty(Context);
2212       Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2213       unsigned Align = Record[OpNum++];
2214       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2215       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2216       InstructionList.push_back(I);
2217       break;
2218     }
2219     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2220       unsigned OpNum = 0;
2221       Value *Op;
2222       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2223           OpNum+2 != Record.size())
2224         return Error("Invalid LOAD record");
2225 
2226       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2227       InstructionList.push_back(I);
2228       break;
2229     }
2230     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2231       unsigned OpNum = 0;
2232       Value *Val, *Ptr;
2233       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2234           getValue(Record, OpNum,
2235                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2236           OpNum+2 != Record.size())
2237         return Error("Invalid STORE record");
2238 
2239       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2240       InstructionList.push_back(I);
2241       break;
2242     }
2243     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2244       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2245       unsigned OpNum = 0;
2246       Value *Val, *Ptr;
2247       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2248           getValue(Record, OpNum,
2249                    PointerType::getUnqual(Val->getType()), Ptr)||
2250           OpNum+2 != Record.size())
2251         return Error("Invalid STORE record");
2252 
2253       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2254       InstructionList.push_back(I);
2255       break;
2256     }
2257     // FIXME: Remove this in LLVM 3.0.
2258     case bitc::FUNC_CODE_INST_CALL:
2259       LLVM2_7MetadataDetected = true;
2260     case bitc::FUNC_CODE_INST_CALL2: {
2261       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2262       if (Record.size() < 3)
2263         return Error("Invalid CALL record");
2264 
2265       AttrListPtr PAL = getAttributes(Record[0]);
2266       unsigned CCInfo = Record[1];
2267 
2268       unsigned OpNum = 2;
2269       Value *Callee;
2270       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2271         return Error("Invalid CALL record");
2272 
2273       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2274       const FunctionType *FTy = 0;
2275       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2276       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2277         return Error("Invalid CALL record");
2278 
2279       SmallVector<Value*, 16> Args;
2280       // Read the fixed params.
2281       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2282         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2283           Args.push_back(getBasicBlock(Record[OpNum]));
2284         else
2285           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2286         if (Args.back() == 0) return Error("Invalid CALL record");
2287       }
2288 
2289       // Read type/value pairs for varargs params.
2290       if (!FTy->isVarArg()) {
2291         if (OpNum != Record.size())
2292           return Error("Invalid CALL record");
2293       } else {
2294         while (OpNum != Record.size()) {
2295           Value *Op;
2296           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2297             return Error("Invalid CALL record");
2298           Args.push_back(Op);
2299         }
2300       }
2301 
2302       I = CallInst::Create(Callee, Args.begin(), Args.end());
2303       InstructionList.push_back(I);
2304       cast<CallInst>(I)->setCallingConv(
2305         static_cast<CallingConv::ID>(CCInfo>>1));
2306       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2307       cast<CallInst>(I)->setAttributes(PAL);
2308       break;
2309     }
2310     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2311       if (Record.size() < 3)
2312         return Error("Invalid VAARG record");
2313       const Type *OpTy = getTypeByID(Record[0]);
2314       Value *Op = getFnValueByID(Record[1], OpTy);
2315       const Type *ResTy = getTypeByID(Record[2]);
2316       if (!OpTy || !Op || !ResTy)
2317         return Error("Invalid VAARG record");
2318       I = new VAArgInst(Op, ResTy);
2319       InstructionList.push_back(I);
2320       break;
2321     }
2322     }
2323 
2324     // Add instruction to end of current BB.  If there is no current BB, reject
2325     // this file.
2326     if (CurBB == 0) {
2327       delete I;
2328       return Error("Invalid instruction with no BB");
2329     }
2330     CurBB->getInstList().push_back(I);
2331 
2332     // If this was a terminator instruction, move to the next block.
2333     if (isa<TerminatorInst>(I)) {
2334       ++CurBBNo;
2335       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2336     }
2337 
2338     // Non-void values get registered in the value table for future use.
2339     if (I && !I->getType()->isVoidTy())
2340       ValueList.AssignValue(I, NextValueNo++);
2341   }
2342 
2343   // Check the function list for unresolved values.
2344   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2345     if (A->getParent() == 0) {
2346       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2347       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2348         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2349           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2350           delete A;
2351         }
2352       }
2353       return Error("Never resolved value found in function!");
2354     }
2355   }
2356 
2357   // FIXME: Check for unresolved forward-declared metadata references
2358   // and clean up leaks.
2359 
2360   // See if anything took the address of blocks in this function.  If so,
2361   // resolve them now.
2362   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2363     BlockAddrFwdRefs.find(F);
2364   if (BAFRI != BlockAddrFwdRefs.end()) {
2365     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2366     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2367       unsigned BlockIdx = RefList[i].first;
2368       if (BlockIdx >= FunctionBBs.size())
2369         return Error("Invalid blockaddress block #");
2370 
2371       GlobalVariable *FwdRef = RefList[i].second;
2372       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2373       FwdRef->eraseFromParent();
2374     }
2375 
2376     BlockAddrFwdRefs.erase(BAFRI);
2377   }
2378 
2379   // FIXME: Remove this in LLVM 3.0.
2380   unsigned NewMDValueListSize = MDValueList.size();
2381 
2382   // Trim the value list down to the size it was before we parsed this function.
2383   ValueList.shrinkTo(ModuleValueListSize);
2384   MDValueList.shrinkTo(ModuleMDValueListSize);
2385 
2386   // Backwards compatibility hack: Function-local metadata numbers
2387   // were previously not reset between functions. This is now fixed,
2388   // however we still need to understand the old numbering in order
2389   // to be able to read old bitcode files.
2390   // FIXME: Remove this in LLVM 3.0.
2391   if (LLVM2_7MetadataDetected)
2392     MDValueList.resize(NewMDValueListSize);
2393 
2394   std::vector<BasicBlock*>().swap(FunctionBBs);
2395 
2396   return false;
2397 }
2398 
2399 //===----------------------------------------------------------------------===//
2400 // GVMaterializer implementation
2401 //===----------------------------------------------------------------------===//
2402 
2403 
2404 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2405   if (const Function *F = dyn_cast<Function>(GV)) {
2406     return F->isDeclaration() &&
2407       DeferredFunctionInfo.count(const_cast<Function*>(F));
2408   }
2409   return false;
2410 }
2411 
2412 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2413   Function *F = dyn_cast<Function>(GV);
2414   // If it's not a function or is already material, ignore the request.
2415   if (!F || !F->isMaterializable()) return false;
2416 
2417   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2418   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2419 
2420   // Move the bit stream to the saved position of the deferred function body.
2421   Stream.JumpToBit(DFII->second);
2422 
2423   if (ParseFunctionBody(F)) {
2424     if (ErrInfo) *ErrInfo = ErrorString;
2425     return true;
2426   }
2427 
2428   // Upgrade any old intrinsic calls in the function.
2429   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2430        E = UpgradedIntrinsics.end(); I != E; ++I) {
2431     if (I->first != I->second) {
2432       for (Value::use_iterator UI = I->first->use_begin(),
2433            UE = I->first->use_end(); UI != UE; ) {
2434         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2435           UpgradeIntrinsicCall(CI, I->second);
2436       }
2437     }
2438   }
2439 
2440   return false;
2441 }
2442 
2443 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2444   const Function *F = dyn_cast<Function>(GV);
2445   if (!F || F->isDeclaration())
2446     return false;
2447   return DeferredFunctionInfo.count(const_cast<Function*>(F));
2448 }
2449 
2450 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2451   Function *F = dyn_cast<Function>(GV);
2452   // If this function isn't dematerializable, this is a noop.
2453   if (!F || !isDematerializable(F))
2454     return;
2455 
2456   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2457 
2458   // Just forget the function body, we can remat it later.
2459   F->deleteBody();
2460 }
2461 
2462 
2463 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2464   assert(M == TheModule &&
2465          "Can only Materialize the Module this BitcodeReader is attached to.");
2466   // Iterate over the module, deserializing any functions that are still on
2467   // disk.
2468   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2469        F != E; ++F)
2470     if (F->isMaterializable() &&
2471         Materialize(F, ErrInfo))
2472       return true;
2473 
2474   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2475   // delete the old functions to clean up. We can't do this unless the entire
2476   // module is materialized because there could always be another function body
2477   // with calls to the old function.
2478   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2479        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2480     if (I->first != I->second) {
2481       for (Value::use_iterator UI = I->first->use_begin(),
2482            UE = I->first->use_end(); UI != UE; ) {
2483         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2484           UpgradeIntrinsicCall(CI, I->second);
2485       }
2486       if (!I->first->use_empty())
2487         I->first->replaceAllUsesWith(I->second);
2488       I->first->eraseFromParent();
2489     }
2490   }
2491   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2492 
2493   // Check debug info intrinsics.
2494   CheckDebugInfoIntrinsics(TheModule);
2495 
2496   return false;
2497 }
2498 
2499 
2500 //===----------------------------------------------------------------------===//
2501 // External interface
2502 //===----------------------------------------------------------------------===//
2503 
2504 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2505 ///
2506 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2507                                    LLVMContext& Context,
2508                                    std::string *ErrMsg) {
2509   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2510   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2511   M->setMaterializer(R);
2512   if (R->ParseBitcodeInto(M)) {
2513     if (ErrMsg)
2514       *ErrMsg = R->getErrorString();
2515 
2516     delete M;  // Also deletes R.
2517     return 0;
2518   }
2519   // Have the BitcodeReader dtor delete 'Buffer'.
2520   R->setBufferOwned(true);
2521   return M;
2522 }
2523 
2524 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2525 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2526 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2527                                std::string *ErrMsg){
2528   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2529   if (!M) return 0;
2530 
2531   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2532   // there was an error.
2533   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2534 
2535   // Read in the entire module, and destroy the BitcodeReader.
2536   if (M->MaterializeAllPermanently(ErrMsg)) {
2537     delete M;
2538     return NULL;
2539   }
2540   return M;
2541 }
2542