1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/DiagnosticPrinter.h" 19 #include "llvm/IR/InlineAsm.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/IR/OperandTraits.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/Support/DataStream.h" 26 #include "llvm/Support/ManagedStatic.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 33 enum { 34 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 35 }; 36 37 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 38 DiagnosticSeverity Severity, 39 const Twine &Msg) 40 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 41 42 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 43 44 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 45 std::error_code EC, const Twine &Message) { 46 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 47 DiagnosticHandler(DI); 48 return EC; 49 } 50 51 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 52 std::error_code EC) { 53 return Error(DiagnosticHandler, EC, EC.message()); 54 } 55 56 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 57 return ::Error(DiagnosticHandler, make_error_code(E), Message); 58 } 59 60 std::error_code BitcodeReader::Error(const Twine &Message) { 61 return ::Error(DiagnosticHandler, 62 make_error_code(BitcodeError::CorruptedBitcode), Message); 63 } 64 65 std::error_code BitcodeReader::Error(BitcodeError E) { 66 return ::Error(DiagnosticHandler, make_error_code(E)); 67 } 68 69 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 70 LLVMContext &C) { 71 if (F) 72 return F; 73 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 74 } 75 76 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 77 DiagnosticHandlerFunction DiagnosticHandler) 78 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 79 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 80 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 81 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 82 WillMaterializeAllForwardRefs(false) {} 83 84 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 85 DiagnosticHandlerFunction DiagnosticHandler) 86 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 87 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 88 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 89 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 90 WillMaterializeAllForwardRefs(false) {} 91 92 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 93 if (WillMaterializeAllForwardRefs) 94 return std::error_code(); 95 96 // Prevent recursion. 97 WillMaterializeAllForwardRefs = true; 98 99 while (!BasicBlockFwdRefQueue.empty()) { 100 Function *F = BasicBlockFwdRefQueue.front(); 101 BasicBlockFwdRefQueue.pop_front(); 102 assert(F && "Expected valid function"); 103 if (!BasicBlockFwdRefs.count(F)) 104 // Already materialized. 105 continue; 106 107 // Check for a function that isn't materializable to prevent an infinite 108 // loop. When parsing a blockaddress stored in a global variable, there 109 // isn't a trivial way to check if a function will have a body without a 110 // linear search through FunctionsWithBodies, so just check it here. 111 if (!F->isMaterializable()) 112 return Error("Never resolved function from blockaddress"); 113 114 // Try to materialize F. 115 if (std::error_code EC = materialize(F)) 116 return EC; 117 } 118 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 119 120 // Reset state. 121 WillMaterializeAllForwardRefs = false; 122 return std::error_code(); 123 } 124 125 void BitcodeReader::FreeState() { 126 Buffer = nullptr; 127 std::vector<Type*>().swap(TypeList); 128 ValueList.clear(); 129 MDValueList.clear(); 130 std::vector<Comdat *>().swap(ComdatList); 131 132 std::vector<AttributeSet>().swap(MAttributes); 133 std::vector<BasicBlock*>().swap(FunctionBBs); 134 std::vector<Function*>().swap(FunctionsWithBodies); 135 DeferredFunctionInfo.clear(); 136 MDKindMap.clear(); 137 138 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 139 BasicBlockFwdRefQueue.clear(); 140 } 141 142 //===----------------------------------------------------------------------===// 143 // Helper functions to implement forward reference resolution, etc. 144 //===----------------------------------------------------------------------===// 145 146 /// ConvertToString - Convert a string from a record into an std::string, return 147 /// true on failure. 148 template<typename StrTy> 149 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 150 StrTy &Result) { 151 if (Idx > Record.size()) 152 return true; 153 154 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 155 Result += (char)Record[i]; 156 return false; 157 } 158 159 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 160 switch (Val) { 161 default: // Map unknown/new linkages to external 162 case 0: 163 return GlobalValue::ExternalLinkage; 164 case 1: 165 return GlobalValue::WeakAnyLinkage; 166 case 2: 167 return GlobalValue::AppendingLinkage; 168 case 3: 169 return GlobalValue::InternalLinkage; 170 case 4: 171 return GlobalValue::LinkOnceAnyLinkage; 172 case 5: 173 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 174 case 6: 175 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 176 case 7: 177 return GlobalValue::ExternalWeakLinkage; 178 case 8: 179 return GlobalValue::CommonLinkage; 180 case 9: 181 return GlobalValue::PrivateLinkage; 182 case 10: 183 return GlobalValue::WeakODRLinkage; 184 case 11: 185 return GlobalValue::LinkOnceODRLinkage; 186 case 12: 187 return GlobalValue::AvailableExternallyLinkage; 188 case 13: 189 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 190 case 14: 191 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 192 case 15: 193 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 194 } 195 } 196 197 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 198 switch (Val) { 199 default: // Map unknown visibilities to default. 200 case 0: return GlobalValue::DefaultVisibility; 201 case 1: return GlobalValue::HiddenVisibility; 202 case 2: return GlobalValue::ProtectedVisibility; 203 } 204 } 205 206 static GlobalValue::DLLStorageClassTypes 207 GetDecodedDLLStorageClass(unsigned Val) { 208 switch (Val) { 209 default: // Map unknown values to default. 210 case 0: return GlobalValue::DefaultStorageClass; 211 case 1: return GlobalValue::DLLImportStorageClass; 212 case 2: return GlobalValue::DLLExportStorageClass; 213 } 214 } 215 216 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 217 switch (Val) { 218 case 0: return GlobalVariable::NotThreadLocal; 219 default: // Map unknown non-zero value to general dynamic. 220 case 1: return GlobalVariable::GeneralDynamicTLSModel; 221 case 2: return GlobalVariable::LocalDynamicTLSModel; 222 case 3: return GlobalVariable::InitialExecTLSModel; 223 case 4: return GlobalVariable::LocalExecTLSModel; 224 } 225 } 226 227 static int GetDecodedCastOpcode(unsigned Val) { 228 switch (Val) { 229 default: return -1; 230 case bitc::CAST_TRUNC : return Instruction::Trunc; 231 case bitc::CAST_ZEXT : return Instruction::ZExt; 232 case bitc::CAST_SEXT : return Instruction::SExt; 233 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 234 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 235 case bitc::CAST_UITOFP : return Instruction::UIToFP; 236 case bitc::CAST_SITOFP : return Instruction::SIToFP; 237 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 238 case bitc::CAST_FPEXT : return Instruction::FPExt; 239 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 240 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 241 case bitc::CAST_BITCAST : return Instruction::BitCast; 242 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 243 } 244 } 245 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 246 switch (Val) { 247 default: return -1; 248 case bitc::BINOP_ADD: 249 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 250 case bitc::BINOP_SUB: 251 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 252 case bitc::BINOP_MUL: 253 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 254 case bitc::BINOP_UDIV: return Instruction::UDiv; 255 case bitc::BINOP_SDIV: 256 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 257 case bitc::BINOP_UREM: return Instruction::URem; 258 case bitc::BINOP_SREM: 259 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 260 case bitc::BINOP_SHL: return Instruction::Shl; 261 case bitc::BINOP_LSHR: return Instruction::LShr; 262 case bitc::BINOP_ASHR: return Instruction::AShr; 263 case bitc::BINOP_AND: return Instruction::And; 264 case bitc::BINOP_OR: return Instruction::Or; 265 case bitc::BINOP_XOR: return Instruction::Xor; 266 } 267 } 268 269 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 270 switch (Val) { 271 default: return AtomicRMWInst::BAD_BINOP; 272 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 273 case bitc::RMW_ADD: return AtomicRMWInst::Add; 274 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 275 case bitc::RMW_AND: return AtomicRMWInst::And; 276 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 277 case bitc::RMW_OR: return AtomicRMWInst::Or; 278 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 279 case bitc::RMW_MAX: return AtomicRMWInst::Max; 280 case bitc::RMW_MIN: return AtomicRMWInst::Min; 281 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 282 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 283 } 284 } 285 286 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 287 switch (Val) { 288 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 289 case bitc::ORDERING_UNORDERED: return Unordered; 290 case bitc::ORDERING_MONOTONIC: return Monotonic; 291 case bitc::ORDERING_ACQUIRE: return Acquire; 292 case bitc::ORDERING_RELEASE: return Release; 293 case bitc::ORDERING_ACQREL: return AcquireRelease; 294 default: // Map unknown orderings to sequentially-consistent. 295 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 296 } 297 } 298 299 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 300 switch (Val) { 301 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 302 default: // Map unknown scopes to cross-thread. 303 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 304 } 305 } 306 307 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 308 switch (Val) { 309 default: // Map unknown selection kinds to any. 310 case bitc::COMDAT_SELECTION_KIND_ANY: 311 return Comdat::Any; 312 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 313 return Comdat::ExactMatch; 314 case bitc::COMDAT_SELECTION_KIND_LARGEST: 315 return Comdat::Largest; 316 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 317 return Comdat::NoDuplicates; 318 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 319 return Comdat::SameSize; 320 } 321 } 322 323 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 324 switch (Val) { 325 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 326 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 327 } 328 } 329 330 namespace llvm { 331 namespace { 332 /// @brief A class for maintaining the slot number definition 333 /// as a placeholder for the actual definition for forward constants defs. 334 class ConstantPlaceHolder : public ConstantExpr { 335 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 336 public: 337 // allocate space for exactly one operand 338 void *operator new(size_t s) { 339 return User::operator new(s, 1); 340 } 341 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 342 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 343 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 344 } 345 346 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 347 static bool classof(const Value *V) { 348 return isa<ConstantExpr>(V) && 349 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 350 } 351 352 353 /// Provide fast operand accessors 354 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 355 }; 356 } 357 358 // FIXME: can we inherit this from ConstantExpr? 359 template <> 360 struct OperandTraits<ConstantPlaceHolder> : 361 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 362 }; 363 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 364 } 365 366 367 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 368 if (Idx == size()) { 369 push_back(V); 370 return; 371 } 372 373 if (Idx >= size()) 374 resize(Idx+1); 375 376 WeakVH &OldV = ValuePtrs[Idx]; 377 if (!OldV) { 378 OldV = V; 379 return; 380 } 381 382 // Handle constants and non-constants (e.g. instrs) differently for 383 // efficiency. 384 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 385 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 386 OldV = V; 387 } else { 388 // If there was a forward reference to this value, replace it. 389 Value *PrevVal = OldV; 390 OldV->replaceAllUsesWith(V); 391 delete PrevVal; 392 } 393 } 394 395 396 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 397 Type *Ty) { 398 if (Idx >= size()) 399 resize(Idx + 1); 400 401 if (Value *V = ValuePtrs[Idx]) { 402 assert(Ty == V->getType() && "Type mismatch in constant table!"); 403 return cast<Constant>(V); 404 } 405 406 // Create and return a placeholder, which will later be RAUW'd. 407 Constant *C = new ConstantPlaceHolder(Ty, Context); 408 ValuePtrs[Idx] = C; 409 return C; 410 } 411 412 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 413 if (Idx >= size()) 414 resize(Idx + 1); 415 416 if (Value *V = ValuePtrs[Idx]) { 417 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 418 return V; 419 } 420 421 // No type specified, must be invalid reference. 422 if (!Ty) return nullptr; 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Value *V = new Argument(Ty); 426 ValuePtrs[Idx] = V; 427 return V; 428 } 429 430 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 431 /// resolves any forward references. The idea behind this is that we sometimes 432 /// get constants (such as large arrays) which reference *many* forward ref 433 /// constants. Replacing each of these causes a lot of thrashing when 434 /// building/reuniquing the constant. Instead of doing this, we look at all the 435 /// uses and rewrite all the place holders at once for any constant that uses 436 /// a placeholder. 437 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 438 // Sort the values by-pointer so that they are efficient to look up with a 439 // binary search. 440 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 441 442 SmallVector<Constant*, 64> NewOps; 443 444 while (!ResolveConstants.empty()) { 445 Value *RealVal = operator[](ResolveConstants.back().second); 446 Constant *Placeholder = ResolveConstants.back().first; 447 ResolveConstants.pop_back(); 448 449 // Loop over all users of the placeholder, updating them to reference the 450 // new value. If they reference more than one placeholder, update them all 451 // at once. 452 while (!Placeholder->use_empty()) { 453 auto UI = Placeholder->user_begin(); 454 User *U = *UI; 455 456 // If the using object isn't uniqued, just update the operands. This 457 // handles instructions and initializers for global variables. 458 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 459 UI.getUse().set(RealVal); 460 continue; 461 } 462 463 // Otherwise, we have a constant that uses the placeholder. Replace that 464 // constant with a new constant that has *all* placeholder uses updated. 465 Constant *UserC = cast<Constant>(U); 466 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 467 I != E; ++I) { 468 Value *NewOp; 469 if (!isa<ConstantPlaceHolder>(*I)) { 470 // Not a placeholder reference. 471 NewOp = *I; 472 } else if (*I == Placeholder) { 473 // Common case is that it just references this one placeholder. 474 NewOp = RealVal; 475 } else { 476 // Otherwise, look up the placeholder in ResolveConstants. 477 ResolveConstantsTy::iterator It = 478 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 479 std::pair<Constant*, unsigned>(cast<Constant>(*I), 480 0)); 481 assert(It != ResolveConstants.end() && It->first == *I); 482 NewOp = operator[](It->second); 483 } 484 485 NewOps.push_back(cast<Constant>(NewOp)); 486 } 487 488 // Make the new constant. 489 Constant *NewC; 490 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 491 NewC = ConstantArray::get(UserCA->getType(), NewOps); 492 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 493 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 494 } else if (isa<ConstantVector>(UserC)) { 495 NewC = ConstantVector::get(NewOps); 496 } else { 497 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 498 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 499 } 500 501 UserC->replaceAllUsesWith(NewC); 502 UserC->destroyConstant(); 503 NewOps.clear(); 504 } 505 506 // Update all ValueHandles, they should be the only users at this point. 507 Placeholder->replaceAllUsesWith(RealVal); 508 delete Placeholder; 509 } 510 } 511 512 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 513 if (Idx == size()) { 514 push_back(MD); 515 return; 516 } 517 518 if (Idx >= size()) 519 resize(Idx+1); 520 521 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 522 if (!OldMD) { 523 OldMD.reset(MD); 524 return; 525 } 526 527 // If there was a forward reference to this value, replace it. 528 MDNodeFwdDecl *PrevMD = cast<MDNodeFwdDecl>(OldMD.get()); 529 PrevMD->replaceAllUsesWith(MD); 530 MDNode::deleteTemporary(PrevMD); 531 --NumFwdRefs; 532 } 533 534 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 535 if (Idx >= size()) 536 resize(Idx + 1); 537 538 if (Metadata *MD = MDValuePtrs[Idx]) 539 return MD; 540 541 // Track forward refs to be resolved later. 542 if (AnyFwdRefs) { 543 MinFwdRef = std::min(MinFwdRef, Idx); 544 MaxFwdRef = std::max(MaxFwdRef, Idx); 545 } else { 546 AnyFwdRefs = true; 547 MinFwdRef = MaxFwdRef = Idx; 548 } 549 ++NumFwdRefs; 550 551 // Create and return a placeholder, which will later be RAUW'd. 552 Metadata *MD = MDNode::getTemporary(Context, None); 553 MDValuePtrs[Idx].reset(MD); 554 return MD; 555 } 556 557 void BitcodeReaderMDValueList::tryToResolveCycles() { 558 if (!AnyFwdRefs) 559 // Nothing to do. 560 return; 561 562 if (NumFwdRefs) 563 // Still forward references... can't resolve cycles. 564 return; 565 566 // Resolve any cycles. 567 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 568 auto &MD = MDValuePtrs[I]; 569 assert(!(MD && isa<MDNodeFwdDecl>(MD)) && "Unexpected forward reference"); 570 if (auto *N = dyn_cast_or_null<UniquableMDNode>(MD)) 571 N->resolveCycles(); 572 } 573 574 // Make sure we return early again until there's another forward ref. 575 AnyFwdRefs = false; 576 } 577 578 Type *BitcodeReader::getTypeByID(unsigned ID) { 579 // The type table size is always specified correctly. 580 if (ID >= TypeList.size()) 581 return nullptr; 582 583 if (Type *Ty = TypeList[ID]) 584 return Ty; 585 586 // If we have a forward reference, the only possible case is when it is to a 587 // named struct. Just create a placeholder for now. 588 return TypeList[ID] = createIdentifiedStructType(Context); 589 } 590 591 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 592 StringRef Name) { 593 auto *Ret = StructType::create(Context, Name); 594 IdentifiedStructTypes.push_back(Ret); 595 return Ret; 596 } 597 598 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 599 auto *Ret = StructType::create(Context); 600 IdentifiedStructTypes.push_back(Ret); 601 return Ret; 602 } 603 604 605 //===----------------------------------------------------------------------===// 606 // Functions for parsing blocks from the bitcode file 607 //===----------------------------------------------------------------------===// 608 609 610 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 611 /// been decoded from the given integer. This function must stay in sync with 612 /// 'encodeLLVMAttributesForBitcode'. 613 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 614 uint64_t EncodedAttrs) { 615 // FIXME: Remove in 4.0. 616 617 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 618 // the bits above 31 down by 11 bits. 619 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 620 assert((!Alignment || isPowerOf2_32(Alignment)) && 621 "Alignment must be a power of two."); 622 623 if (Alignment) 624 B.addAlignmentAttr(Alignment); 625 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 626 (EncodedAttrs & 0xffff)); 627 } 628 629 std::error_code BitcodeReader::ParseAttributeBlock() { 630 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 631 return Error("Invalid record"); 632 633 if (!MAttributes.empty()) 634 return Error("Invalid multiple blocks"); 635 636 SmallVector<uint64_t, 64> Record; 637 638 SmallVector<AttributeSet, 8> Attrs; 639 640 // Read all the records. 641 while (1) { 642 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 643 644 switch (Entry.Kind) { 645 case BitstreamEntry::SubBlock: // Handled for us already. 646 case BitstreamEntry::Error: 647 return Error("Malformed block"); 648 case BitstreamEntry::EndBlock: 649 return std::error_code(); 650 case BitstreamEntry::Record: 651 // The interesting case. 652 break; 653 } 654 655 // Read a record. 656 Record.clear(); 657 switch (Stream.readRecord(Entry.ID, Record)) { 658 default: // Default behavior: ignore. 659 break; 660 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 661 // FIXME: Remove in 4.0. 662 if (Record.size() & 1) 663 return Error("Invalid record"); 664 665 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 666 AttrBuilder B; 667 decodeLLVMAttributesForBitcode(B, Record[i+1]); 668 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 669 } 670 671 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 672 Attrs.clear(); 673 break; 674 } 675 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 676 for (unsigned i = 0, e = Record.size(); i != e; ++i) 677 Attrs.push_back(MAttributeGroups[Record[i]]); 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 } 684 } 685 } 686 687 // Returns Attribute::None on unrecognized codes. 688 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 689 switch (Code) { 690 default: 691 return Attribute::None; 692 case bitc::ATTR_KIND_ALIGNMENT: 693 return Attribute::Alignment; 694 case bitc::ATTR_KIND_ALWAYS_INLINE: 695 return Attribute::AlwaysInline; 696 case bitc::ATTR_KIND_BUILTIN: 697 return Attribute::Builtin; 698 case bitc::ATTR_KIND_BY_VAL: 699 return Attribute::ByVal; 700 case bitc::ATTR_KIND_IN_ALLOCA: 701 return Attribute::InAlloca; 702 case bitc::ATTR_KIND_COLD: 703 return Attribute::Cold; 704 case bitc::ATTR_KIND_INLINE_HINT: 705 return Attribute::InlineHint; 706 case bitc::ATTR_KIND_IN_REG: 707 return Attribute::InReg; 708 case bitc::ATTR_KIND_JUMP_TABLE: 709 return Attribute::JumpTable; 710 case bitc::ATTR_KIND_MIN_SIZE: 711 return Attribute::MinSize; 712 case bitc::ATTR_KIND_NAKED: 713 return Attribute::Naked; 714 case bitc::ATTR_KIND_NEST: 715 return Attribute::Nest; 716 case bitc::ATTR_KIND_NO_ALIAS: 717 return Attribute::NoAlias; 718 case bitc::ATTR_KIND_NO_BUILTIN: 719 return Attribute::NoBuiltin; 720 case bitc::ATTR_KIND_NO_CAPTURE: 721 return Attribute::NoCapture; 722 case bitc::ATTR_KIND_NO_DUPLICATE: 723 return Attribute::NoDuplicate; 724 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 725 return Attribute::NoImplicitFloat; 726 case bitc::ATTR_KIND_NO_INLINE: 727 return Attribute::NoInline; 728 case bitc::ATTR_KIND_NON_LAZY_BIND: 729 return Attribute::NonLazyBind; 730 case bitc::ATTR_KIND_NON_NULL: 731 return Attribute::NonNull; 732 case bitc::ATTR_KIND_DEREFERENCEABLE: 733 return Attribute::Dereferenceable; 734 case bitc::ATTR_KIND_NO_RED_ZONE: 735 return Attribute::NoRedZone; 736 case bitc::ATTR_KIND_NO_RETURN: 737 return Attribute::NoReturn; 738 case bitc::ATTR_KIND_NO_UNWIND: 739 return Attribute::NoUnwind; 740 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 741 return Attribute::OptimizeForSize; 742 case bitc::ATTR_KIND_OPTIMIZE_NONE: 743 return Attribute::OptimizeNone; 744 case bitc::ATTR_KIND_READ_NONE: 745 return Attribute::ReadNone; 746 case bitc::ATTR_KIND_READ_ONLY: 747 return Attribute::ReadOnly; 748 case bitc::ATTR_KIND_RETURNED: 749 return Attribute::Returned; 750 case bitc::ATTR_KIND_RETURNS_TWICE: 751 return Attribute::ReturnsTwice; 752 case bitc::ATTR_KIND_S_EXT: 753 return Attribute::SExt; 754 case bitc::ATTR_KIND_STACK_ALIGNMENT: 755 return Attribute::StackAlignment; 756 case bitc::ATTR_KIND_STACK_PROTECT: 757 return Attribute::StackProtect; 758 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 759 return Attribute::StackProtectReq; 760 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 761 return Attribute::StackProtectStrong; 762 case bitc::ATTR_KIND_STRUCT_RET: 763 return Attribute::StructRet; 764 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 765 return Attribute::SanitizeAddress; 766 case bitc::ATTR_KIND_SANITIZE_THREAD: 767 return Attribute::SanitizeThread; 768 case bitc::ATTR_KIND_SANITIZE_MEMORY: 769 return Attribute::SanitizeMemory; 770 case bitc::ATTR_KIND_UW_TABLE: 771 return Attribute::UWTable; 772 case bitc::ATTR_KIND_Z_EXT: 773 return Attribute::ZExt; 774 } 775 } 776 777 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 778 Attribute::AttrKind *Kind) { 779 *Kind = GetAttrFromCode(Code); 780 if (*Kind == Attribute::None) 781 return Error(BitcodeError::CorruptedBitcode, 782 "Unknown attribute kind (" + Twine(Code) + ")"); 783 return std::error_code(); 784 } 785 786 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 787 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 788 return Error("Invalid record"); 789 790 if (!MAttributeGroups.empty()) 791 return Error("Invalid multiple blocks"); 792 793 SmallVector<uint64_t, 64> Record; 794 795 // Read all the records. 796 while (1) { 797 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 798 799 switch (Entry.Kind) { 800 case BitstreamEntry::SubBlock: // Handled for us already. 801 case BitstreamEntry::Error: 802 return Error("Malformed block"); 803 case BitstreamEntry::EndBlock: 804 return std::error_code(); 805 case BitstreamEntry::Record: 806 // The interesting case. 807 break; 808 } 809 810 // Read a record. 811 Record.clear(); 812 switch (Stream.readRecord(Entry.ID, Record)) { 813 default: // Default behavior: ignore. 814 break; 815 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 816 if (Record.size() < 3) 817 return Error("Invalid record"); 818 819 uint64_t GrpID = Record[0]; 820 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 821 822 AttrBuilder B; 823 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 824 if (Record[i] == 0) { // Enum attribute 825 Attribute::AttrKind Kind; 826 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 827 return EC; 828 829 B.addAttribute(Kind); 830 } else if (Record[i] == 1) { // Integer attribute 831 Attribute::AttrKind Kind; 832 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 833 return EC; 834 if (Kind == Attribute::Alignment) 835 B.addAlignmentAttr(Record[++i]); 836 else if (Kind == Attribute::StackAlignment) 837 B.addStackAlignmentAttr(Record[++i]); 838 else if (Kind == Attribute::Dereferenceable) 839 B.addDereferenceableAttr(Record[++i]); 840 } else { // String attribute 841 assert((Record[i] == 3 || Record[i] == 4) && 842 "Invalid attribute group entry"); 843 bool HasValue = (Record[i++] == 4); 844 SmallString<64> KindStr; 845 SmallString<64> ValStr; 846 847 while (Record[i] != 0 && i != e) 848 KindStr += Record[i++]; 849 assert(Record[i] == 0 && "Kind string not null terminated"); 850 851 if (HasValue) { 852 // Has a value associated with it. 853 ++i; // Skip the '0' that terminates the "kind" string. 854 while (Record[i] != 0 && i != e) 855 ValStr += Record[i++]; 856 assert(Record[i] == 0 && "Value string not null terminated"); 857 } 858 859 B.addAttribute(KindStr.str(), ValStr.str()); 860 } 861 } 862 863 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 864 break; 865 } 866 } 867 } 868 } 869 870 std::error_code BitcodeReader::ParseTypeTable() { 871 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 872 return Error("Invalid record"); 873 874 return ParseTypeTableBody(); 875 } 876 877 std::error_code BitcodeReader::ParseTypeTableBody() { 878 if (!TypeList.empty()) 879 return Error("Invalid multiple blocks"); 880 881 SmallVector<uint64_t, 64> Record; 882 unsigned NumRecords = 0; 883 884 SmallString<64> TypeName; 885 886 // Read all the records for this type table. 887 while (1) { 888 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 889 890 switch (Entry.Kind) { 891 case BitstreamEntry::SubBlock: // Handled for us already. 892 case BitstreamEntry::Error: 893 return Error("Malformed block"); 894 case BitstreamEntry::EndBlock: 895 if (NumRecords != TypeList.size()) 896 return Error("Malformed block"); 897 return std::error_code(); 898 case BitstreamEntry::Record: 899 // The interesting case. 900 break; 901 } 902 903 // Read a record. 904 Record.clear(); 905 Type *ResultTy = nullptr; 906 switch (Stream.readRecord(Entry.ID, Record)) { 907 default: 908 return Error("Invalid value"); 909 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 910 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 911 // type list. This allows us to reserve space. 912 if (Record.size() < 1) 913 return Error("Invalid record"); 914 TypeList.resize(Record[0]); 915 continue; 916 case bitc::TYPE_CODE_VOID: // VOID 917 ResultTy = Type::getVoidTy(Context); 918 break; 919 case bitc::TYPE_CODE_HALF: // HALF 920 ResultTy = Type::getHalfTy(Context); 921 break; 922 case bitc::TYPE_CODE_FLOAT: // FLOAT 923 ResultTy = Type::getFloatTy(Context); 924 break; 925 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 926 ResultTy = Type::getDoubleTy(Context); 927 break; 928 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 929 ResultTy = Type::getX86_FP80Ty(Context); 930 break; 931 case bitc::TYPE_CODE_FP128: // FP128 932 ResultTy = Type::getFP128Ty(Context); 933 break; 934 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 935 ResultTy = Type::getPPC_FP128Ty(Context); 936 break; 937 case bitc::TYPE_CODE_LABEL: // LABEL 938 ResultTy = Type::getLabelTy(Context); 939 break; 940 case bitc::TYPE_CODE_METADATA: // METADATA 941 ResultTy = Type::getMetadataTy(Context); 942 break; 943 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 944 ResultTy = Type::getX86_MMXTy(Context); 945 break; 946 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 947 if (Record.size() < 1) 948 return Error("Invalid record"); 949 950 ResultTy = IntegerType::get(Context, Record[0]); 951 break; 952 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 953 // [pointee type, address space] 954 if (Record.size() < 1) 955 return Error("Invalid record"); 956 unsigned AddressSpace = 0; 957 if (Record.size() == 2) 958 AddressSpace = Record[1]; 959 ResultTy = getTypeByID(Record[0]); 960 if (!ResultTy) 961 return Error("Invalid type"); 962 ResultTy = PointerType::get(ResultTy, AddressSpace); 963 break; 964 } 965 case bitc::TYPE_CODE_FUNCTION_OLD: { 966 // FIXME: attrid is dead, remove it in LLVM 4.0 967 // FUNCTION: [vararg, attrid, retty, paramty x N] 968 if (Record.size() < 3) 969 return Error("Invalid record"); 970 SmallVector<Type*, 8> ArgTys; 971 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 972 if (Type *T = getTypeByID(Record[i])) 973 ArgTys.push_back(T); 974 else 975 break; 976 } 977 978 ResultTy = getTypeByID(Record[2]); 979 if (!ResultTy || ArgTys.size() < Record.size()-3) 980 return Error("Invalid type"); 981 982 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 983 break; 984 } 985 case bitc::TYPE_CODE_FUNCTION: { 986 // FUNCTION: [vararg, retty, paramty x N] 987 if (Record.size() < 2) 988 return Error("Invalid record"); 989 SmallVector<Type*, 8> ArgTys; 990 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 991 if (Type *T = getTypeByID(Record[i])) 992 ArgTys.push_back(T); 993 else 994 break; 995 } 996 997 ResultTy = getTypeByID(Record[1]); 998 if (!ResultTy || ArgTys.size() < Record.size()-2) 999 return Error("Invalid type"); 1000 1001 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1002 break; 1003 } 1004 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1005 if (Record.size() < 1) 1006 return Error("Invalid record"); 1007 SmallVector<Type*, 8> EltTys; 1008 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1009 if (Type *T = getTypeByID(Record[i])) 1010 EltTys.push_back(T); 1011 else 1012 break; 1013 } 1014 if (EltTys.size() != Record.size()-1) 1015 return Error("Invalid type"); 1016 ResultTy = StructType::get(Context, EltTys, Record[0]); 1017 break; 1018 } 1019 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1020 if (ConvertToString(Record, 0, TypeName)) 1021 return Error("Invalid record"); 1022 continue; 1023 1024 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1025 if (Record.size() < 1) 1026 return Error("Invalid record"); 1027 1028 if (NumRecords >= TypeList.size()) 1029 return Error("Invalid TYPE table"); 1030 1031 // Check to see if this was forward referenced, if so fill in the temp. 1032 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1033 if (Res) { 1034 Res->setName(TypeName); 1035 TypeList[NumRecords] = nullptr; 1036 } else // Otherwise, create a new struct. 1037 Res = createIdentifiedStructType(Context, TypeName); 1038 TypeName.clear(); 1039 1040 SmallVector<Type*, 8> EltTys; 1041 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1042 if (Type *T = getTypeByID(Record[i])) 1043 EltTys.push_back(T); 1044 else 1045 break; 1046 } 1047 if (EltTys.size() != Record.size()-1) 1048 return Error("Invalid record"); 1049 Res->setBody(EltTys, Record[0]); 1050 ResultTy = Res; 1051 break; 1052 } 1053 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1054 if (Record.size() != 1) 1055 return Error("Invalid record"); 1056 1057 if (NumRecords >= TypeList.size()) 1058 return Error("Invalid TYPE table"); 1059 1060 // Check to see if this was forward referenced, if so fill in the temp. 1061 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1062 if (Res) { 1063 Res->setName(TypeName); 1064 TypeList[NumRecords] = nullptr; 1065 } else // Otherwise, create a new struct with no body. 1066 Res = createIdentifiedStructType(Context, TypeName); 1067 TypeName.clear(); 1068 ResultTy = Res; 1069 break; 1070 } 1071 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1072 if (Record.size() < 2) 1073 return Error("Invalid record"); 1074 if ((ResultTy = getTypeByID(Record[1]))) 1075 ResultTy = ArrayType::get(ResultTy, Record[0]); 1076 else 1077 return Error("Invalid type"); 1078 break; 1079 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1080 if (Record.size() < 2) 1081 return Error("Invalid record"); 1082 if ((ResultTy = getTypeByID(Record[1]))) 1083 ResultTy = VectorType::get(ResultTy, Record[0]); 1084 else 1085 return Error("Invalid type"); 1086 break; 1087 } 1088 1089 if (NumRecords >= TypeList.size()) 1090 return Error("Invalid TYPE table"); 1091 assert(ResultTy && "Didn't read a type?"); 1092 assert(!TypeList[NumRecords] && "Already read type?"); 1093 TypeList[NumRecords++] = ResultTy; 1094 } 1095 } 1096 1097 std::error_code BitcodeReader::ParseValueSymbolTable() { 1098 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1099 return Error("Invalid record"); 1100 1101 SmallVector<uint64_t, 64> Record; 1102 1103 // Read all the records for this value table. 1104 SmallString<128> ValueName; 1105 while (1) { 1106 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1107 1108 switch (Entry.Kind) { 1109 case BitstreamEntry::SubBlock: // Handled for us already. 1110 case BitstreamEntry::Error: 1111 return Error("Malformed block"); 1112 case BitstreamEntry::EndBlock: 1113 return std::error_code(); 1114 case BitstreamEntry::Record: 1115 // The interesting case. 1116 break; 1117 } 1118 1119 // Read a record. 1120 Record.clear(); 1121 switch (Stream.readRecord(Entry.ID, Record)) { 1122 default: // Default behavior: unknown type. 1123 break; 1124 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1125 if (ConvertToString(Record, 1, ValueName)) 1126 return Error("Invalid record"); 1127 unsigned ValueID = Record[0]; 1128 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1129 return Error("Invalid record"); 1130 Value *V = ValueList[ValueID]; 1131 1132 V->setName(StringRef(ValueName.data(), ValueName.size())); 1133 ValueName.clear(); 1134 break; 1135 } 1136 case bitc::VST_CODE_BBENTRY: { 1137 if (ConvertToString(Record, 1, ValueName)) 1138 return Error("Invalid record"); 1139 BasicBlock *BB = getBasicBlock(Record[0]); 1140 if (!BB) 1141 return Error("Invalid record"); 1142 1143 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1144 ValueName.clear(); 1145 break; 1146 } 1147 } 1148 } 1149 } 1150 1151 std::error_code BitcodeReader::ParseMetadata() { 1152 unsigned NextMDValueNo = MDValueList.size(); 1153 1154 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1155 return Error("Invalid record"); 1156 1157 SmallVector<uint64_t, 64> Record; 1158 1159 // Read all the records. 1160 while (1) { 1161 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1162 1163 switch (Entry.Kind) { 1164 case BitstreamEntry::SubBlock: // Handled for us already. 1165 case BitstreamEntry::Error: 1166 return Error("Malformed block"); 1167 case BitstreamEntry::EndBlock: 1168 MDValueList.tryToResolveCycles(); 1169 return std::error_code(); 1170 case BitstreamEntry::Record: 1171 // The interesting case. 1172 break; 1173 } 1174 1175 // Read a record. 1176 Record.clear(); 1177 unsigned Code = Stream.readRecord(Entry.ID, Record); 1178 bool IsDistinct = false; 1179 switch (Code) { 1180 default: // Default behavior: ignore. 1181 break; 1182 case bitc::METADATA_NAME: { 1183 // Read name of the named metadata. 1184 SmallString<8> Name(Record.begin(), Record.end()); 1185 Record.clear(); 1186 Code = Stream.ReadCode(); 1187 1188 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1189 unsigned NextBitCode = Stream.readRecord(Code, Record); 1190 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1191 1192 // Read named metadata elements. 1193 unsigned Size = Record.size(); 1194 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1195 for (unsigned i = 0; i != Size; ++i) { 1196 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1197 if (!MD) 1198 return Error("Invalid record"); 1199 NMD->addOperand(MD); 1200 } 1201 break; 1202 } 1203 case bitc::METADATA_OLD_FN_NODE: { 1204 // FIXME: Remove in 4.0. 1205 // This is a LocalAsMetadata record, the only type of function-local 1206 // metadata. 1207 if (Record.size() % 2 == 1) 1208 return Error("Invalid record"); 1209 1210 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1211 // to be legal, but there's no upgrade path. 1212 auto dropRecord = [&] { 1213 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1214 }; 1215 if (Record.size() != 2) { 1216 dropRecord(); 1217 break; 1218 } 1219 1220 Type *Ty = getTypeByID(Record[0]); 1221 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1222 dropRecord(); 1223 break; 1224 } 1225 1226 MDValueList.AssignValue( 1227 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1228 NextMDValueNo++); 1229 break; 1230 } 1231 case bitc::METADATA_OLD_NODE: { 1232 // FIXME: Remove in 4.0. 1233 if (Record.size() % 2 == 1) 1234 return Error("Invalid record"); 1235 1236 unsigned Size = Record.size(); 1237 SmallVector<Metadata *, 8> Elts; 1238 for (unsigned i = 0; i != Size; i += 2) { 1239 Type *Ty = getTypeByID(Record[i]); 1240 if (!Ty) 1241 return Error("Invalid record"); 1242 if (Ty->isMetadataTy()) 1243 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1244 else if (!Ty->isVoidTy()) { 1245 auto *MD = 1246 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1247 assert(isa<ConstantAsMetadata>(MD) && 1248 "Expected non-function-local metadata"); 1249 Elts.push_back(MD); 1250 } else 1251 Elts.push_back(nullptr); 1252 } 1253 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1254 break; 1255 } 1256 case bitc::METADATA_VALUE: { 1257 if (Record.size() != 2) 1258 return Error("Invalid record"); 1259 1260 Type *Ty = getTypeByID(Record[0]); 1261 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1262 return Error("Invalid record"); 1263 1264 MDValueList.AssignValue( 1265 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1266 NextMDValueNo++); 1267 break; 1268 } 1269 case bitc::METADATA_DISTINCT_NODE: 1270 IsDistinct = true; 1271 // fallthrough... 1272 case bitc::METADATA_NODE: { 1273 SmallVector<Metadata *, 8> Elts; 1274 Elts.reserve(Record.size()); 1275 for (unsigned ID : Record) 1276 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1277 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1278 : MDNode::get(Context, Elts), 1279 NextMDValueNo++); 1280 break; 1281 } 1282 case bitc::METADATA_LOCATION: { 1283 if (Record.size() != 5) 1284 return Error("Invalid record"); 1285 1286 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1287 unsigned Line = Record[1]; 1288 unsigned Column = Record[2]; 1289 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1290 Metadata *InlinedAt = 1291 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1292 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1293 NextMDValueNo++); 1294 break; 1295 } 1296 case bitc::METADATA_STRING: { 1297 std::string String(Record.begin(), Record.end()); 1298 llvm::UpgradeMDStringConstant(String); 1299 Metadata *MD = MDString::get(Context, String); 1300 MDValueList.AssignValue(MD, NextMDValueNo++); 1301 break; 1302 } 1303 case bitc::METADATA_KIND: { 1304 if (Record.size() < 2) 1305 return Error("Invalid record"); 1306 1307 unsigned Kind = Record[0]; 1308 SmallString<8> Name(Record.begin()+1, Record.end()); 1309 1310 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1311 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1312 return Error("Conflicting METADATA_KIND records"); 1313 break; 1314 } 1315 } 1316 } 1317 } 1318 1319 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1320 /// the LSB for dense VBR encoding. 1321 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1322 if ((V & 1) == 0) 1323 return V >> 1; 1324 if (V != 1) 1325 return -(V >> 1); 1326 // There is no such thing as -0 with integers. "-0" really means MININT. 1327 return 1ULL << 63; 1328 } 1329 1330 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1331 /// values and aliases that we can. 1332 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1333 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1334 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1335 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1336 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1337 1338 GlobalInitWorklist.swap(GlobalInits); 1339 AliasInitWorklist.swap(AliasInits); 1340 FunctionPrefixWorklist.swap(FunctionPrefixes); 1341 FunctionPrologueWorklist.swap(FunctionPrologues); 1342 1343 while (!GlobalInitWorklist.empty()) { 1344 unsigned ValID = GlobalInitWorklist.back().second; 1345 if (ValID >= ValueList.size()) { 1346 // Not ready to resolve this yet, it requires something later in the file. 1347 GlobalInits.push_back(GlobalInitWorklist.back()); 1348 } else { 1349 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1350 GlobalInitWorklist.back().first->setInitializer(C); 1351 else 1352 return Error("Expected a constant"); 1353 } 1354 GlobalInitWorklist.pop_back(); 1355 } 1356 1357 while (!AliasInitWorklist.empty()) { 1358 unsigned ValID = AliasInitWorklist.back().second; 1359 if (ValID >= ValueList.size()) { 1360 AliasInits.push_back(AliasInitWorklist.back()); 1361 } else { 1362 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1363 AliasInitWorklist.back().first->setAliasee(C); 1364 else 1365 return Error("Expected a constant"); 1366 } 1367 AliasInitWorklist.pop_back(); 1368 } 1369 1370 while (!FunctionPrefixWorklist.empty()) { 1371 unsigned ValID = FunctionPrefixWorklist.back().second; 1372 if (ValID >= ValueList.size()) { 1373 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1374 } else { 1375 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1376 FunctionPrefixWorklist.back().first->setPrefixData(C); 1377 else 1378 return Error("Expected a constant"); 1379 } 1380 FunctionPrefixWorklist.pop_back(); 1381 } 1382 1383 while (!FunctionPrologueWorklist.empty()) { 1384 unsigned ValID = FunctionPrologueWorklist.back().second; 1385 if (ValID >= ValueList.size()) { 1386 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1387 } else { 1388 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1389 FunctionPrologueWorklist.back().first->setPrologueData(C); 1390 else 1391 return Error("Expected a constant"); 1392 } 1393 FunctionPrologueWorklist.pop_back(); 1394 } 1395 1396 return std::error_code(); 1397 } 1398 1399 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1400 SmallVector<uint64_t, 8> Words(Vals.size()); 1401 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1402 BitcodeReader::decodeSignRotatedValue); 1403 1404 return APInt(TypeBits, Words); 1405 } 1406 1407 std::error_code BitcodeReader::ParseConstants() { 1408 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1409 return Error("Invalid record"); 1410 1411 SmallVector<uint64_t, 64> Record; 1412 1413 // Read all the records for this value table. 1414 Type *CurTy = Type::getInt32Ty(Context); 1415 unsigned NextCstNo = ValueList.size(); 1416 while (1) { 1417 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1418 1419 switch (Entry.Kind) { 1420 case BitstreamEntry::SubBlock: // Handled for us already. 1421 case BitstreamEntry::Error: 1422 return Error("Malformed block"); 1423 case BitstreamEntry::EndBlock: 1424 if (NextCstNo != ValueList.size()) 1425 return Error("Invalid ronstant reference"); 1426 1427 // Once all the constants have been read, go through and resolve forward 1428 // references. 1429 ValueList.ResolveConstantForwardRefs(); 1430 return std::error_code(); 1431 case BitstreamEntry::Record: 1432 // The interesting case. 1433 break; 1434 } 1435 1436 // Read a record. 1437 Record.clear(); 1438 Value *V = nullptr; 1439 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1440 switch (BitCode) { 1441 default: // Default behavior: unknown constant 1442 case bitc::CST_CODE_UNDEF: // UNDEF 1443 V = UndefValue::get(CurTy); 1444 break; 1445 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1446 if (Record.empty()) 1447 return Error("Invalid record"); 1448 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1449 return Error("Invalid record"); 1450 CurTy = TypeList[Record[0]]; 1451 continue; // Skip the ValueList manipulation. 1452 case bitc::CST_CODE_NULL: // NULL 1453 V = Constant::getNullValue(CurTy); 1454 break; 1455 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1456 if (!CurTy->isIntegerTy() || Record.empty()) 1457 return Error("Invalid record"); 1458 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1459 break; 1460 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1461 if (!CurTy->isIntegerTy() || Record.empty()) 1462 return Error("Invalid record"); 1463 1464 APInt VInt = ReadWideAPInt(Record, 1465 cast<IntegerType>(CurTy)->getBitWidth()); 1466 V = ConstantInt::get(Context, VInt); 1467 1468 break; 1469 } 1470 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1471 if (Record.empty()) 1472 return Error("Invalid record"); 1473 if (CurTy->isHalfTy()) 1474 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1475 APInt(16, (uint16_t)Record[0]))); 1476 else if (CurTy->isFloatTy()) 1477 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1478 APInt(32, (uint32_t)Record[0]))); 1479 else if (CurTy->isDoubleTy()) 1480 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1481 APInt(64, Record[0]))); 1482 else if (CurTy->isX86_FP80Ty()) { 1483 // Bits are not stored the same way as a normal i80 APInt, compensate. 1484 uint64_t Rearrange[2]; 1485 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1486 Rearrange[1] = Record[0] >> 48; 1487 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1488 APInt(80, Rearrange))); 1489 } else if (CurTy->isFP128Ty()) 1490 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1491 APInt(128, Record))); 1492 else if (CurTy->isPPC_FP128Ty()) 1493 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1494 APInt(128, Record))); 1495 else 1496 V = UndefValue::get(CurTy); 1497 break; 1498 } 1499 1500 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1501 if (Record.empty()) 1502 return Error("Invalid record"); 1503 1504 unsigned Size = Record.size(); 1505 SmallVector<Constant*, 16> Elts; 1506 1507 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1508 for (unsigned i = 0; i != Size; ++i) 1509 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1510 STy->getElementType(i))); 1511 V = ConstantStruct::get(STy, Elts); 1512 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1513 Type *EltTy = ATy->getElementType(); 1514 for (unsigned i = 0; i != Size; ++i) 1515 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1516 V = ConstantArray::get(ATy, Elts); 1517 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1518 Type *EltTy = VTy->getElementType(); 1519 for (unsigned i = 0; i != Size; ++i) 1520 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1521 V = ConstantVector::get(Elts); 1522 } else { 1523 V = UndefValue::get(CurTy); 1524 } 1525 break; 1526 } 1527 case bitc::CST_CODE_STRING: // STRING: [values] 1528 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1529 if (Record.empty()) 1530 return Error("Invalid record"); 1531 1532 SmallString<16> Elts(Record.begin(), Record.end()); 1533 V = ConstantDataArray::getString(Context, Elts, 1534 BitCode == bitc::CST_CODE_CSTRING); 1535 break; 1536 } 1537 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1538 if (Record.empty()) 1539 return Error("Invalid record"); 1540 1541 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1542 unsigned Size = Record.size(); 1543 1544 if (EltTy->isIntegerTy(8)) { 1545 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1546 if (isa<VectorType>(CurTy)) 1547 V = ConstantDataVector::get(Context, Elts); 1548 else 1549 V = ConstantDataArray::get(Context, Elts); 1550 } else if (EltTy->isIntegerTy(16)) { 1551 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1552 if (isa<VectorType>(CurTy)) 1553 V = ConstantDataVector::get(Context, Elts); 1554 else 1555 V = ConstantDataArray::get(Context, Elts); 1556 } else if (EltTy->isIntegerTy(32)) { 1557 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1558 if (isa<VectorType>(CurTy)) 1559 V = ConstantDataVector::get(Context, Elts); 1560 else 1561 V = ConstantDataArray::get(Context, Elts); 1562 } else if (EltTy->isIntegerTy(64)) { 1563 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1564 if (isa<VectorType>(CurTy)) 1565 V = ConstantDataVector::get(Context, Elts); 1566 else 1567 V = ConstantDataArray::get(Context, Elts); 1568 } else if (EltTy->isFloatTy()) { 1569 SmallVector<float, 16> Elts(Size); 1570 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1571 if (isa<VectorType>(CurTy)) 1572 V = ConstantDataVector::get(Context, Elts); 1573 else 1574 V = ConstantDataArray::get(Context, Elts); 1575 } else if (EltTy->isDoubleTy()) { 1576 SmallVector<double, 16> Elts(Size); 1577 std::transform(Record.begin(), Record.end(), Elts.begin(), 1578 BitsToDouble); 1579 if (isa<VectorType>(CurTy)) 1580 V = ConstantDataVector::get(Context, Elts); 1581 else 1582 V = ConstantDataArray::get(Context, Elts); 1583 } else { 1584 return Error("Invalid type for value"); 1585 } 1586 break; 1587 } 1588 1589 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1590 if (Record.size() < 3) 1591 return Error("Invalid record"); 1592 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1593 if (Opc < 0) { 1594 V = UndefValue::get(CurTy); // Unknown binop. 1595 } else { 1596 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1597 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1598 unsigned Flags = 0; 1599 if (Record.size() >= 4) { 1600 if (Opc == Instruction::Add || 1601 Opc == Instruction::Sub || 1602 Opc == Instruction::Mul || 1603 Opc == Instruction::Shl) { 1604 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1605 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1606 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1607 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1608 } else if (Opc == Instruction::SDiv || 1609 Opc == Instruction::UDiv || 1610 Opc == Instruction::LShr || 1611 Opc == Instruction::AShr) { 1612 if (Record[3] & (1 << bitc::PEO_EXACT)) 1613 Flags |= SDivOperator::IsExact; 1614 } 1615 } 1616 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1617 } 1618 break; 1619 } 1620 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1621 if (Record.size() < 3) 1622 return Error("Invalid record"); 1623 int Opc = GetDecodedCastOpcode(Record[0]); 1624 if (Opc < 0) { 1625 V = UndefValue::get(CurTy); // Unknown cast. 1626 } else { 1627 Type *OpTy = getTypeByID(Record[1]); 1628 if (!OpTy) 1629 return Error("Invalid record"); 1630 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1631 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1632 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1633 } 1634 break; 1635 } 1636 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1637 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1638 if (Record.size() & 1) 1639 return Error("Invalid record"); 1640 SmallVector<Constant*, 16> Elts; 1641 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1642 Type *ElTy = getTypeByID(Record[i]); 1643 if (!ElTy) 1644 return Error("Invalid record"); 1645 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1646 } 1647 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1648 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1649 BitCode == 1650 bitc::CST_CODE_CE_INBOUNDS_GEP); 1651 break; 1652 } 1653 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1654 if (Record.size() < 3) 1655 return Error("Invalid record"); 1656 1657 Type *SelectorTy = Type::getInt1Ty(Context); 1658 1659 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1660 // vector. Otherwise, it must be a single bit. 1661 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1662 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1663 VTy->getNumElements()); 1664 1665 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1666 SelectorTy), 1667 ValueList.getConstantFwdRef(Record[1],CurTy), 1668 ValueList.getConstantFwdRef(Record[2],CurTy)); 1669 break; 1670 } 1671 case bitc::CST_CODE_CE_EXTRACTELT 1672 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1673 if (Record.size() < 3) 1674 return Error("Invalid record"); 1675 VectorType *OpTy = 1676 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1677 if (!OpTy) 1678 return Error("Invalid record"); 1679 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1680 Constant *Op1 = nullptr; 1681 if (Record.size() == 4) { 1682 Type *IdxTy = getTypeByID(Record[2]); 1683 if (!IdxTy) 1684 return Error("Invalid record"); 1685 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1686 } else // TODO: Remove with llvm 4.0 1687 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1688 if (!Op1) 1689 return Error("Invalid record"); 1690 V = ConstantExpr::getExtractElement(Op0, Op1); 1691 break; 1692 } 1693 case bitc::CST_CODE_CE_INSERTELT 1694 : { // CE_INSERTELT: [opval, opval, opty, opval] 1695 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1696 if (Record.size() < 3 || !OpTy) 1697 return Error("Invalid record"); 1698 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1699 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1700 OpTy->getElementType()); 1701 Constant *Op2 = nullptr; 1702 if (Record.size() == 4) { 1703 Type *IdxTy = getTypeByID(Record[2]); 1704 if (!IdxTy) 1705 return Error("Invalid record"); 1706 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1707 } else // TODO: Remove with llvm 4.0 1708 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1709 if (!Op2) 1710 return Error("Invalid record"); 1711 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1712 break; 1713 } 1714 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1715 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1716 if (Record.size() < 3 || !OpTy) 1717 return Error("Invalid record"); 1718 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1719 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1720 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1721 OpTy->getNumElements()); 1722 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1723 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1724 break; 1725 } 1726 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1727 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1728 VectorType *OpTy = 1729 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1730 if (Record.size() < 4 || !RTy || !OpTy) 1731 return Error("Invalid record"); 1732 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1733 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1734 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1735 RTy->getNumElements()); 1736 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1737 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1738 break; 1739 } 1740 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1741 if (Record.size() < 4) 1742 return Error("Invalid record"); 1743 Type *OpTy = getTypeByID(Record[0]); 1744 if (!OpTy) 1745 return Error("Invalid record"); 1746 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1747 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1748 1749 if (OpTy->isFPOrFPVectorTy()) 1750 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1751 else 1752 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1753 break; 1754 } 1755 // This maintains backward compatibility, pre-asm dialect keywords. 1756 // FIXME: Remove with the 4.0 release. 1757 case bitc::CST_CODE_INLINEASM_OLD: { 1758 if (Record.size() < 2) 1759 return Error("Invalid record"); 1760 std::string AsmStr, ConstrStr; 1761 bool HasSideEffects = Record[0] & 1; 1762 bool IsAlignStack = Record[0] >> 1; 1763 unsigned AsmStrSize = Record[1]; 1764 if (2+AsmStrSize >= Record.size()) 1765 return Error("Invalid record"); 1766 unsigned ConstStrSize = Record[2+AsmStrSize]; 1767 if (3+AsmStrSize+ConstStrSize > Record.size()) 1768 return Error("Invalid record"); 1769 1770 for (unsigned i = 0; i != AsmStrSize; ++i) 1771 AsmStr += (char)Record[2+i]; 1772 for (unsigned i = 0; i != ConstStrSize; ++i) 1773 ConstrStr += (char)Record[3+AsmStrSize+i]; 1774 PointerType *PTy = cast<PointerType>(CurTy); 1775 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1776 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1777 break; 1778 } 1779 // This version adds support for the asm dialect keywords (e.g., 1780 // inteldialect). 1781 case bitc::CST_CODE_INLINEASM: { 1782 if (Record.size() < 2) 1783 return Error("Invalid record"); 1784 std::string AsmStr, ConstrStr; 1785 bool HasSideEffects = Record[0] & 1; 1786 bool IsAlignStack = (Record[0] >> 1) & 1; 1787 unsigned AsmDialect = Record[0] >> 2; 1788 unsigned AsmStrSize = Record[1]; 1789 if (2+AsmStrSize >= Record.size()) 1790 return Error("Invalid record"); 1791 unsigned ConstStrSize = Record[2+AsmStrSize]; 1792 if (3+AsmStrSize+ConstStrSize > Record.size()) 1793 return Error("Invalid record"); 1794 1795 for (unsigned i = 0; i != AsmStrSize; ++i) 1796 AsmStr += (char)Record[2+i]; 1797 for (unsigned i = 0; i != ConstStrSize; ++i) 1798 ConstrStr += (char)Record[3+AsmStrSize+i]; 1799 PointerType *PTy = cast<PointerType>(CurTy); 1800 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1801 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1802 InlineAsm::AsmDialect(AsmDialect)); 1803 break; 1804 } 1805 case bitc::CST_CODE_BLOCKADDRESS:{ 1806 if (Record.size() < 3) 1807 return Error("Invalid record"); 1808 Type *FnTy = getTypeByID(Record[0]); 1809 if (!FnTy) 1810 return Error("Invalid record"); 1811 Function *Fn = 1812 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1813 if (!Fn) 1814 return Error("Invalid record"); 1815 1816 // Don't let Fn get dematerialized. 1817 BlockAddressesTaken.insert(Fn); 1818 1819 // If the function is already parsed we can insert the block address right 1820 // away. 1821 BasicBlock *BB; 1822 unsigned BBID = Record[2]; 1823 if (!BBID) 1824 // Invalid reference to entry block. 1825 return Error("Invalid ID"); 1826 if (!Fn->empty()) { 1827 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1828 for (size_t I = 0, E = BBID; I != E; ++I) { 1829 if (BBI == BBE) 1830 return Error("Invalid ID"); 1831 ++BBI; 1832 } 1833 BB = BBI; 1834 } else { 1835 // Otherwise insert a placeholder and remember it so it can be inserted 1836 // when the function is parsed. 1837 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1838 if (FwdBBs.empty()) 1839 BasicBlockFwdRefQueue.push_back(Fn); 1840 if (FwdBBs.size() < BBID + 1) 1841 FwdBBs.resize(BBID + 1); 1842 if (!FwdBBs[BBID]) 1843 FwdBBs[BBID] = BasicBlock::Create(Context); 1844 BB = FwdBBs[BBID]; 1845 } 1846 V = BlockAddress::get(Fn, BB); 1847 break; 1848 } 1849 } 1850 1851 ValueList.AssignValue(V, NextCstNo); 1852 ++NextCstNo; 1853 } 1854 } 1855 1856 std::error_code BitcodeReader::ParseUseLists() { 1857 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1858 return Error("Invalid record"); 1859 1860 // Read all the records. 1861 SmallVector<uint64_t, 64> Record; 1862 while (1) { 1863 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1864 1865 switch (Entry.Kind) { 1866 case BitstreamEntry::SubBlock: // Handled for us already. 1867 case BitstreamEntry::Error: 1868 return Error("Malformed block"); 1869 case BitstreamEntry::EndBlock: 1870 return std::error_code(); 1871 case BitstreamEntry::Record: 1872 // The interesting case. 1873 break; 1874 } 1875 1876 // Read a use list record. 1877 Record.clear(); 1878 bool IsBB = false; 1879 switch (Stream.readRecord(Entry.ID, Record)) { 1880 default: // Default behavior: unknown type. 1881 break; 1882 case bitc::USELIST_CODE_BB: 1883 IsBB = true; 1884 // fallthrough 1885 case bitc::USELIST_CODE_DEFAULT: { 1886 unsigned RecordLength = Record.size(); 1887 if (RecordLength < 3) 1888 // Records should have at least an ID and two indexes. 1889 return Error("Invalid record"); 1890 unsigned ID = Record.back(); 1891 Record.pop_back(); 1892 1893 Value *V; 1894 if (IsBB) { 1895 assert(ID < FunctionBBs.size() && "Basic block not found"); 1896 V = FunctionBBs[ID]; 1897 } else 1898 V = ValueList[ID]; 1899 unsigned NumUses = 0; 1900 SmallDenseMap<const Use *, unsigned, 16> Order; 1901 for (const Use &U : V->uses()) { 1902 if (++NumUses > Record.size()) 1903 break; 1904 Order[&U] = Record[NumUses - 1]; 1905 } 1906 if (Order.size() != Record.size() || NumUses > Record.size()) 1907 // Mismatches can happen if the functions are being materialized lazily 1908 // (out-of-order), or a value has been upgraded. 1909 break; 1910 1911 V->sortUseList([&](const Use &L, const Use &R) { 1912 return Order.lookup(&L) < Order.lookup(&R); 1913 }); 1914 break; 1915 } 1916 } 1917 } 1918 } 1919 1920 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1921 /// remember where it is and then skip it. This lets us lazily deserialize the 1922 /// functions. 1923 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1924 // Get the function we are talking about. 1925 if (FunctionsWithBodies.empty()) 1926 return Error("Insufficient function protos"); 1927 1928 Function *Fn = FunctionsWithBodies.back(); 1929 FunctionsWithBodies.pop_back(); 1930 1931 // Save the current stream state. 1932 uint64_t CurBit = Stream.GetCurrentBitNo(); 1933 DeferredFunctionInfo[Fn] = CurBit; 1934 1935 // Skip over the function block for now. 1936 if (Stream.SkipBlock()) 1937 return Error("Invalid record"); 1938 return std::error_code(); 1939 } 1940 1941 std::error_code BitcodeReader::GlobalCleanup() { 1942 // Patch the initializers for globals and aliases up. 1943 ResolveGlobalAndAliasInits(); 1944 if (!GlobalInits.empty() || !AliasInits.empty()) 1945 return Error("Malformed global initializer set"); 1946 1947 // Look for intrinsic functions which need to be upgraded at some point 1948 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1949 FI != FE; ++FI) { 1950 Function *NewFn; 1951 if (UpgradeIntrinsicFunction(FI, NewFn)) 1952 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1953 } 1954 1955 // Look for global variables which need to be renamed. 1956 for (Module::global_iterator 1957 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1958 GI != GE;) { 1959 GlobalVariable *GV = GI++; 1960 UpgradeGlobalVariable(GV); 1961 } 1962 1963 // Force deallocation of memory for these vectors to favor the client that 1964 // want lazy deserialization. 1965 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1966 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1967 return std::error_code(); 1968 } 1969 1970 std::error_code BitcodeReader::ParseModule(bool Resume) { 1971 if (Resume) 1972 Stream.JumpToBit(NextUnreadBit); 1973 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1974 return Error("Invalid record"); 1975 1976 SmallVector<uint64_t, 64> Record; 1977 std::vector<std::string> SectionTable; 1978 std::vector<std::string> GCTable; 1979 1980 // Read all the records for this module. 1981 while (1) { 1982 BitstreamEntry Entry = Stream.advance(); 1983 1984 switch (Entry.Kind) { 1985 case BitstreamEntry::Error: 1986 return Error("Malformed block"); 1987 case BitstreamEntry::EndBlock: 1988 return GlobalCleanup(); 1989 1990 case BitstreamEntry::SubBlock: 1991 switch (Entry.ID) { 1992 default: // Skip unknown content. 1993 if (Stream.SkipBlock()) 1994 return Error("Invalid record"); 1995 break; 1996 case bitc::BLOCKINFO_BLOCK_ID: 1997 if (Stream.ReadBlockInfoBlock()) 1998 return Error("Malformed block"); 1999 break; 2000 case bitc::PARAMATTR_BLOCK_ID: 2001 if (std::error_code EC = ParseAttributeBlock()) 2002 return EC; 2003 break; 2004 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2005 if (std::error_code EC = ParseAttributeGroupBlock()) 2006 return EC; 2007 break; 2008 case bitc::TYPE_BLOCK_ID_NEW: 2009 if (std::error_code EC = ParseTypeTable()) 2010 return EC; 2011 break; 2012 case bitc::VALUE_SYMTAB_BLOCK_ID: 2013 if (std::error_code EC = ParseValueSymbolTable()) 2014 return EC; 2015 SeenValueSymbolTable = true; 2016 break; 2017 case bitc::CONSTANTS_BLOCK_ID: 2018 if (std::error_code EC = ParseConstants()) 2019 return EC; 2020 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2021 return EC; 2022 break; 2023 case bitc::METADATA_BLOCK_ID: 2024 if (std::error_code EC = ParseMetadata()) 2025 return EC; 2026 break; 2027 case bitc::FUNCTION_BLOCK_ID: 2028 // If this is the first function body we've seen, reverse the 2029 // FunctionsWithBodies list. 2030 if (!SeenFirstFunctionBody) { 2031 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2032 if (std::error_code EC = GlobalCleanup()) 2033 return EC; 2034 SeenFirstFunctionBody = true; 2035 } 2036 2037 if (std::error_code EC = RememberAndSkipFunctionBody()) 2038 return EC; 2039 // For streaming bitcode, suspend parsing when we reach the function 2040 // bodies. Subsequent materialization calls will resume it when 2041 // necessary. For streaming, the function bodies must be at the end of 2042 // the bitcode. If the bitcode file is old, the symbol table will be 2043 // at the end instead and will not have been seen yet. In this case, 2044 // just finish the parse now. 2045 if (LazyStreamer && SeenValueSymbolTable) { 2046 NextUnreadBit = Stream.GetCurrentBitNo(); 2047 return std::error_code(); 2048 } 2049 break; 2050 case bitc::USELIST_BLOCK_ID: 2051 if (std::error_code EC = ParseUseLists()) 2052 return EC; 2053 break; 2054 } 2055 continue; 2056 2057 case BitstreamEntry::Record: 2058 // The interesting case. 2059 break; 2060 } 2061 2062 2063 // Read a record. 2064 switch (Stream.readRecord(Entry.ID, Record)) { 2065 default: break; // Default behavior, ignore unknown content. 2066 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2067 if (Record.size() < 1) 2068 return Error("Invalid record"); 2069 // Only version #0 and #1 are supported so far. 2070 unsigned module_version = Record[0]; 2071 switch (module_version) { 2072 default: 2073 return Error("Invalid value"); 2074 case 0: 2075 UseRelativeIDs = false; 2076 break; 2077 case 1: 2078 UseRelativeIDs = true; 2079 break; 2080 } 2081 break; 2082 } 2083 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2084 std::string S; 2085 if (ConvertToString(Record, 0, S)) 2086 return Error("Invalid record"); 2087 TheModule->setTargetTriple(S); 2088 break; 2089 } 2090 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2091 std::string S; 2092 if (ConvertToString(Record, 0, S)) 2093 return Error("Invalid record"); 2094 TheModule->setDataLayout(S); 2095 break; 2096 } 2097 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2098 std::string S; 2099 if (ConvertToString(Record, 0, S)) 2100 return Error("Invalid record"); 2101 TheModule->setModuleInlineAsm(S); 2102 break; 2103 } 2104 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2105 // FIXME: Remove in 4.0. 2106 std::string S; 2107 if (ConvertToString(Record, 0, S)) 2108 return Error("Invalid record"); 2109 // Ignore value. 2110 break; 2111 } 2112 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2113 std::string S; 2114 if (ConvertToString(Record, 0, S)) 2115 return Error("Invalid record"); 2116 SectionTable.push_back(S); 2117 break; 2118 } 2119 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2120 std::string S; 2121 if (ConvertToString(Record, 0, S)) 2122 return Error("Invalid record"); 2123 GCTable.push_back(S); 2124 break; 2125 } 2126 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2127 if (Record.size() < 2) 2128 return Error("Invalid record"); 2129 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2130 unsigned ComdatNameSize = Record[1]; 2131 std::string ComdatName; 2132 ComdatName.reserve(ComdatNameSize); 2133 for (unsigned i = 0; i != ComdatNameSize; ++i) 2134 ComdatName += (char)Record[2 + i]; 2135 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2136 C->setSelectionKind(SK); 2137 ComdatList.push_back(C); 2138 break; 2139 } 2140 // GLOBALVAR: [pointer type, isconst, initid, 2141 // linkage, alignment, section, visibility, threadlocal, 2142 // unnamed_addr, dllstorageclass] 2143 case bitc::MODULE_CODE_GLOBALVAR: { 2144 if (Record.size() < 6) 2145 return Error("Invalid record"); 2146 Type *Ty = getTypeByID(Record[0]); 2147 if (!Ty) 2148 return Error("Invalid record"); 2149 if (!Ty->isPointerTy()) 2150 return Error("Invalid type for value"); 2151 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2152 Ty = cast<PointerType>(Ty)->getElementType(); 2153 2154 bool isConstant = Record[1]; 2155 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(Record[3]); 2156 unsigned Alignment = (1 << Record[4]) >> 1; 2157 std::string Section; 2158 if (Record[5]) { 2159 if (Record[5]-1 >= SectionTable.size()) 2160 return Error("Invalid ID"); 2161 Section = SectionTable[Record[5]-1]; 2162 } 2163 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2164 // Local linkage must have default visibility. 2165 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2166 // FIXME: Change to an error if non-default in 4.0. 2167 Visibility = GetDecodedVisibility(Record[6]); 2168 2169 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2170 if (Record.size() > 7) 2171 TLM = GetDecodedThreadLocalMode(Record[7]); 2172 2173 bool UnnamedAddr = false; 2174 if (Record.size() > 8) 2175 UnnamedAddr = Record[8]; 2176 2177 bool ExternallyInitialized = false; 2178 if (Record.size() > 9) 2179 ExternallyInitialized = Record[9]; 2180 2181 GlobalVariable *NewGV = 2182 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2183 TLM, AddressSpace, ExternallyInitialized); 2184 NewGV->setAlignment(Alignment); 2185 if (!Section.empty()) 2186 NewGV->setSection(Section); 2187 NewGV->setVisibility(Visibility); 2188 NewGV->setUnnamedAddr(UnnamedAddr); 2189 2190 if (Record.size() > 10) 2191 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2192 else 2193 UpgradeDLLImportExportLinkage(NewGV, Record[3]); 2194 2195 ValueList.push_back(NewGV); 2196 2197 // Remember which value to use for the global initializer. 2198 if (unsigned InitID = Record[2]) 2199 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2200 2201 if (Record.size() > 11) 2202 if (unsigned ComdatID = Record[11]) { 2203 assert(ComdatID <= ComdatList.size()); 2204 NewGV->setComdat(ComdatList[ComdatID - 1]); 2205 } 2206 break; 2207 } 2208 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2209 // alignment, section, visibility, gc, unnamed_addr, 2210 // prologuedata, dllstorageclass, comdat, prefixdata] 2211 case bitc::MODULE_CODE_FUNCTION: { 2212 if (Record.size() < 8) 2213 return Error("Invalid record"); 2214 Type *Ty = getTypeByID(Record[0]); 2215 if (!Ty) 2216 return Error("Invalid record"); 2217 if (!Ty->isPointerTy()) 2218 return Error("Invalid type for value"); 2219 FunctionType *FTy = 2220 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2221 if (!FTy) 2222 return Error("Invalid type for value"); 2223 2224 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2225 "", TheModule); 2226 2227 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2228 bool isProto = Record[2]; 2229 Func->setLinkage(getDecodedLinkage(Record[3])); 2230 Func->setAttributes(getAttributes(Record[4])); 2231 2232 Func->setAlignment((1 << Record[5]) >> 1); 2233 if (Record[6]) { 2234 if (Record[6]-1 >= SectionTable.size()) 2235 return Error("Invalid ID"); 2236 Func->setSection(SectionTable[Record[6]-1]); 2237 } 2238 // Local linkage must have default visibility. 2239 if (!Func->hasLocalLinkage()) 2240 // FIXME: Change to an error if non-default in 4.0. 2241 Func->setVisibility(GetDecodedVisibility(Record[7])); 2242 if (Record.size() > 8 && Record[8]) { 2243 if (Record[8]-1 > GCTable.size()) 2244 return Error("Invalid ID"); 2245 Func->setGC(GCTable[Record[8]-1].c_str()); 2246 } 2247 bool UnnamedAddr = false; 2248 if (Record.size() > 9) 2249 UnnamedAddr = Record[9]; 2250 Func->setUnnamedAddr(UnnamedAddr); 2251 if (Record.size() > 10 && Record[10] != 0) 2252 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2253 2254 if (Record.size() > 11) 2255 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2256 else 2257 UpgradeDLLImportExportLinkage(Func, Record[3]); 2258 2259 if (Record.size() > 12) 2260 if (unsigned ComdatID = Record[12]) { 2261 assert(ComdatID <= ComdatList.size()); 2262 Func->setComdat(ComdatList[ComdatID - 1]); 2263 } 2264 2265 if (Record.size() > 13 && Record[13] != 0) 2266 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2267 2268 ValueList.push_back(Func); 2269 2270 // If this is a function with a body, remember the prototype we are 2271 // creating now, so that we can match up the body with them later. 2272 if (!isProto) { 2273 Func->setIsMaterializable(true); 2274 FunctionsWithBodies.push_back(Func); 2275 if (LazyStreamer) 2276 DeferredFunctionInfo[Func] = 0; 2277 } 2278 break; 2279 } 2280 // ALIAS: [alias type, aliasee val#, linkage] 2281 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2282 case bitc::MODULE_CODE_ALIAS: { 2283 if (Record.size() < 3) 2284 return Error("Invalid record"); 2285 Type *Ty = getTypeByID(Record[0]); 2286 if (!Ty) 2287 return Error("Invalid record"); 2288 auto *PTy = dyn_cast<PointerType>(Ty); 2289 if (!PTy) 2290 return Error("Invalid type for value"); 2291 2292 auto *NewGA = 2293 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2294 getDecodedLinkage(Record[2]), "", TheModule); 2295 // Old bitcode files didn't have visibility field. 2296 // Local linkage must have default visibility. 2297 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2298 // FIXME: Change to an error if non-default in 4.0. 2299 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2300 if (Record.size() > 4) 2301 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2302 else 2303 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2304 if (Record.size() > 5) 2305 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2306 if (Record.size() > 6) 2307 NewGA->setUnnamedAddr(Record[6]); 2308 ValueList.push_back(NewGA); 2309 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2310 break; 2311 } 2312 /// MODULE_CODE_PURGEVALS: [numvals] 2313 case bitc::MODULE_CODE_PURGEVALS: 2314 // Trim down the value list to the specified size. 2315 if (Record.size() < 1 || Record[0] > ValueList.size()) 2316 return Error("Invalid record"); 2317 ValueList.shrinkTo(Record[0]); 2318 break; 2319 } 2320 Record.clear(); 2321 } 2322 } 2323 2324 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2325 TheModule = nullptr; 2326 2327 if (std::error_code EC = InitStream()) 2328 return EC; 2329 2330 // Sniff for the signature. 2331 if (Stream.Read(8) != 'B' || 2332 Stream.Read(8) != 'C' || 2333 Stream.Read(4) != 0x0 || 2334 Stream.Read(4) != 0xC || 2335 Stream.Read(4) != 0xE || 2336 Stream.Read(4) != 0xD) 2337 return Error("Invalid bitcode signature"); 2338 2339 // We expect a number of well-defined blocks, though we don't necessarily 2340 // need to understand them all. 2341 while (1) { 2342 if (Stream.AtEndOfStream()) 2343 return std::error_code(); 2344 2345 BitstreamEntry Entry = 2346 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2347 2348 switch (Entry.Kind) { 2349 case BitstreamEntry::Error: 2350 return Error("Malformed block"); 2351 case BitstreamEntry::EndBlock: 2352 return std::error_code(); 2353 2354 case BitstreamEntry::SubBlock: 2355 switch (Entry.ID) { 2356 case bitc::BLOCKINFO_BLOCK_ID: 2357 if (Stream.ReadBlockInfoBlock()) 2358 return Error("Malformed block"); 2359 break; 2360 case bitc::MODULE_BLOCK_ID: 2361 // Reject multiple MODULE_BLOCK's in a single bitstream. 2362 if (TheModule) 2363 return Error("Invalid multiple blocks"); 2364 TheModule = M; 2365 if (std::error_code EC = ParseModule(false)) 2366 return EC; 2367 if (LazyStreamer) 2368 return std::error_code(); 2369 break; 2370 default: 2371 if (Stream.SkipBlock()) 2372 return Error("Invalid record"); 2373 break; 2374 } 2375 continue; 2376 case BitstreamEntry::Record: 2377 // There should be no records in the top-level of blocks. 2378 2379 // The ranlib in Xcode 4 will align archive members by appending newlines 2380 // to the end of them. If this file size is a multiple of 4 but not 8, we 2381 // have to read and ignore these final 4 bytes :-( 2382 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2383 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2384 Stream.AtEndOfStream()) 2385 return std::error_code(); 2386 2387 return Error("Invalid record"); 2388 } 2389 } 2390 } 2391 2392 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2393 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2394 return Error("Invalid record"); 2395 2396 SmallVector<uint64_t, 64> Record; 2397 2398 std::string Triple; 2399 // Read all the records for this module. 2400 while (1) { 2401 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2402 2403 switch (Entry.Kind) { 2404 case BitstreamEntry::SubBlock: // Handled for us already. 2405 case BitstreamEntry::Error: 2406 return Error("Malformed block"); 2407 case BitstreamEntry::EndBlock: 2408 return Triple; 2409 case BitstreamEntry::Record: 2410 // The interesting case. 2411 break; 2412 } 2413 2414 // Read a record. 2415 switch (Stream.readRecord(Entry.ID, Record)) { 2416 default: break; // Default behavior, ignore unknown content. 2417 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2418 std::string S; 2419 if (ConvertToString(Record, 0, S)) 2420 return Error("Invalid record"); 2421 Triple = S; 2422 break; 2423 } 2424 } 2425 Record.clear(); 2426 } 2427 llvm_unreachable("Exit infinite loop"); 2428 } 2429 2430 ErrorOr<std::string> BitcodeReader::parseTriple() { 2431 if (std::error_code EC = InitStream()) 2432 return EC; 2433 2434 // Sniff for the signature. 2435 if (Stream.Read(8) != 'B' || 2436 Stream.Read(8) != 'C' || 2437 Stream.Read(4) != 0x0 || 2438 Stream.Read(4) != 0xC || 2439 Stream.Read(4) != 0xE || 2440 Stream.Read(4) != 0xD) 2441 return Error("Invalid bitcode signature"); 2442 2443 // We expect a number of well-defined blocks, though we don't necessarily 2444 // need to understand them all. 2445 while (1) { 2446 BitstreamEntry Entry = Stream.advance(); 2447 2448 switch (Entry.Kind) { 2449 case BitstreamEntry::Error: 2450 return Error("Malformed block"); 2451 case BitstreamEntry::EndBlock: 2452 return std::error_code(); 2453 2454 case BitstreamEntry::SubBlock: 2455 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2456 return parseModuleTriple(); 2457 2458 // Ignore other sub-blocks. 2459 if (Stream.SkipBlock()) 2460 return Error("Malformed block"); 2461 continue; 2462 2463 case BitstreamEntry::Record: 2464 Stream.skipRecord(Entry.ID); 2465 continue; 2466 } 2467 } 2468 } 2469 2470 /// ParseMetadataAttachment - Parse metadata attachments. 2471 std::error_code BitcodeReader::ParseMetadataAttachment() { 2472 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2473 return Error("Invalid record"); 2474 2475 SmallVector<uint64_t, 64> Record; 2476 while (1) { 2477 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2478 2479 switch (Entry.Kind) { 2480 case BitstreamEntry::SubBlock: // Handled for us already. 2481 case BitstreamEntry::Error: 2482 return Error("Malformed block"); 2483 case BitstreamEntry::EndBlock: 2484 return std::error_code(); 2485 case BitstreamEntry::Record: 2486 // The interesting case. 2487 break; 2488 } 2489 2490 // Read a metadata attachment record. 2491 Record.clear(); 2492 switch (Stream.readRecord(Entry.ID, Record)) { 2493 default: // Default behavior: ignore. 2494 break; 2495 case bitc::METADATA_ATTACHMENT: { 2496 unsigned RecordLength = Record.size(); 2497 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2498 return Error("Invalid record"); 2499 Instruction *Inst = InstructionList[Record[0]]; 2500 for (unsigned i = 1; i != RecordLength; i = i+2) { 2501 unsigned Kind = Record[i]; 2502 DenseMap<unsigned, unsigned>::iterator I = 2503 MDKindMap.find(Kind); 2504 if (I == MDKindMap.end()) 2505 return Error("Invalid ID"); 2506 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2507 if (isa<LocalAsMetadata>(Node)) 2508 // Drop the attachment. This used to be legal, but there's no 2509 // upgrade path. 2510 break; 2511 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2512 if (I->second == LLVMContext::MD_tbaa) 2513 InstsWithTBAATag.push_back(Inst); 2514 } 2515 break; 2516 } 2517 } 2518 } 2519 } 2520 2521 /// ParseFunctionBody - Lazily parse the specified function body block. 2522 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2523 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2524 return Error("Invalid record"); 2525 2526 InstructionList.clear(); 2527 unsigned ModuleValueListSize = ValueList.size(); 2528 unsigned ModuleMDValueListSize = MDValueList.size(); 2529 2530 // Add all the function arguments to the value table. 2531 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2532 ValueList.push_back(I); 2533 2534 unsigned NextValueNo = ValueList.size(); 2535 BasicBlock *CurBB = nullptr; 2536 unsigned CurBBNo = 0; 2537 2538 DebugLoc LastLoc; 2539 auto getLastInstruction = [&]() -> Instruction * { 2540 if (CurBB && !CurBB->empty()) 2541 return &CurBB->back(); 2542 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2543 !FunctionBBs[CurBBNo - 1]->empty()) 2544 return &FunctionBBs[CurBBNo - 1]->back(); 2545 return nullptr; 2546 }; 2547 2548 // Read all the records. 2549 SmallVector<uint64_t, 64> Record; 2550 while (1) { 2551 BitstreamEntry Entry = Stream.advance(); 2552 2553 switch (Entry.Kind) { 2554 case BitstreamEntry::Error: 2555 return Error("Malformed block"); 2556 case BitstreamEntry::EndBlock: 2557 goto OutOfRecordLoop; 2558 2559 case BitstreamEntry::SubBlock: 2560 switch (Entry.ID) { 2561 default: // Skip unknown content. 2562 if (Stream.SkipBlock()) 2563 return Error("Invalid record"); 2564 break; 2565 case bitc::CONSTANTS_BLOCK_ID: 2566 if (std::error_code EC = ParseConstants()) 2567 return EC; 2568 NextValueNo = ValueList.size(); 2569 break; 2570 case bitc::VALUE_SYMTAB_BLOCK_ID: 2571 if (std::error_code EC = ParseValueSymbolTable()) 2572 return EC; 2573 break; 2574 case bitc::METADATA_ATTACHMENT_ID: 2575 if (std::error_code EC = ParseMetadataAttachment()) 2576 return EC; 2577 break; 2578 case bitc::METADATA_BLOCK_ID: 2579 if (std::error_code EC = ParseMetadata()) 2580 return EC; 2581 break; 2582 case bitc::USELIST_BLOCK_ID: 2583 if (std::error_code EC = ParseUseLists()) 2584 return EC; 2585 break; 2586 } 2587 continue; 2588 2589 case BitstreamEntry::Record: 2590 // The interesting case. 2591 break; 2592 } 2593 2594 // Read a record. 2595 Record.clear(); 2596 Instruction *I = nullptr; 2597 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2598 switch (BitCode) { 2599 default: // Default behavior: reject 2600 return Error("Invalid value"); 2601 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2602 if (Record.size() < 1 || Record[0] == 0) 2603 return Error("Invalid record"); 2604 // Create all the basic blocks for the function. 2605 FunctionBBs.resize(Record[0]); 2606 2607 // See if anything took the address of blocks in this function. 2608 auto BBFRI = BasicBlockFwdRefs.find(F); 2609 if (BBFRI == BasicBlockFwdRefs.end()) { 2610 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2611 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2612 } else { 2613 auto &BBRefs = BBFRI->second; 2614 // Check for invalid basic block references. 2615 if (BBRefs.size() > FunctionBBs.size()) 2616 return Error("Invalid ID"); 2617 assert(!BBRefs.empty() && "Unexpected empty array"); 2618 assert(!BBRefs.front() && "Invalid reference to entry block"); 2619 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2620 ++I) 2621 if (I < RE && BBRefs[I]) { 2622 BBRefs[I]->insertInto(F); 2623 FunctionBBs[I] = BBRefs[I]; 2624 } else { 2625 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2626 } 2627 2628 // Erase from the table. 2629 BasicBlockFwdRefs.erase(BBFRI); 2630 } 2631 2632 CurBB = FunctionBBs[0]; 2633 continue; 2634 } 2635 2636 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2637 // This record indicates that the last instruction is at the same 2638 // location as the previous instruction with a location. 2639 I = getLastInstruction(); 2640 2641 if (!I) 2642 return Error("Invalid record"); 2643 I->setDebugLoc(LastLoc); 2644 I = nullptr; 2645 continue; 2646 2647 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2648 I = getLastInstruction(); 2649 if (!I || Record.size() < 4) 2650 return Error("Invalid record"); 2651 2652 unsigned Line = Record[0], Col = Record[1]; 2653 unsigned ScopeID = Record[2], IAID = Record[3]; 2654 2655 MDNode *Scope = nullptr, *IA = nullptr; 2656 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2657 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2658 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2659 I->setDebugLoc(LastLoc); 2660 I = nullptr; 2661 continue; 2662 } 2663 2664 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2665 unsigned OpNum = 0; 2666 Value *LHS, *RHS; 2667 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2668 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2669 OpNum+1 > Record.size()) 2670 return Error("Invalid record"); 2671 2672 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2673 if (Opc == -1) 2674 return Error("Invalid record"); 2675 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2676 InstructionList.push_back(I); 2677 if (OpNum < Record.size()) { 2678 if (Opc == Instruction::Add || 2679 Opc == Instruction::Sub || 2680 Opc == Instruction::Mul || 2681 Opc == Instruction::Shl) { 2682 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2683 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2684 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2685 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2686 } else if (Opc == Instruction::SDiv || 2687 Opc == Instruction::UDiv || 2688 Opc == Instruction::LShr || 2689 Opc == Instruction::AShr) { 2690 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2691 cast<BinaryOperator>(I)->setIsExact(true); 2692 } else if (isa<FPMathOperator>(I)) { 2693 FastMathFlags FMF; 2694 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2695 FMF.setUnsafeAlgebra(); 2696 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2697 FMF.setNoNaNs(); 2698 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2699 FMF.setNoInfs(); 2700 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2701 FMF.setNoSignedZeros(); 2702 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2703 FMF.setAllowReciprocal(); 2704 if (FMF.any()) 2705 I->setFastMathFlags(FMF); 2706 } 2707 2708 } 2709 break; 2710 } 2711 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2712 unsigned OpNum = 0; 2713 Value *Op; 2714 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2715 OpNum+2 != Record.size()) 2716 return Error("Invalid record"); 2717 2718 Type *ResTy = getTypeByID(Record[OpNum]); 2719 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2720 if (Opc == -1 || !ResTy) 2721 return Error("Invalid record"); 2722 Instruction *Temp = nullptr; 2723 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2724 if (Temp) { 2725 InstructionList.push_back(Temp); 2726 CurBB->getInstList().push_back(Temp); 2727 } 2728 } else { 2729 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2730 } 2731 InstructionList.push_back(I); 2732 break; 2733 } 2734 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2735 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2736 unsigned OpNum = 0; 2737 Value *BasePtr; 2738 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2739 return Error("Invalid record"); 2740 2741 SmallVector<Value*, 16> GEPIdx; 2742 while (OpNum != Record.size()) { 2743 Value *Op; 2744 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2745 return Error("Invalid record"); 2746 GEPIdx.push_back(Op); 2747 } 2748 2749 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2750 InstructionList.push_back(I); 2751 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2752 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2753 break; 2754 } 2755 2756 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2757 // EXTRACTVAL: [opty, opval, n x indices] 2758 unsigned OpNum = 0; 2759 Value *Agg; 2760 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2761 return Error("Invalid record"); 2762 2763 SmallVector<unsigned, 4> EXTRACTVALIdx; 2764 for (unsigned RecSize = Record.size(); 2765 OpNum != RecSize; ++OpNum) { 2766 uint64_t Index = Record[OpNum]; 2767 if ((unsigned)Index != Index) 2768 return Error("Invalid value"); 2769 EXTRACTVALIdx.push_back((unsigned)Index); 2770 } 2771 2772 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2773 InstructionList.push_back(I); 2774 break; 2775 } 2776 2777 case bitc::FUNC_CODE_INST_INSERTVAL: { 2778 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2779 unsigned OpNum = 0; 2780 Value *Agg; 2781 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2782 return Error("Invalid record"); 2783 Value *Val; 2784 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2785 return Error("Invalid record"); 2786 2787 SmallVector<unsigned, 4> INSERTVALIdx; 2788 for (unsigned RecSize = Record.size(); 2789 OpNum != RecSize; ++OpNum) { 2790 uint64_t Index = Record[OpNum]; 2791 if ((unsigned)Index != Index) 2792 return Error("Invalid value"); 2793 INSERTVALIdx.push_back((unsigned)Index); 2794 } 2795 2796 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2797 InstructionList.push_back(I); 2798 break; 2799 } 2800 2801 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2802 // obsolete form of select 2803 // handles select i1 ... in old bitcode 2804 unsigned OpNum = 0; 2805 Value *TrueVal, *FalseVal, *Cond; 2806 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2807 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2808 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2809 return Error("Invalid record"); 2810 2811 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2812 InstructionList.push_back(I); 2813 break; 2814 } 2815 2816 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2817 // new form of select 2818 // handles select i1 or select [N x i1] 2819 unsigned OpNum = 0; 2820 Value *TrueVal, *FalseVal, *Cond; 2821 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2822 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2823 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2824 return Error("Invalid record"); 2825 2826 // select condition can be either i1 or [N x i1] 2827 if (VectorType* vector_type = 2828 dyn_cast<VectorType>(Cond->getType())) { 2829 // expect <n x i1> 2830 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2831 return Error("Invalid type for value"); 2832 } else { 2833 // expect i1 2834 if (Cond->getType() != Type::getInt1Ty(Context)) 2835 return Error("Invalid type for value"); 2836 } 2837 2838 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2839 InstructionList.push_back(I); 2840 break; 2841 } 2842 2843 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2844 unsigned OpNum = 0; 2845 Value *Vec, *Idx; 2846 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2847 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2848 return Error("Invalid record"); 2849 I = ExtractElementInst::Create(Vec, Idx); 2850 InstructionList.push_back(I); 2851 break; 2852 } 2853 2854 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2855 unsigned OpNum = 0; 2856 Value *Vec, *Elt, *Idx; 2857 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2858 popValue(Record, OpNum, NextValueNo, 2859 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2860 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2861 return Error("Invalid record"); 2862 I = InsertElementInst::Create(Vec, Elt, Idx); 2863 InstructionList.push_back(I); 2864 break; 2865 } 2866 2867 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2868 unsigned OpNum = 0; 2869 Value *Vec1, *Vec2, *Mask; 2870 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2871 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2872 return Error("Invalid record"); 2873 2874 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2875 return Error("Invalid record"); 2876 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2877 InstructionList.push_back(I); 2878 break; 2879 } 2880 2881 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2882 // Old form of ICmp/FCmp returning bool 2883 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2884 // both legal on vectors but had different behaviour. 2885 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2886 // FCmp/ICmp returning bool or vector of bool 2887 2888 unsigned OpNum = 0; 2889 Value *LHS, *RHS; 2890 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2891 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2892 OpNum+1 != Record.size()) 2893 return Error("Invalid record"); 2894 2895 if (LHS->getType()->isFPOrFPVectorTy()) 2896 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2897 else 2898 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2899 InstructionList.push_back(I); 2900 break; 2901 } 2902 2903 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2904 { 2905 unsigned Size = Record.size(); 2906 if (Size == 0) { 2907 I = ReturnInst::Create(Context); 2908 InstructionList.push_back(I); 2909 break; 2910 } 2911 2912 unsigned OpNum = 0; 2913 Value *Op = nullptr; 2914 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2915 return Error("Invalid record"); 2916 if (OpNum != Record.size()) 2917 return Error("Invalid record"); 2918 2919 I = ReturnInst::Create(Context, Op); 2920 InstructionList.push_back(I); 2921 break; 2922 } 2923 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2924 if (Record.size() != 1 && Record.size() != 3) 2925 return Error("Invalid record"); 2926 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2927 if (!TrueDest) 2928 return Error("Invalid record"); 2929 2930 if (Record.size() == 1) { 2931 I = BranchInst::Create(TrueDest); 2932 InstructionList.push_back(I); 2933 } 2934 else { 2935 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2936 Value *Cond = getValue(Record, 2, NextValueNo, 2937 Type::getInt1Ty(Context)); 2938 if (!FalseDest || !Cond) 2939 return Error("Invalid record"); 2940 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2941 InstructionList.push_back(I); 2942 } 2943 break; 2944 } 2945 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2946 // Check magic 2947 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2948 // "New" SwitchInst format with case ranges. The changes to write this 2949 // format were reverted but we still recognize bitcode that uses it. 2950 // Hopefully someday we will have support for case ranges and can use 2951 // this format again. 2952 2953 Type *OpTy = getTypeByID(Record[1]); 2954 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2955 2956 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2957 BasicBlock *Default = getBasicBlock(Record[3]); 2958 if (!OpTy || !Cond || !Default) 2959 return Error("Invalid record"); 2960 2961 unsigned NumCases = Record[4]; 2962 2963 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2964 InstructionList.push_back(SI); 2965 2966 unsigned CurIdx = 5; 2967 for (unsigned i = 0; i != NumCases; ++i) { 2968 SmallVector<ConstantInt*, 1> CaseVals; 2969 unsigned NumItems = Record[CurIdx++]; 2970 for (unsigned ci = 0; ci != NumItems; ++ci) { 2971 bool isSingleNumber = Record[CurIdx++]; 2972 2973 APInt Low; 2974 unsigned ActiveWords = 1; 2975 if (ValueBitWidth > 64) 2976 ActiveWords = Record[CurIdx++]; 2977 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2978 ValueBitWidth); 2979 CurIdx += ActiveWords; 2980 2981 if (!isSingleNumber) { 2982 ActiveWords = 1; 2983 if (ValueBitWidth > 64) 2984 ActiveWords = Record[CurIdx++]; 2985 APInt High = 2986 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2987 ValueBitWidth); 2988 CurIdx += ActiveWords; 2989 2990 // FIXME: It is not clear whether values in the range should be 2991 // compared as signed or unsigned values. The partially 2992 // implemented changes that used this format in the past used 2993 // unsigned comparisons. 2994 for ( ; Low.ule(High); ++Low) 2995 CaseVals.push_back(ConstantInt::get(Context, Low)); 2996 } else 2997 CaseVals.push_back(ConstantInt::get(Context, Low)); 2998 } 2999 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3000 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3001 cve = CaseVals.end(); cvi != cve; ++cvi) 3002 SI->addCase(*cvi, DestBB); 3003 } 3004 I = SI; 3005 break; 3006 } 3007 3008 // Old SwitchInst format without case ranges. 3009 3010 if (Record.size() < 3 || (Record.size() & 1) == 0) 3011 return Error("Invalid record"); 3012 Type *OpTy = getTypeByID(Record[0]); 3013 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3014 BasicBlock *Default = getBasicBlock(Record[2]); 3015 if (!OpTy || !Cond || !Default) 3016 return Error("Invalid record"); 3017 unsigned NumCases = (Record.size()-3)/2; 3018 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3019 InstructionList.push_back(SI); 3020 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3021 ConstantInt *CaseVal = 3022 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3023 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3024 if (!CaseVal || !DestBB) { 3025 delete SI; 3026 return Error("Invalid record"); 3027 } 3028 SI->addCase(CaseVal, DestBB); 3029 } 3030 I = SI; 3031 break; 3032 } 3033 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3034 if (Record.size() < 2) 3035 return Error("Invalid record"); 3036 Type *OpTy = getTypeByID(Record[0]); 3037 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3038 if (!OpTy || !Address) 3039 return Error("Invalid record"); 3040 unsigned NumDests = Record.size()-2; 3041 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3042 InstructionList.push_back(IBI); 3043 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3044 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3045 IBI->addDestination(DestBB); 3046 } else { 3047 delete IBI; 3048 return Error("Invalid record"); 3049 } 3050 } 3051 I = IBI; 3052 break; 3053 } 3054 3055 case bitc::FUNC_CODE_INST_INVOKE: { 3056 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3057 if (Record.size() < 4) 3058 return Error("Invalid record"); 3059 AttributeSet PAL = getAttributes(Record[0]); 3060 unsigned CCInfo = Record[1]; 3061 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3062 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3063 3064 unsigned OpNum = 4; 3065 Value *Callee; 3066 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3067 return Error("Invalid record"); 3068 3069 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3070 FunctionType *FTy = !CalleeTy ? nullptr : 3071 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3072 3073 // Check that the right number of fixed parameters are here. 3074 if (!FTy || !NormalBB || !UnwindBB || 3075 Record.size() < OpNum+FTy->getNumParams()) 3076 return Error("Invalid record"); 3077 3078 SmallVector<Value*, 16> Ops; 3079 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3080 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3081 FTy->getParamType(i))); 3082 if (!Ops.back()) 3083 return Error("Invalid record"); 3084 } 3085 3086 if (!FTy->isVarArg()) { 3087 if (Record.size() != OpNum) 3088 return Error("Invalid record"); 3089 } else { 3090 // Read type/value pairs for varargs params. 3091 while (OpNum != Record.size()) { 3092 Value *Op; 3093 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3094 return Error("Invalid record"); 3095 Ops.push_back(Op); 3096 } 3097 } 3098 3099 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3100 InstructionList.push_back(I); 3101 cast<InvokeInst>(I)->setCallingConv( 3102 static_cast<CallingConv::ID>(CCInfo)); 3103 cast<InvokeInst>(I)->setAttributes(PAL); 3104 break; 3105 } 3106 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3107 unsigned Idx = 0; 3108 Value *Val = nullptr; 3109 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3110 return Error("Invalid record"); 3111 I = ResumeInst::Create(Val); 3112 InstructionList.push_back(I); 3113 break; 3114 } 3115 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3116 I = new UnreachableInst(Context); 3117 InstructionList.push_back(I); 3118 break; 3119 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3120 if (Record.size() < 1 || ((Record.size()-1)&1)) 3121 return Error("Invalid record"); 3122 Type *Ty = getTypeByID(Record[0]); 3123 if (!Ty) 3124 return Error("Invalid record"); 3125 3126 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3127 InstructionList.push_back(PN); 3128 3129 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3130 Value *V; 3131 // With the new function encoding, it is possible that operands have 3132 // negative IDs (for forward references). Use a signed VBR 3133 // representation to keep the encoding small. 3134 if (UseRelativeIDs) 3135 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3136 else 3137 V = getValue(Record, 1+i, NextValueNo, Ty); 3138 BasicBlock *BB = getBasicBlock(Record[2+i]); 3139 if (!V || !BB) 3140 return Error("Invalid record"); 3141 PN->addIncoming(V, BB); 3142 } 3143 I = PN; 3144 break; 3145 } 3146 3147 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3148 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3149 unsigned Idx = 0; 3150 if (Record.size() < 4) 3151 return Error("Invalid record"); 3152 Type *Ty = getTypeByID(Record[Idx++]); 3153 if (!Ty) 3154 return Error("Invalid record"); 3155 Value *PersFn = nullptr; 3156 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3157 return Error("Invalid record"); 3158 3159 bool IsCleanup = !!Record[Idx++]; 3160 unsigned NumClauses = Record[Idx++]; 3161 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3162 LP->setCleanup(IsCleanup); 3163 for (unsigned J = 0; J != NumClauses; ++J) { 3164 LandingPadInst::ClauseType CT = 3165 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3166 Value *Val; 3167 3168 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3169 delete LP; 3170 return Error("Invalid record"); 3171 } 3172 3173 assert((CT != LandingPadInst::Catch || 3174 !isa<ArrayType>(Val->getType())) && 3175 "Catch clause has a invalid type!"); 3176 assert((CT != LandingPadInst::Filter || 3177 isa<ArrayType>(Val->getType())) && 3178 "Filter clause has invalid type!"); 3179 LP->addClause(cast<Constant>(Val)); 3180 } 3181 3182 I = LP; 3183 InstructionList.push_back(I); 3184 break; 3185 } 3186 3187 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3188 if (Record.size() != 4) 3189 return Error("Invalid record"); 3190 PointerType *Ty = 3191 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3192 Type *OpTy = getTypeByID(Record[1]); 3193 Value *Size = getFnValueByID(Record[2], OpTy); 3194 unsigned AlignRecord = Record[3]; 3195 bool InAlloca = AlignRecord & (1 << 5); 3196 unsigned Align = AlignRecord & ((1 << 5) - 1); 3197 if (!Ty || !Size) 3198 return Error("Invalid record"); 3199 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3200 AI->setUsedWithInAlloca(InAlloca); 3201 I = AI; 3202 InstructionList.push_back(I); 3203 break; 3204 } 3205 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3206 unsigned OpNum = 0; 3207 Value *Op; 3208 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3209 OpNum+2 != Record.size()) 3210 return Error("Invalid record"); 3211 3212 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3213 InstructionList.push_back(I); 3214 break; 3215 } 3216 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3217 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3218 unsigned OpNum = 0; 3219 Value *Op; 3220 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3221 OpNum+4 != Record.size()) 3222 return Error("Invalid record"); 3223 3224 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3225 if (Ordering == NotAtomic || Ordering == Release || 3226 Ordering == AcquireRelease) 3227 return Error("Invalid record"); 3228 if (Ordering != NotAtomic && Record[OpNum] == 0) 3229 return Error("Invalid record"); 3230 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3231 3232 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3233 Ordering, SynchScope); 3234 InstructionList.push_back(I); 3235 break; 3236 } 3237 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3238 unsigned OpNum = 0; 3239 Value *Val, *Ptr; 3240 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3241 popValue(Record, OpNum, NextValueNo, 3242 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3243 OpNum+2 != Record.size()) 3244 return Error("Invalid record"); 3245 3246 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3247 InstructionList.push_back(I); 3248 break; 3249 } 3250 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3251 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3252 unsigned OpNum = 0; 3253 Value *Val, *Ptr; 3254 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3255 popValue(Record, OpNum, NextValueNo, 3256 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3257 OpNum+4 != Record.size()) 3258 return Error("Invalid record"); 3259 3260 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3261 if (Ordering == NotAtomic || Ordering == Acquire || 3262 Ordering == AcquireRelease) 3263 return Error("Invalid record"); 3264 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3265 if (Ordering != NotAtomic && Record[OpNum] == 0) 3266 return Error("Invalid record"); 3267 3268 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3269 Ordering, SynchScope); 3270 InstructionList.push_back(I); 3271 break; 3272 } 3273 case bitc::FUNC_CODE_INST_CMPXCHG: { 3274 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3275 // failureordering?, isweak?] 3276 unsigned OpNum = 0; 3277 Value *Ptr, *Cmp, *New; 3278 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3279 popValue(Record, OpNum, NextValueNo, 3280 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3281 popValue(Record, OpNum, NextValueNo, 3282 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3283 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3284 return Error("Invalid record"); 3285 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3286 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3287 return Error("Invalid record"); 3288 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3289 3290 AtomicOrdering FailureOrdering; 3291 if (Record.size() < 7) 3292 FailureOrdering = 3293 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3294 else 3295 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3296 3297 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3298 SynchScope); 3299 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3300 3301 if (Record.size() < 8) { 3302 // Before weak cmpxchgs existed, the instruction simply returned the 3303 // value loaded from memory, so bitcode files from that era will be 3304 // expecting the first component of a modern cmpxchg. 3305 CurBB->getInstList().push_back(I); 3306 I = ExtractValueInst::Create(I, 0); 3307 } else { 3308 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3309 } 3310 3311 InstructionList.push_back(I); 3312 break; 3313 } 3314 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3315 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3316 unsigned OpNum = 0; 3317 Value *Ptr, *Val; 3318 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3319 popValue(Record, OpNum, NextValueNo, 3320 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3321 OpNum+4 != Record.size()) 3322 return Error("Invalid record"); 3323 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3324 if (Operation < AtomicRMWInst::FIRST_BINOP || 3325 Operation > AtomicRMWInst::LAST_BINOP) 3326 return Error("Invalid record"); 3327 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3328 if (Ordering == NotAtomic || Ordering == Unordered) 3329 return Error("Invalid record"); 3330 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3331 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3332 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3333 InstructionList.push_back(I); 3334 break; 3335 } 3336 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3337 if (2 != Record.size()) 3338 return Error("Invalid record"); 3339 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3340 if (Ordering == NotAtomic || Ordering == Unordered || 3341 Ordering == Monotonic) 3342 return Error("Invalid record"); 3343 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3344 I = new FenceInst(Context, Ordering, SynchScope); 3345 InstructionList.push_back(I); 3346 break; 3347 } 3348 case bitc::FUNC_CODE_INST_CALL: { 3349 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3350 if (Record.size() < 3) 3351 return Error("Invalid record"); 3352 3353 AttributeSet PAL = getAttributes(Record[0]); 3354 unsigned CCInfo = Record[1]; 3355 3356 unsigned OpNum = 2; 3357 Value *Callee; 3358 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3359 return Error("Invalid record"); 3360 3361 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3362 FunctionType *FTy = nullptr; 3363 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3364 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3365 return Error("Invalid record"); 3366 3367 SmallVector<Value*, 16> Args; 3368 // Read the fixed params. 3369 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3370 if (FTy->getParamType(i)->isLabelTy()) 3371 Args.push_back(getBasicBlock(Record[OpNum])); 3372 else 3373 Args.push_back(getValue(Record, OpNum, NextValueNo, 3374 FTy->getParamType(i))); 3375 if (!Args.back()) 3376 return Error("Invalid record"); 3377 } 3378 3379 // Read type/value pairs for varargs params. 3380 if (!FTy->isVarArg()) { 3381 if (OpNum != Record.size()) 3382 return Error("Invalid record"); 3383 } else { 3384 while (OpNum != Record.size()) { 3385 Value *Op; 3386 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3387 return Error("Invalid record"); 3388 Args.push_back(Op); 3389 } 3390 } 3391 3392 I = CallInst::Create(Callee, Args); 3393 InstructionList.push_back(I); 3394 cast<CallInst>(I)->setCallingConv( 3395 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3396 CallInst::TailCallKind TCK = CallInst::TCK_None; 3397 if (CCInfo & 1) 3398 TCK = CallInst::TCK_Tail; 3399 if (CCInfo & (1 << 14)) 3400 TCK = CallInst::TCK_MustTail; 3401 cast<CallInst>(I)->setTailCallKind(TCK); 3402 cast<CallInst>(I)->setAttributes(PAL); 3403 break; 3404 } 3405 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3406 if (Record.size() < 3) 3407 return Error("Invalid record"); 3408 Type *OpTy = getTypeByID(Record[0]); 3409 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3410 Type *ResTy = getTypeByID(Record[2]); 3411 if (!OpTy || !Op || !ResTy) 3412 return Error("Invalid record"); 3413 I = new VAArgInst(Op, ResTy); 3414 InstructionList.push_back(I); 3415 break; 3416 } 3417 } 3418 3419 // Add instruction to end of current BB. If there is no current BB, reject 3420 // this file. 3421 if (!CurBB) { 3422 delete I; 3423 return Error("Invalid instruction with no BB"); 3424 } 3425 CurBB->getInstList().push_back(I); 3426 3427 // If this was a terminator instruction, move to the next block. 3428 if (isa<TerminatorInst>(I)) { 3429 ++CurBBNo; 3430 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3431 } 3432 3433 // Non-void values get registered in the value table for future use. 3434 if (I && !I->getType()->isVoidTy()) 3435 ValueList.AssignValue(I, NextValueNo++); 3436 } 3437 3438 OutOfRecordLoop: 3439 3440 // Check the function list for unresolved values. 3441 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3442 if (!A->getParent()) { 3443 // We found at least one unresolved value. Nuke them all to avoid leaks. 3444 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3445 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3446 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3447 delete A; 3448 } 3449 } 3450 return Error("Never resolved value found in function"); 3451 } 3452 } 3453 3454 // FIXME: Check for unresolved forward-declared metadata references 3455 // and clean up leaks. 3456 3457 // Trim the value list down to the size it was before we parsed this function. 3458 ValueList.shrinkTo(ModuleValueListSize); 3459 MDValueList.shrinkTo(ModuleMDValueListSize); 3460 std::vector<BasicBlock*>().swap(FunctionBBs); 3461 return std::error_code(); 3462 } 3463 3464 /// Find the function body in the bitcode stream 3465 std::error_code BitcodeReader::FindFunctionInStream( 3466 Function *F, 3467 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3468 while (DeferredFunctionInfoIterator->second == 0) { 3469 if (Stream.AtEndOfStream()) 3470 return Error("Could not find function in stream"); 3471 // ParseModule will parse the next body in the stream and set its 3472 // position in the DeferredFunctionInfo map. 3473 if (std::error_code EC = ParseModule(true)) 3474 return EC; 3475 } 3476 return std::error_code(); 3477 } 3478 3479 //===----------------------------------------------------------------------===// 3480 // GVMaterializer implementation 3481 //===----------------------------------------------------------------------===// 3482 3483 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3484 3485 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3486 Function *F = dyn_cast<Function>(GV); 3487 // If it's not a function or is already material, ignore the request. 3488 if (!F || !F->isMaterializable()) 3489 return std::error_code(); 3490 3491 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3492 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3493 // If its position is recorded as 0, its body is somewhere in the stream 3494 // but we haven't seen it yet. 3495 if (DFII->second == 0 && LazyStreamer) 3496 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3497 return EC; 3498 3499 // Move the bit stream to the saved position of the deferred function body. 3500 Stream.JumpToBit(DFII->second); 3501 3502 if (std::error_code EC = ParseFunctionBody(F)) 3503 return EC; 3504 F->setIsMaterializable(false); 3505 3506 // Upgrade any old intrinsic calls in the function. 3507 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3508 E = UpgradedIntrinsics.end(); I != E; ++I) { 3509 if (I->first != I->second) { 3510 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3511 UI != UE;) { 3512 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3513 UpgradeIntrinsicCall(CI, I->second); 3514 } 3515 } 3516 } 3517 3518 // Bring in any functions that this function forward-referenced via 3519 // blockaddresses. 3520 return materializeForwardReferencedFunctions(); 3521 } 3522 3523 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3524 const Function *F = dyn_cast<Function>(GV); 3525 if (!F || F->isDeclaration()) 3526 return false; 3527 3528 // Dematerializing F would leave dangling references that wouldn't be 3529 // reconnected on re-materialization. 3530 if (BlockAddressesTaken.count(F)) 3531 return false; 3532 3533 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3534 } 3535 3536 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3537 Function *F = dyn_cast<Function>(GV); 3538 // If this function isn't dematerializable, this is a noop. 3539 if (!F || !isDematerializable(F)) 3540 return; 3541 3542 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3543 3544 // Just forget the function body, we can remat it later. 3545 F->dropAllReferences(); 3546 F->setIsMaterializable(true); 3547 } 3548 3549 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3550 assert(M == TheModule && 3551 "Can only Materialize the Module this BitcodeReader is attached to."); 3552 3553 // Promise to materialize all forward references. 3554 WillMaterializeAllForwardRefs = true; 3555 3556 // Iterate over the module, deserializing any functions that are still on 3557 // disk. 3558 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3559 F != E; ++F) { 3560 if (std::error_code EC = materialize(F)) 3561 return EC; 3562 } 3563 // At this point, if there are any function bodies, the current bit is 3564 // pointing to the END_BLOCK record after them. Now make sure the rest 3565 // of the bits in the module have been read. 3566 if (NextUnreadBit) 3567 ParseModule(true); 3568 3569 // Check that all block address forward references got resolved (as we 3570 // promised above). 3571 if (!BasicBlockFwdRefs.empty()) 3572 return Error("Never resolved function from blockaddress"); 3573 3574 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3575 // delete the old functions to clean up. We can't do this unless the entire 3576 // module is materialized because there could always be another function body 3577 // with calls to the old function. 3578 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3579 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3580 if (I->first != I->second) { 3581 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3582 UI != UE;) { 3583 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3584 UpgradeIntrinsicCall(CI, I->second); 3585 } 3586 if (!I->first->use_empty()) 3587 I->first->replaceAllUsesWith(I->second); 3588 I->first->eraseFromParent(); 3589 } 3590 } 3591 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3592 3593 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3594 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3595 3596 UpgradeDebugInfo(*M); 3597 return std::error_code(); 3598 } 3599 3600 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3601 return IdentifiedStructTypes; 3602 } 3603 3604 std::error_code BitcodeReader::InitStream() { 3605 if (LazyStreamer) 3606 return InitLazyStream(); 3607 return InitStreamFromBuffer(); 3608 } 3609 3610 std::error_code BitcodeReader::InitStreamFromBuffer() { 3611 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3612 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3613 3614 if (Buffer->getBufferSize() & 3) 3615 return Error("Invalid bitcode signature"); 3616 3617 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3618 // The magic number is 0x0B17C0DE stored in little endian. 3619 if (isBitcodeWrapper(BufPtr, BufEnd)) 3620 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3621 return Error("Invalid bitcode wrapper header"); 3622 3623 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3624 Stream.init(&*StreamFile); 3625 3626 return std::error_code(); 3627 } 3628 3629 std::error_code BitcodeReader::InitLazyStream() { 3630 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3631 // see it. 3632 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3633 StreamingMemoryObject &Bytes = *OwnedBytes; 3634 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3635 Stream.init(&*StreamFile); 3636 3637 unsigned char buf[16]; 3638 if (Bytes.readBytes(buf, 16, 0) != 16) 3639 return Error("Invalid bitcode signature"); 3640 3641 if (!isBitcode(buf, buf + 16)) 3642 return Error("Invalid bitcode signature"); 3643 3644 if (isBitcodeWrapper(buf, buf + 4)) { 3645 const unsigned char *bitcodeStart = buf; 3646 const unsigned char *bitcodeEnd = buf + 16; 3647 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3648 Bytes.dropLeadingBytes(bitcodeStart - buf); 3649 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3650 } 3651 return std::error_code(); 3652 } 3653 3654 namespace { 3655 class BitcodeErrorCategoryType : public std::error_category { 3656 const char *name() const LLVM_NOEXCEPT override { 3657 return "llvm.bitcode"; 3658 } 3659 std::string message(int IE) const override { 3660 BitcodeError E = static_cast<BitcodeError>(IE); 3661 switch (E) { 3662 case BitcodeError::InvalidBitcodeSignature: 3663 return "Invalid bitcode signature"; 3664 case BitcodeError::CorruptedBitcode: 3665 return "Corrupted bitcode"; 3666 } 3667 llvm_unreachable("Unknown error type!"); 3668 } 3669 }; 3670 } 3671 3672 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3673 3674 const std::error_category &llvm::BitcodeErrorCategory() { 3675 return *ErrorCategory; 3676 } 3677 3678 //===----------------------------------------------------------------------===// 3679 // External interface 3680 //===----------------------------------------------------------------------===// 3681 3682 /// \brief Get a lazy one-at-time loading module from bitcode. 3683 /// 3684 /// This isn't always used in a lazy context. In particular, it's also used by 3685 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3686 /// in forward-referenced functions from block address references. 3687 /// 3688 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3689 /// materialize everything -- in particular, if this isn't truly lazy. 3690 static ErrorOr<Module *> 3691 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3692 LLVMContext &Context, bool WillMaterializeAll, 3693 DiagnosticHandlerFunction DiagnosticHandler) { 3694 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3695 BitcodeReader *R = 3696 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3697 M->setMaterializer(R); 3698 3699 auto cleanupOnError = [&](std::error_code EC) { 3700 R->releaseBuffer(); // Never take ownership on error. 3701 delete M; // Also deletes R. 3702 return EC; 3703 }; 3704 3705 if (std::error_code EC = R->ParseBitcodeInto(M)) 3706 return cleanupOnError(EC); 3707 3708 if (!WillMaterializeAll) 3709 // Resolve forward references from blockaddresses. 3710 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3711 return cleanupOnError(EC); 3712 3713 Buffer.release(); // The BitcodeReader owns it now. 3714 return M; 3715 } 3716 3717 ErrorOr<Module *> 3718 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3719 LLVMContext &Context, 3720 DiagnosticHandlerFunction DiagnosticHandler) { 3721 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3722 DiagnosticHandler); 3723 } 3724 3725 ErrorOr<std::unique_ptr<Module>> 3726 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3727 LLVMContext &Context, 3728 DiagnosticHandlerFunction DiagnosticHandler) { 3729 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3730 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3731 M->setMaterializer(R); 3732 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3733 return EC; 3734 return std::move(M); 3735 } 3736 3737 ErrorOr<Module *> 3738 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3739 DiagnosticHandlerFunction DiagnosticHandler) { 3740 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3741 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3742 std::move(Buf), Context, true, DiagnosticHandler); 3743 if (!ModuleOrErr) 3744 return ModuleOrErr; 3745 Module *M = ModuleOrErr.get(); 3746 // Read in the entire module, and destroy the BitcodeReader. 3747 if (std::error_code EC = M->materializeAllPermanently()) { 3748 delete M; 3749 return EC; 3750 } 3751 3752 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3753 // written. We must defer until the Module has been fully materialized. 3754 3755 return M; 3756 } 3757 3758 std::string 3759 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3760 DiagnosticHandlerFunction DiagnosticHandler) { 3761 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3762 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3763 DiagnosticHandler); 3764 ErrorOr<std::string> Triple = R->parseTriple(); 3765 if (Triple.getError()) 3766 return ""; 3767 return Triple.get(); 3768 } 3769