1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Bitcode/BitstreamReader.h" 26 #include "llvm/Bitcode/LLVMBitCodes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/DiagnosticPrinter.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalIndirectSymbol.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/GVMaterializer.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstIterator.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/OperandTraits.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/TrackingMDRef.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/ValueHandle.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 /// Helper to read the header common to all bitcode files. 108 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 109 // Sniff for the signature. 110 if (!Stream.canSkipToPos(4) || 111 Stream.Read(8) != 'B' || 112 Stream.Read(8) != 'C' || 113 Stream.Read(4) != 0x0 || 114 Stream.Read(4) != 0xC || 115 Stream.Read(4) != 0xE || 116 Stream.Read(4) != 0xD) 117 return false; 118 return true; 119 } 120 121 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 122 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 123 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 124 125 if (Buffer.getBufferSize() & 3) 126 return error("Invalid bitcode signature"); 127 128 // If we have a wrapper header, parse it and ignore the non-bc file contents. 129 // The magic number is 0x0B17C0DE stored in little endian. 130 if (isBitcodeWrapper(BufPtr, BufEnd)) 131 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 132 return error("Invalid bitcode wrapper header"); 133 134 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 135 if (!hasValidBitcodeHeader(Stream)) 136 return error("Invalid bitcode signature"); 137 138 return std::move(Stream); 139 } 140 141 /// Convert a string from a record into an std::string, return true on failure. 142 template <typename StrTy> 143 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 144 StrTy &Result) { 145 if (Idx > Record.size()) 146 return true; 147 148 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 149 Result += (char)Record[i]; 150 return false; 151 } 152 153 // Strip all the TBAA attachment for the module. 154 void stripTBAA(Module *M) { 155 for (auto &F : *M) { 156 if (F.isMaterializable()) 157 continue; 158 for (auto &I : instructions(F)) 159 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 160 } 161 } 162 163 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 164 /// "epoch" encoded in the bitcode, and return the producer name if any. 165 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 166 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 167 return error("Invalid record"); 168 169 // Read all the records. 170 SmallVector<uint64_t, 64> Record; 171 172 std::string ProducerIdentification; 173 174 while (true) { 175 BitstreamEntry Entry = Stream.advance(); 176 177 switch (Entry.Kind) { 178 default: 179 case BitstreamEntry::Error: 180 return error("Malformed block"); 181 case BitstreamEntry::EndBlock: 182 return ProducerIdentification; 183 case BitstreamEntry::Record: 184 // The interesting case. 185 break; 186 } 187 188 // Read a record. 189 Record.clear(); 190 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 191 switch (BitCode) { 192 default: // Default behavior: reject 193 return error("Invalid value"); 194 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 195 convertToString(Record, 0, ProducerIdentification); 196 break; 197 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 198 unsigned epoch = (unsigned)Record[0]; 199 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 200 return error( 201 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 202 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 203 } 204 } 205 } 206 } 207 } 208 209 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 210 // We expect a number of well-defined blocks, though we don't necessarily 211 // need to understand them all. 212 while (true) { 213 if (Stream.AtEndOfStream()) 214 return ""; 215 216 BitstreamEntry Entry = Stream.advance(); 217 switch (Entry.Kind) { 218 case BitstreamEntry::EndBlock: 219 case BitstreamEntry::Error: 220 return error("Malformed block"); 221 222 case BitstreamEntry::SubBlock: 223 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 224 return readIdentificationBlock(Stream); 225 226 // Ignore other sub-blocks. 227 if (Stream.SkipBlock()) 228 return error("Malformed block"); 229 continue; 230 case BitstreamEntry::Record: 231 Stream.skipRecord(Entry.ID); 232 continue; 233 } 234 } 235 } 236 237 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 238 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 239 return error("Invalid record"); 240 241 SmallVector<uint64_t, 64> Record; 242 // Read all the records for this module. 243 244 while (true) { 245 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 246 247 switch (Entry.Kind) { 248 case BitstreamEntry::SubBlock: // Handled for us already. 249 case BitstreamEntry::Error: 250 return error("Malformed block"); 251 case BitstreamEntry::EndBlock: 252 return false; 253 case BitstreamEntry::Record: 254 // The interesting case. 255 break; 256 } 257 258 // Read a record. 259 switch (Stream.readRecord(Entry.ID, Record)) { 260 default: 261 break; // Default behavior, ignore unknown content. 262 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 263 std::string S; 264 if (convertToString(Record, 0, S)) 265 return error("Invalid record"); 266 // Check for the i386 and other (x86_64, ARM) conventions 267 if (S.find("__DATA, __objc_catlist") != std::string::npos || 268 S.find("__OBJC,__category") != std::string::npos) 269 return true; 270 break; 271 } 272 } 273 Record.clear(); 274 } 275 llvm_unreachable("Exit infinite loop"); 276 } 277 278 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 279 // We expect a number of well-defined blocks, though we don't necessarily 280 // need to understand them all. 281 while (true) { 282 BitstreamEntry Entry = Stream.advance(); 283 284 switch (Entry.Kind) { 285 case BitstreamEntry::Error: 286 return error("Malformed block"); 287 case BitstreamEntry::EndBlock: 288 return false; 289 290 case BitstreamEntry::SubBlock: 291 if (Entry.ID == bitc::MODULE_BLOCK_ID) 292 return hasObjCCategoryInModule(Stream); 293 294 // Ignore other sub-blocks. 295 if (Stream.SkipBlock()) 296 return error("Malformed block"); 297 continue; 298 299 case BitstreamEntry::Record: 300 Stream.skipRecord(Entry.ID); 301 continue; 302 } 303 } 304 } 305 306 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 307 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 308 return error("Invalid record"); 309 310 SmallVector<uint64_t, 64> Record; 311 312 std::string Triple; 313 314 // Read all the records for this module. 315 while (true) { 316 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 317 318 switch (Entry.Kind) { 319 case BitstreamEntry::SubBlock: // Handled for us already. 320 case BitstreamEntry::Error: 321 return error("Malformed block"); 322 case BitstreamEntry::EndBlock: 323 return Triple; 324 case BitstreamEntry::Record: 325 // The interesting case. 326 break; 327 } 328 329 // Read a record. 330 switch (Stream.readRecord(Entry.ID, Record)) { 331 default: break; // Default behavior, ignore unknown content. 332 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 333 std::string S; 334 if (convertToString(Record, 0, S)) 335 return error("Invalid record"); 336 Triple = S; 337 break; 338 } 339 } 340 Record.clear(); 341 } 342 llvm_unreachable("Exit infinite loop"); 343 } 344 345 Expected<std::string> readTriple(BitstreamCursor &Stream) { 346 // We expect a number of well-defined blocks, though we don't necessarily 347 // need to understand them all. 348 while (true) { 349 BitstreamEntry Entry = Stream.advance(); 350 351 switch (Entry.Kind) { 352 case BitstreamEntry::Error: 353 return error("Malformed block"); 354 case BitstreamEntry::EndBlock: 355 return ""; 356 357 case BitstreamEntry::SubBlock: 358 if (Entry.ID == bitc::MODULE_BLOCK_ID) 359 return readModuleTriple(Stream); 360 361 // Ignore other sub-blocks. 362 if (Stream.SkipBlock()) 363 return error("Malformed block"); 364 continue; 365 366 case BitstreamEntry::Record: 367 Stream.skipRecord(Entry.ID); 368 continue; 369 } 370 } 371 } 372 373 class BitcodeReaderBase { 374 protected: 375 BitcodeReaderBase(BitstreamCursor Stream) : Stream(std::move(Stream)) { 376 this->Stream.setBlockInfo(&BlockInfo); 377 } 378 379 BitstreamBlockInfo BlockInfo; 380 BitstreamCursor Stream; 381 382 bool readBlockInfo(); 383 384 // Contains an arbitrary and optional string identifying the bitcode producer 385 std::string ProducerIdentification; 386 387 Error error(const Twine &Message); 388 }; 389 390 Error BitcodeReaderBase::error(const Twine &Message) { 391 std::string FullMsg = Message.str(); 392 if (!ProducerIdentification.empty()) 393 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 394 LLVM_VERSION_STRING "')"; 395 return ::error(FullMsg); 396 } 397 398 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 399 LLVMContext &Context; 400 Module *TheModule = nullptr; 401 // Next offset to start scanning for lazy parsing of function bodies. 402 uint64_t NextUnreadBit = 0; 403 // Last function offset found in the VST. 404 uint64_t LastFunctionBlockBit = 0; 405 bool SeenValueSymbolTable = false; 406 uint64_t VSTOffset = 0; 407 408 std::vector<Type*> TypeList; 409 BitcodeReaderValueList ValueList; 410 Optional<MetadataLoader> MDLoader; 411 std::vector<Comdat *> ComdatList; 412 SmallVector<Instruction *, 64> InstructionList; 413 414 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 415 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 416 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 417 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 418 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 419 420 /// The set of attributes by index. Index zero in the file is for null, and 421 /// is thus not represented here. As such all indices are off by one. 422 std::vector<AttributeSet> MAttributes; 423 424 /// The set of attribute groups. 425 std::map<unsigned, AttributeSet> MAttributeGroups; 426 427 /// While parsing a function body, this is a list of the basic blocks for the 428 /// function. 429 std::vector<BasicBlock*> FunctionBBs; 430 431 // When reading the module header, this list is populated with functions that 432 // have bodies later in the file. 433 std::vector<Function*> FunctionsWithBodies; 434 435 // When intrinsic functions are encountered which require upgrading they are 436 // stored here with their replacement function. 437 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 438 UpdatedIntrinsicMap UpgradedIntrinsics; 439 // Intrinsics which were remangled because of types rename 440 UpdatedIntrinsicMap RemangledIntrinsics; 441 442 // Several operations happen after the module header has been read, but 443 // before function bodies are processed. This keeps track of whether 444 // we've done this yet. 445 bool SeenFirstFunctionBody = false; 446 447 /// When function bodies are initially scanned, this map contains info about 448 /// where to find deferred function body in the stream. 449 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 450 451 /// When Metadata block is initially scanned when parsing the module, we may 452 /// choose to defer parsing of the metadata. This vector contains info about 453 /// which Metadata blocks are deferred. 454 std::vector<uint64_t> DeferredMetadataInfo; 455 456 /// These are basic blocks forward-referenced by block addresses. They are 457 /// inserted lazily into functions when they're loaded. The basic block ID is 458 /// its index into the vector. 459 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 460 std::deque<Function *> BasicBlockFwdRefQueue; 461 462 /// Indicates that we are using a new encoding for instruction operands where 463 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 464 /// instruction number, for a more compact encoding. Some instruction 465 /// operands are not relative to the instruction ID: basic block numbers, and 466 /// types. Once the old style function blocks have been phased out, we would 467 /// not need this flag. 468 bool UseRelativeIDs = false; 469 470 /// True if all functions will be materialized, negating the need to process 471 /// (e.g.) blockaddress forward references. 472 bool WillMaterializeAllForwardRefs = false; 473 474 bool StripDebugInfo = false; 475 TBAAVerifier TBAAVerifyHelper; 476 477 std::vector<std::string> BundleTags; 478 479 public: 480 BitcodeReader(BitstreamCursor Stream, StringRef ProducerIdentification, 481 LLVMContext &Context); 482 483 Error materializeForwardReferencedFunctions(); 484 485 Error materialize(GlobalValue *GV) override; 486 Error materializeModule() override; 487 std::vector<StructType *> getIdentifiedStructTypes() const override; 488 489 /// \brief Main interface to parsing a bitcode buffer. 490 /// \returns true if an error occurred. 491 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 492 bool IsImporting = false); 493 494 static uint64_t decodeSignRotatedValue(uint64_t V); 495 496 /// Materialize any deferred Metadata block. 497 Error materializeMetadata() override; 498 499 void setStripDebugInfo() override; 500 501 private: 502 std::vector<StructType *> IdentifiedStructTypes; 503 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 504 StructType *createIdentifiedStructType(LLVMContext &Context); 505 506 Type *getTypeByID(unsigned ID); 507 508 Value *getFnValueByID(unsigned ID, Type *Ty) { 509 if (Ty && Ty->isMetadataTy()) 510 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 511 return ValueList.getValueFwdRef(ID, Ty); 512 } 513 514 Metadata *getFnMetadataByID(unsigned ID) { 515 return MDLoader->getMetadataFwdRefOrLoad(ID); 516 } 517 518 BasicBlock *getBasicBlock(unsigned ID) const { 519 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 520 return FunctionBBs[ID]; 521 } 522 523 AttributeSet getAttributes(unsigned i) const { 524 if (i-1 < MAttributes.size()) 525 return MAttributes[i-1]; 526 return AttributeSet(); 527 } 528 529 /// Read a value/type pair out of the specified record from slot 'Slot'. 530 /// Increment Slot past the number of slots used in the record. Return true on 531 /// failure. 532 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 533 unsigned InstNum, Value *&ResVal) { 534 if (Slot == Record.size()) return true; 535 unsigned ValNo = (unsigned)Record[Slot++]; 536 // Adjust the ValNo, if it was encoded relative to the InstNum. 537 if (UseRelativeIDs) 538 ValNo = InstNum - ValNo; 539 if (ValNo < InstNum) { 540 // If this is not a forward reference, just return the value we already 541 // have. 542 ResVal = getFnValueByID(ValNo, nullptr); 543 return ResVal == nullptr; 544 } 545 if (Slot == Record.size()) 546 return true; 547 548 unsigned TypeNo = (unsigned)Record[Slot++]; 549 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 550 return ResVal == nullptr; 551 } 552 553 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 554 /// past the number of slots used by the value in the record. Return true if 555 /// there is an error. 556 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 557 unsigned InstNum, Type *Ty, Value *&ResVal) { 558 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 559 return true; 560 // All values currently take a single record slot. 561 ++Slot; 562 return false; 563 } 564 565 /// Like popValue, but does not increment the Slot number. 566 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 567 unsigned InstNum, Type *Ty, Value *&ResVal) { 568 ResVal = getValue(Record, Slot, InstNum, Ty); 569 return ResVal == nullptr; 570 } 571 572 /// Version of getValue that returns ResVal directly, or 0 if there is an 573 /// error. 574 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 575 unsigned InstNum, Type *Ty) { 576 if (Slot == Record.size()) return nullptr; 577 unsigned ValNo = (unsigned)Record[Slot]; 578 // Adjust the ValNo, if it was encoded relative to the InstNum. 579 if (UseRelativeIDs) 580 ValNo = InstNum - ValNo; 581 return getFnValueByID(ValNo, Ty); 582 } 583 584 /// Like getValue, but decodes signed VBRs. 585 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 586 unsigned InstNum, Type *Ty) { 587 if (Slot == Record.size()) return nullptr; 588 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 589 // Adjust the ValNo, if it was encoded relative to the InstNum. 590 if (UseRelativeIDs) 591 ValNo = InstNum - ValNo; 592 return getFnValueByID(ValNo, Ty); 593 } 594 595 /// Converts alignment exponent (i.e. power of two (or zero)) to the 596 /// corresponding alignment to use. If alignment is too large, returns 597 /// a corresponding error code. 598 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 599 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 600 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 601 Error parseAttributeBlock(); 602 Error parseAttributeGroupBlock(); 603 Error parseTypeTable(); 604 Error parseTypeTableBody(); 605 Error parseOperandBundleTags(); 606 607 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 608 unsigned NameIndex, Triple &TT); 609 Error parseValueSymbolTable(uint64_t Offset = 0); 610 Error parseConstants(); 611 Error rememberAndSkipFunctionBodies(); 612 Error rememberAndSkipFunctionBody(); 613 /// Save the positions of the Metadata blocks and skip parsing the blocks. 614 Error rememberAndSkipMetadata(); 615 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 616 Error parseFunctionBody(Function *F); 617 Error globalCleanup(); 618 Error resolveGlobalAndIndirectSymbolInits(); 619 Error parseUseLists(); 620 Error findFunctionInStream( 621 Function *F, 622 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 623 }; 624 625 /// Class to manage reading and parsing function summary index bitcode 626 /// files/sections. 627 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 628 /// The module index built during parsing. 629 ModuleSummaryIndex &TheIndex; 630 631 /// Indicates whether we have encountered a global value summary section 632 /// yet during parsing. 633 bool SeenGlobalValSummary = false; 634 635 /// Indicates whether we have already parsed the VST, used for error checking. 636 bool SeenValueSymbolTable = false; 637 638 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 639 /// Used to enable on-demand parsing of the VST. 640 uint64_t VSTOffset = 0; 641 642 // Map to save ValueId to GUID association that was recorded in the 643 // ValueSymbolTable. It is used after the VST is parsed to convert 644 // call graph edges read from the function summary from referencing 645 // callees by their ValueId to using the GUID instead, which is how 646 // they are recorded in the summary index being built. 647 // We save a second GUID which is the same as the first one, but ignoring the 648 // linkage, i.e. for value other than local linkage they are identical. 649 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 650 ValueIdToCallGraphGUIDMap; 651 652 /// Map populated during module path string table parsing, from the 653 /// module ID to a string reference owned by the index's module 654 /// path string table, used to correlate with combined index 655 /// summary records. 656 DenseMap<uint64_t, StringRef> ModuleIdMap; 657 658 /// Original source file name recorded in a bitcode record. 659 std::string SourceFileName; 660 661 public: 662 ModuleSummaryIndexBitcodeReader( 663 BitstreamCursor Stream, ModuleSummaryIndex &TheIndex); 664 665 Error parseModule(StringRef ModulePath); 666 667 private: 668 Error parseValueSymbolTable( 669 uint64_t Offset, 670 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 671 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 672 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 673 bool IsOldProfileFormat, 674 bool HasProfile); 675 Error parseEntireSummary(StringRef ModulePath); 676 Error parseModuleStringTable(); 677 678 std::pair<GlobalValue::GUID, GlobalValue::GUID> 679 getGUIDFromValueId(unsigned ValueId); 680 }; 681 682 } // end anonymous namespace 683 684 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 685 Error Err) { 686 if (Err) { 687 std::error_code EC; 688 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 689 EC = EIB.convertToErrorCode(); 690 Ctx.emitError(EIB.message()); 691 }); 692 return EC; 693 } 694 return std::error_code(); 695 } 696 697 BitcodeReader::BitcodeReader(BitstreamCursor Stream, 698 StringRef ProducerIdentification, 699 LLVMContext &Context) 700 : BitcodeReaderBase(std::move(Stream)), Context(Context), 701 ValueList(Context) { 702 this->ProducerIdentification = ProducerIdentification; 703 } 704 705 Error BitcodeReader::materializeForwardReferencedFunctions() { 706 if (WillMaterializeAllForwardRefs) 707 return Error::success(); 708 709 // Prevent recursion. 710 WillMaterializeAllForwardRefs = true; 711 712 while (!BasicBlockFwdRefQueue.empty()) { 713 Function *F = BasicBlockFwdRefQueue.front(); 714 BasicBlockFwdRefQueue.pop_front(); 715 assert(F && "Expected valid function"); 716 if (!BasicBlockFwdRefs.count(F)) 717 // Already materialized. 718 continue; 719 720 // Check for a function that isn't materializable to prevent an infinite 721 // loop. When parsing a blockaddress stored in a global variable, there 722 // isn't a trivial way to check if a function will have a body without a 723 // linear search through FunctionsWithBodies, so just check it here. 724 if (!F->isMaterializable()) 725 return error("Never resolved function from blockaddress"); 726 727 // Try to materialize F. 728 if (Error Err = materialize(F)) 729 return Err; 730 } 731 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 732 733 // Reset state. 734 WillMaterializeAllForwardRefs = false; 735 return Error::success(); 736 } 737 738 //===----------------------------------------------------------------------===// 739 // Helper functions to implement forward reference resolution, etc. 740 //===----------------------------------------------------------------------===// 741 742 static bool hasImplicitComdat(size_t Val) { 743 switch (Val) { 744 default: 745 return false; 746 case 1: // Old WeakAnyLinkage 747 case 4: // Old LinkOnceAnyLinkage 748 case 10: // Old WeakODRLinkage 749 case 11: // Old LinkOnceODRLinkage 750 return true; 751 } 752 } 753 754 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 755 switch (Val) { 756 default: // Map unknown/new linkages to external 757 case 0: 758 return GlobalValue::ExternalLinkage; 759 case 2: 760 return GlobalValue::AppendingLinkage; 761 case 3: 762 return GlobalValue::InternalLinkage; 763 case 5: 764 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 765 case 6: 766 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 767 case 7: 768 return GlobalValue::ExternalWeakLinkage; 769 case 8: 770 return GlobalValue::CommonLinkage; 771 case 9: 772 return GlobalValue::PrivateLinkage; 773 case 12: 774 return GlobalValue::AvailableExternallyLinkage; 775 case 13: 776 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 777 case 14: 778 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 779 case 15: 780 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 781 case 1: // Old value with implicit comdat. 782 case 16: 783 return GlobalValue::WeakAnyLinkage; 784 case 10: // Old value with implicit comdat. 785 case 17: 786 return GlobalValue::WeakODRLinkage; 787 case 4: // Old value with implicit comdat. 788 case 18: 789 return GlobalValue::LinkOnceAnyLinkage; 790 case 11: // Old value with implicit comdat. 791 case 19: 792 return GlobalValue::LinkOnceODRLinkage; 793 } 794 } 795 796 /// Decode the flags for GlobalValue in the summary. 797 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 798 uint64_t Version) { 799 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 800 // like getDecodedLinkage() above. Any future change to the linkage enum and 801 // to getDecodedLinkage() will need to be taken into account here as above. 802 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 803 RawFlags = RawFlags >> 4; 804 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 805 // The LiveRoot flag wasn't introduced until version 3. For dead stripping 806 // to work correctly on earlier versions, we must conservatively treat all 807 // values as live. 808 bool LiveRoot = (RawFlags & 0x2) || Version < 3; 809 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, LiveRoot); 810 } 811 812 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 813 switch (Val) { 814 default: // Map unknown visibilities to default. 815 case 0: return GlobalValue::DefaultVisibility; 816 case 1: return GlobalValue::HiddenVisibility; 817 case 2: return GlobalValue::ProtectedVisibility; 818 } 819 } 820 821 static GlobalValue::DLLStorageClassTypes 822 getDecodedDLLStorageClass(unsigned Val) { 823 switch (Val) { 824 default: // Map unknown values to default. 825 case 0: return GlobalValue::DefaultStorageClass; 826 case 1: return GlobalValue::DLLImportStorageClass; 827 case 2: return GlobalValue::DLLExportStorageClass; 828 } 829 } 830 831 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 832 switch (Val) { 833 case 0: return GlobalVariable::NotThreadLocal; 834 default: // Map unknown non-zero value to general dynamic. 835 case 1: return GlobalVariable::GeneralDynamicTLSModel; 836 case 2: return GlobalVariable::LocalDynamicTLSModel; 837 case 3: return GlobalVariable::InitialExecTLSModel; 838 case 4: return GlobalVariable::LocalExecTLSModel; 839 } 840 } 841 842 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 843 switch (Val) { 844 default: // Map unknown to UnnamedAddr::None. 845 case 0: return GlobalVariable::UnnamedAddr::None; 846 case 1: return GlobalVariable::UnnamedAddr::Global; 847 case 2: return GlobalVariable::UnnamedAddr::Local; 848 } 849 } 850 851 static int getDecodedCastOpcode(unsigned Val) { 852 switch (Val) { 853 default: return -1; 854 case bitc::CAST_TRUNC : return Instruction::Trunc; 855 case bitc::CAST_ZEXT : return Instruction::ZExt; 856 case bitc::CAST_SEXT : return Instruction::SExt; 857 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 858 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 859 case bitc::CAST_UITOFP : return Instruction::UIToFP; 860 case bitc::CAST_SITOFP : return Instruction::SIToFP; 861 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 862 case bitc::CAST_FPEXT : return Instruction::FPExt; 863 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 864 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 865 case bitc::CAST_BITCAST : return Instruction::BitCast; 866 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 867 } 868 } 869 870 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 871 bool IsFP = Ty->isFPOrFPVectorTy(); 872 // BinOps are only valid for int/fp or vector of int/fp types 873 if (!IsFP && !Ty->isIntOrIntVectorTy()) 874 return -1; 875 876 switch (Val) { 877 default: 878 return -1; 879 case bitc::BINOP_ADD: 880 return IsFP ? Instruction::FAdd : Instruction::Add; 881 case bitc::BINOP_SUB: 882 return IsFP ? Instruction::FSub : Instruction::Sub; 883 case bitc::BINOP_MUL: 884 return IsFP ? Instruction::FMul : Instruction::Mul; 885 case bitc::BINOP_UDIV: 886 return IsFP ? -1 : Instruction::UDiv; 887 case bitc::BINOP_SDIV: 888 return IsFP ? Instruction::FDiv : Instruction::SDiv; 889 case bitc::BINOP_UREM: 890 return IsFP ? -1 : Instruction::URem; 891 case bitc::BINOP_SREM: 892 return IsFP ? Instruction::FRem : Instruction::SRem; 893 case bitc::BINOP_SHL: 894 return IsFP ? -1 : Instruction::Shl; 895 case bitc::BINOP_LSHR: 896 return IsFP ? -1 : Instruction::LShr; 897 case bitc::BINOP_ASHR: 898 return IsFP ? -1 : Instruction::AShr; 899 case bitc::BINOP_AND: 900 return IsFP ? -1 : Instruction::And; 901 case bitc::BINOP_OR: 902 return IsFP ? -1 : Instruction::Or; 903 case bitc::BINOP_XOR: 904 return IsFP ? -1 : Instruction::Xor; 905 } 906 } 907 908 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 909 switch (Val) { 910 default: return AtomicRMWInst::BAD_BINOP; 911 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 912 case bitc::RMW_ADD: return AtomicRMWInst::Add; 913 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 914 case bitc::RMW_AND: return AtomicRMWInst::And; 915 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 916 case bitc::RMW_OR: return AtomicRMWInst::Or; 917 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 918 case bitc::RMW_MAX: return AtomicRMWInst::Max; 919 case bitc::RMW_MIN: return AtomicRMWInst::Min; 920 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 921 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 922 } 923 } 924 925 static AtomicOrdering getDecodedOrdering(unsigned Val) { 926 switch (Val) { 927 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 928 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 929 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 930 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 931 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 932 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 933 default: // Map unknown orderings to sequentially-consistent. 934 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 935 } 936 } 937 938 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 939 switch (Val) { 940 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 941 default: // Map unknown scopes to cross-thread. 942 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 943 } 944 } 945 946 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 947 switch (Val) { 948 default: // Map unknown selection kinds to any. 949 case bitc::COMDAT_SELECTION_KIND_ANY: 950 return Comdat::Any; 951 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 952 return Comdat::ExactMatch; 953 case bitc::COMDAT_SELECTION_KIND_LARGEST: 954 return Comdat::Largest; 955 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 956 return Comdat::NoDuplicates; 957 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 958 return Comdat::SameSize; 959 } 960 } 961 962 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 963 FastMathFlags FMF; 964 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 965 FMF.setUnsafeAlgebra(); 966 if (0 != (Val & FastMathFlags::NoNaNs)) 967 FMF.setNoNaNs(); 968 if (0 != (Val & FastMathFlags::NoInfs)) 969 FMF.setNoInfs(); 970 if (0 != (Val & FastMathFlags::NoSignedZeros)) 971 FMF.setNoSignedZeros(); 972 if (0 != (Val & FastMathFlags::AllowReciprocal)) 973 FMF.setAllowReciprocal(); 974 return FMF; 975 } 976 977 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 978 switch (Val) { 979 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 980 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 981 } 982 } 983 984 985 Type *BitcodeReader::getTypeByID(unsigned ID) { 986 // The type table size is always specified correctly. 987 if (ID >= TypeList.size()) 988 return nullptr; 989 990 if (Type *Ty = TypeList[ID]) 991 return Ty; 992 993 // If we have a forward reference, the only possible case is when it is to a 994 // named struct. Just create a placeholder for now. 995 return TypeList[ID] = createIdentifiedStructType(Context); 996 } 997 998 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 999 StringRef Name) { 1000 auto *Ret = StructType::create(Context, Name); 1001 IdentifiedStructTypes.push_back(Ret); 1002 return Ret; 1003 } 1004 1005 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1006 auto *Ret = StructType::create(Context); 1007 IdentifiedStructTypes.push_back(Ret); 1008 return Ret; 1009 } 1010 1011 //===----------------------------------------------------------------------===// 1012 // Functions for parsing blocks from the bitcode file 1013 //===----------------------------------------------------------------------===// 1014 1015 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1016 switch (Val) { 1017 case Attribute::EndAttrKinds: 1018 llvm_unreachable("Synthetic enumerators which should never get here"); 1019 1020 case Attribute::None: return 0; 1021 case Attribute::ZExt: return 1 << 0; 1022 case Attribute::SExt: return 1 << 1; 1023 case Attribute::NoReturn: return 1 << 2; 1024 case Attribute::InReg: return 1 << 3; 1025 case Attribute::StructRet: return 1 << 4; 1026 case Attribute::NoUnwind: return 1 << 5; 1027 case Attribute::NoAlias: return 1 << 6; 1028 case Attribute::ByVal: return 1 << 7; 1029 case Attribute::Nest: return 1 << 8; 1030 case Attribute::ReadNone: return 1 << 9; 1031 case Attribute::ReadOnly: return 1 << 10; 1032 case Attribute::NoInline: return 1 << 11; 1033 case Attribute::AlwaysInline: return 1 << 12; 1034 case Attribute::OptimizeForSize: return 1 << 13; 1035 case Attribute::StackProtect: return 1 << 14; 1036 case Attribute::StackProtectReq: return 1 << 15; 1037 case Attribute::Alignment: return 31 << 16; 1038 case Attribute::NoCapture: return 1 << 21; 1039 case Attribute::NoRedZone: return 1 << 22; 1040 case Attribute::NoImplicitFloat: return 1 << 23; 1041 case Attribute::Naked: return 1 << 24; 1042 case Attribute::InlineHint: return 1 << 25; 1043 case Attribute::StackAlignment: return 7 << 26; 1044 case Attribute::ReturnsTwice: return 1 << 29; 1045 case Attribute::UWTable: return 1 << 30; 1046 case Attribute::NonLazyBind: return 1U << 31; 1047 case Attribute::SanitizeAddress: return 1ULL << 32; 1048 case Attribute::MinSize: return 1ULL << 33; 1049 case Attribute::NoDuplicate: return 1ULL << 34; 1050 case Attribute::StackProtectStrong: return 1ULL << 35; 1051 case Attribute::SanitizeThread: return 1ULL << 36; 1052 case Attribute::SanitizeMemory: return 1ULL << 37; 1053 case Attribute::NoBuiltin: return 1ULL << 38; 1054 case Attribute::Returned: return 1ULL << 39; 1055 case Attribute::Cold: return 1ULL << 40; 1056 case Attribute::Builtin: return 1ULL << 41; 1057 case Attribute::OptimizeNone: return 1ULL << 42; 1058 case Attribute::InAlloca: return 1ULL << 43; 1059 case Attribute::NonNull: return 1ULL << 44; 1060 case Attribute::JumpTable: return 1ULL << 45; 1061 case Attribute::Convergent: return 1ULL << 46; 1062 case Attribute::SafeStack: return 1ULL << 47; 1063 case Attribute::NoRecurse: return 1ULL << 48; 1064 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1065 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1066 case Attribute::SwiftSelf: return 1ULL << 51; 1067 case Attribute::SwiftError: return 1ULL << 52; 1068 case Attribute::WriteOnly: return 1ULL << 53; 1069 case Attribute::Dereferenceable: 1070 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1071 break; 1072 case Attribute::DereferenceableOrNull: 1073 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1074 "format"); 1075 break; 1076 case Attribute::ArgMemOnly: 1077 llvm_unreachable("argmemonly attribute not supported in raw format"); 1078 break; 1079 case Attribute::AllocSize: 1080 llvm_unreachable("allocsize not supported in raw format"); 1081 break; 1082 } 1083 llvm_unreachable("Unsupported attribute type"); 1084 } 1085 1086 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1087 if (!Val) return; 1088 1089 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1090 I = Attribute::AttrKind(I + 1)) { 1091 if (I == Attribute::Dereferenceable || 1092 I == Attribute::DereferenceableOrNull || 1093 I == Attribute::ArgMemOnly || 1094 I == Attribute::AllocSize) 1095 continue; 1096 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1097 if (I == Attribute::Alignment) 1098 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1099 else if (I == Attribute::StackAlignment) 1100 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1101 else 1102 B.addAttribute(I); 1103 } 1104 } 1105 } 1106 1107 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1108 /// been decoded from the given integer. This function must stay in sync with 1109 /// 'encodeLLVMAttributesForBitcode'. 1110 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1111 uint64_t EncodedAttrs) { 1112 // FIXME: Remove in 4.0. 1113 1114 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1115 // the bits above 31 down by 11 bits. 1116 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1117 assert((!Alignment || isPowerOf2_32(Alignment)) && 1118 "Alignment must be a power of two."); 1119 1120 if (Alignment) 1121 B.addAlignmentAttr(Alignment); 1122 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1123 (EncodedAttrs & 0xffff)); 1124 } 1125 1126 Error BitcodeReader::parseAttributeBlock() { 1127 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1128 return error("Invalid record"); 1129 1130 if (!MAttributes.empty()) 1131 return error("Invalid multiple blocks"); 1132 1133 SmallVector<uint64_t, 64> Record; 1134 1135 SmallVector<AttributeSet, 8> Attrs; 1136 1137 // Read all the records. 1138 while (true) { 1139 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1140 1141 switch (Entry.Kind) { 1142 case BitstreamEntry::SubBlock: // Handled for us already. 1143 case BitstreamEntry::Error: 1144 return error("Malformed block"); 1145 case BitstreamEntry::EndBlock: 1146 return Error::success(); 1147 case BitstreamEntry::Record: 1148 // The interesting case. 1149 break; 1150 } 1151 1152 // Read a record. 1153 Record.clear(); 1154 switch (Stream.readRecord(Entry.ID, Record)) { 1155 default: // Default behavior: ignore. 1156 break; 1157 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1158 // FIXME: Remove in 4.0. 1159 if (Record.size() & 1) 1160 return error("Invalid record"); 1161 1162 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1163 AttrBuilder B; 1164 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1165 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1166 } 1167 1168 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1169 Attrs.clear(); 1170 break; 1171 } 1172 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1173 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1174 Attrs.push_back(MAttributeGroups[Record[i]]); 1175 1176 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1177 Attrs.clear(); 1178 break; 1179 } 1180 } 1181 } 1182 } 1183 1184 // Returns Attribute::None on unrecognized codes. 1185 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1186 switch (Code) { 1187 default: 1188 return Attribute::None; 1189 case bitc::ATTR_KIND_ALIGNMENT: 1190 return Attribute::Alignment; 1191 case bitc::ATTR_KIND_ALWAYS_INLINE: 1192 return Attribute::AlwaysInline; 1193 case bitc::ATTR_KIND_ARGMEMONLY: 1194 return Attribute::ArgMemOnly; 1195 case bitc::ATTR_KIND_BUILTIN: 1196 return Attribute::Builtin; 1197 case bitc::ATTR_KIND_BY_VAL: 1198 return Attribute::ByVal; 1199 case bitc::ATTR_KIND_IN_ALLOCA: 1200 return Attribute::InAlloca; 1201 case bitc::ATTR_KIND_COLD: 1202 return Attribute::Cold; 1203 case bitc::ATTR_KIND_CONVERGENT: 1204 return Attribute::Convergent; 1205 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1206 return Attribute::InaccessibleMemOnly; 1207 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1208 return Attribute::InaccessibleMemOrArgMemOnly; 1209 case bitc::ATTR_KIND_INLINE_HINT: 1210 return Attribute::InlineHint; 1211 case bitc::ATTR_KIND_IN_REG: 1212 return Attribute::InReg; 1213 case bitc::ATTR_KIND_JUMP_TABLE: 1214 return Attribute::JumpTable; 1215 case bitc::ATTR_KIND_MIN_SIZE: 1216 return Attribute::MinSize; 1217 case bitc::ATTR_KIND_NAKED: 1218 return Attribute::Naked; 1219 case bitc::ATTR_KIND_NEST: 1220 return Attribute::Nest; 1221 case bitc::ATTR_KIND_NO_ALIAS: 1222 return Attribute::NoAlias; 1223 case bitc::ATTR_KIND_NO_BUILTIN: 1224 return Attribute::NoBuiltin; 1225 case bitc::ATTR_KIND_NO_CAPTURE: 1226 return Attribute::NoCapture; 1227 case bitc::ATTR_KIND_NO_DUPLICATE: 1228 return Attribute::NoDuplicate; 1229 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1230 return Attribute::NoImplicitFloat; 1231 case bitc::ATTR_KIND_NO_INLINE: 1232 return Attribute::NoInline; 1233 case bitc::ATTR_KIND_NO_RECURSE: 1234 return Attribute::NoRecurse; 1235 case bitc::ATTR_KIND_NON_LAZY_BIND: 1236 return Attribute::NonLazyBind; 1237 case bitc::ATTR_KIND_NON_NULL: 1238 return Attribute::NonNull; 1239 case bitc::ATTR_KIND_DEREFERENCEABLE: 1240 return Attribute::Dereferenceable; 1241 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1242 return Attribute::DereferenceableOrNull; 1243 case bitc::ATTR_KIND_ALLOC_SIZE: 1244 return Attribute::AllocSize; 1245 case bitc::ATTR_KIND_NO_RED_ZONE: 1246 return Attribute::NoRedZone; 1247 case bitc::ATTR_KIND_NO_RETURN: 1248 return Attribute::NoReturn; 1249 case bitc::ATTR_KIND_NO_UNWIND: 1250 return Attribute::NoUnwind; 1251 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1252 return Attribute::OptimizeForSize; 1253 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1254 return Attribute::OptimizeNone; 1255 case bitc::ATTR_KIND_READ_NONE: 1256 return Attribute::ReadNone; 1257 case bitc::ATTR_KIND_READ_ONLY: 1258 return Attribute::ReadOnly; 1259 case bitc::ATTR_KIND_RETURNED: 1260 return Attribute::Returned; 1261 case bitc::ATTR_KIND_RETURNS_TWICE: 1262 return Attribute::ReturnsTwice; 1263 case bitc::ATTR_KIND_S_EXT: 1264 return Attribute::SExt; 1265 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1266 return Attribute::StackAlignment; 1267 case bitc::ATTR_KIND_STACK_PROTECT: 1268 return Attribute::StackProtect; 1269 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1270 return Attribute::StackProtectReq; 1271 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1272 return Attribute::StackProtectStrong; 1273 case bitc::ATTR_KIND_SAFESTACK: 1274 return Attribute::SafeStack; 1275 case bitc::ATTR_KIND_STRUCT_RET: 1276 return Attribute::StructRet; 1277 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1278 return Attribute::SanitizeAddress; 1279 case bitc::ATTR_KIND_SANITIZE_THREAD: 1280 return Attribute::SanitizeThread; 1281 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1282 return Attribute::SanitizeMemory; 1283 case bitc::ATTR_KIND_SWIFT_ERROR: 1284 return Attribute::SwiftError; 1285 case bitc::ATTR_KIND_SWIFT_SELF: 1286 return Attribute::SwiftSelf; 1287 case bitc::ATTR_KIND_UW_TABLE: 1288 return Attribute::UWTable; 1289 case bitc::ATTR_KIND_WRITEONLY: 1290 return Attribute::WriteOnly; 1291 case bitc::ATTR_KIND_Z_EXT: 1292 return Attribute::ZExt; 1293 } 1294 } 1295 1296 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1297 unsigned &Alignment) { 1298 // Note: Alignment in bitcode files is incremented by 1, so that zero 1299 // can be used for default alignment. 1300 if (Exponent > Value::MaxAlignmentExponent + 1) 1301 return error("Invalid alignment value"); 1302 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1303 return Error::success(); 1304 } 1305 1306 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1307 *Kind = getAttrFromCode(Code); 1308 if (*Kind == Attribute::None) 1309 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1310 return Error::success(); 1311 } 1312 1313 Error BitcodeReader::parseAttributeGroupBlock() { 1314 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1315 return error("Invalid record"); 1316 1317 if (!MAttributeGroups.empty()) 1318 return error("Invalid multiple blocks"); 1319 1320 SmallVector<uint64_t, 64> Record; 1321 1322 // Read all the records. 1323 while (true) { 1324 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1325 1326 switch (Entry.Kind) { 1327 case BitstreamEntry::SubBlock: // Handled for us already. 1328 case BitstreamEntry::Error: 1329 return error("Malformed block"); 1330 case BitstreamEntry::EndBlock: 1331 return Error::success(); 1332 case BitstreamEntry::Record: 1333 // The interesting case. 1334 break; 1335 } 1336 1337 // Read a record. 1338 Record.clear(); 1339 switch (Stream.readRecord(Entry.ID, Record)) { 1340 default: // Default behavior: ignore. 1341 break; 1342 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1343 if (Record.size() < 3) 1344 return error("Invalid record"); 1345 1346 uint64_t GrpID = Record[0]; 1347 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1348 1349 AttrBuilder B; 1350 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1351 if (Record[i] == 0) { // Enum attribute 1352 Attribute::AttrKind Kind; 1353 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1354 return Err; 1355 1356 B.addAttribute(Kind); 1357 } else if (Record[i] == 1) { // Integer attribute 1358 Attribute::AttrKind Kind; 1359 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1360 return Err; 1361 if (Kind == Attribute::Alignment) 1362 B.addAlignmentAttr(Record[++i]); 1363 else if (Kind == Attribute::StackAlignment) 1364 B.addStackAlignmentAttr(Record[++i]); 1365 else if (Kind == Attribute::Dereferenceable) 1366 B.addDereferenceableAttr(Record[++i]); 1367 else if (Kind == Attribute::DereferenceableOrNull) 1368 B.addDereferenceableOrNullAttr(Record[++i]); 1369 else if (Kind == Attribute::AllocSize) 1370 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1371 } else { // String attribute 1372 assert((Record[i] == 3 || Record[i] == 4) && 1373 "Invalid attribute group entry"); 1374 bool HasValue = (Record[i++] == 4); 1375 SmallString<64> KindStr; 1376 SmallString<64> ValStr; 1377 1378 while (Record[i] != 0 && i != e) 1379 KindStr += Record[i++]; 1380 assert(Record[i] == 0 && "Kind string not null terminated"); 1381 1382 if (HasValue) { 1383 // Has a value associated with it. 1384 ++i; // Skip the '0' that terminates the "kind" string. 1385 while (Record[i] != 0 && i != e) 1386 ValStr += Record[i++]; 1387 assert(Record[i] == 0 && "Value string not null terminated"); 1388 } 1389 1390 B.addAttribute(KindStr.str(), ValStr.str()); 1391 } 1392 } 1393 1394 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1395 break; 1396 } 1397 } 1398 } 1399 } 1400 1401 Error BitcodeReader::parseTypeTable() { 1402 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1403 return error("Invalid record"); 1404 1405 return parseTypeTableBody(); 1406 } 1407 1408 Error BitcodeReader::parseTypeTableBody() { 1409 if (!TypeList.empty()) 1410 return error("Invalid multiple blocks"); 1411 1412 SmallVector<uint64_t, 64> Record; 1413 unsigned NumRecords = 0; 1414 1415 SmallString<64> TypeName; 1416 1417 // Read all the records for this type table. 1418 while (true) { 1419 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1420 1421 switch (Entry.Kind) { 1422 case BitstreamEntry::SubBlock: // Handled for us already. 1423 case BitstreamEntry::Error: 1424 return error("Malformed block"); 1425 case BitstreamEntry::EndBlock: 1426 if (NumRecords != TypeList.size()) 1427 return error("Malformed block"); 1428 return Error::success(); 1429 case BitstreamEntry::Record: 1430 // The interesting case. 1431 break; 1432 } 1433 1434 // Read a record. 1435 Record.clear(); 1436 Type *ResultTy = nullptr; 1437 switch (Stream.readRecord(Entry.ID, Record)) { 1438 default: 1439 return error("Invalid value"); 1440 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1441 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1442 // type list. This allows us to reserve space. 1443 if (Record.size() < 1) 1444 return error("Invalid record"); 1445 TypeList.resize(Record[0]); 1446 continue; 1447 case bitc::TYPE_CODE_VOID: // VOID 1448 ResultTy = Type::getVoidTy(Context); 1449 break; 1450 case bitc::TYPE_CODE_HALF: // HALF 1451 ResultTy = Type::getHalfTy(Context); 1452 break; 1453 case bitc::TYPE_CODE_FLOAT: // FLOAT 1454 ResultTy = Type::getFloatTy(Context); 1455 break; 1456 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1457 ResultTy = Type::getDoubleTy(Context); 1458 break; 1459 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1460 ResultTy = Type::getX86_FP80Ty(Context); 1461 break; 1462 case bitc::TYPE_CODE_FP128: // FP128 1463 ResultTy = Type::getFP128Ty(Context); 1464 break; 1465 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1466 ResultTy = Type::getPPC_FP128Ty(Context); 1467 break; 1468 case bitc::TYPE_CODE_LABEL: // LABEL 1469 ResultTy = Type::getLabelTy(Context); 1470 break; 1471 case bitc::TYPE_CODE_METADATA: // METADATA 1472 ResultTy = Type::getMetadataTy(Context); 1473 break; 1474 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1475 ResultTy = Type::getX86_MMXTy(Context); 1476 break; 1477 case bitc::TYPE_CODE_TOKEN: // TOKEN 1478 ResultTy = Type::getTokenTy(Context); 1479 break; 1480 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1481 if (Record.size() < 1) 1482 return error("Invalid record"); 1483 1484 uint64_t NumBits = Record[0]; 1485 if (NumBits < IntegerType::MIN_INT_BITS || 1486 NumBits > IntegerType::MAX_INT_BITS) 1487 return error("Bitwidth for integer type out of range"); 1488 ResultTy = IntegerType::get(Context, NumBits); 1489 break; 1490 } 1491 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1492 // [pointee type, address space] 1493 if (Record.size() < 1) 1494 return error("Invalid record"); 1495 unsigned AddressSpace = 0; 1496 if (Record.size() == 2) 1497 AddressSpace = Record[1]; 1498 ResultTy = getTypeByID(Record[0]); 1499 if (!ResultTy || 1500 !PointerType::isValidElementType(ResultTy)) 1501 return error("Invalid type"); 1502 ResultTy = PointerType::get(ResultTy, AddressSpace); 1503 break; 1504 } 1505 case bitc::TYPE_CODE_FUNCTION_OLD: { 1506 // FIXME: attrid is dead, remove it in LLVM 4.0 1507 // FUNCTION: [vararg, attrid, retty, paramty x N] 1508 if (Record.size() < 3) 1509 return error("Invalid record"); 1510 SmallVector<Type*, 8> ArgTys; 1511 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1512 if (Type *T = getTypeByID(Record[i])) 1513 ArgTys.push_back(T); 1514 else 1515 break; 1516 } 1517 1518 ResultTy = getTypeByID(Record[2]); 1519 if (!ResultTy || ArgTys.size() < Record.size()-3) 1520 return error("Invalid type"); 1521 1522 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1523 break; 1524 } 1525 case bitc::TYPE_CODE_FUNCTION: { 1526 // FUNCTION: [vararg, retty, paramty x N] 1527 if (Record.size() < 2) 1528 return error("Invalid record"); 1529 SmallVector<Type*, 8> ArgTys; 1530 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1531 if (Type *T = getTypeByID(Record[i])) { 1532 if (!FunctionType::isValidArgumentType(T)) 1533 return error("Invalid function argument type"); 1534 ArgTys.push_back(T); 1535 } 1536 else 1537 break; 1538 } 1539 1540 ResultTy = getTypeByID(Record[1]); 1541 if (!ResultTy || ArgTys.size() < Record.size()-2) 1542 return error("Invalid type"); 1543 1544 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1545 break; 1546 } 1547 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1548 if (Record.size() < 1) 1549 return error("Invalid record"); 1550 SmallVector<Type*, 8> EltTys; 1551 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1552 if (Type *T = getTypeByID(Record[i])) 1553 EltTys.push_back(T); 1554 else 1555 break; 1556 } 1557 if (EltTys.size() != Record.size()-1) 1558 return error("Invalid type"); 1559 ResultTy = StructType::get(Context, EltTys, Record[0]); 1560 break; 1561 } 1562 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1563 if (convertToString(Record, 0, TypeName)) 1564 return error("Invalid record"); 1565 continue; 1566 1567 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1568 if (Record.size() < 1) 1569 return error("Invalid record"); 1570 1571 if (NumRecords >= TypeList.size()) 1572 return error("Invalid TYPE table"); 1573 1574 // Check to see if this was forward referenced, if so fill in the temp. 1575 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1576 if (Res) { 1577 Res->setName(TypeName); 1578 TypeList[NumRecords] = nullptr; 1579 } else // Otherwise, create a new struct. 1580 Res = createIdentifiedStructType(Context, TypeName); 1581 TypeName.clear(); 1582 1583 SmallVector<Type*, 8> EltTys; 1584 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1585 if (Type *T = getTypeByID(Record[i])) 1586 EltTys.push_back(T); 1587 else 1588 break; 1589 } 1590 if (EltTys.size() != Record.size()-1) 1591 return error("Invalid record"); 1592 Res->setBody(EltTys, Record[0]); 1593 ResultTy = Res; 1594 break; 1595 } 1596 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1597 if (Record.size() != 1) 1598 return error("Invalid record"); 1599 1600 if (NumRecords >= TypeList.size()) 1601 return error("Invalid TYPE table"); 1602 1603 // Check to see if this was forward referenced, if so fill in the temp. 1604 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1605 if (Res) { 1606 Res->setName(TypeName); 1607 TypeList[NumRecords] = nullptr; 1608 } else // Otherwise, create a new struct with no body. 1609 Res = createIdentifiedStructType(Context, TypeName); 1610 TypeName.clear(); 1611 ResultTy = Res; 1612 break; 1613 } 1614 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1615 if (Record.size() < 2) 1616 return error("Invalid record"); 1617 ResultTy = getTypeByID(Record[1]); 1618 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1619 return error("Invalid type"); 1620 ResultTy = ArrayType::get(ResultTy, Record[0]); 1621 break; 1622 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1623 if (Record.size() < 2) 1624 return error("Invalid record"); 1625 if (Record[0] == 0) 1626 return error("Invalid vector length"); 1627 ResultTy = getTypeByID(Record[1]); 1628 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1629 return error("Invalid type"); 1630 ResultTy = VectorType::get(ResultTy, Record[0]); 1631 break; 1632 } 1633 1634 if (NumRecords >= TypeList.size()) 1635 return error("Invalid TYPE table"); 1636 if (TypeList[NumRecords]) 1637 return error( 1638 "Invalid TYPE table: Only named structs can be forward referenced"); 1639 assert(ResultTy && "Didn't read a type?"); 1640 TypeList[NumRecords++] = ResultTy; 1641 } 1642 } 1643 1644 Error BitcodeReader::parseOperandBundleTags() { 1645 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1646 return error("Invalid record"); 1647 1648 if (!BundleTags.empty()) 1649 return error("Invalid multiple blocks"); 1650 1651 SmallVector<uint64_t, 64> Record; 1652 1653 while (true) { 1654 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1655 1656 switch (Entry.Kind) { 1657 case BitstreamEntry::SubBlock: // Handled for us already. 1658 case BitstreamEntry::Error: 1659 return error("Malformed block"); 1660 case BitstreamEntry::EndBlock: 1661 return Error::success(); 1662 case BitstreamEntry::Record: 1663 // The interesting case. 1664 break; 1665 } 1666 1667 // Tags are implicitly mapped to integers by their order. 1668 1669 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1670 return error("Invalid record"); 1671 1672 // OPERAND_BUNDLE_TAG: [strchr x N] 1673 BundleTags.emplace_back(); 1674 if (convertToString(Record, 0, BundleTags.back())) 1675 return error("Invalid record"); 1676 Record.clear(); 1677 } 1678 } 1679 1680 /// Associate a value with its name from the given index in the provided record. 1681 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1682 unsigned NameIndex, Triple &TT) { 1683 SmallString<128> ValueName; 1684 if (convertToString(Record, NameIndex, ValueName)) 1685 return error("Invalid record"); 1686 unsigned ValueID = Record[0]; 1687 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1688 return error("Invalid record"); 1689 Value *V = ValueList[ValueID]; 1690 1691 StringRef NameStr(ValueName.data(), ValueName.size()); 1692 if (NameStr.find_first_of(0) != StringRef::npos) 1693 return error("Invalid value name"); 1694 V->setName(NameStr); 1695 auto *GO = dyn_cast<GlobalObject>(V); 1696 if (GO) { 1697 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1698 if (TT.isOSBinFormatMachO()) 1699 GO->setComdat(nullptr); 1700 else 1701 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1702 } 1703 } 1704 return V; 1705 } 1706 1707 /// Helper to note and return the current location, and jump to the given 1708 /// offset. 1709 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1710 BitstreamCursor &Stream) { 1711 // Save the current parsing location so we can jump back at the end 1712 // of the VST read. 1713 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1714 Stream.JumpToBit(Offset * 32); 1715 #ifndef NDEBUG 1716 // Do some checking if we are in debug mode. 1717 BitstreamEntry Entry = Stream.advance(); 1718 assert(Entry.Kind == BitstreamEntry::SubBlock); 1719 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1720 #else 1721 // In NDEBUG mode ignore the output so we don't get an unused variable 1722 // warning. 1723 Stream.advance(); 1724 #endif 1725 return CurrentBit; 1726 } 1727 1728 /// Parse the value symbol table at either the current parsing location or 1729 /// at the given bit offset if provided. 1730 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1731 uint64_t CurrentBit; 1732 // Pass in the Offset to distinguish between calling for the module-level 1733 // VST (where we want to jump to the VST offset) and the function-level 1734 // VST (where we don't). 1735 if (Offset > 0) 1736 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1737 1738 // Compute the delta between the bitcode indices in the VST (the word offset 1739 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1740 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1741 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1742 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1743 // just before entering the VST subblock because: 1) the EnterSubBlock 1744 // changes the AbbrevID width; 2) the VST block is nested within the same 1745 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1746 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1747 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1748 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1749 unsigned FuncBitcodeOffsetDelta = 1750 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1751 1752 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1753 return error("Invalid record"); 1754 1755 SmallVector<uint64_t, 64> Record; 1756 1757 Triple TT(TheModule->getTargetTriple()); 1758 1759 // Read all the records for this value table. 1760 SmallString<128> ValueName; 1761 1762 while (true) { 1763 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1764 1765 switch (Entry.Kind) { 1766 case BitstreamEntry::SubBlock: // Handled for us already. 1767 case BitstreamEntry::Error: 1768 return error("Malformed block"); 1769 case BitstreamEntry::EndBlock: 1770 if (Offset > 0) 1771 Stream.JumpToBit(CurrentBit); 1772 return Error::success(); 1773 case BitstreamEntry::Record: 1774 // The interesting case. 1775 break; 1776 } 1777 1778 // Read a record. 1779 Record.clear(); 1780 switch (Stream.readRecord(Entry.ID, Record)) { 1781 default: // Default behavior: unknown type. 1782 break; 1783 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1784 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1785 if (Error Err = ValOrErr.takeError()) 1786 return Err; 1787 ValOrErr.get(); 1788 break; 1789 } 1790 case bitc::VST_CODE_FNENTRY: { 1791 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1792 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1793 if (Error Err = ValOrErr.takeError()) 1794 return Err; 1795 Value *V = ValOrErr.get(); 1796 1797 auto *GO = dyn_cast<GlobalObject>(V); 1798 if (!GO) { 1799 // If this is an alias, need to get the actual Function object 1800 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1801 auto *GA = dyn_cast<GlobalAlias>(V); 1802 if (GA) 1803 GO = GA->getBaseObject(); 1804 assert(GO); 1805 } 1806 1807 // Note that we subtract 1 here because the offset is relative to one word 1808 // before the start of the identification or module block, which was 1809 // historically always the start of the regular bitcode header. 1810 uint64_t FuncWordOffset = Record[1] - 1; 1811 Function *F = dyn_cast<Function>(GO); 1812 assert(F); 1813 uint64_t FuncBitOffset = FuncWordOffset * 32; 1814 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1815 // Set the LastFunctionBlockBit to point to the last function block. 1816 // Later when parsing is resumed after function materialization, 1817 // we can simply skip that last function block. 1818 if (FuncBitOffset > LastFunctionBlockBit) 1819 LastFunctionBlockBit = FuncBitOffset; 1820 break; 1821 } 1822 case bitc::VST_CODE_BBENTRY: { 1823 if (convertToString(Record, 1, ValueName)) 1824 return error("Invalid record"); 1825 BasicBlock *BB = getBasicBlock(Record[0]); 1826 if (!BB) 1827 return error("Invalid record"); 1828 1829 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1830 ValueName.clear(); 1831 break; 1832 } 1833 } 1834 } 1835 } 1836 1837 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 1838 /// encoding. 1839 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1840 if ((V & 1) == 0) 1841 return V >> 1; 1842 if (V != 1) 1843 return -(V >> 1); 1844 // There is no such thing as -0 with integers. "-0" really means MININT. 1845 return 1ULL << 63; 1846 } 1847 1848 /// Resolve all of the initializers for global values and aliases that we can. 1849 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 1850 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1851 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 1852 IndirectSymbolInitWorklist; 1853 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1854 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1855 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 1856 1857 GlobalInitWorklist.swap(GlobalInits); 1858 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 1859 FunctionPrefixWorklist.swap(FunctionPrefixes); 1860 FunctionPrologueWorklist.swap(FunctionPrologues); 1861 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 1862 1863 while (!GlobalInitWorklist.empty()) { 1864 unsigned ValID = GlobalInitWorklist.back().second; 1865 if (ValID >= ValueList.size()) { 1866 // Not ready to resolve this yet, it requires something later in the file. 1867 GlobalInits.push_back(GlobalInitWorklist.back()); 1868 } else { 1869 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1870 GlobalInitWorklist.back().first->setInitializer(C); 1871 else 1872 return error("Expected a constant"); 1873 } 1874 GlobalInitWorklist.pop_back(); 1875 } 1876 1877 while (!IndirectSymbolInitWorklist.empty()) { 1878 unsigned ValID = IndirectSymbolInitWorklist.back().second; 1879 if (ValID >= ValueList.size()) { 1880 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 1881 } else { 1882 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 1883 if (!C) 1884 return error("Expected a constant"); 1885 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 1886 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 1887 return error("Alias and aliasee types don't match"); 1888 GIS->setIndirectSymbol(C); 1889 } 1890 IndirectSymbolInitWorklist.pop_back(); 1891 } 1892 1893 while (!FunctionPrefixWorklist.empty()) { 1894 unsigned ValID = FunctionPrefixWorklist.back().second; 1895 if (ValID >= ValueList.size()) { 1896 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1897 } else { 1898 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1899 FunctionPrefixWorklist.back().first->setPrefixData(C); 1900 else 1901 return error("Expected a constant"); 1902 } 1903 FunctionPrefixWorklist.pop_back(); 1904 } 1905 1906 while (!FunctionPrologueWorklist.empty()) { 1907 unsigned ValID = FunctionPrologueWorklist.back().second; 1908 if (ValID >= ValueList.size()) { 1909 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1910 } else { 1911 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1912 FunctionPrologueWorklist.back().first->setPrologueData(C); 1913 else 1914 return error("Expected a constant"); 1915 } 1916 FunctionPrologueWorklist.pop_back(); 1917 } 1918 1919 while (!FunctionPersonalityFnWorklist.empty()) { 1920 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 1921 if (ValID >= ValueList.size()) { 1922 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 1923 } else { 1924 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1925 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 1926 else 1927 return error("Expected a constant"); 1928 } 1929 FunctionPersonalityFnWorklist.pop_back(); 1930 } 1931 1932 return Error::success(); 1933 } 1934 1935 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1936 SmallVector<uint64_t, 8> Words(Vals.size()); 1937 transform(Vals, Words.begin(), 1938 BitcodeReader::decodeSignRotatedValue); 1939 1940 return APInt(TypeBits, Words); 1941 } 1942 1943 Error BitcodeReader::parseConstants() { 1944 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1945 return error("Invalid record"); 1946 1947 SmallVector<uint64_t, 64> Record; 1948 1949 // Read all the records for this value table. 1950 Type *CurTy = Type::getInt32Ty(Context); 1951 unsigned NextCstNo = ValueList.size(); 1952 1953 while (true) { 1954 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1955 1956 switch (Entry.Kind) { 1957 case BitstreamEntry::SubBlock: // Handled for us already. 1958 case BitstreamEntry::Error: 1959 return error("Malformed block"); 1960 case BitstreamEntry::EndBlock: 1961 if (NextCstNo != ValueList.size()) 1962 return error("Invalid constant reference"); 1963 1964 // Once all the constants have been read, go through and resolve forward 1965 // references. 1966 ValueList.resolveConstantForwardRefs(); 1967 return Error::success(); 1968 case BitstreamEntry::Record: 1969 // The interesting case. 1970 break; 1971 } 1972 1973 // Read a record. 1974 Record.clear(); 1975 Type *VoidType = Type::getVoidTy(Context); 1976 Value *V = nullptr; 1977 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1978 switch (BitCode) { 1979 default: // Default behavior: unknown constant 1980 case bitc::CST_CODE_UNDEF: // UNDEF 1981 V = UndefValue::get(CurTy); 1982 break; 1983 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1984 if (Record.empty()) 1985 return error("Invalid record"); 1986 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1987 return error("Invalid record"); 1988 if (TypeList[Record[0]] == VoidType) 1989 return error("Invalid constant type"); 1990 CurTy = TypeList[Record[0]]; 1991 continue; // Skip the ValueList manipulation. 1992 case bitc::CST_CODE_NULL: // NULL 1993 V = Constant::getNullValue(CurTy); 1994 break; 1995 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1996 if (!CurTy->isIntegerTy() || Record.empty()) 1997 return error("Invalid record"); 1998 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1999 break; 2000 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2001 if (!CurTy->isIntegerTy() || Record.empty()) 2002 return error("Invalid record"); 2003 2004 APInt VInt = 2005 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2006 V = ConstantInt::get(Context, VInt); 2007 2008 break; 2009 } 2010 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2011 if (Record.empty()) 2012 return error("Invalid record"); 2013 if (CurTy->isHalfTy()) 2014 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2015 APInt(16, (uint16_t)Record[0]))); 2016 else if (CurTy->isFloatTy()) 2017 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2018 APInt(32, (uint32_t)Record[0]))); 2019 else if (CurTy->isDoubleTy()) 2020 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2021 APInt(64, Record[0]))); 2022 else if (CurTy->isX86_FP80Ty()) { 2023 // Bits are not stored the same way as a normal i80 APInt, compensate. 2024 uint64_t Rearrange[2]; 2025 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2026 Rearrange[1] = Record[0] >> 48; 2027 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2028 APInt(80, Rearrange))); 2029 } else if (CurTy->isFP128Ty()) 2030 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2031 APInt(128, Record))); 2032 else if (CurTy->isPPC_FP128Ty()) 2033 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2034 APInt(128, Record))); 2035 else 2036 V = UndefValue::get(CurTy); 2037 break; 2038 } 2039 2040 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2041 if (Record.empty()) 2042 return error("Invalid record"); 2043 2044 unsigned Size = Record.size(); 2045 SmallVector<Constant*, 16> Elts; 2046 2047 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2048 for (unsigned i = 0; i != Size; ++i) 2049 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2050 STy->getElementType(i))); 2051 V = ConstantStruct::get(STy, Elts); 2052 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2053 Type *EltTy = ATy->getElementType(); 2054 for (unsigned i = 0; i != Size; ++i) 2055 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2056 V = ConstantArray::get(ATy, Elts); 2057 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2058 Type *EltTy = VTy->getElementType(); 2059 for (unsigned i = 0; i != Size; ++i) 2060 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2061 V = ConstantVector::get(Elts); 2062 } else { 2063 V = UndefValue::get(CurTy); 2064 } 2065 break; 2066 } 2067 case bitc::CST_CODE_STRING: // STRING: [values] 2068 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2069 if (Record.empty()) 2070 return error("Invalid record"); 2071 2072 SmallString<16> Elts(Record.begin(), Record.end()); 2073 V = ConstantDataArray::getString(Context, Elts, 2074 BitCode == bitc::CST_CODE_CSTRING); 2075 break; 2076 } 2077 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2078 if (Record.empty()) 2079 return error("Invalid record"); 2080 2081 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2082 if (EltTy->isIntegerTy(8)) { 2083 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2084 if (isa<VectorType>(CurTy)) 2085 V = ConstantDataVector::get(Context, Elts); 2086 else 2087 V = ConstantDataArray::get(Context, Elts); 2088 } else if (EltTy->isIntegerTy(16)) { 2089 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2090 if (isa<VectorType>(CurTy)) 2091 V = ConstantDataVector::get(Context, Elts); 2092 else 2093 V = ConstantDataArray::get(Context, Elts); 2094 } else if (EltTy->isIntegerTy(32)) { 2095 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2096 if (isa<VectorType>(CurTy)) 2097 V = ConstantDataVector::get(Context, Elts); 2098 else 2099 V = ConstantDataArray::get(Context, Elts); 2100 } else if (EltTy->isIntegerTy(64)) { 2101 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2102 if (isa<VectorType>(CurTy)) 2103 V = ConstantDataVector::get(Context, Elts); 2104 else 2105 V = ConstantDataArray::get(Context, Elts); 2106 } else if (EltTy->isHalfTy()) { 2107 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2108 if (isa<VectorType>(CurTy)) 2109 V = ConstantDataVector::getFP(Context, Elts); 2110 else 2111 V = ConstantDataArray::getFP(Context, Elts); 2112 } else if (EltTy->isFloatTy()) { 2113 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2114 if (isa<VectorType>(CurTy)) 2115 V = ConstantDataVector::getFP(Context, Elts); 2116 else 2117 V = ConstantDataArray::getFP(Context, Elts); 2118 } else if (EltTy->isDoubleTy()) { 2119 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2120 if (isa<VectorType>(CurTy)) 2121 V = ConstantDataVector::getFP(Context, Elts); 2122 else 2123 V = ConstantDataArray::getFP(Context, Elts); 2124 } else { 2125 return error("Invalid type for value"); 2126 } 2127 break; 2128 } 2129 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2130 if (Record.size() < 3) 2131 return error("Invalid record"); 2132 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2133 if (Opc < 0) { 2134 V = UndefValue::get(CurTy); // Unknown binop. 2135 } else { 2136 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2137 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2138 unsigned Flags = 0; 2139 if (Record.size() >= 4) { 2140 if (Opc == Instruction::Add || 2141 Opc == Instruction::Sub || 2142 Opc == Instruction::Mul || 2143 Opc == Instruction::Shl) { 2144 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2145 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2146 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2147 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2148 } else if (Opc == Instruction::SDiv || 2149 Opc == Instruction::UDiv || 2150 Opc == Instruction::LShr || 2151 Opc == Instruction::AShr) { 2152 if (Record[3] & (1 << bitc::PEO_EXACT)) 2153 Flags |= SDivOperator::IsExact; 2154 } 2155 } 2156 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2157 } 2158 break; 2159 } 2160 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2161 if (Record.size() < 3) 2162 return error("Invalid record"); 2163 int Opc = getDecodedCastOpcode(Record[0]); 2164 if (Opc < 0) { 2165 V = UndefValue::get(CurTy); // Unknown cast. 2166 } else { 2167 Type *OpTy = getTypeByID(Record[1]); 2168 if (!OpTy) 2169 return error("Invalid record"); 2170 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2171 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2172 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2173 } 2174 break; 2175 } 2176 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2177 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2178 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2179 // operands] 2180 unsigned OpNum = 0; 2181 Type *PointeeType = nullptr; 2182 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2183 Record.size() % 2) 2184 PointeeType = getTypeByID(Record[OpNum++]); 2185 2186 bool InBounds = false; 2187 Optional<unsigned> InRangeIndex; 2188 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2189 uint64_t Op = Record[OpNum++]; 2190 InBounds = Op & 1; 2191 InRangeIndex = Op >> 1; 2192 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2193 InBounds = true; 2194 2195 SmallVector<Constant*, 16> Elts; 2196 while (OpNum != Record.size()) { 2197 Type *ElTy = getTypeByID(Record[OpNum++]); 2198 if (!ElTy) 2199 return error("Invalid record"); 2200 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2201 } 2202 2203 if (PointeeType && 2204 PointeeType != 2205 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2206 ->getElementType()) 2207 return error("Explicit gep operator type does not match pointee type " 2208 "of pointer operand"); 2209 2210 if (Elts.size() < 1) 2211 return error("Invalid gep with no operands"); 2212 2213 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2214 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2215 InBounds, InRangeIndex); 2216 break; 2217 } 2218 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2219 if (Record.size() < 3) 2220 return error("Invalid record"); 2221 2222 Type *SelectorTy = Type::getInt1Ty(Context); 2223 2224 // The selector might be an i1 or an <n x i1> 2225 // Get the type from the ValueList before getting a forward ref. 2226 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2227 if (Value *V = ValueList[Record[0]]) 2228 if (SelectorTy != V->getType()) 2229 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2230 2231 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2232 SelectorTy), 2233 ValueList.getConstantFwdRef(Record[1],CurTy), 2234 ValueList.getConstantFwdRef(Record[2],CurTy)); 2235 break; 2236 } 2237 case bitc::CST_CODE_CE_EXTRACTELT 2238 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2239 if (Record.size() < 3) 2240 return error("Invalid record"); 2241 VectorType *OpTy = 2242 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2243 if (!OpTy) 2244 return error("Invalid record"); 2245 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2246 Constant *Op1 = nullptr; 2247 if (Record.size() == 4) { 2248 Type *IdxTy = getTypeByID(Record[2]); 2249 if (!IdxTy) 2250 return error("Invalid record"); 2251 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2252 } else // TODO: Remove with llvm 4.0 2253 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2254 if (!Op1) 2255 return error("Invalid record"); 2256 V = ConstantExpr::getExtractElement(Op0, Op1); 2257 break; 2258 } 2259 case bitc::CST_CODE_CE_INSERTELT 2260 : { // CE_INSERTELT: [opval, opval, opty, opval] 2261 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2262 if (Record.size() < 3 || !OpTy) 2263 return error("Invalid record"); 2264 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2265 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2266 OpTy->getElementType()); 2267 Constant *Op2 = nullptr; 2268 if (Record.size() == 4) { 2269 Type *IdxTy = getTypeByID(Record[2]); 2270 if (!IdxTy) 2271 return error("Invalid record"); 2272 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2273 } else // TODO: Remove with llvm 4.0 2274 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2275 if (!Op2) 2276 return error("Invalid record"); 2277 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2278 break; 2279 } 2280 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2281 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2282 if (Record.size() < 3 || !OpTy) 2283 return error("Invalid record"); 2284 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2285 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2286 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2287 OpTy->getNumElements()); 2288 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2289 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2290 break; 2291 } 2292 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2293 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2294 VectorType *OpTy = 2295 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2296 if (Record.size() < 4 || !RTy || !OpTy) 2297 return error("Invalid record"); 2298 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2299 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2300 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2301 RTy->getNumElements()); 2302 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2303 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2304 break; 2305 } 2306 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2307 if (Record.size() < 4) 2308 return error("Invalid record"); 2309 Type *OpTy = getTypeByID(Record[0]); 2310 if (!OpTy) 2311 return error("Invalid record"); 2312 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2313 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2314 2315 if (OpTy->isFPOrFPVectorTy()) 2316 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2317 else 2318 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2319 break; 2320 } 2321 // This maintains backward compatibility, pre-asm dialect keywords. 2322 // FIXME: Remove with the 4.0 release. 2323 case bitc::CST_CODE_INLINEASM_OLD: { 2324 if (Record.size() < 2) 2325 return error("Invalid record"); 2326 std::string AsmStr, ConstrStr; 2327 bool HasSideEffects = Record[0] & 1; 2328 bool IsAlignStack = Record[0] >> 1; 2329 unsigned AsmStrSize = Record[1]; 2330 if (2+AsmStrSize >= Record.size()) 2331 return error("Invalid record"); 2332 unsigned ConstStrSize = Record[2+AsmStrSize]; 2333 if (3+AsmStrSize+ConstStrSize > Record.size()) 2334 return error("Invalid record"); 2335 2336 for (unsigned i = 0; i != AsmStrSize; ++i) 2337 AsmStr += (char)Record[2+i]; 2338 for (unsigned i = 0; i != ConstStrSize; ++i) 2339 ConstrStr += (char)Record[3+AsmStrSize+i]; 2340 PointerType *PTy = cast<PointerType>(CurTy); 2341 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2342 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2343 break; 2344 } 2345 // This version adds support for the asm dialect keywords (e.g., 2346 // inteldialect). 2347 case bitc::CST_CODE_INLINEASM: { 2348 if (Record.size() < 2) 2349 return error("Invalid record"); 2350 std::string AsmStr, ConstrStr; 2351 bool HasSideEffects = Record[0] & 1; 2352 bool IsAlignStack = (Record[0] >> 1) & 1; 2353 unsigned AsmDialect = Record[0] >> 2; 2354 unsigned AsmStrSize = Record[1]; 2355 if (2+AsmStrSize >= Record.size()) 2356 return error("Invalid record"); 2357 unsigned ConstStrSize = Record[2+AsmStrSize]; 2358 if (3+AsmStrSize+ConstStrSize > Record.size()) 2359 return error("Invalid record"); 2360 2361 for (unsigned i = 0; i != AsmStrSize; ++i) 2362 AsmStr += (char)Record[2+i]; 2363 for (unsigned i = 0; i != ConstStrSize; ++i) 2364 ConstrStr += (char)Record[3+AsmStrSize+i]; 2365 PointerType *PTy = cast<PointerType>(CurTy); 2366 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2367 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2368 InlineAsm::AsmDialect(AsmDialect)); 2369 break; 2370 } 2371 case bitc::CST_CODE_BLOCKADDRESS:{ 2372 if (Record.size() < 3) 2373 return error("Invalid record"); 2374 Type *FnTy = getTypeByID(Record[0]); 2375 if (!FnTy) 2376 return error("Invalid record"); 2377 Function *Fn = 2378 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2379 if (!Fn) 2380 return error("Invalid record"); 2381 2382 // If the function is already parsed we can insert the block address right 2383 // away. 2384 BasicBlock *BB; 2385 unsigned BBID = Record[2]; 2386 if (!BBID) 2387 // Invalid reference to entry block. 2388 return error("Invalid ID"); 2389 if (!Fn->empty()) { 2390 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2391 for (size_t I = 0, E = BBID; I != E; ++I) { 2392 if (BBI == BBE) 2393 return error("Invalid ID"); 2394 ++BBI; 2395 } 2396 BB = &*BBI; 2397 } else { 2398 // Otherwise insert a placeholder and remember it so it can be inserted 2399 // when the function is parsed. 2400 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2401 if (FwdBBs.empty()) 2402 BasicBlockFwdRefQueue.push_back(Fn); 2403 if (FwdBBs.size() < BBID + 1) 2404 FwdBBs.resize(BBID + 1); 2405 if (!FwdBBs[BBID]) 2406 FwdBBs[BBID] = BasicBlock::Create(Context); 2407 BB = FwdBBs[BBID]; 2408 } 2409 V = BlockAddress::get(Fn, BB); 2410 break; 2411 } 2412 } 2413 2414 ValueList.assignValue(V, NextCstNo); 2415 ++NextCstNo; 2416 } 2417 } 2418 2419 Error BitcodeReader::parseUseLists() { 2420 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2421 return error("Invalid record"); 2422 2423 // Read all the records. 2424 SmallVector<uint64_t, 64> Record; 2425 2426 while (true) { 2427 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2428 2429 switch (Entry.Kind) { 2430 case BitstreamEntry::SubBlock: // Handled for us already. 2431 case BitstreamEntry::Error: 2432 return error("Malformed block"); 2433 case BitstreamEntry::EndBlock: 2434 return Error::success(); 2435 case BitstreamEntry::Record: 2436 // The interesting case. 2437 break; 2438 } 2439 2440 // Read a use list record. 2441 Record.clear(); 2442 bool IsBB = false; 2443 switch (Stream.readRecord(Entry.ID, Record)) { 2444 default: // Default behavior: unknown type. 2445 break; 2446 case bitc::USELIST_CODE_BB: 2447 IsBB = true; 2448 LLVM_FALLTHROUGH; 2449 case bitc::USELIST_CODE_DEFAULT: { 2450 unsigned RecordLength = Record.size(); 2451 if (RecordLength < 3) 2452 // Records should have at least an ID and two indexes. 2453 return error("Invalid record"); 2454 unsigned ID = Record.back(); 2455 Record.pop_back(); 2456 2457 Value *V; 2458 if (IsBB) { 2459 assert(ID < FunctionBBs.size() && "Basic block not found"); 2460 V = FunctionBBs[ID]; 2461 } else 2462 V = ValueList[ID]; 2463 unsigned NumUses = 0; 2464 SmallDenseMap<const Use *, unsigned, 16> Order; 2465 for (const Use &U : V->materialized_uses()) { 2466 if (++NumUses > Record.size()) 2467 break; 2468 Order[&U] = Record[NumUses - 1]; 2469 } 2470 if (Order.size() != Record.size() || NumUses > Record.size()) 2471 // Mismatches can happen if the functions are being materialized lazily 2472 // (out-of-order), or a value has been upgraded. 2473 break; 2474 2475 V->sortUseList([&](const Use &L, const Use &R) { 2476 return Order.lookup(&L) < Order.lookup(&R); 2477 }); 2478 break; 2479 } 2480 } 2481 } 2482 } 2483 2484 /// When we see the block for metadata, remember where it is and then skip it. 2485 /// This lets us lazily deserialize the metadata. 2486 Error BitcodeReader::rememberAndSkipMetadata() { 2487 // Save the current stream state. 2488 uint64_t CurBit = Stream.GetCurrentBitNo(); 2489 DeferredMetadataInfo.push_back(CurBit); 2490 2491 // Skip over the block for now. 2492 if (Stream.SkipBlock()) 2493 return error("Invalid record"); 2494 return Error::success(); 2495 } 2496 2497 Error BitcodeReader::materializeMetadata() { 2498 for (uint64_t BitPos : DeferredMetadataInfo) { 2499 // Move the bit stream to the saved position. 2500 Stream.JumpToBit(BitPos); 2501 if (Error Err = MDLoader->parseModuleMetadata()) 2502 return Err; 2503 } 2504 DeferredMetadataInfo.clear(); 2505 return Error::success(); 2506 } 2507 2508 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2509 2510 /// When we see the block for a function body, remember where it is and then 2511 /// skip it. This lets us lazily deserialize the functions. 2512 Error BitcodeReader::rememberAndSkipFunctionBody() { 2513 // Get the function we are talking about. 2514 if (FunctionsWithBodies.empty()) 2515 return error("Insufficient function protos"); 2516 2517 Function *Fn = FunctionsWithBodies.back(); 2518 FunctionsWithBodies.pop_back(); 2519 2520 // Save the current stream state. 2521 uint64_t CurBit = Stream.GetCurrentBitNo(); 2522 assert( 2523 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2524 "Mismatch between VST and scanned function offsets"); 2525 DeferredFunctionInfo[Fn] = CurBit; 2526 2527 // Skip over the function block for now. 2528 if (Stream.SkipBlock()) 2529 return error("Invalid record"); 2530 return Error::success(); 2531 } 2532 2533 Error BitcodeReader::globalCleanup() { 2534 // Patch the initializers for globals and aliases up. 2535 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2536 return Err; 2537 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2538 return error("Malformed global initializer set"); 2539 2540 // Look for intrinsic functions which need to be upgraded at some point 2541 for (Function &F : *TheModule) { 2542 Function *NewFn; 2543 if (UpgradeIntrinsicFunction(&F, NewFn)) 2544 UpgradedIntrinsics[&F] = NewFn; 2545 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2546 // Some types could be renamed during loading if several modules are 2547 // loaded in the same LLVMContext (LTO scenario). In this case we should 2548 // remangle intrinsics names as well. 2549 RemangledIntrinsics[&F] = Remangled.getValue(); 2550 } 2551 2552 // Look for global variables which need to be renamed. 2553 for (GlobalVariable &GV : TheModule->globals()) 2554 UpgradeGlobalVariable(&GV); 2555 2556 // Force deallocation of memory for these vectors to favor the client that 2557 // want lazy deserialization. 2558 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2559 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 2560 IndirectSymbolInits); 2561 return Error::success(); 2562 } 2563 2564 /// Support for lazy parsing of function bodies. This is required if we 2565 /// either have an old bitcode file without a VST forward declaration record, 2566 /// or if we have an anonymous function being materialized, since anonymous 2567 /// functions do not have a name and are therefore not in the VST. 2568 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2569 Stream.JumpToBit(NextUnreadBit); 2570 2571 if (Stream.AtEndOfStream()) 2572 return error("Could not find function in stream"); 2573 2574 if (!SeenFirstFunctionBody) 2575 return error("Trying to materialize functions before seeing function blocks"); 2576 2577 // An old bitcode file with the symbol table at the end would have 2578 // finished the parse greedily. 2579 assert(SeenValueSymbolTable); 2580 2581 SmallVector<uint64_t, 64> Record; 2582 2583 while (true) { 2584 BitstreamEntry Entry = Stream.advance(); 2585 switch (Entry.Kind) { 2586 default: 2587 return error("Expect SubBlock"); 2588 case BitstreamEntry::SubBlock: 2589 switch (Entry.ID) { 2590 default: 2591 return error("Expect function block"); 2592 case bitc::FUNCTION_BLOCK_ID: 2593 if (Error Err = rememberAndSkipFunctionBody()) 2594 return Err; 2595 NextUnreadBit = Stream.GetCurrentBitNo(); 2596 return Error::success(); 2597 } 2598 } 2599 } 2600 } 2601 2602 bool BitcodeReaderBase::readBlockInfo() { 2603 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2604 if (!NewBlockInfo) 2605 return true; 2606 BlockInfo = std::move(*NewBlockInfo); 2607 return false; 2608 } 2609 2610 Error BitcodeReader::parseModule(uint64_t ResumeBit, 2611 bool ShouldLazyLoadMetadata) { 2612 if (ResumeBit) 2613 Stream.JumpToBit(ResumeBit); 2614 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2615 return error("Invalid record"); 2616 2617 SmallVector<uint64_t, 64> Record; 2618 std::vector<std::string> SectionTable; 2619 std::vector<std::string> GCTable; 2620 2621 // Read all the records for this module. 2622 while (true) { 2623 BitstreamEntry Entry = Stream.advance(); 2624 2625 switch (Entry.Kind) { 2626 case BitstreamEntry::Error: 2627 return error("Malformed block"); 2628 case BitstreamEntry::EndBlock: 2629 return globalCleanup(); 2630 2631 case BitstreamEntry::SubBlock: 2632 switch (Entry.ID) { 2633 default: // Skip unknown content. 2634 if (Stream.SkipBlock()) 2635 return error("Invalid record"); 2636 break; 2637 case bitc::BLOCKINFO_BLOCK_ID: 2638 if (readBlockInfo()) 2639 return error("Malformed block"); 2640 break; 2641 case bitc::PARAMATTR_BLOCK_ID: 2642 if (Error Err = parseAttributeBlock()) 2643 return Err; 2644 break; 2645 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2646 if (Error Err = parseAttributeGroupBlock()) 2647 return Err; 2648 break; 2649 case bitc::TYPE_BLOCK_ID_NEW: 2650 if (Error Err = parseTypeTable()) 2651 return Err; 2652 break; 2653 case bitc::VALUE_SYMTAB_BLOCK_ID: 2654 if (!SeenValueSymbolTable) { 2655 // Either this is an old form VST without function index and an 2656 // associated VST forward declaration record (which would have caused 2657 // the VST to be jumped to and parsed before it was encountered 2658 // normally in the stream), or there were no function blocks to 2659 // trigger an earlier parsing of the VST. 2660 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 2661 if (Error Err = parseValueSymbolTable()) 2662 return Err; 2663 SeenValueSymbolTable = true; 2664 } else { 2665 // We must have had a VST forward declaration record, which caused 2666 // the parser to jump to and parse the VST earlier. 2667 assert(VSTOffset > 0); 2668 if (Stream.SkipBlock()) 2669 return error("Invalid record"); 2670 } 2671 break; 2672 case bitc::CONSTANTS_BLOCK_ID: 2673 if (Error Err = parseConstants()) 2674 return Err; 2675 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2676 return Err; 2677 break; 2678 case bitc::METADATA_BLOCK_ID: 2679 if (ShouldLazyLoadMetadata) { 2680 if (Error Err = rememberAndSkipMetadata()) 2681 return Err; 2682 break; 2683 } 2684 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2685 if (Error Err = MDLoader->parseModuleMetadata()) 2686 return Err; 2687 break; 2688 case bitc::METADATA_KIND_BLOCK_ID: 2689 if (Error Err = MDLoader->parseMetadataKinds()) 2690 return Err; 2691 break; 2692 case bitc::FUNCTION_BLOCK_ID: 2693 // If this is the first function body we've seen, reverse the 2694 // FunctionsWithBodies list. 2695 if (!SeenFirstFunctionBody) { 2696 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2697 if (Error Err = globalCleanup()) 2698 return Err; 2699 SeenFirstFunctionBody = true; 2700 } 2701 2702 if (VSTOffset > 0) { 2703 // If we have a VST forward declaration record, make sure we 2704 // parse the VST now if we haven't already. It is needed to 2705 // set up the DeferredFunctionInfo vector for lazy reading. 2706 if (!SeenValueSymbolTable) { 2707 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 2708 return Err; 2709 SeenValueSymbolTable = true; 2710 // Fall through so that we record the NextUnreadBit below. 2711 // This is necessary in case we have an anonymous function that 2712 // is later materialized. Since it will not have a VST entry we 2713 // need to fall back to the lazy parse to find its offset. 2714 } else { 2715 // If we have a VST forward declaration record, but have already 2716 // parsed the VST (just above, when the first function body was 2717 // encountered here), then we are resuming the parse after 2718 // materializing functions. The ResumeBit points to the 2719 // start of the last function block recorded in the 2720 // DeferredFunctionInfo map. Skip it. 2721 if (Stream.SkipBlock()) 2722 return error("Invalid record"); 2723 continue; 2724 } 2725 } 2726 2727 // Support older bitcode files that did not have the function 2728 // index in the VST, nor a VST forward declaration record, as 2729 // well as anonymous functions that do not have VST entries. 2730 // Build the DeferredFunctionInfo vector on the fly. 2731 if (Error Err = rememberAndSkipFunctionBody()) 2732 return Err; 2733 2734 // Suspend parsing when we reach the function bodies. Subsequent 2735 // materialization calls will resume it when necessary. If the bitcode 2736 // file is old, the symbol table will be at the end instead and will not 2737 // have been seen yet. In this case, just finish the parse now. 2738 if (SeenValueSymbolTable) { 2739 NextUnreadBit = Stream.GetCurrentBitNo(); 2740 // After the VST has been parsed, we need to make sure intrinsic name 2741 // are auto-upgraded. 2742 return globalCleanup(); 2743 } 2744 break; 2745 case bitc::USELIST_BLOCK_ID: 2746 if (Error Err = parseUseLists()) 2747 return Err; 2748 break; 2749 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 2750 if (Error Err = parseOperandBundleTags()) 2751 return Err; 2752 break; 2753 } 2754 continue; 2755 2756 case BitstreamEntry::Record: 2757 // The interesting case. 2758 break; 2759 } 2760 2761 // Read a record. 2762 auto BitCode = Stream.readRecord(Entry.ID, Record); 2763 switch (BitCode) { 2764 default: break; // Default behavior, ignore unknown content. 2765 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2766 if (Record.size() < 1) 2767 return error("Invalid record"); 2768 // Only version #0 and #1 are supported so far. 2769 unsigned module_version = Record[0]; 2770 switch (module_version) { 2771 default: 2772 return error("Invalid value"); 2773 case 0: 2774 UseRelativeIDs = false; 2775 break; 2776 case 1: 2777 UseRelativeIDs = true; 2778 break; 2779 } 2780 break; 2781 } 2782 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2783 std::string S; 2784 if (convertToString(Record, 0, S)) 2785 return error("Invalid record"); 2786 TheModule->setTargetTriple(S); 2787 break; 2788 } 2789 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2790 std::string S; 2791 if (convertToString(Record, 0, S)) 2792 return error("Invalid record"); 2793 TheModule->setDataLayout(S); 2794 break; 2795 } 2796 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2797 std::string S; 2798 if (convertToString(Record, 0, S)) 2799 return error("Invalid record"); 2800 TheModule->setModuleInlineAsm(S); 2801 break; 2802 } 2803 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2804 // FIXME: Remove in 4.0. 2805 std::string S; 2806 if (convertToString(Record, 0, S)) 2807 return error("Invalid record"); 2808 // Ignore value. 2809 break; 2810 } 2811 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2812 std::string S; 2813 if (convertToString(Record, 0, S)) 2814 return error("Invalid record"); 2815 SectionTable.push_back(S); 2816 break; 2817 } 2818 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2819 std::string S; 2820 if (convertToString(Record, 0, S)) 2821 return error("Invalid record"); 2822 GCTable.push_back(S); 2823 break; 2824 } 2825 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2826 if (Record.size() < 2) 2827 return error("Invalid record"); 2828 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2829 unsigned ComdatNameSize = Record[1]; 2830 std::string ComdatName; 2831 ComdatName.reserve(ComdatNameSize); 2832 for (unsigned i = 0; i != ComdatNameSize; ++i) 2833 ComdatName += (char)Record[2 + i]; 2834 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2835 C->setSelectionKind(SK); 2836 ComdatList.push_back(C); 2837 break; 2838 } 2839 // GLOBALVAR: [pointer type, isconst, initid, 2840 // linkage, alignment, section, visibility, threadlocal, 2841 // unnamed_addr, externally_initialized, dllstorageclass, 2842 // comdat] 2843 case bitc::MODULE_CODE_GLOBALVAR: { 2844 if (Record.size() < 6) 2845 return error("Invalid record"); 2846 Type *Ty = getTypeByID(Record[0]); 2847 if (!Ty) 2848 return error("Invalid record"); 2849 bool isConstant = Record[1] & 1; 2850 bool explicitType = Record[1] & 2; 2851 unsigned AddressSpace; 2852 if (explicitType) { 2853 AddressSpace = Record[1] >> 2; 2854 } else { 2855 if (!Ty->isPointerTy()) 2856 return error("Invalid type for value"); 2857 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2858 Ty = cast<PointerType>(Ty)->getElementType(); 2859 } 2860 2861 uint64_t RawLinkage = Record[3]; 2862 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2863 unsigned Alignment; 2864 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2865 return Err; 2866 std::string Section; 2867 if (Record[5]) { 2868 if (Record[5]-1 >= SectionTable.size()) 2869 return error("Invalid ID"); 2870 Section = SectionTable[Record[5]-1]; 2871 } 2872 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2873 // Local linkage must have default visibility. 2874 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2875 // FIXME: Change to an error if non-default in 4.0. 2876 Visibility = getDecodedVisibility(Record[6]); 2877 2878 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2879 if (Record.size() > 7) 2880 TLM = getDecodedThreadLocalMode(Record[7]); 2881 2882 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2883 if (Record.size() > 8) 2884 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2885 2886 bool ExternallyInitialized = false; 2887 if (Record.size() > 9) 2888 ExternallyInitialized = Record[9]; 2889 2890 GlobalVariable *NewGV = 2891 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2892 TLM, AddressSpace, ExternallyInitialized); 2893 NewGV->setAlignment(Alignment); 2894 if (!Section.empty()) 2895 NewGV->setSection(Section); 2896 NewGV->setVisibility(Visibility); 2897 NewGV->setUnnamedAddr(UnnamedAddr); 2898 2899 if (Record.size() > 10) 2900 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2901 else 2902 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2903 2904 ValueList.push_back(NewGV); 2905 2906 // Remember which value to use for the global initializer. 2907 if (unsigned InitID = Record[2]) 2908 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2909 2910 if (Record.size() > 11) { 2911 if (unsigned ComdatID = Record[11]) { 2912 if (ComdatID > ComdatList.size()) 2913 return error("Invalid global variable comdat ID"); 2914 NewGV->setComdat(ComdatList[ComdatID - 1]); 2915 } 2916 } else if (hasImplicitComdat(RawLinkage)) { 2917 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2918 } 2919 2920 break; 2921 } 2922 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2923 // alignment, section, visibility, gc, unnamed_addr, 2924 // prologuedata, dllstorageclass, comdat, prefixdata] 2925 case bitc::MODULE_CODE_FUNCTION: { 2926 if (Record.size() < 8) 2927 return error("Invalid record"); 2928 Type *Ty = getTypeByID(Record[0]); 2929 if (!Ty) 2930 return error("Invalid record"); 2931 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2932 Ty = PTy->getElementType(); 2933 auto *FTy = dyn_cast<FunctionType>(Ty); 2934 if (!FTy) 2935 return error("Invalid type for value"); 2936 auto CC = static_cast<CallingConv::ID>(Record[1]); 2937 if (CC & ~CallingConv::MaxID) 2938 return error("Invalid calling convention ID"); 2939 2940 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2941 "", TheModule); 2942 2943 Func->setCallingConv(CC); 2944 bool isProto = Record[2]; 2945 uint64_t RawLinkage = Record[3]; 2946 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2947 Func->setAttributes(getAttributes(Record[4])); 2948 2949 unsigned Alignment; 2950 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2951 return Err; 2952 Func->setAlignment(Alignment); 2953 if (Record[6]) { 2954 if (Record[6]-1 >= SectionTable.size()) 2955 return error("Invalid ID"); 2956 Func->setSection(SectionTable[Record[6]-1]); 2957 } 2958 // Local linkage must have default visibility. 2959 if (!Func->hasLocalLinkage()) 2960 // FIXME: Change to an error if non-default in 4.0. 2961 Func->setVisibility(getDecodedVisibility(Record[7])); 2962 if (Record.size() > 8 && Record[8]) { 2963 if (Record[8]-1 >= GCTable.size()) 2964 return error("Invalid ID"); 2965 Func->setGC(GCTable[Record[8] - 1]); 2966 } 2967 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2968 if (Record.size() > 9) 2969 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2970 Func->setUnnamedAddr(UnnamedAddr); 2971 if (Record.size() > 10 && Record[10] != 0) 2972 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2973 2974 if (Record.size() > 11) 2975 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2976 else 2977 upgradeDLLImportExportLinkage(Func, RawLinkage); 2978 2979 if (Record.size() > 12) { 2980 if (unsigned ComdatID = Record[12]) { 2981 if (ComdatID > ComdatList.size()) 2982 return error("Invalid function comdat ID"); 2983 Func->setComdat(ComdatList[ComdatID - 1]); 2984 } 2985 } else if (hasImplicitComdat(RawLinkage)) { 2986 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2987 } 2988 2989 if (Record.size() > 13 && Record[13] != 0) 2990 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2991 2992 if (Record.size() > 14 && Record[14] != 0) 2993 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2994 2995 ValueList.push_back(Func); 2996 2997 // If this is a function with a body, remember the prototype we are 2998 // creating now, so that we can match up the body with them later. 2999 if (!isProto) { 3000 Func->setIsMaterializable(true); 3001 FunctionsWithBodies.push_back(Func); 3002 DeferredFunctionInfo[Func] = 0; 3003 } 3004 break; 3005 } 3006 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3007 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3008 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3009 case bitc::MODULE_CODE_IFUNC: 3010 case bitc::MODULE_CODE_ALIAS: 3011 case bitc::MODULE_CODE_ALIAS_OLD: { 3012 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3013 if (Record.size() < (3 + (unsigned)NewRecord)) 3014 return error("Invalid record"); 3015 unsigned OpNum = 0; 3016 Type *Ty = getTypeByID(Record[OpNum++]); 3017 if (!Ty) 3018 return error("Invalid record"); 3019 3020 unsigned AddrSpace; 3021 if (!NewRecord) { 3022 auto *PTy = dyn_cast<PointerType>(Ty); 3023 if (!PTy) 3024 return error("Invalid type for value"); 3025 Ty = PTy->getElementType(); 3026 AddrSpace = PTy->getAddressSpace(); 3027 } else { 3028 AddrSpace = Record[OpNum++]; 3029 } 3030 3031 auto Val = Record[OpNum++]; 3032 auto Linkage = Record[OpNum++]; 3033 GlobalIndirectSymbol *NewGA; 3034 if (BitCode == bitc::MODULE_CODE_ALIAS || 3035 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3036 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3037 "", TheModule); 3038 else 3039 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3040 "", nullptr, TheModule); 3041 // Old bitcode files didn't have visibility field. 3042 // Local linkage must have default visibility. 3043 if (OpNum != Record.size()) { 3044 auto VisInd = OpNum++; 3045 if (!NewGA->hasLocalLinkage()) 3046 // FIXME: Change to an error if non-default in 4.0. 3047 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3048 } 3049 if (OpNum != Record.size()) 3050 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3051 else 3052 upgradeDLLImportExportLinkage(NewGA, Linkage); 3053 if (OpNum != Record.size()) 3054 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3055 if (OpNum != Record.size()) 3056 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3057 ValueList.push_back(NewGA); 3058 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3059 break; 3060 } 3061 /// MODULE_CODE_PURGEVALS: [numvals] 3062 case bitc::MODULE_CODE_PURGEVALS: 3063 // Trim down the value list to the specified size. 3064 if (Record.size() < 1 || Record[0] > ValueList.size()) 3065 return error("Invalid record"); 3066 ValueList.shrinkTo(Record[0]); 3067 break; 3068 /// MODULE_CODE_VSTOFFSET: [offset] 3069 case bitc::MODULE_CODE_VSTOFFSET: 3070 if (Record.size() < 1) 3071 return error("Invalid record"); 3072 // Note that we subtract 1 here because the offset is relative to one word 3073 // before the start of the identification or module block, which was 3074 // historically always the start of the regular bitcode header. 3075 VSTOffset = Record[0] - 1; 3076 break; 3077 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3078 case bitc::MODULE_CODE_SOURCE_FILENAME: 3079 SmallString<128> ValueName; 3080 if (convertToString(Record, 0, ValueName)) 3081 return error("Invalid record"); 3082 TheModule->setSourceFileName(ValueName); 3083 break; 3084 } 3085 Record.clear(); 3086 } 3087 } 3088 3089 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3090 bool IsImporting) { 3091 TheModule = M; 3092 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3093 [&](unsigned ID) { return getTypeByID(ID); }); 3094 return parseModule(0, ShouldLazyLoadMetadata); 3095 } 3096 3097 3098 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3099 if (!isa<PointerType>(PtrType)) 3100 return error("Load/Store operand is not a pointer type"); 3101 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3102 3103 if (ValType && ValType != ElemType) 3104 return error("Explicit load/store type does not match pointee " 3105 "type of pointer operand"); 3106 if (!PointerType::isLoadableOrStorableType(ElemType)) 3107 return error("Cannot load/store from pointer"); 3108 return Error::success(); 3109 } 3110 3111 /// Lazily parse the specified function body block. 3112 Error BitcodeReader::parseFunctionBody(Function *F) { 3113 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3114 return error("Invalid record"); 3115 3116 // Unexpected unresolved metadata when parsing function. 3117 if (MDLoader->hasFwdRefs()) 3118 return error("Invalid function metadata: incoming forward references"); 3119 3120 InstructionList.clear(); 3121 unsigned ModuleValueListSize = ValueList.size(); 3122 unsigned ModuleMDLoaderSize = MDLoader->size(); 3123 3124 // Add all the function arguments to the value table. 3125 for (Argument &I : F->args()) 3126 ValueList.push_back(&I); 3127 3128 unsigned NextValueNo = ValueList.size(); 3129 BasicBlock *CurBB = nullptr; 3130 unsigned CurBBNo = 0; 3131 3132 DebugLoc LastLoc; 3133 auto getLastInstruction = [&]() -> Instruction * { 3134 if (CurBB && !CurBB->empty()) 3135 return &CurBB->back(); 3136 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3137 !FunctionBBs[CurBBNo - 1]->empty()) 3138 return &FunctionBBs[CurBBNo - 1]->back(); 3139 return nullptr; 3140 }; 3141 3142 std::vector<OperandBundleDef> OperandBundles; 3143 3144 // Read all the records. 3145 SmallVector<uint64_t, 64> Record; 3146 3147 while (true) { 3148 BitstreamEntry Entry = Stream.advance(); 3149 3150 switch (Entry.Kind) { 3151 case BitstreamEntry::Error: 3152 return error("Malformed block"); 3153 case BitstreamEntry::EndBlock: 3154 goto OutOfRecordLoop; 3155 3156 case BitstreamEntry::SubBlock: 3157 switch (Entry.ID) { 3158 default: // Skip unknown content. 3159 if (Stream.SkipBlock()) 3160 return error("Invalid record"); 3161 break; 3162 case bitc::CONSTANTS_BLOCK_ID: 3163 if (Error Err = parseConstants()) 3164 return Err; 3165 NextValueNo = ValueList.size(); 3166 break; 3167 case bitc::VALUE_SYMTAB_BLOCK_ID: 3168 if (Error Err = parseValueSymbolTable()) 3169 return Err; 3170 break; 3171 case bitc::METADATA_ATTACHMENT_ID: 3172 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3173 return Err; 3174 break; 3175 case bitc::METADATA_BLOCK_ID: 3176 assert(DeferredMetadataInfo.empty() && 3177 "Must read all module-level metadata before function-level"); 3178 if (Error Err = MDLoader->parseFunctionMetadata()) 3179 return Err; 3180 break; 3181 case bitc::USELIST_BLOCK_ID: 3182 if (Error Err = parseUseLists()) 3183 return Err; 3184 break; 3185 } 3186 continue; 3187 3188 case BitstreamEntry::Record: 3189 // The interesting case. 3190 break; 3191 } 3192 3193 // Read a record. 3194 Record.clear(); 3195 Instruction *I = nullptr; 3196 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3197 switch (BitCode) { 3198 default: // Default behavior: reject 3199 return error("Invalid value"); 3200 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3201 if (Record.size() < 1 || Record[0] == 0) 3202 return error("Invalid record"); 3203 // Create all the basic blocks for the function. 3204 FunctionBBs.resize(Record[0]); 3205 3206 // See if anything took the address of blocks in this function. 3207 auto BBFRI = BasicBlockFwdRefs.find(F); 3208 if (BBFRI == BasicBlockFwdRefs.end()) { 3209 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3210 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3211 } else { 3212 auto &BBRefs = BBFRI->second; 3213 // Check for invalid basic block references. 3214 if (BBRefs.size() > FunctionBBs.size()) 3215 return error("Invalid ID"); 3216 assert(!BBRefs.empty() && "Unexpected empty array"); 3217 assert(!BBRefs.front() && "Invalid reference to entry block"); 3218 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3219 ++I) 3220 if (I < RE && BBRefs[I]) { 3221 BBRefs[I]->insertInto(F); 3222 FunctionBBs[I] = BBRefs[I]; 3223 } else { 3224 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3225 } 3226 3227 // Erase from the table. 3228 BasicBlockFwdRefs.erase(BBFRI); 3229 } 3230 3231 CurBB = FunctionBBs[0]; 3232 continue; 3233 } 3234 3235 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3236 // This record indicates that the last instruction is at the same 3237 // location as the previous instruction with a location. 3238 I = getLastInstruction(); 3239 3240 if (!I) 3241 return error("Invalid record"); 3242 I->setDebugLoc(LastLoc); 3243 I = nullptr; 3244 continue; 3245 3246 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3247 I = getLastInstruction(); 3248 if (!I || Record.size() < 4) 3249 return error("Invalid record"); 3250 3251 unsigned Line = Record[0], Col = Record[1]; 3252 unsigned ScopeID = Record[2], IAID = Record[3]; 3253 3254 MDNode *Scope = nullptr, *IA = nullptr; 3255 if (ScopeID) { 3256 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3257 if (!Scope) 3258 return error("Invalid record"); 3259 } 3260 if (IAID) { 3261 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3262 if (!IA) 3263 return error("Invalid record"); 3264 } 3265 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3266 I->setDebugLoc(LastLoc); 3267 I = nullptr; 3268 continue; 3269 } 3270 3271 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3272 unsigned OpNum = 0; 3273 Value *LHS, *RHS; 3274 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3275 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3276 OpNum+1 > Record.size()) 3277 return error("Invalid record"); 3278 3279 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3280 if (Opc == -1) 3281 return error("Invalid record"); 3282 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3283 InstructionList.push_back(I); 3284 if (OpNum < Record.size()) { 3285 if (Opc == Instruction::Add || 3286 Opc == Instruction::Sub || 3287 Opc == Instruction::Mul || 3288 Opc == Instruction::Shl) { 3289 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3290 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3291 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3292 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3293 } else if (Opc == Instruction::SDiv || 3294 Opc == Instruction::UDiv || 3295 Opc == Instruction::LShr || 3296 Opc == Instruction::AShr) { 3297 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3298 cast<BinaryOperator>(I)->setIsExact(true); 3299 } else if (isa<FPMathOperator>(I)) { 3300 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3301 if (FMF.any()) 3302 I->setFastMathFlags(FMF); 3303 } 3304 3305 } 3306 break; 3307 } 3308 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3309 unsigned OpNum = 0; 3310 Value *Op; 3311 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3312 OpNum+2 != Record.size()) 3313 return error("Invalid record"); 3314 3315 Type *ResTy = getTypeByID(Record[OpNum]); 3316 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3317 if (Opc == -1 || !ResTy) 3318 return error("Invalid record"); 3319 Instruction *Temp = nullptr; 3320 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3321 if (Temp) { 3322 InstructionList.push_back(Temp); 3323 CurBB->getInstList().push_back(Temp); 3324 } 3325 } else { 3326 auto CastOp = (Instruction::CastOps)Opc; 3327 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3328 return error("Invalid cast"); 3329 I = CastInst::Create(CastOp, Op, ResTy); 3330 } 3331 InstructionList.push_back(I); 3332 break; 3333 } 3334 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3335 case bitc::FUNC_CODE_INST_GEP_OLD: 3336 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3337 unsigned OpNum = 0; 3338 3339 Type *Ty; 3340 bool InBounds; 3341 3342 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3343 InBounds = Record[OpNum++]; 3344 Ty = getTypeByID(Record[OpNum++]); 3345 } else { 3346 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3347 Ty = nullptr; 3348 } 3349 3350 Value *BasePtr; 3351 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3352 return error("Invalid record"); 3353 3354 if (!Ty) 3355 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3356 ->getElementType(); 3357 else if (Ty != 3358 cast<PointerType>(BasePtr->getType()->getScalarType()) 3359 ->getElementType()) 3360 return error( 3361 "Explicit gep type does not match pointee type of pointer operand"); 3362 3363 SmallVector<Value*, 16> GEPIdx; 3364 while (OpNum != Record.size()) { 3365 Value *Op; 3366 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3367 return error("Invalid record"); 3368 GEPIdx.push_back(Op); 3369 } 3370 3371 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3372 3373 InstructionList.push_back(I); 3374 if (InBounds) 3375 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3376 break; 3377 } 3378 3379 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3380 // EXTRACTVAL: [opty, opval, n x indices] 3381 unsigned OpNum = 0; 3382 Value *Agg; 3383 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3384 return error("Invalid record"); 3385 3386 unsigned RecSize = Record.size(); 3387 if (OpNum == RecSize) 3388 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3389 3390 SmallVector<unsigned, 4> EXTRACTVALIdx; 3391 Type *CurTy = Agg->getType(); 3392 for (; OpNum != RecSize; ++OpNum) { 3393 bool IsArray = CurTy->isArrayTy(); 3394 bool IsStruct = CurTy->isStructTy(); 3395 uint64_t Index = Record[OpNum]; 3396 3397 if (!IsStruct && !IsArray) 3398 return error("EXTRACTVAL: Invalid type"); 3399 if ((unsigned)Index != Index) 3400 return error("Invalid value"); 3401 if (IsStruct && Index >= CurTy->subtypes().size()) 3402 return error("EXTRACTVAL: Invalid struct index"); 3403 if (IsArray && Index >= CurTy->getArrayNumElements()) 3404 return error("EXTRACTVAL: Invalid array index"); 3405 EXTRACTVALIdx.push_back((unsigned)Index); 3406 3407 if (IsStruct) 3408 CurTy = CurTy->subtypes()[Index]; 3409 else 3410 CurTy = CurTy->subtypes()[0]; 3411 } 3412 3413 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3414 InstructionList.push_back(I); 3415 break; 3416 } 3417 3418 case bitc::FUNC_CODE_INST_INSERTVAL: { 3419 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3420 unsigned OpNum = 0; 3421 Value *Agg; 3422 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3423 return error("Invalid record"); 3424 Value *Val; 3425 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3426 return error("Invalid record"); 3427 3428 unsigned RecSize = Record.size(); 3429 if (OpNum == RecSize) 3430 return error("INSERTVAL: Invalid instruction with 0 indices"); 3431 3432 SmallVector<unsigned, 4> INSERTVALIdx; 3433 Type *CurTy = Agg->getType(); 3434 for (; OpNum != RecSize; ++OpNum) { 3435 bool IsArray = CurTy->isArrayTy(); 3436 bool IsStruct = CurTy->isStructTy(); 3437 uint64_t Index = Record[OpNum]; 3438 3439 if (!IsStruct && !IsArray) 3440 return error("INSERTVAL: Invalid type"); 3441 if ((unsigned)Index != Index) 3442 return error("Invalid value"); 3443 if (IsStruct && Index >= CurTy->subtypes().size()) 3444 return error("INSERTVAL: Invalid struct index"); 3445 if (IsArray && Index >= CurTy->getArrayNumElements()) 3446 return error("INSERTVAL: Invalid array index"); 3447 3448 INSERTVALIdx.push_back((unsigned)Index); 3449 if (IsStruct) 3450 CurTy = CurTy->subtypes()[Index]; 3451 else 3452 CurTy = CurTy->subtypes()[0]; 3453 } 3454 3455 if (CurTy != Val->getType()) 3456 return error("Inserted value type doesn't match aggregate type"); 3457 3458 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3459 InstructionList.push_back(I); 3460 break; 3461 } 3462 3463 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3464 // obsolete form of select 3465 // handles select i1 ... in old bitcode 3466 unsigned OpNum = 0; 3467 Value *TrueVal, *FalseVal, *Cond; 3468 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3469 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3470 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3471 return error("Invalid record"); 3472 3473 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3474 InstructionList.push_back(I); 3475 break; 3476 } 3477 3478 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3479 // new form of select 3480 // handles select i1 or select [N x i1] 3481 unsigned OpNum = 0; 3482 Value *TrueVal, *FalseVal, *Cond; 3483 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3484 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3485 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3486 return error("Invalid record"); 3487 3488 // select condition can be either i1 or [N x i1] 3489 if (VectorType* vector_type = 3490 dyn_cast<VectorType>(Cond->getType())) { 3491 // expect <n x i1> 3492 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3493 return error("Invalid type for value"); 3494 } else { 3495 // expect i1 3496 if (Cond->getType() != Type::getInt1Ty(Context)) 3497 return error("Invalid type for value"); 3498 } 3499 3500 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3501 InstructionList.push_back(I); 3502 break; 3503 } 3504 3505 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3506 unsigned OpNum = 0; 3507 Value *Vec, *Idx; 3508 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3509 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3510 return error("Invalid record"); 3511 if (!Vec->getType()->isVectorTy()) 3512 return error("Invalid type for value"); 3513 I = ExtractElementInst::Create(Vec, Idx); 3514 InstructionList.push_back(I); 3515 break; 3516 } 3517 3518 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3519 unsigned OpNum = 0; 3520 Value *Vec, *Elt, *Idx; 3521 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3522 return error("Invalid record"); 3523 if (!Vec->getType()->isVectorTy()) 3524 return error("Invalid type for value"); 3525 if (popValue(Record, OpNum, NextValueNo, 3526 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3527 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3528 return error("Invalid record"); 3529 I = InsertElementInst::Create(Vec, Elt, Idx); 3530 InstructionList.push_back(I); 3531 break; 3532 } 3533 3534 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3535 unsigned OpNum = 0; 3536 Value *Vec1, *Vec2, *Mask; 3537 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3538 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3539 return error("Invalid record"); 3540 3541 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3542 return error("Invalid record"); 3543 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3544 return error("Invalid type for value"); 3545 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3546 InstructionList.push_back(I); 3547 break; 3548 } 3549 3550 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3551 // Old form of ICmp/FCmp returning bool 3552 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3553 // both legal on vectors but had different behaviour. 3554 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3555 // FCmp/ICmp returning bool or vector of bool 3556 3557 unsigned OpNum = 0; 3558 Value *LHS, *RHS; 3559 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3560 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3561 return error("Invalid record"); 3562 3563 unsigned PredVal = Record[OpNum]; 3564 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3565 FastMathFlags FMF; 3566 if (IsFP && Record.size() > OpNum+1) 3567 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3568 3569 if (OpNum+1 != Record.size()) 3570 return error("Invalid record"); 3571 3572 if (LHS->getType()->isFPOrFPVectorTy()) 3573 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3574 else 3575 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3576 3577 if (FMF.any()) 3578 I->setFastMathFlags(FMF); 3579 InstructionList.push_back(I); 3580 break; 3581 } 3582 3583 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3584 { 3585 unsigned Size = Record.size(); 3586 if (Size == 0) { 3587 I = ReturnInst::Create(Context); 3588 InstructionList.push_back(I); 3589 break; 3590 } 3591 3592 unsigned OpNum = 0; 3593 Value *Op = nullptr; 3594 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3595 return error("Invalid record"); 3596 if (OpNum != Record.size()) 3597 return error("Invalid record"); 3598 3599 I = ReturnInst::Create(Context, Op); 3600 InstructionList.push_back(I); 3601 break; 3602 } 3603 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3604 if (Record.size() != 1 && Record.size() != 3) 3605 return error("Invalid record"); 3606 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3607 if (!TrueDest) 3608 return error("Invalid record"); 3609 3610 if (Record.size() == 1) { 3611 I = BranchInst::Create(TrueDest); 3612 InstructionList.push_back(I); 3613 } 3614 else { 3615 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3616 Value *Cond = getValue(Record, 2, NextValueNo, 3617 Type::getInt1Ty(Context)); 3618 if (!FalseDest || !Cond) 3619 return error("Invalid record"); 3620 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3621 InstructionList.push_back(I); 3622 } 3623 break; 3624 } 3625 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3626 if (Record.size() != 1 && Record.size() != 2) 3627 return error("Invalid record"); 3628 unsigned Idx = 0; 3629 Value *CleanupPad = 3630 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3631 if (!CleanupPad) 3632 return error("Invalid record"); 3633 BasicBlock *UnwindDest = nullptr; 3634 if (Record.size() == 2) { 3635 UnwindDest = getBasicBlock(Record[Idx++]); 3636 if (!UnwindDest) 3637 return error("Invalid record"); 3638 } 3639 3640 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3641 InstructionList.push_back(I); 3642 break; 3643 } 3644 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3645 if (Record.size() != 2) 3646 return error("Invalid record"); 3647 unsigned Idx = 0; 3648 Value *CatchPad = 3649 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3650 if (!CatchPad) 3651 return error("Invalid record"); 3652 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3653 if (!BB) 3654 return error("Invalid record"); 3655 3656 I = CatchReturnInst::Create(CatchPad, BB); 3657 InstructionList.push_back(I); 3658 break; 3659 } 3660 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3661 // We must have, at minimum, the outer scope and the number of arguments. 3662 if (Record.size() < 2) 3663 return error("Invalid record"); 3664 3665 unsigned Idx = 0; 3666 3667 Value *ParentPad = 3668 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3669 3670 unsigned NumHandlers = Record[Idx++]; 3671 3672 SmallVector<BasicBlock *, 2> Handlers; 3673 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3674 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3675 if (!BB) 3676 return error("Invalid record"); 3677 Handlers.push_back(BB); 3678 } 3679 3680 BasicBlock *UnwindDest = nullptr; 3681 if (Idx + 1 == Record.size()) { 3682 UnwindDest = getBasicBlock(Record[Idx++]); 3683 if (!UnwindDest) 3684 return error("Invalid record"); 3685 } 3686 3687 if (Record.size() != Idx) 3688 return error("Invalid record"); 3689 3690 auto *CatchSwitch = 3691 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3692 for (BasicBlock *Handler : Handlers) 3693 CatchSwitch->addHandler(Handler); 3694 I = CatchSwitch; 3695 InstructionList.push_back(I); 3696 break; 3697 } 3698 case bitc::FUNC_CODE_INST_CATCHPAD: 3699 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3700 // We must have, at minimum, the outer scope and the number of arguments. 3701 if (Record.size() < 2) 3702 return error("Invalid record"); 3703 3704 unsigned Idx = 0; 3705 3706 Value *ParentPad = 3707 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3708 3709 unsigned NumArgOperands = Record[Idx++]; 3710 3711 SmallVector<Value *, 2> Args; 3712 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3713 Value *Val; 3714 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3715 return error("Invalid record"); 3716 Args.push_back(Val); 3717 } 3718 3719 if (Record.size() != Idx) 3720 return error("Invalid record"); 3721 3722 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3723 I = CleanupPadInst::Create(ParentPad, Args); 3724 else 3725 I = CatchPadInst::Create(ParentPad, Args); 3726 InstructionList.push_back(I); 3727 break; 3728 } 3729 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3730 // Check magic 3731 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3732 // "New" SwitchInst format with case ranges. The changes to write this 3733 // format were reverted but we still recognize bitcode that uses it. 3734 // Hopefully someday we will have support for case ranges and can use 3735 // this format again. 3736 3737 Type *OpTy = getTypeByID(Record[1]); 3738 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3739 3740 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3741 BasicBlock *Default = getBasicBlock(Record[3]); 3742 if (!OpTy || !Cond || !Default) 3743 return error("Invalid record"); 3744 3745 unsigned NumCases = Record[4]; 3746 3747 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3748 InstructionList.push_back(SI); 3749 3750 unsigned CurIdx = 5; 3751 for (unsigned i = 0; i != NumCases; ++i) { 3752 SmallVector<ConstantInt*, 1> CaseVals; 3753 unsigned NumItems = Record[CurIdx++]; 3754 for (unsigned ci = 0; ci != NumItems; ++ci) { 3755 bool isSingleNumber = Record[CurIdx++]; 3756 3757 APInt Low; 3758 unsigned ActiveWords = 1; 3759 if (ValueBitWidth > 64) 3760 ActiveWords = Record[CurIdx++]; 3761 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3762 ValueBitWidth); 3763 CurIdx += ActiveWords; 3764 3765 if (!isSingleNumber) { 3766 ActiveWords = 1; 3767 if (ValueBitWidth > 64) 3768 ActiveWords = Record[CurIdx++]; 3769 APInt High = readWideAPInt( 3770 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3771 CurIdx += ActiveWords; 3772 3773 // FIXME: It is not clear whether values in the range should be 3774 // compared as signed or unsigned values. The partially 3775 // implemented changes that used this format in the past used 3776 // unsigned comparisons. 3777 for ( ; Low.ule(High); ++Low) 3778 CaseVals.push_back(ConstantInt::get(Context, Low)); 3779 } else 3780 CaseVals.push_back(ConstantInt::get(Context, Low)); 3781 } 3782 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3783 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3784 cve = CaseVals.end(); cvi != cve; ++cvi) 3785 SI->addCase(*cvi, DestBB); 3786 } 3787 I = SI; 3788 break; 3789 } 3790 3791 // Old SwitchInst format without case ranges. 3792 3793 if (Record.size() < 3 || (Record.size() & 1) == 0) 3794 return error("Invalid record"); 3795 Type *OpTy = getTypeByID(Record[0]); 3796 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3797 BasicBlock *Default = getBasicBlock(Record[2]); 3798 if (!OpTy || !Cond || !Default) 3799 return error("Invalid record"); 3800 unsigned NumCases = (Record.size()-3)/2; 3801 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3802 InstructionList.push_back(SI); 3803 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3804 ConstantInt *CaseVal = 3805 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3806 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3807 if (!CaseVal || !DestBB) { 3808 delete SI; 3809 return error("Invalid record"); 3810 } 3811 SI->addCase(CaseVal, DestBB); 3812 } 3813 I = SI; 3814 break; 3815 } 3816 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3817 if (Record.size() < 2) 3818 return error("Invalid record"); 3819 Type *OpTy = getTypeByID(Record[0]); 3820 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3821 if (!OpTy || !Address) 3822 return error("Invalid record"); 3823 unsigned NumDests = Record.size()-2; 3824 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3825 InstructionList.push_back(IBI); 3826 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3827 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3828 IBI->addDestination(DestBB); 3829 } else { 3830 delete IBI; 3831 return error("Invalid record"); 3832 } 3833 } 3834 I = IBI; 3835 break; 3836 } 3837 3838 case bitc::FUNC_CODE_INST_INVOKE: { 3839 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3840 if (Record.size() < 4) 3841 return error("Invalid record"); 3842 unsigned OpNum = 0; 3843 AttributeSet PAL = getAttributes(Record[OpNum++]); 3844 unsigned CCInfo = Record[OpNum++]; 3845 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3846 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3847 3848 FunctionType *FTy = nullptr; 3849 if (CCInfo >> 13 & 1 && 3850 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3851 return error("Explicit invoke type is not a function type"); 3852 3853 Value *Callee; 3854 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3855 return error("Invalid record"); 3856 3857 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3858 if (!CalleeTy) 3859 return error("Callee is not a pointer"); 3860 if (!FTy) { 3861 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3862 if (!FTy) 3863 return error("Callee is not of pointer to function type"); 3864 } else if (CalleeTy->getElementType() != FTy) 3865 return error("Explicit invoke type does not match pointee type of " 3866 "callee operand"); 3867 if (Record.size() < FTy->getNumParams() + OpNum) 3868 return error("Insufficient operands to call"); 3869 3870 SmallVector<Value*, 16> Ops; 3871 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3872 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3873 FTy->getParamType(i))); 3874 if (!Ops.back()) 3875 return error("Invalid record"); 3876 } 3877 3878 if (!FTy->isVarArg()) { 3879 if (Record.size() != OpNum) 3880 return error("Invalid record"); 3881 } else { 3882 // Read type/value pairs for varargs params. 3883 while (OpNum != Record.size()) { 3884 Value *Op; 3885 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3886 return error("Invalid record"); 3887 Ops.push_back(Op); 3888 } 3889 } 3890 3891 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 3892 OperandBundles.clear(); 3893 InstructionList.push_back(I); 3894 cast<InvokeInst>(I)->setCallingConv( 3895 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 3896 cast<InvokeInst>(I)->setAttributes(PAL); 3897 break; 3898 } 3899 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3900 unsigned Idx = 0; 3901 Value *Val = nullptr; 3902 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3903 return error("Invalid record"); 3904 I = ResumeInst::Create(Val); 3905 InstructionList.push_back(I); 3906 break; 3907 } 3908 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3909 I = new UnreachableInst(Context); 3910 InstructionList.push_back(I); 3911 break; 3912 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3913 if (Record.size() < 1 || ((Record.size()-1)&1)) 3914 return error("Invalid record"); 3915 Type *Ty = getTypeByID(Record[0]); 3916 if (!Ty) 3917 return error("Invalid record"); 3918 3919 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3920 InstructionList.push_back(PN); 3921 3922 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3923 Value *V; 3924 // With the new function encoding, it is possible that operands have 3925 // negative IDs (for forward references). Use a signed VBR 3926 // representation to keep the encoding small. 3927 if (UseRelativeIDs) 3928 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3929 else 3930 V = getValue(Record, 1+i, NextValueNo, Ty); 3931 BasicBlock *BB = getBasicBlock(Record[2+i]); 3932 if (!V || !BB) 3933 return error("Invalid record"); 3934 PN->addIncoming(V, BB); 3935 } 3936 I = PN; 3937 break; 3938 } 3939 3940 case bitc::FUNC_CODE_INST_LANDINGPAD: 3941 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 3942 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3943 unsigned Idx = 0; 3944 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 3945 if (Record.size() < 3) 3946 return error("Invalid record"); 3947 } else { 3948 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 3949 if (Record.size() < 4) 3950 return error("Invalid record"); 3951 } 3952 Type *Ty = getTypeByID(Record[Idx++]); 3953 if (!Ty) 3954 return error("Invalid record"); 3955 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 3956 Value *PersFn = nullptr; 3957 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3958 return error("Invalid record"); 3959 3960 if (!F->hasPersonalityFn()) 3961 F->setPersonalityFn(cast<Constant>(PersFn)); 3962 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 3963 return error("Personality function mismatch"); 3964 } 3965 3966 bool IsCleanup = !!Record[Idx++]; 3967 unsigned NumClauses = Record[Idx++]; 3968 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 3969 LP->setCleanup(IsCleanup); 3970 for (unsigned J = 0; J != NumClauses; ++J) { 3971 LandingPadInst::ClauseType CT = 3972 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3973 Value *Val; 3974 3975 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3976 delete LP; 3977 return error("Invalid record"); 3978 } 3979 3980 assert((CT != LandingPadInst::Catch || 3981 !isa<ArrayType>(Val->getType())) && 3982 "Catch clause has a invalid type!"); 3983 assert((CT != LandingPadInst::Filter || 3984 isa<ArrayType>(Val->getType())) && 3985 "Filter clause has invalid type!"); 3986 LP->addClause(cast<Constant>(Val)); 3987 } 3988 3989 I = LP; 3990 InstructionList.push_back(I); 3991 break; 3992 } 3993 3994 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3995 if (Record.size() != 4) 3996 return error("Invalid record"); 3997 uint64_t AlignRecord = Record[3]; 3998 const uint64_t InAllocaMask = uint64_t(1) << 5; 3999 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4000 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4001 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4002 SwiftErrorMask; 4003 bool InAlloca = AlignRecord & InAllocaMask; 4004 bool SwiftError = AlignRecord & SwiftErrorMask; 4005 Type *Ty = getTypeByID(Record[0]); 4006 if ((AlignRecord & ExplicitTypeMask) == 0) { 4007 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4008 if (!PTy) 4009 return error("Old-style alloca with a non-pointer type"); 4010 Ty = PTy->getElementType(); 4011 } 4012 Type *OpTy = getTypeByID(Record[1]); 4013 Value *Size = getFnValueByID(Record[2], OpTy); 4014 unsigned Align; 4015 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4016 return Err; 4017 } 4018 if (!Ty || !Size) 4019 return error("Invalid record"); 4020 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4021 AI->setUsedWithInAlloca(InAlloca); 4022 AI->setSwiftError(SwiftError); 4023 I = AI; 4024 InstructionList.push_back(I); 4025 break; 4026 } 4027 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4028 unsigned OpNum = 0; 4029 Value *Op; 4030 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4031 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4032 return error("Invalid record"); 4033 4034 Type *Ty = nullptr; 4035 if (OpNum + 3 == Record.size()) 4036 Ty = getTypeByID(Record[OpNum++]); 4037 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4038 return Err; 4039 if (!Ty) 4040 Ty = cast<PointerType>(Op->getType())->getElementType(); 4041 4042 unsigned Align; 4043 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4044 return Err; 4045 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4046 4047 InstructionList.push_back(I); 4048 break; 4049 } 4050 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4051 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4052 unsigned OpNum = 0; 4053 Value *Op; 4054 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4055 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4056 return error("Invalid record"); 4057 4058 Type *Ty = nullptr; 4059 if (OpNum + 5 == Record.size()) 4060 Ty = getTypeByID(Record[OpNum++]); 4061 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4062 return Err; 4063 if (!Ty) 4064 Ty = cast<PointerType>(Op->getType())->getElementType(); 4065 4066 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4067 if (Ordering == AtomicOrdering::NotAtomic || 4068 Ordering == AtomicOrdering::Release || 4069 Ordering == AtomicOrdering::AcquireRelease) 4070 return error("Invalid record"); 4071 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4072 return error("Invalid record"); 4073 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4074 4075 unsigned Align; 4076 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4077 return Err; 4078 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4079 4080 InstructionList.push_back(I); 4081 break; 4082 } 4083 case bitc::FUNC_CODE_INST_STORE: 4084 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4085 unsigned OpNum = 0; 4086 Value *Val, *Ptr; 4087 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4088 (BitCode == bitc::FUNC_CODE_INST_STORE 4089 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4090 : popValue(Record, OpNum, NextValueNo, 4091 cast<PointerType>(Ptr->getType())->getElementType(), 4092 Val)) || 4093 OpNum + 2 != Record.size()) 4094 return error("Invalid record"); 4095 4096 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4097 return Err; 4098 unsigned Align; 4099 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4100 return Err; 4101 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4102 InstructionList.push_back(I); 4103 break; 4104 } 4105 case bitc::FUNC_CODE_INST_STOREATOMIC: 4106 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4107 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4108 unsigned OpNum = 0; 4109 Value *Val, *Ptr; 4110 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4111 !isa<PointerType>(Ptr->getType()) || 4112 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4113 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4114 : popValue(Record, OpNum, NextValueNo, 4115 cast<PointerType>(Ptr->getType())->getElementType(), 4116 Val)) || 4117 OpNum + 4 != Record.size()) 4118 return error("Invalid record"); 4119 4120 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4121 return Err; 4122 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4123 if (Ordering == AtomicOrdering::NotAtomic || 4124 Ordering == AtomicOrdering::Acquire || 4125 Ordering == AtomicOrdering::AcquireRelease) 4126 return error("Invalid record"); 4127 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4128 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4129 return error("Invalid record"); 4130 4131 unsigned Align; 4132 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4133 return Err; 4134 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4135 InstructionList.push_back(I); 4136 break; 4137 } 4138 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4139 case bitc::FUNC_CODE_INST_CMPXCHG: { 4140 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4141 // failureordering?, isweak?] 4142 unsigned OpNum = 0; 4143 Value *Ptr, *Cmp, *New; 4144 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4145 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4146 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4147 : popValue(Record, OpNum, NextValueNo, 4148 cast<PointerType>(Ptr->getType())->getElementType(), 4149 Cmp)) || 4150 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4151 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4152 return error("Invalid record"); 4153 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4154 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4155 SuccessOrdering == AtomicOrdering::Unordered) 4156 return error("Invalid record"); 4157 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4158 4159 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4160 return Err; 4161 AtomicOrdering FailureOrdering; 4162 if (Record.size() < 7) 4163 FailureOrdering = 4164 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4165 else 4166 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4167 4168 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4169 SynchScope); 4170 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4171 4172 if (Record.size() < 8) { 4173 // Before weak cmpxchgs existed, the instruction simply returned the 4174 // value loaded from memory, so bitcode files from that era will be 4175 // expecting the first component of a modern cmpxchg. 4176 CurBB->getInstList().push_back(I); 4177 I = ExtractValueInst::Create(I, 0); 4178 } else { 4179 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4180 } 4181 4182 InstructionList.push_back(I); 4183 break; 4184 } 4185 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4186 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4187 unsigned OpNum = 0; 4188 Value *Ptr, *Val; 4189 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4190 !isa<PointerType>(Ptr->getType()) || 4191 popValue(Record, OpNum, NextValueNo, 4192 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4193 OpNum+4 != Record.size()) 4194 return error("Invalid record"); 4195 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4196 if (Operation < AtomicRMWInst::FIRST_BINOP || 4197 Operation > AtomicRMWInst::LAST_BINOP) 4198 return error("Invalid record"); 4199 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4200 if (Ordering == AtomicOrdering::NotAtomic || 4201 Ordering == AtomicOrdering::Unordered) 4202 return error("Invalid record"); 4203 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4204 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4205 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4206 InstructionList.push_back(I); 4207 break; 4208 } 4209 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4210 if (2 != Record.size()) 4211 return error("Invalid record"); 4212 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4213 if (Ordering == AtomicOrdering::NotAtomic || 4214 Ordering == AtomicOrdering::Unordered || 4215 Ordering == AtomicOrdering::Monotonic) 4216 return error("Invalid record"); 4217 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4218 I = new FenceInst(Context, Ordering, SynchScope); 4219 InstructionList.push_back(I); 4220 break; 4221 } 4222 case bitc::FUNC_CODE_INST_CALL: { 4223 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4224 if (Record.size() < 3) 4225 return error("Invalid record"); 4226 4227 unsigned OpNum = 0; 4228 AttributeSet PAL = getAttributes(Record[OpNum++]); 4229 unsigned CCInfo = Record[OpNum++]; 4230 4231 FastMathFlags FMF; 4232 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4233 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4234 if (!FMF.any()) 4235 return error("Fast math flags indicator set for call with no FMF"); 4236 } 4237 4238 FunctionType *FTy = nullptr; 4239 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4240 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4241 return error("Explicit call type is not a function type"); 4242 4243 Value *Callee; 4244 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4245 return error("Invalid record"); 4246 4247 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4248 if (!OpTy) 4249 return error("Callee is not a pointer type"); 4250 if (!FTy) { 4251 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4252 if (!FTy) 4253 return error("Callee is not of pointer to function type"); 4254 } else if (OpTy->getElementType() != FTy) 4255 return error("Explicit call type does not match pointee type of " 4256 "callee operand"); 4257 if (Record.size() < FTy->getNumParams() + OpNum) 4258 return error("Insufficient operands to call"); 4259 4260 SmallVector<Value*, 16> Args; 4261 // Read the fixed params. 4262 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4263 if (FTy->getParamType(i)->isLabelTy()) 4264 Args.push_back(getBasicBlock(Record[OpNum])); 4265 else 4266 Args.push_back(getValue(Record, OpNum, NextValueNo, 4267 FTy->getParamType(i))); 4268 if (!Args.back()) 4269 return error("Invalid record"); 4270 } 4271 4272 // Read type/value pairs for varargs params. 4273 if (!FTy->isVarArg()) { 4274 if (OpNum != Record.size()) 4275 return error("Invalid record"); 4276 } else { 4277 while (OpNum != Record.size()) { 4278 Value *Op; 4279 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4280 return error("Invalid record"); 4281 Args.push_back(Op); 4282 } 4283 } 4284 4285 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4286 OperandBundles.clear(); 4287 InstructionList.push_back(I); 4288 cast<CallInst>(I)->setCallingConv( 4289 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4290 CallInst::TailCallKind TCK = CallInst::TCK_None; 4291 if (CCInfo & 1 << bitc::CALL_TAIL) 4292 TCK = CallInst::TCK_Tail; 4293 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4294 TCK = CallInst::TCK_MustTail; 4295 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4296 TCK = CallInst::TCK_NoTail; 4297 cast<CallInst>(I)->setTailCallKind(TCK); 4298 cast<CallInst>(I)->setAttributes(PAL); 4299 if (FMF.any()) { 4300 if (!isa<FPMathOperator>(I)) 4301 return error("Fast-math-flags specified for call without " 4302 "floating-point scalar or vector return type"); 4303 I->setFastMathFlags(FMF); 4304 } 4305 break; 4306 } 4307 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4308 if (Record.size() < 3) 4309 return error("Invalid record"); 4310 Type *OpTy = getTypeByID(Record[0]); 4311 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4312 Type *ResTy = getTypeByID(Record[2]); 4313 if (!OpTy || !Op || !ResTy) 4314 return error("Invalid record"); 4315 I = new VAArgInst(Op, ResTy); 4316 InstructionList.push_back(I); 4317 break; 4318 } 4319 4320 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4321 // A call or an invoke can be optionally prefixed with some variable 4322 // number of operand bundle blocks. These blocks are read into 4323 // OperandBundles and consumed at the next call or invoke instruction. 4324 4325 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4326 return error("Invalid record"); 4327 4328 std::vector<Value *> Inputs; 4329 4330 unsigned OpNum = 1; 4331 while (OpNum != Record.size()) { 4332 Value *Op; 4333 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4334 return error("Invalid record"); 4335 Inputs.push_back(Op); 4336 } 4337 4338 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4339 continue; 4340 } 4341 } 4342 4343 // Add instruction to end of current BB. If there is no current BB, reject 4344 // this file. 4345 if (!CurBB) { 4346 delete I; 4347 return error("Invalid instruction with no BB"); 4348 } 4349 if (!OperandBundles.empty()) { 4350 delete I; 4351 return error("Operand bundles found with no consumer"); 4352 } 4353 CurBB->getInstList().push_back(I); 4354 4355 // If this was a terminator instruction, move to the next block. 4356 if (isa<TerminatorInst>(I)) { 4357 ++CurBBNo; 4358 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4359 } 4360 4361 // Non-void values get registered in the value table for future use. 4362 if (I && !I->getType()->isVoidTy()) 4363 ValueList.assignValue(I, NextValueNo++); 4364 } 4365 4366 OutOfRecordLoop: 4367 4368 if (!OperandBundles.empty()) 4369 return error("Operand bundles found with no consumer"); 4370 4371 // Check the function list for unresolved values. 4372 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4373 if (!A->getParent()) { 4374 // We found at least one unresolved value. Nuke them all to avoid leaks. 4375 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4376 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4377 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4378 delete A; 4379 } 4380 } 4381 return error("Never resolved value found in function"); 4382 } 4383 } 4384 4385 // Unexpected unresolved metadata about to be dropped. 4386 if (MDLoader->hasFwdRefs()) 4387 return error("Invalid function metadata: outgoing forward refs"); 4388 4389 // Trim the value list down to the size it was before we parsed this function. 4390 ValueList.shrinkTo(ModuleValueListSize); 4391 MDLoader->shrinkTo(ModuleMDLoaderSize); 4392 std::vector<BasicBlock*>().swap(FunctionBBs); 4393 return Error::success(); 4394 } 4395 4396 /// Find the function body in the bitcode stream 4397 Error BitcodeReader::findFunctionInStream( 4398 Function *F, 4399 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4400 while (DeferredFunctionInfoIterator->second == 0) { 4401 // This is the fallback handling for the old format bitcode that 4402 // didn't contain the function index in the VST, or when we have 4403 // an anonymous function which would not have a VST entry. 4404 // Assert that we have one of those two cases. 4405 assert(VSTOffset == 0 || !F->hasName()); 4406 // Parse the next body in the stream and set its position in the 4407 // DeferredFunctionInfo map. 4408 if (Error Err = rememberAndSkipFunctionBodies()) 4409 return Err; 4410 } 4411 return Error::success(); 4412 } 4413 4414 //===----------------------------------------------------------------------===// 4415 // GVMaterializer implementation 4416 //===----------------------------------------------------------------------===// 4417 4418 Error BitcodeReader::materialize(GlobalValue *GV) { 4419 Function *F = dyn_cast<Function>(GV); 4420 // If it's not a function or is already material, ignore the request. 4421 if (!F || !F->isMaterializable()) 4422 return Error::success(); 4423 4424 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4425 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4426 // If its position is recorded as 0, its body is somewhere in the stream 4427 // but we haven't seen it yet. 4428 if (DFII->second == 0) 4429 if (Error Err = findFunctionInStream(F, DFII)) 4430 return Err; 4431 4432 // Materialize metadata before parsing any function bodies. 4433 if (Error Err = materializeMetadata()) 4434 return Err; 4435 4436 // Move the bit stream to the saved position of the deferred function body. 4437 Stream.JumpToBit(DFII->second); 4438 4439 if (Error Err = parseFunctionBody(F)) 4440 return Err; 4441 F->setIsMaterializable(false); 4442 4443 if (StripDebugInfo) 4444 stripDebugInfo(*F); 4445 4446 // Upgrade any old intrinsic calls in the function. 4447 for (auto &I : UpgradedIntrinsics) { 4448 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4449 UI != UE;) { 4450 User *U = *UI; 4451 ++UI; 4452 if (CallInst *CI = dyn_cast<CallInst>(U)) 4453 UpgradeIntrinsicCall(CI, I.second); 4454 } 4455 } 4456 4457 // Update calls to the remangled intrinsics 4458 for (auto &I : RemangledIntrinsics) 4459 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4460 UI != UE;) 4461 // Don't expect any other users than call sites 4462 CallSite(*UI++).setCalledFunction(I.second); 4463 4464 // Finish fn->subprogram upgrade for materialized functions. 4465 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4466 F->setSubprogram(SP); 4467 4468 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4469 if (!MDLoader->isStrippingTBAA()) { 4470 for (auto &I : instructions(F)) { 4471 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4472 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4473 continue; 4474 MDLoader->setStripTBAA(true); 4475 stripTBAA(F->getParent()); 4476 } 4477 } 4478 4479 // Bring in any functions that this function forward-referenced via 4480 // blockaddresses. 4481 return materializeForwardReferencedFunctions(); 4482 } 4483 4484 Error BitcodeReader::materializeModule() { 4485 if (Error Err = materializeMetadata()) 4486 return Err; 4487 4488 // Promise to materialize all forward references. 4489 WillMaterializeAllForwardRefs = true; 4490 4491 // Iterate over the module, deserializing any functions that are still on 4492 // disk. 4493 for (Function &F : *TheModule) { 4494 if (Error Err = materialize(&F)) 4495 return Err; 4496 } 4497 // At this point, if there are any function bodies, parse the rest of 4498 // the bits in the module past the last function block we have recorded 4499 // through either lazy scanning or the VST. 4500 if (LastFunctionBlockBit || NextUnreadBit) 4501 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4502 ? LastFunctionBlockBit 4503 : NextUnreadBit)) 4504 return Err; 4505 4506 // Check that all block address forward references got resolved (as we 4507 // promised above). 4508 if (!BasicBlockFwdRefs.empty()) 4509 return error("Never resolved function from blockaddress"); 4510 4511 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4512 // delete the old functions to clean up. We can't do this unless the entire 4513 // module is materialized because there could always be another function body 4514 // with calls to the old function. 4515 for (auto &I : UpgradedIntrinsics) { 4516 for (auto *U : I.first->users()) { 4517 if (CallInst *CI = dyn_cast<CallInst>(U)) 4518 UpgradeIntrinsicCall(CI, I.second); 4519 } 4520 if (!I.first->use_empty()) 4521 I.first->replaceAllUsesWith(I.second); 4522 I.first->eraseFromParent(); 4523 } 4524 UpgradedIntrinsics.clear(); 4525 // Do the same for remangled intrinsics 4526 for (auto &I : RemangledIntrinsics) { 4527 I.first->replaceAllUsesWith(I.second); 4528 I.first->eraseFromParent(); 4529 } 4530 RemangledIntrinsics.clear(); 4531 4532 UpgradeDebugInfo(*TheModule); 4533 4534 UpgradeModuleFlags(*TheModule); 4535 return Error::success(); 4536 } 4537 4538 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4539 return IdentifiedStructTypes; 4540 } 4541 4542 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4543 BitstreamCursor Cursor, ModuleSummaryIndex &TheIndex) 4544 : BitcodeReaderBase(std::move(Cursor)), TheIndex(TheIndex) {} 4545 4546 std::pair<GlobalValue::GUID, GlobalValue::GUID> 4547 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 4548 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 4549 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 4550 return VGI->second; 4551 } 4552 4553 // Specialized value symbol table parser used when reading module index 4554 // blocks where we don't actually create global values. The parsed information 4555 // is saved in the bitcode reader for use when later parsing summaries. 4556 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4557 uint64_t Offset, 4558 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4559 assert(Offset > 0 && "Expected non-zero VST offset"); 4560 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4561 4562 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4563 return error("Invalid record"); 4564 4565 SmallVector<uint64_t, 64> Record; 4566 4567 // Read all the records for this value table. 4568 SmallString<128> ValueName; 4569 4570 while (true) { 4571 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4572 4573 switch (Entry.Kind) { 4574 case BitstreamEntry::SubBlock: // Handled for us already. 4575 case BitstreamEntry::Error: 4576 return error("Malformed block"); 4577 case BitstreamEntry::EndBlock: 4578 // Done parsing VST, jump back to wherever we came from. 4579 Stream.JumpToBit(CurrentBit); 4580 return Error::success(); 4581 case BitstreamEntry::Record: 4582 // The interesting case. 4583 break; 4584 } 4585 4586 // Read a record. 4587 Record.clear(); 4588 switch (Stream.readRecord(Entry.ID, Record)) { 4589 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4590 break; 4591 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4592 if (convertToString(Record, 1, ValueName)) 4593 return error("Invalid record"); 4594 unsigned ValueID = Record[0]; 4595 assert(!SourceFileName.empty()); 4596 auto VLI = ValueIdToLinkageMap.find(ValueID); 4597 assert(VLI != ValueIdToLinkageMap.end() && 4598 "No linkage found for VST entry?"); 4599 auto Linkage = VLI->second; 4600 std::string GlobalId = 4601 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4602 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4603 auto OriginalNameID = ValueGUID; 4604 if (GlobalValue::isLocalLinkage(Linkage)) 4605 OriginalNameID = GlobalValue::getGUID(ValueName); 4606 if (PrintSummaryGUIDs) 4607 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4608 << ValueName << "\n"; 4609 ValueIdToCallGraphGUIDMap[ValueID] = 4610 std::make_pair(ValueGUID, OriginalNameID); 4611 ValueName.clear(); 4612 break; 4613 } 4614 case bitc::VST_CODE_FNENTRY: { 4615 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4616 if (convertToString(Record, 2, ValueName)) 4617 return error("Invalid record"); 4618 unsigned ValueID = Record[0]; 4619 assert(!SourceFileName.empty()); 4620 auto VLI = ValueIdToLinkageMap.find(ValueID); 4621 assert(VLI != ValueIdToLinkageMap.end() && 4622 "No linkage found for VST entry?"); 4623 auto Linkage = VLI->second; 4624 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 4625 ValueName, VLI->second, SourceFileName); 4626 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 4627 auto OriginalNameID = FunctionGUID; 4628 if (GlobalValue::isLocalLinkage(Linkage)) 4629 OriginalNameID = GlobalValue::getGUID(ValueName); 4630 if (PrintSummaryGUIDs) 4631 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 4632 << ValueName << "\n"; 4633 ValueIdToCallGraphGUIDMap[ValueID] = 4634 std::make_pair(FunctionGUID, OriginalNameID); 4635 4636 ValueName.clear(); 4637 break; 4638 } 4639 case bitc::VST_CODE_COMBINED_ENTRY: { 4640 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4641 unsigned ValueID = Record[0]; 4642 GlobalValue::GUID RefGUID = Record[1]; 4643 // The "original name", which is the second value of the pair will be 4644 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4645 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 4646 break; 4647 } 4648 } 4649 } 4650 } 4651 4652 // Parse just the blocks needed for building the index out of the module. 4653 // At the end of this routine the module Index is populated with a map 4654 // from global value id to GlobalValueSummary objects. 4655 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) { 4656 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4657 return error("Invalid record"); 4658 4659 SmallVector<uint64_t, 64> Record; 4660 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4661 unsigned ValueId = 0; 4662 4663 // Read the index for this module. 4664 while (true) { 4665 BitstreamEntry Entry = Stream.advance(); 4666 4667 switch (Entry.Kind) { 4668 case BitstreamEntry::Error: 4669 return error("Malformed block"); 4670 case BitstreamEntry::EndBlock: 4671 return Error::success(); 4672 4673 case BitstreamEntry::SubBlock: 4674 switch (Entry.ID) { 4675 default: // Skip unknown content. 4676 if (Stream.SkipBlock()) 4677 return error("Invalid record"); 4678 break; 4679 case bitc::BLOCKINFO_BLOCK_ID: 4680 // Need to parse these to get abbrev ids (e.g. for VST) 4681 if (readBlockInfo()) 4682 return error("Malformed block"); 4683 break; 4684 case bitc::VALUE_SYMTAB_BLOCK_ID: 4685 // Should have been parsed earlier via VSTOffset, unless there 4686 // is no summary section. 4687 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4688 !SeenGlobalValSummary) && 4689 "Expected early VST parse via VSTOffset record"); 4690 if (Stream.SkipBlock()) 4691 return error("Invalid record"); 4692 break; 4693 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4694 assert(!SeenValueSymbolTable && 4695 "Already read VST when parsing summary block?"); 4696 // We might not have a VST if there were no values in the 4697 // summary. An empty summary block generated when we are 4698 // performing ThinLTO compiles so we don't later invoke 4699 // the regular LTO process on them. 4700 if (VSTOffset > 0) { 4701 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4702 return Err; 4703 SeenValueSymbolTable = true; 4704 } 4705 SeenGlobalValSummary = true; 4706 if (Error Err = parseEntireSummary(ModulePath)) 4707 return Err; 4708 break; 4709 case bitc::MODULE_STRTAB_BLOCK_ID: 4710 if (Error Err = parseModuleStringTable()) 4711 return Err; 4712 break; 4713 } 4714 continue; 4715 4716 case BitstreamEntry::Record: { 4717 Record.clear(); 4718 auto BitCode = Stream.readRecord(Entry.ID, Record); 4719 switch (BitCode) { 4720 default: 4721 break; // Default behavior, ignore unknown content. 4722 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4723 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4724 SmallString<128> ValueName; 4725 if (convertToString(Record, 0, ValueName)) 4726 return error("Invalid record"); 4727 SourceFileName = ValueName.c_str(); 4728 break; 4729 } 4730 /// MODULE_CODE_HASH: [5*i32] 4731 case bitc::MODULE_CODE_HASH: { 4732 if (Record.size() != 5) 4733 return error("Invalid hash length " + Twine(Record.size()).str()); 4734 if (TheIndex.modulePaths().empty()) 4735 // We always seed the index with the module. 4736 TheIndex.addModulePath(ModulePath, 0); 4737 if (TheIndex.modulePaths().size() != 1) 4738 return error("Don't expect multiple modules defined?"); 4739 auto &Hash = TheIndex.modulePaths().begin()->second.second; 4740 int Pos = 0; 4741 for (auto &Val : Record) { 4742 assert(!(Val >> 32) && "Unexpected high bits set"); 4743 Hash[Pos++] = Val; 4744 } 4745 break; 4746 } 4747 /// MODULE_CODE_VSTOFFSET: [offset] 4748 case bitc::MODULE_CODE_VSTOFFSET: 4749 if (Record.size() < 1) 4750 return error("Invalid record"); 4751 // Note that we subtract 1 here because the offset is relative to one 4752 // word before the start of the identification or module block, which 4753 // was historically always the start of the regular bitcode header. 4754 VSTOffset = Record[0] - 1; 4755 break; 4756 // GLOBALVAR: [pointer type, isconst, initid, 4757 // linkage, alignment, section, visibility, threadlocal, 4758 // unnamed_addr, externally_initialized, dllstorageclass, 4759 // comdat] 4760 case bitc::MODULE_CODE_GLOBALVAR: { 4761 if (Record.size() < 6) 4762 return error("Invalid record"); 4763 uint64_t RawLinkage = Record[3]; 4764 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4765 ValueIdToLinkageMap[ValueId++] = Linkage; 4766 break; 4767 } 4768 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 4769 // alignment, section, visibility, gc, unnamed_addr, 4770 // prologuedata, dllstorageclass, comdat, prefixdata] 4771 case bitc::MODULE_CODE_FUNCTION: { 4772 if (Record.size() < 8) 4773 return error("Invalid record"); 4774 uint64_t RawLinkage = Record[3]; 4775 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4776 ValueIdToLinkageMap[ValueId++] = Linkage; 4777 break; 4778 } 4779 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4780 // dllstorageclass] 4781 case bitc::MODULE_CODE_ALIAS: { 4782 if (Record.size() < 6) 4783 return error("Invalid record"); 4784 uint64_t RawLinkage = Record[3]; 4785 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4786 ValueIdToLinkageMap[ValueId++] = Linkage; 4787 break; 4788 } 4789 } 4790 } 4791 continue; 4792 } 4793 } 4794 } 4795 4796 std::vector<ValueInfo> 4797 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 4798 std::vector<ValueInfo> Ret; 4799 Ret.reserve(Record.size()); 4800 for (uint64_t RefValueId : Record) 4801 Ret.push_back(getGUIDFromValueId(RefValueId).first); 4802 return Ret; 4803 } 4804 4805 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 4806 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 4807 std::vector<FunctionSummary::EdgeTy> Ret; 4808 Ret.reserve(Record.size()); 4809 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 4810 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 4811 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(Record[I]).first; 4812 if (IsOldProfileFormat) { 4813 I += 1; // Skip old callsitecount field 4814 if (HasProfile) 4815 I += 1; // Skip old profilecount field 4816 } else if (HasProfile) 4817 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 4818 Ret.push_back(FunctionSummary::EdgeTy{CalleeGUID, CalleeInfo{Hotness}}); 4819 } 4820 return Ret; 4821 } 4822 4823 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 4824 // objects in the index. 4825 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary( 4826 StringRef ModulePath) { 4827 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 4828 return error("Invalid record"); 4829 SmallVector<uint64_t, 64> Record; 4830 4831 // Parse version 4832 { 4833 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4834 if (Entry.Kind != BitstreamEntry::Record) 4835 return error("Invalid Summary Block: record for version expected"); 4836 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 4837 return error("Invalid Summary Block: version expected"); 4838 } 4839 const uint64_t Version = Record[0]; 4840 const bool IsOldProfileFormat = Version == 1; 4841 if (Version < 1 || Version > 3) 4842 return error("Invalid summary version " + Twine(Version) + 4843 ", 1, 2 or 3 expected"); 4844 Record.clear(); 4845 4846 // Keep around the last seen summary to be used when we see an optional 4847 // "OriginalName" attachement. 4848 GlobalValueSummary *LastSeenSummary = nullptr; 4849 bool Combined = false; 4850 std::vector<GlobalValue::GUID> PendingTypeTests; 4851 4852 while (true) { 4853 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4854 4855 switch (Entry.Kind) { 4856 case BitstreamEntry::SubBlock: // Handled for us already. 4857 case BitstreamEntry::Error: 4858 return error("Malformed block"); 4859 case BitstreamEntry::EndBlock: 4860 // For a per-module index, remove any entries that still have empty 4861 // summaries. The VST parsing creates entries eagerly for all symbols, 4862 // but not all have associated summaries (e.g. it doesn't know how to 4863 // distinguish between VST_CODE_ENTRY for function declarations vs global 4864 // variables with initializers that end up with a summary). Remove those 4865 // entries now so that we don't need to rely on the combined index merger 4866 // to clean them up (especially since that may not run for the first 4867 // module's index if we merge into that). 4868 if (!Combined) 4869 TheIndex.removeEmptySummaryEntries(); 4870 return Error::success(); 4871 case BitstreamEntry::Record: 4872 // The interesting case. 4873 break; 4874 } 4875 4876 // Read a record. The record format depends on whether this 4877 // is a per-module index or a combined index file. In the per-module 4878 // case the records contain the associated value's ID for correlation 4879 // with VST entries. In the combined index the correlation is done 4880 // via the bitcode offset of the summary records (which were saved 4881 // in the combined index VST entries). The records also contain 4882 // information used for ThinLTO renaming and importing. 4883 Record.clear(); 4884 auto BitCode = Stream.readRecord(Entry.ID, Record); 4885 switch (BitCode) { 4886 default: // Default behavior: ignore. 4887 break; 4888 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 4889 // n x (valueid)] 4890 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 4891 // numrefs x valueid, 4892 // n x (valueid, hotness)] 4893 case bitc::FS_PERMODULE: 4894 case bitc::FS_PERMODULE_PROFILE: { 4895 unsigned ValueID = Record[0]; 4896 uint64_t RawFlags = Record[1]; 4897 unsigned InstCount = Record[2]; 4898 unsigned NumRefs = Record[3]; 4899 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4900 // The module path string ref set in the summary must be owned by the 4901 // index's module string table. Since we don't have a module path 4902 // string table section in the per-module index, we create a single 4903 // module path string table entry with an empty (0) ID to take 4904 // ownership. 4905 static int RefListStartIndex = 4; 4906 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 4907 assert(Record.size() >= RefListStartIndex + NumRefs && 4908 "Record size inconsistent with number of references"); 4909 std::vector<ValueInfo> Refs = makeRefList( 4910 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 4911 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 4912 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 4913 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 4914 IsOldProfileFormat, HasProfile); 4915 auto FS = llvm::make_unique<FunctionSummary>( 4916 Flags, InstCount, std::move(Refs), std::move(Calls), 4917 std::move(PendingTypeTests)); 4918 PendingTypeTests.clear(); 4919 auto GUID = getGUIDFromValueId(ValueID); 4920 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4921 FS->setOriginalName(GUID.second); 4922 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 4923 break; 4924 } 4925 // FS_ALIAS: [valueid, flags, valueid] 4926 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 4927 // they expect all aliasee summaries to be available. 4928 case bitc::FS_ALIAS: { 4929 unsigned ValueID = Record[0]; 4930 uint64_t RawFlags = Record[1]; 4931 unsigned AliaseeID = Record[2]; 4932 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4933 auto AS = 4934 llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 4935 // The module path string ref set in the summary must be owned by the 4936 // index's module string table. Since we don't have a module path 4937 // string table section in the per-module index, we create a single 4938 // module path string table entry with an empty (0) ID to take 4939 // ownership. 4940 AS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4941 4942 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 4943 auto *AliaseeSummary = TheIndex.getGlobalValueSummary(AliaseeGUID); 4944 if (!AliaseeSummary) 4945 return error("Alias expects aliasee summary to be parsed"); 4946 AS->setAliasee(AliaseeSummary); 4947 4948 auto GUID = getGUIDFromValueId(ValueID); 4949 AS->setOriginalName(GUID.second); 4950 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 4951 break; 4952 } 4953 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 4954 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 4955 unsigned ValueID = Record[0]; 4956 uint64_t RawFlags = Record[1]; 4957 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4958 std::vector<ValueInfo> Refs = 4959 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 4960 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 4961 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4962 auto GUID = getGUIDFromValueId(ValueID); 4963 FS->setOriginalName(GUID.second); 4964 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 4965 break; 4966 } 4967 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 4968 // numrefs x valueid, n x (valueid)] 4969 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 4970 // numrefs x valueid, n x (valueid, hotness)] 4971 case bitc::FS_COMBINED: 4972 case bitc::FS_COMBINED_PROFILE: { 4973 unsigned ValueID = Record[0]; 4974 uint64_t ModuleId = Record[1]; 4975 uint64_t RawFlags = Record[2]; 4976 unsigned InstCount = Record[3]; 4977 unsigned NumRefs = Record[4]; 4978 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4979 static int RefListStartIndex = 5; 4980 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 4981 assert(Record.size() >= RefListStartIndex + NumRefs && 4982 "Record size inconsistent with number of references"); 4983 std::vector<ValueInfo> Refs = makeRefList( 4984 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 4985 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 4986 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 4987 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 4988 IsOldProfileFormat, HasProfile); 4989 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 4990 auto FS = llvm::make_unique<FunctionSummary>( 4991 Flags, InstCount, std::move(Refs), std::move(Edges), 4992 std::move(PendingTypeTests)); 4993 PendingTypeTests.clear(); 4994 LastSeenSummary = FS.get(); 4995 FS->setModulePath(ModuleIdMap[ModuleId]); 4996 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 4997 Combined = true; 4998 break; 4999 } 5000 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5001 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5002 // they expect all aliasee summaries to be available. 5003 case bitc::FS_COMBINED_ALIAS: { 5004 unsigned ValueID = Record[0]; 5005 uint64_t ModuleId = Record[1]; 5006 uint64_t RawFlags = Record[2]; 5007 unsigned AliaseeValueId = Record[3]; 5008 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5009 auto AS = llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5010 LastSeenSummary = AS.get(); 5011 AS->setModulePath(ModuleIdMap[ModuleId]); 5012 5013 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 5014 auto AliaseeInModule = 5015 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5016 if (!AliaseeInModule) 5017 return error("Alias expects aliasee summary to be parsed"); 5018 AS->setAliasee(AliaseeInModule); 5019 5020 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5021 TheIndex.addGlobalValueSummary(GUID, std::move(AS)); 5022 Combined = true; 5023 break; 5024 } 5025 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5026 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5027 unsigned ValueID = Record[0]; 5028 uint64_t ModuleId = Record[1]; 5029 uint64_t RawFlags = Record[2]; 5030 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5031 std::vector<ValueInfo> Refs = 5032 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5033 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5034 LastSeenSummary = FS.get(); 5035 FS->setModulePath(ModuleIdMap[ModuleId]); 5036 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5037 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 5038 Combined = true; 5039 break; 5040 } 5041 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5042 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5043 uint64_t OriginalName = Record[0]; 5044 if (!LastSeenSummary) 5045 return error("Name attachment that does not follow a combined record"); 5046 LastSeenSummary->setOriginalName(OriginalName); 5047 // Reset the LastSeenSummary 5048 LastSeenSummary = nullptr; 5049 break; 5050 } 5051 case bitc::FS_TYPE_TESTS: { 5052 assert(PendingTypeTests.empty()); 5053 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5054 Record.end()); 5055 break; 5056 } 5057 } 5058 } 5059 llvm_unreachable("Exit infinite loop"); 5060 } 5061 5062 // Parse the module string table block into the Index. 5063 // This populates the ModulePathStringTable map in the index. 5064 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5065 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5066 return error("Invalid record"); 5067 5068 SmallVector<uint64_t, 64> Record; 5069 5070 SmallString<128> ModulePath; 5071 ModulePathStringTableTy::iterator LastSeenModulePath; 5072 5073 while (true) { 5074 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5075 5076 switch (Entry.Kind) { 5077 case BitstreamEntry::SubBlock: // Handled for us already. 5078 case BitstreamEntry::Error: 5079 return error("Malformed block"); 5080 case BitstreamEntry::EndBlock: 5081 return Error::success(); 5082 case BitstreamEntry::Record: 5083 // The interesting case. 5084 break; 5085 } 5086 5087 Record.clear(); 5088 switch (Stream.readRecord(Entry.ID, Record)) { 5089 default: // Default behavior: ignore. 5090 break; 5091 case bitc::MST_CODE_ENTRY: { 5092 // MST_ENTRY: [modid, namechar x N] 5093 uint64_t ModuleId = Record[0]; 5094 5095 if (convertToString(Record, 1, ModulePath)) 5096 return error("Invalid record"); 5097 5098 LastSeenModulePath = TheIndex.addModulePath(ModulePath, ModuleId); 5099 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 5100 5101 ModulePath.clear(); 5102 break; 5103 } 5104 /// MST_CODE_HASH: [5*i32] 5105 case bitc::MST_CODE_HASH: { 5106 if (Record.size() != 5) 5107 return error("Invalid hash length " + Twine(Record.size()).str()); 5108 if (LastSeenModulePath == TheIndex.modulePaths().end()) 5109 return error("Invalid hash that does not follow a module path"); 5110 int Pos = 0; 5111 for (auto &Val : Record) { 5112 assert(!(Val >> 32) && "Unexpected high bits set"); 5113 LastSeenModulePath->second.second[Pos++] = Val; 5114 } 5115 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 5116 LastSeenModulePath = TheIndex.modulePaths().end(); 5117 break; 5118 } 5119 } 5120 } 5121 llvm_unreachable("Exit infinite loop"); 5122 } 5123 5124 namespace { 5125 5126 // FIXME: This class is only here to support the transition to llvm::Error. It 5127 // will be removed once this transition is complete. Clients should prefer to 5128 // deal with the Error value directly, rather than converting to error_code. 5129 class BitcodeErrorCategoryType : public std::error_category { 5130 const char *name() const noexcept override { 5131 return "llvm.bitcode"; 5132 } 5133 std::string message(int IE) const override { 5134 BitcodeError E = static_cast<BitcodeError>(IE); 5135 switch (E) { 5136 case BitcodeError::CorruptedBitcode: 5137 return "Corrupted bitcode"; 5138 } 5139 llvm_unreachable("Unknown error type!"); 5140 } 5141 }; 5142 5143 } // end anonymous namespace 5144 5145 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5146 5147 const std::error_category &llvm::BitcodeErrorCategory() { 5148 return *ErrorCategory; 5149 } 5150 5151 //===----------------------------------------------------------------------===// 5152 // External interface 5153 //===----------------------------------------------------------------------===// 5154 5155 Expected<std::vector<BitcodeModule>> 5156 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5157 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5158 if (!StreamOrErr) 5159 return StreamOrErr.takeError(); 5160 BitstreamCursor &Stream = *StreamOrErr; 5161 5162 std::vector<BitcodeModule> Modules; 5163 while (true) { 5164 uint64_t BCBegin = Stream.getCurrentByteNo(); 5165 5166 // We may be consuming bitcode from a client that leaves garbage at the end 5167 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5168 // the end that there cannot possibly be another module, stop looking. 5169 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5170 return Modules; 5171 5172 BitstreamEntry Entry = Stream.advance(); 5173 switch (Entry.Kind) { 5174 case BitstreamEntry::EndBlock: 5175 case BitstreamEntry::Error: 5176 return error("Malformed block"); 5177 5178 case BitstreamEntry::SubBlock: { 5179 uint64_t IdentificationBit = -1ull; 5180 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5181 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5182 if (Stream.SkipBlock()) 5183 return error("Malformed block"); 5184 5185 Entry = Stream.advance(); 5186 if (Entry.Kind != BitstreamEntry::SubBlock || 5187 Entry.ID != bitc::MODULE_BLOCK_ID) 5188 return error("Malformed block"); 5189 } 5190 5191 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5192 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5193 if (Stream.SkipBlock()) 5194 return error("Malformed block"); 5195 5196 Modules.push_back({Stream.getBitcodeBytes().slice( 5197 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5198 Buffer.getBufferIdentifier(), IdentificationBit, 5199 ModuleBit}); 5200 continue; 5201 } 5202 5203 if (Stream.SkipBlock()) 5204 return error("Malformed block"); 5205 continue; 5206 } 5207 case BitstreamEntry::Record: 5208 Stream.skipRecord(Entry.ID); 5209 continue; 5210 } 5211 } 5212 } 5213 5214 /// \brief Get a lazy one-at-time loading module from bitcode. 5215 /// 5216 /// This isn't always used in a lazy context. In particular, it's also used by 5217 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5218 /// in forward-referenced functions from block address references. 5219 /// 5220 /// \param[in] MaterializeAll Set to \c true if we should materialize 5221 /// everything. 5222 Expected<std::unique_ptr<Module>> 5223 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5224 bool ShouldLazyLoadMetadata, bool IsImporting) { 5225 BitstreamCursor Stream(Buffer); 5226 5227 std::string ProducerIdentification; 5228 if (IdentificationBit != -1ull) { 5229 Stream.JumpToBit(IdentificationBit); 5230 Expected<std::string> ProducerIdentificationOrErr = 5231 readIdentificationBlock(Stream); 5232 if (!ProducerIdentificationOrErr) 5233 return ProducerIdentificationOrErr.takeError(); 5234 5235 ProducerIdentification = *ProducerIdentificationOrErr; 5236 } 5237 5238 Stream.JumpToBit(ModuleBit); 5239 auto *R = 5240 new BitcodeReader(std::move(Stream), ProducerIdentification, Context); 5241 5242 std::unique_ptr<Module> M = 5243 llvm::make_unique<Module>(ModuleIdentifier, Context); 5244 M->setMaterializer(R); 5245 5246 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5247 if (Error Err = 5248 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5249 return std::move(Err); 5250 5251 if (MaterializeAll) { 5252 // Read in the entire module, and destroy the BitcodeReader. 5253 if (Error Err = M->materializeAll()) 5254 return std::move(Err); 5255 } else { 5256 // Resolve forward references from blockaddresses. 5257 if (Error Err = R->materializeForwardReferencedFunctions()) 5258 return std::move(Err); 5259 } 5260 return std::move(M); 5261 } 5262 5263 Expected<std::unique_ptr<Module>> 5264 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5265 bool IsImporting) { 5266 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5267 } 5268 5269 // Parse the specified bitcode buffer, returning the function info index. 5270 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5271 BitstreamCursor Stream(Buffer); 5272 Stream.JumpToBit(ModuleBit); 5273 5274 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5275 ModuleSummaryIndexBitcodeReader R(std::move(Stream), *Index); 5276 5277 if (Error Err = R.parseModule(ModuleIdentifier)) 5278 return std::move(Err); 5279 5280 return std::move(Index); 5281 } 5282 5283 // Check if the given bitcode buffer contains a global value summary block. 5284 Expected<bool> BitcodeModule::hasSummary() { 5285 BitstreamCursor Stream(Buffer); 5286 Stream.JumpToBit(ModuleBit); 5287 5288 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5289 return error("Invalid record"); 5290 5291 while (true) { 5292 BitstreamEntry Entry = Stream.advance(); 5293 5294 switch (Entry.Kind) { 5295 case BitstreamEntry::Error: 5296 return error("Malformed block"); 5297 case BitstreamEntry::EndBlock: 5298 return false; 5299 5300 case BitstreamEntry::SubBlock: 5301 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5302 return true; 5303 5304 // Ignore other sub-blocks. 5305 if (Stream.SkipBlock()) 5306 return error("Malformed block"); 5307 continue; 5308 5309 case BitstreamEntry::Record: 5310 Stream.skipRecord(Entry.ID); 5311 continue; 5312 } 5313 } 5314 } 5315 5316 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5317 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5318 if (!MsOrErr) 5319 return MsOrErr.takeError(); 5320 5321 if (MsOrErr->size() != 1) 5322 return error("Expected a single module"); 5323 5324 return (*MsOrErr)[0]; 5325 } 5326 5327 Expected<std::unique_ptr<Module>> 5328 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5329 bool ShouldLazyLoadMetadata, bool IsImporting) { 5330 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5331 if (!BM) 5332 return BM.takeError(); 5333 5334 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5335 } 5336 5337 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5338 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5339 bool ShouldLazyLoadMetadata, bool IsImporting) { 5340 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5341 IsImporting); 5342 if (MOrErr) 5343 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5344 return MOrErr; 5345 } 5346 5347 Expected<std::unique_ptr<Module>> 5348 BitcodeModule::parseModule(LLVMContext &Context) { 5349 return getModuleImpl(Context, true, false, false); 5350 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5351 // written. We must defer until the Module has been fully materialized. 5352 } 5353 5354 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5355 LLVMContext &Context) { 5356 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5357 if (!BM) 5358 return BM.takeError(); 5359 5360 return BM->parseModule(Context); 5361 } 5362 5363 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5364 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5365 if (!StreamOrErr) 5366 return StreamOrErr.takeError(); 5367 5368 return readTriple(*StreamOrErr); 5369 } 5370 5371 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5372 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5373 if (!StreamOrErr) 5374 return StreamOrErr.takeError(); 5375 5376 return hasObjCCategory(*StreamOrErr); 5377 } 5378 5379 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5380 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5381 if (!StreamOrErr) 5382 return StreamOrErr.takeError(); 5383 5384 return readIdentificationCode(*StreamOrErr); 5385 } 5386 5387 Expected<std::unique_ptr<ModuleSummaryIndex>> 5388 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5389 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5390 if (!BM) 5391 return BM.takeError(); 5392 5393 return BM->getSummary(); 5394 } 5395 5396 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) { 5397 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5398 if (!BM) 5399 return BM.takeError(); 5400 5401 return BM->hasSummary(); 5402 } 5403