1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// \brief Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Converts alignment exponent (i.e. power of two (or zero)) to the 642 /// corresponding alignment to use. If alignment is too large, returns 643 /// a corresponding error code. 644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 647 648 Error parseComdatRecord(ArrayRef<uint64_t> Record); 649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 650 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 652 ArrayRef<uint64_t> Record); 653 654 Error parseAttributeBlock(); 655 Error parseAttributeGroupBlock(); 656 Error parseTypeTable(); 657 Error parseTypeTableBody(); 658 Error parseOperandBundleTags(); 659 Error parseSyncScopeNames(); 660 661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 662 unsigned NameIndex, Triple &TT); 663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 664 ArrayRef<uint64_t> Record); 665 Error parseValueSymbolTable(uint64_t Offset = 0); 666 Error parseGlobalValueSymbolTable(); 667 Error parseConstants(); 668 Error rememberAndSkipFunctionBodies(); 669 Error rememberAndSkipFunctionBody(); 670 /// Save the positions of the Metadata blocks and skip parsing the blocks. 671 Error rememberAndSkipMetadata(); 672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 673 Error parseFunctionBody(Function *F); 674 Error globalCleanup(); 675 Error resolveGlobalAndIndirectSymbolInits(); 676 Error parseUseLists(); 677 Error findFunctionInStream( 678 Function *F, 679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 680 681 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 682 }; 683 684 /// Class to manage reading and parsing function summary index bitcode 685 /// files/sections. 686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 687 /// The module index built during parsing. 688 ModuleSummaryIndex &TheIndex; 689 690 /// Indicates whether we have encountered a global value summary section 691 /// yet during parsing. 692 bool SeenGlobalValSummary = false; 693 694 /// Indicates whether we have already parsed the VST, used for error checking. 695 bool SeenValueSymbolTable = false; 696 697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 698 /// Used to enable on-demand parsing of the VST. 699 uint64_t VSTOffset = 0; 700 701 // Map to save ValueId to ValueInfo association that was recorded in the 702 // ValueSymbolTable. It is used after the VST is parsed to convert 703 // call graph edges read from the function summary from referencing 704 // callees by their ValueId to using the ValueInfo instead, which is how 705 // they are recorded in the summary index being built. 706 // We save a GUID which refers to the same global as the ValueInfo, but 707 // ignoring the linkage, i.e. for values other than local linkage they are 708 // identical. 709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 710 ValueIdToValueInfoMap; 711 712 /// Map populated during module path string table parsing, from the 713 /// module ID to a string reference owned by the index's module 714 /// path string table, used to correlate with combined index 715 /// summary records. 716 DenseMap<uint64_t, StringRef> ModuleIdMap; 717 718 /// Original source file name recorded in a bitcode record. 719 std::string SourceFileName; 720 721 /// The string identifier given to this module by the client, normally the 722 /// path to the bitcode file. 723 StringRef ModulePath; 724 725 /// For per-module summary indexes, the unique numerical identifier given to 726 /// this module by the client. 727 unsigned ModuleId; 728 729 public: 730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 731 ModuleSummaryIndex &TheIndex, 732 StringRef ModulePath, unsigned ModuleId); 733 734 Error parseModule(); 735 736 private: 737 void setValueGUID(uint64_t ValueID, StringRef ValueName, 738 GlobalValue::LinkageTypes Linkage, 739 StringRef SourceFileName); 740 Error parseValueSymbolTable( 741 uint64_t Offset, 742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 745 bool IsOldProfileFormat, 746 bool HasProfile); 747 Error parseEntireSummary(unsigned ID); 748 Error parseModuleStringTable(); 749 750 std::pair<ValueInfo, GlobalValue::GUID> 751 getValueInfoFromValueId(unsigned ValueId); 752 753 ModuleSummaryIndex::ModuleInfo *addThisModule(); 754 }; 755 756 } // end anonymous namespace 757 758 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 759 Error Err) { 760 if (Err) { 761 std::error_code EC; 762 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 763 EC = EIB.convertToErrorCode(); 764 Ctx.emitError(EIB.message()); 765 }); 766 return EC; 767 } 768 return std::error_code(); 769 } 770 771 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 772 StringRef ProducerIdentification, 773 LLVMContext &Context) 774 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 775 ValueList(Context) { 776 this->ProducerIdentification = ProducerIdentification; 777 } 778 779 Error BitcodeReader::materializeForwardReferencedFunctions() { 780 if (WillMaterializeAllForwardRefs) 781 return Error::success(); 782 783 // Prevent recursion. 784 WillMaterializeAllForwardRefs = true; 785 786 while (!BasicBlockFwdRefQueue.empty()) { 787 Function *F = BasicBlockFwdRefQueue.front(); 788 BasicBlockFwdRefQueue.pop_front(); 789 assert(F && "Expected valid function"); 790 if (!BasicBlockFwdRefs.count(F)) 791 // Already materialized. 792 continue; 793 794 // Check for a function that isn't materializable to prevent an infinite 795 // loop. When parsing a blockaddress stored in a global variable, there 796 // isn't a trivial way to check if a function will have a body without a 797 // linear search through FunctionsWithBodies, so just check it here. 798 if (!F->isMaterializable()) 799 return error("Never resolved function from blockaddress"); 800 801 // Try to materialize F. 802 if (Error Err = materialize(F)) 803 return Err; 804 } 805 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 806 807 // Reset state. 808 WillMaterializeAllForwardRefs = false; 809 return Error::success(); 810 } 811 812 //===----------------------------------------------------------------------===// 813 // Helper functions to implement forward reference resolution, etc. 814 //===----------------------------------------------------------------------===// 815 816 static bool hasImplicitComdat(size_t Val) { 817 switch (Val) { 818 default: 819 return false; 820 case 1: // Old WeakAnyLinkage 821 case 4: // Old LinkOnceAnyLinkage 822 case 10: // Old WeakODRLinkage 823 case 11: // Old LinkOnceODRLinkage 824 return true; 825 } 826 } 827 828 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 829 switch (Val) { 830 default: // Map unknown/new linkages to external 831 case 0: 832 return GlobalValue::ExternalLinkage; 833 case 2: 834 return GlobalValue::AppendingLinkage; 835 case 3: 836 return GlobalValue::InternalLinkage; 837 case 5: 838 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 839 case 6: 840 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 841 case 7: 842 return GlobalValue::ExternalWeakLinkage; 843 case 8: 844 return GlobalValue::CommonLinkage; 845 case 9: 846 return GlobalValue::PrivateLinkage; 847 case 12: 848 return GlobalValue::AvailableExternallyLinkage; 849 case 13: 850 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 851 case 14: 852 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 853 case 15: 854 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 855 case 1: // Old value with implicit comdat. 856 case 16: 857 return GlobalValue::WeakAnyLinkage; 858 case 10: // Old value with implicit comdat. 859 case 17: 860 return GlobalValue::WeakODRLinkage; 861 case 4: // Old value with implicit comdat. 862 case 18: 863 return GlobalValue::LinkOnceAnyLinkage; 864 case 11: // Old value with implicit comdat. 865 case 19: 866 return GlobalValue::LinkOnceODRLinkage; 867 } 868 } 869 870 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 871 FunctionSummary::FFlags Flags; 872 Flags.ReadNone = RawFlags & 0x1; 873 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 874 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 875 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 876 return Flags; 877 } 878 879 /// Decode the flags for GlobalValue in the summary. 880 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 881 uint64_t Version) { 882 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 883 // like getDecodedLinkage() above. Any future change to the linkage enum and 884 // to getDecodedLinkage() will need to be taken into account here as above. 885 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 886 RawFlags = RawFlags >> 4; 887 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 888 // The Live flag wasn't introduced until version 3. For dead stripping 889 // to work correctly on earlier versions, we must conservatively treat all 890 // values as live. 891 bool Live = (RawFlags & 0x2) || Version < 3; 892 bool Local = (RawFlags & 0x4); 893 894 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 895 } 896 897 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 898 switch (Val) { 899 default: // Map unknown visibilities to default. 900 case 0: return GlobalValue::DefaultVisibility; 901 case 1: return GlobalValue::HiddenVisibility; 902 case 2: return GlobalValue::ProtectedVisibility; 903 } 904 } 905 906 static GlobalValue::DLLStorageClassTypes 907 getDecodedDLLStorageClass(unsigned Val) { 908 switch (Val) { 909 default: // Map unknown values to default. 910 case 0: return GlobalValue::DefaultStorageClass; 911 case 1: return GlobalValue::DLLImportStorageClass; 912 case 2: return GlobalValue::DLLExportStorageClass; 913 } 914 } 915 916 static bool getDecodedDSOLocal(unsigned Val) { 917 switch(Val) { 918 default: // Map unknown values to preemptable. 919 case 0: return false; 920 case 1: return true; 921 } 922 } 923 924 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 925 switch (Val) { 926 case 0: return GlobalVariable::NotThreadLocal; 927 default: // Map unknown non-zero value to general dynamic. 928 case 1: return GlobalVariable::GeneralDynamicTLSModel; 929 case 2: return GlobalVariable::LocalDynamicTLSModel; 930 case 3: return GlobalVariable::InitialExecTLSModel; 931 case 4: return GlobalVariable::LocalExecTLSModel; 932 } 933 } 934 935 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 936 switch (Val) { 937 default: // Map unknown to UnnamedAddr::None. 938 case 0: return GlobalVariable::UnnamedAddr::None; 939 case 1: return GlobalVariable::UnnamedAddr::Global; 940 case 2: return GlobalVariable::UnnamedAddr::Local; 941 } 942 } 943 944 static int getDecodedCastOpcode(unsigned Val) { 945 switch (Val) { 946 default: return -1; 947 case bitc::CAST_TRUNC : return Instruction::Trunc; 948 case bitc::CAST_ZEXT : return Instruction::ZExt; 949 case bitc::CAST_SEXT : return Instruction::SExt; 950 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 951 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 952 case bitc::CAST_UITOFP : return Instruction::UIToFP; 953 case bitc::CAST_SITOFP : return Instruction::SIToFP; 954 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 955 case bitc::CAST_FPEXT : return Instruction::FPExt; 956 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 957 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 958 case bitc::CAST_BITCAST : return Instruction::BitCast; 959 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 960 } 961 } 962 963 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 964 bool IsFP = Ty->isFPOrFPVectorTy(); 965 // BinOps are only valid for int/fp or vector of int/fp types 966 if (!IsFP && !Ty->isIntOrIntVectorTy()) 967 return -1; 968 969 switch (Val) { 970 default: 971 return -1; 972 case bitc::BINOP_ADD: 973 return IsFP ? Instruction::FAdd : Instruction::Add; 974 case bitc::BINOP_SUB: 975 return IsFP ? Instruction::FSub : Instruction::Sub; 976 case bitc::BINOP_MUL: 977 return IsFP ? Instruction::FMul : Instruction::Mul; 978 case bitc::BINOP_UDIV: 979 return IsFP ? -1 : Instruction::UDiv; 980 case bitc::BINOP_SDIV: 981 return IsFP ? Instruction::FDiv : Instruction::SDiv; 982 case bitc::BINOP_UREM: 983 return IsFP ? -1 : Instruction::URem; 984 case bitc::BINOP_SREM: 985 return IsFP ? Instruction::FRem : Instruction::SRem; 986 case bitc::BINOP_SHL: 987 return IsFP ? -1 : Instruction::Shl; 988 case bitc::BINOP_LSHR: 989 return IsFP ? -1 : Instruction::LShr; 990 case bitc::BINOP_ASHR: 991 return IsFP ? -1 : Instruction::AShr; 992 case bitc::BINOP_AND: 993 return IsFP ? -1 : Instruction::And; 994 case bitc::BINOP_OR: 995 return IsFP ? -1 : Instruction::Or; 996 case bitc::BINOP_XOR: 997 return IsFP ? -1 : Instruction::Xor; 998 } 999 } 1000 1001 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1002 switch (Val) { 1003 default: return AtomicRMWInst::BAD_BINOP; 1004 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1005 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1006 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1007 case bitc::RMW_AND: return AtomicRMWInst::And; 1008 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1009 case bitc::RMW_OR: return AtomicRMWInst::Or; 1010 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1011 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1012 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1013 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1014 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1015 } 1016 } 1017 1018 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1019 switch (Val) { 1020 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1021 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1022 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1023 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1024 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1025 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1026 default: // Map unknown orderings to sequentially-consistent. 1027 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1028 } 1029 } 1030 1031 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1032 switch (Val) { 1033 default: // Map unknown selection kinds to any. 1034 case bitc::COMDAT_SELECTION_KIND_ANY: 1035 return Comdat::Any; 1036 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1037 return Comdat::ExactMatch; 1038 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1039 return Comdat::Largest; 1040 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1041 return Comdat::NoDuplicates; 1042 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1043 return Comdat::SameSize; 1044 } 1045 } 1046 1047 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1048 FastMathFlags FMF; 1049 if (0 != (Val & bitc::UnsafeAlgebra)) 1050 FMF.setFast(); 1051 if (0 != (Val & bitc::AllowReassoc)) 1052 FMF.setAllowReassoc(); 1053 if (0 != (Val & bitc::NoNaNs)) 1054 FMF.setNoNaNs(); 1055 if (0 != (Val & bitc::NoInfs)) 1056 FMF.setNoInfs(); 1057 if (0 != (Val & bitc::NoSignedZeros)) 1058 FMF.setNoSignedZeros(); 1059 if (0 != (Val & bitc::AllowReciprocal)) 1060 FMF.setAllowReciprocal(); 1061 if (0 != (Val & bitc::AllowContract)) 1062 FMF.setAllowContract(true); 1063 if (0 != (Val & bitc::ApproxFunc)) 1064 FMF.setApproxFunc(); 1065 return FMF; 1066 } 1067 1068 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1069 switch (Val) { 1070 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1071 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1072 } 1073 } 1074 1075 Type *BitcodeReader::getTypeByID(unsigned ID) { 1076 // The type table size is always specified correctly. 1077 if (ID >= TypeList.size()) 1078 return nullptr; 1079 1080 if (Type *Ty = TypeList[ID]) 1081 return Ty; 1082 1083 // If we have a forward reference, the only possible case is when it is to a 1084 // named struct. Just create a placeholder for now. 1085 return TypeList[ID] = createIdentifiedStructType(Context); 1086 } 1087 1088 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1089 StringRef Name) { 1090 auto *Ret = StructType::create(Context, Name); 1091 IdentifiedStructTypes.push_back(Ret); 1092 return Ret; 1093 } 1094 1095 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1096 auto *Ret = StructType::create(Context); 1097 IdentifiedStructTypes.push_back(Ret); 1098 return Ret; 1099 } 1100 1101 //===----------------------------------------------------------------------===// 1102 // Functions for parsing blocks from the bitcode file 1103 //===----------------------------------------------------------------------===// 1104 1105 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1106 switch (Val) { 1107 case Attribute::EndAttrKinds: 1108 llvm_unreachable("Synthetic enumerators which should never get here"); 1109 1110 case Attribute::None: return 0; 1111 case Attribute::ZExt: return 1 << 0; 1112 case Attribute::SExt: return 1 << 1; 1113 case Attribute::NoReturn: return 1 << 2; 1114 case Attribute::InReg: return 1 << 3; 1115 case Attribute::StructRet: return 1 << 4; 1116 case Attribute::NoUnwind: return 1 << 5; 1117 case Attribute::NoAlias: return 1 << 6; 1118 case Attribute::ByVal: return 1 << 7; 1119 case Attribute::Nest: return 1 << 8; 1120 case Attribute::ReadNone: return 1 << 9; 1121 case Attribute::ReadOnly: return 1 << 10; 1122 case Attribute::NoInline: return 1 << 11; 1123 case Attribute::AlwaysInline: return 1 << 12; 1124 case Attribute::OptimizeForSize: return 1 << 13; 1125 case Attribute::StackProtect: return 1 << 14; 1126 case Attribute::StackProtectReq: return 1 << 15; 1127 case Attribute::Alignment: return 31 << 16; 1128 case Attribute::NoCapture: return 1 << 21; 1129 case Attribute::NoRedZone: return 1 << 22; 1130 case Attribute::NoImplicitFloat: return 1 << 23; 1131 case Attribute::Naked: return 1 << 24; 1132 case Attribute::InlineHint: return 1 << 25; 1133 case Attribute::StackAlignment: return 7 << 26; 1134 case Attribute::ReturnsTwice: return 1 << 29; 1135 case Attribute::UWTable: return 1 << 30; 1136 case Attribute::NonLazyBind: return 1U << 31; 1137 case Attribute::SanitizeAddress: return 1ULL << 32; 1138 case Attribute::MinSize: return 1ULL << 33; 1139 case Attribute::NoDuplicate: return 1ULL << 34; 1140 case Attribute::StackProtectStrong: return 1ULL << 35; 1141 case Attribute::SanitizeThread: return 1ULL << 36; 1142 case Attribute::SanitizeMemory: return 1ULL << 37; 1143 case Attribute::NoBuiltin: return 1ULL << 38; 1144 case Attribute::Returned: return 1ULL << 39; 1145 case Attribute::Cold: return 1ULL << 40; 1146 case Attribute::Builtin: return 1ULL << 41; 1147 case Attribute::OptimizeNone: return 1ULL << 42; 1148 case Attribute::InAlloca: return 1ULL << 43; 1149 case Attribute::NonNull: return 1ULL << 44; 1150 case Attribute::JumpTable: return 1ULL << 45; 1151 case Attribute::Convergent: return 1ULL << 46; 1152 case Attribute::SafeStack: return 1ULL << 47; 1153 case Attribute::NoRecurse: return 1ULL << 48; 1154 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1155 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1156 case Attribute::SwiftSelf: return 1ULL << 51; 1157 case Attribute::SwiftError: return 1ULL << 52; 1158 case Attribute::WriteOnly: return 1ULL << 53; 1159 case Attribute::Speculatable: return 1ULL << 54; 1160 case Attribute::StrictFP: return 1ULL << 55; 1161 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1162 case Attribute::Dereferenceable: 1163 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1164 break; 1165 case Attribute::DereferenceableOrNull: 1166 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1167 "format"); 1168 break; 1169 case Attribute::ArgMemOnly: 1170 llvm_unreachable("argmemonly attribute not supported in raw format"); 1171 break; 1172 case Attribute::AllocSize: 1173 llvm_unreachable("allocsize not supported in raw format"); 1174 break; 1175 } 1176 llvm_unreachable("Unsupported attribute type"); 1177 } 1178 1179 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1180 if (!Val) return; 1181 1182 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1183 I = Attribute::AttrKind(I + 1)) { 1184 if (I == Attribute::Dereferenceable || 1185 I == Attribute::DereferenceableOrNull || 1186 I == Attribute::ArgMemOnly || 1187 I == Attribute::AllocSize) 1188 continue; 1189 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1190 if (I == Attribute::Alignment) 1191 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1192 else if (I == Attribute::StackAlignment) 1193 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1194 else 1195 B.addAttribute(I); 1196 } 1197 } 1198 } 1199 1200 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1201 /// been decoded from the given integer. This function must stay in sync with 1202 /// 'encodeLLVMAttributesForBitcode'. 1203 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1204 uint64_t EncodedAttrs) { 1205 // FIXME: Remove in 4.0. 1206 1207 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1208 // the bits above 31 down by 11 bits. 1209 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1210 assert((!Alignment || isPowerOf2_32(Alignment)) && 1211 "Alignment must be a power of two."); 1212 1213 if (Alignment) 1214 B.addAlignmentAttr(Alignment); 1215 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1216 (EncodedAttrs & 0xffff)); 1217 } 1218 1219 Error BitcodeReader::parseAttributeBlock() { 1220 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1221 return error("Invalid record"); 1222 1223 if (!MAttributes.empty()) 1224 return error("Invalid multiple blocks"); 1225 1226 SmallVector<uint64_t, 64> Record; 1227 1228 SmallVector<AttributeList, 8> Attrs; 1229 1230 // Read all the records. 1231 while (true) { 1232 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1233 1234 switch (Entry.Kind) { 1235 case BitstreamEntry::SubBlock: // Handled for us already. 1236 case BitstreamEntry::Error: 1237 return error("Malformed block"); 1238 case BitstreamEntry::EndBlock: 1239 return Error::success(); 1240 case BitstreamEntry::Record: 1241 // The interesting case. 1242 break; 1243 } 1244 1245 // Read a record. 1246 Record.clear(); 1247 switch (Stream.readRecord(Entry.ID, Record)) { 1248 default: // Default behavior: ignore. 1249 break; 1250 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1251 // FIXME: Remove in 4.0. 1252 if (Record.size() & 1) 1253 return error("Invalid record"); 1254 1255 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1256 AttrBuilder B; 1257 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1258 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1259 } 1260 1261 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1262 Attrs.clear(); 1263 break; 1264 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1265 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1266 Attrs.push_back(MAttributeGroups[Record[i]]); 1267 1268 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1269 Attrs.clear(); 1270 break; 1271 } 1272 } 1273 } 1274 1275 // Returns Attribute::None on unrecognized codes. 1276 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1277 switch (Code) { 1278 default: 1279 return Attribute::None; 1280 case bitc::ATTR_KIND_ALIGNMENT: 1281 return Attribute::Alignment; 1282 case bitc::ATTR_KIND_ALWAYS_INLINE: 1283 return Attribute::AlwaysInline; 1284 case bitc::ATTR_KIND_ARGMEMONLY: 1285 return Attribute::ArgMemOnly; 1286 case bitc::ATTR_KIND_BUILTIN: 1287 return Attribute::Builtin; 1288 case bitc::ATTR_KIND_BY_VAL: 1289 return Attribute::ByVal; 1290 case bitc::ATTR_KIND_IN_ALLOCA: 1291 return Attribute::InAlloca; 1292 case bitc::ATTR_KIND_COLD: 1293 return Attribute::Cold; 1294 case bitc::ATTR_KIND_CONVERGENT: 1295 return Attribute::Convergent; 1296 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1297 return Attribute::InaccessibleMemOnly; 1298 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1299 return Attribute::InaccessibleMemOrArgMemOnly; 1300 case bitc::ATTR_KIND_INLINE_HINT: 1301 return Attribute::InlineHint; 1302 case bitc::ATTR_KIND_IN_REG: 1303 return Attribute::InReg; 1304 case bitc::ATTR_KIND_JUMP_TABLE: 1305 return Attribute::JumpTable; 1306 case bitc::ATTR_KIND_MIN_SIZE: 1307 return Attribute::MinSize; 1308 case bitc::ATTR_KIND_NAKED: 1309 return Attribute::Naked; 1310 case bitc::ATTR_KIND_NEST: 1311 return Attribute::Nest; 1312 case bitc::ATTR_KIND_NO_ALIAS: 1313 return Attribute::NoAlias; 1314 case bitc::ATTR_KIND_NO_BUILTIN: 1315 return Attribute::NoBuiltin; 1316 case bitc::ATTR_KIND_NO_CAPTURE: 1317 return Attribute::NoCapture; 1318 case bitc::ATTR_KIND_NO_DUPLICATE: 1319 return Attribute::NoDuplicate; 1320 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1321 return Attribute::NoImplicitFloat; 1322 case bitc::ATTR_KIND_NO_INLINE: 1323 return Attribute::NoInline; 1324 case bitc::ATTR_KIND_NO_RECURSE: 1325 return Attribute::NoRecurse; 1326 case bitc::ATTR_KIND_NON_LAZY_BIND: 1327 return Attribute::NonLazyBind; 1328 case bitc::ATTR_KIND_NON_NULL: 1329 return Attribute::NonNull; 1330 case bitc::ATTR_KIND_DEREFERENCEABLE: 1331 return Attribute::Dereferenceable; 1332 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1333 return Attribute::DereferenceableOrNull; 1334 case bitc::ATTR_KIND_ALLOC_SIZE: 1335 return Attribute::AllocSize; 1336 case bitc::ATTR_KIND_NO_RED_ZONE: 1337 return Attribute::NoRedZone; 1338 case bitc::ATTR_KIND_NO_RETURN: 1339 return Attribute::NoReturn; 1340 case bitc::ATTR_KIND_NO_UNWIND: 1341 return Attribute::NoUnwind; 1342 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1343 return Attribute::OptimizeForSize; 1344 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1345 return Attribute::OptimizeNone; 1346 case bitc::ATTR_KIND_READ_NONE: 1347 return Attribute::ReadNone; 1348 case bitc::ATTR_KIND_READ_ONLY: 1349 return Attribute::ReadOnly; 1350 case bitc::ATTR_KIND_RETURNED: 1351 return Attribute::Returned; 1352 case bitc::ATTR_KIND_RETURNS_TWICE: 1353 return Attribute::ReturnsTwice; 1354 case bitc::ATTR_KIND_S_EXT: 1355 return Attribute::SExt; 1356 case bitc::ATTR_KIND_SPECULATABLE: 1357 return Attribute::Speculatable; 1358 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1359 return Attribute::StackAlignment; 1360 case bitc::ATTR_KIND_STACK_PROTECT: 1361 return Attribute::StackProtect; 1362 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1363 return Attribute::StackProtectReq; 1364 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1365 return Attribute::StackProtectStrong; 1366 case bitc::ATTR_KIND_SAFESTACK: 1367 return Attribute::SafeStack; 1368 case bitc::ATTR_KIND_STRICT_FP: 1369 return Attribute::StrictFP; 1370 case bitc::ATTR_KIND_STRUCT_RET: 1371 return Attribute::StructRet; 1372 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1373 return Attribute::SanitizeAddress; 1374 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1375 return Attribute::SanitizeHWAddress; 1376 case bitc::ATTR_KIND_SANITIZE_THREAD: 1377 return Attribute::SanitizeThread; 1378 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1379 return Attribute::SanitizeMemory; 1380 case bitc::ATTR_KIND_SWIFT_ERROR: 1381 return Attribute::SwiftError; 1382 case bitc::ATTR_KIND_SWIFT_SELF: 1383 return Attribute::SwiftSelf; 1384 case bitc::ATTR_KIND_UW_TABLE: 1385 return Attribute::UWTable; 1386 case bitc::ATTR_KIND_WRITEONLY: 1387 return Attribute::WriteOnly; 1388 case bitc::ATTR_KIND_Z_EXT: 1389 return Attribute::ZExt; 1390 } 1391 } 1392 1393 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1394 unsigned &Alignment) { 1395 // Note: Alignment in bitcode files is incremented by 1, so that zero 1396 // can be used for default alignment. 1397 if (Exponent > Value::MaxAlignmentExponent + 1) 1398 return error("Invalid alignment value"); 1399 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1400 return Error::success(); 1401 } 1402 1403 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1404 *Kind = getAttrFromCode(Code); 1405 if (*Kind == Attribute::None) 1406 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1407 return Error::success(); 1408 } 1409 1410 Error BitcodeReader::parseAttributeGroupBlock() { 1411 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1412 return error("Invalid record"); 1413 1414 if (!MAttributeGroups.empty()) 1415 return error("Invalid multiple blocks"); 1416 1417 SmallVector<uint64_t, 64> Record; 1418 1419 // Read all the records. 1420 while (true) { 1421 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1422 1423 switch (Entry.Kind) { 1424 case BitstreamEntry::SubBlock: // Handled for us already. 1425 case BitstreamEntry::Error: 1426 return error("Malformed block"); 1427 case BitstreamEntry::EndBlock: 1428 return Error::success(); 1429 case BitstreamEntry::Record: 1430 // The interesting case. 1431 break; 1432 } 1433 1434 // Read a record. 1435 Record.clear(); 1436 switch (Stream.readRecord(Entry.ID, Record)) { 1437 default: // Default behavior: ignore. 1438 break; 1439 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1440 if (Record.size() < 3) 1441 return error("Invalid record"); 1442 1443 uint64_t GrpID = Record[0]; 1444 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1445 1446 AttrBuilder B; 1447 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1448 if (Record[i] == 0) { // Enum attribute 1449 Attribute::AttrKind Kind; 1450 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1451 return Err; 1452 1453 B.addAttribute(Kind); 1454 } else if (Record[i] == 1) { // Integer attribute 1455 Attribute::AttrKind Kind; 1456 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1457 return Err; 1458 if (Kind == Attribute::Alignment) 1459 B.addAlignmentAttr(Record[++i]); 1460 else if (Kind == Attribute::StackAlignment) 1461 B.addStackAlignmentAttr(Record[++i]); 1462 else if (Kind == Attribute::Dereferenceable) 1463 B.addDereferenceableAttr(Record[++i]); 1464 else if (Kind == Attribute::DereferenceableOrNull) 1465 B.addDereferenceableOrNullAttr(Record[++i]); 1466 else if (Kind == Attribute::AllocSize) 1467 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1468 } else { // String attribute 1469 assert((Record[i] == 3 || Record[i] == 4) && 1470 "Invalid attribute group entry"); 1471 bool HasValue = (Record[i++] == 4); 1472 SmallString<64> KindStr; 1473 SmallString<64> ValStr; 1474 1475 while (Record[i] != 0 && i != e) 1476 KindStr += Record[i++]; 1477 assert(Record[i] == 0 && "Kind string not null terminated"); 1478 1479 if (HasValue) { 1480 // Has a value associated with it. 1481 ++i; // Skip the '0' that terminates the "kind" string. 1482 while (Record[i] != 0 && i != e) 1483 ValStr += Record[i++]; 1484 assert(Record[i] == 0 && "Value string not null terminated"); 1485 } 1486 1487 B.addAttribute(KindStr.str(), ValStr.str()); 1488 } 1489 } 1490 1491 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1492 break; 1493 } 1494 } 1495 } 1496 } 1497 1498 Error BitcodeReader::parseTypeTable() { 1499 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1500 return error("Invalid record"); 1501 1502 return parseTypeTableBody(); 1503 } 1504 1505 Error BitcodeReader::parseTypeTableBody() { 1506 if (!TypeList.empty()) 1507 return error("Invalid multiple blocks"); 1508 1509 SmallVector<uint64_t, 64> Record; 1510 unsigned NumRecords = 0; 1511 1512 SmallString<64> TypeName; 1513 1514 // Read all the records for this type table. 1515 while (true) { 1516 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1517 1518 switch (Entry.Kind) { 1519 case BitstreamEntry::SubBlock: // Handled for us already. 1520 case BitstreamEntry::Error: 1521 return error("Malformed block"); 1522 case BitstreamEntry::EndBlock: 1523 if (NumRecords != TypeList.size()) 1524 return error("Malformed block"); 1525 return Error::success(); 1526 case BitstreamEntry::Record: 1527 // The interesting case. 1528 break; 1529 } 1530 1531 // Read a record. 1532 Record.clear(); 1533 Type *ResultTy = nullptr; 1534 switch (Stream.readRecord(Entry.ID, Record)) { 1535 default: 1536 return error("Invalid value"); 1537 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1538 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1539 // type list. This allows us to reserve space. 1540 if (Record.size() < 1) 1541 return error("Invalid record"); 1542 TypeList.resize(Record[0]); 1543 continue; 1544 case bitc::TYPE_CODE_VOID: // VOID 1545 ResultTy = Type::getVoidTy(Context); 1546 break; 1547 case bitc::TYPE_CODE_HALF: // HALF 1548 ResultTy = Type::getHalfTy(Context); 1549 break; 1550 case bitc::TYPE_CODE_FLOAT: // FLOAT 1551 ResultTy = Type::getFloatTy(Context); 1552 break; 1553 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1554 ResultTy = Type::getDoubleTy(Context); 1555 break; 1556 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1557 ResultTy = Type::getX86_FP80Ty(Context); 1558 break; 1559 case bitc::TYPE_CODE_FP128: // FP128 1560 ResultTy = Type::getFP128Ty(Context); 1561 break; 1562 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1563 ResultTy = Type::getPPC_FP128Ty(Context); 1564 break; 1565 case bitc::TYPE_CODE_LABEL: // LABEL 1566 ResultTy = Type::getLabelTy(Context); 1567 break; 1568 case bitc::TYPE_CODE_METADATA: // METADATA 1569 ResultTy = Type::getMetadataTy(Context); 1570 break; 1571 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1572 ResultTy = Type::getX86_MMXTy(Context); 1573 break; 1574 case bitc::TYPE_CODE_TOKEN: // TOKEN 1575 ResultTy = Type::getTokenTy(Context); 1576 break; 1577 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1578 if (Record.size() < 1) 1579 return error("Invalid record"); 1580 1581 uint64_t NumBits = Record[0]; 1582 if (NumBits < IntegerType::MIN_INT_BITS || 1583 NumBits > IntegerType::MAX_INT_BITS) 1584 return error("Bitwidth for integer type out of range"); 1585 ResultTy = IntegerType::get(Context, NumBits); 1586 break; 1587 } 1588 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1589 // [pointee type, address space] 1590 if (Record.size() < 1) 1591 return error("Invalid record"); 1592 unsigned AddressSpace = 0; 1593 if (Record.size() == 2) 1594 AddressSpace = Record[1]; 1595 ResultTy = getTypeByID(Record[0]); 1596 if (!ResultTy || 1597 !PointerType::isValidElementType(ResultTy)) 1598 return error("Invalid type"); 1599 ResultTy = PointerType::get(ResultTy, AddressSpace); 1600 break; 1601 } 1602 case bitc::TYPE_CODE_FUNCTION_OLD: { 1603 // FIXME: attrid is dead, remove it in LLVM 4.0 1604 // FUNCTION: [vararg, attrid, retty, paramty x N] 1605 if (Record.size() < 3) 1606 return error("Invalid record"); 1607 SmallVector<Type*, 8> ArgTys; 1608 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1609 if (Type *T = getTypeByID(Record[i])) 1610 ArgTys.push_back(T); 1611 else 1612 break; 1613 } 1614 1615 ResultTy = getTypeByID(Record[2]); 1616 if (!ResultTy || ArgTys.size() < Record.size()-3) 1617 return error("Invalid type"); 1618 1619 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1620 break; 1621 } 1622 case bitc::TYPE_CODE_FUNCTION: { 1623 // FUNCTION: [vararg, retty, paramty x N] 1624 if (Record.size() < 2) 1625 return error("Invalid record"); 1626 SmallVector<Type*, 8> ArgTys; 1627 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1628 if (Type *T = getTypeByID(Record[i])) { 1629 if (!FunctionType::isValidArgumentType(T)) 1630 return error("Invalid function argument type"); 1631 ArgTys.push_back(T); 1632 } 1633 else 1634 break; 1635 } 1636 1637 ResultTy = getTypeByID(Record[1]); 1638 if (!ResultTy || ArgTys.size() < Record.size()-2) 1639 return error("Invalid type"); 1640 1641 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1642 break; 1643 } 1644 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1645 if (Record.size() < 1) 1646 return error("Invalid record"); 1647 SmallVector<Type*, 8> EltTys; 1648 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1649 if (Type *T = getTypeByID(Record[i])) 1650 EltTys.push_back(T); 1651 else 1652 break; 1653 } 1654 if (EltTys.size() != Record.size()-1) 1655 return error("Invalid type"); 1656 ResultTy = StructType::get(Context, EltTys, Record[0]); 1657 break; 1658 } 1659 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1660 if (convertToString(Record, 0, TypeName)) 1661 return error("Invalid record"); 1662 continue; 1663 1664 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1665 if (Record.size() < 1) 1666 return error("Invalid record"); 1667 1668 if (NumRecords >= TypeList.size()) 1669 return error("Invalid TYPE table"); 1670 1671 // Check to see if this was forward referenced, if so fill in the temp. 1672 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1673 if (Res) { 1674 Res->setName(TypeName); 1675 TypeList[NumRecords] = nullptr; 1676 } else // Otherwise, create a new struct. 1677 Res = createIdentifiedStructType(Context, TypeName); 1678 TypeName.clear(); 1679 1680 SmallVector<Type*, 8> EltTys; 1681 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1682 if (Type *T = getTypeByID(Record[i])) 1683 EltTys.push_back(T); 1684 else 1685 break; 1686 } 1687 if (EltTys.size() != Record.size()-1) 1688 return error("Invalid record"); 1689 Res->setBody(EltTys, Record[0]); 1690 ResultTy = Res; 1691 break; 1692 } 1693 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1694 if (Record.size() != 1) 1695 return error("Invalid record"); 1696 1697 if (NumRecords >= TypeList.size()) 1698 return error("Invalid TYPE table"); 1699 1700 // Check to see if this was forward referenced, if so fill in the temp. 1701 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1702 if (Res) { 1703 Res->setName(TypeName); 1704 TypeList[NumRecords] = nullptr; 1705 } else // Otherwise, create a new struct with no body. 1706 Res = createIdentifiedStructType(Context, TypeName); 1707 TypeName.clear(); 1708 ResultTy = Res; 1709 break; 1710 } 1711 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1712 if (Record.size() < 2) 1713 return error("Invalid record"); 1714 ResultTy = getTypeByID(Record[1]); 1715 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1716 return error("Invalid type"); 1717 ResultTy = ArrayType::get(ResultTy, Record[0]); 1718 break; 1719 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1720 if (Record.size() < 2) 1721 return error("Invalid record"); 1722 if (Record[0] == 0) 1723 return error("Invalid vector length"); 1724 ResultTy = getTypeByID(Record[1]); 1725 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1726 return error("Invalid type"); 1727 ResultTy = VectorType::get(ResultTy, Record[0]); 1728 break; 1729 } 1730 1731 if (NumRecords >= TypeList.size()) 1732 return error("Invalid TYPE table"); 1733 if (TypeList[NumRecords]) 1734 return error( 1735 "Invalid TYPE table: Only named structs can be forward referenced"); 1736 assert(ResultTy && "Didn't read a type?"); 1737 TypeList[NumRecords++] = ResultTy; 1738 } 1739 } 1740 1741 Error BitcodeReader::parseOperandBundleTags() { 1742 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1743 return error("Invalid record"); 1744 1745 if (!BundleTags.empty()) 1746 return error("Invalid multiple blocks"); 1747 1748 SmallVector<uint64_t, 64> Record; 1749 1750 while (true) { 1751 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1752 1753 switch (Entry.Kind) { 1754 case BitstreamEntry::SubBlock: // Handled for us already. 1755 case BitstreamEntry::Error: 1756 return error("Malformed block"); 1757 case BitstreamEntry::EndBlock: 1758 return Error::success(); 1759 case BitstreamEntry::Record: 1760 // The interesting case. 1761 break; 1762 } 1763 1764 // Tags are implicitly mapped to integers by their order. 1765 1766 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1767 return error("Invalid record"); 1768 1769 // OPERAND_BUNDLE_TAG: [strchr x N] 1770 BundleTags.emplace_back(); 1771 if (convertToString(Record, 0, BundleTags.back())) 1772 return error("Invalid record"); 1773 Record.clear(); 1774 } 1775 } 1776 1777 Error BitcodeReader::parseSyncScopeNames() { 1778 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1779 return error("Invalid record"); 1780 1781 if (!SSIDs.empty()) 1782 return error("Invalid multiple synchronization scope names blocks"); 1783 1784 SmallVector<uint64_t, 64> Record; 1785 while (true) { 1786 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1787 switch (Entry.Kind) { 1788 case BitstreamEntry::SubBlock: // Handled for us already. 1789 case BitstreamEntry::Error: 1790 return error("Malformed block"); 1791 case BitstreamEntry::EndBlock: 1792 if (SSIDs.empty()) 1793 return error("Invalid empty synchronization scope names block"); 1794 return Error::success(); 1795 case BitstreamEntry::Record: 1796 // The interesting case. 1797 break; 1798 } 1799 1800 // Synchronization scope names are implicitly mapped to synchronization 1801 // scope IDs by their order. 1802 1803 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1804 return error("Invalid record"); 1805 1806 SmallString<16> SSN; 1807 if (convertToString(Record, 0, SSN)) 1808 return error("Invalid record"); 1809 1810 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1811 Record.clear(); 1812 } 1813 } 1814 1815 /// Associate a value with its name from the given index in the provided record. 1816 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1817 unsigned NameIndex, Triple &TT) { 1818 SmallString<128> ValueName; 1819 if (convertToString(Record, NameIndex, ValueName)) 1820 return error("Invalid record"); 1821 unsigned ValueID = Record[0]; 1822 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1823 return error("Invalid record"); 1824 Value *V = ValueList[ValueID]; 1825 1826 StringRef NameStr(ValueName.data(), ValueName.size()); 1827 if (NameStr.find_first_of(0) != StringRef::npos) 1828 return error("Invalid value name"); 1829 V->setName(NameStr); 1830 auto *GO = dyn_cast<GlobalObject>(V); 1831 if (GO) { 1832 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1833 if (TT.supportsCOMDAT()) 1834 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1835 else 1836 GO->setComdat(nullptr); 1837 } 1838 } 1839 return V; 1840 } 1841 1842 /// Helper to note and return the current location, and jump to the given 1843 /// offset. 1844 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1845 BitstreamCursor &Stream) { 1846 // Save the current parsing location so we can jump back at the end 1847 // of the VST read. 1848 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1849 Stream.JumpToBit(Offset * 32); 1850 #ifndef NDEBUG 1851 // Do some checking if we are in debug mode. 1852 BitstreamEntry Entry = Stream.advance(); 1853 assert(Entry.Kind == BitstreamEntry::SubBlock); 1854 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1855 #else 1856 // In NDEBUG mode ignore the output so we don't get an unused variable 1857 // warning. 1858 Stream.advance(); 1859 #endif 1860 return CurrentBit; 1861 } 1862 1863 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1864 Function *F, 1865 ArrayRef<uint64_t> Record) { 1866 // Note that we subtract 1 here because the offset is relative to one word 1867 // before the start of the identification or module block, which was 1868 // historically always the start of the regular bitcode header. 1869 uint64_t FuncWordOffset = Record[1] - 1; 1870 uint64_t FuncBitOffset = FuncWordOffset * 32; 1871 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1872 // Set the LastFunctionBlockBit to point to the last function block. 1873 // Later when parsing is resumed after function materialization, 1874 // we can simply skip that last function block. 1875 if (FuncBitOffset > LastFunctionBlockBit) 1876 LastFunctionBlockBit = FuncBitOffset; 1877 } 1878 1879 /// Read a new-style GlobalValue symbol table. 1880 Error BitcodeReader::parseGlobalValueSymbolTable() { 1881 unsigned FuncBitcodeOffsetDelta = 1882 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1883 1884 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1885 return error("Invalid record"); 1886 1887 SmallVector<uint64_t, 64> Record; 1888 while (true) { 1889 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1890 1891 switch (Entry.Kind) { 1892 case BitstreamEntry::SubBlock: 1893 case BitstreamEntry::Error: 1894 return error("Malformed block"); 1895 case BitstreamEntry::EndBlock: 1896 return Error::success(); 1897 case BitstreamEntry::Record: 1898 break; 1899 } 1900 1901 Record.clear(); 1902 switch (Stream.readRecord(Entry.ID, Record)) { 1903 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1904 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1905 cast<Function>(ValueList[Record[0]]), Record); 1906 break; 1907 } 1908 } 1909 } 1910 1911 /// Parse the value symbol table at either the current parsing location or 1912 /// at the given bit offset if provided. 1913 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1914 uint64_t CurrentBit; 1915 // Pass in the Offset to distinguish between calling for the module-level 1916 // VST (where we want to jump to the VST offset) and the function-level 1917 // VST (where we don't). 1918 if (Offset > 0) { 1919 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1920 // If this module uses a string table, read this as a module-level VST. 1921 if (UseStrtab) { 1922 if (Error Err = parseGlobalValueSymbolTable()) 1923 return Err; 1924 Stream.JumpToBit(CurrentBit); 1925 return Error::success(); 1926 } 1927 // Otherwise, the VST will be in a similar format to a function-level VST, 1928 // and will contain symbol names. 1929 } 1930 1931 // Compute the delta between the bitcode indices in the VST (the word offset 1932 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1933 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1934 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1935 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1936 // just before entering the VST subblock because: 1) the EnterSubBlock 1937 // changes the AbbrevID width; 2) the VST block is nested within the same 1938 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1939 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1940 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1941 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1942 unsigned FuncBitcodeOffsetDelta = 1943 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1944 1945 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1946 return error("Invalid record"); 1947 1948 SmallVector<uint64_t, 64> Record; 1949 1950 Triple TT(TheModule->getTargetTriple()); 1951 1952 // Read all the records for this value table. 1953 SmallString<128> ValueName; 1954 1955 while (true) { 1956 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1957 1958 switch (Entry.Kind) { 1959 case BitstreamEntry::SubBlock: // Handled for us already. 1960 case BitstreamEntry::Error: 1961 return error("Malformed block"); 1962 case BitstreamEntry::EndBlock: 1963 if (Offset > 0) 1964 Stream.JumpToBit(CurrentBit); 1965 return Error::success(); 1966 case BitstreamEntry::Record: 1967 // The interesting case. 1968 break; 1969 } 1970 1971 // Read a record. 1972 Record.clear(); 1973 switch (Stream.readRecord(Entry.ID, Record)) { 1974 default: // Default behavior: unknown type. 1975 break; 1976 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1977 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1978 if (Error Err = ValOrErr.takeError()) 1979 return Err; 1980 ValOrErr.get(); 1981 break; 1982 } 1983 case bitc::VST_CODE_FNENTRY: { 1984 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1985 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1986 if (Error Err = ValOrErr.takeError()) 1987 return Err; 1988 Value *V = ValOrErr.get(); 1989 1990 // Ignore function offsets emitted for aliases of functions in older 1991 // versions of LLVM. 1992 if (auto *F = dyn_cast<Function>(V)) 1993 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 1994 break; 1995 } 1996 case bitc::VST_CODE_BBENTRY: { 1997 if (convertToString(Record, 1, ValueName)) 1998 return error("Invalid record"); 1999 BasicBlock *BB = getBasicBlock(Record[0]); 2000 if (!BB) 2001 return error("Invalid record"); 2002 2003 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2004 ValueName.clear(); 2005 break; 2006 } 2007 } 2008 } 2009 } 2010 2011 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2012 /// encoding. 2013 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2014 if ((V & 1) == 0) 2015 return V >> 1; 2016 if (V != 1) 2017 return -(V >> 1); 2018 // There is no such thing as -0 with integers. "-0" really means MININT. 2019 return 1ULL << 63; 2020 } 2021 2022 /// Resolve all of the initializers for global values and aliases that we can. 2023 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2024 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2025 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2026 IndirectSymbolInitWorklist; 2027 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2028 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2029 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2030 2031 GlobalInitWorklist.swap(GlobalInits); 2032 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2033 FunctionPrefixWorklist.swap(FunctionPrefixes); 2034 FunctionPrologueWorklist.swap(FunctionPrologues); 2035 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2036 2037 while (!GlobalInitWorklist.empty()) { 2038 unsigned ValID = GlobalInitWorklist.back().second; 2039 if (ValID >= ValueList.size()) { 2040 // Not ready to resolve this yet, it requires something later in the file. 2041 GlobalInits.push_back(GlobalInitWorklist.back()); 2042 } else { 2043 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2044 GlobalInitWorklist.back().first->setInitializer(C); 2045 else 2046 return error("Expected a constant"); 2047 } 2048 GlobalInitWorklist.pop_back(); 2049 } 2050 2051 while (!IndirectSymbolInitWorklist.empty()) { 2052 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2053 if (ValID >= ValueList.size()) { 2054 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2055 } else { 2056 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2057 if (!C) 2058 return error("Expected a constant"); 2059 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2060 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2061 return error("Alias and aliasee types don't match"); 2062 GIS->setIndirectSymbol(C); 2063 } 2064 IndirectSymbolInitWorklist.pop_back(); 2065 } 2066 2067 while (!FunctionPrefixWorklist.empty()) { 2068 unsigned ValID = FunctionPrefixWorklist.back().second; 2069 if (ValID >= ValueList.size()) { 2070 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2071 } else { 2072 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2073 FunctionPrefixWorklist.back().first->setPrefixData(C); 2074 else 2075 return error("Expected a constant"); 2076 } 2077 FunctionPrefixWorklist.pop_back(); 2078 } 2079 2080 while (!FunctionPrologueWorklist.empty()) { 2081 unsigned ValID = FunctionPrologueWorklist.back().second; 2082 if (ValID >= ValueList.size()) { 2083 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2084 } else { 2085 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2086 FunctionPrologueWorklist.back().first->setPrologueData(C); 2087 else 2088 return error("Expected a constant"); 2089 } 2090 FunctionPrologueWorklist.pop_back(); 2091 } 2092 2093 while (!FunctionPersonalityFnWorklist.empty()) { 2094 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2095 if (ValID >= ValueList.size()) { 2096 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2097 } else { 2098 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2099 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2100 else 2101 return error("Expected a constant"); 2102 } 2103 FunctionPersonalityFnWorklist.pop_back(); 2104 } 2105 2106 return Error::success(); 2107 } 2108 2109 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2110 SmallVector<uint64_t, 8> Words(Vals.size()); 2111 transform(Vals, Words.begin(), 2112 BitcodeReader::decodeSignRotatedValue); 2113 2114 return APInt(TypeBits, Words); 2115 } 2116 2117 Error BitcodeReader::parseConstants() { 2118 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2119 return error("Invalid record"); 2120 2121 SmallVector<uint64_t, 64> Record; 2122 2123 // Read all the records for this value table. 2124 Type *CurTy = Type::getInt32Ty(Context); 2125 unsigned NextCstNo = ValueList.size(); 2126 2127 while (true) { 2128 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2129 2130 switch (Entry.Kind) { 2131 case BitstreamEntry::SubBlock: // Handled for us already. 2132 case BitstreamEntry::Error: 2133 return error("Malformed block"); 2134 case BitstreamEntry::EndBlock: 2135 if (NextCstNo != ValueList.size()) 2136 return error("Invalid constant reference"); 2137 2138 // Once all the constants have been read, go through and resolve forward 2139 // references. 2140 ValueList.resolveConstantForwardRefs(); 2141 return Error::success(); 2142 case BitstreamEntry::Record: 2143 // The interesting case. 2144 break; 2145 } 2146 2147 // Read a record. 2148 Record.clear(); 2149 Type *VoidType = Type::getVoidTy(Context); 2150 Value *V = nullptr; 2151 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2152 switch (BitCode) { 2153 default: // Default behavior: unknown constant 2154 case bitc::CST_CODE_UNDEF: // UNDEF 2155 V = UndefValue::get(CurTy); 2156 break; 2157 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2158 if (Record.empty()) 2159 return error("Invalid record"); 2160 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2161 return error("Invalid record"); 2162 if (TypeList[Record[0]] == VoidType) 2163 return error("Invalid constant type"); 2164 CurTy = TypeList[Record[0]]; 2165 continue; // Skip the ValueList manipulation. 2166 case bitc::CST_CODE_NULL: // NULL 2167 V = Constant::getNullValue(CurTy); 2168 break; 2169 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2170 if (!CurTy->isIntegerTy() || Record.empty()) 2171 return error("Invalid record"); 2172 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2173 break; 2174 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2175 if (!CurTy->isIntegerTy() || Record.empty()) 2176 return error("Invalid record"); 2177 2178 APInt VInt = 2179 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2180 V = ConstantInt::get(Context, VInt); 2181 2182 break; 2183 } 2184 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2185 if (Record.empty()) 2186 return error("Invalid record"); 2187 if (CurTy->isHalfTy()) 2188 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2189 APInt(16, (uint16_t)Record[0]))); 2190 else if (CurTy->isFloatTy()) 2191 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2192 APInt(32, (uint32_t)Record[0]))); 2193 else if (CurTy->isDoubleTy()) 2194 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2195 APInt(64, Record[0]))); 2196 else if (CurTy->isX86_FP80Ty()) { 2197 // Bits are not stored the same way as a normal i80 APInt, compensate. 2198 uint64_t Rearrange[2]; 2199 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2200 Rearrange[1] = Record[0] >> 48; 2201 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2202 APInt(80, Rearrange))); 2203 } else if (CurTy->isFP128Ty()) 2204 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2205 APInt(128, Record))); 2206 else if (CurTy->isPPC_FP128Ty()) 2207 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2208 APInt(128, Record))); 2209 else 2210 V = UndefValue::get(CurTy); 2211 break; 2212 } 2213 2214 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2215 if (Record.empty()) 2216 return error("Invalid record"); 2217 2218 unsigned Size = Record.size(); 2219 SmallVector<Constant*, 16> Elts; 2220 2221 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2222 for (unsigned i = 0; i != Size; ++i) 2223 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2224 STy->getElementType(i))); 2225 V = ConstantStruct::get(STy, Elts); 2226 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2227 Type *EltTy = ATy->getElementType(); 2228 for (unsigned i = 0; i != Size; ++i) 2229 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2230 V = ConstantArray::get(ATy, Elts); 2231 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2232 Type *EltTy = VTy->getElementType(); 2233 for (unsigned i = 0; i != Size; ++i) 2234 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2235 V = ConstantVector::get(Elts); 2236 } else { 2237 V = UndefValue::get(CurTy); 2238 } 2239 break; 2240 } 2241 case bitc::CST_CODE_STRING: // STRING: [values] 2242 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2243 if (Record.empty()) 2244 return error("Invalid record"); 2245 2246 SmallString<16> Elts(Record.begin(), Record.end()); 2247 V = ConstantDataArray::getString(Context, Elts, 2248 BitCode == bitc::CST_CODE_CSTRING); 2249 break; 2250 } 2251 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2252 if (Record.empty()) 2253 return error("Invalid record"); 2254 2255 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2256 if (EltTy->isIntegerTy(8)) { 2257 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2258 if (isa<VectorType>(CurTy)) 2259 V = ConstantDataVector::get(Context, Elts); 2260 else 2261 V = ConstantDataArray::get(Context, Elts); 2262 } else if (EltTy->isIntegerTy(16)) { 2263 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2264 if (isa<VectorType>(CurTy)) 2265 V = ConstantDataVector::get(Context, Elts); 2266 else 2267 V = ConstantDataArray::get(Context, Elts); 2268 } else if (EltTy->isIntegerTy(32)) { 2269 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2270 if (isa<VectorType>(CurTy)) 2271 V = ConstantDataVector::get(Context, Elts); 2272 else 2273 V = ConstantDataArray::get(Context, Elts); 2274 } else if (EltTy->isIntegerTy(64)) { 2275 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2276 if (isa<VectorType>(CurTy)) 2277 V = ConstantDataVector::get(Context, Elts); 2278 else 2279 V = ConstantDataArray::get(Context, Elts); 2280 } else if (EltTy->isHalfTy()) { 2281 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2282 if (isa<VectorType>(CurTy)) 2283 V = ConstantDataVector::getFP(Context, Elts); 2284 else 2285 V = ConstantDataArray::getFP(Context, Elts); 2286 } else if (EltTy->isFloatTy()) { 2287 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2288 if (isa<VectorType>(CurTy)) 2289 V = ConstantDataVector::getFP(Context, Elts); 2290 else 2291 V = ConstantDataArray::getFP(Context, Elts); 2292 } else if (EltTy->isDoubleTy()) { 2293 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2294 if (isa<VectorType>(CurTy)) 2295 V = ConstantDataVector::getFP(Context, Elts); 2296 else 2297 V = ConstantDataArray::getFP(Context, Elts); 2298 } else { 2299 return error("Invalid type for value"); 2300 } 2301 break; 2302 } 2303 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2304 if (Record.size() < 3) 2305 return error("Invalid record"); 2306 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2307 if (Opc < 0) { 2308 V = UndefValue::get(CurTy); // Unknown binop. 2309 } else { 2310 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2311 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2312 unsigned Flags = 0; 2313 if (Record.size() >= 4) { 2314 if (Opc == Instruction::Add || 2315 Opc == Instruction::Sub || 2316 Opc == Instruction::Mul || 2317 Opc == Instruction::Shl) { 2318 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2319 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2320 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2321 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2322 } else if (Opc == Instruction::SDiv || 2323 Opc == Instruction::UDiv || 2324 Opc == Instruction::LShr || 2325 Opc == Instruction::AShr) { 2326 if (Record[3] & (1 << bitc::PEO_EXACT)) 2327 Flags |= SDivOperator::IsExact; 2328 } 2329 } 2330 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2331 } 2332 break; 2333 } 2334 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2335 if (Record.size() < 3) 2336 return error("Invalid record"); 2337 int Opc = getDecodedCastOpcode(Record[0]); 2338 if (Opc < 0) { 2339 V = UndefValue::get(CurTy); // Unknown cast. 2340 } else { 2341 Type *OpTy = getTypeByID(Record[1]); 2342 if (!OpTy) 2343 return error("Invalid record"); 2344 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2345 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2346 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2347 } 2348 break; 2349 } 2350 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2351 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2352 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2353 // operands] 2354 unsigned OpNum = 0; 2355 Type *PointeeType = nullptr; 2356 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2357 Record.size() % 2) 2358 PointeeType = getTypeByID(Record[OpNum++]); 2359 2360 bool InBounds = false; 2361 Optional<unsigned> InRangeIndex; 2362 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2363 uint64_t Op = Record[OpNum++]; 2364 InBounds = Op & 1; 2365 InRangeIndex = Op >> 1; 2366 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2367 InBounds = true; 2368 2369 SmallVector<Constant*, 16> Elts; 2370 while (OpNum != Record.size()) { 2371 Type *ElTy = getTypeByID(Record[OpNum++]); 2372 if (!ElTy) 2373 return error("Invalid record"); 2374 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2375 } 2376 2377 if (PointeeType && 2378 PointeeType != 2379 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2380 ->getElementType()) 2381 return error("Explicit gep operator type does not match pointee type " 2382 "of pointer operand"); 2383 2384 if (Elts.size() < 1) 2385 return error("Invalid gep with no operands"); 2386 2387 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2388 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2389 InBounds, InRangeIndex); 2390 break; 2391 } 2392 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2393 if (Record.size() < 3) 2394 return error("Invalid record"); 2395 2396 Type *SelectorTy = Type::getInt1Ty(Context); 2397 2398 // The selector might be an i1 or an <n x i1> 2399 // Get the type from the ValueList before getting a forward ref. 2400 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2401 if (Value *V = ValueList[Record[0]]) 2402 if (SelectorTy != V->getType()) 2403 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2404 2405 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2406 SelectorTy), 2407 ValueList.getConstantFwdRef(Record[1],CurTy), 2408 ValueList.getConstantFwdRef(Record[2],CurTy)); 2409 break; 2410 } 2411 case bitc::CST_CODE_CE_EXTRACTELT 2412 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2413 if (Record.size() < 3) 2414 return error("Invalid record"); 2415 VectorType *OpTy = 2416 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2417 if (!OpTy) 2418 return error("Invalid record"); 2419 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2420 Constant *Op1 = nullptr; 2421 if (Record.size() == 4) { 2422 Type *IdxTy = getTypeByID(Record[2]); 2423 if (!IdxTy) 2424 return error("Invalid record"); 2425 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2426 } else // TODO: Remove with llvm 4.0 2427 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2428 if (!Op1) 2429 return error("Invalid record"); 2430 V = ConstantExpr::getExtractElement(Op0, Op1); 2431 break; 2432 } 2433 case bitc::CST_CODE_CE_INSERTELT 2434 : { // CE_INSERTELT: [opval, opval, opty, opval] 2435 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2436 if (Record.size() < 3 || !OpTy) 2437 return error("Invalid record"); 2438 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2439 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2440 OpTy->getElementType()); 2441 Constant *Op2 = nullptr; 2442 if (Record.size() == 4) { 2443 Type *IdxTy = getTypeByID(Record[2]); 2444 if (!IdxTy) 2445 return error("Invalid record"); 2446 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2447 } else // TODO: Remove with llvm 4.0 2448 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2449 if (!Op2) 2450 return error("Invalid record"); 2451 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2452 break; 2453 } 2454 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2455 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2456 if (Record.size() < 3 || !OpTy) 2457 return error("Invalid record"); 2458 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2459 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2460 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2461 OpTy->getNumElements()); 2462 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2463 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2464 break; 2465 } 2466 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2467 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2468 VectorType *OpTy = 2469 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2470 if (Record.size() < 4 || !RTy || !OpTy) 2471 return error("Invalid record"); 2472 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2473 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2474 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2475 RTy->getNumElements()); 2476 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2477 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2478 break; 2479 } 2480 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2481 if (Record.size() < 4) 2482 return error("Invalid record"); 2483 Type *OpTy = getTypeByID(Record[0]); 2484 if (!OpTy) 2485 return error("Invalid record"); 2486 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2487 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2488 2489 if (OpTy->isFPOrFPVectorTy()) 2490 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2491 else 2492 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2493 break; 2494 } 2495 // This maintains backward compatibility, pre-asm dialect keywords. 2496 // FIXME: Remove with the 4.0 release. 2497 case bitc::CST_CODE_INLINEASM_OLD: { 2498 if (Record.size() < 2) 2499 return error("Invalid record"); 2500 std::string AsmStr, ConstrStr; 2501 bool HasSideEffects = Record[0] & 1; 2502 bool IsAlignStack = Record[0] >> 1; 2503 unsigned AsmStrSize = Record[1]; 2504 if (2+AsmStrSize >= Record.size()) 2505 return error("Invalid record"); 2506 unsigned ConstStrSize = Record[2+AsmStrSize]; 2507 if (3+AsmStrSize+ConstStrSize > Record.size()) 2508 return error("Invalid record"); 2509 2510 for (unsigned i = 0; i != AsmStrSize; ++i) 2511 AsmStr += (char)Record[2+i]; 2512 for (unsigned i = 0; i != ConstStrSize; ++i) 2513 ConstrStr += (char)Record[3+AsmStrSize+i]; 2514 PointerType *PTy = cast<PointerType>(CurTy); 2515 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2516 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2517 break; 2518 } 2519 // This version adds support for the asm dialect keywords (e.g., 2520 // inteldialect). 2521 case bitc::CST_CODE_INLINEASM: { 2522 if (Record.size() < 2) 2523 return error("Invalid record"); 2524 std::string AsmStr, ConstrStr; 2525 bool HasSideEffects = Record[0] & 1; 2526 bool IsAlignStack = (Record[0] >> 1) & 1; 2527 unsigned AsmDialect = Record[0] >> 2; 2528 unsigned AsmStrSize = Record[1]; 2529 if (2+AsmStrSize >= Record.size()) 2530 return error("Invalid record"); 2531 unsigned ConstStrSize = Record[2+AsmStrSize]; 2532 if (3+AsmStrSize+ConstStrSize > Record.size()) 2533 return error("Invalid record"); 2534 2535 for (unsigned i = 0; i != AsmStrSize; ++i) 2536 AsmStr += (char)Record[2+i]; 2537 for (unsigned i = 0; i != ConstStrSize; ++i) 2538 ConstrStr += (char)Record[3+AsmStrSize+i]; 2539 PointerType *PTy = cast<PointerType>(CurTy); 2540 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2541 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2542 InlineAsm::AsmDialect(AsmDialect)); 2543 break; 2544 } 2545 case bitc::CST_CODE_BLOCKADDRESS:{ 2546 if (Record.size() < 3) 2547 return error("Invalid record"); 2548 Type *FnTy = getTypeByID(Record[0]); 2549 if (!FnTy) 2550 return error("Invalid record"); 2551 Function *Fn = 2552 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2553 if (!Fn) 2554 return error("Invalid record"); 2555 2556 // If the function is already parsed we can insert the block address right 2557 // away. 2558 BasicBlock *BB; 2559 unsigned BBID = Record[2]; 2560 if (!BBID) 2561 // Invalid reference to entry block. 2562 return error("Invalid ID"); 2563 if (!Fn->empty()) { 2564 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2565 for (size_t I = 0, E = BBID; I != E; ++I) { 2566 if (BBI == BBE) 2567 return error("Invalid ID"); 2568 ++BBI; 2569 } 2570 BB = &*BBI; 2571 } else { 2572 // Otherwise insert a placeholder and remember it so it can be inserted 2573 // when the function is parsed. 2574 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2575 if (FwdBBs.empty()) 2576 BasicBlockFwdRefQueue.push_back(Fn); 2577 if (FwdBBs.size() < BBID + 1) 2578 FwdBBs.resize(BBID + 1); 2579 if (!FwdBBs[BBID]) 2580 FwdBBs[BBID] = BasicBlock::Create(Context); 2581 BB = FwdBBs[BBID]; 2582 } 2583 V = BlockAddress::get(Fn, BB); 2584 break; 2585 } 2586 } 2587 2588 ValueList.assignValue(V, NextCstNo); 2589 ++NextCstNo; 2590 } 2591 } 2592 2593 Error BitcodeReader::parseUseLists() { 2594 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2595 return error("Invalid record"); 2596 2597 // Read all the records. 2598 SmallVector<uint64_t, 64> Record; 2599 2600 while (true) { 2601 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2602 2603 switch (Entry.Kind) { 2604 case BitstreamEntry::SubBlock: // Handled for us already. 2605 case BitstreamEntry::Error: 2606 return error("Malformed block"); 2607 case BitstreamEntry::EndBlock: 2608 return Error::success(); 2609 case BitstreamEntry::Record: 2610 // The interesting case. 2611 break; 2612 } 2613 2614 // Read a use list record. 2615 Record.clear(); 2616 bool IsBB = false; 2617 switch (Stream.readRecord(Entry.ID, Record)) { 2618 default: // Default behavior: unknown type. 2619 break; 2620 case bitc::USELIST_CODE_BB: 2621 IsBB = true; 2622 LLVM_FALLTHROUGH; 2623 case bitc::USELIST_CODE_DEFAULT: { 2624 unsigned RecordLength = Record.size(); 2625 if (RecordLength < 3) 2626 // Records should have at least an ID and two indexes. 2627 return error("Invalid record"); 2628 unsigned ID = Record.back(); 2629 Record.pop_back(); 2630 2631 Value *V; 2632 if (IsBB) { 2633 assert(ID < FunctionBBs.size() && "Basic block not found"); 2634 V = FunctionBBs[ID]; 2635 } else 2636 V = ValueList[ID]; 2637 unsigned NumUses = 0; 2638 SmallDenseMap<const Use *, unsigned, 16> Order; 2639 for (const Use &U : V->materialized_uses()) { 2640 if (++NumUses > Record.size()) 2641 break; 2642 Order[&U] = Record[NumUses - 1]; 2643 } 2644 if (Order.size() != Record.size() || NumUses > Record.size()) 2645 // Mismatches can happen if the functions are being materialized lazily 2646 // (out-of-order), or a value has been upgraded. 2647 break; 2648 2649 V->sortUseList([&](const Use &L, const Use &R) { 2650 return Order.lookup(&L) < Order.lookup(&R); 2651 }); 2652 break; 2653 } 2654 } 2655 } 2656 } 2657 2658 /// When we see the block for metadata, remember where it is and then skip it. 2659 /// This lets us lazily deserialize the metadata. 2660 Error BitcodeReader::rememberAndSkipMetadata() { 2661 // Save the current stream state. 2662 uint64_t CurBit = Stream.GetCurrentBitNo(); 2663 DeferredMetadataInfo.push_back(CurBit); 2664 2665 // Skip over the block for now. 2666 if (Stream.SkipBlock()) 2667 return error("Invalid record"); 2668 return Error::success(); 2669 } 2670 2671 Error BitcodeReader::materializeMetadata() { 2672 for (uint64_t BitPos : DeferredMetadataInfo) { 2673 // Move the bit stream to the saved position. 2674 Stream.JumpToBit(BitPos); 2675 if (Error Err = MDLoader->parseModuleMetadata()) 2676 return Err; 2677 } 2678 2679 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2680 // metadata. 2681 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2682 NamedMDNode *LinkerOpts = 2683 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2684 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2685 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2686 } 2687 2688 DeferredMetadataInfo.clear(); 2689 return Error::success(); 2690 } 2691 2692 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2693 2694 /// When we see the block for a function body, remember where it is and then 2695 /// skip it. This lets us lazily deserialize the functions. 2696 Error BitcodeReader::rememberAndSkipFunctionBody() { 2697 // Get the function we are talking about. 2698 if (FunctionsWithBodies.empty()) 2699 return error("Insufficient function protos"); 2700 2701 Function *Fn = FunctionsWithBodies.back(); 2702 FunctionsWithBodies.pop_back(); 2703 2704 // Save the current stream state. 2705 uint64_t CurBit = Stream.GetCurrentBitNo(); 2706 assert( 2707 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2708 "Mismatch between VST and scanned function offsets"); 2709 DeferredFunctionInfo[Fn] = CurBit; 2710 2711 // Skip over the function block for now. 2712 if (Stream.SkipBlock()) 2713 return error("Invalid record"); 2714 return Error::success(); 2715 } 2716 2717 Error BitcodeReader::globalCleanup() { 2718 // Patch the initializers for globals and aliases up. 2719 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2720 return Err; 2721 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2722 return error("Malformed global initializer set"); 2723 2724 // Look for intrinsic functions which need to be upgraded at some point 2725 for (Function &F : *TheModule) { 2726 MDLoader->upgradeDebugIntrinsics(F); 2727 Function *NewFn; 2728 if (UpgradeIntrinsicFunction(&F, NewFn)) 2729 UpgradedIntrinsics[&F] = NewFn; 2730 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2731 // Some types could be renamed during loading if several modules are 2732 // loaded in the same LLVMContext (LTO scenario). In this case we should 2733 // remangle intrinsics names as well. 2734 RemangledIntrinsics[&F] = Remangled.getValue(); 2735 } 2736 2737 // Look for global variables which need to be renamed. 2738 for (GlobalVariable &GV : TheModule->globals()) 2739 UpgradeGlobalVariable(&GV); 2740 2741 // Force deallocation of memory for these vectors to favor the client that 2742 // want lazy deserialization. 2743 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2744 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2745 IndirectSymbolInits); 2746 return Error::success(); 2747 } 2748 2749 /// Support for lazy parsing of function bodies. This is required if we 2750 /// either have an old bitcode file without a VST forward declaration record, 2751 /// or if we have an anonymous function being materialized, since anonymous 2752 /// functions do not have a name and are therefore not in the VST. 2753 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2754 Stream.JumpToBit(NextUnreadBit); 2755 2756 if (Stream.AtEndOfStream()) 2757 return error("Could not find function in stream"); 2758 2759 if (!SeenFirstFunctionBody) 2760 return error("Trying to materialize functions before seeing function blocks"); 2761 2762 // An old bitcode file with the symbol table at the end would have 2763 // finished the parse greedily. 2764 assert(SeenValueSymbolTable); 2765 2766 SmallVector<uint64_t, 64> Record; 2767 2768 while (true) { 2769 BitstreamEntry Entry = Stream.advance(); 2770 switch (Entry.Kind) { 2771 default: 2772 return error("Expect SubBlock"); 2773 case BitstreamEntry::SubBlock: 2774 switch (Entry.ID) { 2775 default: 2776 return error("Expect function block"); 2777 case bitc::FUNCTION_BLOCK_ID: 2778 if (Error Err = rememberAndSkipFunctionBody()) 2779 return Err; 2780 NextUnreadBit = Stream.GetCurrentBitNo(); 2781 return Error::success(); 2782 } 2783 } 2784 } 2785 } 2786 2787 bool BitcodeReaderBase::readBlockInfo() { 2788 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2789 if (!NewBlockInfo) 2790 return true; 2791 BlockInfo = std::move(*NewBlockInfo); 2792 return false; 2793 } 2794 2795 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2796 // v1: [selection_kind, name] 2797 // v2: [strtab_offset, strtab_size, selection_kind] 2798 StringRef Name; 2799 std::tie(Name, Record) = readNameFromStrtab(Record); 2800 2801 if (Record.empty()) 2802 return error("Invalid record"); 2803 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2804 std::string OldFormatName; 2805 if (!UseStrtab) { 2806 if (Record.size() < 2) 2807 return error("Invalid record"); 2808 unsigned ComdatNameSize = Record[1]; 2809 OldFormatName.reserve(ComdatNameSize); 2810 for (unsigned i = 0; i != ComdatNameSize; ++i) 2811 OldFormatName += (char)Record[2 + i]; 2812 Name = OldFormatName; 2813 } 2814 Comdat *C = TheModule->getOrInsertComdat(Name); 2815 C->setSelectionKind(SK); 2816 ComdatList.push_back(C); 2817 return Error::success(); 2818 } 2819 2820 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2821 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2822 // visibility, threadlocal, unnamed_addr, externally_initialized, 2823 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2824 // v2: [strtab_offset, strtab_size, v1] 2825 StringRef Name; 2826 std::tie(Name, Record) = readNameFromStrtab(Record); 2827 2828 if (Record.size() < 6) 2829 return error("Invalid record"); 2830 Type *Ty = getTypeByID(Record[0]); 2831 if (!Ty) 2832 return error("Invalid record"); 2833 bool isConstant = Record[1] & 1; 2834 bool explicitType = Record[1] & 2; 2835 unsigned AddressSpace; 2836 if (explicitType) { 2837 AddressSpace = Record[1] >> 2; 2838 } else { 2839 if (!Ty->isPointerTy()) 2840 return error("Invalid type for value"); 2841 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2842 Ty = cast<PointerType>(Ty)->getElementType(); 2843 } 2844 2845 uint64_t RawLinkage = Record[3]; 2846 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2847 unsigned Alignment; 2848 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2849 return Err; 2850 std::string Section; 2851 if (Record[5]) { 2852 if (Record[5] - 1 >= SectionTable.size()) 2853 return error("Invalid ID"); 2854 Section = SectionTable[Record[5] - 1]; 2855 } 2856 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2857 // Local linkage must have default visibility. 2858 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2859 // FIXME: Change to an error if non-default in 4.0. 2860 Visibility = getDecodedVisibility(Record[6]); 2861 2862 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2863 if (Record.size() > 7) 2864 TLM = getDecodedThreadLocalMode(Record[7]); 2865 2866 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2867 if (Record.size() > 8) 2868 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2869 2870 bool ExternallyInitialized = false; 2871 if (Record.size() > 9) 2872 ExternallyInitialized = Record[9]; 2873 2874 GlobalVariable *NewGV = 2875 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2876 nullptr, TLM, AddressSpace, ExternallyInitialized); 2877 NewGV->setAlignment(Alignment); 2878 if (!Section.empty()) 2879 NewGV->setSection(Section); 2880 NewGV->setVisibility(Visibility); 2881 NewGV->setUnnamedAddr(UnnamedAddr); 2882 2883 if (Record.size() > 10) 2884 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2885 else 2886 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2887 2888 ValueList.push_back(NewGV); 2889 2890 // Remember which value to use for the global initializer. 2891 if (unsigned InitID = Record[2]) 2892 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2893 2894 if (Record.size() > 11) { 2895 if (unsigned ComdatID = Record[11]) { 2896 if (ComdatID > ComdatList.size()) 2897 return error("Invalid global variable comdat ID"); 2898 NewGV->setComdat(ComdatList[ComdatID - 1]); 2899 } 2900 } else if (hasImplicitComdat(RawLinkage)) { 2901 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2902 } 2903 2904 if (Record.size() > 12) { 2905 auto AS = getAttributes(Record[12]).getFnAttributes(); 2906 NewGV->setAttributes(AS); 2907 } 2908 2909 if (Record.size() > 13) { 2910 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2911 } 2912 2913 return Error::success(); 2914 } 2915 2916 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2917 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2918 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2919 // prefixdata, personalityfn, preemption specifier] (name in VST) 2920 // v2: [strtab_offset, strtab_size, v1] 2921 StringRef Name; 2922 std::tie(Name, Record) = readNameFromStrtab(Record); 2923 2924 if (Record.size() < 8) 2925 return error("Invalid record"); 2926 Type *Ty = getTypeByID(Record[0]); 2927 if (!Ty) 2928 return error("Invalid record"); 2929 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2930 Ty = PTy->getElementType(); 2931 auto *FTy = dyn_cast<FunctionType>(Ty); 2932 if (!FTy) 2933 return error("Invalid type for value"); 2934 auto CC = static_cast<CallingConv::ID>(Record[1]); 2935 if (CC & ~CallingConv::MaxID) 2936 return error("Invalid calling convention ID"); 2937 2938 Function *Func = 2939 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2940 2941 Func->setCallingConv(CC); 2942 bool isProto = Record[2]; 2943 uint64_t RawLinkage = Record[3]; 2944 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2945 Func->setAttributes(getAttributes(Record[4])); 2946 2947 unsigned Alignment; 2948 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2949 return Err; 2950 Func->setAlignment(Alignment); 2951 if (Record[6]) { 2952 if (Record[6] - 1 >= SectionTable.size()) 2953 return error("Invalid ID"); 2954 Func->setSection(SectionTable[Record[6] - 1]); 2955 } 2956 // Local linkage must have default visibility. 2957 if (!Func->hasLocalLinkage()) 2958 // FIXME: Change to an error if non-default in 4.0. 2959 Func->setVisibility(getDecodedVisibility(Record[7])); 2960 if (Record.size() > 8 && Record[8]) { 2961 if (Record[8] - 1 >= GCTable.size()) 2962 return error("Invalid ID"); 2963 Func->setGC(GCTable[Record[8] - 1]); 2964 } 2965 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2966 if (Record.size() > 9) 2967 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2968 Func->setUnnamedAddr(UnnamedAddr); 2969 if (Record.size() > 10 && Record[10] != 0) 2970 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2971 2972 if (Record.size() > 11) 2973 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2974 else 2975 upgradeDLLImportExportLinkage(Func, RawLinkage); 2976 2977 if (Record.size() > 12) { 2978 if (unsigned ComdatID = Record[12]) { 2979 if (ComdatID > ComdatList.size()) 2980 return error("Invalid function comdat ID"); 2981 Func->setComdat(ComdatList[ComdatID - 1]); 2982 } 2983 } else if (hasImplicitComdat(RawLinkage)) { 2984 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2985 } 2986 2987 if (Record.size() > 13 && Record[13] != 0) 2988 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2989 2990 if (Record.size() > 14 && Record[14] != 0) 2991 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2992 2993 if (Record.size() > 15) { 2994 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 2995 } 2996 2997 ValueList.push_back(Func); 2998 2999 // If this is a function with a body, remember the prototype we are 3000 // creating now, so that we can match up the body with them later. 3001 if (!isProto) { 3002 Func->setIsMaterializable(true); 3003 FunctionsWithBodies.push_back(Func); 3004 DeferredFunctionInfo[Func] = 0; 3005 } 3006 return Error::success(); 3007 } 3008 3009 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3010 unsigned BitCode, ArrayRef<uint64_t> Record) { 3011 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3012 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3013 // dllstorageclass, threadlocal, unnamed_addr, 3014 // preemption specifier] (name in VST) 3015 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3016 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3017 // preemption specifier] (name in VST) 3018 // v2: [strtab_offset, strtab_size, v1] 3019 StringRef Name; 3020 std::tie(Name, Record) = readNameFromStrtab(Record); 3021 3022 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3023 if (Record.size() < (3 + (unsigned)NewRecord)) 3024 return error("Invalid record"); 3025 unsigned OpNum = 0; 3026 Type *Ty = getTypeByID(Record[OpNum++]); 3027 if (!Ty) 3028 return error("Invalid record"); 3029 3030 unsigned AddrSpace; 3031 if (!NewRecord) { 3032 auto *PTy = dyn_cast<PointerType>(Ty); 3033 if (!PTy) 3034 return error("Invalid type for value"); 3035 Ty = PTy->getElementType(); 3036 AddrSpace = PTy->getAddressSpace(); 3037 } else { 3038 AddrSpace = Record[OpNum++]; 3039 } 3040 3041 auto Val = Record[OpNum++]; 3042 auto Linkage = Record[OpNum++]; 3043 GlobalIndirectSymbol *NewGA; 3044 if (BitCode == bitc::MODULE_CODE_ALIAS || 3045 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3046 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3047 TheModule); 3048 else 3049 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3050 nullptr, TheModule); 3051 // Old bitcode files didn't have visibility field. 3052 // Local linkage must have default visibility. 3053 if (OpNum != Record.size()) { 3054 auto VisInd = OpNum++; 3055 if (!NewGA->hasLocalLinkage()) 3056 // FIXME: Change to an error if non-default in 4.0. 3057 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3058 } 3059 if (OpNum != Record.size()) 3060 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3061 else 3062 upgradeDLLImportExportLinkage(NewGA, Linkage); 3063 if (OpNum != Record.size()) 3064 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3065 if (OpNum != Record.size()) 3066 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3067 if (OpNum != Record.size()) 3068 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3069 ValueList.push_back(NewGA); 3070 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3071 return Error::success(); 3072 } 3073 3074 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3075 bool ShouldLazyLoadMetadata) { 3076 if (ResumeBit) 3077 Stream.JumpToBit(ResumeBit); 3078 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3079 return error("Invalid record"); 3080 3081 SmallVector<uint64_t, 64> Record; 3082 3083 // Read all the records for this module. 3084 while (true) { 3085 BitstreamEntry Entry = Stream.advance(); 3086 3087 switch (Entry.Kind) { 3088 case BitstreamEntry::Error: 3089 return error("Malformed block"); 3090 case BitstreamEntry::EndBlock: 3091 return globalCleanup(); 3092 3093 case BitstreamEntry::SubBlock: 3094 switch (Entry.ID) { 3095 default: // Skip unknown content. 3096 if (Stream.SkipBlock()) 3097 return error("Invalid record"); 3098 break; 3099 case bitc::BLOCKINFO_BLOCK_ID: 3100 if (readBlockInfo()) 3101 return error("Malformed block"); 3102 break; 3103 case bitc::PARAMATTR_BLOCK_ID: 3104 if (Error Err = parseAttributeBlock()) 3105 return Err; 3106 break; 3107 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3108 if (Error Err = parseAttributeGroupBlock()) 3109 return Err; 3110 break; 3111 case bitc::TYPE_BLOCK_ID_NEW: 3112 if (Error Err = parseTypeTable()) 3113 return Err; 3114 break; 3115 case bitc::VALUE_SYMTAB_BLOCK_ID: 3116 if (!SeenValueSymbolTable) { 3117 // Either this is an old form VST without function index and an 3118 // associated VST forward declaration record (which would have caused 3119 // the VST to be jumped to and parsed before it was encountered 3120 // normally in the stream), or there were no function blocks to 3121 // trigger an earlier parsing of the VST. 3122 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3123 if (Error Err = parseValueSymbolTable()) 3124 return Err; 3125 SeenValueSymbolTable = true; 3126 } else { 3127 // We must have had a VST forward declaration record, which caused 3128 // the parser to jump to and parse the VST earlier. 3129 assert(VSTOffset > 0); 3130 if (Stream.SkipBlock()) 3131 return error("Invalid record"); 3132 } 3133 break; 3134 case bitc::CONSTANTS_BLOCK_ID: 3135 if (Error Err = parseConstants()) 3136 return Err; 3137 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3138 return Err; 3139 break; 3140 case bitc::METADATA_BLOCK_ID: 3141 if (ShouldLazyLoadMetadata) { 3142 if (Error Err = rememberAndSkipMetadata()) 3143 return Err; 3144 break; 3145 } 3146 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3147 if (Error Err = MDLoader->parseModuleMetadata()) 3148 return Err; 3149 break; 3150 case bitc::METADATA_KIND_BLOCK_ID: 3151 if (Error Err = MDLoader->parseMetadataKinds()) 3152 return Err; 3153 break; 3154 case bitc::FUNCTION_BLOCK_ID: 3155 // If this is the first function body we've seen, reverse the 3156 // FunctionsWithBodies list. 3157 if (!SeenFirstFunctionBody) { 3158 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3159 if (Error Err = globalCleanup()) 3160 return Err; 3161 SeenFirstFunctionBody = true; 3162 } 3163 3164 if (VSTOffset > 0) { 3165 // If we have a VST forward declaration record, make sure we 3166 // parse the VST now if we haven't already. It is needed to 3167 // set up the DeferredFunctionInfo vector for lazy reading. 3168 if (!SeenValueSymbolTable) { 3169 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3170 return Err; 3171 SeenValueSymbolTable = true; 3172 // Fall through so that we record the NextUnreadBit below. 3173 // This is necessary in case we have an anonymous function that 3174 // is later materialized. Since it will not have a VST entry we 3175 // need to fall back to the lazy parse to find its offset. 3176 } else { 3177 // If we have a VST forward declaration record, but have already 3178 // parsed the VST (just above, when the first function body was 3179 // encountered here), then we are resuming the parse after 3180 // materializing functions. The ResumeBit points to the 3181 // start of the last function block recorded in the 3182 // DeferredFunctionInfo map. Skip it. 3183 if (Stream.SkipBlock()) 3184 return error("Invalid record"); 3185 continue; 3186 } 3187 } 3188 3189 // Support older bitcode files that did not have the function 3190 // index in the VST, nor a VST forward declaration record, as 3191 // well as anonymous functions that do not have VST entries. 3192 // Build the DeferredFunctionInfo vector on the fly. 3193 if (Error Err = rememberAndSkipFunctionBody()) 3194 return Err; 3195 3196 // Suspend parsing when we reach the function bodies. Subsequent 3197 // materialization calls will resume it when necessary. If the bitcode 3198 // file is old, the symbol table will be at the end instead and will not 3199 // have been seen yet. In this case, just finish the parse now. 3200 if (SeenValueSymbolTable) { 3201 NextUnreadBit = Stream.GetCurrentBitNo(); 3202 // After the VST has been parsed, we need to make sure intrinsic name 3203 // are auto-upgraded. 3204 return globalCleanup(); 3205 } 3206 break; 3207 case bitc::USELIST_BLOCK_ID: 3208 if (Error Err = parseUseLists()) 3209 return Err; 3210 break; 3211 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3212 if (Error Err = parseOperandBundleTags()) 3213 return Err; 3214 break; 3215 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3216 if (Error Err = parseSyncScopeNames()) 3217 return Err; 3218 break; 3219 } 3220 continue; 3221 3222 case BitstreamEntry::Record: 3223 // The interesting case. 3224 break; 3225 } 3226 3227 // Read a record. 3228 auto BitCode = Stream.readRecord(Entry.ID, Record); 3229 switch (BitCode) { 3230 default: break; // Default behavior, ignore unknown content. 3231 case bitc::MODULE_CODE_VERSION: { 3232 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3233 if (!VersionOrErr) 3234 return VersionOrErr.takeError(); 3235 UseRelativeIDs = *VersionOrErr >= 1; 3236 break; 3237 } 3238 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3239 std::string S; 3240 if (convertToString(Record, 0, S)) 3241 return error("Invalid record"); 3242 TheModule->setTargetTriple(S); 3243 break; 3244 } 3245 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3246 std::string S; 3247 if (convertToString(Record, 0, S)) 3248 return error("Invalid record"); 3249 TheModule->setDataLayout(S); 3250 break; 3251 } 3252 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3253 std::string S; 3254 if (convertToString(Record, 0, S)) 3255 return error("Invalid record"); 3256 TheModule->setModuleInlineAsm(S); 3257 break; 3258 } 3259 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3260 // FIXME: Remove in 4.0. 3261 std::string S; 3262 if (convertToString(Record, 0, S)) 3263 return error("Invalid record"); 3264 // Ignore value. 3265 break; 3266 } 3267 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3268 std::string S; 3269 if (convertToString(Record, 0, S)) 3270 return error("Invalid record"); 3271 SectionTable.push_back(S); 3272 break; 3273 } 3274 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3275 std::string S; 3276 if (convertToString(Record, 0, S)) 3277 return error("Invalid record"); 3278 GCTable.push_back(S); 3279 break; 3280 } 3281 case bitc::MODULE_CODE_COMDAT: 3282 if (Error Err = parseComdatRecord(Record)) 3283 return Err; 3284 break; 3285 case bitc::MODULE_CODE_GLOBALVAR: 3286 if (Error Err = parseGlobalVarRecord(Record)) 3287 return Err; 3288 break; 3289 case bitc::MODULE_CODE_FUNCTION: 3290 if (Error Err = parseFunctionRecord(Record)) 3291 return Err; 3292 break; 3293 case bitc::MODULE_CODE_IFUNC: 3294 case bitc::MODULE_CODE_ALIAS: 3295 case bitc::MODULE_CODE_ALIAS_OLD: 3296 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3297 return Err; 3298 break; 3299 /// MODULE_CODE_VSTOFFSET: [offset] 3300 case bitc::MODULE_CODE_VSTOFFSET: 3301 if (Record.size() < 1) 3302 return error("Invalid record"); 3303 // Note that we subtract 1 here because the offset is relative to one word 3304 // before the start of the identification or module block, which was 3305 // historically always the start of the regular bitcode header. 3306 VSTOffset = Record[0] - 1; 3307 break; 3308 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3309 case bitc::MODULE_CODE_SOURCE_FILENAME: 3310 SmallString<128> ValueName; 3311 if (convertToString(Record, 0, ValueName)) 3312 return error("Invalid record"); 3313 TheModule->setSourceFileName(ValueName); 3314 break; 3315 } 3316 Record.clear(); 3317 } 3318 } 3319 3320 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3321 bool IsImporting) { 3322 TheModule = M; 3323 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3324 [&](unsigned ID) { return getTypeByID(ID); }); 3325 return parseModule(0, ShouldLazyLoadMetadata); 3326 } 3327 3328 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3329 if (!isa<PointerType>(PtrType)) 3330 return error("Load/Store operand is not a pointer type"); 3331 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3332 3333 if (ValType && ValType != ElemType) 3334 return error("Explicit load/store type does not match pointee " 3335 "type of pointer operand"); 3336 if (!PointerType::isLoadableOrStorableType(ElemType)) 3337 return error("Cannot load/store from pointer"); 3338 return Error::success(); 3339 } 3340 3341 /// Lazily parse the specified function body block. 3342 Error BitcodeReader::parseFunctionBody(Function *F) { 3343 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3344 return error("Invalid record"); 3345 3346 // Unexpected unresolved metadata when parsing function. 3347 if (MDLoader->hasFwdRefs()) 3348 return error("Invalid function metadata: incoming forward references"); 3349 3350 InstructionList.clear(); 3351 unsigned ModuleValueListSize = ValueList.size(); 3352 unsigned ModuleMDLoaderSize = MDLoader->size(); 3353 3354 // Add all the function arguments to the value table. 3355 for (Argument &I : F->args()) 3356 ValueList.push_back(&I); 3357 3358 unsigned NextValueNo = ValueList.size(); 3359 BasicBlock *CurBB = nullptr; 3360 unsigned CurBBNo = 0; 3361 3362 DebugLoc LastLoc; 3363 auto getLastInstruction = [&]() -> Instruction * { 3364 if (CurBB && !CurBB->empty()) 3365 return &CurBB->back(); 3366 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3367 !FunctionBBs[CurBBNo - 1]->empty()) 3368 return &FunctionBBs[CurBBNo - 1]->back(); 3369 return nullptr; 3370 }; 3371 3372 std::vector<OperandBundleDef> OperandBundles; 3373 3374 // Read all the records. 3375 SmallVector<uint64_t, 64> Record; 3376 3377 while (true) { 3378 BitstreamEntry Entry = Stream.advance(); 3379 3380 switch (Entry.Kind) { 3381 case BitstreamEntry::Error: 3382 return error("Malformed block"); 3383 case BitstreamEntry::EndBlock: 3384 goto OutOfRecordLoop; 3385 3386 case BitstreamEntry::SubBlock: 3387 switch (Entry.ID) { 3388 default: // Skip unknown content. 3389 if (Stream.SkipBlock()) 3390 return error("Invalid record"); 3391 break; 3392 case bitc::CONSTANTS_BLOCK_ID: 3393 if (Error Err = parseConstants()) 3394 return Err; 3395 NextValueNo = ValueList.size(); 3396 break; 3397 case bitc::VALUE_SYMTAB_BLOCK_ID: 3398 if (Error Err = parseValueSymbolTable()) 3399 return Err; 3400 break; 3401 case bitc::METADATA_ATTACHMENT_ID: 3402 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3403 return Err; 3404 break; 3405 case bitc::METADATA_BLOCK_ID: 3406 assert(DeferredMetadataInfo.empty() && 3407 "Must read all module-level metadata before function-level"); 3408 if (Error Err = MDLoader->parseFunctionMetadata()) 3409 return Err; 3410 break; 3411 case bitc::USELIST_BLOCK_ID: 3412 if (Error Err = parseUseLists()) 3413 return Err; 3414 break; 3415 } 3416 continue; 3417 3418 case BitstreamEntry::Record: 3419 // The interesting case. 3420 break; 3421 } 3422 3423 // Read a record. 3424 Record.clear(); 3425 Instruction *I = nullptr; 3426 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3427 switch (BitCode) { 3428 default: // Default behavior: reject 3429 return error("Invalid value"); 3430 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3431 if (Record.size() < 1 || Record[0] == 0) 3432 return error("Invalid record"); 3433 // Create all the basic blocks for the function. 3434 FunctionBBs.resize(Record[0]); 3435 3436 // See if anything took the address of blocks in this function. 3437 auto BBFRI = BasicBlockFwdRefs.find(F); 3438 if (BBFRI == BasicBlockFwdRefs.end()) { 3439 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3440 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3441 } else { 3442 auto &BBRefs = BBFRI->second; 3443 // Check for invalid basic block references. 3444 if (BBRefs.size() > FunctionBBs.size()) 3445 return error("Invalid ID"); 3446 assert(!BBRefs.empty() && "Unexpected empty array"); 3447 assert(!BBRefs.front() && "Invalid reference to entry block"); 3448 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3449 ++I) 3450 if (I < RE && BBRefs[I]) { 3451 BBRefs[I]->insertInto(F); 3452 FunctionBBs[I] = BBRefs[I]; 3453 } else { 3454 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3455 } 3456 3457 // Erase from the table. 3458 BasicBlockFwdRefs.erase(BBFRI); 3459 } 3460 3461 CurBB = FunctionBBs[0]; 3462 continue; 3463 } 3464 3465 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3466 // This record indicates that the last instruction is at the same 3467 // location as the previous instruction with a location. 3468 I = getLastInstruction(); 3469 3470 if (!I) 3471 return error("Invalid record"); 3472 I->setDebugLoc(LastLoc); 3473 I = nullptr; 3474 continue; 3475 3476 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3477 I = getLastInstruction(); 3478 if (!I || Record.size() < 4) 3479 return error("Invalid record"); 3480 3481 unsigned Line = Record[0], Col = Record[1]; 3482 unsigned ScopeID = Record[2], IAID = Record[3]; 3483 3484 MDNode *Scope = nullptr, *IA = nullptr; 3485 if (ScopeID) { 3486 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3487 if (!Scope) 3488 return error("Invalid record"); 3489 } 3490 if (IAID) { 3491 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3492 if (!IA) 3493 return error("Invalid record"); 3494 } 3495 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3496 I->setDebugLoc(LastLoc); 3497 I = nullptr; 3498 continue; 3499 } 3500 3501 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3502 unsigned OpNum = 0; 3503 Value *LHS, *RHS; 3504 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3505 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3506 OpNum+1 > Record.size()) 3507 return error("Invalid record"); 3508 3509 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3510 if (Opc == -1) 3511 return error("Invalid record"); 3512 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3513 InstructionList.push_back(I); 3514 if (OpNum < Record.size()) { 3515 if (Opc == Instruction::Add || 3516 Opc == Instruction::Sub || 3517 Opc == Instruction::Mul || 3518 Opc == Instruction::Shl) { 3519 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3520 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3521 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3522 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3523 } else if (Opc == Instruction::SDiv || 3524 Opc == Instruction::UDiv || 3525 Opc == Instruction::LShr || 3526 Opc == Instruction::AShr) { 3527 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3528 cast<BinaryOperator>(I)->setIsExact(true); 3529 } else if (isa<FPMathOperator>(I)) { 3530 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3531 if (FMF.any()) 3532 I->setFastMathFlags(FMF); 3533 } 3534 3535 } 3536 break; 3537 } 3538 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3539 unsigned OpNum = 0; 3540 Value *Op; 3541 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3542 OpNum+2 != Record.size()) 3543 return error("Invalid record"); 3544 3545 Type *ResTy = getTypeByID(Record[OpNum]); 3546 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3547 if (Opc == -1 || !ResTy) 3548 return error("Invalid record"); 3549 Instruction *Temp = nullptr; 3550 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3551 if (Temp) { 3552 InstructionList.push_back(Temp); 3553 CurBB->getInstList().push_back(Temp); 3554 } 3555 } else { 3556 auto CastOp = (Instruction::CastOps)Opc; 3557 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3558 return error("Invalid cast"); 3559 I = CastInst::Create(CastOp, Op, ResTy); 3560 } 3561 InstructionList.push_back(I); 3562 break; 3563 } 3564 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3565 case bitc::FUNC_CODE_INST_GEP_OLD: 3566 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3567 unsigned OpNum = 0; 3568 3569 Type *Ty; 3570 bool InBounds; 3571 3572 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3573 InBounds = Record[OpNum++]; 3574 Ty = getTypeByID(Record[OpNum++]); 3575 } else { 3576 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3577 Ty = nullptr; 3578 } 3579 3580 Value *BasePtr; 3581 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3582 return error("Invalid record"); 3583 3584 if (!Ty) 3585 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3586 ->getElementType(); 3587 else if (Ty != 3588 cast<PointerType>(BasePtr->getType()->getScalarType()) 3589 ->getElementType()) 3590 return error( 3591 "Explicit gep type does not match pointee type of pointer operand"); 3592 3593 SmallVector<Value*, 16> GEPIdx; 3594 while (OpNum != Record.size()) { 3595 Value *Op; 3596 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3597 return error("Invalid record"); 3598 GEPIdx.push_back(Op); 3599 } 3600 3601 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3602 3603 InstructionList.push_back(I); 3604 if (InBounds) 3605 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3606 break; 3607 } 3608 3609 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3610 // EXTRACTVAL: [opty, opval, n x indices] 3611 unsigned OpNum = 0; 3612 Value *Agg; 3613 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3614 return error("Invalid record"); 3615 3616 unsigned RecSize = Record.size(); 3617 if (OpNum == RecSize) 3618 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3619 3620 SmallVector<unsigned, 4> EXTRACTVALIdx; 3621 Type *CurTy = Agg->getType(); 3622 for (; OpNum != RecSize; ++OpNum) { 3623 bool IsArray = CurTy->isArrayTy(); 3624 bool IsStruct = CurTy->isStructTy(); 3625 uint64_t Index = Record[OpNum]; 3626 3627 if (!IsStruct && !IsArray) 3628 return error("EXTRACTVAL: Invalid type"); 3629 if ((unsigned)Index != Index) 3630 return error("Invalid value"); 3631 if (IsStruct && Index >= CurTy->subtypes().size()) 3632 return error("EXTRACTVAL: Invalid struct index"); 3633 if (IsArray && Index >= CurTy->getArrayNumElements()) 3634 return error("EXTRACTVAL: Invalid array index"); 3635 EXTRACTVALIdx.push_back((unsigned)Index); 3636 3637 if (IsStruct) 3638 CurTy = CurTy->subtypes()[Index]; 3639 else 3640 CurTy = CurTy->subtypes()[0]; 3641 } 3642 3643 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3644 InstructionList.push_back(I); 3645 break; 3646 } 3647 3648 case bitc::FUNC_CODE_INST_INSERTVAL: { 3649 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3650 unsigned OpNum = 0; 3651 Value *Agg; 3652 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3653 return error("Invalid record"); 3654 Value *Val; 3655 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3656 return error("Invalid record"); 3657 3658 unsigned RecSize = Record.size(); 3659 if (OpNum == RecSize) 3660 return error("INSERTVAL: Invalid instruction with 0 indices"); 3661 3662 SmallVector<unsigned, 4> INSERTVALIdx; 3663 Type *CurTy = Agg->getType(); 3664 for (; OpNum != RecSize; ++OpNum) { 3665 bool IsArray = CurTy->isArrayTy(); 3666 bool IsStruct = CurTy->isStructTy(); 3667 uint64_t Index = Record[OpNum]; 3668 3669 if (!IsStruct && !IsArray) 3670 return error("INSERTVAL: Invalid type"); 3671 if ((unsigned)Index != Index) 3672 return error("Invalid value"); 3673 if (IsStruct && Index >= CurTy->subtypes().size()) 3674 return error("INSERTVAL: Invalid struct index"); 3675 if (IsArray && Index >= CurTy->getArrayNumElements()) 3676 return error("INSERTVAL: Invalid array index"); 3677 3678 INSERTVALIdx.push_back((unsigned)Index); 3679 if (IsStruct) 3680 CurTy = CurTy->subtypes()[Index]; 3681 else 3682 CurTy = CurTy->subtypes()[0]; 3683 } 3684 3685 if (CurTy != Val->getType()) 3686 return error("Inserted value type doesn't match aggregate type"); 3687 3688 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3689 InstructionList.push_back(I); 3690 break; 3691 } 3692 3693 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3694 // obsolete form of select 3695 // handles select i1 ... in old bitcode 3696 unsigned OpNum = 0; 3697 Value *TrueVal, *FalseVal, *Cond; 3698 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3699 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3700 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3701 return error("Invalid record"); 3702 3703 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3704 InstructionList.push_back(I); 3705 break; 3706 } 3707 3708 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3709 // new form of select 3710 // handles select i1 or select [N x i1] 3711 unsigned OpNum = 0; 3712 Value *TrueVal, *FalseVal, *Cond; 3713 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3714 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3715 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3716 return error("Invalid record"); 3717 3718 // select condition can be either i1 or [N x i1] 3719 if (VectorType* vector_type = 3720 dyn_cast<VectorType>(Cond->getType())) { 3721 // expect <n x i1> 3722 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3723 return error("Invalid type for value"); 3724 } else { 3725 // expect i1 3726 if (Cond->getType() != Type::getInt1Ty(Context)) 3727 return error("Invalid type for value"); 3728 } 3729 3730 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3731 InstructionList.push_back(I); 3732 break; 3733 } 3734 3735 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3736 unsigned OpNum = 0; 3737 Value *Vec, *Idx; 3738 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3739 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3740 return error("Invalid record"); 3741 if (!Vec->getType()->isVectorTy()) 3742 return error("Invalid type for value"); 3743 I = ExtractElementInst::Create(Vec, Idx); 3744 InstructionList.push_back(I); 3745 break; 3746 } 3747 3748 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3749 unsigned OpNum = 0; 3750 Value *Vec, *Elt, *Idx; 3751 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3752 return error("Invalid record"); 3753 if (!Vec->getType()->isVectorTy()) 3754 return error("Invalid type for value"); 3755 if (popValue(Record, OpNum, NextValueNo, 3756 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3757 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3758 return error("Invalid record"); 3759 I = InsertElementInst::Create(Vec, Elt, Idx); 3760 InstructionList.push_back(I); 3761 break; 3762 } 3763 3764 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3765 unsigned OpNum = 0; 3766 Value *Vec1, *Vec2, *Mask; 3767 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3768 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3769 return error("Invalid record"); 3770 3771 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3772 return error("Invalid record"); 3773 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3774 return error("Invalid type for value"); 3775 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3776 InstructionList.push_back(I); 3777 break; 3778 } 3779 3780 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3781 // Old form of ICmp/FCmp returning bool 3782 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3783 // both legal on vectors but had different behaviour. 3784 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3785 // FCmp/ICmp returning bool or vector of bool 3786 3787 unsigned OpNum = 0; 3788 Value *LHS, *RHS; 3789 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3790 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3791 return error("Invalid record"); 3792 3793 unsigned PredVal = Record[OpNum]; 3794 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3795 FastMathFlags FMF; 3796 if (IsFP && Record.size() > OpNum+1) 3797 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3798 3799 if (OpNum+1 != Record.size()) 3800 return error("Invalid record"); 3801 3802 if (LHS->getType()->isFPOrFPVectorTy()) 3803 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3804 else 3805 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3806 3807 if (FMF.any()) 3808 I->setFastMathFlags(FMF); 3809 InstructionList.push_back(I); 3810 break; 3811 } 3812 3813 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3814 { 3815 unsigned Size = Record.size(); 3816 if (Size == 0) { 3817 I = ReturnInst::Create(Context); 3818 InstructionList.push_back(I); 3819 break; 3820 } 3821 3822 unsigned OpNum = 0; 3823 Value *Op = nullptr; 3824 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3825 return error("Invalid record"); 3826 if (OpNum != Record.size()) 3827 return error("Invalid record"); 3828 3829 I = ReturnInst::Create(Context, Op); 3830 InstructionList.push_back(I); 3831 break; 3832 } 3833 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3834 if (Record.size() != 1 && Record.size() != 3) 3835 return error("Invalid record"); 3836 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3837 if (!TrueDest) 3838 return error("Invalid record"); 3839 3840 if (Record.size() == 1) { 3841 I = BranchInst::Create(TrueDest); 3842 InstructionList.push_back(I); 3843 } 3844 else { 3845 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3846 Value *Cond = getValue(Record, 2, NextValueNo, 3847 Type::getInt1Ty(Context)); 3848 if (!FalseDest || !Cond) 3849 return error("Invalid record"); 3850 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3851 InstructionList.push_back(I); 3852 } 3853 break; 3854 } 3855 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3856 if (Record.size() != 1 && Record.size() != 2) 3857 return error("Invalid record"); 3858 unsigned Idx = 0; 3859 Value *CleanupPad = 3860 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3861 if (!CleanupPad) 3862 return error("Invalid record"); 3863 BasicBlock *UnwindDest = nullptr; 3864 if (Record.size() == 2) { 3865 UnwindDest = getBasicBlock(Record[Idx++]); 3866 if (!UnwindDest) 3867 return error("Invalid record"); 3868 } 3869 3870 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3871 InstructionList.push_back(I); 3872 break; 3873 } 3874 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3875 if (Record.size() != 2) 3876 return error("Invalid record"); 3877 unsigned Idx = 0; 3878 Value *CatchPad = 3879 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3880 if (!CatchPad) 3881 return error("Invalid record"); 3882 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3883 if (!BB) 3884 return error("Invalid record"); 3885 3886 I = CatchReturnInst::Create(CatchPad, BB); 3887 InstructionList.push_back(I); 3888 break; 3889 } 3890 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3891 // We must have, at minimum, the outer scope and the number of arguments. 3892 if (Record.size() < 2) 3893 return error("Invalid record"); 3894 3895 unsigned Idx = 0; 3896 3897 Value *ParentPad = 3898 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3899 3900 unsigned NumHandlers = Record[Idx++]; 3901 3902 SmallVector<BasicBlock *, 2> Handlers; 3903 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3904 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3905 if (!BB) 3906 return error("Invalid record"); 3907 Handlers.push_back(BB); 3908 } 3909 3910 BasicBlock *UnwindDest = nullptr; 3911 if (Idx + 1 == Record.size()) { 3912 UnwindDest = getBasicBlock(Record[Idx++]); 3913 if (!UnwindDest) 3914 return error("Invalid record"); 3915 } 3916 3917 if (Record.size() != Idx) 3918 return error("Invalid record"); 3919 3920 auto *CatchSwitch = 3921 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3922 for (BasicBlock *Handler : Handlers) 3923 CatchSwitch->addHandler(Handler); 3924 I = CatchSwitch; 3925 InstructionList.push_back(I); 3926 break; 3927 } 3928 case bitc::FUNC_CODE_INST_CATCHPAD: 3929 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3930 // We must have, at minimum, the outer scope and the number of arguments. 3931 if (Record.size() < 2) 3932 return error("Invalid record"); 3933 3934 unsigned Idx = 0; 3935 3936 Value *ParentPad = 3937 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3938 3939 unsigned NumArgOperands = Record[Idx++]; 3940 3941 SmallVector<Value *, 2> Args; 3942 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3943 Value *Val; 3944 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3945 return error("Invalid record"); 3946 Args.push_back(Val); 3947 } 3948 3949 if (Record.size() != Idx) 3950 return error("Invalid record"); 3951 3952 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3953 I = CleanupPadInst::Create(ParentPad, Args); 3954 else 3955 I = CatchPadInst::Create(ParentPad, Args); 3956 InstructionList.push_back(I); 3957 break; 3958 } 3959 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3960 // Check magic 3961 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3962 // "New" SwitchInst format with case ranges. The changes to write this 3963 // format were reverted but we still recognize bitcode that uses it. 3964 // Hopefully someday we will have support for case ranges and can use 3965 // this format again. 3966 3967 Type *OpTy = getTypeByID(Record[1]); 3968 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3969 3970 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3971 BasicBlock *Default = getBasicBlock(Record[3]); 3972 if (!OpTy || !Cond || !Default) 3973 return error("Invalid record"); 3974 3975 unsigned NumCases = Record[4]; 3976 3977 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3978 InstructionList.push_back(SI); 3979 3980 unsigned CurIdx = 5; 3981 for (unsigned i = 0; i != NumCases; ++i) { 3982 SmallVector<ConstantInt*, 1> CaseVals; 3983 unsigned NumItems = Record[CurIdx++]; 3984 for (unsigned ci = 0; ci != NumItems; ++ci) { 3985 bool isSingleNumber = Record[CurIdx++]; 3986 3987 APInt Low; 3988 unsigned ActiveWords = 1; 3989 if (ValueBitWidth > 64) 3990 ActiveWords = Record[CurIdx++]; 3991 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3992 ValueBitWidth); 3993 CurIdx += ActiveWords; 3994 3995 if (!isSingleNumber) { 3996 ActiveWords = 1; 3997 if (ValueBitWidth > 64) 3998 ActiveWords = Record[CurIdx++]; 3999 APInt High = readWideAPInt( 4000 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4001 CurIdx += ActiveWords; 4002 4003 // FIXME: It is not clear whether values in the range should be 4004 // compared as signed or unsigned values. The partially 4005 // implemented changes that used this format in the past used 4006 // unsigned comparisons. 4007 for ( ; Low.ule(High); ++Low) 4008 CaseVals.push_back(ConstantInt::get(Context, Low)); 4009 } else 4010 CaseVals.push_back(ConstantInt::get(Context, Low)); 4011 } 4012 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4013 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4014 cve = CaseVals.end(); cvi != cve; ++cvi) 4015 SI->addCase(*cvi, DestBB); 4016 } 4017 I = SI; 4018 break; 4019 } 4020 4021 // Old SwitchInst format without case ranges. 4022 4023 if (Record.size() < 3 || (Record.size() & 1) == 0) 4024 return error("Invalid record"); 4025 Type *OpTy = getTypeByID(Record[0]); 4026 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4027 BasicBlock *Default = getBasicBlock(Record[2]); 4028 if (!OpTy || !Cond || !Default) 4029 return error("Invalid record"); 4030 unsigned NumCases = (Record.size()-3)/2; 4031 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4032 InstructionList.push_back(SI); 4033 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4034 ConstantInt *CaseVal = 4035 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4036 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4037 if (!CaseVal || !DestBB) { 4038 delete SI; 4039 return error("Invalid record"); 4040 } 4041 SI->addCase(CaseVal, DestBB); 4042 } 4043 I = SI; 4044 break; 4045 } 4046 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4047 if (Record.size() < 2) 4048 return error("Invalid record"); 4049 Type *OpTy = getTypeByID(Record[0]); 4050 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4051 if (!OpTy || !Address) 4052 return error("Invalid record"); 4053 unsigned NumDests = Record.size()-2; 4054 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4055 InstructionList.push_back(IBI); 4056 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4057 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4058 IBI->addDestination(DestBB); 4059 } else { 4060 delete IBI; 4061 return error("Invalid record"); 4062 } 4063 } 4064 I = IBI; 4065 break; 4066 } 4067 4068 case bitc::FUNC_CODE_INST_INVOKE: { 4069 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4070 if (Record.size() < 4) 4071 return error("Invalid record"); 4072 unsigned OpNum = 0; 4073 AttributeList PAL = getAttributes(Record[OpNum++]); 4074 unsigned CCInfo = Record[OpNum++]; 4075 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4076 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4077 4078 FunctionType *FTy = nullptr; 4079 if (CCInfo >> 13 & 1 && 4080 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4081 return error("Explicit invoke type is not a function type"); 4082 4083 Value *Callee; 4084 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4085 return error("Invalid record"); 4086 4087 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4088 if (!CalleeTy) 4089 return error("Callee is not a pointer"); 4090 if (!FTy) { 4091 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4092 if (!FTy) 4093 return error("Callee is not of pointer to function type"); 4094 } else if (CalleeTy->getElementType() != FTy) 4095 return error("Explicit invoke type does not match pointee type of " 4096 "callee operand"); 4097 if (Record.size() < FTy->getNumParams() + OpNum) 4098 return error("Insufficient operands to call"); 4099 4100 SmallVector<Value*, 16> Ops; 4101 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4102 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4103 FTy->getParamType(i))); 4104 if (!Ops.back()) 4105 return error("Invalid record"); 4106 } 4107 4108 if (!FTy->isVarArg()) { 4109 if (Record.size() != OpNum) 4110 return error("Invalid record"); 4111 } else { 4112 // Read type/value pairs for varargs params. 4113 while (OpNum != Record.size()) { 4114 Value *Op; 4115 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4116 return error("Invalid record"); 4117 Ops.push_back(Op); 4118 } 4119 } 4120 4121 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4122 OperandBundles.clear(); 4123 InstructionList.push_back(I); 4124 cast<InvokeInst>(I)->setCallingConv( 4125 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4126 cast<InvokeInst>(I)->setAttributes(PAL); 4127 break; 4128 } 4129 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4130 unsigned Idx = 0; 4131 Value *Val = nullptr; 4132 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4133 return error("Invalid record"); 4134 I = ResumeInst::Create(Val); 4135 InstructionList.push_back(I); 4136 break; 4137 } 4138 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4139 I = new UnreachableInst(Context); 4140 InstructionList.push_back(I); 4141 break; 4142 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4143 if (Record.size() < 1 || ((Record.size()-1)&1)) 4144 return error("Invalid record"); 4145 Type *Ty = getTypeByID(Record[0]); 4146 if (!Ty) 4147 return error("Invalid record"); 4148 4149 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4150 InstructionList.push_back(PN); 4151 4152 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4153 Value *V; 4154 // With the new function encoding, it is possible that operands have 4155 // negative IDs (for forward references). Use a signed VBR 4156 // representation to keep the encoding small. 4157 if (UseRelativeIDs) 4158 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4159 else 4160 V = getValue(Record, 1+i, NextValueNo, Ty); 4161 BasicBlock *BB = getBasicBlock(Record[2+i]); 4162 if (!V || !BB) 4163 return error("Invalid record"); 4164 PN->addIncoming(V, BB); 4165 } 4166 I = PN; 4167 break; 4168 } 4169 4170 case bitc::FUNC_CODE_INST_LANDINGPAD: 4171 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4172 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4173 unsigned Idx = 0; 4174 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4175 if (Record.size() < 3) 4176 return error("Invalid record"); 4177 } else { 4178 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4179 if (Record.size() < 4) 4180 return error("Invalid record"); 4181 } 4182 Type *Ty = getTypeByID(Record[Idx++]); 4183 if (!Ty) 4184 return error("Invalid record"); 4185 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4186 Value *PersFn = nullptr; 4187 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4188 return error("Invalid record"); 4189 4190 if (!F->hasPersonalityFn()) 4191 F->setPersonalityFn(cast<Constant>(PersFn)); 4192 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4193 return error("Personality function mismatch"); 4194 } 4195 4196 bool IsCleanup = !!Record[Idx++]; 4197 unsigned NumClauses = Record[Idx++]; 4198 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4199 LP->setCleanup(IsCleanup); 4200 for (unsigned J = 0; J != NumClauses; ++J) { 4201 LandingPadInst::ClauseType CT = 4202 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4203 Value *Val; 4204 4205 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4206 delete LP; 4207 return error("Invalid record"); 4208 } 4209 4210 assert((CT != LandingPadInst::Catch || 4211 !isa<ArrayType>(Val->getType())) && 4212 "Catch clause has a invalid type!"); 4213 assert((CT != LandingPadInst::Filter || 4214 isa<ArrayType>(Val->getType())) && 4215 "Filter clause has invalid type!"); 4216 LP->addClause(cast<Constant>(Val)); 4217 } 4218 4219 I = LP; 4220 InstructionList.push_back(I); 4221 break; 4222 } 4223 4224 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4225 if (Record.size() != 4) 4226 return error("Invalid record"); 4227 uint64_t AlignRecord = Record[3]; 4228 const uint64_t InAllocaMask = uint64_t(1) << 5; 4229 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4230 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4231 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4232 SwiftErrorMask; 4233 bool InAlloca = AlignRecord & InAllocaMask; 4234 bool SwiftError = AlignRecord & SwiftErrorMask; 4235 Type *Ty = getTypeByID(Record[0]); 4236 if ((AlignRecord & ExplicitTypeMask) == 0) { 4237 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4238 if (!PTy) 4239 return error("Old-style alloca with a non-pointer type"); 4240 Ty = PTy->getElementType(); 4241 } 4242 Type *OpTy = getTypeByID(Record[1]); 4243 Value *Size = getFnValueByID(Record[2], OpTy); 4244 unsigned Align; 4245 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4246 return Err; 4247 } 4248 if (!Ty || !Size) 4249 return error("Invalid record"); 4250 4251 // FIXME: Make this an optional field. 4252 const DataLayout &DL = TheModule->getDataLayout(); 4253 unsigned AS = DL.getAllocaAddrSpace(); 4254 4255 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4256 AI->setUsedWithInAlloca(InAlloca); 4257 AI->setSwiftError(SwiftError); 4258 I = AI; 4259 InstructionList.push_back(I); 4260 break; 4261 } 4262 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4263 unsigned OpNum = 0; 4264 Value *Op; 4265 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4266 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4267 return error("Invalid record"); 4268 4269 Type *Ty = nullptr; 4270 if (OpNum + 3 == Record.size()) 4271 Ty = getTypeByID(Record[OpNum++]); 4272 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4273 return Err; 4274 if (!Ty) 4275 Ty = cast<PointerType>(Op->getType())->getElementType(); 4276 4277 unsigned Align; 4278 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4279 return Err; 4280 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4281 4282 InstructionList.push_back(I); 4283 break; 4284 } 4285 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4286 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4287 unsigned OpNum = 0; 4288 Value *Op; 4289 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4290 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4291 return error("Invalid record"); 4292 4293 Type *Ty = nullptr; 4294 if (OpNum + 5 == Record.size()) 4295 Ty = getTypeByID(Record[OpNum++]); 4296 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4297 return Err; 4298 if (!Ty) 4299 Ty = cast<PointerType>(Op->getType())->getElementType(); 4300 4301 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4302 if (Ordering == AtomicOrdering::NotAtomic || 4303 Ordering == AtomicOrdering::Release || 4304 Ordering == AtomicOrdering::AcquireRelease) 4305 return error("Invalid record"); 4306 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4307 return error("Invalid record"); 4308 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4309 4310 unsigned Align; 4311 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4312 return Err; 4313 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4314 4315 InstructionList.push_back(I); 4316 break; 4317 } 4318 case bitc::FUNC_CODE_INST_STORE: 4319 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4320 unsigned OpNum = 0; 4321 Value *Val, *Ptr; 4322 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4323 (BitCode == bitc::FUNC_CODE_INST_STORE 4324 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4325 : popValue(Record, OpNum, NextValueNo, 4326 cast<PointerType>(Ptr->getType())->getElementType(), 4327 Val)) || 4328 OpNum + 2 != Record.size()) 4329 return error("Invalid record"); 4330 4331 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4332 return Err; 4333 unsigned Align; 4334 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4335 return Err; 4336 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4337 InstructionList.push_back(I); 4338 break; 4339 } 4340 case bitc::FUNC_CODE_INST_STOREATOMIC: 4341 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4342 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4343 unsigned OpNum = 0; 4344 Value *Val, *Ptr; 4345 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4346 !isa<PointerType>(Ptr->getType()) || 4347 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4348 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4349 : popValue(Record, OpNum, NextValueNo, 4350 cast<PointerType>(Ptr->getType())->getElementType(), 4351 Val)) || 4352 OpNum + 4 != Record.size()) 4353 return error("Invalid record"); 4354 4355 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4356 return Err; 4357 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4358 if (Ordering == AtomicOrdering::NotAtomic || 4359 Ordering == AtomicOrdering::Acquire || 4360 Ordering == AtomicOrdering::AcquireRelease) 4361 return error("Invalid record"); 4362 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4363 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4364 return error("Invalid record"); 4365 4366 unsigned Align; 4367 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4368 return Err; 4369 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4370 InstructionList.push_back(I); 4371 break; 4372 } 4373 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4374 case bitc::FUNC_CODE_INST_CMPXCHG: { 4375 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4376 // failureordering?, isweak?] 4377 unsigned OpNum = 0; 4378 Value *Ptr, *Cmp, *New; 4379 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4380 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4381 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4382 : popValue(Record, OpNum, NextValueNo, 4383 cast<PointerType>(Ptr->getType())->getElementType(), 4384 Cmp)) || 4385 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4386 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4387 return error("Invalid record"); 4388 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4389 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4390 SuccessOrdering == AtomicOrdering::Unordered) 4391 return error("Invalid record"); 4392 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4393 4394 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4395 return Err; 4396 AtomicOrdering FailureOrdering; 4397 if (Record.size() < 7) 4398 FailureOrdering = 4399 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4400 else 4401 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4402 4403 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4404 SSID); 4405 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4406 4407 if (Record.size() < 8) { 4408 // Before weak cmpxchgs existed, the instruction simply returned the 4409 // value loaded from memory, so bitcode files from that era will be 4410 // expecting the first component of a modern cmpxchg. 4411 CurBB->getInstList().push_back(I); 4412 I = ExtractValueInst::Create(I, 0); 4413 } else { 4414 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4415 } 4416 4417 InstructionList.push_back(I); 4418 break; 4419 } 4420 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4421 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4422 unsigned OpNum = 0; 4423 Value *Ptr, *Val; 4424 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4425 !isa<PointerType>(Ptr->getType()) || 4426 popValue(Record, OpNum, NextValueNo, 4427 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4428 OpNum+4 != Record.size()) 4429 return error("Invalid record"); 4430 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4431 if (Operation < AtomicRMWInst::FIRST_BINOP || 4432 Operation > AtomicRMWInst::LAST_BINOP) 4433 return error("Invalid record"); 4434 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4435 if (Ordering == AtomicOrdering::NotAtomic || 4436 Ordering == AtomicOrdering::Unordered) 4437 return error("Invalid record"); 4438 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4439 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4440 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4441 InstructionList.push_back(I); 4442 break; 4443 } 4444 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4445 if (2 != Record.size()) 4446 return error("Invalid record"); 4447 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4448 if (Ordering == AtomicOrdering::NotAtomic || 4449 Ordering == AtomicOrdering::Unordered || 4450 Ordering == AtomicOrdering::Monotonic) 4451 return error("Invalid record"); 4452 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4453 I = new FenceInst(Context, Ordering, SSID); 4454 InstructionList.push_back(I); 4455 break; 4456 } 4457 case bitc::FUNC_CODE_INST_CALL: { 4458 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4459 if (Record.size() < 3) 4460 return error("Invalid record"); 4461 4462 unsigned OpNum = 0; 4463 AttributeList PAL = getAttributes(Record[OpNum++]); 4464 unsigned CCInfo = Record[OpNum++]; 4465 4466 FastMathFlags FMF; 4467 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4468 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4469 if (!FMF.any()) 4470 return error("Fast math flags indicator set for call with no FMF"); 4471 } 4472 4473 FunctionType *FTy = nullptr; 4474 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4475 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4476 return error("Explicit call type is not a function type"); 4477 4478 Value *Callee; 4479 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4480 return error("Invalid record"); 4481 4482 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4483 if (!OpTy) 4484 return error("Callee is not a pointer type"); 4485 if (!FTy) { 4486 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4487 if (!FTy) 4488 return error("Callee is not of pointer to function type"); 4489 } else if (OpTy->getElementType() != FTy) 4490 return error("Explicit call type does not match pointee type of " 4491 "callee operand"); 4492 if (Record.size() < FTy->getNumParams() + OpNum) 4493 return error("Insufficient operands to call"); 4494 4495 SmallVector<Value*, 16> Args; 4496 // Read the fixed params. 4497 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4498 if (FTy->getParamType(i)->isLabelTy()) 4499 Args.push_back(getBasicBlock(Record[OpNum])); 4500 else 4501 Args.push_back(getValue(Record, OpNum, NextValueNo, 4502 FTy->getParamType(i))); 4503 if (!Args.back()) 4504 return error("Invalid record"); 4505 } 4506 4507 // Read type/value pairs for varargs params. 4508 if (!FTy->isVarArg()) { 4509 if (OpNum != Record.size()) 4510 return error("Invalid record"); 4511 } else { 4512 while (OpNum != Record.size()) { 4513 Value *Op; 4514 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4515 return error("Invalid record"); 4516 Args.push_back(Op); 4517 } 4518 } 4519 4520 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4521 OperandBundles.clear(); 4522 InstructionList.push_back(I); 4523 cast<CallInst>(I)->setCallingConv( 4524 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4525 CallInst::TailCallKind TCK = CallInst::TCK_None; 4526 if (CCInfo & 1 << bitc::CALL_TAIL) 4527 TCK = CallInst::TCK_Tail; 4528 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4529 TCK = CallInst::TCK_MustTail; 4530 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4531 TCK = CallInst::TCK_NoTail; 4532 cast<CallInst>(I)->setTailCallKind(TCK); 4533 cast<CallInst>(I)->setAttributes(PAL); 4534 if (FMF.any()) { 4535 if (!isa<FPMathOperator>(I)) 4536 return error("Fast-math-flags specified for call without " 4537 "floating-point scalar or vector return type"); 4538 I->setFastMathFlags(FMF); 4539 } 4540 break; 4541 } 4542 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4543 if (Record.size() < 3) 4544 return error("Invalid record"); 4545 Type *OpTy = getTypeByID(Record[0]); 4546 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4547 Type *ResTy = getTypeByID(Record[2]); 4548 if (!OpTy || !Op || !ResTy) 4549 return error("Invalid record"); 4550 I = new VAArgInst(Op, ResTy); 4551 InstructionList.push_back(I); 4552 break; 4553 } 4554 4555 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4556 // A call or an invoke can be optionally prefixed with some variable 4557 // number of operand bundle blocks. These blocks are read into 4558 // OperandBundles and consumed at the next call or invoke instruction. 4559 4560 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4561 return error("Invalid record"); 4562 4563 std::vector<Value *> Inputs; 4564 4565 unsigned OpNum = 1; 4566 while (OpNum != Record.size()) { 4567 Value *Op; 4568 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4569 return error("Invalid record"); 4570 Inputs.push_back(Op); 4571 } 4572 4573 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4574 continue; 4575 } 4576 } 4577 4578 // Add instruction to end of current BB. If there is no current BB, reject 4579 // this file. 4580 if (!CurBB) { 4581 I->deleteValue(); 4582 return error("Invalid instruction with no BB"); 4583 } 4584 if (!OperandBundles.empty()) { 4585 I->deleteValue(); 4586 return error("Operand bundles found with no consumer"); 4587 } 4588 CurBB->getInstList().push_back(I); 4589 4590 // If this was a terminator instruction, move to the next block. 4591 if (isa<TerminatorInst>(I)) { 4592 ++CurBBNo; 4593 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4594 } 4595 4596 // Non-void values get registered in the value table for future use. 4597 if (I && !I->getType()->isVoidTy()) 4598 ValueList.assignValue(I, NextValueNo++); 4599 } 4600 4601 OutOfRecordLoop: 4602 4603 if (!OperandBundles.empty()) 4604 return error("Operand bundles found with no consumer"); 4605 4606 // Check the function list for unresolved values. 4607 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4608 if (!A->getParent()) { 4609 // We found at least one unresolved value. Nuke them all to avoid leaks. 4610 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4611 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4612 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4613 delete A; 4614 } 4615 } 4616 return error("Never resolved value found in function"); 4617 } 4618 } 4619 4620 // Unexpected unresolved metadata about to be dropped. 4621 if (MDLoader->hasFwdRefs()) 4622 return error("Invalid function metadata: outgoing forward refs"); 4623 4624 // Trim the value list down to the size it was before we parsed this function. 4625 ValueList.shrinkTo(ModuleValueListSize); 4626 MDLoader->shrinkTo(ModuleMDLoaderSize); 4627 std::vector<BasicBlock*>().swap(FunctionBBs); 4628 return Error::success(); 4629 } 4630 4631 /// Find the function body in the bitcode stream 4632 Error BitcodeReader::findFunctionInStream( 4633 Function *F, 4634 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4635 while (DeferredFunctionInfoIterator->second == 0) { 4636 // This is the fallback handling for the old format bitcode that 4637 // didn't contain the function index in the VST, or when we have 4638 // an anonymous function which would not have a VST entry. 4639 // Assert that we have one of those two cases. 4640 assert(VSTOffset == 0 || !F->hasName()); 4641 // Parse the next body in the stream and set its position in the 4642 // DeferredFunctionInfo map. 4643 if (Error Err = rememberAndSkipFunctionBodies()) 4644 return Err; 4645 } 4646 return Error::success(); 4647 } 4648 4649 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4650 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4651 return SyncScope::ID(Val); 4652 if (Val >= SSIDs.size()) 4653 return SyncScope::System; // Map unknown synchronization scopes to system. 4654 return SSIDs[Val]; 4655 } 4656 4657 //===----------------------------------------------------------------------===// 4658 // GVMaterializer implementation 4659 //===----------------------------------------------------------------------===// 4660 4661 Error BitcodeReader::materialize(GlobalValue *GV) { 4662 Function *F = dyn_cast<Function>(GV); 4663 // If it's not a function or is already material, ignore the request. 4664 if (!F || !F->isMaterializable()) 4665 return Error::success(); 4666 4667 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4668 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4669 // If its position is recorded as 0, its body is somewhere in the stream 4670 // but we haven't seen it yet. 4671 if (DFII->second == 0) 4672 if (Error Err = findFunctionInStream(F, DFII)) 4673 return Err; 4674 4675 // Materialize metadata before parsing any function bodies. 4676 if (Error Err = materializeMetadata()) 4677 return Err; 4678 4679 // Move the bit stream to the saved position of the deferred function body. 4680 Stream.JumpToBit(DFII->second); 4681 4682 if (Error Err = parseFunctionBody(F)) 4683 return Err; 4684 F->setIsMaterializable(false); 4685 4686 if (StripDebugInfo) 4687 stripDebugInfo(*F); 4688 4689 // Upgrade any old intrinsic calls in the function. 4690 for (auto &I : UpgradedIntrinsics) { 4691 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4692 UI != UE;) { 4693 User *U = *UI; 4694 ++UI; 4695 if (CallInst *CI = dyn_cast<CallInst>(U)) 4696 UpgradeIntrinsicCall(CI, I.second); 4697 } 4698 } 4699 4700 // Update calls to the remangled intrinsics 4701 for (auto &I : RemangledIntrinsics) 4702 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4703 UI != UE;) 4704 // Don't expect any other users than call sites 4705 CallSite(*UI++).setCalledFunction(I.second); 4706 4707 // Finish fn->subprogram upgrade for materialized functions. 4708 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4709 F->setSubprogram(SP); 4710 4711 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4712 if (!MDLoader->isStrippingTBAA()) { 4713 for (auto &I : instructions(F)) { 4714 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4715 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4716 continue; 4717 MDLoader->setStripTBAA(true); 4718 stripTBAA(F->getParent()); 4719 } 4720 } 4721 4722 // Bring in any functions that this function forward-referenced via 4723 // blockaddresses. 4724 return materializeForwardReferencedFunctions(); 4725 } 4726 4727 Error BitcodeReader::materializeModule() { 4728 if (Error Err = materializeMetadata()) 4729 return Err; 4730 4731 // Promise to materialize all forward references. 4732 WillMaterializeAllForwardRefs = true; 4733 4734 // Iterate over the module, deserializing any functions that are still on 4735 // disk. 4736 for (Function &F : *TheModule) { 4737 if (Error Err = materialize(&F)) 4738 return Err; 4739 } 4740 // At this point, if there are any function bodies, parse the rest of 4741 // the bits in the module past the last function block we have recorded 4742 // through either lazy scanning or the VST. 4743 if (LastFunctionBlockBit || NextUnreadBit) 4744 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4745 ? LastFunctionBlockBit 4746 : NextUnreadBit)) 4747 return Err; 4748 4749 // Check that all block address forward references got resolved (as we 4750 // promised above). 4751 if (!BasicBlockFwdRefs.empty()) 4752 return error("Never resolved function from blockaddress"); 4753 4754 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4755 // delete the old functions to clean up. We can't do this unless the entire 4756 // module is materialized because there could always be another function body 4757 // with calls to the old function. 4758 for (auto &I : UpgradedIntrinsics) { 4759 for (auto *U : I.first->users()) { 4760 if (CallInst *CI = dyn_cast<CallInst>(U)) 4761 UpgradeIntrinsicCall(CI, I.second); 4762 } 4763 if (!I.first->use_empty()) 4764 I.first->replaceAllUsesWith(I.second); 4765 I.first->eraseFromParent(); 4766 } 4767 UpgradedIntrinsics.clear(); 4768 // Do the same for remangled intrinsics 4769 for (auto &I : RemangledIntrinsics) { 4770 I.first->replaceAllUsesWith(I.second); 4771 I.first->eraseFromParent(); 4772 } 4773 RemangledIntrinsics.clear(); 4774 4775 UpgradeDebugInfo(*TheModule); 4776 4777 UpgradeModuleFlags(*TheModule); 4778 return Error::success(); 4779 } 4780 4781 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4782 return IdentifiedStructTypes; 4783 } 4784 4785 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4786 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4787 StringRef ModulePath, unsigned ModuleId) 4788 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4789 ModulePath(ModulePath), ModuleId(ModuleId) {} 4790 4791 ModuleSummaryIndex::ModuleInfo * 4792 ModuleSummaryIndexBitcodeReader::addThisModule() { 4793 return TheIndex.addModule(ModulePath, ModuleId); 4794 } 4795 4796 std::pair<ValueInfo, GlobalValue::GUID> 4797 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4798 auto VGI = ValueIdToValueInfoMap[ValueId]; 4799 assert(VGI.first); 4800 return VGI; 4801 } 4802 4803 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4804 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4805 StringRef SourceFileName) { 4806 std::string GlobalId = 4807 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4808 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4809 auto OriginalNameID = ValueGUID; 4810 if (GlobalValue::isLocalLinkage(Linkage)) 4811 OriginalNameID = GlobalValue::getGUID(ValueName); 4812 if (PrintSummaryGUIDs) 4813 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4814 << ValueName << "\n"; 4815 ValueIdToValueInfoMap[ValueID] = 4816 std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID); 4817 } 4818 4819 // Specialized value symbol table parser used when reading module index 4820 // blocks where we don't actually create global values. The parsed information 4821 // is saved in the bitcode reader for use when later parsing summaries. 4822 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4823 uint64_t Offset, 4824 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4825 // With a strtab the VST is not required to parse the summary. 4826 if (UseStrtab) 4827 return Error::success(); 4828 4829 assert(Offset > 0 && "Expected non-zero VST offset"); 4830 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4831 4832 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4833 return error("Invalid record"); 4834 4835 SmallVector<uint64_t, 64> Record; 4836 4837 // Read all the records for this value table. 4838 SmallString<128> ValueName; 4839 4840 while (true) { 4841 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4842 4843 switch (Entry.Kind) { 4844 case BitstreamEntry::SubBlock: // Handled for us already. 4845 case BitstreamEntry::Error: 4846 return error("Malformed block"); 4847 case BitstreamEntry::EndBlock: 4848 // Done parsing VST, jump back to wherever we came from. 4849 Stream.JumpToBit(CurrentBit); 4850 return Error::success(); 4851 case BitstreamEntry::Record: 4852 // The interesting case. 4853 break; 4854 } 4855 4856 // Read a record. 4857 Record.clear(); 4858 switch (Stream.readRecord(Entry.ID, Record)) { 4859 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4860 break; 4861 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4862 if (convertToString(Record, 1, ValueName)) 4863 return error("Invalid record"); 4864 unsigned ValueID = Record[0]; 4865 assert(!SourceFileName.empty()); 4866 auto VLI = ValueIdToLinkageMap.find(ValueID); 4867 assert(VLI != ValueIdToLinkageMap.end() && 4868 "No linkage found for VST entry?"); 4869 auto Linkage = VLI->second; 4870 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4871 ValueName.clear(); 4872 break; 4873 } 4874 case bitc::VST_CODE_FNENTRY: { 4875 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4876 if (convertToString(Record, 2, ValueName)) 4877 return error("Invalid record"); 4878 unsigned ValueID = Record[0]; 4879 assert(!SourceFileName.empty()); 4880 auto VLI = ValueIdToLinkageMap.find(ValueID); 4881 assert(VLI != ValueIdToLinkageMap.end() && 4882 "No linkage found for VST entry?"); 4883 auto Linkage = VLI->second; 4884 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4885 ValueName.clear(); 4886 break; 4887 } 4888 case bitc::VST_CODE_COMBINED_ENTRY: { 4889 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4890 unsigned ValueID = Record[0]; 4891 GlobalValue::GUID RefGUID = Record[1]; 4892 // The "original name", which is the second value of the pair will be 4893 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4894 ValueIdToValueInfoMap[ValueID] = 4895 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4896 break; 4897 } 4898 } 4899 } 4900 } 4901 4902 // Parse just the blocks needed for building the index out of the module. 4903 // At the end of this routine the module Index is populated with a map 4904 // from global value id to GlobalValueSummary objects. 4905 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4906 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4907 return error("Invalid record"); 4908 4909 SmallVector<uint64_t, 64> Record; 4910 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4911 unsigned ValueId = 0; 4912 4913 // Read the index for this module. 4914 while (true) { 4915 BitstreamEntry Entry = Stream.advance(); 4916 4917 switch (Entry.Kind) { 4918 case BitstreamEntry::Error: 4919 return error("Malformed block"); 4920 case BitstreamEntry::EndBlock: 4921 return Error::success(); 4922 4923 case BitstreamEntry::SubBlock: 4924 switch (Entry.ID) { 4925 default: // Skip unknown content. 4926 if (Stream.SkipBlock()) 4927 return error("Invalid record"); 4928 break; 4929 case bitc::BLOCKINFO_BLOCK_ID: 4930 // Need to parse these to get abbrev ids (e.g. for VST) 4931 if (readBlockInfo()) 4932 return error("Malformed block"); 4933 break; 4934 case bitc::VALUE_SYMTAB_BLOCK_ID: 4935 // Should have been parsed earlier via VSTOffset, unless there 4936 // is no summary section. 4937 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4938 !SeenGlobalValSummary) && 4939 "Expected early VST parse via VSTOffset record"); 4940 if (Stream.SkipBlock()) 4941 return error("Invalid record"); 4942 break; 4943 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4944 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4945 assert(!SeenValueSymbolTable && 4946 "Already read VST when parsing summary block?"); 4947 // We might not have a VST if there were no values in the 4948 // summary. An empty summary block generated when we are 4949 // performing ThinLTO compiles so we don't later invoke 4950 // the regular LTO process on them. 4951 if (VSTOffset > 0) { 4952 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4953 return Err; 4954 SeenValueSymbolTable = true; 4955 } 4956 SeenGlobalValSummary = true; 4957 if (Error Err = parseEntireSummary(Entry.ID)) 4958 return Err; 4959 break; 4960 case bitc::MODULE_STRTAB_BLOCK_ID: 4961 if (Error Err = parseModuleStringTable()) 4962 return Err; 4963 break; 4964 } 4965 continue; 4966 4967 case BitstreamEntry::Record: { 4968 Record.clear(); 4969 auto BitCode = Stream.readRecord(Entry.ID, Record); 4970 switch (BitCode) { 4971 default: 4972 break; // Default behavior, ignore unknown content. 4973 case bitc::MODULE_CODE_VERSION: { 4974 if (Error Err = parseVersionRecord(Record).takeError()) 4975 return Err; 4976 break; 4977 } 4978 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4979 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4980 SmallString<128> ValueName; 4981 if (convertToString(Record, 0, ValueName)) 4982 return error("Invalid record"); 4983 SourceFileName = ValueName.c_str(); 4984 break; 4985 } 4986 /// MODULE_CODE_HASH: [5*i32] 4987 case bitc::MODULE_CODE_HASH: { 4988 if (Record.size() != 5) 4989 return error("Invalid hash length " + Twine(Record.size()).str()); 4990 auto &Hash = addThisModule()->second.second; 4991 int Pos = 0; 4992 for (auto &Val : Record) { 4993 assert(!(Val >> 32) && "Unexpected high bits set"); 4994 Hash[Pos++] = Val; 4995 } 4996 break; 4997 } 4998 /// MODULE_CODE_VSTOFFSET: [offset] 4999 case bitc::MODULE_CODE_VSTOFFSET: 5000 if (Record.size() < 1) 5001 return error("Invalid record"); 5002 // Note that we subtract 1 here because the offset is relative to one 5003 // word before the start of the identification or module block, which 5004 // was historically always the start of the regular bitcode header. 5005 VSTOffset = Record[0] - 1; 5006 break; 5007 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5008 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5009 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5010 // v2: [strtab offset, strtab size, v1] 5011 case bitc::MODULE_CODE_GLOBALVAR: 5012 case bitc::MODULE_CODE_FUNCTION: 5013 case bitc::MODULE_CODE_ALIAS: { 5014 StringRef Name; 5015 ArrayRef<uint64_t> GVRecord; 5016 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5017 if (GVRecord.size() <= 3) 5018 return error("Invalid record"); 5019 uint64_t RawLinkage = GVRecord[3]; 5020 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5021 if (!UseStrtab) { 5022 ValueIdToLinkageMap[ValueId++] = Linkage; 5023 break; 5024 } 5025 5026 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5027 break; 5028 } 5029 } 5030 } 5031 continue; 5032 } 5033 } 5034 } 5035 5036 std::vector<ValueInfo> 5037 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5038 std::vector<ValueInfo> Ret; 5039 Ret.reserve(Record.size()); 5040 for (uint64_t RefValueId : Record) 5041 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5042 return Ret; 5043 } 5044 5045 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 5046 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 5047 std::vector<FunctionSummary::EdgeTy> Ret; 5048 Ret.reserve(Record.size()); 5049 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5050 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5051 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5052 if (IsOldProfileFormat) { 5053 I += 1; // Skip old callsitecount field 5054 if (HasProfile) 5055 I += 1; // Skip old profilecount field 5056 } else if (HasProfile) 5057 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5058 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}}); 5059 } 5060 return Ret; 5061 } 5062 5063 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5064 // objects in the index. 5065 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5066 if (Stream.EnterSubBlock(ID)) 5067 return error("Invalid record"); 5068 SmallVector<uint64_t, 64> Record; 5069 5070 // Parse version 5071 { 5072 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5073 if (Entry.Kind != BitstreamEntry::Record) 5074 return error("Invalid Summary Block: record for version expected"); 5075 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5076 return error("Invalid Summary Block: version expected"); 5077 } 5078 const uint64_t Version = Record[0]; 5079 const bool IsOldProfileFormat = Version == 1; 5080 if (Version < 1 || Version > 4) 5081 return error("Invalid summary version " + Twine(Version) + 5082 ", 1, 2, 3 or 4 expected"); 5083 Record.clear(); 5084 5085 // Keep around the last seen summary to be used when we see an optional 5086 // "OriginalName" attachement. 5087 GlobalValueSummary *LastSeenSummary = nullptr; 5088 GlobalValue::GUID LastSeenGUID = 0; 5089 5090 // We can expect to see any number of type ID information records before 5091 // each function summary records; these variables store the information 5092 // collected so far so that it can be used to create the summary object. 5093 std::vector<GlobalValue::GUID> PendingTypeTests; 5094 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5095 PendingTypeCheckedLoadVCalls; 5096 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5097 PendingTypeCheckedLoadConstVCalls; 5098 5099 while (true) { 5100 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5101 5102 switch (Entry.Kind) { 5103 case BitstreamEntry::SubBlock: // Handled for us already. 5104 case BitstreamEntry::Error: 5105 return error("Malformed block"); 5106 case BitstreamEntry::EndBlock: 5107 return Error::success(); 5108 case BitstreamEntry::Record: 5109 // The interesting case. 5110 break; 5111 } 5112 5113 // Read a record. The record format depends on whether this 5114 // is a per-module index or a combined index file. In the per-module 5115 // case the records contain the associated value's ID for correlation 5116 // with VST entries. In the combined index the correlation is done 5117 // via the bitcode offset of the summary records (which were saved 5118 // in the combined index VST entries). The records also contain 5119 // information used for ThinLTO renaming and importing. 5120 Record.clear(); 5121 auto BitCode = Stream.readRecord(Entry.ID, Record); 5122 switch (BitCode) { 5123 default: // Default behavior: ignore. 5124 break; 5125 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5126 uint64_t ValueID = Record[0]; 5127 GlobalValue::GUID RefGUID = Record[1]; 5128 ValueIdToValueInfoMap[ValueID] = 5129 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5130 break; 5131 } 5132 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5133 // numrefs x valueid, n x (valueid)] 5134 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5135 // numrefs x valueid, 5136 // n x (valueid, hotness)] 5137 case bitc::FS_PERMODULE: 5138 case bitc::FS_PERMODULE_PROFILE: { 5139 unsigned ValueID = Record[0]; 5140 uint64_t RawFlags = Record[1]; 5141 unsigned InstCount = Record[2]; 5142 uint64_t RawFunFlags = 0; 5143 unsigned NumRefs = Record[3]; 5144 int RefListStartIndex = 4; 5145 if (Version >= 4) { 5146 RawFunFlags = Record[3]; 5147 NumRefs = Record[4]; 5148 RefListStartIndex = 5; 5149 } 5150 5151 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5152 // The module path string ref set in the summary must be owned by the 5153 // index's module string table. Since we don't have a module path 5154 // string table section in the per-module index, we create a single 5155 // module path string table entry with an empty (0) ID to take 5156 // ownership. 5157 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5158 assert(Record.size() >= RefListStartIndex + NumRefs && 5159 "Record size inconsistent with number of references"); 5160 std::vector<ValueInfo> Refs = makeRefList( 5161 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5162 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5163 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5164 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5165 IsOldProfileFormat, HasProfile); 5166 auto FS = llvm::make_unique<FunctionSummary>( 5167 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5168 std::move(Calls), std::move(PendingTypeTests), 5169 std::move(PendingTypeTestAssumeVCalls), 5170 std::move(PendingTypeCheckedLoadVCalls), 5171 std::move(PendingTypeTestAssumeConstVCalls), 5172 std::move(PendingTypeCheckedLoadConstVCalls)); 5173 PendingTypeTests.clear(); 5174 PendingTypeTestAssumeVCalls.clear(); 5175 PendingTypeCheckedLoadVCalls.clear(); 5176 PendingTypeTestAssumeConstVCalls.clear(); 5177 PendingTypeCheckedLoadConstVCalls.clear(); 5178 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5179 FS->setModulePath(addThisModule()->first()); 5180 FS->setOriginalName(VIAndOriginalGUID.second); 5181 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5182 break; 5183 } 5184 // FS_ALIAS: [valueid, flags, valueid] 5185 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5186 // they expect all aliasee summaries to be available. 5187 case bitc::FS_ALIAS: { 5188 unsigned ValueID = Record[0]; 5189 uint64_t RawFlags = Record[1]; 5190 unsigned AliaseeID = Record[2]; 5191 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5192 auto AS = llvm::make_unique<AliasSummary>(Flags); 5193 // The module path string ref set in the summary must be owned by the 5194 // index's module string table. Since we don't have a module path 5195 // string table section in the per-module index, we create a single 5196 // module path string table entry with an empty (0) ID to take 5197 // ownership. 5198 AS->setModulePath(addThisModule()->first()); 5199 5200 GlobalValue::GUID AliaseeGUID = 5201 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5202 auto AliaseeInModule = 5203 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5204 if (!AliaseeInModule) 5205 return error("Alias expects aliasee summary to be parsed"); 5206 AS->setAliasee(AliaseeInModule); 5207 AS->setAliaseeGUID(AliaseeGUID); 5208 5209 auto GUID = getValueInfoFromValueId(ValueID); 5210 AS->setOriginalName(GUID.second); 5211 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5212 break; 5213 } 5214 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5215 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5216 unsigned ValueID = Record[0]; 5217 uint64_t RawFlags = Record[1]; 5218 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5219 std::vector<ValueInfo> Refs = 5220 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5221 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5222 FS->setModulePath(addThisModule()->first()); 5223 auto GUID = getValueInfoFromValueId(ValueID); 5224 FS->setOriginalName(GUID.second); 5225 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5226 break; 5227 } 5228 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5229 // numrefs x valueid, n x (valueid)] 5230 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5231 // numrefs x valueid, n x (valueid, hotness)] 5232 case bitc::FS_COMBINED: 5233 case bitc::FS_COMBINED_PROFILE: { 5234 unsigned ValueID = Record[0]; 5235 uint64_t ModuleId = Record[1]; 5236 uint64_t RawFlags = Record[2]; 5237 unsigned InstCount = Record[3]; 5238 uint64_t RawFunFlags = 0; 5239 unsigned NumRefs = Record[4]; 5240 int RefListStartIndex = 5; 5241 5242 if (Version >= 4) { 5243 RawFunFlags = Record[4]; 5244 NumRefs = Record[5]; 5245 RefListStartIndex = 6; 5246 } 5247 5248 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5249 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5250 assert(Record.size() >= RefListStartIndex + NumRefs && 5251 "Record size inconsistent with number of references"); 5252 std::vector<ValueInfo> Refs = makeRefList( 5253 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5254 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5255 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5256 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5257 IsOldProfileFormat, HasProfile); 5258 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5259 auto FS = llvm::make_unique<FunctionSummary>( 5260 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5261 std::move(Edges), std::move(PendingTypeTests), 5262 std::move(PendingTypeTestAssumeVCalls), 5263 std::move(PendingTypeCheckedLoadVCalls), 5264 std::move(PendingTypeTestAssumeConstVCalls), 5265 std::move(PendingTypeCheckedLoadConstVCalls)); 5266 PendingTypeTests.clear(); 5267 PendingTypeTestAssumeVCalls.clear(); 5268 PendingTypeCheckedLoadVCalls.clear(); 5269 PendingTypeTestAssumeConstVCalls.clear(); 5270 PendingTypeCheckedLoadConstVCalls.clear(); 5271 LastSeenSummary = FS.get(); 5272 LastSeenGUID = VI.getGUID(); 5273 FS->setModulePath(ModuleIdMap[ModuleId]); 5274 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5275 break; 5276 } 5277 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5278 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5279 // they expect all aliasee summaries to be available. 5280 case bitc::FS_COMBINED_ALIAS: { 5281 unsigned ValueID = Record[0]; 5282 uint64_t ModuleId = Record[1]; 5283 uint64_t RawFlags = Record[2]; 5284 unsigned AliaseeValueId = Record[3]; 5285 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5286 auto AS = llvm::make_unique<AliasSummary>(Flags); 5287 LastSeenSummary = AS.get(); 5288 AS->setModulePath(ModuleIdMap[ModuleId]); 5289 5290 auto AliaseeGUID = 5291 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5292 auto AliaseeInModule = 5293 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5294 AS->setAliasee(AliaseeInModule); 5295 AS->setAliaseeGUID(AliaseeGUID); 5296 5297 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5298 LastSeenGUID = VI.getGUID(); 5299 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5300 break; 5301 } 5302 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5303 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5304 unsigned ValueID = Record[0]; 5305 uint64_t ModuleId = Record[1]; 5306 uint64_t RawFlags = Record[2]; 5307 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5308 std::vector<ValueInfo> Refs = 5309 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5310 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5311 LastSeenSummary = FS.get(); 5312 FS->setModulePath(ModuleIdMap[ModuleId]); 5313 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5314 LastSeenGUID = VI.getGUID(); 5315 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5316 break; 5317 } 5318 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5319 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5320 uint64_t OriginalName = Record[0]; 5321 if (!LastSeenSummary) 5322 return error("Name attachment that does not follow a combined record"); 5323 LastSeenSummary->setOriginalName(OriginalName); 5324 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5325 // Reset the LastSeenSummary 5326 LastSeenSummary = nullptr; 5327 LastSeenGUID = 0; 5328 break; 5329 } 5330 case bitc::FS_TYPE_TESTS: 5331 assert(PendingTypeTests.empty()); 5332 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5333 Record.end()); 5334 break; 5335 5336 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5337 assert(PendingTypeTestAssumeVCalls.empty()); 5338 for (unsigned I = 0; I != Record.size(); I += 2) 5339 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5340 break; 5341 5342 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5343 assert(PendingTypeCheckedLoadVCalls.empty()); 5344 for (unsigned I = 0; I != Record.size(); I += 2) 5345 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5346 break; 5347 5348 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5349 PendingTypeTestAssumeConstVCalls.push_back( 5350 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5351 break; 5352 5353 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5354 PendingTypeCheckedLoadConstVCalls.push_back( 5355 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5356 break; 5357 5358 case bitc::FS_CFI_FUNCTION_DEFS: { 5359 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5360 for (unsigned I = 0; I != Record.size(); I += 2) 5361 CfiFunctionDefs.insert( 5362 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5363 break; 5364 } 5365 case bitc::FS_CFI_FUNCTION_DECLS: { 5366 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5367 for (unsigned I = 0; I != Record.size(); I += 2) 5368 CfiFunctionDecls.insert( 5369 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5370 break; 5371 } 5372 } 5373 } 5374 llvm_unreachable("Exit infinite loop"); 5375 } 5376 5377 // Parse the module string table block into the Index. 5378 // This populates the ModulePathStringTable map in the index. 5379 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5380 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5381 return error("Invalid record"); 5382 5383 SmallVector<uint64_t, 64> Record; 5384 5385 SmallString<128> ModulePath; 5386 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5387 5388 while (true) { 5389 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5390 5391 switch (Entry.Kind) { 5392 case BitstreamEntry::SubBlock: // Handled for us already. 5393 case BitstreamEntry::Error: 5394 return error("Malformed block"); 5395 case BitstreamEntry::EndBlock: 5396 return Error::success(); 5397 case BitstreamEntry::Record: 5398 // The interesting case. 5399 break; 5400 } 5401 5402 Record.clear(); 5403 switch (Stream.readRecord(Entry.ID, Record)) { 5404 default: // Default behavior: ignore. 5405 break; 5406 case bitc::MST_CODE_ENTRY: { 5407 // MST_ENTRY: [modid, namechar x N] 5408 uint64_t ModuleId = Record[0]; 5409 5410 if (convertToString(Record, 1, ModulePath)) 5411 return error("Invalid record"); 5412 5413 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5414 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5415 5416 ModulePath.clear(); 5417 break; 5418 } 5419 /// MST_CODE_HASH: [5*i32] 5420 case bitc::MST_CODE_HASH: { 5421 if (Record.size() != 5) 5422 return error("Invalid hash length " + Twine(Record.size()).str()); 5423 if (!LastSeenModule) 5424 return error("Invalid hash that does not follow a module path"); 5425 int Pos = 0; 5426 for (auto &Val : Record) { 5427 assert(!(Val >> 32) && "Unexpected high bits set"); 5428 LastSeenModule->second.second[Pos++] = Val; 5429 } 5430 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5431 LastSeenModule = nullptr; 5432 break; 5433 } 5434 } 5435 } 5436 llvm_unreachable("Exit infinite loop"); 5437 } 5438 5439 namespace { 5440 5441 // FIXME: This class is only here to support the transition to llvm::Error. It 5442 // will be removed once this transition is complete. Clients should prefer to 5443 // deal with the Error value directly, rather than converting to error_code. 5444 class BitcodeErrorCategoryType : public std::error_category { 5445 const char *name() const noexcept override { 5446 return "llvm.bitcode"; 5447 } 5448 5449 std::string message(int IE) const override { 5450 BitcodeError E = static_cast<BitcodeError>(IE); 5451 switch (E) { 5452 case BitcodeError::CorruptedBitcode: 5453 return "Corrupted bitcode"; 5454 } 5455 llvm_unreachable("Unknown error type!"); 5456 } 5457 }; 5458 5459 } // end anonymous namespace 5460 5461 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5462 5463 const std::error_category &llvm::BitcodeErrorCategory() { 5464 return *ErrorCategory; 5465 } 5466 5467 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5468 unsigned Block, unsigned RecordID) { 5469 if (Stream.EnterSubBlock(Block)) 5470 return error("Invalid record"); 5471 5472 StringRef Strtab; 5473 while (true) { 5474 BitstreamEntry Entry = Stream.advance(); 5475 switch (Entry.Kind) { 5476 case BitstreamEntry::EndBlock: 5477 return Strtab; 5478 5479 case BitstreamEntry::Error: 5480 return error("Malformed block"); 5481 5482 case BitstreamEntry::SubBlock: 5483 if (Stream.SkipBlock()) 5484 return error("Malformed block"); 5485 break; 5486 5487 case BitstreamEntry::Record: 5488 StringRef Blob; 5489 SmallVector<uint64_t, 1> Record; 5490 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5491 Strtab = Blob; 5492 break; 5493 } 5494 } 5495 } 5496 5497 //===----------------------------------------------------------------------===// 5498 // External interface 5499 //===----------------------------------------------------------------------===// 5500 5501 Expected<std::vector<BitcodeModule>> 5502 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5503 auto FOrErr = getBitcodeFileContents(Buffer); 5504 if (!FOrErr) 5505 return FOrErr.takeError(); 5506 return std::move(FOrErr->Mods); 5507 } 5508 5509 Expected<BitcodeFileContents> 5510 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5511 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5512 if (!StreamOrErr) 5513 return StreamOrErr.takeError(); 5514 BitstreamCursor &Stream = *StreamOrErr; 5515 5516 BitcodeFileContents F; 5517 while (true) { 5518 uint64_t BCBegin = Stream.getCurrentByteNo(); 5519 5520 // We may be consuming bitcode from a client that leaves garbage at the end 5521 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5522 // the end that there cannot possibly be another module, stop looking. 5523 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5524 return F; 5525 5526 BitstreamEntry Entry = Stream.advance(); 5527 switch (Entry.Kind) { 5528 case BitstreamEntry::EndBlock: 5529 case BitstreamEntry::Error: 5530 return error("Malformed block"); 5531 5532 case BitstreamEntry::SubBlock: { 5533 uint64_t IdentificationBit = -1ull; 5534 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5535 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5536 if (Stream.SkipBlock()) 5537 return error("Malformed block"); 5538 5539 Entry = Stream.advance(); 5540 if (Entry.Kind != BitstreamEntry::SubBlock || 5541 Entry.ID != bitc::MODULE_BLOCK_ID) 5542 return error("Malformed block"); 5543 } 5544 5545 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5546 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5547 if (Stream.SkipBlock()) 5548 return error("Malformed block"); 5549 5550 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5551 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5552 Buffer.getBufferIdentifier(), IdentificationBit, 5553 ModuleBit}); 5554 continue; 5555 } 5556 5557 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5558 Expected<StringRef> Strtab = 5559 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5560 if (!Strtab) 5561 return Strtab.takeError(); 5562 // This string table is used by every preceding bitcode module that does 5563 // not have its own string table. A bitcode file may have multiple 5564 // string tables if it was created by binary concatenation, for example 5565 // with "llvm-cat -b". 5566 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5567 if (!I->Strtab.empty()) 5568 break; 5569 I->Strtab = *Strtab; 5570 } 5571 // Similarly, the string table is used by every preceding symbol table; 5572 // normally there will be just one unless the bitcode file was created 5573 // by binary concatenation. 5574 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5575 F.StrtabForSymtab = *Strtab; 5576 continue; 5577 } 5578 5579 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5580 Expected<StringRef> SymtabOrErr = 5581 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5582 if (!SymtabOrErr) 5583 return SymtabOrErr.takeError(); 5584 5585 // We can expect the bitcode file to have multiple symbol tables if it 5586 // was created by binary concatenation. In that case we silently 5587 // ignore any subsequent symbol tables, which is fine because this is a 5588 // low level function. The client is expected to notice that the number 5589 // of modules in the symbol table does not match the number of modules 5590 // in the input file and regenerate the symbol table. 5591 if (F.Symtab.empty()) 5592 F.Symtab = *SymtabOrErr; 5593 continue; 5594 } 5595 5596 if (Stream.SkipBlock()) 5597 return error("Malformed block"); 5598 continue; 5599 } 5600 case BitstreamEntry::Record: 5601 Stream.skipRecord(Entry.ID); 5602 continue; 5603 } 5604 } 5605 } 5606 5607 /// \brief Get a lazy one-at-time loading module from bitcode. 5608 /// 5609 /// This isn't always used in a lazy context. In particular, it's also used by 5610 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5611 /// in forward-referenced functions from block address references. 5612 /// 5613 /// \param[in] MaterializeAll Set to \c true if we should materialize 5614 /// everything. 5615 Expected<std::unique_ptr<Module>> 5616 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5617 bool ShouldLazyLoadMetadata, bool IsImporting) { 5618 BitstreamCursor Stream(Buffer); 5619 5620 std::string ProducerIdentification; 5621 if (IdentificationBit != -1ull) { 5622 Stream.JumpToBit(IdentificationBit); 5623 Expected<std::string> ProducerIdentificationOrErr = 5624 readIdentificationBlock(Stream); 5625 if (!ProducerIdentificationOrErr) 5626 return ProducerIdentificationOrErr.takeError(); 5627 5628 ProducerIdentification = *ProducerIdentificationOrErr; 5629 } 5630 5631 Stream.JumpToBit(ModuleBit); 5632 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5633 Context); 5634 5635 std::unique_ptr<Module> M = 5636 llvm::make_unique<Module>(ModuleIdentifier, Context); 5637 M->setMaterializer(R); 5638 5639 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5640 if (Error Err = 5641 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5642 return std::move(Err); 5643 5644 if (MaterializeAll) { 5645 // Read in the entire module, and destroy the BitcodeReader. 5646 if (Error Err = M->materializeAll()) 5647 return std::move(Err); 5648 } else { 5649 // Resolve forward references from blockaddresses. 5650 if (Error Err = R->materializeForwardReferencedFunctions()) 5651 return std::move(Err); 5652 } 5653 return std::move(M); 5654 } 5655 5656 Expected<std::unique_ptr<Module>> 5657 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5658 bool IsImporting) { 5659 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5660 } 5661 5662 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5663 // We don't use ModuleIdentifier here because the client may need to control the 5664 // module path used in the combined summary (e.g. when reading summaries for 5665 // regular LTO modules). 5666 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5667 StringRef ModulePath, uint64_t ModuleId) { 5668 BitstreamCursor Stream(Buffer); 5669 Stream.JumpToBit(ModuleBit); 5670 5671 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5672 ModulePath, ModuleId); 5673 return R.parseModule(); 5674 } 5675 5676 // Parse the specified bitcode buffer, returning the function info index. 5677 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5678 BitstreamCursor Stream(Buffer); 5679 Stream.JumpToBit(ModuleBit); 5680 5681 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5682 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5683 ModuleIdentifier, 0); 5684 5685 if (Error Err = R.parseModule()) 5686 return std::move(Err); 5687 5688 return std::move(Index); 5689 } 5690 5691 // Check if the given bitcode buffer contains a global value summary block. 5692 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5693 BitstreamCursor Stream(Buffer); 5694 Stream.JumpToBit(ModuleBit); 5695 5696 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5697 return error("Invalid record"); 5698 5699 while (true) { 5700 BitstreamEntry Entry = Stream.advance(); 5701 5702 switch (Entry.Kind) { 5703 case BitstreamEntry::Error: 5704 return error("Malformed block"); 5705 case BitstreamEntry::EndBlock: 5706 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5707 5708 case BitstreamEntry::SubBlock: 5709 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5710 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5711 5712 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5713 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5714 5715 // Ignore other sub-blocks. 5716 if (Stream.SkipBlock()) 5717 return error("Malformed block"); 5718 continue; 5719 5720 case BitstreamEntry::Record: 5721 Stream.skipRecord(Entry.ID); 5722 continue; 5723 } 5724 } 5725 } 5726 5727 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5728 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5729 if (!MsOrErr) 5730 return MsOrErr.takeError(); 5731 5732 if (MsOrErr->size() != 1) 5733 return error("Expected a single module"); 5734 5735 return (*MsOrErr)[0]; 5736 } 5737 5738 Expected<std::unique_ptr<Module>> 5739 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5740 bool ShouldLazyLoadMetadata, bool IsImporting) { 5741 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5742 if (!BM) 5743 return BM.takeError(); 5744 5745 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5746 } 5747 5748 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5749 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5750 bool ShouldLazyLoadMetadata, bool IsImporting) { 5751 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5752 IsImporting); 5753 if (MOrErr) 5754 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5755 return MOrErr; 5756 } 5757 5758 Expected<std::unique_ptr<Module>> 5759 BitcodeModule::parseModule(LLVMContext &Context) { 5760 return getModuleImpl(Context, true, false, false); 5761 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5762 // written. We must defer until the Module has been fully materialized. 5763 } 5764 5765 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5766 LLVMContext &Context) { 5767 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5768 if (!BM) 5769 return BM.takeError(); 5770 5771 return BM->parseModule(Context); 5772 } 5773 5774 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5775 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5776 if (!StreamOrErr) 5777 return StreamOrErr.takeError(); 5778 5779 return readTriple(*StreamOrErr); 5780 } 5781 5782 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5783 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5784 if (!StreamOrErr) 5785 return StreamOrErr.takeError(); 5786 5787 return hasObjCCategory(*StreamOrErr); 5788 } 5789 5790 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5791 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5792 if (!StreamOrErr) 5793 return StreamOrErr.takeError(); 5794 5795 return readIdentificationCode(*StreamOrErr); 5796 } 5797 5798 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5799 ModuleSummaryIndex &CombinedIndex, 5800 uint64_t ModuleId) { 5801 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5802 if (!BM) 5803 return BM.takeError(); 5804 5805 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5806 } 5807 5808 Expected<std::unique_ptr<ModuleSummaryIndex>> 5809 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5810 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5811 if (!BM) 5812 return BM.takeError(); 5813 5814 return BM->getSummary(); 5815 } 5816 5817 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5818 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5819 if (!BM) 5820 return BM.takeError(); 5821 5822 return BM->getLTOInfo(); 5823 } 5824 5825 Expected<std::unique_ptr<ModuleSummaryIndex>> 5826 llvm::getModuleSummaryIndexForFile(StringRef Path, 5827 bool IgnoreEmptyThinLTOIndexFile) { 5828 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5829 MemoryBuffer::getFileOrSTDIN(Path); 5830 if (!FileOrErr) 5831 return errorCodeToError(FileOrErr.getError()); 5832 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5833 return nullptr; 5834 return getModuleSummaryIndex(**FileOrErr); 5835 } 5836