1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/BitcodeReader.h"
11 #include "MetadataLoader.h"
12 #include "ValueList.h"
13 
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Bitcode/BitstreamReader.h"
26 #include "llvm/Bitcode/LLVMBitCodes.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Comdat.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/DiagnosticPrinter.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GVMaterializer.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalIFunc.h"
46 #include "llvm/IR/GlobalIndirectSymbol.h"
47 #include "llvm/IR/GlobalObject.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/InstIterator.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/OperandTraits.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/TrackingMDRef.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/ValueHandle.h"
64 #include "llvm/IR/Verifier.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Error.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/ManagedStatic.h"
73 #include "llvm/Support/MemoryBuffer.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <deque>
80 #include <limits>
81 #include <map>
82 #include <memory>
83 #include <string>
84 #include <system_error>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 static cl::opt<bool> PrintSummaryGUIDs(
92     "print-summary-global-ids", cl::init(false), cl::Hidden,
93     cl::desc(
94         "Print the global id for each value when reading the module summary"));
95 
96 namespace {
97 
98 enum {
99   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
100 };
101 
102 Error error(const Twine &Message) {
103   return make_error<StringError>(
104       Message, make_error_code(BitcodeError::CorruptedBitcode));
105 }
106 
107 /// Helper to read the header common to all bitcode files.
108 bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
109   // Sniff for the signature.
110   if (!Stream.canSkipToPos(4) ||
111       Stream.Read(8) != 'B' ||
112       Stream.Read(8) != 'C' ||
113       Stream.Read(4) != 0x0 ||
114       Stream.Read(4) != 0xC ||
115       Stream.Read(4) != 0xE ||
116       Stream.Read(4) != 0xD)
117     return false;
118   return true;
119 }
120 
121 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
122   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
123   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
124 
125   if (Buffer.getBufferSize() & 3)
126     return error("Invalid bitcode signature");
127 
128   // If we have a wrapper header, parse it and ignore the non-bc file contents.
129   // The magic number is 0x0B17C0DE stored in little endian.
130   if (isBitcodeWrapper(BufPtr, BufEnd))
131     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
132       return error("Invalid bitcode wrapper header");
133 
134   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
135   if (!hasValidBitcodeHeader(Stream))
136     return error("Invalid bitcode signature");
137 
138   return std::move(Stream);
139 }
140 
141 /// Convert a string from a record into an std::string, return true on failure.
142 template <typename StrTy>
143 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
144                             StrTy &Result) {
145   if (Idx > Record.size())
146     return true;
147 
148   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
149     Result += (char)Record[i];
150   return false;
151 }
152 
153 // Strip all the TBAA attachment for the module.
154 void stripTBAA(Module *M) {
155   for (auto &F : *M) {
156     if (F.isMaterializable())
157       continue;
158     for (auto &I : instructions(F))
159       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
160   }
161 }
162 
163 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
164 /// "epoch" encoded in the bitcode, and return the producer name if any.
165 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
166   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
167     return error("Invalid record");
168 
169   // Read all the records.
170   SmallVector<uint64_t, 64> Record;
171 
172   std::string ProducerIdentification;
173 
174   while (true) {
175     BitstreamEntry Entry = Stream.advance();
176 
177     switch (Entry.Kind) {
178     default:
179     case BitstreamEntry::Error:
180       return error("Malformed block");
181     case BitstreamEntry::EndBlock:
182       return ProducerIdentification;
183     case BitstreamEntry::Record:
184       // The interesting case.
185       break;
186     }
187 
188     // Read a record.
189     Record.clear();
190     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
191     switch (BitCode) {
192     default: // Default behavior: reject
193       return error("Invalid value");
194     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
195       convertToString(Record, 0, ProducerIdentification);
196       break;
197     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
198       unsigned epoch = (unsigned)Record[0];
199       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
200         return error(
201           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
202           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
203       }
204     }
205     }
206   }
207 }
208 
209 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
210   // We expect a number of well-defined blocks, though we don't necessarily
211   // need to understand them all.
212   while (true) {
213     if (Stream.AtEndOfStream())
214       return "";
215 
216     BitstreamEntry Entry = Stream.advance();
217     switch (Entry.Kind) {
218     case BitstreamEntry::EndBlock:
219     case BitstreamEntry::Error:
220       return error("Malformed block");
221 
222     case BitstreamEntry::SubBlock:
223       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
224         return readIdentificationBlock(Stream);
225 
226       // Ignore other sub-blocks.
227       if (Stream.SkipBlock())
228         return error("Malformed block");
229       continue;
230     case BitstreamEntry::Record:
231       Stream.skipRecord(Entry.ID);
232       continue;
233     }
234   }
235 }
236 
237 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
238   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
239     return error("Invalid record");
240 
241   SmallVector<uint64_t, 64> Record;
242   // Read all the records for this module.
243 
244   while (true) {
245     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
246 
247     switch (Entry.Kind) {
248     case BitstreamEntry::SubBlock: // Handled for us already.
249     case BitstreamEntry::Error:
250       return error("Malformed block");
251     case BitstreamEntry::EndBlock:
252       return false;
253     case BitstreamEntry::Record:
254       // The interesting case.
255       break;
256     }
257 
258     // Read a record.
259     switch (Stream.readRecord(Entry.ID, Record)) {
260     default:
261       break; // Default behavior, ignore unknown content.
262     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
263       std::string S;
264       if (convertToString(Record, 0, S))
265         return error("Invalid record");
266       // Check for the i386 and other (x86_64, ARM) conventions
267       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
268           S.find("__OBJC,__category") != std::string::npos)
269         return true;
270       break;
271     }
272     }
273     Record.clear();
274   }
275   llvm_unreachable("Exit infinite loop");
276 }
277 
278 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
279   // We expect a number of well-defined blocks, though we don't necessarily
280   // need to understand them all.
281   while (true) {
282     BitstreamEntry Entry = Stream.advance();
283 
284     switch (Entry.Kind) {
285     case BitstreamEntry::Error:
286       return error("Malformed block");
287     case BitstreamEntry::EndBlock:
288       return false;
289 
290     case BitstreamEntry::SubBlock:
291       if (Entry.ID == bitc::MODULE_BLOCK_ID)
292         return hasObjCCategoryInModule(Stream);
293 
294       // Ignore other sub-blocks.
295       if (Stream.SkipBlock())
296         return error("Malformed block");
297       continue;
298 
299     case BitstreamEntry::Record:
300       Stream.skipRecord(Entry.ID);
301       continue;
302     }
303   }
304 }
305 
306 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
307   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
308     return error("Invalid record");
309 
310   SmallVector<uint64_t, 64> Record;
311 
312   std::string Triple;
313 
314   // Read all the records for this module.
315   while (true) {
316     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
317 
318     switch (Entry.Kind) {
319     case BitstreamEntry::SubBlock: // Handled for us already.
320     case BitstreamEntry::Error:
321       return error("Malformed block");
322     case BitstreamEntry::EndBlock:
323       return Triple;
324     case BitstreamEntry::Record:
325       // The interesting case.
326       break;
327     }
328 
329     // Read a record.
330     switch (Stream.readRecord(Entry.ID, Record)) {
331     default: break;  // Default behavior, ignore unknown content.
332     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
333       std::string S;
334       if (convertToString(Record, 0, S))
335         return error("Invalid record");
336       Triple = S;
337       break;
338     }
339     }
340     Record.clear();
341   }
342   llvm_unreachable("Exit infinite loop");
343 }
344 
345 Expected<std::string> readTriple(BitstreamCursor &Stream) {
346   // We expect a number of well-defined blocks, though we don't necessarily
347   // need to understand them all.
348   while (true) {
349     BitstreamEntry Entry = Stream.advance();
350 
351     switch (Entry.Kind) {
352     case BitstreamEntry::Error:
353       return error("Malformed block");
354     case BitstreamEntry::EndBlock:
355       return "";
356 
357     case BitstreamEntry::SubBlock:
358       if (Entry.ID == bitc::MODULE_BLOCK_ID)
359         return readModuleTriple(Stream);
360 
361       // Ignore other sub-blocks.
362       if (Stream.SkipBlock())
363         return error("Malformed block");
364       continue;
365 
366     case BitstreamEntry::Record:
367       Stream.skipRecord(Entry.ID);
368       continue;
369     }
370   }
371 }
372 
373 class BitcodeReaderBase {
374 protected:
375   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
376       : Stream(std::move(Stream)), Strtab(Strtab) {
377     this->Stream.setBlockInfo(&BlockInfo);
378   }
379 
380   BitstreamBlockInfo BlockInfo;
381   BitstreamCursor Stream;
382   StringRef Strtab;
383 
384   /// In version 2 of the bitcode we store names of global values and comdats in
385   /// a string table rather than in the VST.
386   bool UseStrtab = false;
387 
388   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
389 
390   /// If this module uses a string table, pop the reference to the string table
391   /// and return the referenced string and the rest of the record. Otherwise
392   /// just return the record itself.
393   std::pair<StringRef, ArrayRef<uint64_t>>
394   readNameFromStrtab(ArrayRef<uint64_t> Record);
395 
396   bool readBlockInfo();
397 
398   // Contains an arbitrary and optional string identifying the bitcode producer
399   std::string ProducerIdentification;
400 
401   Error error(const Twine &Message);
402 };
403 
404 Error BitcodeReaderBase::error(const Twine &Message) {
405   std::string FullMsg = Message.str();
406   if (!ProducerIdentification.empty())
407     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
408                LLVM_VERSION_STRING "')";
409   return ::error(FullMsg);
410 }
411 
412 Expected<unsigned>
413 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
414   if (Record.size() < 1)
415     return error("Invalid record");
416   unsigned ModuleVersion = Record[0];
417   if (ModuleVersion > 2)
418     return error("Invalid value");
419   UseStrtab = ModuleVersion >= 2;
420   return ModuleVersion;
421 }
422 
423 std::pair<StringRef, ArrayRef<uint64_t>>
424 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
425   if (!UseStrtab)
426     return {"", Record};
427   // Invalid reference. Let the caller complain about the record being empty.
428   if (Record[0] + Record[1] > Strtab.size())
429     return {"", {}};
430   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
431 }
432 
433 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
434   LLVMContext &Context;
435   Module *TheModule = nullptr;
436   // Next offset to start scanning for lazy parsing of function bodies.
437   uint64_t NextUnreadBit = 0;
438   // Last function offset found in the VST.
439   uint64_t LastFunctionBlockBit = 0;
440   bool SeenValueSymbolTable = false;
441   uint64_t VSTOffset = 0;
442 
443   std::vector<std::string> SectionTable;
444   std::vector<std::string> GCTable;
445 
446   std::vector<Type*> TypeList;
447   BitcodeReaderValueList ValueList;
448   Optional<MetadataLoader> MDLoader;
449   std::vector<Comdat *> ComdatList;
450   SmallVector<Instruction *, 64> InstructionList;
451 
452   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
453   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
454   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
455   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
456   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
457 
458   /// The set of attributes by index.  Index zero in the file is for null, and
459   /// is thus not represented here.  As such all indices are off by one.
460   std::vector<AttributeList> MAttributes;
461 
462   /// The set of attribute groups.
463   std::map<unsigned, AttributeList> MAttributeGroups;
464 
465   /// While parsing a function body, this is a list of the basic blocks for the
466   /// function.
467   std::vector<BasicBlock*> FunctionBBs;
468 
469   // When reading the module header, this list is populated with functions that
470   // have bodies later in the file.
471   std::vector<Function*> FunctionsWithBodies;
472 
473   // When intrinsic functions are encountered which require upgrading they are
474   // stored here with their replacement function.
475   typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap;
476   UpdatedIntrinsicMap UpgradedIntrinsics;
477   // Intrinsics which were remangled because of types rename
478   UpdatedIntrinsicMap RemangledIntrinsics;
479 
480   // Several operations happen after the module header has been read, but
481   // before function bodies are processed. This keeps track of whether
482   // we've done this yet.
483   bool SeenFirstFunctionBody = false;
484 
485   /// When function bodies are initially scanned, this map contains info about
486   /// where to find deferred function body in the stream.
487   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
488 
489   /// When Metadata block is initially scanned when parsing the module, we may
490   /// choose to defer parsing of the metadata. This vector contains info about
491   /// which Metadata blocks are deferred.
492   std::vector<uint64_t> DeferredMetadataInfo;
493 
494   /// These are basic blocks forward-referenced by block addresses.  They are
495   /// inserted lazily into functions when they're loaded.  The basic block ID is
496   /// its index into the vector.
497   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
498   std::deque<Function *> BasicBlockFwdRefQueue;
499 
500   /// Indicates that we are using a new encoding for instruction operands where
501   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
502   /// instruction number, for a more compact encoding.  Some instruction
503   /// operands are not relative to the instruction ID: basic block numbers, and
504   /// types. Once the old style function blocks have been phased out, we would
505   /// not need this flag.
506   bool UseRelativeIDs = false;
507 
508   /// True if all functions will be materialized, negating the need to process
509   /// (e.g.) blockaddress forward references.
510   bool WillMaterializeAllForwardRefs = false;
511 
512   bool StripDebugInfo = false;
513   TBAAVerifier TBAAVerifyHelper;
514 
515   std::vector<std::string> BundleTags;
516   SmallVector<SyncScope::ID, 8> SSIDs;
517 
518 public:
519   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
520                 StringRef ProducerIdentification, LLVMContext &Context);
521 
522   Error materializeForwardReferencedFunctions();
523 
524   Error materialize(GlobalValue *GV) override;
525   Error materializeModule() override;
526   std::vector<StructType *> getIdentifiedStructTypes() const override;
527 
528   /// \brief Main interface to parsing a bitcode buffer.
529   /// \returns true if an error occurred.
530   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
531                          bool IsImporting = false);
532 
533   static uint64_t decodeSignRotatedValue(uint64_t V);
534 
535   /// Materialize any deferred Metadata block.
536   Error materializeMetadata() override;
537 
538   void setStripDebugInfo() override;
539 
540 private:
541   std::vector<StructType *> IdentifiedStructTypes;
542   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
543   StructType *createIdentifiedStructType(LLVMContext &Context);
544 
545   Type *getTypeByID(unsigned ID);
546 
547   Value *getFnValueByID(unsigned ID, Type *Ty) {
548     if (Ty && Ty->isMetadataTy())
549       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
550     return ValueList.getValueFwdRef(ID, Ty);
551   }
552 
553   Metadata *getFnMetadataByID(unsigned ID) {
554     return MDLoader->getMetadataFwdRefOrLoad(ID);
555   }
556 
557   BasicBlock *getBasicBlock(unsigned ID) const {
558     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
559     return FunctionBBs[ID];
560   }
561 
562   AttributeList getAttributes(unsigned i) const {
563     if (i-1 < MAttributes.size())
564       return MAttributes[i-1];
565     return AttributeList();
566   }
567 
568   /// Read a value/type pair out of the specified record from slot 'Slot'.
569   /// Increment Slot past the number of slots used in the record. Return true on
570   /// failure.
571   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
572                         unsigned InstNum, Value *&ResVal) {
573     if (Slot == Record.size()) return true;
574     unsigned ValNo = (unsigned)Record[Slot++];
575     // Adjust the ValNo, if it was encoded relative to the InstNum.
576     if (UseRelativeIDs)
577       ValNo = InstNum - ValNo;
578     if (ValNo < InstNum) {
579       // If this is not a forward reference, just return the value we already
580       // have.
581       ResVal = getFnValueByID(ValNo, nullptr);
582       return ResVal == nullptr;
583     }
584     if (Slot == Record.size())
585       return true;
586 
587     unsigned TypeNo = (unsigned)Record[Slot++];
588     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
589     return ResVal == nullptr;
590   }
591 
592   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
593   /// past the number of slots used by the value in the record. Return true if
594   /// there is an error.
595   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
596                 unsigned InstNum, Type *Ty, Value *&ResVal) {
597     if (getValue(Record, Slot, InstNum, Ty, ResVal))
598       return true;
599     // All values currently take a single record slot.
600     ++Slot;
601     return false;
602   }
603 
604   /// Like popValue, but does not increment the Slot number.
605   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
606                 unsigned InstNum, Type *Ty, Value *&ResVal) {
607     ResVal = getValue(Record, Slot, InstNum, Ty);
608     return ResVal == nullptr;
609   }
610 
611   /// Version of getValue that returns ResVal directly, or 0 if there is an
612   /// error.
613   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
614                   unsigned InstNum, Type *Ty) {
615     if (Slot == Record.size()) return nullptr;
616     unsigned ValNo = (unsigned)Record[Slot];
617     // Adjust the ValNo, if it was encoded relative to the InstNum.
618     if (UseRelativeIDs)
619       ValNo = InstNum - ValNo;
620     return getFnValueByID(ValNo, Ty);
621   }
622 
623   /// Like getValue, but decodes signed VBRs.
624   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
625                         unsigned InstNum, Type *Ty) {
626     if (Slot == Record.size()) return nullptr;
627     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
628     // Adjust the ValNo, if it was encoded relative to the InstNum.
629     if (UseRelativeIDs)
630       ValNo = InstNum - ValNo;
631     return getFnValueByID(ValNo, Ty);
632   }
633 
634   /// Converts alignment exponent (i.e. power of two (or zero)) to the
635   /// corresponding alignment to use. If alignment is too large, returns
636   /// a corresponding error code.
637   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
638   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
639   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
640 
641   Error parseComdatRecord(ArrayRef<uint64_t> Record);
642   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
643   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
644   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
645                                         ArrayRef<uint64_t> Record);
646 
647   Error parseAttributeBlock();
648   Error parseAttributeGroupBlock();
649   Error parseTypeTable();
650   Error parseTypeTableBody();
651   Error parseOperandBundleTags();
652   Error parseSyncScopeNames();
653 
654   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
655                                 unsigned NameIndex, Triple &TT);
656   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
657                                ArrayRef<uint64_t> Record);
658   Error parseValueSymbolTable(uint64_t Offset = 0);
659   Error parseGlobalValueSymbolTable();
660   Error parseConstants();
661   Error rememberAndSkipFunctionBodies();
662   Error rememberAndSkipFunctionBody();
663   /// Save the positions of the Metadata blocks and skip parsing the blocks.
664   Error rememberAndSkipMetadata();
665   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
666   Error parseFunctionBody(Function *F);
667   Error globalCleanup();
668   Error resolveGlobalAndIndirectSymbolInits();
669   Error parseUseLists();
670   Error findFunctionInStream(
671       Function *F,
672       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
673 
674   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
675 };
676 
677 /// Class to manage reading and parsing function summary index bitcode
678 /// files/sections.
679 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
680   /// The module index built during parsing.
681   ModuleSummaryIndex &TheIndex;
682 
683   /// Indicates whether we have encountered a global value summary section
684   /// yet during parsing.
685   bool SeenGlobalValSummary = false;
686 
687   /// Indicates whether we have already parsed the VST, used for error checking.
688   bool SeenValueSymbolTable = false;
689 
690   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
691   /// Used to enable on-demand parsing of the VST.
692   uint64_t VSTOffset = 0;
693 
694   // Map to save ValueId to ValueInfo association that was recorded in the
695   // ValueSymbolTable. It is used after the VST is parsed to convert
696   // call graph edges read from the function summary from referencing
697   // callees by their ValueId to using the ValueInfo instead, which is how
698   // they are recorded in the summary index being built.
699   // We save a GUID which refers to the same global as the ValueInfo, but
700   // ignoring the linkage, i.e. for values other than local linkage they are
701   // identical.
702   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
703       ValueIdToValueInfoMap;
704 
705   /// Map populated during module path string table parsing, from the
706   /// module ID to a string reference owned by the index's module
707   /// path string table, used to correlate with combined index
708   /// summary records.
709   DenseMap<uint64_t, StringRef> ModuleIdMap;
710 
711   /// Original source file name recorded in a bitcode record.
712   std::string SourceFileName;
713 
714   /// The string identifier given to this module by the client, normally the
715   /// path to the bitcode file.
716   StringRef ModulePath;
717 
718   /// For per-module summary indexes, the unique numerical identifier given to
719   /// this module by the client.
720   unsigned ModuleId;
721 
722 public:
723   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
724                                   ModuleSummaryIndex &TheIndex,
725                                   StringRef ModulePath, unsigned ModuleId);
726 
727   Error parseModule();
728 
729 private:
730   void setValueGUID(uint64_t ValueID, StringRef ValueName,
731                     GlobalValue::LinkageTypes Linkage,
732                     StringRef SourceFileName);
733   Error parseValueSymbolTable(
734       uint64_t Offset,
735       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
736   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
737   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
738                                                     bool IsOldProfileFormat,
739                                                     bool HasProfile);
740   Error parseEntireSummary(unsigned ID);
741   Error parseModuleStringTable();
742 
743   std::pair<ValueInfo, GlobalValue::GUID>
744   getValueInfoFromValueId(unsigned ValueId);
745 
746   ModuleSummaryIndex::ModuleInfo *addThisModule();
747 };
748 
749 } // end anonymous namespace
750 
751 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
752                                                     Error Err) {
753   if (Err) {
754     std::error_code EC;
755     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
756       EC = EIB.convertToErrorCode();
757       Ctx.emitError(EIB.message());
758     });
759     return EC;
760   }
761   return std::error_code();
762 }
763 
764 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
765                              StringRef ProducerIdentification,
766                              LLVMContext &Context)
767     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
768       ValueList(Context) {
769   this->ProducerIdentification = ProducerIdentification;
770 }
771 
772 Error BitcodeReader::materializeForwardReferencedFunctions() {
773   if (WillMaterializeAllForwardRefs)
774     return Error::success();
775 
776   // Prevent recursion.
777   WillMaterializeAllForwardRefs = true;
778 
779   while (!BasicBlockFwdRefQueue.empty()) {
780     Function *F = BasicBlockFwdRefQueue.front();
781     BasicBlockFwdRefQueue.pop_front();
782     assert(F && "Expected valid function");
783     if (!BasicBlockFwdRefs.count(F))
784       // Already materialized.
785       continue;
786 
787     // Check for a function that isn't materializable to prevent an infinite
788     // loop.  When parsing a blockaddress stored in a global variable, there
789     // isn't a trivial way to check if a function will have a body without a
790     // linear search through FunctionsWithBodies, so just check it here.
791     if (!F->isMaterializable())
792       return error("Never resolved function from blockaddress");
793 
794     // Try to materialize F.
795     if (Error Err = materialize(F))
796       return Err;
797   }
798   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
799 
800   // Reset state.
801   WillMaterializeAllForwardRefs = false;
802   return Error::success();
803 }
804 
805 //===----------------------------------------------------------------------===//
806 //  Helper functions to implement forward reference resolution, etc.
807 //===----------------------------------------------------------------------===//
808 
809 static bool hasImplicitComdat(size_t Val) {
810   switch (Val) {
811   default:
812     return false;
813   case 1:  // Old WeakAnyLinkage
814   case 4:  // Old LinkOnceAnyLinkage
815   case 10: // Old WeakODRLinkage
816   case 11: // Old LinkOnceODRLinkage
817     return true;
818   }
819 }
820 
821 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
822   switch (Val) {
823   default: // Map unknown/new linkages to external
824   case 0:
825     return GlobalValue::ExternalLinkage;
826   case 2:
827     return GlobalValue::AppendingLinkage;
828   case 3:
829     return GlobalValue::InternalLinkage;
830   case 5:
831     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
832   case 6:
833     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
834   case 7:
835     return GlobalValue::ExternalWeakLinkage;
836   case 8:
837     return GlobalValue::CommonLinkage;
838   case 9:
839     return GlobalValue::PrivateLinkage;
840   case 12:
841     return GlobalValue::AvailableExternallyLinkage;
842   case 13:
843     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
844   case 14:
845     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
846   case 15:
847     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
848   case 1: // Old value with implicit comdat.
849   case 16:
850     return GlobalValue::WeakAnyLinkage;
851   case 10: // Old value with implicit comdat.
852   case 17:
853     return GlobalValue::WeakODRLinkage;
854   case 4: // Old value with implicit comdat.
855   case 18:
856     return GlobalValue::LinkOnceAnyLinkage;
857   case 11: // Old value with implicit comdat.
858   case 19:
859     return GlobalValue::LinkOnceODRLinkage;
860   }
861 }
862 
863 /// Decode the flags for GlobalValue in the summary.
864 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
865                                                             uint64_t Version) {
866   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
867   // like getDecodedLinkage() above. Any future change to the linkage enum and
868   // to getDecodedLinkage() will need to be taken into account here as above.
869   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
870   RawFlags = RawFlags >> 4;
871   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
872   // The Live flag wasn't introduced until version 3. For dead stripping
873   // to work correctly on earlier versions, we must conservatively treat all
874   // values as live.
875   bool Live = (RawFlags & 0x2) || Version < 3;
876   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live);
877 }
878 
879 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
880   switch (Val) {
881   default: // Map unknown visibilities to default.
882   case 0: return GlobalValue::DefaultVisibility;
883   case 1: return GlobalValue::HiddenVisibility;
884   case 2: return GlobalValue::ProtectedVisibility;
885   }
886 }
887 
888 static GlobalValue::DLLStorageClassTypes
889 getDecodedDLLStorageClass(unsigned Val) {
890   switch (Val) {
891   default: // Map unknown values to default.
892   case 0: return GlobalValue::DefaultStorageClass;
893   case 1: return GlobalValue::DLLImportStorageClass;
894   case 2: return GlobalValue::DLLExportStorageClass;
895   }
896 }
897 
898 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
899   switch (Val) {
900     case 0: return GlobalVariable::NotThreadLocal;
901     default: // Map unknown non-zero value to general dynamic.
902     case 1: return GlobalVariable::GeneralDynamicTLSModel;
903     case 2: return GlobalVariable::LocalDynamicTLSModel;
904     case 3: return GlobalVariable::InitialExecTLSModel;
905     case 4: return GlobalVariable::LocalExecTLSModel;
906   }
907 }
908 
909 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
910   switch (Val) {
911     default: // Map unknown to UnnamedAddr::None.
912     case 0: return GlobalVariable::UnnamedAddr::None;
913     case 1: return GlobalVariable::UnnamedAddr::Global;
914     case 2: return GlobalVariable::UnnamedAddr::Local;
915   }
916 }
917 
918 static int getDecodedCastOpcode(unsigned Val) {
919   switch (Val) {
920   default: return -1;
921   case bitc::CAST_TRUNC   : return Instruction::Trunc;
922   case bitc::CAST_ZEXT    : return Instruction::ZExt;
923   case bitc::CAST_SEXT    : return Instruction::SExt;
924   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
925   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
926   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
927   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
928   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
929   case bitc::CAST_FPEXT   : return Instruction::FPExt;
930   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
931   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
932   case bitc::CAST_BITCAST : return Instruction::BitCast;
933   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
934   }
935 }
936 
937 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
938   bool IsFP = Ty->isFPOrFPVectorTy();
939   // BinOps are only valid for int/fp or vector of int/fp types
940   if (!IsFP && !Ty->isIntOrIntVectorTy())
941     return -1;
942 
943   switch (Val) {
944   default:
945     return -1;
946   case bitc::BINOP_ADD:
947     return IsFP ? Instruction::FAdd : Instruction::Add;
948   case bitc::BINOP_SUB:
949     return IsFP ? Instruction::FSub : Instruction::Sub;
950   case bitc::BINOP_MUL:
951     return IsFP ? Instruction::FMul : Instruction::Mul;
952   case bitc::BINOP_UDIV:
953     return IsFP ? -1 : Instruction::UDiv;
954   case bitc::BINOP_SDIV:
955     return IsFP ? Instruction::FDiv : Instruction::SDiv;
956   case bitc::BINOP_UREM:
957     return IsFP ? -1 : Instruction::URem;
958   case bitc::BINOP_SREM:
959     return IsFP ? Instruction::FRem : Instruction::SRem;
960   case bitc::BINOP_SHL:
961     return IsFP ? -1 : Instruction::Shl;
962   case bitc::BINOP_LSHR:
963     return IsFP ? -1 : Instruction::LShr;
964   case bitc::BINOP_ASHR:
965     return IsFP ? -1 : Instruction::AShr;
966   case bitc::BINOP_AND:
967     return IsFP ? -1 : Instruction::And;
968   case bitc::BINOP_OR:
969     return IsFP ? -1 : Instruction::Or;
970   case bitc::BINOP_XOR:
971     return IsFP ? -1 : Instruction::Xor;
972   }
973 }
974 
975 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
976   switch (Val) {
977   default: return AtomicRMWInst::BAD_BINOP;
978   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
979   case bitc::RMW_ADD: return AtomicRMWInst::Add;
980   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
981   case bitc::RMW_AND: return AtomicRMWInst::And;
982   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
983   case bitc::RMW_OR: return AtomicRMWInst::Or;
984   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
985   case bitc::RMW_MAX: return AtomicRMWInst::Max;
986   case bitc::RMW_MIN: return AtomicRMWInst::Min;
987   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
988   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
989   }
990 }
991 
992 static AtomicOrdering getDecodedOrdering(unsigned Val) {
993   switch (Val) {
994   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
995   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
996   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
997   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
998   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
999   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1000   default: // Map unknown orderings to sequentially-consistent.
1001   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1002   }
1003 }
1004 
1005 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1006   switch (Val) {
1007   default: // Map unknown selection kinds to any.
1008   case bitc::COMDAT_SELECTION_KIND_ANY:
1009     return Comdat::Any;
1010   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1011     return Comdat::ExactMatch;
1012   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1013     return Comdat::Largest;
1014   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1015     return Comdat::NoDuplicates;
1016   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1017     return Comdat::SameSize;
1018   }
1019 }
1020 
1021 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1022   FastMathFlags FMF;
1023   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
1024     FMF.setUnsafeAlgebra();
1025   if (0 != (Val & FastMathFlags::NoNaNs))
1026     FMF.setNoNaNs();
1027   if (0 != (Val & FastMathFlags::NoInfs))
1028     FMF.setNoInfs();
1029   if (0 != (Val & FastMathFlags::NoSignedZeros))
1030     FMF.setNoSignedZeros();
1031   if (0 != (Val & FastMathFlags::AllowReciprocal))
1032     FMF.setAllowReciprocal();
1033   if (0 != (Val & FastMathFlags::AllowContract))
1034     FMF.setAllowContract(true);
1035   return FMF;
1036 }
1037 
1038 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1039   switch (Val) {
1040   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1041   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1042   }
1043 }
1044 
1045 
1046 Type *BitcodeReader::getTypeByID(unsigned ID) {
1047   // The type table size is always specified correctly.
1048   if (ID >= TypeList.size())
1049     return nullptr;
1050 
1051   if (Type *Ty = TypeList[ID])
1052     return Ty;
1053 
1054   // If we have a forward reference, the only possible case is when it is to a
1055   // named struct.  Just create a placeholder for now.
1056   return TypeList[ID] = createIdentifiedStructType(Context);
1057 }
1058 
1059 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1060                                                       StringRef Name) {
1061   auto *Ret = StructType::create(Context, Name);
1062   IdentifiedStructTypes.push_back(Ret);
1063   return Ret;
1064 }
1065 
1066 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1067   auto *Ret = StructType::create(Context);
1068   IdentifiedStructTypes.push_back(Ret);
1069   return Ret;
1070 }
1071 
1072 //===----------------------------------------------------------------------===//
1073 //  Functions for parsing blocks from the bitcode file
1074 //===----------------------------------------------------------------------===//
1075 
1076 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1077   switch (Val) {
1078   case Attribute::EndAttrKinds:
1079     llvm_unreachable("Synthetic enumerators which should never get here");
1080 
1081   case Attribute::None:            return 0;
1082   case Attribute::ZExt:            return 1 << 0;
1083   case Attribute::SExt:            return 1 << 1;
1084   case Attribute::NoReturn:        return 1 << 2;
1085   case Attribute::InReg:           return 1 << 3;
1086   case Attribute::StructRet:       return 1 << 4;
1087   case Attribute::NoUnwind:        return 1 << 5;
1088   case Attribute::NoAlias:         return 1 << 6;
1089   case Attribute::ByVal:           return 1 << 7;
1090   case Attribute::Nest:            return 1 << 8;
1091   case Attribute::ReadNone:        return 1 << 9;
1092   case Attribute::ReadOnly:        return 1 << 10;
1093   case Attribute::NoInline:        return 1 << 11;
1094   case Attribute::AlwaysInline:    return 1 << 12;
1095   case Attribute::OptimizeForSize: return 1 << 13;
1096   case Attribute::StackProtect:    return 1 << 14;
1097   case Attribute::StackProtectReq: return 1 << 15;
1098   case Attribute::Alignment:       return 31 << 16;
1099   case Attribute::NoCapture:       return 1 << 21;
1100   case Attribute::NoRedZone:       return 1 << 22;
1101   case Attribute::NoImplicitFloat: return 1 << 23;
1102   case Attribute::Naked:           return 1 << 24;
1103   case Attribute::InlineHint:      return 1 << 25;
1104   case Attribute::StackAlignment:  return 7 << 26;
1105   case Attribute::ReturnsTwice:    return 1 << 29;
1106   case Attribute::UWTable:         return 1 << 30;
1107   case Attribute::NonLazyBind:     return 1U << 31;
1108   case Attribute::SanitizeAddress: return 1ULL << 32;
1109   case Attribute::MinSize:         return 1ULL << 33;
1110   case Attribute::NoDuplicate:     return 1ULL << 34;
1111   case Attribute::StackProtectStrong: return 1ULL << 35;
1112   case Attribute::SanitizeThread:  return 1ULL << 36;
1113   case Attribute::SanitizeMemory:  return 1ULL << 37;
1114   case Attribute::NoBuiltin:       return 1ULL << 38;
1115   case Attribute::Returned:        return 1ULL << 39;
1116   case Attribute::Cold:            return 1ULL << 40;
1117   case Attribute::Builtin:         return 1ULL << 41;
1118   case Attribute::OptimizeNone:    return 1ULL << 42;
1119   case Attribute::InAlloca:        return 1ULL << 43;
1120   case Attribute::NonNull:         return 1ULL << 44;
1121   case Attribute::JumpTable:       return 1ULL << 45;
1122   case Attribute::Convergent:      return 1ULL << 46;
1123   case Attribute::SafeStack:       return 1ULL << 47;
1124   case Attribute::NoRecurse:       return 1ULL << 48;
1125   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1126   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1127   case Attribute::SwiftSelf:       return 1ULL << 51;
1128   case Attribute::SwiftError:      return 1ULL << 52;
1129   case Attribute::WriteOnly:       return 1ULL << 53;
1130   case Attribute::Speculatable:    return 1ULL << 54;
1131   case Attribute::Dereferenceable:
1132     llvm_unreachable("dereferenceable attribute not supported in raw format");
1133     break;
1134   case Attribute::DereferenceableOrNull:
1135     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1136                      "format");
1137     break;
1138   case Attribute::ArgMemOnly:
1139     llvm_unreachable("argmemonly attribute not supported in raw format");
1140     break;
1141   case Attribute::AllocSize:
1142     llvm_unreachable("allocsize not supported in raw format");
1143     break;
1144   }
1145   llvm_unreachable("Unsupported attribute type");
1146 }
1147 
1148 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1149   if (!Val) return;
1150 
1151   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1152        I = Attribute::AttrKind(I + 1)) {
1153     if (I == Attribute::Dereferenceable ||
1154         I == Attribute::DereferenceableOrNull ||
1155         I == Attribute::ArgMemOnly ||
1156         I == Attribute::AllocSize)
1157       continue;
1158     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1159       if (I == Attribute::Alignment)
1160         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1161       else if (I == Attribute::StackAlignment)
1162         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1163       else
1164         B.addAttribute(I);
1165     }
1166   }
1167 }
1168 
1169 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1170 /// been decoded from the given integer. This function must stay in sync with
1171 /// 'encodeLLVMAttributesForBitcode'.
1172 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1173                                            uint64_t EncodedAttrs) {
1174   // FIXME: Remove in 4.0.
1175 
1176   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1177   // the bits above 31 down by 11 bits.
1178   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1179   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1180          "Alignment must be a power of two.");
1181 
1182   if (Alignment)
1183     B.addAlignmentAttr(Alignment);
1184   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1185                           (EncodedAttrs & 0xffff));
1186 }
1187 
1188 Error BitcodeReader::parseAttributeBlock() {
1189   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1190     return error("Invalid record");
1191 
1192   if (!MAttributes.empty())
1193     return error("Invalid multiple blocks");
1194 
1195   SmallVector<uint64_t, 64> Record;
1196 
1197   SmallVector<AttributeList, 8> Attrs;
1198 
1199   // Read all the records.
1200   while (true) {
1201     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1202 
1203     switch (Entry.Kind) {
1204     case BitstreamEntry::SubBlock: // Handled for us already.
1205     case BitstreamEntry::Error:
1206       return error("Malformed block");
1207     case BitstreamEntry::EndBlock:
1208       return Error::success();
1209     case BitstreamEntry::Record:
1210       // The interesting case.
1211       break;
1212     }
1213 
1214     // Read a record.
1215     Record.clear();
1216     switch (Stream.readRecord(Entry.ID, Record)) {
1217     default:  // Default behavior: ignore.
1218       break;
1219     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1220       // FIXME: Remove in 4.0.
1221       if (Record.size() & 1)
1222         return error("Invalid record");
1223 
1224       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1225         AttrBuilder B;
1226         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1227         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1228       }
1229 
1230       MAttributes.push_back(AttributeList::get(Context, Attrs));
1231       Attrs.clear();
1232       break;
1233     }
1234     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1235       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1236         Attrs.push_back(MAttributeGroups[Record[i]]);
1237 
1238       MAttributes.push_back(AttributeList::get(Context, Attrs));
1239       Attrs.clear();
1240       break;
1241     }
1242     }
1243   }
1244 }
1245 
1246 // Returns Attribute::None on unrecognized codes.
1247 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1248   switch (Code) {
1249   default:
1250     return Attribute::None;
1251   case bitc::ATTR_KIND_ALIGNMENT:
1252     return Attribute::Alignment;
1253   case bitc::ATTR_KIND_ALWAYS_INLINE:
1254     return Attribute::AlwaysInline;
1255   case bitc::ATTR_KIND_ARGMEMONLY:
1256     return Attribute::ArgMemOnly;
1257   case bitc::ATTR_KIND_BUILTIN:
1258     return Attribute::Builtin;
1259   case bitc::ATTR_KIND_BY_VAL:
1260     return Attribute::ByVal;
1261   case bitc::ATTR_KIND_IN_ALLOCA:
1262     return Attribute::InAlloca;
1263   case bitc::ATTR_KIND_COLD:
1264     return Attribute::Cold;
1265   case bitc::ATTR_KIND_CONVERGENT:
1266     return Attribute::Convergent;
1267   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1268     return Attribute::InaccessibleMemOnly;
1269   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1270     return Attribute::InaccessibleMemOrArgMemOnly;
1271   case bitc::ATTR_KIND_INLINE_HINT:
1272     return Attribute::InlineHint;
1273   case bitc::ATTR_KIND_IN_REG:
1274     return Attribute::InReg;
1275   case bitc::ATTR_KIND_JUMP_TABLE:
1276     return Attribute::JumpTable;
1277   case bitc::ATTR_KIND_MIN_SIZE:
1278     return Attribute::MinSize;
1279   case bitc::ATTR_KIND_NAKED:
1280     return Attribute::Naked;
1281   case bitc::ATTR_KIND_NEST:
1282     return Attribute::Nest;
1283   case bitc::ATTR_KIND_NO_ALIAS:
1284     return Attribute::NoAlias;
1285   case bitc::ATTR_KIND_NO_BUILTIN:
1286     return Attribute::NoBuiltin;
1287   case bitc::ATTR_KIND_NO_CAPTURE:
1288     return Attribute::NoCapture;
1289   case bitc::ATTR_KIND_NO_DUPLICATE:
1290     return Attribute::NoDuplicate;
1291   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1292     return Attribute::NoImplicitFloat;
1293   case bitc::ATTR_KIND_NO_INLINE:
1294     return Attribute::NoInline;
1295   case bitc::ATTR_KIND_NO_RECURSE:
1296     return Attribute::NoRecurse;
1297   case bitc::ATTR_KIND_NON_LAZY_BIND:
1298     return Attribute::NonLazyBind;
1299   case bitc::ATTR_KIND_NON_NULL:
1300     return Attribute::NonNull;
1301   case bitc::ATTR_KIND_DEREFERENCEABLE:
1302     return Attribute::Dereferenceable;
1303   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1304     return Attribute::DereferenceableOrNull;
1305   case bitc::ATTR_KIND_ALLOC_SIZE:
1306     return Attribute::AllocSize;
1307   case bitc::ATTR_KIND_NO_RED_ZONE:
1308     return Attribute::NoRedZone;
1309   case bitc::ATTR_KIND_NO_RETURN:
1310     return Attribute::NoReturn;
1311   case bitc::ATTR_KIND_NO_UNWIND:
1312     return Attribute::NoUnwind;
1313   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1314     return Attribute::OptimizeForSize;
1315   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1316     return Attribute::OptimizeNone;
1317   case bitc::ATTR_KIND_READ_NONE:
1318     return Attribute::ReadNone;
1319   case bitc::ATTR_KIND_READ_ONLY:
1320     return Attribute::ReadOnly;
1321   case bitc::ATTR_KIND_RETURNED:
1322     return Attribute::Returned;
1323   case bitc::ATTR_KIND_RETURNS_TWICE:
1324     return Attribute::ReturnsTwice;
1325   case bitc::ATTR_KIND_S_EXT:
1326     return Attribute::SExt;
1327   case bitc::ATTR_KIND_SPECULATABLE:
1328     return Attribute::Speculatable;
1329   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1330     return Attribute::StackAlignment;
1331   case bitc::ATTR_KIND_STACK_PROTECT:
1332     return Attribute::StackProtect;
1333   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1334     return Attribute::StackProtectReq;
1335   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1336     return Attribute::StackProtectStrong;
1337   case bitc::ATTR_KIND_SAFESTACK:
1338     return Attribute::SafeStack;
1339   case bitc::ATTR_KIND_STRUCT_RET:
1340     return Attribute::StructRet;
1341   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1342     return Attribute::SanitizeAddress;
1343   case bitc::ATTR_KIND_SANITIZE_THREAD:
1344     return Attribute::SanitizeThread;
1345   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1346     return Attribute::SanitizeMemory;
1347   case bitc::ATTR_KIND_SWIFT_ERROR:
1348     return Attribute::SwiftError;
1349   case bitc::ATTR_KIND_SWIFT_SELF:
1350     return Attribute::SwiftSelf;
1351   case bitc::ATTR_KIND_UW_TABLE:
1352     return Attribute::UWTable;
1353   case bitc::ATTR_KIND_WRITEONLY:
1354     return Attribute::WriteOnly;
1355   case bitc::ATTR_KIND_Z_EXT:
1356     return Attribute::ZExt;
1357   }
1358 }
1359 
1360 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1361                                          unsigned &Alignment) {
1362   // Note: Alignment in bitcode files is incremented by 1, so that zero
1363   // can be used for default alignment.
1364   if (Exponent > Value::MaxAlignmentExponent + 1)
1365     return error("Invalid alignment value");
1366   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1367   return Error::success();
1368 }
1369 
1370 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1371   *Kind = getAttrFromCode(Code);
1372   if (*Kind == Attribute::None)
1373     return error("Unknown attribute kind (" + Twine(Code) + ")");
1374   return Error::success();
1375 }
1376 
1377 Error BitcodeReader::parseAttributeGroupBlock() {
1378   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1379     return error("Invalid record");
1380 
1381   if (!MAttributeGroups.empty())
1382     return error("Invalid multiple blocks");
1383 
1384   SmallVector<uint64_t, 64> Record;
1385 
1386   // Read all the records.
1387   while (true) {
1388     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1389 
1390     switch (Entry.Kind) {
1391     case BitstreamEntry::SubBlock: // Handled for us already.
1392     case BitstreamEntry::Error:
1393       return error("Malformed block");
1394     case BitstreamEntry::EndBlock:
1395       return Error::success();
1396     case BitstreamEntry::Record:
1397       // The interesting case.
1398       break;
1399     }
1400 
1401     // Read a record.
1402     Record.clear();
1403     switch (Stream.readRecord(Entry.ID, Record)) {
1404     default:  // Default behavior: ignore.
1405       break;
1406     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1407       if (Record.size() < 3)
1408         return error("Invalid record");
1409 
1410       uint64_t GrpID = Record[0];
1411       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1412 
1413       AttrBuilder B;
1414       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1415         if (Record[i] == 0) {        // Enum attribute
1416           Attribute::AttrKind Kind;
1417           if (Error Err = parseAttrKind(Record[++i], &Kind))
1418             return Err;
1419 
1420           B.addAttribute(Kind);
1421         } else if (Record[i] == 1) { // Integer attribute
1422           Attribute::AttrKind Kind;
1423           if (Error Err = parseAttrKind(Record[++i], &Kind))
1424             return Err;
1425           if (Kind == Attribute::Alignment)
1426             B.addAlignmentAttr(Record[++i]);
1427           else if (Kind == Attribute::StackAlignment)
1428             B.addStackAlignmentAttr(Record[++i]);
1429           else if (Kind == Attribute::Dereferenceable)
1430             B.addDereferenceableAttr(Record[++i]);
1431           else if (Kind == Attribute::DereferenceableOrNull)
1432             B.addDereferenceableOrNullAttr(Record[++i]);
1433           else if (Kind == Attribute::AllocSize)
1434             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1435         } else {                     // String attribute
1436           assert((Record[i] == 3 || Record[i] == 4) &&
1437                  "Invalid attribute group entry");
1438           bool HasValue = (Record[i++] == 4);
1439           SmallString<64> KindStr;
1440           SmallString<64> ValStr;
1441 
1442           while (Record[i] != 0 && i != e)
1443             KindStr += Record[i++];
1444           assert(Record[i] == 0 && "Kind string not null terminated");
1445 
1446           if (HasValue) {
1447             // Has a value associated with it.
1448             ++i; // Skip the '0' that terminates the "kind" string.
1449             while (Record[i] != 0 && i != e)
1450               ValStr += Record[i++];
1451             assert(Record[i] == 0 && "Value string not null terminated");
1452           }
1453 
1454           B.addAttribute(KindStr.str(), ValStr.str());
1455         }
1456       }
1457 
1458       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1459       break;
1460     }
1461     }
1462   }
1463 }
1464 
1465 Error BitcodeReader::parseTypeTable() {
1466   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1467     return error("Invalid record");
1468 
1469   return parseTypeTableBody();
1470 }
1471 
1472 Error BitcodeReader::parseTypeTableBody() {
1473   if (!TypeList.empty())
1474     return error("Invalid multiple blocks");
1475 
1476   SmallVector<uint64_t, 64> Record;
1477   unsigned NumRecords = 0;
1478 
1479   SmallString<64> TypeName;
1480 
1481   // Read all the records for this type table.
1482   while (true) {
1483     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1484 
1485     switch (Entry.Kind) {
1486     case BitstreamEntry::SubBlock: // Handled for us already.
1487     case BitstreamEntry::Error:
1488       return error("Malformed block");
1489     case BitstreamEntry::EndBlock:
1490       if (NumRecords != TypeList.size())
1491         return error("Malformed block");
1492       return Error::success();
1493     case BitstreamEntry::Record:
1494       // The interesting case.
1495       break;
1496     }
1497 
1498     // Read a record.
1499     Record.clear();
1500     Type *ResultTy = nullptr;
1501     switch (Stream.readRecord(Entry.ID, Record)) {
1502     default:
1503       return error("Invalid value");
1504     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1505       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1506       // type list.  This allows us to reserve space.
1507       if (Record.size() < 1)
1508         return error("Invalid record");
1509       TypeList.resize(Record[0]);
1510       continue;
1511     case bitc::TYPE_CODE_VOID:      // VOID
1512       ResultTy = Type::getVoidTy(Context);
1513       break;
1514     case bitc::TYPE_CODE_HALF:     // HALF
1515       ResultTy = Type::getHalfTy(Context);
1516       break;
1517     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1518       ResultTy = Type::getFloatTy(Context);
1519       break;
1520     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1521       ResultTy = Type::getDoubleTy(Context);
1522       break;
1523     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1524       ResultTy = Type::getX86_FP80Ty(Context);
1525       break;
1526     case bitc::TYPE_CODE_FP128:     // FP128
1527       ResultTy = Type::getFP128Ty(Context);
1528       break;
1529     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1530       ResultTy = Type::getPPC_FP128Ty(Context);
1531       break;
1532     case bitc::TYPE_CODE_LABEL:     // LABEL
1533       ResultTy = Type::getLabelTy(Context);
1534       break;
1535     case bitc::TYPE_CODE_METADATA:  // METADATA
1536       ResultTy = Type::getMetadataTy(Context);
1537       break;
1538     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1539       ResultTy = Type::getX86_MMXTy(Context);
1540       break;
1541     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1542       ResultTy = Type::getTokenTy(Context);
1543       break;
1544     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1545       if (Record.size() < 1)
1546         return error("Invalid record");
1547 
1548       uint64_t NumBits = Record[0];
1549       if (NumBits < IntegerType::MIN_INT_BITS ||
1550           NumBits > IntegerType::MAX_INT_BITS)
1551         return error("Bitwidth for integer type out of range");
1552       ResultTy = IntegerType::get(Context, NumBits);
1553       break;
1554     }
1555     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1556                                     //          [pointee type, address space]
1557       if (Record.size() < 1)
1558         return error("Invalid record");
1559       unsigned AddressSpace = 0;
1560       if (Record.size() == 2)
1561         AddressSpace = Record[1];
1562       ResultTy = getTypeByID(Record[0]);
1563       if (!ResultTy ||
1564           !PointerType::isValidElementType(ResultTy))
1565         return error("Invalid type");
1566       ResultTy = PointerType::get(ResultTy, AddressSpace);
1567       break;
1568     }
1569     case bitc::TYPE_CODE_FUNCTION_OLD: {
1570       // FIXME: attrid is dead, remove it in LLVM 4.0
1571       // FUNCTION: [vararg, attrid, retty, paramty x N]
1572       if (Record.size() < 3)
1573         return error("Invalid record");
1574       SmallVector<Type*, 8> ArgTys;
1575       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1576         if (Type *T = getTypeByID(Record[i]))
1577           ArgTys.push_back(T);
1578         else
1579           break;
1580       }
1581 
1582       ResultTy = getTypeByID(Record[2]);
1583       if (!ResultTy || ArgTys.size() < Record.size()-3)
1584         return error("Invalid type");
1585 
1586       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1587       break;
1588     }
1589     case bitc::TYPE_CODE_FUNCTION: {
1590       // FUNCTION: [vararg, retty, paramty x N]
1591       if (Record.size() < 2)
1592         return error("Invalid record");
1593       SmallVector<Type*, 8> ArgTys;
1594       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1595         if (Type *T = getTypeByID(Record[i])) {
1596           if (!FunctionType::isValidArgumentType(T))
1597             return error("Invalid function argument type");
1598           ArgTys.push_back(T);
1599         }
1600         else
1601           break;
1602       }
1603 
1604       ResultTy = getTypeByID(Record[1]);
1605       if (!ResultTy || ArgTys.size() < Record.size()-2)
1606         return error("Invalid type");
1607 
1608       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1609       break;
1610     }
1611     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1612       if (Record.size() < 1)
1613         return error("Invalid record");
1614       SmallVector<Type*, 8> EltTys;
1615       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1616         if (Type *T = getTypeByID(Record[i]))
1617           EltTys.push_back(T);
1618         else
1619           break;
1620       }
1621       if (EltTys.size() != Record.size()-1)
1622         return error("Invalid type");
1623       ResultTy = StructType::get(Context, EltTys, Record[0]);
1624       break;
1625     }
1626     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1627       if (convertToString(Record, 0, TypeName))
1628         return error("Invalid record");
1629       continue;
1630 
1631     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1632       if (Record.size() < 1)
1633         return error("Invalid record");
1634 
1635       if (NumRecords >= TypeList.size())
1636         return error("Invalid TYPE table");
1637 
1638       // Check to see if this was forward referenced, if so fill in the temp.
1639       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1640       if (Res) {
1641         Res->setName(TypeName);
1642         TypeList[NumRecords] = nullptr;
1643       } else  // Otherwise, create a new struct.
1644         Res = createIdentifiedStructType(Context, TypeName);
1645       TypeName.clear();
1646 
1647       SmallVector<Type*, 8> EltTys;
1648       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1649         if (Type *T = getTypeByID(Record[i]))
1650           EltTys.push_back(T);
1651         else
1652           break;
1653       }
1654       if (EltTys.size() != Record.size()-1)
1655         return error("Invalid record");
1656       Res->setBody(EltTys, Record[0]);
1657       ResultTy = Res;
1658       break;
1659     }
1660     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1661       if (Record.size() != 1)
1662         return error("Invalid record");
1663 
1664       if (NumRecords >= TypeList.size())
1665         return error("Invalid TYPE table");
1666 
1667       // Check to see if this was forward referenced, if so fill in the temp.
1668       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1669       if (Res) {
1670         Res->setName(TypeName);
1671         TypeList[NumRecords] = nullptr;
1672       } else  // Otherwise, create a new struct with no body.
1673         Res = createIdentifiedStructType(Context, TypeName);
1674       TypeName.clear();
1675       ResultTy = Res;
1676       break;
1677     }
1678     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1679       if (Record.size() < 2)
1680         return error("Invalid record");
1681       ResultTy = getTypeByID(Record[1]);
1682       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1683         return error("Invalid type");
1684       ResultTy = ArrayType::get(ResultTy, Record[0]);
1685       break;
1686     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1687       if (Record.size() < 2)
1688         return error("Invalid record");
1689       if (Record[0] == 0)
1690         return error("Invalid vector length");
1691       ResultTy = getTypeByID(Record[1]);
1692       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1693         return error("Invalid type");
1694       ResultTy = VectorType::get(ResultTy, Record[0]);
1695       break;
1696     }
1697 
1698     if (NumRecords >= TypeList.size())
1699       return error("Invalid TYPE table");
1700     if (TypeList[NumRecords])
1701       return error(
1702           "Invalid TYPE table: Only named structs can be forward referenced");
1703     assert(ResultTy && "Didn't read a type?");
1704     TypeList[NumRecords++] = ResultTy;
1705   }
1706 }
1707 
1708 Error BitcodeReader::parseOperandBundleTags() {
1709   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1710     return error("Invalid record");
1711 
1712   if (!BundleTags.empty())
1713     return error("Invalid multiple blocks");
1714 
1715   SmallVector<uint64_t, 64> Record;
1716 
1717   while (true) {
1718     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1719 
1720     switch (Entry.Kind) {
1721     case BitstreamEntry::SubBlock: // Handled for us already.
1722     case BitstreamEntry::Error:
1723       return error("Malformed block");
1724     case BitstreamEntry::EndBlock:
1725       return Error::success();
1726     case BitstreamEntry::Record:
1727       // The interesting case.
1728       break;
1729     }
1730 
1731     // Tags are implicitly mapped to integers by their order.
1732 
1733     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1734       return error("Invalid record");
1735 
1736     // OPERAND_BUNDLE_TAG: [strchr x N]
1737     BundleTags.emplace_back();
1738     if (convertToString(Record, 0, BundleTags.back()))
1739       return error("Invalid record");
1740     Record.clear();
1741   }
1742 }
1743 
1744 Error BitcodeReader::parseSyncScopeNames() {
1745   if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1746     return error("Invalid record");
1747 
1748   if (!SSIDs.empty())
1749     return error("Invalid multiple synchronization scope names blocks");
1750 
1751   SmallVector<uint64_t, 64> Record;
1752   while (true) {
1753     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1754     switch (Entry.Kind) {
1755     case BitstreamEntry::SubBlock: // Handled for us already.
1756     case BitstreamEntry::Error:
1757       return error("Malformed block");
1758     case BitstreamEntry::EndBlock:
1759       if (SSIDs.empty())
1760         return error("Invalid empty synchronization scope names block");
1761       return Error::success();
1762     case BitstreamEntry::Record:
1763       // The interesting case.
1764       break;
1765     }
1766 
1767     // Synchronization scope names are implicitly mapped to synchronization
1768     // scope IDs by their order.
1769 
1770     if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1771       return error("Invalid record");
1772 
1773     SmallString<16> SSN;
1774     if (convertToString(Record, 0, SSN))
1775       return error("Invalid record");
1776 
1777     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1778     Record.clear();
1779   }
1780 }
1781 
1782 /// Associate a value with its name from the given index in the provided record.
1783 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1784                                              unsigned NameIndex, Triple &TT) {
1785   SmallString<128> ValueName;
1786   if (convertToString(Record, NameIndex, ValueName))
1787     return error("Invalid record");
1788   unsigned ValueID = Record[0];
1789   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1790     return error("Invalid record");
1791   Value *V = ValueList[ValueID];
1792 
1793   StringRef NameStr(ValueName.data(), ValueName.size());
1794   if (NameStr.find_first_of(0) != StringRef::npos)
1795     return error("Invalid value name");
1796   V->setName(NameStr);
1797   auto *GO = dyn_cast<GlobalObject>(V);
1798   if (GO) {
1799     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1800       if (TT.isOSBinFormatMachO())
1801         GO->setComdat(nullptr);
1802       else
1803         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1804     }
1805   }
1806   return V;
1807 }
1808 
1809 /// Helper to note and return the current location, and jump to the given
1810 /// offset.
1811 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1812                                        BitstreamCursor &Stream) {
1813   // Save the current parsing location so we can jump back at the end
1814   // of the VST read.
1815   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1816   Stream.JumpToBit(Offset * 32);
1817 #ifndef NDEBUG
1818   // Do some checking if we are in debug mode.
1819   BitstreamEntry Entry = Stream.advance();
1820   assert(Entry.Kind == BitstreamEntry::SubBlock);
1821   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1822 #else
1823   // In NDEBUG mode ignore the output so we don't get an unused variable
1824   // warning.
1825   Stream.advance();
1826 #endif
1827   return CurrentBit;
1828 }
1829 
1830 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1831                                             Function *F,
1832                                             ArrayRef<uint64_t> Record) {
1833   // Note that we subtract 1 here because the offset is relative to one word
1834   // before the start of the identification or module block, which was
1835   // historically always the start of the regular bitcode header.
1836   uint64_t FuncWordOffset = Record[1] - 1;
1837   uint64_t FuncBitOffset = FuncWordOffset * 32;
1838   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1839   // Set the LastFunctionBlockBit to point to the last function block.
1840   // Later when parsing is resumed after function materialization,
1841   // we can simply skip that last function block.
1842   if (FuncBitOffset > LastFunctionBlockBit)
1843     LastFunctionBlockBit = FuncBitOffset;
1844 }
1845 
1846 /// Read a new-style GlobalValue symbol table.
1847 Error BitcodeReader::parseGlobalValueSymbolTable() {
1848   unsigned FuncBitcodeOffsetDelta =
1849       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1850 
1851   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1852     return error("Invalid record");
1853 
1854   SmallVector<uint64_t, 64> Record;
1855   while (true) {
1856     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1857 
1858     switch (Entry.Kind) {
1859     case BitstreamEntry::SubBlock:
1860     case BitstreamEntry::Error:
1861       return error("Malformed block");
1862     case BitstreamEntry::EndBlock:
1863       return Error::success();
1864     case BitstreamEntry::Record:
1865       break;
1866     }
1867 
1868     Record.clear();
1869     switch (Stream.readRecord(Entry.ID, Record)) {
1870     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1871       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1872                               cast<Function>(ValueList[Record[0]]), Record);
1873       break;
1874     }
1875   }
1876 }
1877 
1878 /// Parse the value symbol table at either the current parsing location or
1879 /// at the given bit offset if provided.
1880 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1881   uint64_t CurrentBit;
1882   // Pass in the Offset to distinguish between calling for the module-level
1883   // VST (where we want to jump to the VST offset) and the function-level
1884   // VST (where we don't).
1885   if (Offset > 0) {
1886     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1887     // If this module uses a string table, read this as a module-level VST.
1888     if (UseStrtab) {
1889       if (Error Err = parseGlobalValueSymbolTable())
1890         return Err;
1891       Stream.JumpToBit(CurrentBit);
1892       return Error::success();
1893     }
1894     // Otherwise, the VST will be in a similar format to a function-level VST,
1895     // and will contain symbol names.
1896   }
1897 
1898   // Compute the delta between the bitcode indices in the VST (the word offset
1899   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1900   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1901   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1902   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1903   // just before entering the VST subblock because: 1) the EnterSubBlock
1904   // changes the AbbrevID width; 2) the VST block is nested within the same
1905   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1906   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1907   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1908   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1909   unsigned FuncBitcodeOffsetDelta =
1910       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1911 
1912   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1913     return error("Invalid record");
1914 
1915   SmallVector<uint64_t, 64> Record;
1916 
1917   Triple TT(TheModule->getTargetTriple());
1918 
1919   // Read all the records for this value table.
1920   SmallString<128> ValueName;
1921 
1922   while (true) {
1923     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1924 
1925     switch (Entry.Kind) {
1926     case BitstreamEntry::SubBlock: // Handled for us already.
1927     case BitstreamEntry::Error:
1928       return error("Malformed block");
1929     case BitstreamEntry::EndBlock:
1930       if (Offset > 0)
1931         Stream.JumpToBit(CurrentBit);
1932       return Error::success();
1933     case BitstreamEntry::Record:
1934       // The interesting case.
1935       break;
1936     }
1937 
1938     // Read a record.
1939     Record.clear();
1940     switch (Stream.readRecord(Entry.ID, Record)) {
1941     default:  // Default behavior: unknown type.
1942       break;
1943     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1944       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
1945       if (Error Err = ValOrErr.takeError())
1946         return Err;
1947       ValOrErr.get();
1948       break;
1949     }
1950     case bitc::VST_CODE_FNENTRY: {
1951       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1952       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
1953       if (Error Err = ValOrErr.takeError())
1954         return Err;
1955       Value *V = ValOrErr.get();
1956 
1957       // Ignore function offsets emitted for aliases of functions in older
1958       // versions of LLVM.
1959       if (auto *F = dyn_cast<Function>(V))
1960         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
1961       break;
1962     }
1963     case bitc::VST_CODE_BBENTRY: {
1964       if (convertToString(Record, 1, ValueName))
1965         return error("Invalid record");
1966       BasicBlock *BB = getBasicBlock(Record[0]);
1967       if (!BB)
1968         return error("Invalid record");
1969 
1970       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1971       ValueName.clear();
1972       break;
1973     }
1974     }
1975   }
1976 }
1977 
1978 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
1979 /// encoding.
1980 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1981   if ((V & 1) == 0)
1982     return V >> 1;
1983   if (V != 1)
1984     return -(V >> 1);
1985   // There is no such thing as -0 with integers.  "-0" really means MININT.
1986   return 1ULL << 63;
1987 }
1988 
1989 /// Resolve all of the initializers for global values and aliases that we can.
1990 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
1991   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1992   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
1993       IndirectSymbolInitWorklist;
1994   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
1995   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
1996   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
1997 
1998   GlobalInitWorklist.swap(GlobalInits);
1999   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2000   FunctionPrefixWorklist.swap(FunctionPrefixes);
2001   FunctionPrologueWorklist.swap(FunctionPrologues);
2002   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2003 
2004   while (!GlobalInitWorklist.empty()) {
2005     unsigned ValID = GlobalInitWorklist.back().second;
2006     if (ValID >= ValueList.size()) {
2007       // Not ready to resolve this yet, it requires something later in the file.
2008       GlobalInits.push_back(GlobalInitWorklist.back());
2009     } else {
2010       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2011         GlobalInitWorklist.back().first->setInitializer(C);
2012       else
2013         return error("Expected a constant");
2014     }
2015     GlobalInitWorklist.pop_back();
2016   }
2017 
2018   while (!IndirectSymbolInitWorklist.empty()) {
2019     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2020     if (ValID >= ValueList.size()) {
2021       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2022     } else {
2023       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2024       if (!C)
2025         return error("Expected a constant");
2026       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2027       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2028         return error("Alias and aliasee types don't match");
2029       GIS->setIndirectSymbol(C);
2030     }
2031     IndirectSymbolInitWorklist.pop_back();
2032   }
2033 
2034   while (!FunctionPrefixWorklist.empty()) {
2035     unsigned ValID = FunctionPrefixWorklist.back().second;
2036     if (ValID >= ValueList.size()) {
2037       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2038     } else {
2039       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2040         FunctionPrefixWorklist.back().first->setPrefixData(C);
2041       else
2042         return error("Expected a constant");
2043     }
2044     FunctionPrefixWorklist.pop_back();
2045   }
2046 
2047   while (!FunctionPrologueWorklist.empty()) {
2048     unsigned ValID = FunctionPrologueWorklist.back().second;
2049     if (ValID >= ValueList.size()) {
2050       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2051     } else {
2052       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2053         FunctionPrologueWorklist.back().first->setPrologueData(C);
2054       else
2055         return error("Expected a constant");
2056     }
2057     FunctionPrologueWorklist.pop_back();
2058   }
2059 
2060   while (!FunctionPersonalityFnWorklist.empty()) {
2061     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2062     if (ValID >= ValueList.size()) {
2063       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2064     } else {
2065       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2066         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2067       else
2068         return error("Expected a constant");
2069     }
2070     FunctionPersonalityFnWorklist.pop_back();
2071   }
2072 
2073   return Error::success();
2074 }
2075 
2076 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2077   SmallVector<uint64_t, 8> Words(Vals.size());
2078   transform(Vals, Words.begin(),
2079                  BitcodeReader::decodeSignRotatedValue);
2080 
2081   return APInt(TypeBits, Words);
2082 }
2083 
2084 Error BitcodeReader::parseConstants() {
2085   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2086     return error("Invalid record");
2087 
2088   SmallVector<uint64_t, 64> Record;
2089 
2090   // Read all the records for this value table.
2091   Type *CurTy = Type::getInt32Ty(Context);
2092   unsigned NextCstNo = ValueList.size();
2093 
2094   while (true) {
2095     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2096 
2097     switch (Entry.Kind) {
2098     case BitstreamEntry::SubBlock: // Handled for us already.
2099     case BitstreamEntry::Error:
2100       return error("Malformed block");
2101     case BitstreamEntry::EndBlock:
2102       if (NextCstNo != ValueList.size())
2103         return error("Invalid constant reference");
2104 
2105       // Once all the constants have been read, go through and resolve forward
2106       // references.
2107       ValueList.resolveConstantForwardRefs();
2108       return Error::success();
2109     case BitstreamEntry::Record:
2110       // The interesting case.
2111       break;
2112     }
2113 
2114     // Read a record.
2115     Record.clear();
2116     Type *VoidType = Type::getVoidTy(Context);
2117     Value *V = nullptr;
2118     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2119     switch (BitCode) {
2120     default:  // Default behavior: unknown constant
2121     case bitc::CST_CODE_UNDEF:     // UNDEF
2122       V = UndefValue::get(CurTy);
2123       break;
2124     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2125       if (Record.empty())
2126         return error("Invalid record");
2127       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2128         return error("Invalid record");
2129       if (TypeList[Record[0]] == VoidType)
2130         return error("Invalid constant type");
2131       CurTy = TypeList[Record[0]];
2132       continue;  // Skip the ValueList manipulation.
2133     case bitc::CST_CODE_NULL:      // NULL
2134       V = Constant::getNullValue(CurTy);
2135       break;
2136     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2137       if (!CurTy->isIntegerTy() || Record.empty())
2138         return error("Invalid record");
2139       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2140       break;
2141     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2142       if (!CurTy->isIntegerTy() || Record.empty())
2143         return error("Invalid record");
2144 
2145       APInt VInt =
2146           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2147       V = ConstantInt::get(Context, VInt);
2148 
2149       break;
2150     }
2151     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2152       if (Record.empty())
2153         return error("Invalid record");
2154       if (CurTy->isHalfTy())
2155         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2156                                              APInt(16, (uint16_t)Record[0])));
2157       else if (CurTy->isFloatTy())
2158         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2159                                              APInt(32, (uint32_t)Record[0])));
2160       else if (CurTy->isDoubleTy())
2161         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2162                                              APInt(64, Record[0])));
2163       else if (CurTy->isX86_FP80Ty()) {
2164         // Bits are not stored the same way as a normal i80 APInt, compensate.
2165         uint64_t Rearrange[2];
2166         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2167         Rearrange[1] = Record[0] >> 48;
2168         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2169                                              APInt(80, Rearrange)));
2170       } else if (CurTy->isFP128Ty())
2171         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2172                                              APInt(128, Record)));
2173       else if (CurTy->isPPC_FP128Ty())
2174         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2175                                              APInt(128, Record)));
2176       else
2177         V = UndefValue::get(CurTy);
2178       break;
2179     }
2180 
2181     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2182       if (Record.empty())
2183         return error("Invalid record");
2184 
2185       unsigned Size = Record.size();
2186       SmallVector<Constant*, 16> Elts;
2187 
2188       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2189         for (unsigned i = 0; i != Size; ++i)
2190           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2191                                                      STy->getElementType(i)));
2192         V = ConstantStruct::get(STy, Elts);
2193       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2194         Type *EltTy = ATy->getElementType();
2195         for (unsigned i = 0; i != Size; ++i)
2196           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2197         V = ConstantArray::get(ATy, Elts);
2198       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2199         Type *EltTy = VTy->getElementType();
2200         for (unsigned i = 0; i != Size; ++i)
2201           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2202         V = ConstantVector::get(Elts);
2203       } else {
2204         V = UndefValue::get(CurTy);
2205       }
2206       break;
2207     }
2208     case bitc::CST_CODE_STRING:    // STRING: [values]
2209     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2210       if (Record.empty())
2211         return error("Invalid record");
2212 
2213       SmallString<16> Elts(Record.begin(), Record.end());
2214       V = ConstantDataArray::getString(Context, Elts,
2215                                        BitCode == bitc::CST_CODE_CSTRING);
2216       break;
2217     }
2218     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2219       if (Record.empty())
2220         return error("Invalid record");
2221 
2222       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2223       if (EltTy->isIntegerTy(8)) {
2224         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2225         if (isa<VectorType>(CurTy))
2226           V = ConstantDataVector::get(Context, Elts);
2227         else
2228           V = ConstantDataArray::get(Context, Elts);
2229       } else if (EltTy->isIntegerTy(16)) {
2230         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2231         if (isa<VectorType>(CurTy))
2232           V = ConstantDataVector::get(Context, Elts);
2233         else
2234           V = ConstantDataArray::get(Context, Elts);
2235       } else if (EltTy->isIntegerTy(32)) {
2236         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2237         if (isa<VectorType>(CurTy))
2238           V = ConstantDataVector::get(Context, Elts);
2239         else
2240           V = ConstantDataArray::get(Context, Elts);
2241       } else if (EltTy->isIntegerTy(64)) {
2242         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2243         if (isa<VectorType>(CurTy))
2244           V = ConstantDataVector::get(Context, Elts);
2245         else
2246           V = ConstantDataArray::get(Context, Elts);
2247       } else if (EltTy->isHalfTy()) {
2248         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2249         if (isa<VectorType>(CurTy))
2250           V = ConstantDataVector::getFP(Context, Elts);
2251         else
2252           V = ConstantDataArray::getFP(Context, Elts);
2253       } else if (EltTy->isFloatTy()) {
2254         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2255         if (isa<VectorType>(CurTy))
2256           V = ConstantDataVector::getFP(Context, Elts);
2257         else
2258           V = ConstantDataArray::getFP(Context, Elts);
2259       } else if (EltTy->isDoubleTy()) {
2260         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2261         if (isa<VectorType>(CurTy))
2262           V = ConstantDataVector::getFP(Context, Elts);
2263         else
2264           V = ConstantDataArray::getFP(Context, Elts);
2265       } else {
2266         return error("Invalid type for value");
2267       }
2268       break;
2269     }
2270     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2271       if (Record.size() < 3)
2272         return error("Invalid record");
2273       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2274       if (Opc < 0) {
2275         V = UndefValue::get(CurTy);  // Unknown binop.
2276       } else {
2277         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2278         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2279         unsigned Flags = 0;
2280         if (Record.size() >= 4) {
2281           if (Opc == Instruction::Add ||
2282               Opc == Instruction::Sub ||
2283               Opc == Instruction::Mul ||
2284               Opc == Instruction::Shl) {
2285             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2286               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2287             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2288               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2289           } else if (Opc == Instruction::SDiv ||
2290                      Opc == Instruction::UDiv ||
2291                      Opc == Instruction::LShr ||
2292                      Opc == Instruction::AShr) {
2293             if (Record[3] & (1 << bitc::PEO_EXACT))
2294               Flags |= SDivOperator::IsExact;
2295           }
2296         }
2297         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2298       }
2299       break;
2300     }
2301     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2302       if (Record.size() < 3)
2303         return error("Invalid record");
2304       int Opc = getDecodedCastOpcode(Record[0]);
2305       if (Opc < 0) {
2306         V = UndefValue::get(CurTy);  // Unknown cast.
2307       } else {
2308         Type *OpTy = getTypeByID(Record[1]);
2309         if (!OpTy)
2310           return error("Invalid record");
2311         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2312         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2313         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2314       }
2315       break;
2316     }
2317     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2318     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2319     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2320                                                      // operands]
2321       unsigned OpNum = 0;
2322       Type *PointeeType = nullptr;
2323       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2324           Record.size() % 2)
2325         PointeeType = getTypeByID(Record[OpNum++]);
2326 
2327       bool InBounds = false;
2328       Optional<unsigned> InRangeIndex;
2329       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2330         uint64_t Op = Record[OpNum++];
2331         InBounds = Op & 1;
2332         InRangeIndex = Op >> 1;
2333       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2334         InBounds = true;
2335 
2336       SmallVector<Constant*, 16> Elts;
2337       while (OpNum != Record.size()) {
2338         Type *ElTy = getTypeByID(Record[OpNum++]);
2339         if (!ElTy)
2340           return error("Invalid record");
2341         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2342       }
2343 
2344       if (PointeeType &&
2345           PointeeType !=
2346               cast<PointerType>(Elts[0]->getType()->getScalarType())
2347                   ->getElementType())
2348         return error("Explicit gep operator type does not match pointee type "
2349                      "of pointer operand");
2350 
2351       if (Elts.size() < 1)
2352         return error("Invalid gep with no operands");
2353 
2354       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2355       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2356                                          InBounds, InRangeIndex);
2357       break;
2358     }
2359     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2360       if (Record.size() < 3)
2361         return error("Invalid record");
2362 
2363       Type *SelectorTy = Type::getInt1Ty(Context);
2364 
2365       // The selector might be an i1 or an <n x i1>
2366       // Get the type from the ValueList before getting a forward ref.
2367       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2368         if (Value *V = ValueList[Record[0]])
2369           if (SelectorTy != V->getType())
2370             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2371 
2372       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2373                                                               SelectorTy),
2374                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2375                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2376       break;
2377     }
2378     case bitc::CST_CODE_CE_EXTRACTELT
2379         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2380       if (Record.size() < 3)
2381         return error("Invalid record");
2382       VectorType *OpTy =
2383         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2384       if (!OpTy)
2385         return error("Invalid record");
2386       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2387       Constant *Op1 = nullptr;
2388       if (Record.size() == 4) {
2389         Type *IdxTy = getTypeByID(Record[2]);
2390         if (!IdxTy)
2391           return error("Invalid record");
2392         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2393       } else // TODO: Remove with llvm 4.0
2394         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2395       if (!Op1)
2396         return error("Invalid record");
2397       V = ConstantExpr::getExtractElement(Op0, Op1);
2398       break;
2399     }
2400     case bitc::CST_CODE_CE_INSERTELT
2401         : { // CE_INSERTELT: [opval, opval, opty, opval]
2402       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2403       if (Record.size() < 3 || !OpTy)
2404         return error("Invalid record");
2405       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2406       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2407                                                   OpTy->getElementType());
2408       Constant *Op2 = nullptr;
2409       if (Record.size() == 4) {
2410         Type *IdxTy = getTypeByID(Record[2]);
2411         if (!IdxTy)
2412           return error("Invalid record");
2413         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2414       } else // TODO: Remove with llvm 4.0
2415         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2416       if (!Op2)
2417         return error("Invalid record");
2418       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2419       break;
2420     }
2421     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2422       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2423       if (Record.size() < 3 || !OpTy)
2424         return error("Invalid record");
2425       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2426       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2427       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2428                                                  OpTy->getNumElements());
2429       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2430       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2431       break;
2432     }
2433     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2434       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2435       VectorType *OpTy =
2436         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2437       if (Record.size() < 4 || !RTy || !OpTy)
2438         return error("Invalid record");
2439       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2440       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2441       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2442                                                  RTy->getNumElements());
2443       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2444       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2445       break;
2446     }
2447     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2448       if (Record.size() < 4)
2449         return error("Invalid record");
2450       Type *OpTy = getTypeByID(Record[0]);
2451       if (!OpTy)
2452         return error("Invalid record");
2453       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2454       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2455 
2456       if (OpTy->isFPOrFPVectorTy())
2457         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2458       else
2459         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2460       break;
2461     }
2462     // This maintains backward compatibility, pre-asm dialect keywords.
2463     // FIXME: Remove with the 4.0 release.
2464     case bitc::CST_CODE_INLINEASM_OLD: {
2465       if (Record.size() < 2)
2466         return error("Invalid record");
2467       std::string AsmStr, ConstrStr;
2468       bool HasSideEffects = Record[0] & 1;
2469       bool IsAlignStack = Record[0] >> 1;
2470       unsigned AsmStrSize = Record[1];
2471       if (2+AsmStrSize >= Record.size())
2472         return error("Invalid record");
2473       unsigned ConstStrSize = Record[2+AsmStrSize];
2474       if (3+AsmStrSize+ConstStrSize > Record.size())
2475         return error("Invalid record");
2476 
2477       for (unsigned i = 0; i != AsmStrSize; ++i)
2478         AsmStr += (char)Record[2+i];
2479       for (unsigned i = 0; i != ConstStrSize; ++i)
2480         ConstrStr += (char)Record[3+AsmStrSize+i];
2481       PointerType *PTy = cast<PointerType>(CurTy);
2482       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2483                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2484       break;
2485     }
2486     // This version adds support for the asm dialect keywords (e.g.,
2487     // inteldialect).
2488     case bitc::CST_CODE_INLINEASM: {
2489       if (Record.size() < 2)
2490         return error("Invalid record");
2491       std::string AsmStr, ConstrStr;
2492       bool HasSideEffects = Record[0] & 1;
2493       bool IsAlignStack = (Record[0] >> 1) & 1;
2494       unsigned AsmDialect = Record[0] >> 2;
2495       unsigned AsmStrSize = Record[1];
2496       if (2+AsmStrSize >= Record.size())
2497         return error("Invalid record");
2498       unsigned ConstStrSize = Record[2+AsmStrSize];
2499       if (3+AsmStrSize+ConstStrSize > Record.size())
2500         return error("Invalid record");
2501 
2502       for (unsigned i = 0; i != AsmStrSize; ++i)
2503         AsmStr += (char)Record[2+i];
2504       for (unsigned i = 0; i != ConstStrSize; ++i)
2505         ConstrStr += (char)Record[3+AsmStrSize+i];
2506       PointerType *PTy = cast<PointerType>(CurTy);
2507       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2508                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2509                          InlineAsm::AsmDialect(AsmDialect));
2510       break;
2511     }
2512     case bitc::CST_CODE_BLOCKADDRESS:{
2513       if (Record.size() < 3)
2514         return error("Invalid record");
2515       Type *FnTy = getTypeByID(Record[0]);
2516       if (!FnTy)
2517         return error("Invalid record");
2518       Function *Fn =
2519         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2520       if (!Fn)
2521         return error("Invalid record");
2522 
2523       // If the function is already parsed we can insert the block address right
2524       // away.
2525       BasicBlock *BB;
2526       unsigned BBID = Record[2];
2527       if (!BBID)
2528         // Invalid reference to entry block.
2529         return error("Invalid ID");
2530       if (!Fn->empty()) {
2531         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2532         for (size_t I = 0, E = BBID; I != E; ++I) {
2533           if (BBI == BBE)
2534             return error("Invalid ID");
2535           ++BBI;
2536         }
2537         BB = &*BBI;
2538       } else {
2539         // Otherwise insert a placeholder and remember it so it can be inserted
2540         // when the function is parsed.
2541         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2542         if (FwdBBs.empty())
2543           BasicBlockFwdRefQueue.push_back(Fn);
2544         if (FwdBBs.size() < BBID + 1)
2545           FwdBBs.resize(BBID + 1);
2546         if (!FwdBBs[BBID])
2547           FwdBBs[BBID] = BasicBlock::Create(Context);
2548         BB = FwdBBs[BBID];
2549       }
2550       V = BlockAddress::get(Fn, BB);
2551       break;
2552     }
2553     }
2554 
2555     ValueList.assignValue(V, NextCstNo);
2556     ++NextCstNo;
2557   }
2558 }
2559 
2560 Error BitcodeReader::parseUseLists() {
2561   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2562     return error("Invalid record");
2563 
2564   // Read all the records.
2565   SmallVector<uint64_t, 64> Record;
2566 
2567   while (true) {
2568     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2569 
2570     switch (Entry.Kind) {
2571     case BitstreamEntry::SubBlock: // Handled for us already.
2572     case BitstreamEntry::Error:
2573       return error("Malformed block");
2574     case BitstreamEntry::EndBlock:
2575       return Error::success();
2576     case BitstreamEntry::Record:
2577       // The interesting case.
2578       break;
2579     }
2580 
2581     // Read a use list record.
2582     Record.clear();
2583     bool IsBB = false;
2584     switch (Stream.readRecord(Entry.ID, Record)) {
2585     default:  // Default behavior: unknown type.
2586       break;
2587     case bitc::USELIST_CODE_BB:
2588       IsBB = true;
2589       LLVM_FALLTHROUGH;
2590     case bitc::USELIST_CODE_DEFAULT: {
2591       unsigned RecordLength = Record.size();
2592       if (RecordLength < 3)
2593         // Records should have at least an ID and two indexes.
2594         return error("Invalid record");
2595       unsigned ID = Record.back();
2596       Record.pop_back();
2597 
2598       Value *V;
2599       if (IsBB) {
2600         assert(ID < FunctionBBs.size() && "Basic block not found");
2601         V = FunctionBBs[ID];
2602       } else
2603         V = ValueList[ID];
2604       unsigned NumUses = 0;
2605       SmallDenseMap<const Use *, unsigned, 16> Order;
2606       for (const Use &U : V->materialized_uses()) {
2607         if (++NumUses > Record.size())
2608           break;
2609         Order[&U] = Record[NumUses - 1];
2610       }
2611       if (Order.size() != Record.size() || NumUses > Record.size())
2612         // Mismatches can happen if the functions are being materialized lazily
2613         // (out-of-order), or a value has been upgraded.
2614         break;
2615 
2616       V->sortUseList([&](const Use &L, const Use &R) {
2617         return Order.lookup(&L) < Order.lookup(&R);
2618       });
2619       break;
2620     }
2621     }
2622   }
2623 }
2624 
2625 /// When we see the block for metadata, remember where it is and then skip it.
2626 /// This lets us lazily deserialize the metadata.
2627 Error BitcodeReader::rememberAndSkipMetadata() {
2628   // Save the current stream state.
2629   uint64_t CurBit = Stream.GetCurrentBitNo();
2630   DeferredMetadataInfo.push_back(CurBit);
2631 
2632   // Skip over the block for now.
2633   if (Stream.SkipBlock())
2634     return error("Invalid record");
2635   return Error::success();
2636 }
2637 
2638 Error BitcodeReader::materializeMetadata() {
2639   for (uint64_t BitPos : DeferredMetadataInfo) {
2640     // Move the bit stream to the saved position.
2641     Stream.JumpToBit(BitPos);
2642     if (Error Err = MDLoader->parseModuleMetadata())
2643       return Err;
2644   }
2645 
2646   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2647   // metadata.
2648   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2649     NamedMDNode *LinkerOpts =
2650         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2651     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2652       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2653   }
2654 
2655   DeferredMetadataInfo.clear();
2656   return Error::success();
2657 }
2658 
2659 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2660 
2661 /// When we see the block for a function body, remember where it is and then
2662 /// skip it.  This lets us lazily deserialize the functions.
2663 Error BitcodeReader::rememberAndSkipFunctionBody() {
2664   // Get the function we are talking about.
2665   if (FunctionsWithBodies.empty())
2666     return error("Insufficient function protos");
2667 
2668   Function *Fn = FunctionsWithBodies.back();
2669   FunctionsWithBodies.pop_back();
2670 
2671   // Save the current stream state.
2672   uint64_t CurBit = Stream.GetCurrentBitNo();
2673   assert(
2674       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2675       "Mismatch between VST and scanned function offsets");
2676   DeferredFunctionInfo[Fn] = CurBit;
2677 
2678   // Skip over the function block for now.
2679   if (Stream.SkipBlock())
2680     return error("Invalid record");
2681   return Error::success();
2682 }
2683 
2684 Error BitcodeReader::globalCleanup() {
2685   // Patch the initializers for globals and aliases up.
2686   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2687     return Err;
2688   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2689     return error("Malformed global initializer set");
2690 
2691   // Look for intrinsic functions which need to be upgraded at some point
2692   for (Function &F : *TheModule) {
2693     MDLoader->upgradeDebugIntrinsics(F);
2694     Function *NewFn;
2695     if (UpgradeIntrinsicFunction(&F, NewFn))
2696       UpgradedIntrinsics[&F] = NewFn;
2697     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2698       // Some types could be renamed during loading if several modules are
2699       // loaded in the same LLVMContext (LTO scenario). In this case we should
2700       // remangle intrinsics names as well.
2701       RemangledIntrinsics[&F] = Remangled.getValue();
2702   }
2703 
2704   // Look for global variables which need to be renamed.
2705   for (GlobalVariable &GV : TheModule->globals())
2706     UpgradeGlobalVariable(&GV);
2707 
2708   // Force deallocation of memory for these vectors to favor the client that
2709   // want lazy deserialization.
2710   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2711   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
2712       IndirectSymbolInits);
2713   return Error::success();
2714 }
2715 
2716 /// Support for lazy parsing of function bodies. This is required if we
2717 /// either have an old bitcode file without a VST forward declaration record,
2718 /// or if we have an anonymous function being materialized, since anonymous
2719 /// functions do not have a name and are therefore not in the VST.
2720 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2721   Stream.JumpToBit(NextUnreadBit);
2722 
2723   if (Stream.AtEndOfStream())
2724     return error("Could not find function in stream");
2725 
2726   if (!SeenFirstFunctionBody)
2727     return error("Trying to materialize functions before seeing function blocks");
2728 
2729   // An old bitcode file with the symbol table at the end would have
2730   // finished the parse greedily.
2731   assert(SeenValueSymbolTable);
2732 
2733   SmallVector<uint64_t, 64> Record;
2734 
2735   while (true) {
2736     BitstreamEntry Entry = Stream.advance();
2737     switch (Entry.Kind) {
2738     default:
2739       return error("Expect SubBlock");
2740     case BitstreamEntry::SubBlock:
2741       switch (Entry.ID) {
2742       default:
2743         return error("Expect function block");
2744       case bitc::FUNCTION_BLOCK_ID:
2745         if (Error Err = rememberAndSkipFunctionBody())
2746           return Err;
2747         NextUnreadBit = Stream.GetCurrentBitNo();
2748         return Error::success();
2749       }
2750     }
2751   }
2752 }
2753 
2754 bool BitcodeReaderBase::readBlockInfo() {
2755   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2756   if (!NewBlockInfo)
2757     return true;
2758   BlockInfo = std::move(*NewBlockInfo);
2759   return false;
2760 }
2761 
2762 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2763   // v1: [selection_kind, name]
2764   // v2: [strtab_offset, strtab_size, selection_kind]
2765   StringRef Name;
2766   std::tie(Name, Record) = readNameFromStrtab(Record);
2767 
2768   if (Record.size() < 1)
2769     return error("Invalid record");
2770   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2771   std::string OldFormatName;
2772   if (!UseStrtab) {
2773     if (Record.size() < 2)
2774       return error("Invalid record");
2775     unsigned ComdatNameSize = Record[1];
2776     OldFormatName.reserve(ComdatNameSize);
2777     for (unsigned i = 0; i != ComdatNameSize; ++i)
2778       OldFormatName += (char)Record[2 + i];
2779     Name = OldFormatName;
2780   }
2781   Comdat *C = TheModule->getOrInsertComdat(Name);
2782   C->setSelectionKind(SK);
2783   ComdatList.push_back(C);
2784   return Error::success();
2785 }
2786 
2787 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2788   // v1: [pointer type, isconst, initid, linkage, alignment, section,
2789   // visibility, threadlocal, unnamed_addr, externally_initialized,
2790   // dllstorageclass, comdat, attributes] (name in VST)
2791   // v2: [strtab_offset, strtab_size, v1]
2792   StringRef Name;
2793   std::tie(Name, Record) = readNameFromStrtab(Record);
2794 
2795   if (Record.size() < 6)
2796     return error("Invalid record");
2797   Type *Ty = getTypeByID(Record[0]);
2798   if (!Ty)
2799     return error("Invalid record");
2800   bool isConstant = Record[1] & 1;
2801   bool explicitType = Record[1] & 2;
2802   unsigned AddressSpace;
2803   if (explicitType) {
2804     AddressSpace = Record[1] >> 2;
2805   } else {
2806     if (!Ty->isPointerTy())
2807       return error("Invalid type for value");
2808     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2809     Ty = cast<PointerType>(Ty)->getElementType();
2810   }
2811 
2812   uint64_t RawLinkage = Record[3];
2813   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2814   unsigned Alignment;
2815   if (Error Err = parseAlignmentValue(Record[4], Alignment))
2816     return Err;
2817   std::string Section;
2818   if (Record[5]) {
2819     if (Record[5] - 1 >= SectionTable.size())
2820       return error("Invalid ID");
2821     Section = SectionTable[Record[5] - 1];
2822   }
2823   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2824   // Local linkage must have default visibility.
2825   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2826     // FIXME: Change to an error if non-default in 4.0.
2827     Visibility = getDecodedVisibility(Record[6]);
2828 
2829   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2830   if (Record.size() > 7)
2831     TLM = getDecodedThreadLocalMode(Record[7]);
2832 
2833   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2834   if (Record.size() > 8)
2835     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2836 
2837   bool ExternallyInitialized = false;
2838   if (Record.size() > 9)
2839     ExternallyInitialized = Record[9];
2840 
2841   GlobalVariable *NewGV =
2842       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2843                          nullptr, TLM, AddressSpace, ExternallyInitialized);
2844   NewGV->setAlignment(Alignment);
2845   if (!Section.empty())
2846     NewGV->setSection(Section);
2847   NewGV->setVisibility(Visibility);
2848   NewGV->setUnnamedAddr(UnnamedAddr);
2849 
2850   if (Record.size() > 10)
2851     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2852   else
2853     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2854 
2855   ValueList.push_back(NewGV);
2856 
2857   // Remember which value to use for the global initializer.
2858   if (unsigned InitID = Record[2])
2859     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2860 
2861   if (Record.size() > 11) {
2862     if (unsigned ComdatID = Record[11]) {
2863       if (ComdatID > ComdatList.size())
2864         return error("Invalid global variable comdat ID");
2865       NewGV->setComdat(ComdatList[ComdatID - 1]);
2866     }
2867   } else if (hasImplicitComdat(RawLinkage)) {
2868     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2869   }
2870 
2871   if (Record.size() > 12) {
2872     auto AS = getAttributes(Record[12]).getFnAttributes();
2873     NewGV->setAttributes(AS);
2874   }
2875   return Error::success();
2876 }
2877 
2878 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2879   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2880   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2881   // prefixdata] (name in VST)
2882   // v2: [strtab_offset, strtab_size, v1]
2883   StringRef Name;
2884   std::tie(Name, Record) = readNameFromStrtab(Record);
2885 
2886   if (Record.size() < 8)
2887     return error("Invalid record");
2888   Type *Ty = getTypeByID(Record[0]);
2889   if (!Ty)
2890     return error("Invalid record");
2891   if (auto *PTy = dyn_cast<PointerType>(Ty))
2892     Ty = PTy->getElementType();
2893   auto *FTy = dyn_cast<FunctionType>(Ty);
2894   if (!FTy)
2895     return error("Invalid type for value");
2896   auto CC = static_cast<CallingConv::ID>(Record[1]);
2897   if (CC & ~CallingConv::MaxID)
2898     return error("Invalid calling convention ID");
2899 
2900   Function *Func =
2901       Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule);
2902 
2903   Func->setCallingConv(CC);
2904   bool isProto = Record[2];
2905   uint64_t RawLinkage = Record[3];
2906   Func->setLinkage(getDecodedLinkage(RawLinkage));
2907   Func->setAttributes(getAttributes(Record[4]));
2908 
2909   unsigned Alignment;
2910   if (Error Err = parseAlignmentValue(Record[5], Alignment))
2911     return Err;
2912   Func->setAlignment(Alignment);
2913   if (Record[6]) {
2914     if (Record[6] - 1 >= SectionTable.size())
2915       return error("Invalid ID");
2916     Func->setSection(SectionTable[Record[6] - 1]);
2917   }
2918   // Local linkage must have default visibility.
2919   if (!Func->hasLocalLinkage())
2920     // FIXME: Change to an error if non-default in 4.0.
2921     Func->setVisibility(getDecodedVisibility(Record[7]));
2922   if (Record.size() > 8 && Record[8]) {
2923     if (Record[8] - 1 >= GCTable.size())
2924       return error("Invalid ID");
2925     Func->setGC(GCTable[Record[8] - 1]);
2926   }
2927   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2928   if (Record.size() > 9)
2929     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2930   Func->setUnnamedAddr(UnnamedAddr);
2931   if (Record.size() > 10 && Record[10] != 0)
2932     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
2933 
2934   if (Record.size() > 11)
2935     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
2936   else
2937     upgradeDLLImportExportLinkage(Func, RawLinkage);
2938 
2939   if (Record.size() > 12) {
2940     if (unsigned ComdatID = Record[12]) {
2941       if (ComdatID > ComdatList.size())
2942         return error("Invalid function comdat ID");
2943       Func->setComdat(ComdatList[ComdatID - 1]);
2944     }
2945   } else if (hasImplicitComdat(RawLinkage)) {
2946     Func->setComdat(reinterpret_cast<Comdat *>(1));
2947   }
2948 
2949   if (Record.size() > 13 && Record[13] != 0)
2950     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
2951 
2952   if (Record.size() > 14 && Record[14] != 0)
2953     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
2954 
2955   ValueList.push_back(Func);
2956 
2957   // If this is a function with a body, remember the prototype we are
2958   // creating now, so that we can match up the body with them later.
2959   if (!isProto) {
2960     Func->setIsMaterializable(true);
2961     FunctionsWithBodies.push_back(Func);
2962     DeferredFunctionInfo[Func] = 0;
2963   }
2964   return Error::success();
2965 }
2966 
2967 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
2968     unsigned BitCode, ArrayRef<uint64_t> Record) {
2969   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
2970   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
2971   // dllstorageclass] (name in VST)
2972   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
2973   // visibility, dllstorageclass] (name in VST)
2974   // v2: [strtab_offset, strtab_size, v1]
2975   StringRef Name;
2976   std::tie(Name, Record) = readNameFromStrtab(Record);
2977 
2978   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
2979   if (Record.size() < (3 + (unsigned)NewRecord))
2980     return error("Invalid record");
2981   unsigned OpNum = 0;
2982   Type *Ty = getTypeByID(Record[OpNum++]);
2983   if (!Ty)
2984     return error("Invalid record");
2985 
2986   unsigned AddrSpace;
2987   if (!NewRecord) {
2988     auto *PTy = dyn_cast<PointerType>(Ty);
2989     if (!PTy)
2990       return error("Invalid type for value");
2991     Ty = PTy->getElementType();
2992     AddrSpace = PTy->getAddressSpace();
2993   } else {
2994     AddrSpace = Record[OpNum++];
2995   }
2996 
2997   auto Val = Record[OpNum++];
2998   auto Linkage = Record[OpNum++];
2999   GlobalIndirectSymbol *NewGA;
3000   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3001       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3002     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3003                                 TheModule);
3004   else
3005     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3006                                 nullptr, TheModule);
3007   // Old bitcode files didn't have visibility field.
3008   // Local linkage must have default visibility.
3009   if (OpNum != Record.size()) {
3010     auto VisInd = OpNum++;
3011     if (!NewGA->hasLocalLinkage())
3012       // FIXME: Change to an error if non-default in 4.0.
3013       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3014   }
3015   if (OpNum != Record.size())
3016     NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3017   else
3018     upgradeDLLImportExportLinkage(NewGA, Linkage);
3019   if (OpNum != Record.size())
3020     NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3021   if (OpNum != Record.size())
3022     NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3023   ValueList.push_back(NewGA);
3024   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3025   return Error::success();
3026 }
3027 
3028 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3029                                  bool ShouldLazyLoadMetadata) {
3030   if (ResumeBit)
3031     Stream.JumpToBit(ResumeBit);
3032   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3033     return error("Invalid record");
3034 
3035   SmallVector<uint64_t, 64> Record;
3036 
3037   // Read all the records for this module.
3038   while (true) {
3039     BitstreamEntry Entry = Stream.advance();
3040 
3041     switch (Entry.Kind) {
3042     case BitstreamEntry::Error:
3043       return error("Malformed block");
3044     case BitstreamEntry::EndBlock:
3045       return globalCleanup();
3046 
3047     case BitstreamEntry::SubBlock:
3048       switch (Entry.ID) {
3049       default:  // Skip unknown content.
3050         if (Stream.SkipBlock())
3051           return error("Invalid record");
3052         break;
3053       case bitc::BLOCKINFO_BLOCK_ID:
3054         if (readBlockInfo())
3055           return error("Malformed block");
3056         break;
3057       case bitc::PARAMATTR_BLOCK_ID:
3058         if (Error Err = parseAttributeBlock())
3059           return Err;
3060         break;
3061       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3062         if (Error Err = parseAttributeGroupBlock())
3063           return Err;
3064         break;
3065       case bitc::TYPE_BLOCK_ID_NEW:
3066         if (Error Err = parseTypeTable())
3067           return Err;
3068         break;
3069       case bitc::VALUE_SYMTAB_BLOCK_ID:
3070         if (!SeenValueSymbolTable) {
3071           // Either this is an old form VST without function index and an
3072           // associated VST forward declaration record (which would have caused
3073           // the VST to be jumped to and parsed before it was encountered
3074           // normally in the stream), or there were no function blocks to
3075           // trigger an earlier parsing of the VST.
3076           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3077           if (Error Err = parseValueSymbolTable())
3078             return Err;
3079           SeenValueSymbolTable = true;
3080         } else {
3081           // We must have had a VST forward declaration record, which caused
3082           // the parser to jump to and parse the VST earlier.
3083           assert(VSTOffset > 0);
3084           if (Stream.SkipBlock())
3085             return error("Invalid record");
3086         }
3087         break;
3088       case bitc::CONSTANTS_BLOCK_ID:
3089         if (Error Err = parseConstants())
3090           return Err;
3091         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3092           return Err;
3093         break;
3094       case bitc::METADATA_BLOCK_ID:
3095         if (ShouldLazyLoadMetadata) {
3096           if (Error Err = rememberAndSkipMetadata())
3097             return Err;
3098           break;
3099         }
3100         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3101         if (Error Err = MDLoader->parseModuleMetadata())
3102           return Err;
3103         break;
3104       case bitc::METADATA_KIND_BLOCK_ID:
3105         if (Error Err = MDLoader->parseMetadataKinds())
3106           return Err;
3107         break;
3108       case bitc::FUNCTION_BLOCK_ID:
3109         // If this is the first function body we've seen, reverse the
3110         // FunctionsWithBodies list.
3111         if (!SeenFirstFunctionBody) {
3112           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3113           if (Error Err = globalCleanup())
3114             return Err;
3115           SeenFirstFunctionBody = true;
3116         }
3117 
3118         if (VSTOffset > 0) {
3119           // If we have a VST forward declaration record, make sure we
3120           // parse the VST now if we haven't already. It is needed to
3121           // set up the DeferredFunctionInfo vector for lazy reading.
3122           if (!SeenValueSymbolTable) {
3123             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3124               return Err;
3125             SeenValueSymbolTable = true;
3126             // Fall through so that we record the NextUnreadBit below.
3127             // This is necessary in case we have an anonymous function that
3128             // is later materialized. Since it will not have a VST entry we
3129             // need to fall back to the lazy parse to find its offset.
3130           } else {
3131             // If we have a VST forward declaration record, but have already
3132             // parsed the VST (just above, when the first function body was
3133             // encountered here), then we are resuming the parse after
3134             // materializing functions. The ResumeBit points to the
3135             // start of the last function block recorded in the
3136             // DeferredFunctionInfo map. Skip it.
3137             if (Stream.SkipBlock())
3138               return error("Invalid record");
3139             continue;
3140           }
3141         }
3142 
3143         // Support older bitcode files that did not have the function
3144         // index in the VST, nor a VST forward declaration record, as
3145         // well as anonymous functions that do not have VST entries.
3146         // Build the DeferredFunctionInfo vector on the fly.
3147         if (Error Err = rememberAndSkipFunctionBody())
3148           return Err;
3149 
3150         // Suspend parsing when we reach the function bodies. Subsequent
3151         // materialization calls will resume it when necessary. If the bitcode
3152         // file is old, the symbol table will be at the end instead and will not
3153         // have been seen yet. In this case, just finish the parse now.
3154         if (SeenValueSymbolTable) {
3155           NextUnreadBit = Stream.GetCurrentBitNo();
3156           // After the VST has been parsed, we need to make sure intrinsic name
3157           // are auto-upgraded.
3158           return globalCleanup();
3159         }
3160         break;
3161       case bitc::USELIST_BLOCK_ID:
3162         if (Error Err = parseUseLists())
3163           return Err;
3164         break;
3165       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3166         if (Error Err = parseOperandBundleTags())
3167           return Err;
3168         break;
3169       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3170         if (Error Err = parseSyncScopeNames())
3171           return Err;
3172         break;
3173       }
3174       continue;
3175 
3176     case BitstreamEntry::Record:
3177       // The interesting case.
3178       break;
3179     }
3180 
3181     // Read a record.
3182     auto BitCode = Stream.readRecord(Entry.ID, Record);
3183     switch (BitCode) {
3184     default: break;  // Default behavior, ignore unknown content.
3185     case bitc::MODULE_CODE_VERSION: {
3186       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3187       if (!VersionOrErr)
3188         return VersionOrErr.takeError();
3189       UseRelativeIDs = *VersionOrErr >= 1;
3190       break;
3191     }
3192     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3193       std::string S;
3194       if (convertToString(Record, 0, S))
3195         return error("Invalid record");
3196       TheModule->setTargetTriple(S);
3197       break;
3198     }
3199     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3200       std::string S;
3201       if (convertToString(Record, 0, S))
3202         return error("Invalid record");
3203       TheModule->setDataLayout(S);
3204       break;
3205     }
3206     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3207       std::string S;
3208       if (convertToString(Record, 0, S))
3209         return error("Invalid record");
3210       TheModule->setModuleInlineAsm(S);
3211       break;
3212     }
3213     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3214       // FIXME: Remove in 4.0.
3215       std::string S;
3216       if (convertToString(Record, 0, S))
3217         return error("Invalid record");
3218       // Ignore value.
3219       break;
3220     }
3221     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3222       std::string S;
3223       if (convertToString(Record, 0, S))
3224         return error("Invalid record");
3225       SectionTable.push_back(S);
3226       break;
3227     }
3228     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3229       std::string S;
3230       if (convertToString(Record, 0, S))
3231         return error("Invalid record");
3232       GCTable.push_back(S);
3233       break;
3234     }
3235     case bitc::MODULE_CODE_COMDAT: {
3236       if (Error Err = parseComdatRecord(Record))
3237         return Err;
3238       break;
3239     }
3240     case bitc::MODULE_CODE_GLOBALVAR: {
3241       if (Error Err = parseGlobalVarRecord(Record))
3242         return Err;
3243       break;
3244     }
3245     case bitc::MODULE_CODE_FUNCTION: {
3246       if (Error Err = parseFunctionRecord(Record))
3247         return Err;
3248       break;
3249     }
3250     case bitc::MODULE_CODE_IFUNC:
3251     case bitc::MODULE_CODE_ALIAS:
3252     case bitc::MODULE_CODE_ALIAS_OLD: {
3253       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3254         return Err;
3255       break;
3256     }
3257     /// MODULE_CODE_VSTOFFSET: [offset]
3258     case bitc::MODULE_CODE_VSTOFFSET:
3259       if (Record.size() < 1)
3260         return error("Invalid record");
3261       // Note that we subtract 1 here because the offset is relative to one word
3262       // before the start of the identification or module block, which was
3263       // historically always the start of the regular bitcode header.
3264       VSTOffset = Record[0] - 1;
3265       break;
3266     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3267     case bitc::MODULE_CODE_SOURCE_FILENAME:
3268       SmallString<128> ValueName;
3269       if (convertToString(Record, 0, ValueName))
3270         return error("Invalid record");
3271       TheModule->setSourceFileName(ValueName);
3272       break;
3273     }
3274     Record.clear();
3275   }
3276 }
3277 
3278 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3279                                       bool IsImporting) {
3280   TheModule = M;
3281   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3282                             [&](unsigned ID) { return getTypeByID(ID); });
3283   return parseModule(0, ShouldLazyLoadMetadata);
3284 }
3285 
3286 
3287 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3288   if (!isa<PointerType>(PtrType))
3289     return error("Load/Store operand is not a pointer type");
3290   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3291 
3292   if (ValType && ValType != ElemType)
3293     return error("Explicit load/store type does not match pointee "
3294                  "type of pointer operand");
3295   if (!PointerType::isLoadableOrStorableType(ElemType))
3296     return error("Cannot load/store from pointer");
3297   return Error::success();
3298 }
3299 
3300 /// Lazily parse the specified function body block.
3301 Error BitcodeReader::parseFunctionBody(Function *F) {
3302   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3303     return error("Invalid record");
3304 
3305   // Unexpected unresolved metadata when parsing function.
3306   if (MDLoader->hasFwdRefs())
3307     return error("Invalid function metadata: incoming forward references");
3308 
3309   InstructionList.clear();
3310   unsigned ModuleValueListSize = ValueList.size();
3311   unsigned ModuleMDLoaderSize = MDLoader->size();
3312 
3313   // Add all the function arguments to the value table.
3314   for (Argument &I : F->args())
3315     ValueList.push_back(&I);
3316 
3317   unsigned NextValueNo = ValueList.size();
3318   BasicBlock *CurBB = nullptr;
3319   unsigned CurBBNo = 0;
3320 
3321   DebugLoc LastLoc;
3322   auto getLastInstruction = [&]() -> Instruction * {
3323     if (CurBB && !CurBB->empty())
3324       return &CurBB->back();
3325     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3326              !FunctionBBs[CurBBNo - 1]->empty())
3327       return &FunctionBBs[CurBBNo - 1]->back();
3328     return nullptr;
3329   };
3330 
3331   std::vector<OperandBundleDef> OperandBundles;
3332 
3333   // Read all the records.
3334   SmallVector<uint64_t, 64> Record;
3335 
3336   while (true) {
3337     BitstreamEntry Entry = Stream.advance();
3338 
3339     switch (Entry.Kind) {
3340     case BitstreamEntry::Error:
3341       return error("Malformed block");
3342     case BitstreamEntry::EndBlock:
3343       goto OutOfRecordLoop;
3344 
3345     case BitstreamEntry::SubBlock:
3346       switch (Entry.ID) {
3347       default:  // Skip unknown content.
3348         if (Stream.SkipBlock())
3349           return error("Invalid record");
3350         break;
3351       case bitc::CONSTANTS_BLOCK_ID:
3352         if (Error Err = parseConstants())
3353           return Err;
3354         NextValueNo = ValueList.size();
3355         break;
3356       case bitc::VALUE_SYMTAB_BLOCK_ID:
3357         if (Error Err = parseValueSymbolTable())
3358           return Err;
3359         break;
3360       case bitc::METADATA_ATTACHMENT_ID:
3361         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3362           return Err;
3363         break;
3364       case bitc::METADATA_BLOCK_ID:
3365         assert(DeferredMetadataInfo.empty() &&
3366                "Must read all module-level metadata before function-level");
3367         if (Error Err = MDLoader->parseFunctionMetadata())
3368           return Err;
3369         break;
3370       case bitc::USELIST_BLOCK_ID:
3371         if (Error Err = parseUseLists())
3372           return Err;
3373         break;
3374       }
3375       continue;
3376 
3377     case BitstreamEntry::Record:
3378       // The interesting case.
3379       break;
3380     }
3381 
3382     // Read a record.
3383     Record.clear();
3384     Instruction *I = nullptr;
3385     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3386     switch (BitCode) {
3387     default: // Default behavior: reject
3388       return error("Invalid value");
3389     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3390       if (Record.size() < 1 || Record[0] == 0)
3391         return error("Invalid record");
3392       // Create all the basic blocks for the function.
3393       FunctionBBs.resize(Record[0]);
3394 
3395       // See if anything took the address of blocks in this function.
3396       auto BBFRI = BasicBlockFwdRefs.find(F);
3397       if (BBFRI == BasicBlockFwdRefs.end()) {
3398         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3399           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3400       } else {
3401         auto &BBRefs = BBFRI->second;
3402         // Check for invalid basic block references.
3403         if (BBRefs.size() > FunctionBBs.size())
3404           return error("Invalid ID");
3405         assert(!BBRefs.empty() && "Unexpected empty array");
3406         assert(!BBRefs.front() && "Invalid reference to entry block");
3407         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3408              ++I)
3409           if (I < RE && BBRefs[I]) {
3410             BBRefs[I]->insertInto(F);
3411             FunctionBBs[I] = BBRefs[I];
3412           } else {
3413             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3414           }
3415 
3416         // Erase from the table.
3417         BasicBlockFwdRefs.erase(BBFRI);
3418       }
3419 
3420       CurBB = FunctionBBs[0];
3421       continue;
3422     }
3423 
3424     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3425       // This record indicates that the last instruction is at the same
3426       // location as the previous instruction with a location.
3427       I = getLastInstruction();
3428 
3429       if (!I)
3430         return error("Invalid record");
3431       I->setDebugLoc(LastLoc);
3432       I = nullptr;
3433       continue;
3434 
3435     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3436       I = getLastInstruction();
3437       if (!I || Record.size() < 4)
3438         return error("Invalid record");
3439 
3440       unsigned Line = Record[0], Col = Record[1];
3441       unsigned ScopeID = Record[2], IAID = Record[3];
3442 
3443       MDNode *Scope = nullptr, *IA = nullptr;
3444       if (ScopeID) {
3445         Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1);
3446         if (!Scope)
3447           return error("Invalid record");
3448       }
3449       if (IAID) {
3450         IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1);
3451         if (!IA)
3452           return error("Invalid record");
3453       }
3454       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
3455       I->setDebugLoc(LastLoc);
3456       I = nullptr;
3457       continue;
3458     }
3459 
3460     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3461       unsigned OpNum = 0;
3462       Value *LHS, *RHS;
3463       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3464           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3465           OpNum+1 > Record.size())
3466         return error("Invalid record");
3467 
3468       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3469       if (Opc == -1)
3470         return error("Invalid record");
3471       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3472       InstructionList.push_back(I);
3473       if (OpNum < Record.size()) {
3474         if (Opc == Instruction::Add ||
3475             Opc == Instruction::Sub ||
3476             Opc == Instruction::Mul ||
3477             Opc == Instruction::Shl) {
3478           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3479             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3480           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3481             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3482         } else if (Opc == Instruction::SDiv ||
3483                    Opc == Instruction::UDiv ||
3484                    Opc == Instruction::LShr ||
3485                    Opc == Instruction::AShr) {
3486           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3487             cast<BinaryOperator>(I)->setIsExact(true);
3488         } else if (isa<FPMathOperator>(I)) {
3489           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3490           if (FMF.any())
3491             I->setFastMathFlags(FMF);
3492         }
3493 
3494       }
3495       break;
3496     }
3497     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3498       unsigned OpNum = 0;
3499       Value *Op;
3500       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3501           OpNum+2 != Record.size())
3502         return error("Invalid record");
3503 
3504       Type *ResTy = getTypeByID(Record[OpNum]);
3505       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3506       if (Opc == -1 || !ResTy)
3507         return error("Invalid record");
3508       Instruction *Temp = nullptr;
3509       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3510         if (Temp) {
3511           InstructionList.push_back(Temp);
3512           CurBB->getInstList().push_back(Temp);
3513         }
3514       } else {
3515         auto CastOp = (Instruction::CastOps)Opc;
3516         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3517           return error("Invalid cast");
3518         I = CastInst::Create(CastOp, Op, ResTy);
3519       }
3520       InstructionList.push_back(I);
3521       break;
3522     }
3523     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3524     case bitc::FUNC_CODE_INST_GEP_OLD:
3525     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3526       unsigned OpNum = 0;
3527 
3528       Type *Ty;
3529       bool InBounds;
3530 
3531       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3532         InBounds = Record[OpNum++];
3533         Ty = getTypeByID(Record[OpNum++]);
3534       } else {
3535         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3536         Ty = nullptr;
3537       }
3538 
3539       Value *BasePtr;
3540       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3541         return error("Invalid record");
3542 
3543       if (!Ty)
3544         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3545                  ->getElementType();
3546       else if (Ty !=
3547                cast<PointerType>(BasePtr->getType()->getScalarType())
3548                    ->getElementType())
3549         return error(
3550             "Explicit gep type does not match pointee type of pointer operand");
3551 
3552       SmallVector<Value*, 16> GEPIdx;
3553       while (OpNum != Record.size()) {
3554         Value *Op;
3555         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3556           return error("Invalid record");
3557         GEPIdx.push_back(Op);
3558       }
3559 
3560       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3561 
3562       InstructionList.push_back(I);
3563       if (InBounds)
3564         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3565       break;
3566     }
3567 
3568     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3569                                        // EXTRACTVAL: [opty, opval, n x indices]
3570       unsigned OpNum = 0;
3571       Value *Agg;
3572       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3573         return error("Invalid record");
3574 
3575       unsigned RecSize = Record.size();
3576       if (OpNum == RecSize)
3577         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3578 
3579       SmallVector<unsigned, 4> EXTRACTVALIdx;
3580       Type *CurTy = Agg->getType();
3581       for (; OpNum != RecSize; ++OpNum) {
3582         bool IsArray = CurTy->isArrayTy();
3583         bool IsStruct = CurTy->isStructTy();
3584         uint64_t Index = Record[OpNum];
3585 
3586         if (!IsStruct && !IsArray)
3587           return error("EXTRACTVAL: Invalid type");
3588         if ((unsigned)Index != Index)
3589           return error("Invalid value");
3590         if (IsStruct && Index >= CurTy->subtypes().size())
3591           return error("EXTRACTVAL: Invalid struct index");
3592         if (IsArray && Index >= CurTy->getArrayNumElements())
3593           return error("EXTRACTVAL: Invalid array index");
3594         EXTRACTVALIdx.push_back((unsigned)Index);
3595 
3596         if (IsStruct)
3597           CurTy = CurTy->subtypes()[Index];
3598         else
3599           CurTy = CurTy->subtypes()[0];
3600       }
3601 
3602       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3603       InstructionList.push_back(I);
3604       break;
3605     }
3606 
3607     case bitc::FUNC_CODE_INST_INSERTVAL: {
3608                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3609       unsigned OpNum = 0;
3610       Value *Agg;
3611       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3612         return error("Invalid record");
3613       Value *Val;
3614       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3615         return error("Invalid record");
3616 
3617       unsigned RecSize = Record.size();
3618       if (OpNum == RecSize)
3619         return error("INSERTVAL: Invalid instruction with 0 indices");
3620 
3621       SmallVector<unsigned, 4> INSERTVALIdx;
3622       Type *CurTy = Agg->getType();
3623       for (; OpNum != RecSize; ++OpNum) {
3624         bool IsArray = CurTy->isArrayTy();
3625         bool IsStruct = CurTy->isStructTy();
3626         uint64_t Index = Record[OpNum];
3627 
3628         if (!IsStruct && !IsArray)
3629           return error("INSERTVAL: Invalid type");
3630         if ((unsigned)Index != Index)
3631           return error("Invalid value");
3632         if (IsStruct && Index >= CurTy->subtypes().size())
3633           return error("INSERTVAL: Invalid struct index");
3634         if (IsArray && Index >= CurTy->getArrayNumElements())
3635           return error("INSERTVAL: Invalid array index");
3636 
3637         INSERTVALIdx.push_back((unsigned)Index);
3638         if (IsStruct)
3639           CurTy = CurTy->subtypes()[Index];
3640         else
3641           CurTy = CurTy->subtypes()[0];
3642       }
3643 
3644       if (CurTy != Val->getType())
3645         return error("Inserted value type doesn't match aggregate type");
3646 
3647       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3648       InstructionList.push_back(I);
3649       break;
3650     }
3651 
3652     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3653       // obsolete form of select
3654       // handles select i1 ... in old bitcode
3655       unsigned OpNum = 0;
3656       Value *TrueVal, *FalseVal, *Cond;
3657       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3658           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3659           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3660         return error("Invalid record");
3661 
3662       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3663       InstructionList.push_back(I);
3664       break;
3665     }
3666 
3667     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3668       // new form of select
3669       // handles select i1 or select [N x i1]
3670       unsigned OpNum = 0;
3671       Value *TrueVal, *FalseVal, *Cond;
3672       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3673           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3674           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3675         return error("Invalid record");
3676 
3677       // select condition can be either i1 or [N x i1]
3678       if (VectorType* vector_type =
3679           dyn_cast<VectorType>(Cond->getType())) {
3680         // expect <n x i1>
3681         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3682           return error("Invalid type for value");
3683       } else {
3684         // expect i1
3685         if (Cond->getType() != Type::getInt1Ty(Context))
3686           return error("Invalid type for value");
3687       }
3688 
3689       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3690       InstructionList.push_back(I);
3691       break;
3692     }
3693 
3694     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3695       unsigned OpNum = 0;
3696       Value *Vec, *Idx;
3697       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3698           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3699         return error("Invalid record");
3700       if (!Vec->getType()->isVectorTy())
3701         return error("Invalid type for value");
3702       I = ExtractElementInst::Create(Vec, Idx);
3703       InstructionList.push_back(I);
3704       break;
3705     }
3706 
3707     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3708       unsigned OpNum = 0;
3709       Value *Vec, *Elt, *Idx;
3710       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3711         return error("Invalid record");
3712       if (!Vec->getType()->isVectorTy())
3713         return error("Invalid type for value");
3714       if (popValue(Record, OpNum, NextValueNo,
3715                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3716           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3717         return error("Invalid record");
3718       I = InsertElementInst::Create(Vec, Elt, Idx);
3719       InstructionList.push_back(I);
3720       break;
3721     }
3722 
3723     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3724       unsigned OpNum = 0;
3725       Value *Vec1, *Vec2, *Mask;
3726       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3727           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3728         return error("Invalid record");
3729 
3730       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3731         return error("Invalid record");
3732       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3733         return error("Invalid type for value");
3734       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3735       InstructionList.push_back(I);
3736       break;
3737     }
3738 
3739     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3740       // Old form of ICmp/FCmp returning bool
3741       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3742       // both legal on vectors but had different behaviour.
3743     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3744       // FCmp/ICmp returning bool or vector of bool
3745 
3746       unsigned OpNum = 0;
3747       Value *LHS, *RHS;
3748       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3749           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3750         return error("Invalid record");
3751 
3752       unsigned PredVal = Record[OpNum];
3753       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3754       FastMathFlags FMF;
3755       if (IsFP && Record.size() > OpNum+1)
3756         FMF = getDecodedFastMathFlags(Record[++OpNum]);
3757 
3758       if (OpNum+1 != Record.size())
3759         return error("Invalid record");
3760 
3761       if (LHS->getType()->isFPOrFPVectorTy())
3762         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3763       else
3764         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3765 
3766       if (FMF.any())
3767         I->setFastMathFlags(FMF);
3768       InstructionList.push_back(I);
3769       break;
3770     }
3771 
3772     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3773       {
3774         unsigned Size = Record.size();
3775         if (Size == 0) {
3776           I = ReturnInst::Create(Context);
3777           InstructionList.push_back(I);
3778           break;
3779         }
3780 
3781         unsigned OpNum = 0;
3782         Value *Op = nullptr;
3783         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3784           return error("Invalid record");
3785         if (OpNum != Record.size())
3786           return error("Invalid record");
3787 
3788         I = ReturnInst::Create(Context, Op);
3789         InstructionList.push_back(I);
3790         break;
3791       }
3792     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3793       if (Record.size() != 1 && Record.size() != 3)
3794         return error("Invalid record");
3795       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3796       if (!TrueDest)
3797         return error("Invalid record");
3798 
3799       if (Record.size() == 1) {
3800         I = BranchInst::Create(TrueDest);
3801         InstructionList.push_back(I);
3802       }
3803       else {
3804         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3805         Value *Cond = getValue(Record, 2, NextValueNo,
3806                                Type::getInt1Ty(Context));
3807         if (!FalseDest || !Cond)
3808           return error("Invalid record");
3809         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3810         InstructionList.push_back(I);
3811       }
3812       break;
3813     }
3814     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3815       if (Record.size() != 1 && Record.size() != 2)
3816         return error("Invalid record");
3817       unsigned Idx = 0;
3818       Value *CleanupPad =
3819           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3820       if (!CleanupPad)
3821         return error("Invalid record");
3822       BasicBlock *UnwindDest = nullptr;
3823       if (Record.size() == 2) {
3824         UnwindDest = getBasicBlock(Record[Idx++]);
3825         if (!UnwindDest)
3826           return error("Invalid record");
3827       }
3828 
3829       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3830       InstructionList.push_back(I);
3831       break;
3832     }
3833     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3834       if (Record.size() != 2)
3835         return error("Invalid record");
3836       unsigned Idx = 0;
3837       Value *CatchPad =
3838           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3839       if (!CatchPad)
3840         return error("Invalid record");
3841       BasicBlock *BB = getBasicBlock(Record[Idx++]);
3842       if (!BB)
3843         return error("Invalid record");
3844 
3845       I = CatchReturnInst::Create(CatchPad, BB);
3846       InstructionList.push_back(I);
3847       break;
3848     }
3849     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3850       // We must have, at minimum, the outer scope and the number of arguments.
3851       if (Record.size() < 2)
3852         return error("Invalid record");
3853 
3854       unsigned Idx = 0;
3855 
3856       Value *ParentPad =
3857           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3858 
3859       unsigned NumHandlers = Record[Idx++];
3860 
3861       SmallVector<BasicBlock *, 2> Handlers;
3862       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3863         BasicBlock *BB = getBasicBlock(Record[Idx++]);
3864         if (!BB)
3865           return error("Invalid record");
3866         Handlers.push_back(BB);
3867       }
3868 
3869       BasicBlock *UnwindDest = nullptr;
3870       if (Idx + 1 == Record.size()) {
3871         UnwindDest = getBasicBlock(Record[Idx++]);
3872         if (!UnwindDest)
3873           return error("Invalid record");
3874       }
3875 
3876       if (Record.size() != Idx)
3877         return error("Invalid record");
3878 
3879       auto *CatchSwitch =
3880           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
3881       for (BasicBlock *Handler : Handlers)
3882         CatchSwitch->addHandler(Handler);
3883       I = CatchSwitch;
3884       InstructionList.push_back(I);
3885       break;
3886     }
3887     case bitc::FUNC_CODE_INST_CATCHPAD:
3888     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
3889       // We must have, at minimum, the outer scope and the number of arguments.
3890       if (Record.size() < 2)
3891         return error("Invalid record");
3892 
3893       unsigned Idx = 0;
3894 
3895       Value *ParentPad =
3896           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3897 
3898       unsigned NumArgOperands = Record[Idx++];
3899 
3900       SmallVector<Value *, 2> Args;
3901       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
3902         Value *Val;
3903         if (getValueTypePair(Record, Idx, NextValueNo, Val))
3904           return error("Invalid record");
3905         Args.push_back(Val);
3906       }
3907 
3908       if (Record.size() != Idx)
3909         return error("Invalid record");
3910 
3911       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
3912         I = CleanupPadInst::Create(ParentPad, Args);
3913       else
3914         I = CatchPadInst::Create(ParentPad, Args);
3915       InstructionList.push_back(I);
3916       break;
3917     }
3918     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3919       // Check magic
3920       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
3921         // "New" SwitchInst format with case ranges. The changes to write this
3922         // format were reverted but we still recognize bitcode that uses it.
3923         // Hopefully someday we will have support for case ranges and can use
3924         // this format again.
3925 
3926         Type *OpTy = getTypeByID(Record[1]);
3927         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
3928 
3929         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
3930         BasicBlock *Default = getBasicBlock(Record[3]);
3931         if (!OpTy || !Cond || !Default)
3932           return error("Invalid record");
3933 
3934         unsigned NumCases = Record[4];
3935 
3936         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3937         InstructionList.push_back(SI);
3938 
3939         unsigned CurIdx = 5;
3940         for (unsigned i = 0; i != NumCases; ++i) {
3941           SmallVector<ConstantInt*, 1> CaseVals;
3942           unsigned NumItems = Record[CurIdx++];
3943           for (unsigned ci = 0; ci != NumItems; ++ci) {
3944             bool isSingleNumber = Record[CurIdx++];
3945 
3946             APInt Low;
3947             unsigned ActiveWords = 1;
3948             if (ValueBitWidth > 64)
3949               ActiveWords = Record[CurIdx++];
3950             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3951                                 ValueBitWidth);
3952             CurIdx += ActiveWords;
3953 
3954             if (!isSingleNumber) {
3955               ActiveWords = 1;
3956               if (ValueBitWidth > 64)
3957                 ActiveWords = Record[CurIdx++];
3958               APInt High = readWideAPInt(
3959                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
3960               CurIdx += ActiveWords;
3961 
3962               // FIXME: It is not clear whether values in the range should be
3963               // compared as signed or unsigned values. The partially
3964               // implemented changes that used this format in the past used
3965               // unsigned comparisons.
3966               for ( ; Low.ule(High); ++Low)
3967                 CaseVals.push_back(ConstantInt::get(Context, Low));
3968             } else
3969               CaseVals.push_back(ConstantInt::get(Context, Low));
3970           }
3971           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
3972           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
3973                  cve = CaseVals.end(); cvi != cve; ++cvi)
3974             SI->addCase(*cvi, DestBB);
3975         }
3976         I = SI;
3977         break;
3978       }
3979 
3980       // Old SwitchInst format without case ranges.
3981 
3982       if (Record.size() < 3 || (Record.size() & 1) == 0)
3983         return error("Invalid record");
3984       Type *OpTy = getTypeByID(Record[0]);
3985       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
3986       BasicBlock *Default = getBasicBlock(Record[2]);
3987       if (!OpTy || !Cond || !Default)
3988         return error("Invalid record");
3989       unsigned NumCases = (Record.size()-3)/2;
3990       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3991       InstructionList.push_back(SI);
3992       for (unsigned i = 0, e = NumCases; i != e; ++i) {
3993         ConstantInt *CaseVal =
3994           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
3995         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
3996         if (!CaseVal || !DestBB) {
3997           delete SI;
3998           return error("Invalid record");
3999         }
4000         SI->addCase(CaseVal, DestBB);
4001       }
4002       I = SI;
4003       break;
4004     }
4005     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4006       if (Record.size() < 2)
4007         return error("Invalid record");
4008       Type *OpTy = getTypeByID(Record[0]);
4009       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4010       if (!OpTy || !Address)
4011         return error("Invalid record");
4012       unsigned NumDests = Record.size()-2;
4013       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4014       InstructionList.push_back(IBI);
4015       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4016         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4017           IBI->addDestination(DestBB);
4018         } else {
4019           delete IBI;
4020           return error("Invalid record");
4021         }
4022       }
4023       I = IBI;
4024       break;
4025     }
4026 
4027     case bitc::FUNC_CODE_INST_INVOKE: {
4028       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4029       if (Record.size() < 4)
4030         return error("Invalid record");
4031       unsigned OpNum = 0;
4032       AttributeList PAL = getAttributes(Record[OpNum++]);
4033       unsigned CCInfo = Record[OpNum++];
4034       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4035       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4036 
4037       FunctionType *FTy = nullptr;
4038       if (CCInfo >> 13 & 1 &&
4039           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4040         return error("Explicit invoke type is not a function type");
4041 
4042       Value *Callee;
4043       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4044         return error("Invalid record");
4045 
4046       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4047       if (!CalleeTy)
4048         return error("Callee is not a pointer");
4049       if (!FTy) {
4050         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4051         if (!FTy)
4052           return error("Callee is not of pointer to function type");
4053       } else if (CalleeTy->getElementType() != FTy)
4054         return error("Explicit invoke type does not match pointee type of "
4055                      "callee operand");
4056       if (Record.size() < FTy->getNumParams() + OpNum)
4057         return error("Insufficient operands to call");
4058 
4059       SmallVector<Value*, 16> Ops;
4060       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4061         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4062                                FTy->getParamType(i)));
4063         if (!Ops.back())
4064           return error("Invalid record");
4065       }
4066 
4067       if (!FTy->isVarArg()) {
4068         if (Record.size() != OpNum)
4069           return error("Invalid record");
4070       } else {
4071         // Read type/value pairs for varargs params.
4072         while (OpNum != Record.size()) {
4073           Value *Op;
4074           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4075             return error("Invalid record");
4076           Ops.push_back(Op);
4077         }
4078       }
4079 
4080       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4081       OperandBundles.clear();
4082       InstructionList.push_back(I);
4083       cast<InvokeInst>(I)->setCallingConv(
4084           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4085       cast<InvokeInst>(I)->setAttributes(PAL);
4086       break;
4087     }
4088     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4089       unsigned Idx = 0;
4090       Value *Val = nullptr;
4091       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4092         return error("Invalid record");
4093       I = ResumeInst::Create(Val);
4094       InstructionList.push_back(I);
4095       break;
4096     }
4097     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4098       I = new UnreachableInst(Context);
4099       InstructionList.push_back(I);
4100       break;
4101     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4102       if (Record.size() < 1 || ((Record.size()-1)&1))
4103         return error("Invalid record");
4104       Type *Ty = getTypeByID(Record[0]);
4105       if (!Ty)
4106         return error("Invalid record");
4107 
4108       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4109       InstructionList.push_back(PN);
4110 
4111       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4112         Value *V;
4113         // With the new function encoding, it is possible that operands have
4114         // negative IDs (for forward references).  Use a signed VBR
4115         // representation to keep the encoding small.
4116         if (UseRelativeIDs)
4117           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4118         else
4119           V = getValue(Record, 1+i, NextValueNo, Ty);
4120         BasicBlock *BB = getBasicBlock(Record[2+i]);
4121         if (!V || !BB)
4122           return error("Invalid record");
4123         PN->addIncoming(V, BB);
4124       }
4125       I = PN;
4126       break;
4127     }
4128 
4129     case bitc::FUNC_CODE_INST_LANDINGPAD:
4130     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4131       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4132       unsigned Idx = 0;
4133       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4134         if (Record.size() < 3)
4135           return error("Invalid record");
4136       } else {
4137         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4138         if (Record.size() < 4)
4139           return error("Invalid record");
4140       }
4141       Type *Ty = getTypeByID(Record[Idx++]);
4142       if (!Ty)
4143         return error("Invalid record");
4144       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4145         Value *PersFn = nullptr;
4146         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4147           return error("Invalid record");
4148 
4149         if (!F->hasPersonalityFn())
4150           F->setPersonalityFn(cast<Constant>(PersFn));
4151         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4152           return error("Personality function mismatch");
4153       }
4154 
4155       bool IsCleanup = !!Record[Idx++];
4156       unsigned NumClauses = Record[Idx++];
4157       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4158       LP->setCleanup(IsCleanup);
4159       for (unsigned J = 0; J != NumClauses; ++J) {
4160         LandingPadInst::ClauseType CT =
4161           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4162         Value *Val;
4163 
4164         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4165           delete LP;
4166           return error("Invalid record");
4167         }
4168 
4169         assert((CT != LandingPadInst::Catch ||
4170                 !isa<ArrayType>(Val->getType())) &&
4171                "Catch clause has a invalid type!");
4172         assert((CT != LandingPadInst::Filter ||
4173                 isa<ArrayType>(Val->getType())) &&
4174                "Filter clause has invalid type!");
4175         LP->addClause(cast<Constant>(Val));
4176       }
4177 
4178       I = LP;
4179       InstructionList.push_back(I);
4180       break;
4181     }
4182 
4183     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4184       if (Record.size() != 4)
4185         return error("Invalid record");
4186       uint64_t AlignRecord = Record[3];
4187       const uint64_t InAllocaMask = uint64_t(1) << 5;
4188       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4189       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4190       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4191                                 SwiftErrorMask;
4192       bool InAlloca = AlignRecord & InAllocaMask;
4193       bool SwiftError = AlignRecord & SwiftErrorMask;
4194       Type *Ty = getTypeByID(Record[0]);
4195       if ((AlignRecord & ExplicitTypeMask) == 0) {
4196         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4197         if (!PTy)
4198           return error("Old-style alloca with a non-pointer type");
4199         Ty = PTy->getElementType();
4200       }
4201       Type *OpTy = getTypeByID(Record[1]);
4202       Value *Size = getFnValueByID(Record[2], OpTy);
4203       unsigned Align;
4204       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4205         return Err;
4206       }
4207       if (!Ty || !Size)
4208         return error("Invalid record");
4209 
4210       // FIXME: Make this an optional field.
4211       const DataLayout &DL = TheModule->getDataLayout();
4212       unsigned AS = DL.getAllocaAddrSpace();
4213 
4214       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4215       AI->setUsedWithInAlloca(InAlloca);
4216       AI->setSwiftError(SwiftError);
4217       I = AI;
4218       InstructionList.push_back(I);
4219       break;
4220     }
4221     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4222       unsigned OpNum = 0;
4223       Value *Op;
4224       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4225           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4226         return error("Invalid record");
4227 
4228       Type *Ty = nullptr;
4229       if (OpNum + 3 == Record.size())
4230         Ty = getTypeByID(Record[OpNum++]);
4231       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4232         return Err;
4233       if (!Ty)
4234         Ty = cast<PointerType>(Op->getType())->getElementType();
4235 
4236       unsigned Align;
4237       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4238         return Err;
4239       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4240 
4241       InstructionList.push_back(I);
4242       break;
4243     }
4244     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4245        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4246       unsigned OpNum = 0;
4247       Value *Op;
4248       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4249           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4250         return error("Invalid record");
4251 
4252       Type *Ty = nullptr;
4253       if (OpNum + 5 == Record.size())
4254         Ty = getTypeByID(Record[OpNum++]);
4255       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4256         return Err;
4257       if (!Ty)
4258         Ty = cast<PointerType>(Op->getType())->getElementType();
4259 
4260       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4261       if (Ordering == AtomicOrdering::NotAtomic ||
4262           Ordering == AtomicOrdering::Release ||
4263           Ordering == AtomicOrdering::AcquireRelease)
4264         return error("Invalid record");
4265       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4266         return error("Invalid record");
4267       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4268 
4269       unsigned Align;
4270       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4271         return Err;
4272       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID);
4273 
4274       InstructionList.push_back(I);
4275       break;
4276     }
4277     case bitc::FUNC_CODE_INST_STORE:
4278     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4279       unsigned OpNum = 0;
4280       Value *Val, *Ptr;
4281       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4282           (BitCode == bitc::FUNC_CODE_INST_STORE
4283                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4284                : popValue(Record, OpNum, NextValueNo,
4285                           cast<PointerType>(Ptr->getType())->getElementType(),
4286                           Val)) ||
4287           OpNum + 2 != Record.size())
4288         return error("Invalid record");
4289 
4290       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4291         return Err;
4292       unsigned Align;
4293       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4294         return Err;
4295       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4296       InstructionList.push_back(I);
4297       break;
4298     }
4299     case bitc::FUNC_CODE_INST_STOREATOMIC:
4300     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4301       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4302       unsigned OpNum = 0;
4303       Value *Val, *Ptr;
4304       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4305           !isa<PointerType>(Ptr->getType()) ||
4306           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4307                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4308                : popValue(Record, OpNum, NextValueNo,
4309                           cast<PointerType>(Ptr->getType())->getElementType(),
4310                           Val)) ||
4311           OpNum + 4 != Record.size())
4312         return error("Invalid record");
4313 
4314       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4315         return Err;
4316       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4317       if (Ordering == AtomicOrdering::NotAtomic ||
4318           Ordering == AtomicOrdering::Acquire ||
4319           Ordering == AtomicOrdering::AcquireRelease)
4320         return error("Invalid record");
4321       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4322       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4323         return error("Invalid record");
4324 
4325       unsigned Align;
4326       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4327         return Err;
4328       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4329       InstructionList.push_back(I);
4330       break;
4331     }
4332     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4333     case bitc::FUNC_CODE_INST_CMPXCHG: {
4334       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4335       //          failureordering?, isweak?]
4336       unsigned OpNum = 0;
4337       Value *Ptr, *Cmp, *New;
4338       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4339           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4340                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4341                : popValue(Record, OpNum, NextValueNo,
4342                           cast<PointerType>(Ptr->getType())->getElementType(),
4343                           Cmp)) ||
4344           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4345           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4346         return error("Invalid record");
4347       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4348       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4349           SuccessOrdering == AtomicOrdering::Unordered)
4350         return error("Invalid record");
4351       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4352 
4353       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4354         return Err;
4355       AtomicOrdering FailureOrdering;
4356       if (Record.size() < 7)
4357         FailureOrdering =
4358             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4359       else
4360         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4361 
4362       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4363                                 SSID);
4364       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4365 
4366       if (Record.size() < 8) {
4367         // Before weak cmpxchgs existed, the instruction simply returned the
4368         // value loaded from memory, so bitcode files from that era will be
4369         // expecting the first component of a modern cmpxchg.
4370         CurBB->getInstList().push_back(I);
4371         I = ExtractValueInst::Create(I, 0);
4372       } else {
4373         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4374       }
4375 
4376       InstructionList.push_back(I);
4377       break;
4378     }
4379     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4380       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4381       unsigned OpNum = 0;
4382       Value *Ptr, *Val;
4383       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4384           !isa<PointerType>(Ptr->getType()) ||
4385           popValue(Record, OpNum, NextValueNo,
4386                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4387           OpNum+4 != Record.size())
4388         return error("Invalid record");
4389       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4390       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4391           Operation > AtomicRMWInst::LAST_BINOP)
4392         return error("Invalid record");
4393       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4394       if (Ordering == AtomicOrdering::NotAtomic ||
4395           Ordering == AtomicOrdering::Unordered)
4396         return error("Invalid record");
4397       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4398       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4399       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4400       InstructionList.push_back(I);
4401       break;
4402     }
4403     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4404       if (2 != Record.size())
4405         return error("Invalid record");
4406       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4407       if (Ordering == AtomicOrdering::NotAtomic ||
4408           Ordering == AtomicOrdering::Unordered ||
4409           Ordering == AtomicOrdering::Monotonic)
4410         return error("Invalid record");
4411       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4412       I = new FenceInst(Context, Ordering, SSID);
4413       InstructionList.push_back(I);
4414       break;
4415     }
4416     case bitc::FUNC_CODE_INST_CALL: {
4417       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4418       if (Record.size() < 3)
4419         return error("Invalid record");
4420 
4421       unsigned OpNum = 0;
4422       AttributeList PAL = getAttributes(Record[OpNum++]);
4423       unsigned CCInfo = Record[OpNum++];
4424 
4425       FastMathFlags FMF;
4426       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4427         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4428         if (!FMF.any())
4429           return error("Fast math flags indicator set for call with no FMF");
4430       }
4431 
4432       FunctionType *FTy = nullptr;
4433       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4434           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4435         return error("Explicit call type is not a function type");
4436 
4437       Value *Callee;
4438       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4439         return error("Invalid record");
4440 
4441       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4442       if (!OpTy)
4443         return error("Callee is not a pointer type");
4444       if (!FTy) {
4445         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4446         if (!FTy)
4447           return error("Callee is not of pointer to function type");
4448       } else if (OpTy->getElementType() != FTy)
4449         return error("Explicit call type does not match pointee type of "
4450                      "callee operand");
4451       if (Record.size() < FTy->getNumParams() + OpNum)
4452         return error("Insufficient operands to call");
4453 
4454       SmallVector<Value*, 16> Args;
4455       // Read the fixed params.
4456       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4457         if (FTy->getParamType(i)->isLabelTy())
4458           Args.push_back(getBasicBlock(Record[OpNum]));
4459         else
4460           Args.push_back(getValue(Record, OpNum, NextValueNo,
4461                                   FTy->getParamType(i)));
4462         if (!Args.back())
4463           return error("Invalid record");
4464       }
4465 
4466       // Read type/value pairs for varargs params.
4467       if (!FTy->isVarArg()) {
4468         if (OpNum != Record.size())
4469           return error("Invalid record");
4470       } else {
4471         while (OpNum != Record.size()) {
4472           Value *Op;
4473           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4474             return error("Invalid record");
4475           Args.push_back(Op);
4476         }
4477       }
4478 
4479       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4480       OperandBundles.clear();
4481       InstructionList.push_back(I);
4482       cast<CallInst>(I)->setCallingConv(
4483           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4484       CallInst::TailCallKind TCK = CallInst::TCK_None;
4485       if (CCInfo & 1 << bitc::CALL_TAIL)
4486         TCK = CallInst::TCK_Tail;
4487       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4488         TCK = CallInst::TCK_MustTail;
4489       if (CCInfo & (1 << bitc::CALL_NOTAIL))
4490         TCK = CallInst::TCK_NoTail;
4491       cast<CallInst>(I)->setTailCallKind(TCK);
4492       cast<CallInst>(I)->setAttributes(PAL);
4493       if (FMF.any()) {
4494         if (!isa<FPMathOperator>(I))
4495           return error("Fast-math-flags specified for call without "
4496                        "floating-point scalar or vector return type");
4497         I->setFastMathFlags(FMF);
4498       }
4499       break;
4500     }
4501     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4502       if (Record.size() < 3)
4503         return error("Invalid record");
4504       Type *OpTy = getTypeByID(Record[0]);
4505       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4506       Type *ResTy = getTypeByID(Record[2]);
4507       if (!OpTy || !Op || !ResTy)
4508         return error("Invalid record");
4509       I = new VAArgInst(Op, ResTy);
4510       InstructionList.push_back(I);
4511       break;
4512     }
4513 
4514     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4515       // A call or an invoke can be optionally prefixed with some variable
4516       // number of operand bundle blocks.  These blocks are read into
4517       // OperandBundles and consumed at the next call or invoke instruction.
4518 
4519       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4520         return error("Invalid record");
4521 
4522       std::vector<Value *> Inputs;
4523 
4524       unsigned OpNum = 1;
4525       while (OpNum != Record.size()) {
4526         Value *Op;
4527         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4528           return error("Invalid record");
4529         Inputs.push_back(Op);
4530       }
4531 
4532       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4533       continue;
4534     }
4535     }
4536 
4537     // Add instruction to end of current BB.  If there is no current BB, reject
4538     // this file.
4539     if (!CurBB) {
4540       I->deleteValue();
4541       return error("Invalid instruction with no BB");
4542     }
4543     if (!OperandBundles.empty()) {
4544       I->deleteValue();
4545       return error("Operand bundles found with no consumer");
4546     }
4547     CurBB->getInstList().push_back(I);
4548 
4549     // If this was a terminator instruction, move to the next block.
4550     if (isa<TerminatorInst>(I)) {
4551       ++CurBBNo;
4552       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4553     }
4554 
4555     // Non-void values get registered in the value table for future use.
4556     if (I && !I->getType()->isVoidTy())
4557       ValueList.assignValue(I, NextValueNo++);
4558   }
4559 
4560 OutOfRecordLoop:
4561 
4562   if (!OperandBundles.empty())
4563     return error("Operand bundles found with no consumer");
4564 
4565   // Check the function list for unresolved values.
4566   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4567     if (!A->getParent()) {
4568       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4569       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4570         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4571           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4572           delete A;
4573         }
4574       }
4575       return error("Never resolved value found in function");
4576     }
4577   }
4578 
4579   // Unexpected unresolved metadata about to be dropped.
4580   if (MDLoader->hasFwdRefs())
4581     return error("Invalid function metadata: outgoing forward refs");
4582 
4583   // Trim the value list down to the size it was before we parsed this function.
4584   ValueList.shrinkTo(ModuleValueListSize);
4585   MDLoader->shrinkTo(ModuleMDLoaderSize);
4586   std::vector<BasicBlock*>().swap(FunctionBBs);
4587   return Error::success();
4588 }
4589 
4590 /// Find the function body in the bitcode stream
4591 Error BitcodeReader::findFunctionInStream(
4592     Function *F,
4593     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4594   while (DeferredFunctionInfoIterator->second == 0) {
4595     // This is the fallback handling for the old format bitcode that
4596     // didn't contain the function index in the VST, or when we have
4597     // an anonymous function which would not have a VST entry.
4598     // Assert that we have one of those two cases.
4599     assert(VSTOffset == 0 || !F->hasName());
4600     // Parse the next body in the stream and set its position in the
4601     // DeferredFunctionInfo map.
4602     if (Error Err = rememberAndSkipFunctionBodies())
4603       return Err;
4604   }
4605   return Error::success();
4606 }
4607 
4608 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4609   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4610     return SyncScope::ID(Val);
4611   if (Val >= SSIDs.size())
4612     return SyncScope::System; // Map unknown synchronization scopes to system.
4613   return SSIDs[Val];
4614 }
4615 
4616 //===----------------------------------------------------------------------===//
4617 // GVMaterializer implementation
4618 //===----------------------------------------------------------------------===//
4619 
4620 Error BitcodeReader::materialize(GlobalValue *GV) {
4621   Function *F = dyn_cast<Function>(GV);
4622   // If it's not a function or is already material, ignore the request.
4623   if (!F || !F->isMaterializable())
4624     return Error::success();
4625 
4626   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4627   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4628   // If its position is recorded as 0, its body is somewhere in the stream
4629   // but we haven't seen it yet.
4630   if (DFII->second == 0)
4631     if (Error Err = findFunctionInStream(F, DFII))
4632       return Err;
4633 
4634   // Materialize metadata before parsing any function bodies.
4635   if (Error Err = materializeMetadata())
4636     return Err;
4637 
4638   // Move the bit stream to the saved position of the deferred function body.
4639   Stream.JumpToBit(DFII->second);
4640 
4641   if (Error Err = parseFunctionBody(F))
4642     return Err;
4643   F->setIsMaterializable(false);
4644 
4645   if (StripDebugInfo)
4646     stripDebugInfo(*F);
4647 
4648   // Upgrade any old intrinsic calls in the function.
4649   for (auto &I : UpgradedIntrinsics) {
4650     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4651          UI != UE;) {
4652       User *U = *UI;
4653       ++UI;
4654       if (CallInst *CI = dyn_cast<CallInst>(U))
4655         UpgradeIntrinsicCall(CI, I.second);
4656     }
4657   }
4658 
4659   // Update calls to the remangled intrinsics
4660   for (auto &I : RemangledIntrinsics)
4661     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4662          UI != UE;)
4663       // Don't expect any other users than call sites
4664       CallSite(*UI++).setCalledFunction(I.second);
4665 
4666   // Finish fn->subprogram upgrade for materialized functions.
4667   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4668     F->setSubprogram(SP);
4669 
4670   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4671   if (!MDLoader->isStrippingTBAA()) {
4672     for (auto &I : instructions(F)) {
4673       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4674       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4675         continue;
4676       MDLoader->setStripTBAA(true);
4677       stripTBAA(F->getParent());
4678     }
4679   }
4680 
4681   // Bring in any functions that this function forward-referenced via
4682   // blockaddresses.
4683   return materializeForwardReferencedFunctions();
4684 }
4685 
4686 Error BitcodeReader::materializeModule() {
4687   if (Error Err = materializeMetadata())
4688     return Err;
4689 
4690   // Promise to materialize all forward references.
4691   WillMaterializeAllForwardRefs = true;
4692 
4693   // Iterate over the module, deserializing any functions that are still on
4694   // disk.
4695   for (Function &F : *TheModule) {
4696     if (Error Err = materialize(&F))
4697       return Err;
4698   }
4699   // At this point, if there are any function bodies, parse the rest of
4700   // the bits in the module past the last function block we have recorded
4701   // through either lazy scanning or the VST.
4702   if (LastFunctionBlockBit || NextUnreadBit)
4703     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4704                                     ? LastFunctionBlockBit
4705                                     : NextUnreadBit))
4706       return Err;
4707 
4708   // Check that all block address forward references got resolved (as we
4709   // promised above).
4710   if (!BasicBlockFwdRefs.empty())
4711     return error("Never resolved function from blockaddress");
4712 
4713   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4714   // delete the old functions to clean up. We can't do this unless the entire
4715   // module is materialized because there could always be another function body
4716   // with calls to the old function.
4717   for (auto &I : UpgradedIntrinsics) {
4718     for (auto *U : I.first->users()) {
4719       if (CallInst *CI = dyn_cast<CallInst>(U))
4720         UpgradeIntrinsicCall(CI, I.second);
4721     }
4722     if (!I.first->use_empty())
4723       I.first->replaceAllUsesWith(I.second);
4724     I.first->eraseFromParent();
4725   }
4726   UpgradedIntrinsics.clear();
4727   // Do the same for remangled intrinsics
4728   for (auto &I : RemangledIntrinsics) {
4729     I.first->replaceAllUsesWith(I.second);
4730     I.first->eraseFromParent();
4731   }
4732   RemangledIntrinsics.clear();
4733 
4734   UpgradeDebugInfo(*TheModule);
4735 
4736   UpgradeModuleFlags(*TheModule);
4737   return Error::success();
4738 }
4739 
4740 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4741   return IdentifiedStructTypes;
4742 }
4743 
4744 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4745     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4746     StringRef ModulePath, unsigned ModuleId)
4747     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4748       ModulePath(ModulePath), ModuleId(ModuleId) {}
4749 
4750 ModuleSummaryIndex::ModuleInfo *
4751 ModuleSummaryIndexBitcodeReader::addThisModule() {
4752   return TheIndex.addModule(ModulePath, ModuleId);
4753 }
4754 
4755 std::pair<ValueInfo, GlobalValue::GUID>
4756 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4757   auto VGI = ValueIdToValueInfoMap[ValueId];
4758   assert(VGI.first);
4759   return VGI;
4760 }
4761 
4762 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4763     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4764     StringRef SourceFileName) {
4765   std::string GlobalId =
4766       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4767   auto ValueGUID = GlobalValue::getGUID(GlobalId);
4768   auto OriginalNameID = ValueGUID;
4769   if (GlobalValue::isLocalLinkage(Linkage))
4770     OriginalNameID = GlobalValue::getGUID(ValueName);
4771   if (PrintSummaryGUIDs)
4772     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4773            << ValueName << "\n";
4774   ValueIdToValueInfoMap[ValueID] =
4775       std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID);
4776 }
4777 
4778 // Specialized value symbol table parser used when reading module index
4779 // blocks where we don't actually create global values. The parsed information
4780 // is saved in the bitcode reader for use when later parsing summaries.
4781 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4782     uint64_t Offset,
4783     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4784   // With a strtab the VST is not required to parse the summary.
4785   if (UseStrtab)
4786     return Error::success();
4787 
4788   assert(Offset > 0 && "Expected non-zero VST offset");
4789   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4790 
4791   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
4792     return error("Invalid record");
4793 
4794   SmallVector<uint64_t, 64> Record;
4795 
4796   // Read all the records for this value table.
4797   SmallString<128> ValueName;
4798 
4799   while (true) {
4800     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4801 
4802     switch (Entry.Kind) {
4803     case BitstreamEntry::SubBlock: // Handled for us already.
4804     case BitstreamEntry::Error:
4805       return error("Malformed block");
4806     case BitstreamEntry::EndBlock:
4807       // Done parsing VST, jump back to wherever we came from.
4808       Stream.JumpToBit(CurrentBit);
4809       return Error::success();
4810     case BitstreamEntry::Record:
4811       // The interesting case.
4812       break;
4813     }
4814 
4815     // Read a record.
4816     Record.clear();
4817     switch (Stream.readRecord(Entry.ID, Record)) {
4818     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4819       break;
4820     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4821       if (convertToString(Record, 1, ValueName))
4822         return error("Invalid record");
4823       unsigned ValueID = Record[0];
4824       assert(!SourceFileName.empty());
4825       auto VLI = ValueIdToLinkageMap.find(ValueID);
4826       assert(VLI != ValueIdToLinkageMap.end() &&
4827              "No linkage found for VST entry?");
4828       auto Linkage = VLI->second;
4829       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4830       ValueName.clear();
4831       break;
4832     }
4833     case bitc::VST_CODE_FNENTRY: {
4834       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4835       if (convertToString(Record, 2, ValueName))
4836         return error("Invalid record");
4837       unsigned ValueID = Record[0];
4838       assert(!SourceFileName.empty());
4839       auto VLI = ValueIdToLinkageMap.find(ValueID);
4840       assert(VLI != ValueIdToLinkageMap.end() &&
4841              "No linkage found for VST entry?");
4842       auto Linkage = VLI->second;
4843       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4844       ValueName.clear();
4845       break;
4846     }
4847     case bitc::VST_CODE_COMBINED_ENTRY: {
4848       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
4849       unsigned ValueID = Record[0];
4850       GlobalValue::GUID RefGUID = Record[1];
4851       // The "original name", which is the second value of the pair will be
4852       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
4853       ValueIdToValueInfoMap[ValueID] =
4854           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
4855       break;
4856     }
4857     }
4858   }
4859 }
4860 
4861 // Parse just the blocks needed for building the index out of the module.
4862 // At the end of this routine the module Index is populated with a map
4863 // from global value id to GlobalValueSummary objects.
4864 Error ModuleSummaryIndexBitcodeReader::parseModule() {
4865   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4866     return error("Invalid record");
4867 
4868   SmallVector<uint64_t, 64> Record;
4869   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
4870   unsigned ValueId = 0;
4871 
4872   // Read the index for this module.
4873   while (true) {
4874     BitstreamEntry Entry = Stream.advance();
4875 
4876     switch (Entry.Kind) {
4877     case BitstreamEntry::Error:
4878       return error("Malformed block");
4879     case BitstreamEntry::EndBlock:
4880       return Error::success();
4881 
4882     case BitstreamEntry::SubBlock:
4883       switch (Entry.ID) {
4884       default: // Skip unknown content.
4885         if (Stream.SkipBlock())
4886           return error("Invalid record");
4887         break;
4888       case bitc::BLOCKINFO_BLOCK_ID:
4889         // Need to parse these to get abbrev ids (e.g. for VST)
4890         if (readBlockInfo())
4891           return error("Malformed block");
4892         break;
4893       case bitc::VALUE_SYMTAB_BLOCK_ID:
4894         // Should have been parsed earlier via VSTOffset, unless there
4895         // is no summary section.
4896         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
4897                 !SeenGlobalValSummary) &&
4898                "Expected early VST parse via VSTOffset record");
4899         if (Stream.SkipBlock())
4900           return error("Invalid record");
4901         break;
4902       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
4903       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
4904         assert(!SeenValueSymbolTable &&
4905                "Already read VST when parsing summary block?");
4906         // We might not have a VST if there were no values in the
4907         // summary. An empty summary block generated when we are
4908         // performing ThinLTO compiles so we don't later invoke
4909         // the regular LTO process on them.
4910         if (VSTOffset > 0) {
4911           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
4912             return Err;
4913           SeenValueSymbolTable = true;
4914         }
4915         SeenGlobalValSummary = true;
4916         if (Error Err = parseEntireSummary(Entry.ID))
4917           return Err;
4918         break;
4919       case bitc::MODULE_STRTAB_BLOCK_ID:
4920         if (Error Err = parseModuleStringTable())
4921           return Err;
4922         break;
4923       }
4924       continue;
4925 
4926     case BitstreamEntry::Record: {
4927         Record.clear();
4928         auto BitCode = Stream.readRecord(Entry.ID, Record);
4929         switch (BitCode) {
4930         default:
4931           break; // Default behavior, ignore unknown content.
4932         case bitc::MODULE_CODE_VERSION: {
4933           if (Error Err = parseVersionRecord(Record).takeError())
4934             return Err;
4935           break;
4936         }
4937         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4938         case bitc::MODULE_CODE_SOURCE_FILENAME: {
4939           SmallString<128> ValueName;
4940           if (convertToString(Record, 0, ValueName))
4941             return error("Invalid record");
4942           SourceFileName = ValueName.c_str();
4943           break;
4944         }
4945         /// MODULE_CODE_HASH: [5*i32]
4946         case bitc::MODULE_CODE_HASH: {
4947           if (Record.size() != 5)
4948             return error("Invalid hash length " + Twine(Record.size()).str());
4949           auto &Hash = addThisModule()->second.second;
4950           int Pos = 0;
4951           for (auto &Val : Record) {
4952             assert(!(Val >> 32) && "Unexpected high bits set");
4953             Hash[Pos++] = Val;
4954           }
4955           break;
4956         }
4957         /// MODULE_CODE_VSTOFFSET: [offset]
4958         case bitc::MODULE_CODE_VSTOFFSET:
4959           if (Record.size() < 1)
4960             return error("Invalid record");
4961           // Note that we subtract 1 here because the offset is relative to one
4962           // word before the start of the identification or module block, which
4963           // was historically always the start of the regular bitcode header.
4964           VSTOffset = Record[0] - 1;
4965           break;
4966         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
4967         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
4968         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
4969         // v2: [strtab offset, strtab size, v1]
4970         case bitc::MODULE_CODE_GLOBALVAR:
4971         case bitc::MODULE_CODE_FUNCTION:
4972         case bitc::MODULE_CODE_ALIAS: {
4973           StringRef Name;
4974           ArrayRef<uint64_t> GVRecord;
4975           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
4976           if (GVRecord.size() <= 3)
4977             return error("Invalid record");
4978           uint64_t RawLinkage = GVRecord[3];
4979           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4980           if (!UseStrtab) {
4981             ValueIdToLinkageMap[ValueId++] = Linkage;
4982             break;
4983           }
4984 
4985           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
4986           break;
4987         }
4988         }
4989       }
4990       continue;
4991     }
4992   }
4993 }
4994 
4995 std::vector<ValueInfo>
4996 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
4997   std::vector<ValueInfo> Ret;
4998   Ret.reserve(Record.size());
4999   for (uint64_t RefValueId : Record)
5000     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5001   return Ret;
5002 }
5003 
5004 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList(
5005     ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) {
5006   std::vector<FunctionSummary::EdgeTy> Ret;
5007   Ret.reserve(Record.size());
5008   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5009     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5010     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5011     if (IsOldProfileFormat) {
5012       I += 1; // Skip old callsitecount field
5013       if (HasProfile)
5014         I += 1; // Skip old profilecount field
5015     } else if (HasProfile)
5016       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5017     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}});
5018   }
5019   return Ret;
5020 }
5021 
5022 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5023 // objects in the index.
5024 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5025   if (Stream.EnterSubBlock(ID))
5026     return error("Invalid record");
5027   SmallVector<uint64_t, 64> Record;
5028 
5029   // Parse version
5030   {
5031     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5032     if (Entry.Kind != BitstreamEntry::Record)
5033       return error("Invalid Summary Block: record for version expected");
5034     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5035       return error("Invalid Summary Block: version expected");
5036   }
5037   const uint64_t Version = Record[0];
5038   const bool IsOldProfileFormat = Version == 1;
5039   if (Version < 1 || Version > 3)
5040     return error("Invalid summary version " + Twine(Version) +
5041                  ", 1, 2 or 3 expected");
5042   Record.clear();
5043 
5044   // Keep around the last seen summary to be used when we see an optional
5045   // "OriginalName" attachement.
5046   GlobalValueSummary *LastSeenSummary = nullptr;
5047   GlobalValue::GUID LastSeenGUID = 0;
5048 
5049   // We can expect to see any number of type ID information records before
5050   // each function summary records; these variables store the information
5051   // collected so far so that it can be used to create the summary object.
5052   std::vector<GlobalValue::GUID> PendingTypeTests;
5053   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5054       PendingTypeCheckedLoadVCalls;
5055   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5056       PendingTypeCheckedLoadConstVCalls;
5057 
5058   while (true) {
5059     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5060 
5061     switch (Entry.Kind) {
5062     case BitstreamEntry::SubBlock: // Handled for us already.
5063     case BitstreamEntry::Error:
5064       return error("Malformed block");
5065     case BitstreamEntry::EndBlock:
5066       return Error::success();
5067     case BitstreamEntry::Record:
5068       // The interesting case.
5069       break;
5070     }
5071 
5072     // Read a record. The record format depends on whether this
5073     // is a per-module index or a combined index file. In the per-module
5074     // case the records contain the associated value's ID for correlation
5075     // with VST entries. In the combined index the correlation is done
5076     // via the bitcode offset of the summary records (which were saved
5077     // in the combined index VST entries). The records also contain
5078     // information used for ThinLTO renaming and importing.
5079     Record.clear();
5080     auto BitCode = Stream.readRecord(Entry.ID, Record);
5081     switch (BitCode) {
5082     default: // Default behavior: ignore.
5083       break;
5084     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5085       uint64_t ValueID = Record[0];
5086       GlobalValue::GUID RefGUID = Record[1];
5087       ValueIdToValueInfoMap[ValueID] =
5088           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5089       break;
5090     }
5091     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
5092     //                n x (valueid)]
5093     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
5094     //                        numrefs x valueid,
5095     //                        n x (valueid, hotness)]
5096     case bitc::FS_PERMODULE:
5097     case bitc::FS_PERMODULE_PROFILE: {
5098       unsigned ValueID = Record[0];
5099       uint64_t RawFlags = Record[1];
5100       unsigned InstCount = Record[2];
5101       unsigned NumRefs = Record[3];
5102       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5103       // The module path string ref set in the summary must be owned by the
5104       // index's module string table. Since we don't have a module path
5105       // string table section in the per-module index, we create a single
5106       // module path string table entry with an empty (0) ID to take
5107       // ownership.
5108       static int RefListStartIndex = 4;
5109       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5110       assert(Record.size() >= RefListStartIndex + NumRefs &&
5111              "Record size inconsistent with number of references");
5112       std::vector<ValueInfo> Refs = makeRefList(
5113           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5114       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5115       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5116           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5117           IsOldProfileFormat, HasProfile);
5118       auto FS = llvm::make_unique<FunctionSummary>(
5119           Flags, InstCount, std::move(Refs), std::move(Calls),
5120           std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls),
5121           std::move(PendingTypeCheckedLoadVCalls),
5122           std::move(PendingTypeTestAssumeConstVCalls),
5123           std::move(PendingTypeCheckedLoadConstVCalls));
5124       PendingTypeTests.clear();
5125       PendingTypeTestAssumeVCalls.clear();
5126       PendingTypeCheckedLoadVCalls.clear();
5127       PendingTypeTestAssumeConstVCalls.clear();
5128       PendingTypeCheckedLoadConstVCalls.clear();
5129       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5130       FS->setModulePath(addThisModule()->first());
5131       FS->setOriginalName(VIAndOriginalGUID.second);
5132       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5133       break;
5134     }
5135     // FS_ALIAS: [valueid, flags, valueid]
5136     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5137     // they expect all aliasee summaries to be available.
5138     case bitc::FS_ALIAS: {
5139       unsigned ValueID = Record[0];
5140       uint64_t RawFlags = Record[1];
5141       unsigned AliaseeID = Record[2];
5142       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5143       auto AS =
5144           llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{});
5145       // The module path string ref set in the summary must be owned by the
5146       // index's module string table. Since we don't have a module path
5147       // string table section in the per-module index, we create a single
5148       // module path string table entry with an empty (0) ID to take
5149       // ownership.
5150       AS->setModulePath(addThisModule()->first());
5151 
5152       GlobalValue::GUID AliaseeGUID =
5153           getValueInfoFromValueId(AliaseeID).first.getGUID();
5154       auto AliaseeInModule =
5155           TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5156       if (!AliaseeInModule)
5157         return error("Alias expects aliasee summary to be parsed");
5158       AS->setAliasee(AliaseeInModule);
5159 
5160       auto GUID = getValueInfoFromValueId(ValueID);
5161       AS->setOriginalName(GUID.second);
5162       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5163       break;
5164     }
5165     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
5166     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5167       unsigned ValueID = Record[0];
5168       uint64_t RawFlags = Record[1];
5169       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5170       std::vector<ValueInfo> Refs =
5171           makeRefList(ArrayRef<uint64_t>(Record).slice(2));
5172       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5173       FS->setModulePath(addThisModule()->first());
5174       auto GUID = getValueInfoFromValueId(ValueID);
5175       FS->setOriginalName(GUID.second);
5176       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5177       break;
5178     }
5179     // FS_COMBINED: [valueid, modid, flags, instcount, numrefs,
5180     //               numrefs x valueid, n x (valueid)]
5181     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs,
5182     //                       numrefs x valueid, n x (valueid, hotness)]
5183     case bitc::FS_COMBINED:
5184     case bitc::FS_COMBINED_PROFILE: {
5185       unsigned ValueID = Record[0];
5186       uint64_t ModuleId = Record[1];
5187       uint64_t RawFlags = Record[2];
5188       unsigned InstCount = Record[3];
5189       unsigned NumRefs = Record[4];
5190       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5191       static int RefListStartIndex = 5;
5192       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5193       assert(Record.size() >= RefListStartIndex + NumRefs &&
5194              "Record size inconsistent with number of references");
5195       std::vector<ValueInfo> Refs = makeRefList(
5196           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5197       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5198       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5199           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5200           IsOldProfileFormat, HasProfile);
5201       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5202       auto FS = llvm::make_unique<FunctionSummary>(
5203           Flags, InstCount, std::move(Refs), std::move(Edges),
5204           std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls),
5205           std::move(PendingTypeCheckedLoadVCalls),
5206           std::move(PendingTypeTestAssumeConstVCalls),
5207           std::move(PendingTypeCheckedLoadConstVCalls));
5208       PendingTypeTests.clear();
5209       PendingTypeTestAssumeVCalls.clear();
5210       PendingTypeCheckedLoadVCalls.clear();
5211       PendingTypeTestAssumeConstVCalls.clear();
5212       PendingTypeCheckedLoadConstVCalls.clear();
5213       LastSeenSummary = FS.get();
5214       LastSeenGUID = VI.getGUID();
5215       FS->setModulePath(ModuleIdMap[ModuleId]);
5216       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5217       break;
5218     }
5219     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5220     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5221     // they expect all aliasee summaries to be available.
5222     case bitc::FS_COMBINED_ALIAS: {
5223       unsigned ValueID = Record[0];
5224       uint64_t ModuleId = Record[1];
5225       uint64_t RawFlags = Record[2];
5226       unsigned AliaseeValueId = Record[3];
5227       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5228       auto AS = llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{});
5229       LastSeenSummary = AS.get();
5230       AS->setModulePath(ModuleIdMap[ModuleId]);
5231 
5232       auto AliaseeGUID =
5233           getValueInfoFromValueId(AliaseeValueId).first.getGUID();
5234       auto AliaseeInModule =
5235           TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
5236       if (!AliaseeInModule)
5237         return error("Alias expects aliasee summary to be parsed");
5238       AS->setAliasee(AliaseeInModule);
5239 
5240       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5241       LastSeenGUID = VI.getGUID();
5242       TheIndex.addGlobalValueSummary(VI, std::move(AS));
5243       break;
5244     }
5245     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5246     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5247       unsigned ValueID = Record[0];
5248       uint64_t ModuleId = Record[1];
5249       uint64_t RawFlags = Record[2];
5250       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5251       std::vector<ValueInfo> Refs =
5252           makeRefList(ArrayRef<uint64_t>(Record).slice(3));
5253       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5254       LastSeenSummary = FS.get();
5255       FS->setModulePath(ModuleIdMap[ModuleId]);
5256       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5257       LastSeenGUID = VI.getGUID();
5258       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5259       break;
5260     }
5261     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5262     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5263       uint64_t OriginalName = Record[0];
5264       if (!LastSeenSummary)
5265         return error("Name attachment that does not follow a combined record");
5266       LastSeenSummary->setOriginalName(OriginalName);
5267       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5268       // Reset the LastSeenSummary
5269       LastSeenSummary = nullptr;
5270       LastSeenGUID = 0;
5271       break;
5272     }
5273     case bitc::FS_TYPE_TESTS: {
5274       assert(PendingTypeTests.empty());
5275       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5276                               Record.end());
5277       break;
5278     }
5279     case bitc::FS_TYPE_TEST_ASSUME_VCALLS: {
5280       assert(PendingTypeTestAssumeVCalls.empty());
5281       for (unsigned I = 0; I != Record.size(); I += 2)
5282         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5283       break;
5284     }
5285     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: {
5286       assert(PendingTypeCheckedLoadVCalls.empty());
5287       for (unsigned I = 0; I != Record.size(); I += 2)
5288         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5289       break;
5290     }
5291     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: {
5292       PendingTypeTestAssumeConstVCalls.push_back(
5293           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5294       break;
5295     }
5296     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: {
5297       PendingTypeCheckedLoadConstVCalls.push_back(
5298           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5299       break;
5300     }
5301     case bitc::FS_CFI_FUNCTION_DEFS: {
5302       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5303       for (unsigned I = 0; I != Record.size(); I += 2)
5304         CfiFunctionDefs.insert(
5305             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5306       break;
5307     }
5308     case bitc::FS_CFI_FUNCTION_DECLS: {
5309       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5310       for (unsigned I = 0; I != Record.size(); I += 2)
5311         CfiFunctionDecls.insert(
5312             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5313       break;
5314     }
5315     }
5316   }
5317   llvm_unreachable("Exit infinite loop");
5318 }
5319 
5320 // Parse the  module string table block into the Index.
5321 // This populates the ModulePathStringTable map in the index.
5322 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5323   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5324     return error("Invalid record");
5325 
5326   SmallVector<uint64_t, 64> Record;
5327 
5328   SmallString<128> ModulePath;
5329   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5330 
5331   while (true) {
5332     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5333 
5334     switch (Entry.Kind) {
5335     case BitstreamEntry::SubBlock: // Handled for us already.
5336     case BitstreamEntry::Error:
5337       return error("Malformed block");
5338     case BitstreamEntry::EndBlock:
5339       return Error::success();
5340     case BitstreamEntry::Record:
5341       // The interesting case.
5342       break;
5343     }
5344 
5345     Record.clear();
5346     switch (Stream.readRecord(Entry.ID, Record)) {
5347     default: // Default behavior: ignore.
5348       break;
5349     case bitc::MST_CODE_ENTRY: {
5350       // MST_ENTRY: [modid, namechar x N]
5351       uint64_t ModuleId = Record[0];
5352 
5353       if (convertToString(Record, 1, ModulePath))
5354         return error("Invalid record");
5355 
5356       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5357       ModuleIdMap[ModuleId] = LastSeenModule->first();
5358 
5359       ModulePath.clear();
5360       break;
5361     }
5362     /// MST_CODE_HASH: [5*i32]
5363     case bitc::MST_CODE_HASH: {
5364       if (Record.size() != 5)
5365         return error("Invalid hash length " + Twine(Record.size()).str());
5366       if (!LastSeenModule)
5367         return error("Invalid hash that does not follow a module path");
5368       int Pos = 0;
5369       for (auto &Val : Record) {
5370         assert(!(Val >> 32) && "Unexpected high bits set");
5371         LastSeenModule->second.second[Pos++] = Val;
5372       }
5373       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5374       LastSeenModule = nullptr;
5375       break;
5376     }
5377     }
5378   }
5379   llvm_unreachable("Exit infinite loop");
5380 }
5381 
5382 namespace {
5383 
5384 // FIXME: This class is only here to support the transition to llvm::Error. It
5385 // will be removed once this transition is complete. Clients should prefer to
5386 // deal with the Error value directly, rather than converting to error_code.
5387 class BitcodeErrorCategoryType : public std::error_category {
5388   const char *name() const noexcept override {
5389     return "llvm.bitcode";
5390   }
5391   std::string message(int IE) const override {
5392     BitcodeError E = static_cast<BitcodeError>(IE);
5393     switch (E) {
5394     case BitcodeError::CorruptedBitcode:
5395       return "Corrupted bitcode";
5396     }
5397     llvm_unreachable("Unknown error type!");
5398   }
5399 };
5400 
5401 } // end anonymous namespace
5402 
5403 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5404 
5405 const std::error_category &llvm::BitcodeErrorCategory() {
5406   return *ErrorCategory;
5407 }
5408 
5409 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
5410                                             unsigned Block, unsigned RecordID) {
5411   if (Stream.EnterSubBlock(Block))
5412     return error("Invalid record");
5413 
5414   StringRef Strtab;
5415   while (1) {
5416     BitstreamEntry Entry = Stream.advance();
5417     switch (Entry.Kind) {
5418     case BitstreamEntry::EndBlock:
5419       return Strtab;
5420 
5421     case BitstreamEntry::Error:
5422       return error("Malformed block");
5423 
5424     case BitstreamEntry::SubBlock:
5425       if (Stream.SkipBlock())
5426         return error("Malformed block");
5427       break;
5428 
5429     case BitstreamEntry::Record:
5430       StringRef Blob;
5431       SmallVector<uint64_t, 1> Record;
5432       if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
5433         Strtab = Blob;
5434       break;
5435     }
5436   }
5437 }
5438 
5439 //===----------------------------------------------------------------------===//
5440 // External interface
5441 //===----------------------------------------------------------------------===//
5442 
5443 Expected<std::vector<BitcodeModule>>
5444 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5445   auto FOrErr = getBitcodeFileContents(Buffer);
5446   if (!FOrErr)
5447     return FOrErr.takeError();
5448   return std::move(FOrErr->Mods);
5449 }
5450 
5451 Expected<BitcodeFileContents>
5452 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
5453   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5454   if (!StreamOrErr)
5455     return StreamOrErr.takeError();
5456   BitstreamCursor &Stream = *StreamOrErr;
5457 
5458   BitcodeFileContents F;
5459   while (true) {
5460     uint64_t BCBegin = Stream.getCurrentByteNo();
5461 
5462     // We may be consuming bitcode from a client that leaves garbage at the end
5463     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5464     // the end that there cannot possibly be another module, stop looking.
5465     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5466       return F;
5467 
5468     BitstreamEntry Entry = Stream.advance();
5469     switch (Entry.Kind) {
5470     case BitstreamEntry::EndBlock:
5471     case BitstreamEntry::Error:
5472       return error("Malformed block");
5473 
5474     case BitstreamEntry::SubBlock: {
5475       uint64_t IdentificationBit = -1ull;
5476       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5477         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5478         if (Stream.SkipBlock())
5479           return error("Malformed block");
5480 
5481         Entry = Stream.advance();
5482         if (Entry.Kind != BitstreamEntry::SubBlock ||
5483             Entry.ID != bitc::MODULE_BLOCK_ID)
5484           return error("Malformed block");
5485       }
5486 
5487       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5488         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5489         if (Stream.SkipBlock())
5490           return error("Malformed block");
5491 
5492         F.Mods.push_back({Stream.getBitcodeBytes().slice(
5493                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
5494                           Buffer.getBufferIdentifier(), IdentificationBit,
5495                           ModuleBit});
5496         continue;
5497       }
5498 
5499       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
5500         Expected<StringRef> Strtab =
5501             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
5502         if (!Strtab)
5503           return Strtab.takeError();
5504         // This string table is used by every preceding bitcode module that does
5505         // not have its own string table. A bitcode file may have multiple
5506         // string tables if it was created by binary concatenation, for example
5507         // with "llvm-cat -b".
5508         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
5509           if (!I->Strtab.empty())
5510             break;
5511           I->Strtab = *Strtab;
5512         }
5513         // Similarly, the string table is used by every preceding symbol table;
5514         // normally there will be just one unless the bitcode file was created
5515         // by binary concatenation.
5516         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
5517           F.StrtabForSymtab = *Strtab;
5518         continue;
5519       }
5520 
5521       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
5522         Expected<StringRef> SymtabOrErr =
5523             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
5524         if (!SymtabOrErr)
5525           return SymtabOrErr.takeError();
5526 
5527         // We can expect the bitcode file to have multiple symbol tables if it
5528         // was created by binary concatenation. In that case we silently
5529         // ignore any subsequent symbol tables, which is fine because this is a
5530         // low level function. The client is expected to notice that the number
5531         // of modules in the symbol table does not match the number of modules
5532         // in the input file and regenerate the symbol table.
5533         if (F.Symtab.empty())
5534           F.Symtab = *SymtabOrErr;
5535         continue;
5536       }
5537 
5538       if (Stream.SkipBlock())
5539         return error("Malformed block");
5540       continue;
5541     }
5542     case BitstreamEntry::Record:
5543       Stream.skipRecord(Entry.ID);
5544       continue;
5545     }
5546   }
5547 }
5548 
5549 /// \brief Get a lazy one-at-time loading module from bitcode.
5550 ///
5551 /// This isn't always used in a lazy context.  In particular, it's also used by
5552 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
5553 /// in forward-referenced functions from block address references.
5554 ///
5555 /// \param[in] MaterializeAll Set to \c true if we should materialize
5556 /// everything.
5557 Expected<std::unique_ptr<Module>>
5558 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
5559                              bool ShouldLazyLoadMetadata, bool IsImporting) {
5560   BitstreamCursor Stream(Buffer);
5561 
5562   std::string ProducerIdentification;
5563   if (IdentificationBit != -1ull) {
5564     Stream.JumpToBit(IdentificationBit);
5565     Expected<std::string> ProducerIdentificationOrErr =
5566         readIdentificationBlock(Stream);
5567     if (!ProducerIdentificationOrErr)
5568       return ProducerIdentificationOrErr.takeError();
5569 
5570     ProducerIdentification = *ProducerIdentificationOrErr;
5571   }
5572 
5573   Stream.JumpToBit(ModuleBit);
5574   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
5575                               Context);
5576 
5577   std::unique_ptr<Module> M =
5578       llvm::make_unique<Module>(ModuleIdentifier, Context);
5579   M->setMaterializer(R);
5580 
5581   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5582   if (Error Err =
5583           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
5584     return std::move(Err);
5585 
5586   if (MaterializeAll) {
5587     // Read in the entire module, and destroy the BitcodeReader.
5588     if (Error Err = M->materializeAll())
5589       return std::move(Err);
5590   } else {
5591     // Resolve forward references from blockaddresses.
5592     if (Error Err = R->materializeForwardReferencedFunctions())
5593       return std::move(Err);
5594   }
5595   return std::move(M);
5596 }
5597 
5598 Expected<std::unique_ptr<Module>>
5599 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
5600                              bool IsImporting) {
5601   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
5602 }
5603 
5604 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
5605 // We don't use ModuleIdentifier here because the client may need to control the
5606 // module path used in the combined summary (e.g. when reading summaries for
5607 // regular LTO modules).
5608 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
5609                                  StringRef ModulePath, uint64_t ModuleId) {
5610   BitstreamCursor Stream(Buffer);
5611   Stream.JumpToBit(ModuleBit);
5612 
5613   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
5614                                     ModulePath, ModuleId);
5615   return R.parseModule();
5616 }
5617 
5618 // Parse the specified bitcode buffer, returning the function info index.
5619 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
5620   BitstreamCursor Stream(Buffer);
5621   Stream.JumpToBit(ModuleBit);
5622 
5623   auto Index = llvm::make_unique<ModuleSummaryIndex>();
5624   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
5625                                     ModuleIdentifier, 0);
5626 
5627   if (Error Err = R.parseModule())
5628     return std::move(Err);
5629 
5630   return std::move(Index);
5631 }
5632 
5633 // Check if the given bitcode buffer contains a global value summary block.
5634 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
5635   BitstreamCursor Stream(Buffer);
5636   Stream.JumpToBit(ModuleBit);
5637 
5638   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5639     return error("Invalid record");
5640 
5641   while (true) {
5642     BitstreamEntry Entry = Stream.advance();
5643 
5644     switch (Entry.Kind) {
5645     case BitstreamEntry::Error:
5646       return error("Malformed block");
5647     case BitstreamEntry::EndBlock:
5648       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false};
5649 
5650     case BitstreamEntry::SubBlock:
5651       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID)
5652         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true};
5653 
5654       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID)
5655         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true};
5656 
5657       // Ignore other sub-blocks.
5658       if (Stream.SkipBlock())
5659         return error("Malformed block");
5660       continue;
5661 
5662     case BitstreamEntry::Record:
5663       Stream.skipRecord(Entry.ID);
5664       continue;
5665     }
5666   }
5667 }
5668 
5669 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
5670   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
5671   if (!MsOrErr)
5672     return MsOrErr.takeError();
5673 
5674   if (MsOrErr->size() != 1)
5675     return error("Expected a single module");
5676 
5677   return (*MsOrErr)[0];
5678 }
5679 
5680 Expected<std::unique_ptr<Module>>
5681 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
5682                            bool ShouldLazyLoadMetadata, bool IsImporting) {
5683   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5684   if (!BM)
5685     return BM.takeError();
5686 
5687   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
5688 }
5689 
5690 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
5691     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
5692     bool ShouldLazyLoadMetadata, bool IsImporting) {
5693   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
5694                                      IsImporting);
5695   if (MOrErr)
5696     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
5697   return MOrErr;
5698 }
5699 
5700 Expected<std::unique_ptr<Module>>
5701 BitcodeModule::parseModule(LLVMContext &Context) {
5702   return getModuleImpl(Context, true, false, false);
5703   // TODO: Restore the use-lists to the in-memory state when the bitcode was
5704   // written.  We must defer until the Module has been fully materialized.
5705 }
5706 
5707 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
5708                                                          LLVMContext &Context) {
5709   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5710   if (!BM)
5711     return BM.takeError();
5712 
5713   return BM->parseModule(Context);
5714 }
5715 
5716 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
5717   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5718   if (!StreamOrErr)
5719     return StreamOrErr.takeError();
5720 
5721   return readTriple(*StreamOrErr);
5722 }
5723 
5724 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
5725   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5726   if (!StreamOrErr)
5727     return StreamOrErr.takeError();
5728 
5729   return hasObjCCategory(*StreamOrErr);
5730 }
5731 
5732 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
5733   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5734   if (!StreamOrErr)
5735     return StreamOrErr.takeError();
5736 
5737   return readIdentificationCode(*StreamOrErr);
5738 }
5739 
5740 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
5741                                    ModuleSummaryIndex &CombinedIndex,
5742                                    uint64_t ModuleId) {
5743   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5744   if (!BM)
5745     return BM.takeError();
5746 
5747   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
5748 }
5749 
5750 Expected<std::unique_ptr<ModuleSummaryIndex>>
5751 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
5752   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5753   if (!BM)
5754     return BM.takeError();
5755 
5756   return BM->getSummary();
5757 }
5758 
5759 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
5760   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5761   if (!BM)
5762     return BM.takeError();
5763 
5764   return BM->getLTOInfo();
5765 }
5766 
5767 Expected<std::unique_ptr<ModuleSummaryIndex>>
5768 llvm::getModuleSummaryIndexForFile(StringRef Path,
5769                                    bool IgnoreEmptyThinLTOIndexFile) {
5770   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
5771       MemoryBuffer::getFileOrSTDIN(Path);
5772   if (!FileOrErr)
5773     return errorCodeToError(FileOrErr.getError());
5774   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
5775     return nullptr;
5776   return getModuleSummaryIndex(**FileOrErr);
5777 }
5778