1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Bitcode/BitstreamReader.h" 26 #include "llvm/Bitcode/LLVMBitCodes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/DiagnosticPrinter.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GVMaterializer.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalIndirectSymbol.h" 47 #include "llvm/IR/GlobalObject.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstIterator.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/OperandTraits.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/TrackingMDRef.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/ValueHandle.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 /// Helper to read the header common to all bitcode files. 108 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 109 // Sniff for the signature. 110 if (!Stream.canSkipToPos(4) || 111 Stream.Read(8) != 'B' || 112 Stream.Read(8) != 'C' || 113 Stream.Read(4) != 0x0 || 114 Stream.Read(4) != 0xC || 115 Stream.Read(4) != 0xE || 116 Stream.Read(4) != 0xD) 117 return false; 118 return true; 119 } 120 121 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 122 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 123 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 124 125 if (Buffer.getBufferSize() & 3) 126 return error("Invalid bitcode signature"); 127 128 // If we have a wrapper header, parse it and ignore the non-bc file contents. 129 // The magic number is 0x0B17C0DE stored in little endian. 130 if (isBitcodeWrapper(BufPtr, BufEnd)) 131 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 132 return error("Invalid bitcode wrapper header"); 133 134 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 135 if (!hasValidBitcodeHeader(Stream)) 136 return error("Invalid bitcode signature"); 137 138 return std::move(Stream); 139 } 140 141 /// Convert a string from a record into an std::string, return true on failure. 142 template <typename StrTy> 143 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 144 StrTy &Result) { 145 if (Idx > Record.size()) 146 return true; 147 148 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 149 Result += (char)Record[i]; 150 return false; 151 } 152 153 // Strip all the TBAA attachment for the module. 154 void stripTBAA(Module *M) { 155 for (auto &F : *M) { 156 if (F.isMaterializable()) 157 continue; 158 for (auto &I : instructions(F)) 159 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 160 } 161 } 162 163 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 164 /// "epoch" encoded in the bitcode, and return the producer name if any. 165 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 166 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 167 return error("Invalid record"); 168 169 // Read all the records. 170 SmallVector<uint64_t, 64> Record; 171 172 std::string ProducerIdentification; 173 174 while (true) { 175 BitstreamEntry Entry = Stream.advance(); 176 177 switch (Entry.Kind) { 178 default: 179 case BitstreamEntry::Error: 180 return error("Malformed block"); 181 case BitstreamEntry::EndBlock: 182 return ProducerIdentification; 183 case BitstreamEntry::Record: 184 // The interesting case. 185 break; 186 } 187 188 // Read a record. 189 Record.clear(); 190 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 191 switch (BitCode) { 192 default: // Default behavior: reject 193 return error("Invalid value"); 194 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 195 convertToString(Record, 0, ProducerIdentification); 196 break; 197 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 198 unsigned epoch = (unsigned)Record[0]; 199 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 200 return error( 201 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 202 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 203 } 204 } 205 } 206 } 207 } 208 209 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 210 // We expect a number of well-defined blocks, though we don't necessarily 211 // need to understand them all. 212 while (true) { 213 if (Stream.AtEndOfStream()) 214 return ""; 215 216 BitstreamEntry Entry = Stream.advance(); 217 switch (Entry.Kind) { 218 case BitstreamEntry::EndBlock: 219 case BitstreamEntry::Error: 220 return error("Malformed block"); 221 222 case BitstreamEntry::SubBlock: 223 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 224 return readIdentificationBlock(Stream); 225 226 // Ignore other sub-blocks. 227 if (Stream.SkipBlock()) 228 return error("Malformed block"); 229 continue; 230 case BitstreamEntry::Record: 231 Stream.skipRecord(Entry.ID); 232 continue; 233 } 234 } 235 } 236 237 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 238 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 239 return error("Invalid record"); 240 241 SmallVector<uint64_t, 64> Record; 242 // Read all the records for this module. 243 244 while (true) { 245 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 246 247 switch (Entry.Kind) { 248 case BitstreamEntry::SubBlock: // Handled for us already. 249 case BitstreamEntry::Error: 250 return error("Malformed block"); 251 case BitstreamEntry::EndBlock: 252 return false; 253 case BitstreamEntry::Record: 254 // The interesting case. 255 break; 256 } 257 258 // Read a record. 259 switch (Stream.readRecord(Entry.ID, Record)) { 260 default: 261 break; // Default behavior, ignore unknown content. 262 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 263 std::string S; 264 if (convertToString(Record, 0, S)) 265 return error("Invalid record"); 266 // Check for the i386 and other (x86_64, ARM) conventions 267 if (S.find("__DATA,__objc_catlist") != std::string::npos || 268 S.find("__OBJC,__category") != std::string::npos) 269 return true; 270 break; 271 } 272 } 273 Record.clear(); 274 } 275 llvm_unreachable("Exit infinite loop"); 276 } 277 278 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 279 // We expect a number of well-defined blocks, though we don't necessarily 280 // need to understand them all. 281 while (true) { 282 BitstreamEntry Entry = Stream.advance(); 283 284 switch (Entry.Kind) { 285 case BitstreamEntry::Error: 286 return error("Malformed block"); 287 case BitstreamEntry::EndBlock: 288 return false; 289 290 case BitstreamEntry::SubBlock: 291 if (Entry.ID == bitc::MODULE_BLOCK_ID) 292 return hasObjCCategoryInModule(Stream); 293 294 // Ignore other sub-blocks. 295 if (Stream.SkipBlock()) 296 return error("Malformed block"); 297 continue; 298 299 case BitstreamEntry::Record: 300 Stream.skipRecord(Entry.ID); 301 continue; 302 } 303 } 304 } 305 306 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 307 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 308 return error("Invalid record"); 309 310 SmallVector<uint64_t, 64> Record; 311 312 std::string Triple; 313 314 // Read all the records for this module. 315 while (true) { 316 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 317 318 switch (Entry.Kind) { 319 case BitstreamEntry::SubBlock: // Handled for us already. 320 case BitstreamEntry::Error: 321 return error("Malformed block"); 322 case BitstreamEntry::EndBlock: 323 return Triple; 324 case BitstreamEntry::Record: 325 // The interesting case. 326 break; 327 } 328 329 // Read a record. 330 switch (Stream.readRecord(Entry.ID, Record)) { 331 default: break; // Default behavior, ignore unknown content. 332 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 333 std::string S; 334 if (convertToString(Record, 0, S)) 335 return error("Invalid record"); 336 Triple = S; 337 break; 338 } 339 } 340 Record.clear(); 341 } 342 llvm_unreachable("Exit infinite loop"); 343 } 344 345 Expected<std::string> readTriple(BitstreamCursor &Stream) { 346 // We expect a number of well-defined blocks, though we don't necessarily 347 // need to understand them all. 348 while (true) { 349 BitstreamEntry Entry = Stream.advance(); 350 351 switch (Entry.Kind) { 352 case BitstreamEntry::Error: 353 return error("Malformed block"); 354 case BitstreamEntry::EndBlock: 355 return ""; 356 357 case BitstreamEntry::SubBlock: 358 if (Entry.ID == bitc::MODULE_BLOCK_ID) 359 return readModuleTriple(Stream); 360 361 // Ignore other sub-blocks. 362 if (Stream.SkipBlock()) 363 return error("Malformed block"); 364 continue; 365 366 case BitstreamEntry::Record: 367 Stream.skipRecord(Entry.ID); 368 continue; 369 } 370 } 371 } 372 373 class BitcodeReaderBase { 374 protected: 375 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 376 : Stream(std::move(Stream)), Strtab(Strtab) { 377 this->Stream.setBlockInfo(&BlockInfo); 378 } 379 380 BitstreamBlockInfo BlockInfo; 381 BitstreamCursor Stream; 382 StringRef Strtab; 383 384 /// In version 2 of the bitcode we store names of global values and comdats in 385 /// a string table rather than in the VST. 386 bool UseStrtab = false; 387 388 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 389 390 /// If this module uses a string table, pop the reference to the string table 391 /// and return the referenced string and the rest of the record. Otherwise 392 /// just return the record itself. 393 std::pair<StringRef, ArrayRef<uint64_t>> 394 readNameFromStrtab(ArrayRef<uint64_t> Record); 395 396 bool readBlockInfo(); 397 398 // Contains an arbitrary and optional string identifying the bitcode producer 399 std::string ProducerIdentification; 400 401 Error error(const Twine &Message); 402 }; 403 404 Error BitcodeReaderBase::error(const Twine &Message) { 405 std::string FullMsg = Message.str(); 406 if (!ProducerIdentification.empty()) 407 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 408 LLVM_VERSION_STRING "')"; 409 return ::error(FullMsg); 410 } 411 412 Expected<unsigned> 413 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 414 if (Record.size() < 1) 415 return error("Invalid record"); 416 unsigned ModuleVersion = Record[0]; 417 if (ModuleVersion > 2) 418 return error("Invalid value"); 419 UseStrtab = ModuleVersion >= 2; 420 return ModuleVersion; 421 } 422 423 std::pair<StringRef, ArrayRef<uint64_t>> 424 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 425 if (!UseStrtab) 426 return {"", Record}; 427 // Invalid reference. Let the caller complain about the record being empty. 428 if (Record[0] + Record[1] > Strtab.size()) 429 return {"", {}}; 430 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 431 } 432 433 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 434 LLVMContext &Context; 435 Module *TheModule = nullptr; 436 // Next offset to start scanning for lazy parsing of function bodies. 437 uint64_t NextUnreadBit = 0; 438 // Last function offset found in the VST. 439 uint64_t LastFunctionBlockBit = 0; 440 bool SeenValueSymbolTable = false; 441 uint64_t VSTOffset = 0; 442 443 std::vector<std::string> SectionTable; 444 std::vector<std::string> GCTable; 445 446 std::vector<Type*> TypeList; 447 BitcodeReaderValueList ValueList; 448 Optional<MetadataLoader> MDLoader; 449 std::vector<Comdat *> ComdatList; 450 SmallVector<Instruction *, 64> InstructionList; 451 452 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 453 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 454 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 455 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 456 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 457 458 /// The set of attributes by index. Index zero in the file is for null, and 459 /// is thus not represented here. As such all indices are off by one. 460 std::vector<AttributeList> MAttributes; 461 462 /// The set of attribute groups. 463 std::map<unsigned, AttributeList> MAttributeGroups; 464 465 /// While parsing a function body, this is a list of the basic blocks for the 466 /// function. 467 std::vector<BasicBlock*> FunctionBBs; 468 469 // When reading the module header, this list is populated with functions that 470 // have bodies later in the file. 471 std::vector<Function*> FunctionsWithBodies; 472 473 // When intrinsic functions are encountered which require upgrading they are 474 // stored here with their replacement function. 475 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 476 UpdatedIntrinsicMap UpgradedIntrinsics; 477 // Intrinsics which were remangled because of types rename 478 UpdatedIntrinsicMap RemangledIntrinsics; 479 480 // Several operations happen after the module header has been read, but 481 // before function bodies are processed. This keeps track of whether 482 // we've done this yet. 483 bool SeenFirstFunctionBody = false; 484 485 /// When function bodies are initially scanned, this map contains info about 486 /// where to find deferred function body in the stream. 487 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 488 489 /// When Metadata block is initially scanned when parsing the module, we may 490 /// choose to defer parsing of the metadata. This vector contains info about 491 /// which Metadata blocks are deferred. 492 std::vector<uint64_t> DeferredMetadataInfo; 493 494 /// These are basic blocks forward-referenced by block addresses. They are 495 /// inserted lazily into functions when they're loaded. The basic block ID is 496 /// its index into the vector. 497 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 498 std::deque<Function *> BasicBlockFwdRefQueue; 499 500 /// Indicates that we are using a new encoding for instruction operands where 501 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 502 /// instruction number, for a more compact encoding. Some instruction 503 /// operands are not relative to the instruction ID: basic block numbers, and 504 /// types. Once the old style function blocks have been phased out, we would 505 /// not need this flag. 506 bool UseRelativeIDs = false; 507 508 /// True if all functions will be materialized, negating the need to process 509 /// (e.g.) blockaddress forward references. 510 bool WillMaterializeAllForwardRefs = false; 511 512 bool StripDebugInfo = false; 513 TBAAVerifier TBAAVerifyHelper; 514 515 std::vector<std::string> BundleTags; 516 SmallVector<SyncScope::ID, 8> SSIDs; 517 518 public: 519 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 520 StringRef ProducerIdentification, LLVMContext &Context); 521 522 Error materializeForwardReferencedFunctions(); 523 524 Error materialize(GlobalValue *GV) override; 525 Error materializeModule() override; 526 std::vector<StructType *> getIdentifiedStructTypes() const override; 527 528 /// \brief Main interface to parsing a bitcode buffer. 529 /// \returns true if an error occurred. 530 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 531 bool IsImporting = false); 532 533 static uint64_t decodeSignRotatedValue(uint64_t V); 534 535 /// Materialize any deferred Metadata block. 536 Error materializeMetadata() override; 537 538 void setStripDebugInfo() override; 539 540 private: 541 std::vector<StructType *> IdentifiedStructTypes; 542 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 543 StructType *createIdentifiedStructType(LLVMContext &Context); 544 545 Type *getTypeByID(unsigned ID); 546 547 Value *getFnValueByID(unsigned ID, Type *Ty) { 548 if (Ty && Ty->isMetadataTy()) 549 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 550 return ValueList.getValueFwdRef(ID, Ty); 551 } 552 553 Metadata *getFnMetadataByID(unsigned ID) { 554 return MDLoader->getMetadataFwdRefOrLoad(ID); 555 } 556 557 BasicBlock *getBasicBlock(unsigned ID) const { 558 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 559 return FunctionBBs[ID]; 560 } 561 562 AttributeList getAttributes(unsigned i) const { 563 if (i-1 < MAttributes.size()) 564 return MAttributes[i-1]; 565 return AttributeList(); 566 } 567 568 /// Read a value/type pair out of the specified record from slot 'Slot'. 569 /// Increment Slot past the number of slots used in the record. Return true on 570 /// failure. 571 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 572 unsigned InstNum, Value *&ResVal) { 573 if (Slot == Record.size()) return true; 574 unsigned ValNo = (unsigned)Record[Slot++]; 575 // Adjust the ValNo, if it was encoded relative to the InstNum. 576 if (UseRelativeIDs) 577 ValNo = InstNum - ValNo; 578 if (ValNo < InstNum) { 579 // If this is not a forward reference, just return the value we already 580 // have. 581 ResVal = getFnValueByID(ValNo, nullptr); 582 return ResVal == nullptr; 583 } 584 if (Slot == Record.size()) 585 return true; 586 587 unsigned TypeNo = (unsigned)Record[Slot++]; 588 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 589 return ResVal == nullptr; 590 } 591 592 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 593 /// past the number of slots used by the value in the record. Return true if 594 /// there is an error. 595 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 596 unsigned InstNum, Type *Ty, Value *&ResVal) { 597 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 598 return true; 599 // All values currently take a single record slot. 600 ++Slot; 601 return false; 602 } 603 604 /// Like popValue, but does not increment the Slot number. 605 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 606 unsigned InstNum, Type *Ty, Value *&ResVal) { 607 ResVal = getValue(Record, Slot, InstNum, Ty); 608 return ResVal == nullptr; 609 } 610 611 /// Version of getValue that returns ResVal directly, or 0 if there is an 612 /// error. 613 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 614 unsigned InstNum, Type *Ty) { 615 if (Slot == Record.size()) return nullptr; 616 unsigned ValNo = (unsigned)Record[Slot]; 617 // Adjust the ValNo, if it was encoded relative to the InstNum. 618 if (UseRelativeIDs) 619 ValNo = InstNum - ValNo; 620 return getFnValueByID(ValNo, Ty); 621 } 622 623 /// Like getValue, but decodes signed VBRs. 624 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 625 unsigned InstNum, Type *Ty) { 626 if (Slot == Record.size()) return nullptr; 627 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 628 // Adjust the ValNo, if it was encoded relative to the InstNum. 629 if (UseRelativeIDs) 630 ValNo = InstNum - ValNo; 631 return getFnValueByID(ValNo, Ty); 632 } 633 634 /// Converts alignment exponent (i.e. power of two (or zero)) to the 635 /// corresponding alignment to use. If alignment is too large, returns 636 /// a corresponding error code. 637 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 638 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 639 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 640 641 Error parseComdatRecord(ArrayRef<uint64_t> Record); 642 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 643 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 644 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 645 ArrayRef<uint64_t> Record); 646 647 Error parseAttributeBlock(); 648 Error parseAttributeGroupBlock(); 649 Error parseTypeTable(); 650 Error parseTypeTableBody(); 651 Error parseOperandBundleTags(); 652 Error parseSyncScopeNames(); 653 654 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 655 unsigned NameIndex, Triple &TT); 656 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 657 ArrayRef<uint64_t> Record); 658 Error parseValueSymbolTable(uint64_t Offset = 0); 659 Error parseGlobalValueSymbolTable(); 660 Error parseConstants(); 661 Error rememberAndSkipFunctionBodies(); 662 Error rememberAndSkipFunctionBody(); 663 /// Save the positions of the Metadata blocks and skip parsing the blocks. 664 Error rememberAndSkipMetadata(); 665 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 666 Error parseFunctionBody(Function *F); 667 Error globalCleanup(); 668 Error resolveGlobalAndIndirectSymbolInits(); 669 Error parseUseLists(); 670 Error findFunctionInStream( 671 Function *F, 672 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 673 674 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 675 }; 676 677 /// Class to manage reading and parsing function summary index bitcode 678 /// files/sections. 679 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 680 /// The module index built during parsing. 681 ModuleSummaryIndex &TheIndex; 682 683 /// Indicates whether we have encountered a global value summary section 684 /// yet during parsing. 685 bool SeenGlobalValSummary = false; 686 687 /// Indicates whether we have already parsed the VST, used for error checking. 688 bool SeenValueSymbolTable = false; 689 690 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 691 /// Used to enable on-demand parsing of the VST. 692 uint64_t VSTOffset = 0; 693 694 // Map to save ValueId to ValueInfo association that was recorded in the 695 // ValueSymbolTable. It is used after the VST is parsed to convert 696 // call graph edges read from the function summary from referencing 697 // callees by their ValueId to using the ValueInfo instead, which is how 698 // they are recorded in the summary index being built. 699 // We save a GUID which refers to the same global as the ValueInfo, but 700 // ignoring the linkage, i.e. for values other than local linkage they are 701 // identical. 702 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 703 ValueIdToValueInfoMap; 704 705 /// Map populated during module path string table parsing, from the 706 /// module ID to a string reference owned by the index's module 707 /// path string table, used to correlate with combined index 708 /// summary records. 709 DenseMap<uint64_t, StringRef> ModuleIdMap; 710 711 /// Original source file name recorded in a bitcode record. 712 std::string SourceFileName; 713 714 /// The string identifier given to this module by the client, normally the 715 /// path to the bitcode file. 716 StringRef ModulePath; 717 718 /// For per-module summary indexes, the unique numerical identifier given to 719 /// this module by the client. 720 unsigned ModuleId; 721 722 public: 723 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 724 ModuleSummaryIndex &TheIndex, 725 StringRef ModulePath, unsigned ModuleId); 726 727 Error parseModule(); 728 729 private: 730 void setValueGUID(uint64_t ValueID, StringRef ValueName, 731 GlobalValue::LinkageTypes Linkage, 732 StringRef SourceFileName); 733 Error parseValueSymbolTable( 734 uint64_t Offset, 735 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 736 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 737 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 738 bool IsOldProfileFormat, 739 bool HasProfile); 740 Error parseEntireSummary(unsigned ID); 741 Error parseModuleStringTable(); 742 743 std::pair<ValueInfo, GlobalValue::GUID> 744 getValueInfoFromValueId(unsigned ValueId); 745 746 ModuleSummaryIndex::ModuleInfo *addThisModule(); 747 }; 748 749 } // end anonymous namespace 750 751 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 752 Error Err) { 753 if (Err) { 754 std::error_code EC; 755 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 756 EC = EIB.convertToErrorCode(); 757 Ctx.emitError(EIB.message()); 758 }); 759 return EC; 760 } 761 return std::error_code(); 762 } 763 764 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 765 StringRef ProducerIdentification, 766 LLVMContext &Context) 767 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 768 ValueList(Context) { 769 this->ProducerIdentification = ProducerIdentification; 770 } 771 772 Error BitcodeReader::materializeForwardReferencedFunctions() { 773 if (WillMaterializeAllForwardRefs) 774 return Error::success(); 775 776 // Prevent recursion. 777 WillMaterializeAllForwardRefs = true; 778 779 while (!BasicBlockFwdRefQueue.empty()) { 780 Function *F = BasicBlockFwdRefQueue.front(); 781 BasicBlockFwdRefQueue.pop_front(); 782 assert(F && "Expected valid function"); 783 if (!BasicBlockFwdRefs.count(F)) 784 // Already materialized. 785 continue; 786 787 // Check for a function that isn't materializable to prevent an infinite 788 // loop. When parsing a blockaddress stored in a global variable, there 789 // isn't a trivial way to check if a function will have a body without a 790 // linear search through FunctionsWithBodies, so just check it here. 791 if (!F->isMaterializable()) 792 return error("Never resolved function from blockaddress"); 793 794 // Try to materialize F. 795 if (Error Err = materialize(F)) 796 return Err; 797 } 798 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 799 800 // Reset state. 801 WillMaterializeAllForwardRefs = false; 802 return Error::success(); 803 } 804 805 //===----------------------------------------------------------------------===// 806 // Helper functions to implement forward reference resolution, etc. 807 //===----------------------------------------------------------------------===// 808 809 static bool hasImplicitComdat(size_t Val) { 810 switch (Val) { 811 default: 812 return false; 813 case 1: // Old WeakAnyLinkage 814 case 4: // Old LinkOnceAnyLinkage 815 case 10: // Old WeakODRLinkage 816 case 11: // Old LinkOnceODRLinkage 817 return true; 818 } 819 } 820 821 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 822 switch (Val) { 823 default: // Map unknown/new linkages to external 824 case 0: 825 return GlobalValue::ExternalLinkage; 826 case 2: 827 return GlobalValue::AppendingLinkage; 828 case 3: 829 return GlobalValue::InternalLinkage; 830 case 5: 831 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 832 case 6: 833 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 834 case 7: 835 return GlobalValue::ExternalWeakLinkage; 836 case 8: 837 return GlobalValue::CommonLinkage; 838 case 9: 839 return GlobalValue::PrivateLinkage; 840 case 12: 841 return GlobalValue::AvailableExternallyLinkage; 842 case 13: 843 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 844 case 14: 845 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 846 case 15: 847 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 848 case 1: // Old value with implicit comdat. 849 case 16: 850 return GlobalValue::WeakAnyLinkage; 851 case 10: // Old value with implicit comdat. 852 case 17: 853 return GlobalValue::WeakODRLinkage; 854 case 4: // Old value with implicit comdat. 855 case 18: 856 return GlobalValue::LinkOnceAnyLinkage; 857 case 11: // Old value with implicit comdat. 858 case 19: 859 return GlobalValue::LinkOnceODRLinkage; 860 } 861 } 862 863 /// Decode the flags for GlobalValue in the summary. 864 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 865 uint64_t Version) { 866 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 867 // like getDecodedLinkage() above. Any future change to the linkage enum and 868 // to getDecodedLinkage() will need to be taken into account here as above. 869 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 870 RawFlags = RawFlags >> 4; 871 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 872 // The Live flag wasn't introduced until version 3. For dead stripping 873 // to work correctly on earlier versions, we must conservatively treat all 874 // values as live. 875 bool Live = (RawFlags & 0x2) || Version < 3; 876 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live); 877 } 878 879 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 880 switch (Val) { 881 default: // Map unknown visibilities to default. 882 case 0: return GlobalValue::DefaultVisibility; 883 case 1: return GlobalValue::HiddenVisibility; 884 case 2: return GlobalValue::ProtectedVisibility; 885 } 886 } 887 888 static GlobalValue::DLLStorageClassTypes 889 getDecodedDLLStorageClass(unsigned Val) { 890 switch (Val) { 891 default: // Map unknown values to default. 892 case 0: return GlobalValue::DefaultStorageClass; 893 case 1: return GlobalValue::DLLImportStorageClass; 894 case 2: return GlobalValue::DLLExportStorageClass; 895 } 896 } 897 898 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 899 switch (Val) { 900 case 0: return GlobalVariable::NotThreadLocal; 901 default: // Map unknown non-zero value to general dynamic. 902 case 1: return GlobalVariable::GeneralDynamicTLSModel; 903 case 2: return GlobalVariable::LocalDynamicTLSModel; 904 case 3: return GlobalVariable::InitialExecTLSModel; 905 case 4: return GlobalVariable::LocalExecTLSModel; 906 } 907 } 908 909 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 910 switch (Val) { 911 default: // Map unknown to UnnamedAddr::None. 912 case 0: return GlobalVariable::UnnamedAddr::None; 913 case 1: return GlobalVariable::UnnamedAddr::Global; 914 case 2: return GlobalVariable::UnnamedAddr::Local; 915 } 916 } 917 918 static int getDecodedCastOpcode(unsigned Val) { 919 switch (Val) { 920 default: return -1; 921 case bitc::CAST_TRUNC : return Instruction::Trunc; 922 case bitc::CAST_ZEXT : return Instruction::ZExt; 923 case bitc::CAST_SEXT : return Instruction::SExt; 924 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 925 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 926 case bitc::CAST_UITOFP : return Instruction::UIToFP; 927 case bitc::CAST_SITOFP : return Instruction::SIToFP; 928 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 929 case bitc::CAST_FPEXT : return Instruction::FPExt; 930 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 931 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 932 case bitc::CAST_BITCAST : return Instruction::BitCast; 933 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 934 } 935 } 936 937 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 938 bool IsFP = Ty->isFPOrFPVectorTy(); 939 // BinOps are only valid for int/fp or vector of int/fp types 940 if (!IsFP && !Ty->isIntOrIntVectorTy()) 941 return -1; 942 943 switch (Val) { 944 default: 945 return -1; 946 case bitc::BINOP_ADD: 947 return IsFP ? Instruction::FAdd : Instruction::Add; 948 case bitc::BINOP_SUB: 949 return IsFP ? Instruction::FSub : Instruction::Sub; 950 case bitc::BINOP_MUL: 951 return IsFP ? Instruction::FMul : Instruction::Mul; 952 case bitc::BINOP_UDIV: 953 return IsFP ? -1 : Instruction::UDiv; 954 case bitc::BINOP_SDIV: 955 return IsFP ? Instruction::FDiv : Instruction::SDiv; 956 case bitc::BINOP_UREM: 957 return IsFP ? -1 : Instruction::URem; 958 case bitc::BINOP_SREM: 959 return IsFP ? Instruction::FRem : Instruction::SRem; 960 case bitc::BINOP_SHL: 961 return IsFP ? -1 : Instruction::Shl; 962 case bitc::BINOP_LSHR: 963 return IsFP ? -1 : Instruction::LShr; 964 case bitc::BINOP_ASHR: 965 return IsFP ? -1 : Instruction::AShr; 966 case bitc::BINOP_AND: 967 return IsFP ? -1 : Instruction::And; 968 case bitc::BINOP_OR: 969 return IsFP ? -1 : Instruction::Or; 970 case bitc::BINOP_XOR: 971 return IsFP ? -1 : Instruction::Xor; 972 } 973 } 974 975 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 976 switch (Val) { 977 default: return AtomicRMWInst::BAD_BINOP; 978 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 979 case bitc::RMW_ADD: return AtomicRMWInst::Add; 980 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 981 case bitc::RMW_AND: return AtomicRMWInst::And; 982 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 983 case bitc::RMW_OR: return AtomicRMWInst::Or; 984 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 985 case bitc::RMW_MAX: return AtomicRMWInst::Max; 986 case bitc::RMW_MIN: return AtomicRMWInst::Min; 987 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 988 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 989 } 990 } 991 992 static AtomicOrdering getDecodedOrdering(unsigned Val) { 993 switch (Val) { 994 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 995 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 996 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 997 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 998 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 999 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1000 default: // Map unknown orderings to sequentially-consistent. 1001 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1002 } 1003 } 1004 1005 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1006 switch (Val) { 1007 default: // Map unknown selection kinds to any. 1008 case bitc::COMDAT_SELECTION_KIND_ANY: 1009 return Comdat::Any; 1010 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1011 return Comdat::ExactMatch; 1012 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1013 return Comdat::Largest; 1014 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1015 return Comdat::NoDuplicates; 1016 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1017 return Comdat::SameSize; 1018 } 1019 } 1020 1021 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1022 FastMathFlags FMF; 1023 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 1024 FMF.setUnsafeAlgebra(); 1025 if (0 != (Val & FastMathFlags::NoNaNs)) 1026 FMF.setNoNaNs(); 1027 if (0 != (Val & FastMathFlags::NoInfs)) 1028 FMF.setNoInfs(); 1029 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1030 FMF.setNoSignedZeros(); 1031 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1032 FMF.setAllowReciprocal(); 1033 if (0 != (Val & FastMathFlags::AllowContract)) 1034 FMF.setAllowContract(true); 1035 return FMF; 1036 } 1037 1038 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1039 switch (Val) { 1040 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1041 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1042 } 1043 } 1044 1045 1046 Type *BitcodeReader::getTypeByID(unsigned ID) { 1047 // The type table size is always specified correctly. 1048 if (ID >= TypeList.size()) 1049 return nullptr; 1050 1051 if (Type *Ty = TypeList[ID]) 1052 return Ty; 1053 1054 // If we have a forward reference, the only possible case is when it is to a 1055 // named struct. Just create a placeholder for now. 1056 return TypeList[ID] = createIdentifiedStructType(Context); 1057 } 1058 1059 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1060 StringRef Name) { 1061 auto *Ret = StructType::create(Context, Name); 1062 IdentifiedStructTypes.push_back(Ret); 1063 return Ret; 1064 } 1065 1066 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1067 auto *Ret = StructType::create(Context); 1068 IdentifiedStructTypes.push_back(Ret); 1069 return Ret; 1070 } 1071 1072 //===----------------------------------------------------------------------===// 1073 // Functions for parsing blocks from the bitcode file 1074 //===----------------------------------------------------------------------===// 1075 1076 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1077 switch (Val) { 1078 case Attribute::EndAttrKinds: 1079 llvm_unreachable("Synthetic enumerators which should never get here"); 1080 1081 case Attribute::None: return 0; 1082 case Attribute::ZExt: return 1 << 0; 1083 case Attribute::SExt: return 1 << 1; 1084 case Attribute::NoReturn: return 1 << 2; 1085 case Attribute::InReg: return 1 << 3; 1086 case Attribute::StructRet: return 1 << 4; 1087 case Attribute::NoUnwind: return 1 << 5; 1088 case Attribute::NoAlias: return 1 << 6; 1089 case Attribute::ByVal: return 1 << 7; 1090 case Attribute::Nest: return 1 << 8; 1091 case Attribute::ReadNone: return 1 << 9; 1092 case Attribute::ReadOnly: return 1 << 10; 1093 case Attribute::NoInline: return 1 << 11; 1094 case Attribute::AlwaysInline: return 1 << 12; 1095 case Attribute::OptimizeForSize: return 1 << 13; 1096 case Attribute::StackProtect: return 1 << 14; 1097 case Attribute::StackProtectReq: return 1 << 15; 1098 case Attribute::Alignment: return 31 << 16; 1099 case Attribute::NoCapture: return 1 << 21; 1100 case Attribute::NoRedZone: return 1 << 22; 1101 case Attribute::NoImplicitFloat: return 1 << 23; 1102 case Attribute::Naked: return 1 << 24; 1103 case Attribute::InlineHint: return 1 << 25; 1104 case Attribute::StackAlignment: return 7 << 26; 1105 case Attribute::ReturnsTwice: return 1 << 29; 1106 case Attribute::UWTable: return 1 << 30; 1107 case Attribute::NonLazyBind: return 1U << 31; 1108 case Attribute::SanitizeAddress: return 1ULL << 32; 1109 case Attribute::MinSize: return 1ULL << 33; 1110 case Attribute::NoDuplicate: return 1ULL << 34; 1111 case Attribute::StackProtectStrong: return 1ULL << 35; 1112 case Attribute::SanitizeThread: return 1ULL << 36; 1113 case Attribute::SanitizeMemory: return 1ULL << 37; 1114 case Attribute::NoBuiltin: return 1ULL << 38; 1115 case Attribute::Returned: return 1ULL << 39; 1116 case Attribute::Cold: return 1ULL << 40; 1117 case Attribute::Builtin: return 1ULL << 41; 1118 case Attribute::OptimizeNone: return 1ULL << 42; 1119 case Attribute::InAlloca: return 1ULL << 43; 1120 case Attribute::NonNull: return 1ULL << 44; 1121 case Attribute::JumpTable: return 1ULL << 45; 1122 case Attribute::Convergent: return 1ULL << 46; 1123 case Attribute::SafeStack: return 1ULL << 47; 1124 case Attribute::NoRecurse: return 1ULL << 48; 1125 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1126 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1127 case Attribute::SwiftSelf: return 1ULL << 51; 1128 case Attribute::SwiftError: return 1ULL << 52; 1129 case Attribute::WriteOnly: return 1ULL << 53; 1130 case Attribute::Speculatable: return 1ULL << 54; 1131 case Attribute::Dereferenceable: 1132 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1133 break; 1134 case Attribute::DereferenceableOrNull: 1135 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1136 "format"); 1137 break; 1138 case Attribute::ArgMemOnly: 1139 llvm_unreachable("argmemonly attribute not supported in raw format"); 1140 break; 1141 case Attribute::AllocSize: 1142 llvm_unreachable("allocsize not supported in raw format"); 1143 break; 1144 } 1145 llvm_unreachable("Unsupported attribute type"); 1146 } 1147 1148 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1149 if (!Val) return; 1150 1151 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1152 I = Attribute::AttrKind(I + 1)) { 1153 if (I == Attribute::Dereferenceable || 1154 I == Attribute::DereferenceableOrNull || 1155 I == Attribute::ArgMemOnly || 1156 I == Attribute::AllocSize) 1157 continue; 1158 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1159 if (I == Attribute::Alignment) 1160 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1161 else if (I == Attribute::StackAlignment) 1162 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1163 else 1164 B.addAttribute(I); 1165 } 1166 } 1167 } 1168 1169 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1170 /// been decoded from the given integer. This function must stay in sync with 1171 /// 'encodeLLVMAttributesForBitcode'. 1172 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1173 uint64_t EncodedAttrs) { 1174 // FIXME: Remove in 4.0. 1175 1176 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1177 // the bits above 31 down by 11 bits. 1178 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1179 assert((!Alignment || isPowerOf2_32(Alignment)) && 1180 "Alignment must be a power of two."); 1181 1182 if (Alignment) 1183 B.addAlignmentAttr(Alignment); 1184 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1185 (EncodedAttrs & 0xffff)); 1186 } 1187 1188 Error BitcodeReader::parseAttributeBlock() { 1189 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1190 return error("Invalid record"); 1191 1192 if (!MAttributes.empty()) 1193 return error("Invalid multiple blocks"); 1194 1195 SmallVector<uint64_t, 64> Record; 1196 1197 SmallVector<AttributeList, 8> Attrs; 1198 1199 // Read all the records. 1200 while (true) { 1201 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1202 1203 switch (Entry.Kind) { 1204 case BitstreamEntry::SubBlock: // Handled for us already. 1205 case BitstreamEntry::Error: 1206 return error("Malformed block"); 1207 case BitstreamEntry::EndBlock: 1208 return Error::success(); 1209 case BitstreamEntry::Record: 1210 // The interesting case. 1211 break; 1212 } 1213 1214 // Read a record. 1215 Record.clear(); 1216 switch (Stream.readRecord(Entry.ID, Record)) { 1217 default: // Default behavior: ignore. 1218 break; 1219 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1220 // FIXME: Remove in 4.0. 1221 if (Record.size() & 1) 1222 return error("Invalid record"); 1223 1224 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1225 AttrBuilder B; 1226 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1227 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1228 } 1229 1230 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1231 Attrs.clear(); 1232 break; 1233 } 1234 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1235 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1236 Attrs.push_back(MAttributeGroups[Record[i]]); 1237 1238 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1239 Attrs.clear(); 1240 break; 1241 } 1242 } 1243 } 1244 } 1245 1246 // Returns Attribute::None on unrecognized codes. 1247 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1248 switch (Code) { 1249 default: 1250 return Attribute::None; 1251 case bitc::ATTR_KIND_ALIGNMENT: 1252 return Attribute::Alignment; 1253 case bitc::ATTR_KIND_ALWAYS_INLINE: 1254 return Attribute::AlwaysInline; 1255 case bitc::ATTR_KIND_ARGMEMONLY: 1256 return Attribute::ArgMemOnly; 1257 case bitc::ATTR_KIND_BUILTIN: 1258 return Attribute::Builtin; 1259 case bitc::ATTR_KIND_BY_VAL: 1260 return Attribute::ByVal; 1261 case bitc::ATTR_KIND_IN_ALLOCA: 1262 return Attribute::InAlloca; 1263 case bitc::ATTR_KIND_COLD: 1264 return Attribute::Cold; 1265 case bitc::ATTR_KIND_CONVERGENT: 1266 return Attribute::Convergent; 1267 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1268 return Attribute::InaccessibleMemOnly; 1269 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1270 return Attribute::InaccessibleMemOrArgMemOnly; 1271 case bitc::ATTR_KIND_INLINE_HINT: 1272 return Attribute::InlineHint; 1273 case bitc::ATTR_KIND_IN_REG: 1274 return Attribute::InReg; 1275 case bitc::ATTR_KIND_JUMP_TABLE: 1276 return Attribute::JumpTable; 1277 case bitc::ATTR_KIND_MIN_SIZE: 1278 return Attribute::MinSize; 1279 case bitc::ATTR_KIND_NAKED: 1280 return Attribute::Naked; 1281 case bitc::ATTR_KIND_NEST: 1282 return Attribute::Nest; 1283 case bitc::ATTR_KIND_NO_ALIAS: 1284 return Attribute::NoAlias; 1285 case bitc::ATTR_KIND_NO_BUILTIN: 1286 return Attribute::NoBuiltin; 1287 case bitc::ATTR_KIND_NO_CAPTURE: 1288 return Attribute::NoCapture; 1289 case bitc::ATTR_KIND_NO_DUPLICATE: 1290 return Attribute::NoDuplicate; 1291 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1292 return Attribute::NoImplicitFloat; 1293 case bitc::ATTR_KIND_NO_INLINE: 1294 return Attribute::NoInline; 1295 case bitc::ATTR_KIND_NO_RECURSE: 1296 return Attribute::NoRecurse; 1297 case bitc::ATTR_KIND_NON_LAZY_BIND: 1298 return Attribute::NonLazyBind; 1299 case bitc::ATTR_KIND_NON_NULL: 1300 return Attribute::NonNull; 1301 case bitc::ATTR_KIND_DEREFERENCEABLE: 1302 return Attribute::Dereferenceable; 1303 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1304 return Attribute::DereferenceableOrNull; 1305 case bitc::ATTR_KIND_ALLOC_SIZE: 1306 return Attribute::AllocSize; 1307 case bitc::ATTR_KIND_NO_RED_ZONE: 1308 return Attribute::NoRedZone; 1309 case bitc::ATTR_KIND_NO_RETURN: 1310 return Attribute::NoReturn; 1311 case bitc::ATTR_KIND_NO_UNWIND: 1312 return Attribute::NoUnwind; 1313 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1314 return Attribute::OptimizeForSize; 1315 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1316 return Attribute::OptimizeNone; 1317 case bitc::ATTR_KIND_READ_NONE: 1318 return Attribute::ReadNone; 1319 case bitc::ATTR_KIND_READ_ONLY: 1320 return Attribute::ReadOnly; 1321 case bitc::ATTR_KIND_RETURNED: 1322 return Attribute::Returned; 1323 case bitc::ATTR_KIND_RETURNS_TWICE: 1324 return Attribute::ReturnsTwice; 1325 case bitc::ATTR_KIND_S_EXT: 1326 return Attribute::SExt; 1327 case bitc::ATTR_KIND_SPECULATABLE: 1328 return Attribute::Speculatable; 1329 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1330 return Attribute::StackAlignment; 1331 case bitc::ATTR_KIND_STACK_PROTECT: 1332 return Attribute::StackProtect; 1333 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1334 return Attribute::StackProtectReq; 1335 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1336 return Attribute::StackProtectStrong; 1337 case bitc::ATTR_KIND_SAFESTACK: 1338 return Attribute::SafeStack; 1339 case bitc::ATTR_KIND_STRUCT_RET: 1340 return Attribute::StructRet; 1341 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1342 return Attribute::SanitizeAddress; 1343 case bitc::ATTR_KIND_SANITIZE_THREAD: 1344 return Attribute::SanitizeThread; 1345 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1346 return Attribute::SanitizeMemory; 1347 case bitc::ATTR_KIND_SWIFT_ERROR: 1348 return Attribute::SwiftError; 1349 case bitc::ATTR_KIND_SWIFT_SELF: 1350 return Attribute::SwiftSelf; 1351 case bitc::ATTR_KIND_UW_TABLE: 1352 return Attribute::UWTable; 1353 case bitc::ATTR_KIND_WRITEONLY: 1354 return Attribute::WriteOnly; 1355 case bitc::ATTR_KIND_Z_EXT: 1356 return Attribute::ZExt; 1357 } 1358 } 1359 1360 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1361 unsigned &Alignment) { 1362 // Note: Alignment in bitcode files is incremented by 1, so that zero 1363 // can be used for default alignment. 1364 if (Exponent > Value::MaxAlignmentExponent + 1) 1365 return error("Invalid alignment value"); 1366 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1367 return Error::success(); 1368 } 1369 1370 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1371 *Kind = getAttrFromCode(Code); 1372 if (*Kind == Attribute::None) 1373 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1374 return Error::success(); 1375 } 1376 1377 Error BitcodeReader::parseAttributeGroupBlock() { 1378 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1379 return error("Invalid record"); 1380 1381 if (!MAttributeGroups.empty()) 1382 return error("Invalid multiple blocks"); 1383 1384 SmallVector<uint64_t, 64> Record; 1385 1386 // Read all the records. 1387 while (true) { 1388 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1389 1390 switch (Entry.Kind) { 1391 case BitstreamEntry::SubBlock: // Handled for us already. 1392 case BitstreamEntry::Error: 1393 return error("Malformed block"); 1394 case BitstreamEntry::EndBlock: 1395 return Error::success(); 1396 case BitstreamEntry::Record: 1397 // The interesting case. 1398 break; 1399 } 1400 1401 // Read a record. 1402 Record.clear(); 1403 switch (Stream.readRecord(Entry.ID, Record)) { 1404 default: // Default behavior: ignore. 1405 break; 1406 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1407 if (Record.size() < 3) 1408 return error("Invalid record"); 1409 1410 uint64_t GrpID = Record[0]; 1411 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1412 1413 AttrBuilder B; 1414 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1415 if (Record[i] == 0) { // Enum attribute 1416 Attribute::AttrKind Kind; 1417 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1418 return Err; 1419 1420 B.addAttribute(Kind); 1421 } else if (Record[i] == 1) { // Integer attribute 1422 Attribute::AttrKind Kind; 1423 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1424 return Err; 1425 if (Kind == Attribute::Alignment) 1426 B.addAlignmentAttr(Record[++i]); 1427 else if (Kind == Attribute::StackAlignment) 1428 B.addStackAlignmentAttr(Record[++i]); 1429 else if (Kind == Attribute::Dereferenceable) 1430 B.addDereferenceableAttr(Record[++i]); 1431 else if (Kind == Attribute::DereferenceableOrNull) 1432 B.addDereferenceableOrNullAttr(Record[++i]); 1433 else if (Kind == Attribute::AllocSize) 1434 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1435 } else { // String attribute 1436 assert((Record[i] == 3 || Record[i] == 4) && 1437 "Invalid attribute group entry"); 1438 bool HasValue = (Record[i++] == 4); 1439 SmallString<64> KindStr; 1440 SmallString<64> ValStr; 1441 1442 while (Record[i] != 0 && i != e) 1443 KindStr += Record[i++]; 1444 assert(Record[i] == 0 && "Kind string not null terminated"); 1445 1446 if (HasValue) { 1447 // Has a value associated with it. 1448 ++i; // Skip the '0' that terminates the "kind" string. 1449 while (Record[i] != 0 && i != e) 1450 ValStr += Record[i++]; 1451 assert(Record[i] == 0 && "Value string not null terminated"); 1452 } 1453 1454 B.addAttribute(KindStr.str(), ValStr.str()); 1455 } 1456 } 1457 1458 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1459 break; 1460 } 1461 } 1462 } 1463 } 1464 1465 Error BitcodeReader::parseTypeTable() { 1466 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1467 return error("Invalid record"); 1468 1469 return parseTypeTableBody(); 1470 } 1471 1472 Error BitcodeReader::parseTypeTableBody() { 1473 if (!TypeList.empty()) 1474 return error("Invalid multiple blocks"); 1475 1476 SmallVector<uint64_t, 64> Record; 1477 unsigned NumRecords = 0; 1478 1479 SmallString<64> TypeName; 1480 1481 // Read all the records for this type table. 1482 while (true) { 1483 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1484 1485 switch (Entry.Kind) { 1486 case BitstreamEntry::SubBlock: // Handled for us already. 1487 case BitstreamEntry::Error: 1488 return error("Malformed block"); 1489 case BitstreamEntry::EndBlock: 1490 if (NumRecords != TypeList.size()) 1491 return error("Malformed block"); 1492 return Error::success(); 1493 case BitstreamEntry::Record: 1494 // The interesting case. 1495 break; 1496 } 1497 1498 // Read a record. 1499 Record.clear(); 1500 Type *ResultTy = nullptr; 1501 switch (Stream.readRecord(Entry.ID, Record)) { 1502 default: 1503 return error("Invalid value"); 1504 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1505 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1506 // type list. This allows us to reserve space. 1507 if (Record.size() < 1) 1508 return error("Invalid record"); 1509 TypeList.resize(Record[0]); 1510 continue; 1511 case bitc::TYPE_CODE_VOID: // VOID 1512 ResultTy = Type::getVoidTy(Context); 1513 break; 1514 case bitc::TYPE_CODE_HALF: // HALF 1515 ResultTy = Type::getHalfTy(Context); 1516 break; 1517 case bitc::TYPE_CODE_FLOAT: // FLOAT 1518 ResultTy = Type::getFloatTy(Context); 1519 break; 1520 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1521 ResultTy = Type::getDoubleTy(Context); 1522 break; 1523 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1524 ResultTy = Type::getX86_FP80Ty(Context); 1525 break; 1526 case bitc::TYPE_CODE_FP128: // FP128 1527 ResultTy = Type::getFP128Ty(Context); 1528 break; 1529 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1530 ResultTy = Type::getPPC_FP128Ty(Context); 1531 break; 1532 case bitc::TYPE_CODE_LABEL: // LABEL 1533 ResultTy = Type::getLabelTy(Context); 1534 break; 1535 case bitc::TYPE_CODE_METADATA: // METADATA 1536 ResultTy = Type::getMetadataTy(Context); 1537 break; 1538 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1539 ResultTy = Type::getX86_MMXTy(Context); 1540 break; 1541 case bitc::TYPE_CODE_TOKEN: // TOKEN 1542 ResultTy = Type::getTokenTy(Context); 1543 break; 1544 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1545 if (Record.size() < 1) 1546 return error("Invalid record"); 1547 1548 uint64_t NumBits = Record[0]; 1549 if (NumBits < IntegerType::MIN_INT_BITS || 1550 NumBits > IntegerType::MAX_INT_BITS) 1551 return error("Bitwidth for integer type out of range"); 1552 ResultTy = IntegerType::get(Context, NumBits); 1553 break; 1554 } 1555 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1556 // [pointee type, address space] 1557 if (Record.size() < 1) 1558 return error("Invalid record"); 1559 unsigned AddressSpace = 0; 1560 if (Record.size() == 2) 1561 AddressSpace = Record[1]; 1562 ResultTy = getTypeByID(Record[0]); 1563 if (!ResultTy || 1564 !PointerType::isValidElementType(ResultTy)) 1565 return error("Invalid type"); 1566 ResultTy = PointerType::get(ResultTy, AddressSpace); 1567 break; 1568 } 1569 case bitc::TYPE_CODE_FUNCTION_OLD: { 1570 // FIXME: attrid is dead, remove it in LLVM 4.0 1571 // FUNCTION: [vararg, attrid, retty, paramty x N] 1572 if (Record.size() < 3) 1573 return error("Invalid record"); 1574 SmallVector<Type*, 8> ArgTys; 1575 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1576 if (Type *T = getTypeByID(Record[i])) 1577 ArgTys.push_back(T); 1578 else 1579 break; 1580 } 1581 1582 ResultTy = getTypeByID(Record[2]); 1583 if (!ResultTy || ArgTys.size() < Record.size()-3) 1584 return error("Invalid type"); 1585 1586 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1587 break; 1588 } 1589 case bitc::TYPE_CODE_FUNCTION: { 1590 // FUNCTION: [vararg, retty, paramty x N] 1591 if (Record.size() < 2) 1592 return error("Invalid record"); 1593 SmallVector<Type*, 8> ArgTys; 1594 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1595 if (Type *T = getTypeByID(Record[i])) { 1596 if (!FunctionType::isValidArgumentType(T)) 1597 return error("Invalid function argument type"); 1598 ArgTys.push_back(T); 1599 } 1600 else 1601 break; 1602 } 1603 1604 ResultTy = getTypeByID(Record[1]); 1605 if (!ResultTy || ArgTys.size() < Record.size()-2) 1606 return error("Invalid type"); 1607 1608 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1609 break; 1610 } 1611 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1612 if (Record.size() < 1) 1613 return error("Invalid record"); 1614 SmallVector<Type*, 8> EltTys; 1615 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1616 if (Type *T = getTypeByID(Record[i])) 1617 EltTys.push_back(T); 1618 else 1619 break; 1620 } 1621 if (EltTys.size() != Record.size()-1) 1622 return error("Invalid type"); 1623 ResultTy = StructType::get(Context, EltTys, Record[0]); 1624 break; 1625 } 1626 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1627 if (convertToString(Record, 0, TypeName)) 1628 return error("Invalid record"); 1629 continue; 1630 1631 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1632 if (Record.size() < 1) 1633 return error("Invalid record"); 1634 1635 if (NumRecords >= TypeList.size()) 1636 return error("Invalid TYPE table"); 1637 1638 // Check to see if this was forward referenced, if so fill in the temp. 1639 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1640 if (Res) { 1641 Res->setName(TypeName); 1642 TypeList[NumRecords] = nullptr; 1643 } else // Otherwise, create a new struct. 1644 Res = createIdentifiedStructType(Context, TypeName); 1645 TypeName.clear(); 1646 1647 SmallVector<Type*, 8> EltTys; 1648 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1649 if (Type *T = getTypeByID(Record[i])) 1650 EltTys.push_back(T); 1651 else 1652 break; 1653 } 1654 if (EltTys.size() != Record.size()-1) 1655 return error("Invalid record"); 1656 Res->setBody(EltTys, Record[0]); 1657 ResultTy = Res; 1658 break; 1659 } 1660 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1661 if (Record.size() != 1) 1662 return error("Invalid record"); 1663 1664 if (NumRecords >= TypeList.size()) 1665 return error("Invalid TYPE table"); 1666 1667 // Check to see if this was forward referenced, if so fill in the temp. 1668 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1669 if (Res) { 1670 Res->setName(TypeName); 1671 TypeList[NumRecords] = nullptr; 1672 } else // Otherwise, create a new struct with no body. 1673 Res = createIdentifiedStructType(Context, TypeName); 1674 TypeName.clear(); 1675 ResultTy = Res; 1676 break; 1677 } 1678 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1679 if (Record.size() < 2) 1680 return error("Invalid record"); 1681 ResultTy = getTypeByID(Record[1]); 1682 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1683 return error("Invalid type"); 1684 ResultTy = ArrayType::get(ResultTy, Record[0]); 1685 break; 1686 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1687 if (Record.size() < 2) 1688 return error("Invalid record"); 1689 if (Record[0] == 0) 1690 return error("Invalid vector length"); 1691 ResultTy = getTypeByID(Record[1]); 1692 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1693 return error("Invalid type"); 1694 ResultTy = VectorType::get(ResultTy, Record[0]); 1695 break; 1696 } 1697 1698 if (NumRecords >= TypeList.size()) 1699 return error("Invalid TYPE table"); 1700 if (TypeList[NumRecords]) 1701 return error( 1702 "Invalid TYPE table: Only named structs can be forward referenced"); 1703 assert(ResultTy && "Didn't read a type?"); 1704 TypeList[NumRecords++] = ResultTy; 1705 } 1706 } 1707 1708 Error BitcodeReader::parseOperandBundleTags() { 1709 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1710 return error("Invalid record"); 1711 1712 if (!BundleTags.empty()) 1713 return error("Invalid multiple blocks"); 1714 1715 SmallVector<uint64_t, 64> Record; 1716 1717 while (true) { 1718 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1719 1720 switch (Entry.Kind) { 1721 case BitstreamEntry::SubBlock: // Handled for us already. 1722 case BitstreamEntry::Error: 1723 return error("Malformed block"); 1724 case BitstreamEntry::EndBlock: 1725 return Error::success(); 1726 case BitstreamEntry::Record: 1727 // The interesting case. 1728 break; 1729 } 1730 1731 // Tags are implicitly mapped to integers by their order. 1732 1733 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1734 return error("Invalid record"); 1735 1736 // OPERAND_BUNDLE_TAG: [strchr x N] 1737 BundleTags.emplace_back(); 1738 if (convertToString(Record, 0, BundleTags.back())) 1739 return error("Invalid record"); 1740 Record.clear(); 1741 } 1742 } 1743 1744 Error BitcodeReader::parseSyncScopeNames() { 1745 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1746 return error("Invalid record"); 1747 1748 if (!SSIDs.empty()) 1749 return error("Invalid multiple synchronization scope names blocks"); 1750 1751 SmallVector<uint64_t, 64> Record; 1752 while (true) { 1753 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1754 switch (Entry.Kind) { 1755 case BitstreamEntry::SubBlock: // Handled for us already. 1756 case BitstreamEntry::Error: 1757 return error("Malformed block"); 1758 case BitstreamEntry::EndBlock: 1759 if (SSIDs.empty()) 1760 return error("Invalid empty synchronization scope names block"); 1761 return Error::success(); 1762 case BitstreamEntry::Record: 1763 // The interesting case. 1764 break; 1765 } 1766 1767 // Synchronization scope names are implicitly mapped to synchronization 1768 // scope IDs by their order. 1769 1770 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1771 return error("Invalid record"); 1772 1773 SmallString<16> SSN; 1774 if (convertToString(Record, 0, SSN)) 1775 return error("Invalid record"); 1776 1777 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1778 Record.clear(); 1779 } 1780 } 1781 1782 /// Associate a value with its name from the given index in the provided record. 1783 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1784 unsigned NameIndex, Triple &TT) { 1785 SmallString<128> ValueName; 1786 if (convertToString(Record, NameIndex, ValueName)) 1787 return error("Invalid record"); 1788 unsigned ValueID = Record[0]; 1789 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1790 return error("Invalid record"); 1791 Value *V = ValueList[ValueID]; 1792 1793 StringRef NameStr(ValueName.data(), ValueName.size()); 1794 if (NameStr.find_first_of(0) != StringRef::npos) 1795 return error("Invalid value name"); 1796 V->setName(NameStr); 1797 auto *GO = dyn_cast<GlobalObject>(V); 1798 if (GO) { 1799 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1800 if (TT.isOSBinFormatMachO()) 1801 GO->setComdat(nullptr); 1802 else 1803 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1804 } 1805 } 1806 return V; 1807 } 1808 1809 /// Helper to note and return the current location, and jump to the given 1810 /// offset. 1811 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1812 BitstreamCursor &Stream) { 1813 // Save the current parsing location so we can jump back at the end 1814 // of the VST read. 1815 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1816 Stream.JumpToBit(Offset * 32); 1817 #ifndef NDEBUG 1818 // Do some checking if we are in debug mode. 1819 BitstreamEntry Entry = Stream.advance(); 1820 assert(Entry.Kind == BitstreamEntry::SubBlock); 1821 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1822 #else 1823 // In NDEBUG mode ignore the output so we don't get an unused variable 1824 // warning. 1825 Stream.advance(); 1826 #endif 1827 return CurrentBit; 1828 } 1829 1830 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1831 Function *F, 1832 ArrayRef<uint64_t> Record) { 1833 // Note that we subtract 1 here because the offset is relative to one word 1834 // before the start of the identification or module block, which was 1835 // historically always the start of the regular bitcode header. 1836 uint64_t FuncWordOffset = Record[1] - 1; 1837 uint64_t FuncBitOffset = FuncWordOffset * 32; 1838 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1839 // Set the LastFunctionBlockBit to point to the last function block. 1840 // Later when parsing is resumed after function materialization, 1841 // we can simply skip that last function block. 1842 if (FuncBitOffset > LastFunctionBlockBit) 1843 LastFunctionBlockBit = FuncBitOffset; 1844 } 1845 1846 /// Read a new-style GlobalValue symbol table. 1847 Error BitcodeReader::parseGlobalValueSymbolTable() { 1848 unsigned FuncBitcodeOffsetDelta = 1849 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1850 1851 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1852 return error("Invalid record"); 1853 1854 SmallVector<uint64_t, 64> Record; 1855 while (true) { 1856 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1857 1858 switch (Entry.Kind) { 1859 case BitstreamEntry::SubBlock: 1860 case BitstreamEntry::Error: 1861 return error("Malformed block"); 1862 case BitstreamEntry::EndBlock: 1863 return Error::success(); 1864 case BitstreamEntry::Record: 1865 break; 1866 } 1867 1868 Record.clear(); 1869 switch (Stream.readRecord(Entry.ID, Record)) { 1870 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1871 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1872 cast<Function>(ValueList[Record[0]]), Record); 1873 break; 1874 } 1875 } 1876 } 1877 1878 /// Parse the value symbol table at either the current parsing location or 1879 /// at the given bit offset if provided. 1880 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1881 uint64_t CurrentBit; 1882 // Pass in the Offset to distinguish between calling for the module-level 1883 // VST (where we want to jump to the VST offset) and the function-level 1884 // VST (where we don't). 1885 if (Offset > 0) { 1886 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1887 // If this module uses a string table, read this as a module-level VST. 1888 if (UseStrtab) { 1889 if (Error Err = parseGlobalValueSymbolTable()) 1890 return Err; 1891 Stream.JumpToBit(CurrentBit); 1892 return Error::success(); 1893 } 1894 // Otherwise, the VST will be in a similar format to a function-level VST, 1895 // and will contain symbol names. 1896 } 1897 1898 // Compute the delta between the bitcode indices in the VST (the word offset 1899 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1900 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1901 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1902 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1903 // just before entering the VST subblock because: 1) the EnterSubBlock 1904 // changes the AbbrevID width; 2) the VST block is nested within the same 1905 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1906 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1907 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1908 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1909 unsigned FuncBitcodeOffsetDelta = 1910 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1911 1912 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1913 return error("Invalid record"); 1914 1915 SmallVector<uint64_t, 64> Record; 1916 1917 Triple TT(TheModule->getTargetTriple()); 1918 1919 // Read all the records for this value table. 1920 SmallString<128> ValueName; 1921 1922 while (true) { 1923 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1924 1925 switch (Entry.Kind) { 1926 case BitstreamEntry::SubBlock: // Handled for us already. 1927 case BitstreamEntry::Error: 1928 return error("Malformed block"); 1929 case BitstreamEntry::EndBlock: 1930 if (Offset > 0) 1931 Stream.JumpToBit(CurrentBit); 1932 return Error::success(); 1933 case BitstreamEntry::Record: 1934 // The interesting case. 1935 break; 1936 } 1937 1938 // Read a record. 1939 Record.clear(); 1940 switch (Stream.readRecord(Entry.ID, Record)) { 1941 default: // Default behavior: unknown type. 1942 break; 1943 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1944 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1945 if (Error Err = ValOrErr.takeError()) 1946 return Err; 1947 ValOrErr.get(); 1948 break; 1949 } 1950 case bitc::VST_CODE_FNENTRY: { 1951 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1952 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1953 if (Error Err = ValOrErr.takeError()) 1954 return Err; 1955 Value *V = ValOrErr.get(); 1956 1957 // Ignore function offsets emitted for aliases of functions in older 1958 // versions of LLVM. 1959 if (auto *F = dyn_cast<Function>(V)) 1960 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 1961 break; 1962 } 1963 case bitc::VST_CODE_BBENTRY: { 1964 if (convertToString(Record, 1, ValueName)) 1965 return error("Invalid record"); 1966 BasicBlock *BB = getBasicBlock(Record[0]); 1967 if (!BB) 1968 return error("Invalid record"); 1969 1970 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1971 ValueName.clear(); 1972 break; 1973 } 1974 } 1975 } 1976 } 1977 1978 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 1979 /// encoding. 1980 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1981 if ((V & 1) == 0) 1982 return V >> 1; 1983 if (V != 1) 1984 return -(V >> 1); 1985 // There is no such thing as -0 with integers. "-0" really means MININT. 1986 return 1ULL << 63; 1987 } 1988 1989 /// Resolve all of the initializers for global values and aliases that we can. 1990 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 1991 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1992 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 1993 IndirectSymbolInitWorklist; 1994 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1995 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1996 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 1997 1998 GlobalInitWorklist.swap(GlobalInits); 1999 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2000 FunctionPrefixWorklist.swap(FunctionPrefixes); 2001 FunctionPrologueWorklist.swap(FunctionPrologues); 2002 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2003 2004 while (!GlobalInitWorklist.empty()) { 2005 unsigned ValID = GlobalInitWorklist.back().second; 2006 if (ValID >= ValueList.size()) { 2007 // Not ready to resolve this yet, it requires something later in the file. 2008 GlobalInits.push_back(GlobalInitWorklist.back()); 2009 } else { 2010 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2011 GlobalInitWorklist.back().first->setInitializer(C); 2012 else 2013 return error("Expected a constant"); 2014 } 2015 GlobalInitWorklist.pop_back(); 2016 } 2017 2018 while (!IndirectSymbolInitWorklist.empty()) { 2019 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2020 if (ValID >= ValueList.size()) { 2021 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2022 } else { 2023 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2024 if (!C) 2025 return error("Expected a constant"); 2026 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2027 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2028 return error("Alias and aliasee types don't match"); 2029 GIS->setIndirectSymbol(C); 2030 } 2031 IndirectSymbolInitWorklist.pop_back(); 2032 } 2033 2034 while (!FunctionPrefixWorklist.empty()) { 2035 unsigned ValID = FunctionPrefixWorklist.back().second; 2036 if (ValID >= ValueList.size()) { 2037 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2038 } else { 2039 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2040 FunctionPrefixWorklist.back().first->setPrefixData(C); 2041 else 2042 return error("Expected a constant"); 2043 } 2044 FunctionPrefixWorklist.pop_back(); 2045 } 2046 2047 while (!FunctionPrologueWorklist.empty()) { 2048 unsigned ValID = FunctionPrologueWorklist.back().second; 2049 if (ValID >= ValueList.size()) { 2050 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2051 } else { 2052 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2053 FunctionPrologueWorklist.back().first->setPrologueData(C); 2054 else 2055 return error("Expected a constant"); 2056 } 2057 FunctionPrologueWorklist.pop_back(); 2058 } 2059 2060 while (!FunctionPersonalityFnWorklist.empty()) { 2061 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2062 if (ValID >= ValueList.size()) { 2063 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2064 } else { 2065 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2066 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2067 else 2068 return error("Expected a constant"); 2069 } 2070 FunctionPersonalityFnWorklist.pop_back(); 2071 } 2072 2073 return Error::success(); 2074 } 2075 2076 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2077 SmallVector<uint64_t, 8> Words(Vals.size()); 2078 transform(Vals, Words.begin(), 2079 BitcodeReader::decodeSignRotatedValue); 2080 2081 return APInt(TypeBits, Words); 2082 } 2083 2084 Error BitcodeReader::parseConstants() { 2085 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2086 return error("Invalid record"); 2087 2088 SmallVector<uint64_t, 64> Record; 2089 2090 // Read all the records for this value table. 2091 Type *CurTy = Type::getInt32Ty(Context); 2092 unsigned NextCstNo = ValueList.size(); 2093 2094 while (true) { 2095 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2096 2097 switch (Entry.Kind) { 2098 case BitstreamEntry::SubBlock: // Handled for us already. 2099 case BitstreamEntry::Error: 2100 return error("Malformed block"); 2101 case BitstreamEntry::EndBlock: 2102 if (NextCstNo != ValueList.size()) 2103 return error("Invalid constant reference"); 2104 2105 // Once all the constants have been read, go through and resolve forward 2106 // references. 2107 ValueList.resolveConstantForwardRefs(); 2108 return Error::success(); 2109 case BitstreamEntry::Record: 2110 // The interesting case. 2111 break; 2112 } 2113 2114 // Read a record. 2115 Record.clear(); 2116 Type *VoidType = Type::getVoidTy(Context); 2117 Value *V = nullptr; 2118 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2119 switch (BitCode) { 2120 default: // Default behavior: unknown constant 2121 case bitc::CST_CODE_UNDEF: // UNDEF 2122 V = UndefValue::get(CurTy); 2123 break; 2124 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2125 if (Record.empty()) 2126 return error("Invalid record"); 2127 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2128 return error("Invalid record"); 2129 if (TypeList[Record[0]] == VoidType) 2130 return error("Invalid constant type"); 2131 CurTy = TypeList[Record[0]]; 2132 continue; // Skip the ValueList manipulation. 2133 case bitc::CST_CODE_NULL: // NULL 2134 V = Constant::getNullValue(CurTy); 2135 break; 2136 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2137 if (!CurTy->isIntegerTy() || Record.empty()) 2138 return error("Invalid record"); 2139 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2140 break; 2141 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2142 if (!CurTy->isIntegerTy() || Record.empty()) 2143 return error("Invalid record"); 2144 2145 APInt VInt = 2146 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2147 V = ConstantInt::get(Context, VInt); 2148 2149 break; 2150 } 2151 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2152 if (Record.empty()) 2153 return error("Invalid record"); 2154 if (CurTy->isHalfTy()) 2155 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2156 APInt(16, (uint16_t)Record[0]))); 2157 else if (CurTy->isFloatTy()) 2158 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2159 APInt(32, (uint32_t)Record[0]))); 2160 else if (CurTy->isDoubleTy()) 2161 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2162 APInt(64, Record[0]))); 2163 else if (CurTy->isX86_FP80Ty()) { 2164 // Bits are not stored the same way as a normal i80 APInt, compensate. 2165 uint64_t Rearrange[2]; 2166 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2167 Rearrange[1] = Record[0] >> 48; 2168 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2169 APInt(80, Rearrange))); 2170 } else if (CurTy->isFP128Ty()) 2171 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2172 APInt(128, Record))); 2173 else if (CurTy->isPPC_FP128Ty()) 2174 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2175 APInt(128, Record))); 2176 else 2177 V = UndefValue::get(CurTy); 2178 break; 2179 } 2180 2181 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2182 if (Record.empty()) 2183 return error("Invalid record"); 2184 2185 unsigned Size = Record.size(); 2186 SmallVector<Constant*, 16> Elts; 2187 2188 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2189 for (unsigned i = 0; i != Size; ++i) 2190 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2191 STy->getElementType(i))); 2192 V = ConstantStruct::get(STy, Elts); 2193 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2194 Type *EltTy = ATy->getElementType(); 2195 for (unsigned i = 0; i != Size; ++i) 2196 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2197 V = ConstantArray::get(ATy, Elts); 2198 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2199 Type *EltTy = VTy->getElementType(); 2200 for (unsigned i = 0; i != Size; ++i) 2201 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2202 V = ConstantVector::get(Elts); 2203 } else { 2204 V = UndefValue::get(CurTy); 2205 } 2206 break; 2207 } 2208 case bitc::CST_CODE_STRING: // STRING: [values] 2209 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2210 if (Record.empty()) 2211 return error("Invalid record"); 2212 2213 SmallString<16> Elts(Record.begin(), Record.end()); 2214 V = ConstantDataArray::getString(Context, Elts, 2215 BitCode == bitc::CST_CODE_CSTRING); 2216 break; 2217 } 2218 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2219 if (Record.empty()) 2220 return error("Invalid record"); 2221 2222 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2223 if (EltTy->isIntegerTy(8)) { 2224 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2225 if (isa<VectorType>(CurTy)) 2226 V = ConstantDataVector::get(Context, Elts); 2227 else 2228 V = ConstantDataArray::get(Context, Elts); 2229 } else if (EltTy->isIntegerTy(16)) { 2230 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2231 if (isa<VectorType>(CurTy)) 2232 V = ConstantDataVector::get(Context, Elts); 2233 else 2234 V = ConstantDataArray::get(Context, Elts); 2235 } else if (EltTy->isIntegerTy(32)) { 2236 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2237 if (isa<VectorType>(CurTy)) 2238 V = ConstantDataVector::get(Context, Elts); 2239 else 2240 V = ConstantDataArray::get(Context, Elts); 2241 } else if (EltTy->isIntegerTy(64)) { 2242 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2243 if (isa<VectorType>(CurTy)) 2244 V = ConstantDataVector::get(Context, Elts); 2245 else 2246 V = ConstantDataArray::get(Context, Elts); 2247 } else if (EltTy->isHalfTy()) { 2248 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2249 if (isa<VectorType>(CurTy)) 2250 V = ConstantDataVector::getFP(Context, Elts); 2251 else 2252 V = ConstantDataArray::getFP(Context, Elts); 2253 } else if (EltTy->isFloatTy()) { 2254 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2255 if (isa<VectorType>(CurTy)) 2256 V = ConstantDataVector::getFP(Context, Elts); 2257 else 2258 V = ConstantDataArray::getFP(Context, Elts); 2259 } else if (EltTy->isDoubleTy()) { 2260 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2261 if (isa<VectorType>(CurTy)) 2262 V = ConstantDataVector::getFP(Context, Elts); 2263 else 2264 V = ConstantDataArray::getFP(Context, Elts); 2265 } else { 2266 return error("Invalid type for value"); 2267 } 2268 break; 2269 } 2270 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2271 if (Record.size() < 3) 2272 return error("Invalid record"); 2273 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2274 if (Opc < 0) { 2275 V = UndefValue::get(CurTy); // Unknown binop. 2276 } else { 2277 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2278 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2279 unsigned Flags = 0; 2280 if (Record.size() >= 4) { 2281 if (Opc == Instruction::Add || 2282 Opc == Instruction::Sub || 2283 Opc == Instruction::Mul || 2284 Opc == Instruction::Shl) { 2285 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2286 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2287 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2288 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2289 } else if (Opc == Instruction::SDiv || 2290 Opc == Instruction::UDiv || 2291 Opc == Instruction::LShr || 2292 Opc == Instruction::AShr) { 2293 if (Record[3] & (1 << bitc::PEO_EXACT)) 2294 Flags |= SDivOperator::IsExact; 2295 } 2296 } 2297 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2298 } 2299 break; 2300 } 2301 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2302 if (Record.size() < 3) 2303 return error("Invalid record"); 2304 int Opc = getDecodedCastOpcode(Record[0]); 2305 if (Opc < 0) { 2306 V = UndefValue::get(CurTy); // Unknown cast. 2307 } else { 2308 Type *OpTy = getTypeByID(Record[1]); 2309 if (!OpTy) 2310 return error("Invalid record"); 2311 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2312 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2313 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2314 } 2315 break; 2316 } 2317 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2318 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2319 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2320 // operands] 2321 unsigned OpNum = 0; 2322 Type *PointeeType = nullptr; 2323 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2324 Record.size() % 2) 2325 PointeeType = getTypeByID(Record[OpNum++]); 2326 2327 bool InBounds = false; 2328 Optional<unsigned> InRangeIndex; 2329 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2330 uint64_t Op = Record[OpNum++]; 2331 InBounds = Op & 1; 2332 InRangeIndex = Op >> 1; 2333 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2334 InBounds = true; 2335 2336 SmallVector<Constant*, 16> Elts; 2337 while (OpNum != Record.size()) { 2338 Type *ElTy = getTypeByID(Record[OpNum++]); 2339 if (!ElTy) 2340 return error("Invalid record"); 2341 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2342 } 2343 2344 if (PointeeType && 2345 PointeeType != 2346 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2347 ->getElementType()) 2348 return error("Explicit gep operator type does not match pointee type " 2349 "of pointer operand"); 2350 2351 if (Elts.size() < 1) 2352 return error("Invalid gep with no operands"); 2353 2354 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2355 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2356 InBounds, InRangeIndex); 2357 break; 2358 } 2359 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2360 if (Record.size() < 3) 2361 return error("Invalid record"); 2362 2363 Type *SelectorTy = Type::getInt1Ty(Context); 2364 2365 // The selector might be an i1 or an <n x i1> 2366 // Get the type from the ValueList before getting a forward ref. 2367 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2368 if (Value *V = ValueList[Record[0]]) 2369 if (SelectorTy != V->getType()) 2370 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2371 2372 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2373 SelectorTy), 2374 ValueList.getConstantFwdRef(Record[1],CurTy), 2375 ValueList.getConstantFwdRef(Record[2],CurTy)); 2376 break; 2377 } 2378 case bitc::CST_CODE_CE_EXTRACTELT 2379 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2380 if (Record.size() < 3) 2381 return error("Invalid record"); 2382 VectorType *OpTy = 2383 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2384 if (!OpTy) 2385 return error("Invalid record"); 2386 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2387 Constant *Op1 = nullptr; 2388 if (Record.size() == 4) { 2389 Type *IdxTy = getTypeByID(Record[2]); 2390 if (!IdxTy) 2391 return error("Invalid record"); 2392 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2393 } else // TODO: Remove with llvm 4.0 2394 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2395 if (!Op1) 2396 return error("Invalid record"); 2397 V = ConstantExpr::getExtractElement(Op0, Op1); 2398 break; 2399 } 2400 case bitc::CST_CODE_CE_INSERTELT 2401 : { // CE_INSERTELT: [opval, opval, opty, opval] 2402 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2403 if (Record.size() < 3 || !OpTy) 2404 return error("Invalid record"); 2405 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2406 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2407 OpTy->getElementType()); 2408 Constant *Op2 = nullptr; 2409 if (Record.size() == 4) { 2410 Type *IdxTy = getTypeByID(Record[2]); 2411 if (!IdxTy) 2412 return error("Invalid record"); 2413 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2414 } else // TODO: Remove with llvm 4.0 2415 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2416 if (!Op2) 2417 return error("Invalid record"); 2418 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2419 break; 2420 } 2421 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2422 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2423 if (Record.size() < 3 || !OpTy) 2424 return error("Invalid record"); 2425 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2426 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2427 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2428 OpTy->getNumElements()); 2429 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2430 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2431 break; 2432 } 2433 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2434 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2435 VectorType *OpTy = 2436 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2437 if (Record.size() < 4 || !RTy || !OpTy) 2438 return error("Invalid record"); 2439 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2440 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2441 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2442 RTy->getNumElements()); 2443 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2444 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2445 break; 2446 } 2447 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2448 if (Record.size() < 4) 2449 return error("Invalid record"); 2450 Type *OpTy = getTypeByID(Record[0]); 2451 if (!OpTy) 2452 return error("Invalid record"); 2453 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2454 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2455 2456 if (OpTy->isFPOrFPVectorTy()) 2457 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2458 else 2459 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2460 break; 2461 } 2462 // This maintains backward compatibility, pre-asm dialect keywords. 2463 // FIXME: Remove with the 4.0 release. 2464 case bitc::CST_CODE_INLINEASM_OLD: { 2465 if (Record.size() < 2) 2466 return error("Invalid record"); 2467 std::string AsmStr, ConstrStr; 2468 bool HasSideEffects = Record[0] & 1; 2469 bool IsAlignStack = Record[0] >> 1; 2470 unsigned AsmStrSize = Record[1]; 2471 if (2+AsmStrSize >= Record.size()) 2472 return error("Invalid record"); 2473 unsigned ConstStrSize = Record[2+AsmStrSize]; 2474 if (3+AsmStrSize+ConstStrSize > Record.size()) 2475 return error("Invalid record"); 2476 2477 for (unsigned i = 0; i != AsmStrSize; ++i) 2478 AsmStr += (char)Record[2+i]; 2479 for (unsigned i = 0; i != ConstStrSize; ++i) 2480 ConstrStr += (char)Record[3+AsmStrSize+i]; 2481 PointerType *PTy = cast<PointerType>(CurTy); 2482 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2483 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2484 break; 2485 } 2486 // This version adds support for the asm dialect keywords (e.g., 2487 // inteldialect). 2488 case bitc::CST_CODE_INLINEASM: { 2489 if (Record.size() < 2) 2490 return error("Invalid record"); 2491 std::string AsmStr, ConstrStr; 2492 bool HasSideEffects = Record[0] & 1; 2493 bool IsAlignStack = (Record[0] >> 1) & 1; 2494 unsigned AsmDialect = Record[0] >> 2; 2495 unsigned AsmStrSize = Record[1]; 2496 if (2+AsmStrSize >= Record.size()) 2497 return error("Invalid record"); 2498 unsigned ConstStrSize = Record[2+AsmStrSize]; 2499 if (3+AsmStrSize+ConstStrSize > Record.size()) 2500 return error("Invalid record"); 2501 2502 for (unsigned i = 0; i != AsmStrSize; ++i) 2503 AsmStr += (char)Record[2+i]; 2504 for (unsigned i = 0; i != ConstStrSize; ++i) 2505 ConstrStr += (char)Record[3+AsmStrSize+i]; 2506 PointerType *PTy = cast<PointerType>(CurTy); 2507 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2508 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2509 InlineAsm::AsmDialect(AsmDialect)); 2510 break; 2511 } 2512 case bitc::CST_CODE_BLOCKADDRESS:{ 2513 if (Record.size() < 3) 2514 return error("Invalid record"); 2515 Type *FnTy = getTypeByID(Record[0]); 2516 if (!FnTy) 2517 return error("Invalid record"); 2518 Function *Fn = 2519 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2520 if (!Fn) 2521 return error("Invalid record"); 2522 2523 // If the function is already parsed we can insert the block address right 2524 // away. 2525 BasicBlock *BB; 2526 unsigned BBID = Record[2]; 2527 if (!BBID) 2528 // Invalid reference to entry block. 2529 return error("Invalid ID"); 2530 if (!Fn->empty()) { 2531 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2532 for (size_t I = 0, E = BBID; I != E; ++I) { 2533 if (BBI == BBE) 2534 return error("Invalid ID"); 2535 ++BBI; 2536 } 2537 BB = &*BBI; 2538 } else { 2539 // Otherwise insert a placeholder and remember it so it can be inserted 2540 // when the function is parsed. 2541 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2542 if (FwdBBs.empty()) 2543 BasicBlockFwdRefQueue.push_back(Fn); 2544 if (FwdBBs.size() < BBID + 1) 2545 FwdBBs.resize(BBID + 1); 2546 if (!FwdBBs[BBID]) 2547 FwdBBs[BBID] = BasicBlock::Create(Context); 2548 BB = FwdBBs[BBID]; 2549 } 2550 V = BlockAddress::get(Fn, BB); 2551 break; 2552 } 2553 } 2554 2555 ValueList.assignValue(V, NextCstNo); 2556 ++NextCstNo; 2557 } 2558 } 2559 2560 Error BitcodeReader::parseUseLists() { 2561 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2562 return error("Invalid record"); 2563 2564 // Read all the records. 2565 SmallVector<uint64_t, 64> Record; 2566 2567 while (true) { 2568 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2569 2570 switch (Entry.Kind) { 2571 case BitstreamEntry::SubBlock: // Handled for us already. 2572 case BitstreamEntry::Error: 2573 return error("Malformed block"); 2574 case BitstreamEntry::EndBlock: 2575 return Error::success(); 2576 case BitstreamEntry::Record: 2577 // The interesting case. 2578 break; 2579 } 2580 2581 // Read a use list record. 2582 Record.clear(); 2583 bool IsBB = false; 2584 switch (Stream.readRecord(Entry.ID, Record)) { 2585 default: // Default behavior: unknown type. 2586 break; 2587 case bitc::USELIST_CODE_BB: 2588 IsBB = true; 2589 LLVM_FALLTHROUGH; 2590 case bitc::USELIST_CODE_DEFAULT: { 2591 unsigned RecordLength = Record.size(); 2592 if (RecordLength < 3) 2593 // Records should have at least an ID and two indexes. 2594 return error("Invalid record"); 2595 unsigned ID = Record.back(); 2596 Record.pop_back(); 2597 2598 Value *V; 2599 if (IsBB) { 2600 assert(ID < FunctionBBs.size() && "Basic block not found"); 2601 V = FunctionBBs[ID]; 2602 } else 2603 V = ValueList[ID]; 2604 unsigned NumUses = 0; 2605 SmallDenseMap<const Use *, unsigned, 16> Order; 2606 for (const Use &U : V->materialized_uses()) { 2607 if (++NumUses > Record.size()) 2608 break; 2609 Order[&U] = Record[NumUses - 1]; 2610 } 2611 if (Order.size() != Record.size() || NumUses > Record.size()) 2612 // Mismatches can happen if the functions are being materialized lazily 2613 // (out-of-order), or a value has been upgraded. 2614 break; 2615 2616 V->sortUseList([&](const Use &L, const Use &R) { 2617 return Order.lookup(&L) < Order.lookup(&R); 2618 }); 2619 break; 2620 } 2621 } 2622 } 2623 } 2624 2625 /// When we see the block for metadata, remember where it is and then skip it. 2626 /// This lets us lazily deserialize the metadata. 2627 Error BitcodeReader::rememberAndSkipMetadata() { 2628 // Save the current stream state. 2629 uint64_t CurBit = Stream.GetCurrentBitNo(); 2630 DeferredMetadataInfo.push_back(CurBit); 2631 2632 // Skip over the block for now. 2633 if (Stream.SkipBlock()) 2634 return error("Invalid record"); 2635 return Error::success(); 2636 } 2637 2638 Error BitcodeReader::materializeMetadata() { 2639 for (uint64_t BitPos : DeferredMetadataInfo) { 2640 // Move the bit stream to the saved position. 2641 Stream.JumpToBit(BitPos); 2642 if (Error Err = MDLoader->parseModuleMetadata()) 2643 return Err; 2644 } 2645 2646 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2647 // metadata. 2648 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2649 NamedMDNode *LinkerOpts = 2650 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2651 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2652 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2653 } 2654 2655 DeferredMetadataInfo.clear(); 2656 return Error::success(); 2657 } 2658 2659 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2660 2661 /// When we see the block for a function body, remember where it is and then 2662 /// skip it. This lets us lazily deserialize the functions. 2663 Error BitcodeReader::rememberAndSkipFunctionBody() { 2664 // Get the function we are talking about. 2665 if (FunctionsWithBodies.empty()) 2666 return error("Insufficient function protos"); 2667 2668 Function *Fn = FunctionsWithBodies.back(); 2669 FunctionsWithBodies.pop_back(); 2670 2671 // Save the current stream state. 2672 uint64_t CurBit = Stream.GetCurrentBitNo(); 2673 assert( 2674 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2675 "Mismatch between VST and scanned function offsets"); 2676 DeferredFunctionInfo[Fn] = CurBit; 2677 2678 // Skip over the function block for now. 2679 if (Stream.SkipBlock()) 2680 return error("Invalid record"); 2681 return Error::success(); 2682 } 2683 2684 Error BitcodeReader::globalCleanup() { 2685 // Patch the initializers for globals and aliases up. 2686 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2687 return Err; 2688 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2689 return error("Malformed global initializer set"); 2690 2691 // Look for intrinsic functions which need to be upgraded at some point 2692 for (Function &F : *TheModule) { 2693 MDLoader->upgradeDebugIntrinsics(F); 2694 Function *NewFn; 2695 if (UpgradeIntrinsicFunction(&F, NewFn)) 2696 UpgradedIntrinsics[&F] = NewFn; 2697 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2698 // Some types could be renamed during loading if several modules are 2699 // loaded in the same LLVMContext (LTO scenario). In this case we should 2700 // remangle intrinsics names as well. 2701 RemangledIntrinsics[&F] = Remangled.getValue(); 2702 } 2703 2704 // Look for global variables which need to be renamed. 2705 for (GlobalVariable &GV : TheModule->globals()) 2706 UpgradeGlobalVariable(&GV); 2707 2708 // Force deallocation of memory for these vectors to favor the client that 2709 // want lazy deserialization. 2710 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2711 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 2712 IndirectSymbolInits); 2713 return Error::success(); 2714 } 2715 2716 /// Support for lazy parsing of function bodies. This is required if we 2717 /// either have an old bitcode file without a VST forward declaration record, 2718 /// or if we have an anonymous function being materialized, since anonymous 2719 /// functions do not have a name and are therefore not in the VST. 2720 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2721 Stream.JumpToBit(NextUnreadBit); 2722 2723 if (Stream.AtEndOfStream()) 2724 return error("Could not find function in stream"); 2725 2726 if (!SeenFirstFunctionBody) 2727 return error("Trying to materialize functions before seeing function blocks"); 2728 2729 // An old bitcode file with the symbol table at the end would have 2730 // finished the parse greedily. 2731 assert(SeenValueSymbolTable); 2732 2733 SmallVector<uint64_t, 64> Record; 2734 2735 while (true) { 2736 BitstreamEntry Entry = Stream.advance(); 2737 switch (Entry.Kind) { 2738 default: 2739 return error("Expect SubBlock"); 2740 case BitstreamEntry::SubBlock: 2741 switch (Entry.ID) { 2742 default: 2743 return error("Expect function block"); 2744 case bitc::FUNCTION_BLOCK_ID: 2745 if (Error Err = rememberAndSkipFunctionBody()) 2746 return Err; 2747 NextUnreadBit = Stream.GetCurrentBitNo(); 2748 return Error::success(); 2749 } 2750 } 2751 } 2752 } 2753 2754 bool BitcodeReaderBase::readBlockInfo() { 2755 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2756 if (!NewBlockInfo) 2757 return true; 2758 BlockInfo = std::move(*NewBlockInfo); 2759 return false; 2760 } 2761 2762 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2763 // v1: [selection_kind, name] 2764 // v2: [strtab_offset, strtab_size, selection_kind] 2765 StringRef Name; 2766 std::tie(Name, Record) = readNameFromStrtab(Record); 2767 2768 if (Record.size() < 1) 2769 return error("Invalid record"); 2770 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2771 std::string OldFormatName; 2772 if (!UseStrtab) { 2773 if (Record.size() < 2) 2774 return error("Invalid record"); 2775 unsigned ComdatNameSize = Record[1]; 2776 OldFormatName.reserve(ComdatNameSize); 2777 for (unsigned i = 0; i != ComdatNameSize; ++i) 2778 OldFormatName += (char)Record[2 + i]; 2779 Name = OldFormatName; 2780 } 2781 Comdat *C = TheModule->getOrInsertComdat(Name); 2782 C->setSelectionKind(SK); 2783 ComdatList.push_back(C); 2784 return Error::success(); 2785 } 2786 2787 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2788 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2789 // visibility, threadlocal, unnamed_addr, externally_initialized, 2790 // dllstorageclass, comdat, attributes] (name in VST) 2791 // v2: [strtab_offset, strtab_size, v1] 2792 StringRef Name; 2793 std::tie(Name, Record) = readNameFromStrtab(Record); 2794 2795 if (Record.size() < 6) 2796 return error("Invalid record"); 2797 Type *Ty = getTypeByID(Record[0]); 2798 if (!Ty) 2799 return error("Invalid record"); 2800 bool isConstant = Record[1] & 1; 2801 bool explicitType = Record[1] & 2; 2802 unsigned AddressSpace; 2803 if (explicitType) { 2804 AddressSpace = Record[1] >> 2; 2805 } else { 2806 if (!Ty->isPointerTy()) 2807 return error("Invalid type for value"); 2808 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2809 Ty = cast<PointerType>(Ty)->getElementType(); 2810 } 2811 2812 uint64_t RawLinkage = Record[3]; 2813 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2814 unsigned Alignment; 2815 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2816 return Err; 2817 std::string Section; 2818 if (Record[5]) { 2819 if (Record[5] - 1 >= SectionTable.size()) 2820 return error("Invalid ID"); 2821 Section = SectionTable[Record[5] - 1]; 2822 } 2823 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2824 // Local linkage must have default visibility. 2825 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2826 // FIXME: Change to an error if non-default in 4.0. 2827 Visibility = getDecodedVisibility(Record[6]); 2828 2829 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2830 if (Record.size() > 7) 2831 TLM = getDecodedThreadLocalMode(Record[7]); 2832 2833 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2834 if (Record.size() > 8) 2835 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2836 2837 bool ExternallyInitialized = false; 2838 if (Record.size() > 9) 2839 ExternallyInitialized = Record[9]; 2840 2841 GlobalVariable *NewGV = 2842 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2843 nullptr, TLM, AddressSpace, ExternallyInitialized); 2844 NewGV->setAlignment(Alignment); 2845 if (!Section.empty()) 2846 NewGV->setSection(Section); 2847 NewGV->setVisibility(Visibility); 2848 NewGV->setUnnamedAddr(UnnamedAddr); 2849 2850 if (Record.size() > 10) 2851 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2852 else 2853 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2854 2855 ValueList.push_back(NewGV); 2856 2857 // Remember which value to use for the global initializer. 2858 if (unsigned InitID = Record[2]) 2859 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2860 2861 if (Record.size() > 11) { 2862 if (unsigned ComdatID = Record[11]) { 2863 if (ComdatID > ComdatList.size()) 2864 return error("Invalid global variable comdat ID"); 2865 NewGV->setComdat(ComdatList[ComdatID - 1]); 2866 } 2867 } else if (hasImplicitComdat(RawLinkage)) { 2868 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2869 } 2870 2871 if (Record.size() > 12) { 2872 auto AS = getAttributes(Record[12]).getFnAttributes(); 2873 NewGV->setAttributes(AS); 2874 } 2875 return Error::success(); 2876 } 2877 2878 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2879 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2880 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2881 // prefixdata] (name in VST) 2882 // v2: [strtab_offset, strtab_size, v1] 2883 StringRef Name; 2884 std::tie(Name, Record) = readNameFromStrtab(Record); 2885 2886 if (Record.size() < 8) 2887 return error("Invalid record"); 2888 Type *Ty = getTypeByID(Record[0]); 2889 if (!Ty) 2890 return error("Invalid record"); 2891 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2892 Ty = PTy->getElementType(); 2893 auto *FTy = dyn_cast<FunctionType>(Ty); 2894 if (!FTy) 2895 return error("Invalid type for value"); 2896 auto CC = static_cast<CallingConv::ID>(Record[1]); 2897 if (CC & ~CallingConv::MaxID) 2898 return error("Invalid calling convention ID"); 2899 2900 Function *Func = 2901 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2902 2903 Func->setCallingConv(CC); 2904 bool isProto = Record[2]; 2905 uint64_t RawLinkage = Record[3]; 2906 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2907 Func->setAttributes(getAttributes(Record[4])); 2908 2909 unsigned Alignment; 2910 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2911 return Err; 2912 Func->setAlignment(Alignment); 2913 if (Record[6]) { 2914 if (Record[6] - 1 >= SectionTable.size()) 2915 return error("Invalid ID"); 2916 Func->setSection(SectionTable[Record[6] - 1]); 2917 } 2918 // Local linkage must have default visibility. 2919 if (!Func->hasLocalLinkage()) 2920 // FIXME: Change to an error if non-default in 4.0. 2921 Func->setVisibility(getDecodedVisibility(Record[7])); 2922 if (Record.size() > 8 && Record[8]) { 2923 if (Record[8] - 1 >= GCTable.size()) 2924 return error("Invalid ID"); 2925 Func->setGC(GCTable[Record[8] - 1]); 2926 } 2927 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2928 if (Record.size() > 9) 2929 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2930 Func->setUnnamedAddr(UnnamedAddr); 2931 if (Record.size() > 10 && Record[10] != 0) 2932 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2933 2934 if (Record.size() > 11) 2935 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2936 else 2937 upgradeDLLImportExportLinkage(Func, RawLinkage); 2938 2939 if (Record.size() > 12) { 2940 if (unsigned ComdatID = Record[12]) { 2941 if (ComdatID > ComdatList.size()) 2942 return error("Invalid function comdat ID"); 2943 Func->setComdat(ComdatList[ComdatID - 1]); 2944 } 2945 } else if (hasImplicitComdat(RawLinkage)) { 2946 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2947 } 2948 2949 if (Record.size() > 13 && Record[13] != 0) 2950 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2951 2952 if (Record.size() > 14 && Record[14] != 0) 2953 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2954 2955 ValueList.push_back(Func); 2956 2957 // If this is a function with a body, remember the prototype we are 2958 // creating now, so that we can match up the body with them later. 2959 if (!isProto) { 2960 Func->setIsMaterializable(true); 2961 FunctionsWithBodies.push_back(Func); 2962 DeferredFunctionInfo[Func] = 0; 2963 } 2964 return Error::success(); 2965 } 2966 2967 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 2968 unsigned BitCode, ArrayRef<uint64_t> Record) { 2969 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 2970 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 2971 // dllstorageclass] (name in VST) 2972 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 2973 // visibility, dllstorageclass] (name in VST) 2974 // v2: [strtab_offset, strtab_size, v1] 2975 StringRef Name; 2976 std::tie(Name, Record) = readNameFromStrtab(Record); 2977 2978 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 2979 if (Record.size() < (3 + (unsigned)NewRecord)) 2980 return error("Invalid record"); 2981 unsigned OpNum = 0; 2982 Type *Ty = getTypeByID(Record[OpNum++]); 2983 if (!Ty) 2984 return error("Invalid record"); 2985 2986 unsigned AddrSpace; 2987 if (!NewRecord) { 2988 auto *PTy = dyn_cast<PointerType>(Ty); 2989 if (!PTy) 2990 return error("Invalid type for value"); 2991 Ty = PTy->getElementType(); 2992 AddrSpace = PTy->getAddressSpace(); 2993 } else { 2994 AddrSpace = Record[OpNum++]; 2995 } 2996 2997 auto Val = Record[OpNum++]; 2998 auto Linkage = Record[OpNum++]; 2999 GlobalIndirectSymbol *NewGA; 3000 if (BitCode == bitc::MODULE_CODE_ALIAS || 3001 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3002 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3003 TheModule); 3004 else 3005 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3006 nullptr, TheModule); 3007 // Old bitcode files didn't have visibility field. 3008 // Local linkage must have default visibility. 3009 if (OpNum != Record.size()) { 3010 auto VisInd = OpNum++; 3011 if (!NewGA->hasLocalLinkage()) 3012 // FIXME: Change to an error if non-default in 4.0. 3013 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3014 } 3015 if (OpNum != Record.size()) 3016 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3017 else 3018 upgradeDLLImportExportLinkage(NewGA, Linkage); 3019 if (OpNum != Record.size()) 3020 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3021 if (OpNum != Record.size()) 3022 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3023 ValueList.push_back(NewGA); 3024 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3025 return Error::success(); 3026 } 3027 3028 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3029 bool ShouldLazyLoadMetadata) { 3030 if (ResumeBit) 3031 Stream.JumpToBit(ResumeBit); 3032 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3033 return error("Invalid record"); 3034 3035 SmallVector<uint64_t, 64> Record; 3036 3037 // Read all the records for this module. 3038 while (true) { 3039 BitstreamEntry Entry = Stream.advance(); 3040 3041 switch (Entry.Kind) { 3042 case BitstreamEntry::Error: 3043 return error("Malformed block"); 3044 case BitstreamEntry::EndBlock: 3045 return globalCleanup(); 3046 3047 case BitstreamEntry::SubBlock: 3048 switch (Entry.ID) { 3049 default: // Skip unknown content. 3050 if (Stream.SkipBlock()) 3051 return error("Invalid record"); 3052 break; 3053 case bitc::BLOCKINFO_BLOCK_ID: 3054 if (readBlockInfo()) 3055 return error("Malformed block"); 3056 break; 3057 case bitc::PARAMATTR_BLOCK_ID: 3058 if (Error Err = parseAttributeBlock()) 3059 return Err; 3060 break; 3061 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3062 if (Error Err = parseAttributeGroupBlock()) 3063 return Err; 3064 break; 3065 case bitc::TYPE_BLOCK_ID_NEW: 3066 if (Error Err = parseTypeTable()) 3067 return Err; 3068 break; 3069 case bitc::VALUE_SYMTAB_BLOCK_ID: 3070 if (!SeenValueSymbolTable) { 3071 // Either this is an old form VST without function index and an 3072 // associated VST forward declaration record (which would have caused 3073 // the VST to be jumped to and parsed before it was encountered 3074 // normally in the stream), or there were no function blocks to 3075 // trigger an earlier parsing of the VST. 3076 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3077 if (Error Err = parseValueSymbolTable()) 3078 return Err; 3079 SeenValueSymbolTable = true; 3080 } else { 3081 // We must have had a VST forward declaration record, which caused 3082 // the parser to jump to and parse the VST earlier. 3083 assert(VSTOffset > 0); 3084 if (Stream.SkipBlock()) 3085 return error("Invalid record"); 3086 } 3087 break; 3088 case bitc::CONSTANTS_BLOCK_ID: 3089 if (Error Err = parseConstants()) 3090 return Err; 3091 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3092 return Err; 3093 break; 3094 case bitc::METADATA_BLOCK_ID: 3095 if (ShouldLazyLoadMetadata) { 3096 if (Error Err = rememberAndSkipMetadata()) 3097 return Err; 3098 break; 3099 } 3100 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3101 if (Error Err = MDLoader->parseModuleMetadata()) 3102 return Err; 3103 break; 3104 case bitc::METADATA_KIND_BLOCK_ID: 3105 if (Error Err = MDLoader->parseMetadataKinds()) 3106 return Err; 3107 break; 3108 case bitc::FUNCTION_BLOCK_ID: 3109 // If this is the first function body we've seen, reverse the 3110 // FunctionsWithBodies list. 3111 if (!SeenFirstFunctionBody) { 3112 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3113 if (Error Err = globalCleanup()) 3114 return Err; 3115 SeenFirstFunctionBody = true; 3116 } 3117 3118 if (VSTOffset > 0) { 3119 // If we have a VST forward declaration record, make sure we 3120 // parse the VST now if we haven't already. It is needed to 3121 // set up the DeferredFunctionInfo vector for lazy reading. 3122 if (!SeenValueSymbolTable) { 3123 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3124 return Err; 3125 SeenValueSymbolTable = true; 3126 // Fall through so that we record the NextUnreadBit below. 3127 // This is necessary in case we have an anonymous function that 3128 // is later materialized. Since it will not have a VST entry we 3129 // need to fall back to the lazy parse to find its offset. 3130 } else { 3131 // If we have a VST forward declaration record, but have already 3132 // parsed the VST (just above, when the first function body was 3133 // encountered here), then we are resuming the parse after 3134 // materializing functions. The ResumeBit points to the 3135 // start of the last function block recorded in the 3136 // DeferredFunctionInfo map. Skip it. 3137 if (Stream.SkipBlock()) 3138 return error("Invalid record"); 3139 continue; 3140 } 3141 } 3142 3143 // Support older bitcode files that did not have the function 3144 // index in the VST, nor a VST forward declaration record, as 3145 // well as anonymous functions that do not have VST entries. 3146 // Build the DeferredFunctionInfo vector on the fly. 3147 if (Error Err = rememberAndSkipFunctionBody()) 3148 return Err; 3149 3150 // Suspend parsing when we reach the function bodies. Subsequent 3151 // materialization calls will resume it when necessary. If the bitcode 3152 // file is old, the symbol table will be at the end instead and will not 3153 // have been seen yet. In this case, just finish the parse now. 3154 if (SeenValueSymbolTable) { 3155 NextUnreadBit = Stream.GetCurrentBitNo(); 3156 // After the VST has been parsed, we need to make sure intrinsic name 3157 // are auto-upgraded. 3158 return globalCleanup(); 3159 } 3160 break; 3161 case bitc::USELIST_BLOCK_ID: 3162 if (Error Err = parseUseLists()) 3163 return Err; 3164 break; 3165 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3166 if (Error Err = parseOperandBundleTags()) 3167 return Err; 3168 break; 3169 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3170 if (Error Err = parseSyncScopeNames()) 3171 return Err; 3172 break; 3173 } 3174 continue; 3175 3176 case BitstreamEntry::Record: 3177 // The interesting case. 3178 break; 3179 } 3180 3181 // Read a record. 3182 auto BitCode = Stream.readRecord(Entry.ID, Record); 3183 switch (BitCode) { 3184 default: break; // Default behavior, ignore unknown content. 3185 case bitc::MODULE_CODE_VERSION: { 3186 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3187 if (!VersionOrErr) 3188 return VersionOrErr.takeError(); 3189 UseRelativeIDs = *VersionOrErr >= 1; 3190 break; 3191 } 3192 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3193 std::string S; 3194 if (convertToString(Record, 0, S)) 3195 return error("Invalid record"); 3196 TheModule->setTargetTriple(S); 3197 break; 3198 } 3199 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3200 std::string S; 3201 if (convertToString(Record, 0, S)) 3202 return error("Invalid record"); 3203 TheModule->setDataLayout(S); 3204 break; 3205 } 3206 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3207 std::string S; 3208 if (convertToString(Record, 0, S)) 3209 return error("Invalid record"); 3210 TheModule->setModuleInlineAsm(S); 3211 break; 3212 } 3213 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3214 // FIXME: Remove in 4.0. 3215 std::string S; 3216 if (convertToString(Record, 0, S)) 3217 return error("Invalid record"); 3218 // Ignore value. 3219 break; 3220 } 3221 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3222 std::string S; 3223 if (convertToString(Record, 0, S)) 3224 return error("Invalid record"); 3225 SectionTable.push_back(S); 3226 break; 3227 } 3228 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3229 std::string S; 3230 if (convertToString(Record, 0, S)) 3231 return error("Invalid record"); 3232 GCTable.push_back(S); 3233 break; 3234 } 3235 case bitc::MODULE_CODE_COMDAT: { 3236 if (Error Err = parseComdatRecord(Record)) 3237 return Err; 3238 break; 3239 } 3240 case bitc::MODULE_CODE_GLOBALVAR: { 3241 if (Error Err = parseGlobalVarRecord(Record)) 3242 return Err; 3243 break; 3244 } 3245 case bitc::MODULE_CODE_FUNCTION: { 3246 if (Error Err = parseFunctionRecord(Record)) 3247 return Err; 3248 break; 3249 } 3250 case bitc::MODULE_CODE_IFUNC: 3251 case bitc::MODULE_CODE_ALIAS: 3252 case bitc::MODULE_CODE_ALIAS_OLD: { 3253 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3254 return Err; 3255 break; 3256 } 3257 /// MODULE_CODE_VSTOFFSET: [offset] 3258 case bitc::MODULE_CODE_VSTOFFSET: 3259 if (Record.size() < 1) 3260 return error("Invalid record"); 3261 // Note that we subtract 1 here because the offset is relative to one word 3262 // before the start of the identification or module block, which was 3263 // historically always the start of the regular bitcode header. 3264 VSTOffset = Record[0] - 1; 3265 break; 3266 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3267 case bitc::MODULE_CODE_SOURCE_FILENAME: 3268 SmallString<128> ValueName; 3269 if (convertToString(Record, 0, ValueName)) 3270 return error("Invalid record"); 3271 TheModule->setSourceFileName(ValueName); 3272 break; 3273 } 3274 Record.clear(); 3275 } 3276 } 3277 3278 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3279 bool IsImporting) { 3280 TheModule = M; 3281 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3282 [&](unsigned ID) { return getTypeByID(ID); }); 3283 return parseModule(0, ShouldLazyLoadMetadata); 3284 } 3285 3286 3287 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3288 if (!isa<PointerType>(PtrType)) 3289 return error("Load/Store operand is not a pointer type"); 3290 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3291 3292 if (ValType && ValType != ElemType) 3293 return error("Explicit load/store type does not match pointee " 3294 "type of pointer operand"); 3295 if (!PointerType::isLoadableOrStorableType(ElemType)) 3296 return error("Cannot load/store from pointer"); 3297 return Error::success(); 3298 } 3299 3300 /// Lazily parse the specified function body block. 3301 Error BitcodeReader::parseFunctionBody(Function *F) { 3302 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3303 return error("Invalid record"); 3304 3305 // Unexpected unresolved metadata when parsing function. 3306 if (MDLoader->hasFwdRefs()) 3307 return error("Invalid function metadata: incoming forward references"); 3308 3309 InstructionList.clear(); 3310 unsigned ModuleValueListSize = ValueList.size(); 3311 unsigned ModuleMDLoaderSize = MDLoader->size(); 3312 3313 // Add all the function arguments to the value table. 3314 for (Argument &I : F->args()) 3315 ValueList.push_back(&I); 3316 3317 unsigned NextValueNo = ValueList.size(); 3318 BasicBlock *CurBB = nullptr; 3319 unsigned CurBBNo = 0; 3320 3321 DebugLoc LastLoc; 3322 auto getLastInstruction = [&]() -> Instruction * { 3323 if (CurBB && !CurBB->empty()) 3324 return &CurBB->back(); 3325 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3326 !FunctionBBs[CurBBNo - 1]->empty()) 3327 return &FunctionBBs[CurBBNo - 1]->back(); 3328 return nullptr; 3329 }; 3330 3331 std::vector<OperandBundleDef> OperandBundles; 3332 3333 // Read all the records. 3334 SmallVector<uint64_t, 64> Record; 3335 3336 while (true) { 3337 BitstreamEntry Entry = Stream.advance(); 3338 3339 switch (Entry.Kind) { 3340 case BitstreamEntry::Error: 3341 return error("Malformed block"); 3342 case BitstreamEntry::EndBlock: 3343 goto OutOfRecordLoop; 3344 3345 case BitstreamEntry::SubBlock: 3346 switch (Entry.ID) { 3347 default: // Skip unknown content. 3348 if (Stream.SkipBlock()) 3349 return error("Invalid record"); 3350 break; 3351 case bitc::CONSTANTS_BLOCK_ID: 3352 if (Error Err = parseConstants()) 3353 return Err; 3354 NextValueNo = ValueList.size(); 3355 break; 3356 case bitc::VALUE_SYMTAB_BLOCK_ID: 3357 if (Error Err = parseValueSymbolTable()) 3358 return Err; 3359 break; 3360 case bitc::METADATA_ATTACHMENT_ID: 3361 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3362 return Err; 3363 break; 3364 case bitc::METADATA_BLOCK_ID: 3365 assert(DeferredMetadataInfo.empty() && 3366 "Must read all module-level metadata before function-level"); 3367 if (Error Err = MDLoader->parseFunctionMetadata()) 3368 return Err; 3369 break; 3370 case bitc::USELIST_BLOCK_ID: 3371 if (Error Err = parseUseLists()) 3372 return Err; 3373 break; 3374 } 3375 continue; 3376 3377 case BitstreamEntry::Record: 3378 // The interesting case. 3379 break; 3380 } 3381 3382 // Read a record. 3383 Record.clear(); 3384 Instruction *I = nullptr; 3385 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3386 switch (BitCode) { 3387 default: // Default behavior: reject 3388 return error("Invalid value"); 3389 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3390 if (Record.size() < 1 || Record[0] == 0) 3391 return error("Invalid record"); 3392 // Create all the basic blocks for the function. 3393 FunctionBBs.resize(Record[0]); 3394 3395 // See if anything took the address of blocks in this function. 3396 auto BBFRI = BasicBlockFwdRefs.find(F); 3397 if (BBFRI == BasicBlockFwdRefs.end()) { 3398 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3399 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3400 } else { 3401 auto &BBRefs = BBFRI->second; 3402 // Check for invalid basic block references. 3403 if (BBRefs.size() > FunctionBBs.size()) 3404 return error("Invalid ID"); 3405 assert(!BBRefs.empty() && "Unexpected empty array"); 3406 assert(!BBRefs.front() && "Invalid reference to entry block"); 3407 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3408 ++I) 3409 if (I < RE && BBRefs[I]) { 3410 BBRefs[I]->insertInto(F); 3411 FunctionBBs[I] = BBRefs[I]; 3412 } else { 3413 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3414 } 3415 3416 // Erase from the table. 3417 BasicBlockFwdRefs.erase(BBFRI); 3418 } 3419 3420 CurBB = FunctionBBs[0]; 3421 continue; 3422 } 3423 3424 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3425 // This record indicates that the last instruction is at the same 3426 // location as the previous instruction with a location. 3427 I = getLastInstruction(); 3428 3429 if (!I) 3430 return error("Invalid record"); 3431 I->setDebugLoc(LastLoc); 3432 I = nullptr; 3433 continue; 3434 3435 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3436 I = getLastInstruction(); 3437 if (!I || Record.size() < 4) 3438 return error("Invalid record"); 3439 3440 unsigned Line = Record[0], Col = Record[1]; 3441 unsigned ScopeID = Record[2], IAID = Record[3]; 3442 3443 MDNode *Scope = nullptr, *IA = nullptr; 3444 if (ScopeID) { 3445 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3446 if (!Scope) 3447 return error("Invalid record"); 3448 } 3449 if (IAID) { 3450 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3451 if (!IA) 3452 return error("Invalid record"); 3453 } 3454 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3455 I->setDebugLoc(LastLoc); 3456 I = nullptr; 3457 continue; 3458 } 3459 3460 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3461 unsigned OpNum = 0; 3462 Value *LHS, *RHS; 3463 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3464 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3465 OpNum+1 > Record.size()) 3466 return error("Invalid record"); 3467 3468 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3469 if (Opc == -1) 3470 return error("Invalid record"); 3471 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3472 InstructionList.push_back(I); 3473 if (OpNum < Record.size()) { 3474 if (Opc == Instruction::Add || 3475 Opc == Instruction::Sub || 3476 Opc == Instruction::Mul || 3477 Opc == Instruction::Shl) { 3478 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3479 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3480 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3481 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3482 } else if (Opc == Instruction::SDiv || 3483 Opc == Instruction::UDiv || 3484 Opc == Instruction::LShr || 3485 Opc == Instruction::AShr) { 3486 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3487 cast<BinaryOperator>(I)->setIsExact(true); 3488 } else if (isa<FPMathOperator>(I)) { 3489 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3490 if (FMF.any()) 3491 I->setFastMathFlags(FMF); 3492 } 3493 3494 } 3495 break; 3496 } 3497 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3498 unsigned OpNum = 0; 3499 Value *Op; 3500 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3501 OpNum+2 != Record.size()) 3502 return error("Invalid record"); 3503 3504 Type *ResTy = getTypeByID(Record[OpNum]); 3505 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3506 if (Opc == -1 || !ResTy) 3507 return error("Invalid record"); 3508 Instruction *Temp = nullptr; 3509 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3510 if (Temp) { 3511 InstructionList.push_back(Temp); 3512 CurBB->getInstList().push_back(Temp); 3513 } 3514 } else { 3515 auto CastOp = (Instruction::CastOps)Opc; 3516 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3517 return error("Invalid cast"); 3518 I = CastInst::Create(CastOp, Op, ResTy); 3519 } 3520 InstructionList.push_back(I); 3521 break; 3522 } 3523 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3524 case bitc::FUNC_CODE_INST_GEP_OLD: 3525 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3526 unsigned OpNum = 0; 3527 3528 Type *Ty; 3529 bool InBounds; 3530 3531 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3532 InBounds = Record[OpNum++]; 3533 Ty = getTypeByID(Record[OpNum++]); 3534 } else { 3535 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3536 Ty = nullptr; 3537 } 3538 3539 Value *BasePtr; 3540 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3541 return error("Invalid record"); 3542 3543 if (!Ty) 3544 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3545 ->getElementType(); 3546 else if (Ty != 3547 cast<PointerType>(BasePtr->getType()->getScalarType()) 3548 ->getElementType()) 3549 return error( 3550 "Explicit gep type does not match pointee type of pointer operand"); 3551 3552 SmallVector<Value*, 16> GEPIdx; 3553 while (OpNum != Record.size()) { 3554 Value *Op; 3555 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3556 return error("Invalid record"); 3557 GEPIdx.push_back(Op); 3558 } 3559 3560 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3561 3562 InstructionList.push_back(I); 3563 if (InBounds) 3564 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3565 break; 3566 } 3567 3568 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3569 // EXTRACTVAL: [opty, opval, n x indices] 3570 unsigned OpNum = 0; 3571 Value *Agg; 3572 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3573 return error("Invalid record"); 3574 3575 unsigned RecSize = Record.size(); 3576 if (OpNum == RecSize) 3577 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3578 3579 SmallVector<unsigned, 4> EXTRACTVALIdx; 3580 Type *CurTy = Agg->getType(); 3581 for (; OpNum != RecSize; ++OpNum) { 3582 bool IsArray = CurTy->isArrayTy(); 3583 bool IsStruct = CurTy->isStructTy(); 3584 uint64_t Index = Record[OpNum]; 3585 3586 if (!IsStruct && !IsArray) 3587 return error("EXTRACTVAL: Invalid type"); 3588 if ((unsigned)Index != Index) 3589 return error("Invalid value"); 3590 if (IsStruct && Index >= CurTy->subtypes().size()) 3591 return error("EXTRACTVAL: Invalid struct index"); 3592 if (IsArray && Index >= CurTy->getArrayNumElements()) 3593 return error("EXTRACTVAL: Invalid array index"); 3594 EXTRACTVALIdx.push_back((unsigned)Index); 3595 3596 if (IsStruct) 3597 CurTy = CurTy->subtypes()[Index]; 3598 else 3599 CurTy = CurTy->subtypes()[0]; 3600 } 3601 3602 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3603 InstructionList.push_back(I); 3604 break; 3605 } 3606 3607 case bitc::FUNC_CODE_INST_INSERTVAL: { 3608 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3609 unsigned OpNum = 0; 3610 Value *Agg; 3611 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3612 return error("Invalid record"); 3613 Value *Val; 3614 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3615 return error("Invalid record"); 3616 3617 unsigned RecSize = Record.size(); 3618 if (OpNum == RecSize) 3619 return error("INSERTVAL: Invalid instruction with 0 indices"); 3620 3621 SmallVector<unsigned, 4> INSERTVALIdx; 3622 Type *CurTy = Agg->getType(); 3623 for (; OpNum != RecSize; ++OpNum) { 3624 bool IsArray = CurTy->isArrayTy(); 3625 bool IsStruct = CurTy->isStructTy(); 3626 uint64_t Index = Record[OpNum]; 3627 3628 if (!IsStruct && !IsArray) 3629 return error("INSERTVAL: Invalid type"); 3630 if ((unsigned)Index != Index) 3631 return error("Invalid value"); 3632 if (IsStruct && Index >= CurTy->subtypes().size()) 3633 return error("INSERTVAL: Invalid struct index"); 3634 if (IsArray && Index >= CurTy->getArrayNumElements()) 3635 return error("INSERTVAL: Invalid array index"); 3636 3637 INSERTVALIdx.push_back((unsigned)Index); 3638 if (IsStruct) 3639 CurTy = CurTy->subtypes()[Index]; 3640 else 3641 CurTy = CurTy->subtypes()[0]; 3642 } 3643 3644 if (CurTy != Val->getType()) 3645 return error("Inserted value type doesn't match aggregate type"); 3646 3647 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3648 InstructionList.push_back(I); 3649 break; 3650 } 3651 3652 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3653 // obsolete form of select 3654 // handles select i1 ... in old bitcode 3655 unsigned OpNum = 0; 3656 Value *TrueVal, *FalseVal, *Cond; 3657 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3658 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3659 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3660 return error("Invalid record"); 3661 3662 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3663 InstructionList.push_back(I); 3664 break; 3665 } 3666 3667 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3668 // new form of select 3669 // handles select i1 or select [N x i1] 3670 unsigned OpNum = 0; 3671 Value *TrueVal, *FalseVal, *Cond; 3672 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3673 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3674 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3675 return error("Invalid record"); 3676 3677 // select condition can be either i1 or [N x i1] 3678 if (VectorType* vector_type = 3679 dyn_cast<VectorType>(Cond->getType())) { 3680 // expect <n x i1> 3681 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3682 return error("Invalid type for value"); 3683 } else { 3684 // expect i1 3685 if (Cond->getType() != Type::getInt1Ty(Context)) 3686 return error("Invalid type for value"); 3687 } 3688 3689 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3690 InstructionList.push_back(I); 3691 break; 3692 } 3693 3694 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3695 unsigned OpNum = 0; 3696 Value *Vec, *Idx; 3697 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3698 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3699 return error("Invalid record"); 3700 if (!Vec->getType()->isVectorTy()) 3701 return error("Invalid type for value"); 3702 I = ExtractElementInst::Create(Vec, Idx); 3703 InstructionList.push_back(I); 3704 break; 3705 } 3706 3707 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3708 unsigned OpNum = 0; 3709 Value *Vec, *Elt, *Idx; 3710 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3711 return error("Invalid record"); 3712 if (!Vec->getType()->isVectorTy()) 3713 return error("Invalid type for value"); 3714 if (popValue(Record, OpNum, NextValueNo, 3715 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3716 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3717 return error("Invalid record"); 3718 I = InsertElementInst::Create(Vec, Elt, Idx); 3719 InstructionList.push_back(I); 3720 break; 3721 } 3722 3723 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3724 unsigned OpNum = 0; 3725 Value *Vec1, *Vec2, *Mask; 3726 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3727 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3728 return error("Invalid record"); 3729 3730 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3731 return error("Invalid record"); 3732 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3733 return error("Invalid type for value"); 3734 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3735 InstructionList.push_back(I); 3736 break; 3737 } 3738 3739 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3740 // Old form of ICmp/FCmp returning bool 3741 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3742 // both legal on vectors but had different behaviour. 3743 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3744 // FCmp/ICmp returning bool or vector of bool 3745 3746 unsigned OpNum = 0; 3747 Value *LHS, *RHS; 3748 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3749 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3750 return error("Invalid record"); 3751 3752 unsigned PredVal = Record[OpNum]; 3753 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3754 FastMathFlags FMF; 3755 if (IsFP && Record.size() > OpNum+1) 3756 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3757 3758 if (OpNum+1 != Record.size()) 3759 return error("Invalid record"); 3760 3761 if (LHS->getType()->isFPOrFPVectorTy()) 3762 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3763 else 3764 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3765 3766 if (FMF.any()) 3767 I->setFastMathFlags(FMF); 3768 InstructionList.push_back(I); 3769 break; 3770 } 3771 3772 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3773 { 3774 unsigned Size = Record.size(); 3775 if (Size == 0) { 3776 I = ReturnInst::Create(Context); 3777 InstructionList.push_back(I); 3778 break; 3779 } 3780 3781 unsigned OpNum = 0; 3782 Value *Op = nullptr; 3783 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3784 return error("Invalid record"); 3785 if (OpNum != Record.size()) 3786 return error("Invalid record"); 3787 3788 I = ReturnInst::Create(Context, Op); 3789 InstructionList.push_back(I); 3790 break; 3791 } 3792 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3793 if (Record.size() != 1 && Record.size() != 3) 3794 return error("Invalid record"); 3795 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3796 if (!TrueDest) 3797 return error("Invalid record"); 3798 3799 if (Record.size() == 1) { 3800 I = BranchInst::Create(TrueDest); 3801 InstructionList.push_back(I); 3802 } 3803 else { 3804 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3805 Value *Cond = getValue(Record, 2, NextValueNo, 3806 Type::getInt1Ty(Context)); 3807 if (!FalseDest || !Cond) 3808 return error("Invalid record"); 3809 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3810 InstructionList.push_back(I); 3811 } 3812 break; 3813 } 3814 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3815 if (Record.size() != 1 && Record.size() != 2) 3816 return error("Invalid record"); 3817 unsigned Idx = 0; 3818 Value *CleanupPad = 3819 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3820 if (!CleanupPad) 3821 return error("Invalid record"); 3822 BasicBlock *UnwindDest = nullptr; 3823 if (Record.size() == 2) { 3824 UnwindDest = getBasicBlock(Record[Idx++]); 3825 if (!UnwindDest) 3826 return error("Invalid record"); 3827 } 3828 3829 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3830 InstructionList.push_back(I); 3831 break; 3832 } 3833 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3834 if (Record.size() != 2) 3835 return error("Invalid record"); 3836 unsigned Idx = 0; 3837 Value *CatchPad = 3838 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3839 if (!CatchPad) 3840 return error("Invalid record"); 3841 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3842 if (!BB) 3843 return error("Invalid record"); 3844 3845 I = CatchReturnInst::Create(CatchPad, BB); 3846 InstructionList.push_back(I); 3847 break; 3848 } 3849 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3850 // We must have, at minimum, the outer scope and the number of arguments. 3851 if (Record.size() < 2) 3852 return error("Invalid record"); 3853 3854 unsigned Idx = 0; 3855 3856 Value *ParentPad = 3857 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3858 3859 unsigned NumHandlers = Record[Idx++]; 3860 3861 SmallVector<BasicBlock *, 2> Handlers; 3862 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3863 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3864 if (!BB) 3865 return error("Invalid record"); 3866 Handlers.push_back(BB); 3867 } 3868 3869 BasicBlock *UnwindDest = nullptr; 3870 if (Idx + 1 == Record.size()) { 3871 UnwindDest = getBasicBlock(Record[Idx++]); 3872 if (!UnwindDest) 3873 return error("Invalid record"); 3874 } 3875 3876 if (Record.size() != Idx) 3877 return error("Invalid record"); 3878 3879 auto *CatchSwitch = 3880 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3881 for (BasicBlock *Handler : Handlers) 3882 CatchSwitch->addHandler(Handler); 3883 I = CatchSwitch; 3884 InstructionList.push_back(I); 3885 break; 3886 } 3887 case bitc::FUNC_CODE_INST_CATCHPAD: 3888 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3889 // We must have, at minimum, the outer scope and the number of arguments. 3890 if (Record.size() < 2) 3891 return error("Invalid record"); 3892 3893 unsigned Idx = 0; 3894 3895 Value *ParentPad = 3896 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3897 3898 unsigned NumArgOperands = Record[Idx++]; 3899 3900 SmallVector<Value *, 2> Args; 3901 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3902 Value *Val; 3903 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3904 return error("Invalid record"); 3905 Args.push_back(Val); 3906 } 3907 3908 if (Record.size() != Idx) 3909 return error("Invalid record"); 3910 3911 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3912 I = CleanupPadInst::Create(ParentPad, Args); 3913 else 3914 I = CatchPadInst::Create(ParentPad, Args); 3915 InstructionList.push_back(I); 3916 break; 3917 } 3918 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3919 // Check magic 3920 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3921 // "New" SwitchInst format with case ranges. The changes to write this 3922 // format were reverted but we still recognize bitcode that uses it. 3923 // Hopefully someday we will have support for case ranges and can use 3924 // this format again. 3925 3926 Type *OpTy = getTypeByID(Record[1]); 3927 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3928 3929 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3930 BasicBlock *Default = getBasicBlock(Record[3]); 3931 if (!OpTy || !Cond || !Default) 3932 return error("Invalid record"); 3933 3934 unsigned NumCases = Record[4]; 3935 3936 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3937 InstructionList.push_back(SI); 3938 3939 unsigned CurIdx = 5; 3940 for (unsigned i = 0; i != NumCases; ++i) { 3941 SmallVector<ConstantInt*, 1> CaseVals; 3942 unsigned NumItems = Record[CurIdx++]; 3943 for (unsigned ci = 0; ci != NumItems; ++ci) { 3944 bool isSingleNumber = Record[CurIdx++]; 3945 3946 APInt Low; 3947 unsigned ActiveWords = 1; 3948 if (ValueBitWidth > 64) 3949 ActiveWords = Record[CurIdx++]; 3950 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3951 ValueBitWidth); 3952 CurIdx += ActiveWords; 3953 3954 if (!isSingleNumber) { 3955 ActiveWords = 1; 3956 if (ValueBitWidth > 64) 3957 ActiveWords = Record[CurIdx++]; 3958 APInt High = readWideAPInt( 3959 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3960 CurIdx += ActiveWords; 3961 3962 // FIXME: It is not clear whether values in the range should be 3963 // compared as signed or unsigned values. The partially 3964 // implemented changes that used this format in the past used 3965 // unsigned comparisons. 3966 for ( ; Low.ule(High); ++Low) 3967 CaseVals.push_back(ConstantInt::get(Context, Low)); 3968 } else 3969 CaseVals.push_back(ConstantInt::get(Context, Low)); 3970 } 3971 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3972 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3973 cve = CaseVals.end(); cvi != cve; ++cvi) 3974 SI->addCase(*cvi, DestBB); 3975 } 3976 I = SI; 3977 break; 3978 } 3979 3980 // Old SwitchInst format without case ranges. 3981 3982 if (Record.size() < 3 || (Record.size() & 1) == 0) 3983 return error("Invalid record"); 3984 Type *OpTy = getTypeByID(Record[0]); 3985 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3986 BasicBlock *Default = getBasicBlock(Record[2]); 3987 if (!OpTy || !Cond || !Default) 3988 return error("Invalid record"); 3989 unsigned NumCases = (Record.size()-3)/2; 3990 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3991 InstructionList.push_back(SI); 3992 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3993 ConstantInt *CaseVal = 3994 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3995 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3996 if (!CaseVal || !DestBB) { 3997 delete SI; 3998 return error("Invalid record"); 3999 } 4000 SI->addCase(CaseVal, DestBB); 4001 } 4002 I = SI; 4003 break; 4004 } 4005 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4006 if (Record.size() < 2) 4007 return error("Invalid record"); 4008 Type *OpTy = getTypeByID(Record[0]); 4009 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4010 if (!OpTy || !Address) 4011 return error("Invalid record"); 4012 unsigned NumDests = Record.size()-2; 4013 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4014 InstructionList.push_back(IBI); 4015 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4016 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4017 IBI->addDestination(DestBB); 4018 } else { 4019 delete IBI; 4020 return error("Invalid record"); 4021 } 4022 } 4023 I = IBI; 4024 break; 4025 } 4026 4027 case bitc::FUNC_CODE_INST_INVOKE: { 4028 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4029 if (Record.size() < 4) 4030 return error("Invalid record"); 4031 unsigned OpNum = 0; 4032 AttributeList PAL = getAttributes(Record[OpNum++]); 4033 unsigned CCInfo = Record[OpNum++]; 4034 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4035 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4036 4037 FunctionType *FTy = nullptr; 4038 if (CCInfo >> 13 & 1 && 4039 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4040 return error("Explicit invoke type is not a function type"); 4041 4042 Value *Callee; 4043 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4044 return error("Invalid record"); 4045 4046 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4047 if (!CalleeTy) 4048 return error("Callee is not a pointer"); 4049 if (!FTy) { 4050 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4051 if (!FTy) 4052 return error("Callee is not of pointer to function type"); 4053 } else if (CalleeTy->getElementType() != FTy) 4054 return error("Explicit invoke type does not match pointee type of " 4055 "callee operand"); 4056 if (Record.size() < FTy->getNumParams() + OpNum) 4057 return error("Insufficient operands to call"); 4058 4059 SmallVector<Value*, 16> Ops; 4060 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4061 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4062 FTy->getParamType(i))); 4063 if (!Ops.back()) 4064 return error("Invalid record"); 4065 } 4066 4067 if (!FTy->isVarArg()) { 4068 if (Record.size() != OpNum) 4069 return error("Invalid record"); 4070 } else { 4071 // Read type/value pairs for varargs params. 4072 while (OpNum != Record.size()) { 4073 Value *Op; 4074 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4075 return error("Invalid record"); 4076 Ops.push_back(Op); 4077 } 4078 } 4079 4080 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4081 OperandBundles.clear(); 4082 InstructionList.push_back(I); 4083 cast<InvokeInst>(I)->setCallingConv( 4084 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4085 cast<InvokeInst>(I)->setAttributes(PAL); 4086 break; 4087 } 4088 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4089 unsigned Idx = 0; 4090 Value *Val = nullptr; 4091 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4092 return error("Invalid record"); 4093 I = ResumeInst::Create(Val); 4094 InstructionList.push_back(I); 4095 break; 4096 } 4097 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4098 I = new UnreachableInst(Context); 4099 InstructionList.push_back(I); 4100 break; 4101 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4102 if (Record.size() < 1 || ((Record.size()-1)&1)) 4103 return error("Invalid record"); 4104 Type *Ty = getTypeByID(Record[0]); 4105 if (!Ty) 4106 return error("Invalid record"); 4107 4108 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4109 InstructionList.push_back(PN); 4110 4111 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4112 Value *V; 4113 // With the new function encoding, it is possible that operands have 4114 // negative IDs (for forward references). Use a signed VBR 4115 // representation to keep the encoding small. 4116 if (UseRelativeIDs) 4117 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4118 else 4119 V = getValue(Record, 1+i, NextValueNo, Ty); 4120 BasicBlock *BB = getBasicBlock(Record[2+i]); 4121 if (!V || !BB) 4122 return error("Invalid record"); 4123 PN->addIncoming(V, BB); 4124 } 4125 I = PN; 4126 break; 4127 } 4128 4129 case bitc::FUNC_CODE_INST_LANDINGPAD: 4130 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4131 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4132 unsigned Idx = 0; 4133 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4134 if (Record.size() < 3) 4135 return error("Invalid record"); 4136 } else { 4137 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4138 if (Record.size() < 4) 4139 return error("Invalid record"); 4140 } 4141 Type *Ty = getTypeByID(Record[Idx++]); 4142 if (!Ty) 4143 return error("Invalid record"); 4144 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4145 Value *PersFn = nullptr; 4146 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4147 return error("Invalid record"); 4148 4149 if (!F->hasPersonalityFn()) 4150 F->setPersonalityFn(cast<Constant>(PersFn)); 4151 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4152 return error("Personality function mismatch"); 4153 } 4154 4155 bool IsCleanup = !!Record[Idx++]; 4156 unsigned NumClauses = Record[Idx++]; 4157 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4158 LP->setCleanup(IsCleanup); 4159 for (unsigned J = 0; J != NumClauses; ++J) { 4160 LandingPadInst::ClauseType CT = 4161 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4162 Value *Val; 4163 4164 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4165 delete LP; 4166 return error("Invalid record"); 4167 } 4168 4169 assert((CT != LandingPadInst::Catch || 4170 !isa<ArrayType>(Val->getType())) && 4171 "Catch clause has a invalid type!"); 4172 assert((CT != LandingPadInst::Filter || 4173 isa<ArrayType>(Val->getType())) && 4174 "Filter clause has invalid type!"); 4175 LP->addClause(cast<Constant>(Val)); 4176 } 4177 4178 I = LP; 4179 InstructionList.push_back(I); 4180 break; 4181 } 4182 4183 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4184 if (Record.size() != 4) 4185 return error("Invalid record"); 4186 uint64_t AlignRecord = Record[3]; 4187 const uint64_t InAllocaMask = uint64_t(1) << 5; 4188 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4189 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4190 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4191 SwiftErrorMask; 4192 bool InAlloca = AlignRecord & InAllocaMask; 4193 bool SwiftError = AlignRecord & SwiftErrorMask; 4194 Type *Ty = getTypeByID(Record[0]); 4195 if ((AlignRecord & ExplicitTypeMask) == 0) { 4196 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4197 if (!PTy) 4198 return error("Old-style alloca with a non-pointer type"); 4199 Ty = PTy->getElementType(); 4200 } 4201 Type *OpTy = getTypeByID(Record[1]); 4202 Value *Size = getFnValueByID(Record[2], OpTy); 4203 unsigned Align; 4204 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4205 return Err; 4206 } 4207 if (!Ty || !Size) 4208 return error("Invalid record"); 4209 4210 // FIXME: Make this an optional field. 4211 const DataLayout &DL = TheModule->getDataLayout(); 4212 unsigned AS = DL.getAllocaAddrSpace(); 4213 4214 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4215 AI->setUsedWithInAlloca(InAlloca); 4216 AI->setSwiftError(SwiftError); 4217 I = AI; 4218 InstructionList.push_back(I); 4219 break; 4220 } 4221 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4222 unsigned OpNum = 0; 4223 Value *Op; 4224 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4225 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4226 return error("Invalid record"); 4227 4228 Type *Ty = nullptr; 4229 if (OpNum + 3 == Record.size()) 4230 Ty = getTypeByID(Record[OpNum++]); 4231 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4232 return Err; 4233 if (!Ty) 4234 Ty = cast<PointerType>(Op->getType())->getElementType(); 4235 4236 unsigned Align; 4237 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4238 return Err; 4239 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4240 4241 InstructionList.push_back(I); 4242 break; 4243 } 4244 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4245 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4246 unsigned OpNum = 0; 4247 Value *Op; 4248 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4249 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4250 return error("Invalid record"); 4251 4252 Type *Ty = nullptr; 4253 if (OpNum + 5 == Record.size()) 4254 Ty = getTypeByID(Record[OpNum++]); 4255 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4256 return Err; 4257 if (!Ty) 4258 Ty = cast<PointerType>(Op->getType())->getElementType(); 4259 4260 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4261 if (Ordering == AtomicOrdering::NotAtomic || 4262 Ordering == AtomicOrdering::Release || 4263 Ordering == AtomicOrdering::AcquireRelease) 4264 return error("Invalid record"); 4265 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4266 return error("Invalid record"); 4267 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4268 4269 unsigned Align; 4270 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4271 return Err; 4272 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4273 4274 InstructionList.push_back(I); 4275 break; 4276 } 4277 case bitc::FUNC_CODE_INST_STORE: 4278 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4279 unsigned OpNum = 0; 4280 Value *Val, *Ptr; 4281 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4282 (BitCode == bitc::FUNC_CODE_INST_STORE 4283 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4284 : popValue(Record, OpNum, NextValueNo, 4285 cast<PointerType>(Ptr->getType())->getElementType(), 4286 Val)) || 4287 OpNum + 2 != Record.size()) 4288 return error("Invalid record"); 4289 4290 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4291 return Err; 4292 unsigned Align; 4293 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4294 return Err; 4295 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4296 InstructionList.push_back(I); 4297 break; 4298 } 4299 case bitc::FUNC_CODE_INST_STOREATOMIC: 4300 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4301 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4302 unsigned OpNum = 0; 4303 Value *Val, *Ptr; 4304 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4305 !isa<PointerType>(Ptr->getType()) || 4306 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4307 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4308 : popValue(Record, OpNum, NextValueNo, 4309 cast<PointerType>(Ptr->getType())->getElementType(), 4310 Val)) || 4311 OpNum + 4 != Record.size()) 4312 return error("Invalid record"); 4313 4314 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4315 return Err; 4316 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4317 if (Ordering == AtomicOrdering::NotAtomic || 4318 Ordering == AtomicOrdering::Acquire || 4319 Ordering == AtomicOrdering::AcquireRelease) 4320 return error("Invalid record"); 4321 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4322 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4323 return error("Invalid record"); 4324 4325 unsigned Align; 4326 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4327 return Err; 4328 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4329 InstructionList.push_back(I); 4330 break; 4331 } 4332 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4333 case bitc::FUNC_CODE_INST_CMPXCHG: { 4334 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4335 // failureordering?, isweak?] 4336 unsigned OpNum = 0; 4337 Value *Ptr, *Cmp, *New; 4338 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4339 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4340 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4341 : popValue(Record, OpNum, NextValueNo, 4342 cast<PointerType>(Ptr->getType())->getElementType(), 4343 Cmp)) || 4344 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4345 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4346 return error("Invalid record"); 4347 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4348 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4349 SuccessOrdering == AtomicOrdering::Unordered) 4350 return error("Invalid record"); 4351 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4352 4353 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4354 return Err; 4355 AtomicOrdering FailureOrdering; 4356 if (Record.size() < 7) 4357 FailureOrdering = 4358 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4359 else 4360 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4361 4362 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4363 SSID); 4364 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4365 4366 if (Record.size() < 8) { 4367 // Before weak cmpxchgs existed, the instruction simply returned the 4368 // value loaded from memory, so bitcode files from that era will be 4369 // expecting the first component of a modern cmpxchg. 4370 CurBB->getInstList().push_back(I); 4371 I = ExtractValueInst::Create(I, 0); 4372 } else { 4373 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4374 } 4375 4376 InstructionList.push_back(I); 4377 break; 4378 } 4379 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4380 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4381 unsigned OpNum = 0; 4382 Value *Ptr, *Val; 4383 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4384 !isa<PointerType>(Ptr->getType()) || 4385 popValue(Record, OpNum, NextValueNo, 4386 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4387 OpNum+4 != Record.size()) 4388 return error("Invalid record"); 4389 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4390 if (Operation < AtomicRMWInst::FIRST_BINOP || 4391 Operation > AtomicRMWInst::LAST_BINOP) 4392 return error("Invalid record"); 4393 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4394 if (Ordering == AtomicOrdering::NotAtomic || 4395 Ordering == AtomicOrdering::Unordered) 4396 return error("Invalid record"); 4397 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4398 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4399 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4400 InstructionList.push_back(I); 4401 break; 4402 } 4403 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4404 if (2 != Record.size()) 4405 return error("Invalid record"); 4406 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4407 if (Ordering == AtomicOrdering::NotAtomic || 4408 Ordering == AtomicOrdering::Unordered || 4409 Ordering == AtomicOrdering::Monotonic) 4410 return error("Invalid record"); 4411 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4412 I = new FenceInst(Context, Ordering, SSID); 4413 InstructionList.push_back(I); 4414 break; 4415 } 4416 case bitc::FUNC_CODE_INST_CALL: { 4417 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4418 if (Record.size() < 3) 4419 return error("Invalid record"); 4420 4421 unsigned OpNum = 0; 4422 AttributeList PAL = getAttributes(Record[OpNum++]); 4423 unsigned CCInfo = Record[OpNum++]; 4424 4425 FastMathFlags FMF; 4426 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4427 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4428 if (!FMF.any()) 4429 return error("Fast math flags indicator set for call with no FMF"); 4430 } 4431 4432 FunctionType *FTy = nullptr; 4433 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4434 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4435 return error("Explicit call type is not a function type"); 4436 4437 Value *Callee; 4438 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4439 return error("Invalid record"); 4440 4441 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4442 if (!OpTy) 4443 return error("Callee is not a pointer type"); 4444 if (!FTy) { 4445 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4446 if (!FTy) 4447 return error("Callee is not of pointer to function type"); 4448 } else if (OpTy->getElementType() != FTy) 4449 return error("Explicit call type does not match pointee type of " 4450 "callee operand"); 4451 if (Record.size() < FTy->getNumParams() + OpNum) 4452 return error("Insufficient operands to call"); 4453 4454 SmallVector<Value*, 16> Args; 4455 // Read the fixed params. 4456 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4457 if (FTy->getParamType(i)->isLabelTy()) 4458 Args.push_back(getBasicBlock(Record[OpNum])); 4459 else 4460 Args.push_back(getValue(Record, OpNum, NextValueNo, 4461 FTy->getParamType(i))); 4462 if (!Args.back()) 4463 return error("Invalid record"); 4464 } 4465 4466 // Read type/value pairs for varargs params. 4467 if (!FTy->isVarArg()) { 4468 if (OpNum != Record.size()) 4469 return error("Invalid record"); 4470 } else { 4471 while (OpNum != Record.size()) { 4472 Value *Op; 4473 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4474 return error("Invalid record"); 4475 Args.push_back(Op); 4476 } 4477 } 4478 4479 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4480 OperandBundles.clear(); 4481 InstructionList.push_back(I); 4482 cast<CallInst>(I)->setCallingConv( 4483 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4484 CallInst::TailCallKind TCK = CallInst::TCK_None; 4485 if (CCInfo & 1 << bitc::CALL_TAIL) 4486 TCK = CallInst::TCK_Tail; 4487 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4488 TCK = CallInst::TCK_MustTail; 4489 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4490 TCK = CallInst::TCK_NoTail; 4491 cast<CallInst>(I)->setTailCallKind(TCK); 4492 cast<CallInst>(I)->setAttributes(PAL); 4493 if (FMF.any()) { 4494 if (!isa<FPMathOperator>(I)) 4495 return error("Fast-math-flags specified for call without " 4496 "floating-point scalar or vector return type"); 4497 I->setFastMathFlags(FMF); 4498 } 4499 break; 4500 } 4501 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4502 if (Record.size() < 3) 4503 return error("Invalid record"); 4504 Type *OpTy = getTypeByID(Record[0]); 4505 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4506 Type *ResTy = getTypeByID(Record[2]); 4507 if (!OpTy || !Op || !ResTy) 4508 return error("Invalid record"); 4509 I = new VAArgInst(Op, ResTy); 4510 InstructionList.push_back(I); 4511 break; 4512 } 4513 4514 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4515 // A call or an invoke can be optionally prefixed with some variable 4516 // number of operand bundle blocks. These blocks are read into 4517 // OperandBundles and consumed at the next call or invoke instruction. 4518 4519 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4520 return error("Invalid record"); 4521 4522 std::vector<Value *> Inputs; 4523 4524 unsigned OpNum = 1; 4525 while (OpNum != Record.size()) { 4526 Value *Op; 4527 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4528 return error("Invalid record"); 4529 Inputs.push_back(Op); 4530 } 4531 4532 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4533 continue; 4534 } 4535 } 4536 4537 // Add instruction to end of current BB. If there is no current BB, reject 4538 // this file. 4539 if (!CurBB) { 4540 I->deleteValue(); 4541 return error("Invalid instruction with no BB"); 4542 } 4543 if (!OperandBundles.empty()) { 4544 I->deleteValue(); 4545 return error("Operand bundles found with no consumer"); 4546 } 4547 CurBB->getInstList().push_back(I); 4548 4549 // If this was a terminator instruction, move to the next block. 4550 if (isa<TerminatorInst>(I)) { 4551 ++CurBBNo; 4552 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4553 } 4554 4555 // Non-void values get registered in the value table for future use. 4556 if (I && !I->getType()->isVoidTy()) 4557 ValueList.assignValue(I, NextValueNo++); 4558 } 4559 4560 OutOfRecordLoop: 4561 4562 if (!OperandBundles.empty()) 4563 return error("Operand bundles found with no consumer"); 4564 4565 // Check the function list for unresolved values. 4566 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4567 if (!A->getParent()) { 4568 // We found at least one unresolved value. Nuke them all to avoid leaks. 4569 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4570 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4571 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4572 delete A; 4573 } 4574 } 4575 return error("Never resolved value found in function"); 4576 } 4577 } 4578 4579 // Unexpected unresolved metadata about to be dropped. 4580 if (MDLoader->hasFwdRefs()) 4581 return error("Invalid function metadata: outgoing forward refs"); 4582 4583 // Trim the value list down to the size it was before we parsed this function. 4584 ValueList.shrinkTo(ModuleValueListSize); 4585 MDLoader->shrinkTo(ModuleMDLoaderSize); 4586 std::vector<BasicBlock*>().swap(FunctionBBs); 4587 return Error::success(); 4588 } 4589 4590 /// Find the function body in the bitcode stream 4591 Error BitcodeReader::findFunctionInStream( 4592 Function *F, 4593 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4594 while (DeferredFunctionInfoIterator->second == 0) { 4595 // This is the fallback handling for the old format bitcode that 4596 // didn't contain the function index in the VST, or when we have 4597 // an anonymous function which would not have a VST entry. 4598 // Assert that we have one of those two cases. 4599 assert(VSTOffset == 0 || !F->hasName()); 4600 // Parse the next body in the stream and set its position in the 4601 // DeferredFunctionInfo map. 4602 if (Error Err = rememberAndSkipFunctionBodies()) 4603 return Err; 4604 } 4605 return Error::success(); 4606 } 4607 4608 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4609 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4610 return SyncScope::ID(Val); 4611 if (Val >= SSIDs.size()) 4612 return SyncScope::System; // Map unknown synchronization scopes to system. 4613 return SSIDs[Val]; 4614 } 4615 4616 //===----------------------------------------------------------------------===// 4617 // GVMaterializer implementation 4618 //===----------------------------------------------------------------------===// 4619 4620 Error BitcodeReader::materialize(GlobalValue *GV) { 4621 Function *F = dyn_cast<Function>(GV); 4622 // If it's not a function or is already material, ignore the request. 4623 if (!F || !F->isMaterializable()) 4624 return Error::success(); 4625 4626 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4627 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4628 // If its position is recorded as 0, its body is somewhere in the stream 4629 // but we haven't seen it yet. 4630 if (DFII->second == 0) 4631 if (Error Err = findFunctionInStream(F, DFII)) 4632 return Err; 4633 4634 // Materialize metadata before parsing any function bodies. 4635 if (Error Err = materializeMetadata()) 4636 return Err; 4637 4638 // Move the bit stream to the saved position of the deferred function body. 4639 Stream.JumpToBit(DFII->second); 4640 4641 if (Error Err = parseFunctionBody(F)) 4642 return Err; 4643 F->setIsMaterializable(false); 4644 4645 if (StripDebugInfo) 4646 stripDebugInfo(*F); 4647 4648 // Upgrade any old intrinsic calls in the function. 4649 for (auto &I : UpgradedIntrinsics) { 4650 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4651 UI != UE;) { 4652 User *U = *UI; 4653 ++UI; 4654 if (CallInst *CI = dyn_cast<CallInst>(U)) 4655 UpgradeIntrinsicCall(CI, I.second); 4656 } 4657 } 4658 4659 // Update calls to the remangled intrinsics 4660 for (auto &I : RemangledIntrinsics) 4661 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4662 UI != UE;) 4663 // Don't expect any other users than call sites 4664 CallSite(*UI++).setCalledFunction(I.second); 4665 4666 // Finish fn->subprogram upgrade for materialized functions. 4667 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4668 F->setSubprogram(SP); 4669 4670 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4671 if (!MDLoader->isStrippingTBAA()) { 4672 for (auto &I : instructions(F)) { 4673 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4674 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4675 continue; 4676 MDLoader->setStripTBAA(true); 4677 stripTBAA(F->getParent()); 4678 } 4679 } 4680 4681 // Bring in any functions that this function forward-referenced via 4682 // blockaddresses. 4683 return materializeForwardReferencedFunctions(); 4684 } 4685 4686 Error BitcodeReader::materializeModule() { 4687 if (Error Err = materializeMetadata()) 4688 return Err; 4689 4690 // Promise to materialize all forward references. 4691 WillMaterializeAllForwardRefs = true; 4692 4693 // Iterate over the module, deserializing any functions that are still on 4694 // disk. 4695 for (Function &F : *TheModule) { 4696 if (Error Err = materialize(&F)) 4697 return Err; 4698 } 4699 // At this point, if there are any function bodies, parse the rest of 4700 // the bits in the module past the last function block we have recorded 4701 // through either lazy scanning or the VST. 4702 if (LastFunctionBlockBit || NextUnreadBit) 4703 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4704 ? LastFunctionBlockBit 4705 : NextUnreadBit)) 4706 return Err; 4707 4708 // Check that all block address forward references got resolved (as we 4709 // promised above). 4710 if (!BasicBlockFwdRefs.empty()) 4711 return error("Never resolved function from blockaddress"); 4712 4713 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4714 // delete the old functions to clean up. We can't do this unless the entire 4715 // module is materialized because there could always be another function body 4716 // with calls to the old function. 4717 for (auto &I : UpgradedIntrinsics) { 4718 for (auto *U : I.first->users()) { 4719 if (CallInst *CI = dyn_cast<CallInst>(U)) 4720 UpgradeIntrinsicCall(CI, I.second); 4721 } 4722 if (!I.first->use_empty()) 4723 I.first->replaceAllUsesWith(I.second); 4724 I.first->eraseFromParent(); 4725 } 4726 UpgradedIntrinsics.clear(); 4727 // Do the same for remangled intrinsics 4728 for (auto &I : RemangledIntrinsics) { 4729 I.first->replaceAllUsesWith(I.second); 4730 I.first->eraseFromParent(); 4731 } 4732 RemangledIntrinsics.clear(); 4733 4734 UpgradeDebugInfo(*TheModule); 4735 4736 UpgradeModuleFlags(*TheModule); 4737 return Error::success(); 4738 } 4739 4740 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4741 return IdentifiedStructTypes; 4742 } 4743 4744 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4745 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4746 StringRef ModulePath, unsigned ModuleId) 4747 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4748 ModulePath(ModulePath), ModuleId(ModuleId) {} 4749 4750 ModuleSummaryIndex::ModuleInfo * 4751 ModuleSummaryIndexBitcodeReader::addThisModule() { 4752 return TheIndex.addModule(ModulePath, ModuleId); 4753 } 4754 4755 std::pair<ValueInfo, GlobalValue::GUID> 4756 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4757 auto VGI = ValueIdToValueInfoMap[ValueId]; 4758 assert(VGI.first); 4759 return VGI; 4760 } 4761 4762 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4763 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4764 StringRef SourceFileName) { 4765 std::string GlobalId = 4766 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4767 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4768 auto OriginalNameID = ValueGUID; 4769 if (GlobalValue::isLocalLinkage(Linkage)) 4770 OriginalNameID = GlobalValue::getGUID(ValueName); 4771 if (PrintSummaryGUIDs) 4772 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4773 << ValueName << "\n"; 4774 ValueIdToValueInfoMap[ValueID] = 4775 std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID); 4776 } 4777 4778 // Specialized value symbol table parser used when reading module index 4779 // blocks where we don't actually create global values. The parsed information 4780 // is saved in the bitcode reader for use when later parsing summaries. 4781 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4782 uint64_t Offset, 4783 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4784 // With a strtab the VST is not required to parse the summary. 4785 if (UseStrtab) 4786 return Error::success(); 4787 4788 assert(Offset > 0 && "Expected non-zero VST offset"); 4789 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4790 4791 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4792 return error("Invalid record"); 4793 4794 SmallVector<uint64_t, 64> Record; 4795 4796 // Read all the records for this value table. 4797 SmallString<128> ValueName; 4798 4799 while (true) { 4800 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4801 4802 switch (Entry.Kind) { 4803 case BitstreamEntry::SubBlock: // Handled for us already. 4804 case BitstreamEntry::Error: 4805 return error("Malformed block"); 4806 case BitstreamEntry::EndBlock: 4807 // Done parsing VST, jump back to wherever we came from. 4808 Stream.JumpToBit(CurrentBit); 4809 return Error::success(); 4810 case BitstreamEntry::Record: 4811 // The interesting case. 4812 break; 4813 } 4814 4815 // Read a record. 4816 Record.clear(); 4817 switch (Stream.readRecord(Entry.ID, Record)) { 4818 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4819 break; 4820 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4821 if (convertToString(Record, 1, ValueName)) 4822 return error("Invalid record"); 4823 unsigned ValueID = Record[0]; 4824 assert(!SourceFileName.empty()); 4825 auto VLI = ValueIdToLinkageMap.find(ValueID); 4826 assert(VLI != ValueIdToLinkageMap.end() && 4827 "No linkage found for VST entry?"); 4828 auto Linkage = VLI->second; 4829 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4830 ValueName.clear(); 4831 break; 4832 } 4833 case bitc::VST_CODE_FNENTRY: { 4834 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4835 if (convertToString(Record, 2, ValueName)) 4836 return error("Invalid record"); 4837 unsigned ValueID = Record[0]; 4838 assert(!SourceFileName.empty()); 4839 auto VLI = ValueIdToLinkageMap.find(ValueID); 4840 assert(VLI != ValueIdToLinkageMap.end() && 4841 "No linkage found for VST entry?"); 4842 auto Linkage = VLI->second; 4843 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4844 ValueName.clear(); 4845 break; 4846 } 4847 case bitc::VST_CODE_COMBINED_ENTRY: { 4848 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4849 unsigned ValueID = Record[0]; 4850 GlobalValue::GUID RefGUID = Record[1]; 4851 // The "original name", which is the second value of the pair will be 4852 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4853 ValueIdToValueInfoMap[ValueID] = 4854 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4855 break; 4856 } 4857 } 4858 } 4859 } 4860 4861 // Parse just the blocks needed for building the index out of the module. 4862 // At the end of this routine the module Index is populated with a map 4863 // from global value id to GlobalValueSummary objects. 4864 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4865 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4866 return error("Invalid record"); 4867 4868 SmallVector<uint64_t, 64> Record; 4869 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4870 unsigned ValueId = 0; 4871 4872 // Read the index for this module. 4873 while (true) { 4874 BitstreamEntry Entry = Stream.advance(); 4875 4876 switch (Entry.Kind) { 4877 case BitstreamEntry::Error: 4878 return error("Malformed block"); 4879 case BitstreamEntry::EndBlock: 4880 return Error::success(); 4881 4882 case BitstreamEntry::SubBlock: 4883 switch (Entry.ID) { 4884 default: // Skip unknown content. 4885 if (Stream.SkipBlock()) 4886 return error("Invalid record"); 4887 break; 4888 case bitc::BLOCKINFO_BLOCK_ID: 4889 // Need to parse these to get abbrev ids (e.g. for VST) 4890 if (readBlockInfo()) 4891 return error("Malformed block"); 4892 break; 4893 case bitc::VALUE_SYMTAB_BLOCK_ID: 4894 // Should have been parsed earlier via VSTOffset, unless there 4895 // is no summary section. 4896 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4897 !SeenGlobalValSummary) && 4898 "Expected early VST parse via VSTOffset record"); 4899 if (Stream.SkipBlock()) 4900 return error("Invalid record"); 4901 break; 4902 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4903 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4904 assert(!SeenValueSymbolTable && 4905 "Already read VST when parsing summary block?"); 4906 // We might not have a VST if there were no values in the 4907 // summary. An empty summary block generated when we are 4908 // performing ThinLTO compiles so we don't later invoke 4909 // the regular LTO process on them. 4910 if (VSTOffset > 0) { 4911 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4912 return Err; 4913 SeenValueSymbolTable = true; 4914 } 4915 SeenGlobalValSummary = true; 4916 if (Error Err = parseEntireSummary(Entry.ID)) 4917 return Err; 4918 break; 4919 case bitc::MODULE_STRTAB_BLOCK_ID: 4920 if (Error Err = parseModuleStringTable()) 4921 return Err; 4922 break; 4923 } 4924 continue; 4925 4926 case BitstreamEntry::Record: { 4927 Record.clear(); 4928 auto BitCode = Stream.readRecord(Entry.ID, Record); 4929 switch (BitCode) { 4930 default: 4931 break; // Default behavior, ignore unknown content. 4932 case bitc::MODULE_CODE_VERSION: { 4933 if (Error Err = parseVersionRecord(Record).takeError()) 4934 return Err; 4935 break; 4936 } 4937 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4938 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4939 SmallString<128> ValueName; 4940 if (convertToString(Record, 0, ValueName)) 4941 return error("Invalid record"); 4942 SourceFileName = ValueName.c_str(); 4943 break; 4944 } 4945 /// MODULE_CODE_HASH: [5*i32] 4946 case bitc::MODULE_CODE_HASH: { 4947 if (Record.size() != 5) 4948 return error("Invalid hash length " + Twine(Record.size()).str()); 4949 auto &Hash = addThisModule()->second.second; 4950 int Pos = 0; 4951 for (auto &Val : Record) { 4952 assert(!(Val >> 32) && "Unexpected high bits set"); 4953 Hash[Pos++] = Val; 4954 } 4955 break; 4956 } 4957 /// MODULE_CODE_VSTOFFSET: [offset] 4958 case bitc::MODULE_CODE_VSTOFFSET: 4959 if (Record.size() < 1) 4960 return error("Invalid record"); 4961 // Note that we subtract 1 here because the offset is relative to one 4962 // word before the start of the identification or module block, which 4963 // was historically always the start of the regular bitcode header. 4964 VSTOffset = Record[0] - 1; 4965 break; 4966 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 4967 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 4968 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 4969 // v2: [strtab offset, strtab size, v1] 4970 case bitc::MODULE_CODE_GLOBALVAR: 4971 case bitc::MODULE_CODE_FUNCTION: 4972 case bitc::MODULE_CODE_ALIAS: { 4973 StringRef Name; 4974 ArrayRef<uint64_t> GVRecord; 4975 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 4976 if (GVRecord.size() <= 3) 4977 return error("Invalid record"); 4978 uint64_t RawLinkage = GVRecord[3]; 4979 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4980 if (!UseStrtab) { 4981 ValueIdToLinkageMap[ValueId++] = Linkage; 4982 break; 4983 } 4984 4985 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 4986 break; 4987 } 4988 } 4989 } 4990 continue; 4991 } 4992 } 4993 } 4994 4995 std::vector<ValueInfo> 4996 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 4997 std::vector<ValueInfo> Ret; 4998 Ret.reserve(Record.size()); 4999 for (uint64_t RefValueId : Record) 5000 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5001 return Ret; 5002 } 5003 5004 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 5005 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 5006 std::vector<FunctionSummary::EdgeTy> Ret; 5007 Ret.reserve(Record.size()); 5008 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5009 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5010 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5011 if (IsOldProfileFormat) { 5012 I += 1; // Skip old callsitecount field 5013 if (HasProfile) 5014 I += 1; // Skip old profilecount field 5015 } else if (HasProfile) 5016 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5017 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}}); 5018 } 5019 return Ret; 5020 } 5021 5022 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5023 // objects in the index. 5024 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5025 if (Stream.EnterSubBlock(ID)) 5026 return error("Invalid record"); 5027 SmallVector<uint64_t, 64> Record; 5028 5029 // Parse version 5030 { 5031 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5032 if (Entry.Kind != BitstreamEntry::Record) 5033 return error("Invalid Summary Block: record for version expected"); 5034 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5035 return error("Invalid Summary Block: version expected"); 5036 } 5037 const uint64_t Version = Record[0]; 5038 const bool IsOldProfileFormat = Version == 1; 5039 if (Version < 1 || Version > 3) 5040 return error("Invalid summary version " + Twine(Version) + 5041 ", 1, 2 or 3 expected"); 5042 Record.clear(); 5043 5044 // Keep around the last seen summary to be used when we see an optional 5045 // "OriginalName" attachement. 5046 GlobalValueSummary *LastSeenSummary = nullptr; 5047 GlobalValue::GUID LastSeenGUID = 0; 5048 5049 // We can expect to see any number of type ID information records before 5050 // each function summary records; these variables store the information 5051 // collected so far so that it can be used to create the summary object. 5052 std::vector<GlobalValue::GUID> PendingTypeTests; 5053 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5054 PendingTypeCheckedLoadVCalls; 5055 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5056 PendingTypeCheckedLoadConstVCalls; 5057 5058 while (true) { 5059 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5060 5061 switch (Entry.Kind) { 5062 case BitstreamEntry::SubBlock: // Handled for us already. 5063 case BitstreamEntry::Error: 5064 return error("Malformed block"); 5065 case BitstreamEntry::EndBlock: 5066 return Error::success(); 5067 case BitstreamEntry::Record: 5068 // The interesting case. 5069 break; 5070 } 5071 5072 // Read a record. The record format depends on whether this 5073 // is a per-module index or a combined index file. In the per-module 5074 // case the records contain the associated value's ID for correlation 5075 // with VST entries. In the combined index the correlation is done 5076 // via the bitcode offset of the summary records (which were saved 5077 // in the combined index VST entries). The records also contain 5078 // information used for ThinLTO renaming and importing. 5079 Record.clear(); 5080 auto BitCode = Stream.readRecord(Entry.ID, Record); 5081 switch (BitCode) { 5082 default: // Default behavior: ignore. 5083 break; 5084 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5085 uint64_t ValueID = Record[0]; 5086 GlobalValue::GUID RefGUID = Record[1]; 5087 ValueIdToValueInfoMap[ValueID] = 5088 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5089 break; 5090 } 5091 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 5092 // n x (valueid)] 5093 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 5094 // numrefs x valueid, 5095 // n x (valueid, hotness)] 5096 case bitc::FS_PERMODULE: 5097 case bitc::FS_PERMODULE_PROFILE: { 5098 unsigned ValueID = Record[0]; 5099 uint64_t RawFlags = Record[1]; 5100 unsigned InstCount = Record[2]; 5101 unsigned NumRefs = Record[3]; 5102 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5103 // The module path string ref set in the summary must be owned by the 5104 // index's module string table. Since we don't have a module path 5105 // string table section in the per-module index, we create a single 5106 // module path string table entry with an empty (0) ID to take 5107 // ownership. 5108 static int RefListStartIndex = 4; 5109 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5110 assert(Record.size() >= RefListStartIndex + NumRefs && 5111 "Record size inconsistent with number of references"); 5112 std::vector<ValueInfo> Refs = makeRefList( 5113 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5114 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5115 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5116 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5117 IsOldProfileFormat, HasProfile); 5118 auto FS = llvm::make_unique<FunctionSummary>( 5119 Flags, InstCount, std::move(Refs), std::move(Calls), 5120 std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls), 5121 std::move(PendingTypeCheckedLoadVCalls), 5122 std::move(PendingTypeTestAssumeConstVCalls), 5123 std::move(PendingTypeCheckedLoadConstVCalls)); 5124 PendingTypeTests.clear(); 5125 PendingTypeTestAssumeVCalls.clear(); 5126 PendingTypeCheckedLoadVCalls.clear(); 5127 PendingTypeTestAssumeConstVCalls.clear(); 5128 PendingTypeCheckedLoadConstVCalls.clear(); 5129 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5130 FS->setModulePath(addThisModule()->first()); 5131 FS->setOriginalName(VIAndOriginalGUID.second); 5132 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5133 break; 5134 } 5135 // FS_ALIAS: [valueid, flags, valueid] 5136 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5137 // they expect all aliasee summaries to be available. 5138 case bitc::FS_ALIAS: { 5139 unsigned ValueID = Record[0]; 5140 uint64_t RawFlags = Record[1]; 5141 unsigned AliaseeID = Record[2]; 5142 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5143 auto AS = 5144 llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5145 // The module path string ref set in the summary must be owned by the 5146 // index's module string table. Since we don't have a module path 5147 // string table section in the per-module index, we create a single 5148 // module path string table entry with an empty (0) ID to take 5149 // ownership. 5150 AS->setModulePath(addThisModule()->first()); 5151 5152 GlobalValue::GUID AliaseeGUID = 5153 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5154 auto AliaseeInModule = 5155 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5156 if (!AliaseeInModule) 5157 return error("Alias expects aliasee summary to be parsed"); 5158 AS->setAliasee(AliaseeInModule); 5159 5160 auto GUID = getValueInfoFromValueId(ValueID); 5161 AS->setOriginalName(GUID.second); 5162 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5163 break; 5164 } 5165 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5166 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5167 unsigned ValueID = Record[0]; 5168 uint64_t RawFlags = Record[1]; 5169 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5170 std::vector<ValueInfo> Refs = 5171 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5172 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5173 FS->setModulePath(addThisModule()->first()); 5174 auto GUID = getValueInfoFromValueId(ValueID); 5175 FS->setOriginalName(GUID.second); 5176 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5177 break; 5178 } 5179 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 5180 // numrefs x valueid, n x (valueid)] 5181 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 5182 // numrefs x valueid, n x (valueid, hotness)] 5183 case bitc::FS_COMBINED: 5184 case bitc::FS_COMBINED_PROFILE: { 5185 unsigned ValueID = Record[0]; 5186 uint64_t ModuleId = Record[1]; 5187 uint64_t RawFlags = Record[2]; 5188 unsigned InstCount = Record[3]; 5189 unsigned NumRefs = Record[4]; 5190 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5191 static int RefListStartIndex = 5; 5192 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5193 assert(Record.size() >= RefListStartIndex + NumRefs && 5194 "Record size inconsistent with number of references"); 5195 std::vector<ValueInfo> Refs = makeRefList( 5196 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5197 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5198 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5199 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5200 IsOldProfileFormat, HasProfile); 5201 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5202 auto FS = llvm::make_unique<FunctionSummary>( 5203 Flags, InstCount, std::move(Refs), std::move(Edges), 5204 std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls), 5205 std::move(PendingTypeCheckedLoadVCalls), 5206 std::move(PendingTypeTestAssumeConstVCalls), 5207 std::move(PendingTypeCheckedLoadConstVCalls)); 5208 PendingTypeTests.clear(); 5209 PendingTypeTestAssumeVCalls.clear(); 5210 PendingTypeCheckedLoadVCalls.clear(); 5211 PendingTypeTestAssumeConstVCalls.clear(); 5212 PendingTypeCheckedLoadConstVCalls.clear(); 5213 LastSeenSummary = FS.get(); 5214 LastSeenGUID = VI.getGUID(); 5215 FS->setModulePath(ModuleIdMap[ModuleId]); 5216 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5217 break; 5218 } 5219 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5220 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5221 // they expect all aliasee summaries to be available. 5222 case bitc::FS_COMBINED_ALIAS: { 5223 unsigned ValueID = Record[0]; 5224 uint64_t ModuleId = Record[1]; 5225 uint64_t RawFlags = Record[2]; 5226 unsigned AliaseeValueId = Record[3]; 5227 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5228 auto AS = llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5229 LastSeenSummary = AS.get(); 5230 AS->setModulePath(ModuleIdMap[ModuleId]); 5231 5232 auto AliaseeGUID = 5233 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5234 auto AliaseeInModule = 5235 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5236 if (!AliaseeInModule) 5237 return error("Alias expects aliasee summary to be parsed"); 5238 AS->setAliasee(AliaseeInModule); 5239 5240 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5241 LastSeenGUID = VI.getGUID(); 5242 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5243 break; 5244 } 5245 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5246 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5247 unsigned ValueID = Record[0]; 5248 uint64_t ModuleId = Record[1]; 5249 uint64_t RawFlags = Record[2]; 5250 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5251 std::vector<ValueInfo> Refs = 5252 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5253 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5254 LastSeenSummary = FS.get(); 5255 FS->setModulePath(ModuleIdMap[ModuleId]); 5256 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5257 LastSeenGUID = VI.getGUID(); 5258 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5259 break; 5260 } 5261 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5262 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5263 uint64_t OriginalName = Record[0]; 5264 if (!LastSeenSummary) 5265 return error("Name attachment that does not follow a combined record"); 5266 LastSeenSummary->setOriginalName(OriginalName); 5267 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5268 // Reset the LastSeenSummary 5269 LastSeenSummary = nullptr; 5270 LastSeenGUID = 0; 5271 break; 5272 } 5273 case bitc::FS_TYPE_TESTS: { 5274 assert(PendingTypeTests.empty()); 5275 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5276 Record.end()); 5277 break; 5278 } 5279 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: { 5280 assert(PendingTypeTestAssumeVCalls.empty()); 5281 for (unsigned I = 0; I != Record.size(); I += 2) 5282 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5283 break; 5284 } 5285 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: { 5286 assert(PendingTypeCheckedLoadVCalls.empty()); 5287 for (unsigned I = 0; I != Record.size(); I += 2) 5288 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5289 break; 5290 } 5291 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: { 5292 PendingTypeTestAssumeConstVCalls.push_back( 5293 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5294 break; 5295 } 5296 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: { 5297 PendingTypeCheckedLoadConstVCalls.push_back( 5298 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5299 break; 5300 } 5301 case bitc::FS_CFI_FUNCTION_DEFS: { 5302 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5303 for (unsigned I = 0; I != Record.size(); I += 2) 5304 CfiFunctionDefs.insert( 5305 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5306 break; 5307 } 5308 case bitc::FS_CFI_FUNCTION_DECLS: { 5309 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5310 for (unsigned I = 0; I != Record.size(); I += 2) 5311 CfiFunctionDecls.insert( 5312 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5313 break; 5314 } 5315 } 5316 } 5317 llvm_unreachable("Exit infinite loop"); 5318 } 5319 5320 // Parse the module string table block into the Index. 5321 // This populates the ModulePathStringTable map in the index. 5322 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5323 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5324 return error("Invalid record"); 5325 5326 SmallVector<uint64_t, 64> Record; 5327 5328 SmallString<128> ModulePath; 5329 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5330 5331 while (true) { 5332 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5333 5334 switch (Entry.Kind) { 5335 case BitstreamEntry::SubBlock: // Handled for us already. 5336 case BitstreamEntry::Error: 5337 return error("Malformed block"); 5338 case BitstreamEntry::EndBlock: 5339 return Error::success(); 5340 case BitstreamEntry::Record: 5341 // The interesting case. 5342 break; 5343 } 5344 5345 Record.clear(); 5346 switch (Stream.readRecord(Entry.ID, Record)) { 5347 default: // Default behavior: ignore. 5348 break; 5349 case bitc::MST_CODE_ENTRY: { 5350 // MST_ENTRY: [modid, namechar x N] 5351 uint64_t ModuleId = Record[0]; 5352 5353 if (convertToString(Record, 1, ModulePath)) 5354 return error("Invalid record"); 5355 5356 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5357 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5358 5359 ModulePath.clear(); 5360 break; 5361 } 5362 /// MST_CODE_HASH: [5*i32] 5363 case bitc::MST_CODE_HASH: { 5364 if (Record.size() != 5) 5365 return error("Invalid hash length " + Twine(Record.size()).str()); 5366 if (!LastSeenModule) 5367 return error("Invalid hash that does not follow a module path"); 5368 int Pos = 0; 5369 for (auto &Val : Record) { 5370 assert(!(Val >> 32) && "Unexpected high bits set"); 5371 LastSeenModule->second.second[Pos++] = Val; 5372 } 5373 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5374 LastSeenModule = nullptr; 5375 break; 5376 } 5377 } 5378 } 5379 llvm_unreachable("Exit infinite loop"); 5380 } 5381 5382 namespace { 5383 5384 // FIXME: This class is only here to support the transition to llvm::Error. It 5385 // will be removed once this transition is complete. Clients should prefer to 5386 // deal with the Error value directly, rather than converting to error_code. 5387 class BitcodeErrorCategoryType : public std::error_category { 5388 const char *name() const noexcept override { 5389 return "llvm.bitcode"; 5390 } 5391 std::string message(int IE) const override { 5392 BitcodeError E = static_cast<BitcodeError>(IE); 5393 switch (E) { 5394 case BitcodeError::CorruptedBitcode: 5395 return "Corrupted bitcode"; 5396 } 5397 llvm_unreachable("Unknown error type!"); 5398 } 5399 }; 5400 5401 } // end anonymous namespace 5402 5403 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5404 5405 const std::error_category &llvm::BitcodeErrorCategory() { 5406 return *ErrorCategory; 5407 } 5408 5409 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5410 unsigned Block, unsigned RecordID) { 5411 if (Stream.EnterSubBlock(Block)) 5412 return error("Invalid record"); 5413 5414 StringRef Strtab; 5415 while (1) { 5416 BitstreamEntry Entry = Stream.advance(); 5417 switch (Entry.Kind) { 5418 case BitstreamEntry::EndBlock: 5419 return Strtab; 5420 5421 case BitstreamEntry::Error: 5422 return error("Malformed block"); 5423 5424 case BitstreamEntry::SubBlock: 5425 if (Stream.SkipBlock()) 5426 return error("Malformed block"); 5427 break; 5428 5429 case BitstreamEntry::Record: 5430 StringRef Blob; 5431 SmallVector<uint64_t, 1> Record; 5432 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5433 Strtab = Blob; 5434 break; 5435 } 5436 } 5437 } 5438 5439 //===----------------------------------------------------------------------===// 5440 // External interface 5441 //===----------------------------------------------------------------------===// 5442 5443 Expected<std::vector<BitcodeModule>> 5444 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5445 auto FOrErr = getBitcodeFileContents(Buffer); 5446 if (!FOrErr) 5447 return FOrErr.takeError(); 5448 return std::move(FOrErr->Mods); 5449 } 5450 5451 Expected<BitcodeFileContents> 5452 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5453 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5454 if (!StreamOrErr) 5455 return StreamOrErr.takeError(); 5456 BitstreamCursor &Stream = *StreamOrErr; 5457 5458 BitcodeFileContents F; 5459 while (true) { 5460 uint64_t BCBegin = Stream.getCurrentByteNo(); 5461 5462 // We may be consuming bitcode from a client that leaves garbage at the end 5463 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5464 // the end that there cannot possibly be another module, stop looking. 5465 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5466 return F; 5467 5468 BitstreamEntry Entry = Stream.advance(); 5469 switch (Entry.Kind) { 5470 case BitstreamEntry::EndBlock: 5471 case BitstreamEntry::Error: 5472 return error("Malformed block"); 5473 5474 case BitstreamEntry::SubBlock: { 5475 uint64_t IdentificationBit = -1ull; 5476 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5477 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5478 if (Stream.SkipBlock()) 5479 return error("Malformed block"); 5480 5481 Entry = Stream.advance(); 5482 if (Entry.Kind != BitstreamEntry::SubBlock || 5483 Entry.ID != bitc::MODULE_BLOCK_ID) 5484 return error("Malformed block"); 5485 } 5486 5487 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5488 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5489 if (Stream.SkipBlock()) 5490 return error("Malformed block"); 5491 5492 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5493 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5494 Buffer.getBufferIdentifier(), IdentificationBit, 5495 ModuleBit}); 5496 continue; 5497 } 5498 5499 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5500 Expected<StringRef> Strtab = 5501 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5502 if (!Strtab) 5503 return Strtab.takeError(); 5504 // This string table is used by every preceding bitcode module that does 5505 // not have its own string table. A bitcode file may have multiple 5506 // string tables if it was created by binary concatenation, for example 5507 // with "llvm-cat -b". 5508 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5509 if (!I->Strtab.empty()) 5510 break; 5511 I->Strtab = *Strtab; 5512 } 5513 // Similarly, the string table is used by every preceding symbol table; 5514 // normally there will be just one unless the bitcode file was created 5515 // by binary concatenation. 5516 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5517 F.StrtabForSymtab = *Strtab; 5518 continue; 5519 } 5520 5521 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5522 Expected<StringRef> SymtabOrErr = 5523 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5524 if (!SymtabOrErr) 5525 return SymtabOrErr.takeError(); 5526 5527 // We can expect the bitcode file to have multiple symbol tables if it 5528 // was created by binary concatenation. In that case we silently 5529 // ignore any subsequent symbol tables, which is fine because this is a 5530 // low level function. The client is expected to notice that the number 5531 // of modules in the symbol table does not match the number of modules 5532 // in the input file and regenerate the symbol table. 5533 if (F.Symtab.empty()) 5534 F.Symtab = *SymtabOrErr; 5535 continue; 5536 } 5537 5538 if (Stream.SkipBlock()) 5539 return error("Malformed block"); 5540 continue; 5541 } 5542 case BitstreamEntry::Record: 5543 Stream.skipRecord(Entry.ID); 5544 continue; 5545 } 5546 } 5547 } 5548 5549 /// \brief Get a lazy one-at-time loading module from bitcode. 5550 /// 5551 /// This isn't always used in a lazy context. In particular, it's also used by 5552 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5553 /// in forward-referenced functions from block address references. 5554 /// 5555 /// \param[in] MaterializeAll Set to \c true if we should materialize 5556 /// everything. 5557 Expected<std::unique_ptr<Module>> 5558 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5559 bool ShouldLazyLoadMetadata, bool IsImporting) { 5560 BitstreamCursor Stream(Buffer); 5561 5562 std::string ProducerIdentification; 5563 if (IdentificationBit != -1ull) { 5564 Stream.JumpToBit(IdentificationBit); 5565 Expected<std::string> ProducerIdentificationOrErr = 5566 readIdentificationBlock(Stream); 5567 if (!ProducerIdentificationOrErr) 5568 return ProducerIdentificationOrErr.takeError(); 5569 5570 ProducerIdentification = *ProducerIdentificationOrErr; 5571 } 5572 5573 Stream.JumpToBit(ModuleBit); 5574 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5575 Context); 5576 5577 std::unique_ptr<Module> M = 5578 llvm::make_unique<Module>(ModuleIdentifier, Context); 5579 M->setMaterializer(R); 5580 5581 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5582 if (Error Err = 5583 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5584 return std::move(Err); 5585 5586 if (MaterializeAll) { 5587 // Read in the entire module, and destroy the BitcodeReader. 5588 if (Error Err = M->materializeAll()) 5589 return std::move(Err); 5590 } else { 5591 // Resolve forward references from blockaddresses. 5592 if (Error Err = R->materializeForwardReferencedFunctions()) 5593 return std::move(Err); 5594 } 5595 return std::move(M); 5596 } 5597 5598 Expected<std::unique_ptr<Module>> 5599 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5600 bool IsImporting) { 5601 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5602 } 5603 5604 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5605 // We don't use ModuleIdentifier here because the client may need to control the 5606 // module path used in the combined summary (e.g. when reading summaries for 5607 // regular LTO modules). 5608 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5609 StringRef ModulePath, uint64_t ModuleId) { 5610 BitstreamCursor Stream(Buffer); 5611 Stream.JumpToBit(ModuleBit); 5612 5613 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5614 ModulePath, ModuleId); 5615 return R.parseModule(); 5616 } 5617 5618 // Parse the specified bitcode buffer, returning the function info index. 5619 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5620 BitstreamCursor Stream(Buffer); 5621 Stream.JumpToBit(ModuleBit); 5622 5623 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5624 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5625 ModuleIdentifier, 0); 5626 5627 if (Error Err = R.parseModule()) 5628 return std::move(Err); 5629 5630 return std::move(Index); 5631 } 5632 5633 // Check if the given bitcode buffer contains a global value summary block. 5634 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5635 BitstreamCursor Stream(Buffer); 5636 Stream.JumpToBit(ModuleBit); 5637 5638 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5639 return error("Invalid record"); 5640 5641 while (true) { 5642 BitstreamEntry Entry = Stream.advance(); 5643 5644 switch (Entry.Kind) { 5645 case BitstreamEntry::Error: 5646 return error("Malformed block"); 5647 case BitstreamEntry::EndBlock: 5648 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5649 5650 case BitstreamEntry::SubBlock: 5651 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5652 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5653 5654 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5655 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5656 5657 // Ignore other sub-blocks. 5658 if (Stream.SkipBlock()) 5659 return error("Malformed block"); 5660 continue; 5661 5662 case BitstreamEntry::Record: 5663 Stream.skipRecord(Entry.ID); 5664 continue; 5665 } 5666 } 5667 } 5668 5669 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5670 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5671 if (!MsOrErr) 5672 return MsOrErr.takeError(); 5673 5674 if (MsOrErr->size() != 1) 5675 return error("Expected a single module"); 5676 5677 return (*MsOrErr)[0]; 5678 } 5679 5680 Expected<std::unique_ptr<Module>> 5681 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5682 bool ShouldLazyLoadMetadata, bool IsImporting) { 5683 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5684 if (!BM) 5685 return BM.takeError(); 5686 5687 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5688 } 5689 5690 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5691 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5692 bool ShouldLazyLoadMetadata, bool IsImporting) { 5693 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5694 IsImporting); 5695 if (MOrErr) 5696 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5697 return MOrErr; 5698 } 5699 5700 Expected<std::unique_ptr<Module>> 5701 BitcodeModule::parseModule(LLVMContext &Context) { 5702 return getModuleImpl(Context, true, false, false); 5703 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5704 // written. We must defer until the Module has been fully materialized. 5705 } 5706 5707 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5708 LLVMContext &Context) { 5709 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5710 if (!BM) 5711 return BM.takeError(); 5712 5713 return BM->parseModule(Context); 5714 } 5715 5716 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5717 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5718 if (!StreamOrErr) 5719 return StreamOrErr.takeError(); 5720 5721 return readTriple(*StreamOrErr); 5722 } 5723 5724 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5725 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5726 if (!StreamOrErr) 5727 return StreamOrErr.takeError(); 5728 5729 return hasObjCCategory(*StreamOrErr); 5730 } 5731 5732 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5733 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5734 if (!StreamOrErr) 5735 return StreamOrErr.takeError(); 5736 5737 return readIdentificationCode(*StreamOrErr); 5738 } 5739 5740 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5741 ModuleSummaryIndex &CombinedIndex, 5742 uint64_t ModuleId) { 5743 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5744 if (!BM) 5745 return BM.takeError(); 5746 5747 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5748 } 5749 5750 Expected<std::unique_ptr<ModuleSummaryIndex>> 5751 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5752 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5753 if (!BM) 5754 return BM.takeError(); 5755 5756 return BM->getSummary(); 5757 } 5758 5759 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5760 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5761 if (!BM) 5762 return BM.takeError(); 5763 5764 return BM->getLTOInfo(); 5765 } 5766 5767 Expected<std::unique_ptr<ModuleSummaryIndex>> 5768 llvm::getModuleSummaryIndexForFile(StringRef Path, 5769 bool IgnoreEmptyThinLTOIndexFile) { 5770 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5771 MemoryBuffer::getFileOrSTDIN(Path); 5772 if (!FileOrErr) 5773 return errorCodeToError(FileOrErr.getError()); 5774 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5775 return nullptr; 5776 return getModuleSummaryIndex(**FileOrErr); 5777 } 5778