1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalObject.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/IR/ValueSymbolTable.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || ValidateEndOfModule() || 75 ValidateEndOfIndex(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 if (!M) 124 return false; 125 // Handle any function attribute group forward references. 126 for (const auto &RAG : ForwardRefAttrGroups) { 127 Value *V = RAG.first; 128 const std::vector<unsigned> &Attrs = RAG.second; 129 AttrBuilder B; 130 131 for (const auto &Attr : Attrs) 132 B.merge(NumberedAttrBuilders[Attr]); 133 134 if (Function *Fn = dyn_cast<Function>(V)) { 135 AttributeList AS = Fn->getAttributes(); 136 AttrBuilder FnAttrs(AS.getFnAttributes()); 137 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 138 139 FnAttrs.merge(B); 140 141 // If the alignment was parsed as an attribute, move to the alignment 142 // field. 143 if (FnAttrs.hasAlignmentAttr()) { 144 Fn->setAlignment(FnAttrs.getAlignment()); 145 FnAttrs.removeAttribute(Attribute::Alignment); 146 } 147 148 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 149 AttributeSet::get(Context, FnAttrs)); 150 Fn->setAttributes(AS); 151 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 152 AttributeList AS = CI->getAttributes(); 153 AttrBuilder FnAttrs(AS.getFnAttributes()); 154 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 155 FnAttrs.merge(B); 156 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 157 AttributeSet::get(Context, FnAttrs)); 158 CI->setAttributes(AS); 159 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 160 AttributeList AS = II->getAttributes(); 161 AttrBuilder FnAttrs(AS.getFnAttributes()); 162 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 163 FnAttrs.merge(B); 164 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 165 AttributeSet::get(Context, FnAttrs)); 166 II->setAttributes(AS); 167 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 168 AttrBuilder Attrs(GV->getAttributes()); 169 Attrs.merge(B); 170 GV->setAttributes(AttributeSet::get(Context,Attrs)); 171 } else { 172 llvm_unreachable("invalid object with forward attribute group reference"); 173 } 174 } 175 176 // If there are entries in ForwardRefBlockAddresses at this point, the 177 // function was never defined. 178 if (!ForwardRefBlockAddresses.empty()) 179 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 180 "expected function name in blockaddress"); 181 182 for (const auto &NT : NumberedTypes) 183 if (NT.second.second.isValid()) 184 return Error(NT.second.second, 185 "use of undefined type '%" + Twine(NT.first) + "'"); 186 187 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 188 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 189 if (I->second.second.isValid()) 190 return Error(I->second.second, 191 "use of undefined type named '" + I->getKey() + "'"); 192 193 if (!ForwardRefComdats.empty()) 194 return Error(ForwardRefComdats.begin()->second, 195 "use of undefined comdat '$" + 196 ForwardRefComdats.begin()->first + "'"); 197 198 if (!ForwardRefVals.empty()) 199 return Error(ForwardRefVals.begin()->second.second, 200 "use of undefined value '@" + ForwardRefVals.begin()->first + 201 "'"); 202 203 if (!ForwardRefValIDs.empty()) 204 return Error(ForwardRefValIDs.begin()->second.second, 205 "use of undefined value '@" + 206 Twine(ForwardRefValIDs.begin()->first) + "'"); 207 208 if (!ForwardRefMDNodes.empty()) 209 return Error(ForwardRefMDNodes.begin()->second.second, 210 "use of undefined metadata '!" + 211 Twine(ForwardRefMDNodes.begin()->first) + "'"); 212 213 // Resolve metadata cycles. 214 for (auto &N : NumberedMetadata) { 215 if (N.second && !N.second->isResolved()) 216 N.second->resolveCycles(); 217 } 218 219 for (auto *Inst : InstsWithTBAATag) { 220 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 221 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 222 auto *UpgradedMD = UpgradeTBAANode(*MD); 223 if (MD != UpgradedMD) 224 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 225 } 226 227 // Look for intrinsic functions and CallInst that need to be upgraded 228 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 229 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 230 231 // Some types could be renamed during loading if several modules are 232 // loaded in the same LLVMContext (LTO scenario). In this case we should 233 // remangle intrinsics names as well. 234 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 235 Function *F = &*FI++; 236 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 237 F->replaceAllUsesWith(Remangled.getValue()); 238 F->eraseFromParent(); 239 } 240 } 241 242 if (UpgradeDebugInfo) 243 llvm::UpgradeDebugInfo(*M); 244 245 UpgradeModuleFlags(*M); 246 UpgradeSectionAttributes(*M); 247 248 if (!Slots) 249 return false; 250 // Initialize the slot mapping. 251 // Because by this point we've parsed and validated everything, we can "steal" 252 // the mapping from LLParser as it doesn't need it anymore. 253 Slots->GlobalValues = std::move(NumberedVals); 254 Slots->MetadataNodes = std::move(NumberedMetadata); 255 for (const auto &I : NamedTypes) 256 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 257 for (const auto &I : NumberedTypes) 258 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 259 260 return false; 261 } 262 263 /// Do final validity and sanity checks at the end of the index. 264 bool LLParser::ValidateEndOfIndex() { 265 if (!Index) 266 return false; 267 268 if (!ForwardRefValueInfos.empty()) 269 return Error(ForwardRefValueInfos.begin()->second.front().second, 270 "use of undefined summary '^" + 271 Twine(ForwardRefValueInfos.begin()->first) + "'"); 272 273 if (!ForwardRefAliasees.empty()) 274 return Error(ForwardRefAliasees.begin()->second.front().second, 275 "use of undefined summary '^" + 276 Twine(ForwardRefAliasees.begin()->first) + "'"); 277 278 if (!ForwardRefTypeIds.empty()) 279 return Error(ForwardRefTypeIds.begin()->second.front().second, 280 "use of undefined type id summary '^" + 281 Twine(ForwardRefTypeIds.begin()->first) + "'"); 282 283 return false; 284 } 285 286 //===----------------------------------------------------------------------===// 287 // Top-Level Entities 288 //===----------------------------------------------------------------------===// 289 290 bool LLParser::ParseTopLevelEntities() { 291 // If there is no Module, then parse just the summary index entries. 292 if (!M) { 293 while (true) { 294 switch (Lex.getKind()) { 295 case lltok::Eof: 296 return false; 297 case lltok::SummaryID: 298 if (ParseSummaryEntry()) 299 return true; 300 break; 301 case lltok::kw_source_filename: 302 if (ParseSourceFileName()) 303 return true; 304 break; 305 default: 306 // Skip everything else 307 Lex.Lex(); 308 } 309 } 310 } 311 while (true) { 312 switch (Lex.getKind()) { 313 default: return TokError("expected top-level entity"); 314 case lltok::Eof: return false; 315 case lltok::kw_declare: if (ParseDeclare()) return true; break; 316 case lltok::kw_define: if (ParseDefine()) return true; break; 317 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 318 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 319 case lltok::kw_source_filename: 320 if (ParseSourceFileName()) 321 return true; 322 break; 323 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 324 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 325 case lltok::LocalVar: if (ParseNamedType()) return true; break; 326 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 327 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 328 case lltok::ComdatVar: if (parseComdat()) return true; break; 329 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 330 case lltok::SummaryID: 331 if (ParseSummaryEntry()) 332 return true; 333 break; 334 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 335 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 336 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 337 case lltok::kw_uselistorder_bb: 338 if (ParseUseListOrderBB()) 339 return true; 340 break; 341 } 342 } 343 } 344 345 /// toplevelentity 346 /// ::= 'module' 'asm' STRINGCONSTANT 347 bool LLParser::ParseModuleAsm() { 348 assert(Lex.getKind() == lltok::kw_module); 349 Lex.Lex(); 350 351 std::string AsmStr; 352 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 353 ParseStringConstant(AsmStr)) return true; 354 355 M->appendModuleInlineAsm(AsmStr); 356 return false; 357 } 358 359 /// toplevelentity 360 /// ::= 'target' 'triple' '=' STRINGCONSTANT 361 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 362 bool LLParser::ParseTargetDefinition() { 363 assert(Lex.getKind() == lltok::kw_target); 364 std::string Str; 365 switch (Lex.Lex()) { 366 default: return TokError("unknown target property"); 367 case lltok::kw_triple: 368 Lex.Lex(); 369 if (ParseToken(lltok::equal, "expected '=' after target triple") || 370 ParseStringConstant(Str)) 371 return true; 372 M->setTargetTriple(Str); 373 return false; 374 case lltok::kw_datalayout: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 377 ParseStringConstant(Str)) 378 return true; 379 if (DataLayoutStr.empty()) 380 M->setDataLayout(Str); 381 return false; 382 } 383 } 384 385 /// toplevelentity 386 /// ::= 'source_filename' '=' STRINGCONSTANT 387 bool LLParser::ParseSourceFileName() { 388 assert(Lex.getKind() == lltok::kw_source_filename); 389 Lex.Lex(); 390 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 391 ParseStringConstant(SourceFileName)) 392 return true; 393 if (M) 394 M->setSourceFileName(SourceFileName); 395 return false; 396 } 397 398 /// toplevelentity 399 /// ::= 'deplibs' '=' '[' ']' 400 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 401 /// FIXME: Remove in 4.0. Currently parse, but ignore. 402 bool LLParser::ParseDepLibs() { 403 assert(Lex.getKind() == lltok::kw_deplibs); 404 Lex.Lex(); 405 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 406 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 407 return true; 408 409 if (EatIfPresent(lltok::rsquare)) 410 return false; 411 412 do { 413 std::string Str; 414 if (ParseStringConstant(Str)) return true; 415 } while (EatIfPresent(lltok::comma)); 416 417 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 418 } 419 420 /// ParseUnnamedType: 421 /// ::= LocalVarID '=' 'type' type 422 bool LLParser::ParseUnnamedType() { 423 LocTy TypeLoc = Lex.getLoc(); 424 unsigned TypeID = Lex.getUIntVal(); 425 Lex.Lex(); // eat LocalVarID; 426 427 if (ParseToken(lltok::equal, "expected '=' after name") || 428 ParseToken(lltok::kw_type, "expected 'type' after '='")) 429 return true; 430 431 Type *Result = nullptr; 432 if (ParseStructDefinition(TypeLoc, "", 433 NumberedTypes[TypeID], Result)) return true; 434 435 if (!isa<StructType>(Result)) { 436 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 437 if (Entry.first) 438 return Error(TypeLoc, "non-struct types may not be recursive"); 439 Entry.first = Result; 440 Entry.second = SMLoc(); 441 } 442 443 return false; 444 } 445 446 /// toplevelentity 447 /// ::= LocalVar '=' 'type' type 448 bool LLParser::ParseNamedType() { 449 std::string Name = Lex.getStrVal(); 450 LocTy NameLoc = Lex.getLoc(); 451 Lex.Lex(); // eat LocalVar. 452 453 if (ParseToken(lltok::equal, "expected '=' after name") || 454 ParseToken(lltok::kw_type, "expected 'type' after name")) 455 return true; 456 457 Type *Result = nullptr; 458 if (ParseStructDefinition(NameLoc, Name, 459 NamedTypes[Name], Result)) return true; 460 461 if (!isa<StructType>(Result)) { 462 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 463 if (Entry.first) 464 return Error(NameLoc, "non-struct types may not be recursive"); 465 Entry.first = Result; 466 Entry.second = SMLoc(); 467 } 468 469 return false; 470 } 471 472 /// toplevelentity 473 /// ::= 'declare' FunctionHeader 474 bool LLParser::ParseDeclare() { 475 assert(Lex.getKind() == lltok::kw_declare); 476 Lex.Lex(); 477 478 std::vector<std::pair<unsigned, MDNode *>> MDs; 479 while (Lex.getKind() == lltok::MetadataVar) { 480 unsigned MDK; 481 MDNode *N; 482 if (ParseMetadataAttachment(MDK, N)) 483 return true; 484 MDs.push_back({MDK, N}); 485 } 486 487 Function *F; 488 if (ParseFunctionHeader(F, false)) 489 return true; 490 for (auto &MD : MDs) 491 F->addMetadata(MD.first, *MD.second); 492 return false; 493 } 494 495 /// toplevelentity 496 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 497 bool LLParser::ParseDefine() { 498 assert(Lex.getKind() == lltok::kw_define); 499 Lex.Lex(); 500 501 Function *F; 502 return ParseFunctionHeader(F, true) || 503 ParseOptionalFunctionMetadata(*F) || 504 ParseFunctionBody(*F); 505 } 506 507 /// ParseGlobalType 508 /// ::= 'constant' 509 /// ::= 'global' 510 bool LLParser::ParseGlobalType(bool &IsConstant) { 511 if (Lex.getKind() == lltok::kw_constant) 512 IsConstant = true; 513 else if (Lex.getKind() == lltok::kw_global) 514 IsConstant = false; 515 else { 516 IsConstant = false; 517 return TokError("expected 'global' or 'constant'"); 518 } 519 Lex.Lex(); 520 return false; 521 } 522 523 bool LLParser::ParseOptionalUnnamedAddr( 524 GlobalVariable::UnnamedAddr &UnnamedAddr) { 525 if (EatIfPresent(lltok::kw_unnamed_addr)) 526 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 527 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 528 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 529 else 530 UnnamedAddr = GlobalValue::UnnamedAddr::None; 531 return false; 532 } 533 534 /// ParseUnnamedGlobal: 535 /// OptionalVisibility (ALIAS | IFUNC) ... 536 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 537 /// OptionalDLLStorageClass 538 /// ... -> global variable 539 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 540 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 541 /// OptionalDLLStorageClass 542 /// ... -> global variable 543 bool LLParser::ParseUnnamedGlobal() { 544 unsigned VarID = NumberedVals.size(); 545 std::string Name; 546 LocTy NameLoc = Lex.getLoc(); 547 548 // Handle the GlobalID form. 549 if (Lex.getKind() == lltok::GlobalID) { 550 if (Lex.getUIntVal() != VarID) 551 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 552 Twine(VarID) + "'"); 553 Lex.Lex(); // eat GlobalID; 554 555 if (ParseToken(lltok::equal, "expected '=' after name")) 556 return true; 557 } 558 559 bool HasLinkage; 560 unsigned Linkage, Visibility, DLLStorageClass; 561 bool DSOLocal; 562 GlobalVariable::ThreadLocalMode TLM; 563 GlobalVariable::UnnamedAddr UnnamedAddr; 564 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 565 DSOLocal) || 566 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 567 return true; 568 569 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 570 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 571 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 572 573 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 574 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 575 } 576 577 /// ParseNamedGlobal: 578 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 579 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 580 /// OptionalVisibility OptionalDLLStorageClass 581 /// ... -> global variable 582 bool LLParser::ParseNamedGlobal() { 583 assert(Lex.getKind() == lltok::GlobalVar); 584 LocTy NameLoc = Lex.getLoc(); 585 std::string Name = Lex.getStrVal(); 586 Lex.Lex(); 587 588 bool HasLinkage; 589 unsigned Linkage, Visibility, DLLStorageClass; 590 bool DSOLocal; 591 GlobalVariable::ThreadLocalMode TLM; 592 GlobalVariable::UnnamedAddr UnnamedAddr; 593 if (ParseToken(lltok::equal, "expected '=' in global variable") || 594 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 595 DSOLocal) || 596 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 597 return true; 598 599 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 600 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 601 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 602 603 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 604 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 605 } 606 607 bool LLParser::parseComdat() { 608 assert(Lex.getKind() == lltok::ComdatVar); 609 std::string Name = Lex.getStrVal(); 610 LocTy NameLoc = Lex.getLoc(); 611 Lex.Lex(); 612 613 if (ParseToken(lltok::equal, "expected '=' here")) 614 return true; 615 616 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 617 return TokError("expected comdat type"); 618 619 Comdat::SelectionKind SK; 620 switch (Lex.getKind()) { 621 default: 622 return TokError("unknown selection kind"); 623 case lltok::kw_any: 624 SK = Comdat::Any; 625 break; 626 case lltok::kw_exactmatch: 627 SK = Comdat::ExactMatch; 628 break; 629 case lltok::kw_largest: 630 SK = Comdat::Largest; 631 break; 632 case lltok::kw_noduplicates: 633 SK = Comdat::NoDuplicates; 634 break; 635 case lltok::kw_samesize: 636 SK = Comdat::SameSize; 637 break; 638 } 639 Lex.Lex(); 640 641 // See if the comdat was forward referenced, if so, use the comdat. 642 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 643 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 644 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 645 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 646 647 Comdat *C; 648 if (I != ComdatSymTab.end()) 649 C = &I->second; 650 else 651 C = M->getOrInsertComdat(Name); 652 C->setSelectionKind(SK); 653 654 return false; 655 } 656 657 // MDString: 658 // ::= '!' STRINGCONSTANT 659 bool LLParser::ParseMDString(MDString *&Result) { 660 std::string Str; 661 if (ParseStringConstant(Str)) return true; 662 Result = MDString::get(Context, Str); 663 return false; 664 } 665 666 // MDNode: 667 // ::= '!' MDNodeNumber 668 bool LLParser::ParseMDNodeID(MDNode *&Result) { 669 // !{ ..., !42, ... } 670 LocTy IDLoc = Lex.getLoc(); 671 unsigned MID = 0; 672 if (ParseUInt32(MID)) 673 return true; 674 675 // If not a forward reference, just return it now. 676 if (NumberedMetadata.count(MID)) { 677 Result = NumberedMetadata[MID]; 678 return false; 679 } 680 681 // Otherwise, create MDNode forward reference. 682 auto &FwdRef = ForwardRefMDNodes[MID]; 683 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 684 685 Result = FwdRef.first.get(); 686 NumberedMetadata[MID].reset(Result); 687 return false; 688 } 689 690 /// ParseNamedMetadata: 691 /// !foo = !{ !1, !2 } 692 bool LLParser::ParseNamedMetadata() { 693 assert(Lex.getKind() == lltok::MetadataVar); 694 std::string Name = Lex.getStrVal(); 695 Lex.Lex(); 696 697 if (ParseToken(lltok::equal, "expected '=' here") || 698 ParseToken(lltok::exclaim, "Expected '!' here") || 699 ParseToken(lltok::lbrace, "Expected '{' here")) 700 return true; 701 702 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 703 if (Lex.getKind() != lltok::rbrace) 704 do { 705 MDNode *N = nullptr; 706 // Parse DIExpressions inline as a special case. They are still MDNodes, 707 // so they can still appear in named metadata. Remove this logic if they 708 // become plain Metadata. 709 if (Lex.getKind() == lltok::MetadataVar && 710 Lex.getStrVal() == "DIExpression") { 711 if (ParseDIExpression(N, /*IsDistinct=*/false)) 712 return true; 713 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 714 ParseMDNodeID(N)) { 715 return true; 716 } 717 NMD->addOperand(N); 718 } while (EatIfPresent(lltok::comma)); 719 720 return ParseToken(lltok::rbrace, "expected end of metadata node"); 721 } 722 723 /// ParseStandaloneMetadata: 724 /// !42 = !{...} 725 bool LLParser::ParseStandaloneMetadata() { 726 assert(Lex.getKind() == lltok::exclaim); 727 Lex.Lex(); 728 unsigned MetadataID = 0; 729 730 MDNode *Init; 731 if (ParseUInt32(MetadataID) || 732 ParseToken(lltok::equal, "expected '=' here")) 733 return true; 734 735 // Detect common error, from old metadata syntax. 736 if (Lex.getKind() == lltok::Type) 737 return TokError("unexpected type in metadata definition"); 738 739 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 740 if (Lex.getKind() == lltok::MetadataVar) { 741 if (ParseSpecializedMDNode(Init, IsDistinct)) 742 return true; 743 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 744 ParseMDTuple(Init, IsDistinct)) 745 return true; 746 747 // See if this was forward referenced, if so, handle it. 748 auto FI = ForwardRefMDNodes.find(MetadataID); 749 if (FI != ForwardRefMDNodes.end()) { 750 FI->second.first->replaceAllUsesWith(Init); 751 ForwardRefMDNodes.erase(FI); 752 753 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 754 } else { 755 if (NumberedMetadata.count(MetadataID)) 756 return TokError("Metadata id is already used"); 757 NumberedMetadata[MetadataID].reset(Init); 758 } 759 760 return false; 761 } 762 763 // Skips a single module summary entry. 764 bool LLParser::SkipModuleSummaryEntry() { 765 // Each module summary entry consists of a tag for the entry 766 // type, followed by a colon, then the fields surrounded by nested sets of 767 // parentheses. The "tag:" looks like a Label. Once parsing support is 768 // in place we will look for the tokens corresponding to the expected tags. 769 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 770 Lex.getKind() != lltok::kw_typeid) 771 return TokError( 772 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 773 Lex.Lex(); 774 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 775 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 776 return true; 777 // Now walk through the parenthesized entry, until the number of open 778 // parentheses goes back down to 0 (the first '(' was parsed above). 779 unsigned NumOpenParen = 1; 780 do { 781 switch (Lex.getKind()) { 782 case lltok::lparen: 783 NumOpenParen++; 784 break; 785 case lltok::rparen: 786 NumOpenParen--; 787 break; 788 case lltok::Eof: 789 return TokError("found end of file while parsing summary entry"); 790 default: 791 // Skip everything in between parentheses. 792 break; 793 } 794 Lex.Lex(); 795 } while (NumOpenParen > 0); 796 return false; 797 } 798 799 /// SummaryEntry 800 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 801 bool LLParser::ParseSummaryEntry() { 802 assert(Lex.getKind() == lltok::SummaryID); 803 unsigned SummaryID = Lex.getUIntVal(); 804 805 // For summary entries, colons should be treated as distinct tokens, 806 // not an indication of the end of a label token. 807 Lex.setIgnoreColonInIdentifiers(true); 808 809 Lex.Lex(); 810 if (ParseToken(lltok::equal, "expected '=' here")) 811 return true; 812 813 // If we don't have an index object, skip the summary entry. 814 if (!Index) 815 return SkipModuleSummaryEntry(); 816 817 switch (Lex.getKind()) { 818 case lltok::kw_gv: 819 return ParseGVEntry(SummaryID); 820 case lltok::kw_module: 821 return ParseModuleEntry(SummaryID); 822 case lltok::kw_typeid: 823 return ParseTypeIdEntry(SummaryID); 824 break; 825 default: 826 return Error(Lex.getLoc(), "unexpected summary kind"); 827 } 828 Lex.setIgnoreColonInIdentifiers(false); 829 return false; 830 } 831 832 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 833 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 834 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 835 } 836 837 // If there was an explicit dso_local, update GV. In the absence of an explicit 838 // dso_local we keep the default value. 839 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 840 if (DSOLocal) 841 GV.setDSOLocal(true); 842 } 843 844 /// parseIndirectSymbol: 845 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 846 /// OptionalVisibility OptionalDLLStorageClass 847 /// OptionalThreadLocal OptionalUnnamedAddr 848 // 'alias|ifunc' IndirectSymbol 849 /// 850 /// IndirectSymbol 851 /// ::= TypeAndValue 852 /// 853 /// Everything through OptionalUnnamedAddr has already been parsed. 854 /// 855 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 856 unsigned L, unsigned Visibility, 857 unsigned DLLStorageClass, bool DSOLocal, 858 GlobalVariable::ThreadLocalMode TLM, 859 GlobalVariable::UnnamedAddr UnnamedAddr) { 860 bool IsAlias; 861 if (Lex.getKind() == lltok::kw_alias) 862 IsAlias = true; 863 else if (Lex.getKind() == lltok::kw_ifunc) 864 IsAlias = false; 865 else 866 llvm_unreachable("Not an alias or ifunc!"); 867 Lex.Lex(); 868 869 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 870 871 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 872 return Error(NameLoc, "invalid linkage type for alias"); 873 874 if (!isValidVisibilityForLinkage(Visibility, L)) 875 return Error(NameLoc, 876 "symbol with local linkage must have default visibility"); 877 878 Type *Ty; 879 LocTy ExplicitTypeLoc = Lex.getLoc(); 880 if (ParseType(Ty) || 881 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 882 return true; 883 884 Constant *Aliasee; 885 LocTy AliaseeLoc = Lex.getLoc(); 886 if (Lex.getKind() != lltok::kw_bitcast && 887 Lex.getKind() != lltok::kw_getelementptr && 888 Lex.getKind() != lltok::kw_addrspacecast && 889 Lex.getKind() != lltok::kw_inttoptr) { 890 if (ParseGlobalTypeAndValue(Aliasee)) 891 return true; 892 } else { 893 // The bitcast dest type is not present, it is implied by the dest type. 894 ValID ID; 895 if (ParseValID(ID)) 896 return true; 897 if (ID.Kind != ValID::t_Constant) 898 return Error(AliaseeLoc, "invalid aliasee"); 899 Aliasee = ID.ConstantVal; 900 } 901 902 Type *AliaseeType = Aliasee->getType(); 903 auto *PTy = dyn_cast<PointerType>(AliaseeType); 904 if (!PTy) 905 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 906 unsigned AddrSpace = PTy->getAddressSpace(); 907 908 if (IsAlias && Ty != PTy->getElementType()) 909 return Error( 910 ExplicitTypeLoc, 911 "explicit pointee type doesn't match operand's pointee type"); 912 913 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 914 return Error( 915 ExplicitTypeLoc, 916 "explicit pointee type should be a function type"); 917 918 GlobalValue *GVal = nullptr; 919 920 // See if the alias was forward referenced, if so, prepare to replace the 921 // forward reference. 922 if (!Name.empty()) { 923 GVal = M->getNamedValue(Name); 924 if (GVal) { 925 if (!ForwardRefVals.erase(Name)) 926 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 927 } 928 } else { 929 auto I = ForwardRefValIDs.find(NumberedVals.size()); 930 if (I != ForwardRefValIDs.end()) { 931 GVal = I->second.first; 932 ForwardRefValIDs.erase(I); 933 } 934 } 935 936 // Okay, create the alias but do not insert it into the module yet. 937 std::unique_ptr<GlobalIndirectSymbol> GA; 938 if (IsAlias) 939 GA.reset(GlobalAlias::create(Ty, AddrSpace, 940 (GlobalValue::LinkageTypes)Linkage, Name, 941 Aliasee, /*Parent*/ nullptr)); 942 else 943 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 944 (GlobalValue::LinkageTypes)Linkage, Name, 945 Aliasee, /*Parent*/ nullptr)); 946 GA->setThreadLocalMode(TLM); 947 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 948 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 949 GA->setUnnamedAddr(UnnamedAddr); 950 maybeSetDSOLocal(DSOLocal, *GA); 951 952 if (Name.empty()) 953 NumberedVals.push_back(GA.get()); 954 955 if (GVal) { 956 // Verify that types agree. 957 if (GVal->getType() != GA->getType()) 958 return Error( 959 ExplicitTypeLoc, 960 "forward reference and definition of alias have different types"); 961 962 // If they agree, just RAUW the old value with the alias and remove the 963 // forward ref info. 964 GVal->replaceAllUsesWith(GA.get()); 965 GVal->eraseFromParent(); 966 } 967 968 // Insert into the module, we know its name won't collide now. 969 if (IsAlias) 970 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 971 else 972 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 973 assert(GA->getName() == Name && "Should not be a name conflict!"); 974 975 // The module owns this now 976 GA.release(); 977 978 return false; 979 } 980 981 /// ParseGlobal 982 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 983 /// OptionalVisibility OptionalDLLStorageClass 984 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 985 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 986 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 987 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 988 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 989 /// Const OptionalAttrs 990 /// 991 /// Everything up to and including OptionalUnnamedAddr has been parsed 992 /// already. 993 /// 994 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 995 unsigned Linkage, bool HasLinkage, 996 unsigned Visibility, unsigned DLLStorageClass, 997 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 998 GlobalVariable::UnnamedAddr UnnamedAddr) { 999 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1000 return Error(NameLoc, 1001 "symbol with local linkage must have default visibility"); 1002 1003 unsigned AddrSpace; 1004 bool IsConstant, IsExternallyInitialized; 1005 LocTy IsExternallyInitializedLoc; 1006 LocTy TyLoc; 1007 1008 Type *Ty = nullptr; 1009 if (ParseOptionalAddrSpace(AddrSpace) || 1010 ParseOptionalToken(lltok::kw_externally_initialized, 1011 IsExternallyInitialized, 1012 &IsExternallyInitializedLoc) || 1013 ParseGlobalType(IsConstant) || 1014 ParseType(Ty, TyLoc)) 1015 return true; 1016 1017 // If the linkage is specified and is external, then no initializer is 1018 // present. 1019 Constant *Init = nullptr; 1020 if (!HasLinkage || 1021 !GlobalValue::isValidDeclarationLinkage( 1022 (GlobalValue::LinkageTypes)Linkage)) { 1023 if (ParseGlobalValue(Ty, Init)) 1024 return true; 1025 } 1026 1027 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1028 return Error(TyLoc, "invalid type for global variable"); 1029 1030 GlobalValue *GVal = nullptr; 1031 1032 // See if the global was forward referenced, if so, use the global. 1033 if (!Name.empty()) { 1034 GVal = M->getNamedValue(Name); 1035 if (GVal) { 1036 if (!ForwardRefVals.erase(Name)) 1037 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1038 } 1039 } else { 1040 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1041 if (I != ForwardRefValIDs.end()) { 1042 GVal = I->second.first; 1043 ForwardRefValIDs.erase(I); 1044 } 1045 } 1046 1047 GlobalVariable *GV; 1048 if (!GVal) { 1049 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1050 Name, nullptr, GlobalVariable::NotThreadLocal, 1051 AddrSpace); 1052 } else { 1053 if (GVal->getValueType() != Ty) 1054 return Error(TyLoc, 1055 "forward reference and definition of global have different types"); 1056 1057 GV = cast<GlobalVariable>(GVal); 1058 1059 // Move the forward-reference to the correct spot in the module. 1060 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1061 } 1062 1063 if (Name.empty()) 1064 NumberedVals.push_back(GV); 1065 1066 // Set the parsed properties on the global. 1067 if (Init) 1068 GV->setInitializer(Init); 1069 GV->setConstant(IsConstant); 1070 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1071 maybeSetDSOLocal(DSOLocal, *GV); 1072 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1073 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1074 GV->setExternallyInitialized(IsExternallyInitialized); 1075 GV->setThreadLocalMode(TLM); 1076 GV->setUnnamedAddr(UnnamedAddr); 1077 1078 // Parse attributes on the global. 1079 while (Lex.getKind() == lltok::comma) { 1080 Lex.Lex(); 1081 1082 if (Lex.getKind() == lltok::kw_section) { 1083 Lex.Lex(); 1084 GV->setSection(Lex.getStrVal()); 1085 if (ParseToken(lltok::StringConstant, "expected global section string")) 1086 return true; 1087 } else if (Lex.getKind() == lltok::kw_align) { 1088 unsigned Alignment; 1089 if (ParseOptionalAlignment(Alignment)) return true; 1090 GV->setAlignment(Alignment); 1091 } else if (Lex.getKind() == lltok::MetadataVar) { 1092 if (ParseGlobalObjectMetadataAttachment(*GV)) 1093 return true; 1094 } else { 1095 Comdat *C; 1096 if (parseOptionalComdat(Name, C)) 1097 return true; 1098 if (C) 1099 GV->setComdat(C); 1100 else 1101 return TokError("unknown global variable property!"); 1102 } 1103 } 1104 1105 AttrBuilder Attrs; 1106 LocTy BuiltinLoc; 1107 std::vector<unsigned> FwdRefAttrGrps; 1108 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1109 return true; 1110 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1111 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1112 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1113 } 1114 1115 return false; 1116 } 1117 1118 /// ParseUnnamedAttrGrp 1119 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1120 bool LLParser::ParseUnnamedAttrGrp() { 1121 assert(Lex.getKind() == lltok::kw_attributes); 1122 LocTy AttrGrpLoc = Lex.getLoc(); 1123 Lex.Lex(); 1124 1125 if (Lex.getKind() != lltok::AttrGrpID) 1126 return TokError("expected attribute group id"); 1127 1128 unsigned VarID = Lex.getUIntVal(); 1129 std::vector<unsigned> unused; 1130 LocTy BuiltinLoc; 1131 Lex.Lex(); 1132 1133 if (ParseToken(lltok::equal, "expected '=' here") || 1134 ParseToken(lltok::lbrace, "expected '{' here") || 1135 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1136 BuiltinLoc) || 1137 ParseToken(lltok::rbrace, "expected end of attribute group")) 1138 return true; 1139 1140 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1141 return Error(AttrGrpLoc, "attribute group has no attributes"); 1142 1143 return false; 1144 } 1145 1146 /// ParseFnAttributeValuePairs 1147 /// ::= <attr> | <attr> '=' <value> 1148 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1149 std::vector<unsigned> &FwdRefAttrGrps, 1150 bool inAttrGrp, LocTy &BuiltinLoc) { 1151 bool HaveError = false; 1152 1153 B.clear(); 1154 1155 while (true) { 1156 lltok::Kind Token = Lex.getKind(); 1157 if (Token == lltok::kw_builtin) 1158 BuiltinLoc = Lex.getLoc(); 1159 switch (Token) { 1160 default: 1161 if (!inAttrGrp) return HaveError; 1162 return Error(Lex.getLoc(), "unterminated attribute group"); 1163 case lltok::rbrace: 1164 // Finished. 1165 return false; 1166 1167 case lltok::AttrGrpID: { 1168 // Allow a function to reference an attribute group: 1169 // 1170 // define void @foo() #1 { ... } 1171 if (inAttrGrp) 1172 HaveError |= 1173 Error(Lex.getLoc(), 1174 "cannot have an attribute group reference in an attribute group"); 1175 1176 unsigned AttrGrpNum = Lex.getUIntVal(); 1177 if (inAttrGrp) break; 1178 1179 // Save the reference to the attribute group. We'll fill it in later. 1180 FwdRefAttrGrps.push_back(AttrGrpNum); 1181 break; 1182 } 1183 // Target-dependent attributes: 1184 case lltok::StringConstant: { 1185 if (ParseStringAttribute(B)) 1186 return true; 1187 continue; 1188 } 1189 1190 // Target-independent attributes: 1191 case lltok::kw_align: { 1192 // As a hack, we allow function alignment to be initially parsed as an 1193 // attribute on a function declaration/definition or added to an attribute 1194 // group and later moved to the alignment field. 1195 unsigned Alignment; 1196 if (inAttrGrp) { 1197 Lex.Lex(); 1198 if (ParseToken(lltok::equal, "expected '=' here") || 1199 ParseUInt32(Alignment)) 1200 return true; 1201 } else { 1202 if (ParseOptionalAlignment(Alignment)) 1203 return true; 1204 } 1205 B.addAlignmentAttr(Alignment); 1206 continue; 1207 } 1208 case lltok::kw_alignstack: { 1209 unsigned Alignment; 1210 if (inAttrGrp) { 1211 Lex.Lex(); 1212 if (ParseToken(lltok::equal, "expected '=' here") || 1213 ParseUInt32(Alignment)) 1214 return true; 1215 } else { 1216 if (ParseOptionalStackAlignment(Alignment)) 1217 return true; 1218 } 1219 B.addStackAlignmentAttr(Alignment); 1220 continue; 1221 } 1222 case lltok::kw_allocsize: { 1223 unsigned ElemSizeArg; 1224 Optional<unsigned> NumElemsArg; 1225 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1226 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1227 return true; 1228 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1229 continue; 1230 } 1231 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1232 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1233 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1234 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1235 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1236 case lltok::kw_inaccessiblememonly: 1237 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1238 case lltok::kw_inaccessiblemem_or_argmemonly: 1239 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1240 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1241 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1242 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1243 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1244 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1245 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1246 case lltok::kw_noimplicitfloat: 1247 B.addAttribute(Attribute::NoImplicitFloat); break; 1248 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1249 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1250 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1251 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1252 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1253 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1254 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1255 case lltok::kw_optforfuzzing: 1256 B.addAttribute(Attribute::OptForFuzzing); break; 1257 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1258 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1259 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1260 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1261 case lltok::kw_returns_twice: 1262 B.addAttribute(Attribute::ReturnsTwice); break; 1263 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1264 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1265 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1266 case lltok::kw_sspstrong: 1267 B.addAttribute(Attribute::StackProtectStrong); break; 1268 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1269 case lltok::kw_shadowcallstack: 1270 B.addAttribute(Attribute::ShadowCallStack); break; 1271 case lltok::kw_sanitize_address: 1272 B.addAttribute(Attribute::SanitizeAddress); break; 1273 case lltok::kw_sanitize_hwaddress: 1274 B.addAttribute(Attribute::SanitizeHWAddress); break; 1275 case lltok::kw_sanitize_thread: 1276 B.addAttribute(Attribute::SanitizeThread); break; 1277 case lltok::kw_sanitize_memory: 1278 B.addAttribute(Attribute::SanitizeMemory); break; 1279 case lltok::kw_speculative_load_hardening: 1280 B.addAttribute(Attribute::SpeculativeLoadHardening); 1281 break; 1282 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1283 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1284 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1285 1286 // Error handling. 1287 case lltok::kw_inreg: 1288 case lltok::kw_signext: 1289 case lltok::kw_zeroext: 1290 HaveError |= 1291 Error(Lex.getLoc(), 1292 "invalid use of attribute on a function"); 1293 break; 1294 case lltok::kw_byval: 1295 case lltok::kw_dereferenceable: 1296 case lltok::kw_dereferenceable_or_null: 1297 case lltok::kw_inalloca: 1298 case lltok::kw_nest: 1299 case lltok::kw_noalias: 1300 case lltok::kw_nocapture: 1301 case lltok::kw_nonnull: 1302 case lltok::kw_returned: 1303 case lltok::kw_sret: 1304 case lltok::kw_swifterror: 1305 case lltok::kw_swiftself: 1306 HaveError |= 1307 Error(Lex.getLoc(), 1308 "invalid use of parameter-only attribute on a function"); 1309 break; 1310 } 1311 1312 Lex.Lex(); 1313 } 1314 } 1315 1316 //===----------------------------------------------------------------------===// 1317 // GlobalValue Reference/Resolution Routines. 1318 //===----------------------------------------------------------------------===// 1319 1320 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1321 const std::string &Name) { 1322 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1323 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1324 PTy->getAddressSpace(), Name, M); 1325 else 1326 return new GlobalVariable(*M, PTy->getElementType(), false, 1327 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1328 nullptr, GlobalVariable::NotThreadLocal, 1329 PTy->getAddressSpace()); 1330 } 1331 1332 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1333 Value *Val, bool IsCall) { 1334 if (Val->getType() == Ty) 1335 return Val; 1336 // For calls we also accept variables in the program address space. 1337 Type *SuggestedTy = Ty; 1338 if (IsCall && isa<PointerType>(Ty)) { 1339 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1340 M->getDataLayout().getProgramAddressSpace()); 1341 SuggestedTy = TyInProgAS; 1342 if (Val->getType() == TyInProgAS) 1343 return Val; 1344 } 1345 if (Ty->isLabelTy()) 1346 Error(Loc, "'" + Name + "' is not a basic block"); 1347 else 1348 Error(Loc, "'" + Name + "' defined with type '" + 1349 getTypeString(Val->getType()) + "' but expected '" + 1350 getTypeString(SuggestedTy) + "'"); 1351 return nullptr; 1352 } 1353 1354 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1355 /// forward reference record if needed. This can return null if the value 1356 /// exists but does not have the right type. 1357 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1358 LocTy Loc, bool IsCall) { 1359 PointerType *PTy = dyn_cast<PointerType>(Ty); 1360 if (!PTy) { 1361 Error(Loc, "global variable reference must have pointer type"); 1362 return nullptr; 1363 } 1364 1365 // Look this name up in the normal function symbol table. 1366 GlobalValue *Val = 1367 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1368 1369 // If this is a forward reference for the value, see if we already created a 1370 // forward ref record. 1371 if (!Val) { 1372 auto I = ForwardRefVals.find(Name); 1373 if (I != ForwardRefVals.end()) 1374 Val = I->second.first; 1375 } 1376 1377 // If we have the value in the symbol table or fwd-ref table, return it. 1378 if (Val) 1379 return cast_or_null<GlobalValue>( 1380 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1381 1382 // Otherwise, create a new forward reference for this value and remember it. 1383 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1384 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1385 return FwdVal; 1386 } 1387 1388 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1389 bool IsCall) { 1390 PointerType *PTy = dyn_cast<PointerType>(Ty); 1391 if (!PTy) { 1392 Error(Loc, "global variable reference must have pointer type"); 1393 return nullptr; 1394 } 1395 1396 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1397 1398 // If this is a forward reference for the value, see if we already created a 1399 // forward ref record. 1400 if (!Val) { 1401 auto I = ForwardRefValIDs.find(ID); 1402 if (I != ForwardRefValIDs.end()) 1403 Val = I->second.first; 1404 } 1405 1406 // If we have the value in the symbol table or fwd-ref table, return it. 1407 if (Val) 1408 return cast_or_null<GlobalValue>( 1409 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1410 1411 // Otherwise, create a new forward reference for this value and remember it. 1412 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1413 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1414 return FwdVal; 1415 } 1416 1417 //===----------------------------------------------------------------------===// 1418 // Comdat Reference/Resolution Routines. 1419 //===----------------------------------------------------------------------===// 1420 1421 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1422 // Look this name up in the comdat symbol table. 1423 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1424 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1425 if (I != ComdatSymTab.end()) 1426 return &I->second; 1427 1428 // Otherwise, create a new forward reference for this value and remember it. 1429 Comdat *C = M->getOrInsertComdat(Name); 1430 ForwardRefComdats[Name] = Loc; 1431 return C; 1432 } 1433 1434 //===----------------------------------------------------------------------===// 1435 // Helper Routines. 1436 //===----------------------------------------------------------------------===// 1437 1438 /// ParseToken - If the current token has the specified kind, eat it and return 1439 /// success. Otherwise, emit the specified error and return failure. 1440 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1441 if (Lex.getKind() != T) 1442 return TokError(ErrMsg); 1443 Lex.Lex(); 1444 return false; 1445 } 1446 1447 /// ParseStringConstant 1448 /// ::= StringConstant 1449 bool LLParser::ParseStringConstant(std::string &Result) { 1450 if (Lex.getKind() != lltok::StringConstant) 1451 return TokError("expected string constant"); 1452 Result = Lex.getStrVal(); 1453 Lex.Lex(); 1454 return false; 1455 } 1456 1457 /// ParseUInt32 1458 /// ::= uint32 1459 bool LLParser::ParseUInt32(uint32_t &Val) { 1460 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1461 return TokError("expected integer"); 1462 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1463 if (Val64 != unsigned(Val64)) 1464 return TokError("expected 32-bit integer (too large)"); 1465 Val = Val64; 1466 Lex.Lex(); 1467 return false; 1468 } 1469 1470 /// ParseUInt64 1471 /// ::= uint64 1472 bool LLParser::ParseUInt64(uint64_t &Val) { 1473 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1474 return TokError("expected integer"); 1475 Val = Lex.getAPSIntVal().getLimitedValue(); 1476 Lex.Lex(); 1477 return false; 1478 } 1479 1480 /// ParseTLSModel 1481 /// := 'localdynamic' 1482 /// := 'initialexec' 1483 /// := 'localexec' 1484 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1485 switch (Lex.getKind()) { 1486 default: 1487 return TokError("expected localdynamic, initialexec or localexec"); 1488 case lltok::kw_localdynamic: 1489 TLM = GlobalVariable::LocalDynamicTLSModel; 1490 break; 1491 case lltok::kw_initialexec: 1492 TLM = GlobalVariable::InitialExecTLSModel; 1493 break; 1494 case lltok::kw_localexec: 1495 TLM = GlobalVariable::LocalExecTLSModel; 1496 break; 1497 } 1498 1499 Lex.Lex(); 1500 return false; 1501 } 1502 1503 /// ParseOptionalThreadLocal 1504 /// := /*empty*/ 1505 /// := 'thread_local' 1506 /// := 'thread_local' '(' tlsmodel ')' 1507 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1508 TLM = GlobalVariable::NotThreadLocal; 1509 if (!EatIfPresent(lltok::kw_thread_local)) 1510 return false; 1511 1512 TLM = GlobalVariable::GeneralDynamicTLSModel; 1513 if (Lex.getKind() == lltok::lparen) { 1514 Lex.Lex(); 1515 return ParseTLSModel(TLM) || 1516 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1517 } 1518 return false; 1519 } 1520 1521 /// ParseOptionalAddrSpace 1522 /// := /*empty*/ 1523 /// := 'addrspace' '(' uint32 ')' 1524 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1525 AddrSpace = DefaultAS; 1526 if (!EatIfPresent(lltok::kw_addrspace)) 1527 return false; 1528 return ParseToken(lltok::lparen, "expected '(' in address space") || 1529 ParseUInt32(AddrSpace) || 1530 ParseToken(lltok::rparen, "expected ')' in address space"); 1531 } 1532 1533 /// ParseStringAttribute 1534 /// := StringConstant 1535 /// := StringConstant '=' StringConstant 1536 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1537 std::string Attr = Lex.getStrVal(); 1538 Lex.Lex(); 1539 std::string Val; 1540 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1541 return true; 1542 B.addAttribute(Attr, Val); 1543 return false; 1544 } 1545 1546 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1547 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1548 bool HaveError = false; 1549 1550 B.clear(); 1551 1552 while (true) { 1553 lltok::Kind Token = Lex.getKind(); 1554 switch (Token) { 1555 default: // End of attributes. 1556 return HaveError; 1557 case lltok::StringConstant: { 1558 if (ParseStringAttribute(B)) 1559 return true; 1560 continue; 1561 } 1562 case lltok::kw_align: { 1563 unsigned Alignment; 1564 if (ParseOptionalAlignment(Alignment)) 1565 return true; 1566 B.addAlignmentAttr(Alignment); 1567 continue; 1568 } 1569 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1570 case lltok::kw_dereferenceable: { 1571 uint64_t Bytes; 1572 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1573 return true; 1574 B.addDereferenceableAttr(Bytes); 1575 continue; 1576 } 1577 case lltok::kw_dereferenceable_or_null: { 1578 uint64_t Bytes; 1579 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1580 return true; 1581 B.addDereferenceableOrNullAttr(Bytes); 1582 continue; 1583 } 1584 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1585 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1586 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1587 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1588 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1589 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1590 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1591 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1592 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1593 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1594 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1595 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1596 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1597 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1598 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1599 1600 case lltok::kw_alignstack: 1601 case lltok::kw_alwaysinline: 1602 case lltok::kw_argmemonly: 1603 case lltok::kw_builtin: 1604 case lltok::kw_inlinehint: 1605 case lltok::kw_jumptable: 1606 case lltok::kw_minsize: 1607 case lltok::kw_naked: 1608 case lltok::kw_nobuiltin: 1609 case lltok::kw_noduplicate: 1610 case lltok::kw_noimplicitfloat: 1611 case lltok::kw_noinline: 1612 case lltok::kw_nonlazybind: 1613 case lltok::kw_noredzone: 1614 case lltok::kw_noreturn: 1615 case lltok::kw_nocf_check: 1616 case lltok::kw_nounwind: 1617 case lltok::kw_optforfuzzing: 1618 case lltok::kw_optnone: 1619 case lltok::kw_optsize: 1620 case lltok::kw_returns_twice: 1621 case lltok::kw_sanitize_address: 1622 case lltok::kw_sanitize_hwaddress: 1623 case lltok::kw_sanitize_memory: 1624 case lltok::kw_sanitize_thread: 1625 case lltok::kw_speculative_load_hardening: 1626 case lltok::kw_ssp: 1627 case lltok::kw_sspreq: 1628 case lltok::kw_sspstrong: 1629 case lltok::kw_safestack: 1630 case lltok::kw_shadowcallstack: 1631 case lltok::kw_strictfp: 1632 case lltok::kw_uwtable: 1633 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1634 break; 1635 } 1636 1637 Lex.Lex(); 1638 } 1639 } 1640 1641 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1642 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1643 bool HaveError = false; 1644 1645 B.clear(); 1646 1647 while (true) { 1648 lltok::Kind Token = Lex.getKind(); 1649 switch (Token) { 1650 default: // End of attributes. 1651 return HaveError; 1652 case lltok::StringConstant: { 1653 if (ParseStringAttribute(B)) 1654 return true; 1655 continue; 1656 } 1657 case lltok::kw_dereferenceable: { 1658 uint64_t Bytes; 1659 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1660 return true; 1661 B.addDereferenceableAttr(Bytes); 1662 continue; 1663 } 1664 case lltok::kw_dereferenceable_or_null: { 1665 uint64_t Bytes; 1666 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1667 return true; 1668 B.addDereferenceableOrNullAttr(Bytes); 1669 continue; 1670 } 1671 case lltok::kw_align: { 1672 unsigned Alignment; 1673 if (ParseOptionalAlignment(Alignment)) 1674 return true; 1675 B.addAlignmentAttr(Alignment); 1676 continue; 1677 } 1678 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1679 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1680 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1681 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1682 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1683 1684 // Error handling. 1685 case lltok::kw_byval: 1686 case lltok::kw_inalloca: 1687 case lltok::kw_nest: 1688 case lltok::kw_nocapture: 1689 case lltok::kw_returned: 1690 case lltok::kw_sret: 1691 case lltok::kw_swifterror: 1692 case lltok::kw_swiftself: 1693 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1694 break; 1695 1696 case lltok::kw_alignstack: 1697 case lltok::kw_alwaysinline: 1698 case lltok::kw_argmemonly: 1699 case lltok::kw_builtin: 1700 case lltok::kw_cold: 1701 case lltok::kw_inlinehint: 1702 case lltok::kw_jumptable: 1703 case lltok::kw_minsize: 1704 case lltok::kw_naked: 1705 case lltok::kw_nobuiltin: 1706 case lltok::kw_noduplicate: 1707 case lltok::kw_noimplicitfloat: 1708 case lltok::kw_noinline: 1709 case lltok::kw_nonlazybind: 1710 case lltok::kw_noredzone: 1711 case lltok::kw_noreturn: 1712 case lltok::kw_nocf_check: 1713 case lltok::kw_nounwind: 1714 case lltok::kw_optforfuzzing: 1715 case lltok::kw_optnone: 1716 case lltok::kw_optsize: 1717 case lltok::kw_returns_twice: 1718 case lltok::kw_sanitize_address: 1719 case lltok::kw_sanitize_hwaddress: 1720 case lltok::kw_sanitize_memory: 1721 case lltok::kw_sanitize_thread: 1722 case lltok::kw_speculative_load_hardening: 1723 case lltok::kw_ssp: 1724 case lltok::kw_sspreq: 1725 case lltok::kw_sspstrong: 1726 case lltok::kw_safestack: 1727 case lltok::kw_shadowcallstack: 1728 case lltok::kw_strictfp: 1729 case lltok::kw_uwtable: 1730 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1731 break; 1732 1733 case lltok::kw_readnone: 1734 case lltok::kw_readonly: 1735 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1736 } 1737 1738 Lex.Lex(); 1739 } 1740 } 1741 1742 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1743 HasLinkage = true; 1744 switch (Kind) { 1745 default: 1746 HasLinkage = false; 1747 return GlobalValue::ExternalLinkage; 1748 case lltok::kw_private: 1749 return GlobalValue::PrivateLinkage; 1750 case lltok::kw_internal: 1751 return GlobalValue::InternalLinkage; 1752 case lltok::kw_weak: 1753 return GlobalValue::WeakAnyLinkage; 1754 case lltok::kw_weak_odr: 1755 return GlobalValue::WeakODRLinkage; 1756 case lltok::kw_linkonce: 1757 return GlobalValue::LinkOnceAnyLinkage; 1758 case lltok::kw_linkonce_odr: 1759 return GlobalValue::LinkOnceODRLinkage; 1760 case lltok::kw_available_externally: 1761 return GlobalValue::AvailableExternallyLinkage; 1762 case lltok::kw_appending: 1763 return GlobalValue::AppendingLinkage; 1764 case lltok::kw_common: 1765 return GlobalValue::CommonLinkage; 1766 case lltok::kw_extern_weak: 1767 return GlobalValue::ExternalWeakLinkage; 1768 case lltok::kw_external: 1769 return GlobalValue::ExternalLinkage; 1770 } 1771 } 1772 1773 /// ParseOptionalLinkage 1774 /// ::= /*empty*/ 1775 /// ::= 'private' 1776 /// ::= 'internal' 1777 /// ::= 'weak' 1778 /// ::= 'weak_odr' 1779 /// ::= 'linkonce' 1780 /// ::= 'linkonce_odr' 1781 /// ::= 'available_externally' 1782 /// ::= 'appending' 1783 /// ::= 'common' 1784 /// ::= 'extern_weak' 1785 /// ::= 'external' 1786 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1787 unsigned &Visibility, 1788 unsigned &DLLStorageClass, 1789 bool &DSOLocal) { 1790 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1791 if (HasLinkage) 1792 Lex.Lex(); 1793 ParseOptionalDSOLocal(DSOLocal); 1794 ParseOptionalVisibility(Visibility); 1795 ParseOptionalDLLStorageClass(DLLStorageClass); 1796 1797 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1798 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1799 } 1800 1801 return false; 1802 } 1803 1804 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1805 switch (Lex.getKind()) { 1806 default: 1807 DSOLocal = false; 1808 break; 1809 case lltok::kw_dso_local: 1810 DSOLocal = true; 1811 Lex.Lex(); 1812 break; 1813 case lltok::kw_dso_preemptable: 1814 DSOLocal = false; 1815 Lex.Lex(); 1816 break; 1817 } 1818 } 1819 1820 /// ParseOptionalVisibility 1821 /// ::= /*empty*/ 1822 /// ::= 'default' 1823 /// ::= 'hidden' 1824 /// ::= 'protected' 1825 /// 1826 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1827 switch (Lex.getKind()) { 1828 default: 1829 Res = GlobalValue::DefaultVisibility; 1830 return; 1831 case lltok::kw_default: 1832 Res = GlobalValue::DefaultVisibility; 1833 break; 1834 case lltok::kw_hidden: 1835 Res = GlobalValue::HiddenVisibility; 1836 break; 1837 case lltok::kw_protected: 1838 Res = GlobalValue::ProtectedVisibility; 1839 break; 1840 } 1841 Lex.Lex(); 1842 } 1843 1844 /// ParseOptionalDLLStorageClass 1845 /// ::= /*empty*/ 1846 /// ::= 'dllimport' 1847 /// ::= 'dllexport' 1848 /// 1849 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1850 switch (Lex.getKind()) { 1851 default: 1852 Res = GlobalValue::DefaultStorageClass; 1853 return; 1854 case lltok::kw_dllimport: 1855 Res = GlobalValue::DLLImportStorageClass; 1856 break; 1857 case lltok::kw_dllexport: 1858 Res = GlobalValue::DLLExportStorageClass; 1859 break; 1860 } 1861 Lex.Lex(); 1862 } 1863 1864 /// ParseOptionalCallingConv 1865 /// ::= /*empty*/ 1866 /// ::= 'ccc' 1867 /// ::= 'fastcc' 1868 /// ::= 'intel_ocl_bicc' 1869 /// ::= 'coldcc' 1870 /// ::= 'x86_stdcallcc' 1871 /// ::= 'x86_fastcallcc' 1872 /// ::= 'x86_thiscallcc' 1873 /// ::= 'x86_vectorcallcc' 1874 /// ::= 'arm_apcscc' 1875 /// ::= 'arm_aapcscc' 1876 /// ::= 'arm_aapcs_vfpcc' 1877 /// ::= 'aarch64_vector_pcs' 1878 /// ::= 'msp430_intrcc' 1879 /// ::= 'avr_intrcc' 1880 /// ::= 'avr_signalcc' 1881 /// ::= 'ptx_kernel' 1882 /// ::= 'ptx_device' 1883 /// ::= 'spir_func' 1884 /// ::= 'spir_kernel' 1885 /// ::= 'x86_64_sysvcc' 1886 /// ::= 'win64cc' 1887 /// ::= 'webkit_jscc' 1888 /// ::= 'anyregcc' 1889 /// ::= 'preserve_mostcc' 1890 /// ::= 'preserve_allcc' 1891 /// ::= 'ghccc' 1892 /// ::= 'swiftcc' 1893 /// ::= 'x86_intrcc' 1894 /// ::= 'hhvmcc' 1895 /// ::= 'hhvm_ccc' 1896 /// ::= 'cxx_fast_tlscc' 1897 /// ::= 'amdgpu_vs' 1898 /// ::= 'amdgpu_ls' 1899 /// ::= 'amdgpu_hs' 1900 /// ::= 'amdgpu_es' 1901 /// ::= 'amdgpu_gs' 1902 /// ::= 'amdgpu_ps' 1903 /// ::= 'amdgpu_cs' 1904 /// ::= 'amdgpu_kernel' 1905 /// ::= 'cc' UINT 1906 /// 1907 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1908 switch (Lex.getKind()) { 1909 default: CC = CallingConv::C; return false; 1910 case lltok::kw_ccc: CC = CallingConv::C; break; 1911 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1912 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1913 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1914 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1915 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1916 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1917 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1918 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1919 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1920 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1921 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1922 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1923 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1924 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1925 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1926 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1927 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1928 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1929 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1930 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1931 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1932 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1933 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1934 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1935 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1936 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1937 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1938 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1939 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1940 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1941 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1942 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1943 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1944 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1945 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1946 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1947 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1948 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1949 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1950 case lltok::kw_cc: { 1951 Lex.Lex(); 1952 return ParseUInt32(CC); 1953 } 1954 } 1955 1956 Lex.Lex(); 1957 return false; 1958 } 1959 1960 /// ParseMetadataAttachment 1961 /// ::= !dbg !42 1962 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1963 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1964 1965 std::string Name = Lex.getStrVal(); 1966 Kind = M->getMDKindID(Name); 1967 Lex.Lex(); 1968 1969 return ParseMDNode(MD); 1970 } 1971 1972 /// ParseInstructionMetadata 1973 /// ::= !dbg !42 (',' !dbg !57)* 1974 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1975 do { 1976 if (Lex.getKind() != lltok::MetadataVar) 1977 return TokError("expected metadata after comma"); 1978 1979 unsigned MDK; 1980 MDNode *N; 1981 if (ParseMetadataAttachment(MDK, N)) 1982 return true; 1983 1984 Inst.setMetadata(MDK, N); 1985 if (MDK == LLVMContext::MD_tbaa) 1986 InstsWithTBAATag.push_back(&Inst); 1987 1988 // If this is the end of the list, we're done. 1989 } while (EatIfPresent(lltok::comma)); 1990 return false; 1991 } 1992 1993 /// ParseGlobalObjectMetadataAttachment 1994 /// ::= !dbg !57 1995 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1996 unsigned MDK; 1997 MDNode *N; 1998 if (ParseMetadataAttachment(MDK, N)) 1999 return true; 2000 2001 GO.addMetadata(MDK, *N); 2002 return false; 2003 } 2004 2005 /// ParseOptionalFunctionMetadata 2006 /// ::= (!dbg !57)* 2007 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2008 while (Lex.getKind() == lltok::MetadataVar) 2009 if (ParseGlobalObjectMetadataAttachment(F)) 2010 return true; 2011 return false; 2012 } 2013 2014 /// ParseOptionalAlignment 2015 /// ::= /* empty */ 2016 /// ::= 'align' 4 2017 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 2018 Alignment = 0; 2019 if (!EatIfPresent(lltok::kw_align)) 2020 return false; 2021 LocTy AlignLoc = Lex.getLoc(); 2022 if (ParseUInt32(Alignment)) return true; 2023 if (!isPowerOf2_32(Alignment)) 2024 return Error(AlignLoc, "alignment is not a power of two"); 2025 if (Alignment > Value::MaximumAlignment) 2026 return Error(AlignLoc, "huge alignments are not supported yet"); 2027 return false; 2028 } 2029 2030 /// ParseOptionalDerefAttrBytes 2031 /// ::= /* empty */ 2032 /// ::= AttrKind '(' 4 ')' 2033 /// 2034 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2035 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2036 uint64_t &Bytes) { 2037 assert((AttrKind == lltok::kw_dereferenceable || 2038 AttrKind == lltok::kw_dereferenceable_or_null) && 2039 "contract!"); 2040 2041 Bytes = 0; 2042 if (!EatIfPresent(AttrKind)) 2043 return false; 2044 LocTy ParenLoc = Lex.getLoc(); 2045 if (!EatIfPresent(lltok::lparen)) 2046 return Error(ParenLoc, "expected '('"); 2047 LocTy DerefLoc = Lex.getLoc(); 2048 if (ParseUInt64(Bytes)) return true; 2049 ParenLoc = Lex.getLoc(); 2050 if (!EatIfPresent(lltok::rparen)) 2051 return Error(ParenLoc, "expected ')'"); 2052 if (!Bytes) 2053 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2054 return false; 2055 } 2056 2057 /// ParseOptionalCommaAlign 2058 /// ::= 2059 /// ::= ',' align 4 2060 /// 2061 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2062 /// end. 2063 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2064 bool &AteExtraComma) { 2065 AteExtraComma = false; 2066 while (EatIfPresent(lltok::comma)) { 2067 // Metadata at the end is an early exit. 2068 if (Lex.getKind() == lltok::MetadataVar) { 2069 AteExtraComma = true; 2070 return false; 2071 } 2072 2073 if (Lex.getKind() != lltok::kw_align) 2074 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2075 2076 if (ParseOptionalAlignment(Alignment)) return true; 2077 } 2078 2079 return false; 2080 } 2081 2082 /// ParseOptionalCommaAddrSpace 2083 /// ::= 2084 /// ::= ',' addrspace(1) 2085 /// 2086 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2087 /// end. 2088 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2089 LocTy &Loc, 2090 bool &AteExtraComma) { 2091 AteExtraComma = false; 2092 while (EatIfPresent(lltok::comma)) { 2093 // Metadata at the end is an early exit. 2094 if (Lex.getKind() == lltok::MetadataVar) { 2095 AteExtraComma = true; 2096 return false; 2097 } 2098 2099 Loc = Lex.getLoc(); 2100 if (Lex.getKind() != lltok::kw_addrspace) 2101 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2102 2103 if (ParseOptionalAddrSpace(AddrSpace)) 2104 return true; 2105 } 2106 2107 return false; 2108 } 2109 2110 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2111 Optional<unsigned> &HowManyArg) { 2112 Lex.Lex(); 2113 2114 auto StartParen = Lex.getLoc(); 2115 if (!EatIfPresent(lltok::lparen)) 2116 return Error(StartParen, "expected '('"); 2117 2118 if (ParseUInt32(BaseSizeArg)) 2119 return true; 2120 2121 if (EatIfPresent(lltok::comma)) { 2122 auto HowManyAt = Lex.getLoc(); 2123 unsigned HowMany; 2124 if (ParseUInt32(HowMany)) 2125 return true; 2126 if (HowMany == BaseSizeArg) 2127 return Error(HowManyAt, 2128 "'allocsize' indices can't refer to the same parameter"); 2129 HowManyArg = HowMany; 2130 } else 2131 HowManyArg = None; 2132 2133 auto EndParen = Lex.getLoc(); 2134 if (!EatIfPresent(lltok::rparen)) 2135 return Error(EndParen, "expected ')'"); 2136 return false; 2137 } 2138 2139 /// ParseScopeAndOrdering 2140 /// if isAtomic: ::= SyncScope? AtomicOrdering 2141 /// else: ::= 2142 /// 2143 /// This sets Scope and Ordering to the parsed values. 2144 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2145 AtomicOrdering &Ordering) { 2146 if (!isAtomic) 2147 return false; 2148 2149 return ParseScope(SSID) || ParseOrdering(Ordering); 2150 } 2151 2152 /// ParseScope 2153 /// ::= syncscope("singlethread" | "<target scope>")? 2154 /// 2155 /// This sets synchronization scope ID to the ID of the parsed value. 2156 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2157 SSID = SyncScope::System; 2158 if (EatIfPresent(lltok::kw_syncscope)) { 2159 auto StartParenAt = Lex.getLoc(); 2160 if (!EatIfPresent(lltok::lparen)) 2161 return Error(StartParenAt, "Expected '(' in syncscope"); 2162 2163 std::string SSN; 2164 auto SSNAt = Lex.getLoc(); 2165 if (ParseStringConstant(SSN)) 2166 return Error(SSNAt, "Expected synchronization scope name"); 2167 2168 auto EndParenAt = Lex.getLoc(); 2169 if (!EatIfPresent(lltok::rparen)) 2170 return Error(EndParenAt, "Expected ')' in syncscope"); 2171 2172 SSID = Context.getOrInsertSyncScopeID(SSN); 2173 } 2174 2175 return false; 2176 } 2177 2178 /// ParseOrdering 2179 /// ::= AtomicOrdering 2180 /// 2181 /// This sets Ordering to the parsed value. 2182 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2183 switch (Lex.getKind()) { 2184 default: return TokError("Expected ordering on atomic instruction"); 2185 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2186 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2187 // Not specified yet: 2188 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2189 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2190 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2191 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2192 case lltok::kw_seq_cst: 2193 Ordering = AtomicOrdering::SequentiallyConsistent; 2194 break; 2195 } 2196 Lex.Lex(); 2197 return false; 2198 } 2199 2200 /// ParseOptionalStackAlignment 2201 /// ::= /* empty */ 2202 /// ::= 'alignstack' '(' 4 ')' 2203 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2204 Alignment = 0; 2205 if (!EatIfPresent(lltok::kw_alignstack)) 2206 return false; 2207 LocTy ParenLoc = Lex.getLoc(); 2208 if (!EatIfPresent(lltok::lparen)) 2209 return Error(ParenLoc, "expected '('"); 2210 LocTy AlignLoc = Lex.getLoc(); 2211 if (ParseUInt32(Alignment)) return true; 2212 ParenLoc = Lex.getLoc(); 2213 if (!EatIfPresent(lltok::rparen)) 2214 return Error(ParenLoc, "expected ')'"); 2215 if (!isPowerOf2_32(Alignment)) 2216 return Error(AlignLoc, "stack alignment is not a power of two"); 2217 return false; 2218 } 2219 2220 /// ParseIndexList - This parses the index list for an insert/extractvalue 2221 /// instruction. This sets AteExtraComma in the case where we eat an extra 2222 /// comma at the end of the line and find that it is followed by metadata. 2223 /// Clients that don't allow metadata can call the version of this function that 2224 /// only takes one argument. 2225 /// 2226 /// ParseIndexList 2227 /// ::= (',' uint32)+ 2228 /// 2229 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2230 bool &AteExtraComma) { 2231 AteExtraComma = false; 2232 2233 if (Lex.getKind() != lltok::comma) 2234 return TokError("expected ',' as start of index list"); 2235 2236 while (EatIfPresent(lltok::comma)) { 2237 if (Lex.getKind() == lltok::MetadataVar) { 2238 if (Indices.empty()) return TokError("expected index"); 2239 AteExtraComma = true; 2240 return false; 2241 } 2242 unsigned Idx = 0; 2243 if (ParseUInt32(Idx)) return true; 2244 Indices.push_back(Idx); 2245 } 2246 2247 return false; 2248 } 2249 2250 //===----------------------------------------------------------------------===// 2251 // Type Parsing. 2252 //===----------------------------------------------------------------------===// 2253 2254 /// ParseType - Parse a type. 2255 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2256 SMLoc TypeLoc = Lex.getLoc(); 2257 switch (Lex.getKind()) { 2258 default: 2259 return TokError(Msg); 2260 case lltok::Type: 2261 // Type ::= 'float' | 'void' (etc) 2262 Result = Lex.getTyVal(); 2263 Lex.Lex(); 2264 break; 2265 case lltok::lbrace: 2266 // Type ::= StructType 2267 if (ParseAnonStructType(Result, false)) 2268 return true; 2269 break; 2270 case lltok::lsquare: 2271 // Type ::= '[' ... ']' 2272 Lex.Lex(); // eat the lsquare. 2273 if (ParseArrayVectorType(Result, false)) 2274 return true; 2275 break; 2276 case lltok::less: // Either vector or packed struct. 2277 // Type ::= '<' ... '>' 2278 Lex.Lex(); 2279 if (Lex.getKind() == lltok::lbrace) { 2280 if (ParseAnonStructType(Result, true) || 2281 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2282 return true; 2283 } else if (ParseArrayVectorType(Result, true)) 2284 return true; 2285 break; 2286 case lltok::LocalVar: { 2287 // Type ::= %foo 2288 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2289 2290 // If the type hasn't been defined yet, create a forward definition and 2291 // remember where that forward def'n was seen (in case it never is defined). 2292 if (!Entry.first) { 2293 Entry.first = StructType::create(Context, Lex.getStrVal()); 2294 Entry.second = Lex.getLoc(); 2295 } 2296 Result = Entry.first; 2297 Lex.Lex(); 2298 break; 2299 } 2300 2301 case lltok::LocalVarID: { 2302 // Type ::= %4 2303 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2304 2305 // If the type hasn't been defined yet, create a forward definition and 2306 // remember where that forward def'n was seen (in case it never is defined). 2307 if (!Entry.first) { 2308 Entry.first = StructType::create(Context); 2309 Entry.second = Lex.getLoc(); 2310 } 2311 Result = Entry.first; 2312 Lex.Lex(); 2313 break; 2314 } 2315 } 2316 2317 // Parse the type suffixes. 2318 while (true) { 2319 switch (Lex.getKind()) { 2320 // End of type. 2321 default: 2322 if (!AllowVoid && Result->isVoidTy()) 2323 return Error(TypeLoc, "void type only allowed for function results"); 2324 return false; 2325 2326 // Type ::= Type '*' 2327 case lltok::star: 2328 if (Result->isLabelTy()) 2329 return TokError("basic block pointers are invalid"); 2330 if (Result->isVoidTy()) 2331 return TokError("pointers to void are invalid - use i8* instead"); 2332 if (!PointerType::isValidElementType(Result)) 2333 return TokError("pointer to this type is invalid"); 2334 Result = PointerType::getUnqual(Result); 2335 Lex.Lex(); 2336 break; 2337 2338 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2339 case lltok::kw_addrspace: { 2340 if (Result->isLabelTy()) 2341 return TokError("basic block pointers are invalid"); 2342 if (Result->isVoidTy()) 2343 return TokError("pointers to void are invalid; use i8* instead"); 2344 if (!PointerType::isValidElementType(Result)) 2345 return TokError("pointer to this type is invalid"); 2346 unsigned AddrSpace; 2347 if (ParseOptionalAddrSpace(AddrSpace) || 2348 ParseToken(lltok::star, "expected '*' in address space")) 2349 return true; 2350 2351 Result = PointerType::get(Result, AddrSpace); 2352 break; 2353 } 2354 2355 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2356 case lltok::lparen: 2357 if (ParseFunctionType(Result)) 2358 return true; 2359 break; 2360 } 2361 } 2362 } 2363 2364 /// ParseParameterList 2365 /// ::= '(' ')' 2366 /// ::= '(' Arg (',' Arg)* ')' 2367 /// Arg 2368 /// ::= Type OptionalAttributes Value OptionalAttributes 2369 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2370 PerFunctionState &PFS, bool IsMustTailCall, 2371 bool InVarArgsFunc) { 2372 if (ParseToken(lltok::lparen, "expected '(' in call")) 2373 return true; 2374 2375 while (Lex.getKind() != lltok::rparen) { 2376 // If this isn't the first argument, we need a comma. 2377 if (!ArgList.empty() && 2378 ParseToken(lltok::comma, "expected ',' in argument list")) 2379 return true; 2380 2381 // Parse an ellipsis if this is a musttail call in a variadic function. 2382 if (Lex.getKind() == lltok::dotdotdot) { 2383 const char *Msg = "unexpected ellipsis in argument list for "; 2384 if (!IsMustTailCall) 2385 return TokError(Twine(Msg) + "non-musttail call"); 2386 if (!InVarArgsFunc) 2387 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2388 Lex.Lex(); // Lex the '...', it is purely for readability. 2389 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2390 } 2391 2392 // Parse the argument. 2393 LocTy ArgLoc; 2394 Type *ArgTy = nullptr; 2395 AttrBuilder ArgAttrs; 2396 Value *V; 2397 if (ParseType(ArgTy, ArgLoc)) 2398 return true; 2399 2400 if (ArgTy->isMetadataTy()) { 2401 if (ParseMetadataAsValue(V, PFS)) 2402 return true; 2403 } else { 2404 // Otherwise, handle normal operands. 2405 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2406 return true; 2407 } 2408 ArgList.push_back(ParamInfo( 2409 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2410 } 2411 2412 if (IsMustTailCall && InVarArgsFunc) 2413 return TokError("expected '...' at end of argument list for musttail call " 2414 "in varargs function"); 2415 2416 Lex.Lex(); // Lex the ')'. 2417 return false; 2418 } 2419 2420 /// ParseOptionalOperandBundles 2421 /// ::= /*empty*/ 2422 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2423 /// 2424 /// OperandBundle 2425 /// ::= bundle-tag '(' ')' 2426 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2427 /// 2428 /// bundle-tag ::= String Constant 2429 bool LLParser::ParseOptionalOperandBundles( 2430 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2431 LocTy BeginLoc = Lex.getLoc(); 2432 if (!EatIfPresent(lltok::lsquare)) 2433 return false; 2434 2435 while (Lex.getKind() != lltok::rsquare) { 2436 // If this isn't the first operand bundle, we need a comma. 2437 if (!BundleList.empty() && 2438 ParseToken(lltok::comma, "expected ',' in input list")) 2439 return true; 2440 2441 std::string Tag; 2442 if (ParseStringConstant(Tag)) 2443 return true; 2444 2445 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2446 return true; 2447 2448 std::vector<Value *> Inputs; 2449 while (Lex.getKind() != lltok::rparen) { 2450 // If this isn't the first input, we need a comma. 2451 if (!Inputs.empty() && 2452 ParseToken(lltok::comma, "expected ',' in input list")) 2453 return true; 2454 2455 Type *Ty = nullptr; 2456 Value *Input = nullptr; 2457 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2458 return true; 2459 Inputs.push_back(Input); 2460 } 2461 2462 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2463 2464 Lex.Lex(); // Lex the ')'. 2465 } 2466 2467 if (BundleList.empty()) 2468 return Error(BeginLoc, "operand bundle set must not be empty"); 2469 2470 Lex.Lex(); // Lex the ']'. 2471 return false; 2472 } 2473 2474 /// ParseArgumentList - Parse the argument list for a function type or function 2475 /// prototype. 2476 /// ::= '(' ArgTypeListI ')' 2477 /// ArgTypeListI 2478 /// ::= /*empty*/ 2479 /// ::= '...' 2480 /// ::= ArgTypeList ',' '...' 2481 /// ::= ArgType (',' ArgType)* 2482 /// 2483 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2484 bool &isVarArg){ 2485 isVarArg = false; 2486 assert(Lex.getKind() == lltok::lparen); 2487 Lex.Lex(); // eat the (. 2488 2489 if (Lex.getKind() == lltok::rparen) { 2490 // empty 2491 } else if (Lex.getKind() == lltok::dotdotdot) { 2492 isVarArg = true; 2493 Lex.Lex(); 2494 } else { 2495 LocTy TypeLoc = Lex.getLoc(); 2496 Type *ArgTy = nullptr; 2497 AttrBuilder Attrs; 2498 std::string Name; 2499 2500 if (ParseType(ArgTy) || 2501 ParseOptionalParamAttrs(Attrs)) return true; 2502 2503 if (ArgTy->isVoidTy()) 2504 return Error(TypeLoc, "argument can not have void type"); 2505 2506 if (Lex.getKind() == lltok::LocalVar) { 2507 Name = Lex.getStrVal(); 2508 Lex.Lex(); 2509 } 2510 2511 if (!FunctionType::isValidArgumentType(ArgTy)) 2512 return Error(TypeLoc, "invalid type for function argument"); 2513 2514 ArgList.emplace_back(TypeLoc, ArgTy, 2515 AttributeSet::get(ArgTy->getContext(), Attrs), 2516 std::move(Name)); 2517 2518 while (EatIfPresent(lltok::comma)) { 2519 // Handle ... at end of arg list. 2520 if (EatIfPresent(lltok::dotdotdot)) { 2521 isVarArg = true; 2522 break; 2523 } 2524 2525 // Otherwise must be an argument type. 2526 TypeLoc = Lex.getLoc(); 2527 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2528 2529 if (ArgTy->isVoidTy()) 2530 return Error(TypeLoc, "argument can not have void type"); 2531 2532 if (Lex.getKind() == lltok::LocalVar) { 2533 Name = Lex.getStrVal(); 2534 Lex.Lex(); 2535 } else { 2536 Name = ""; 2537 } 2538 2539 if (!ArgTy->isFirstClassType()) 2540 return Error(TypeLoc, "invalid type for function argument"); 2541 2542 ArgList.emplace_back(TypeLoc, ArgTy, 2543 AttributeSet::get(ArgTy->getContext(), Attrs), 2544 std::move(Name)); 2545 } 2546 } 2547 2548 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2549 } 2550 2551 /// ParseFunctionType 2552 /// ::= Type ArgumentList OptionalAttrs 2553 bool LLParser::ParseFunctionType(Type *&Result) { 2554 assert(Lex.getKind() == lltok::lparen); 2555 2556 if (!FunctionType::isValidReturnType(Result)) 2557 return TokError("invalid function return type"); 2558 2559 SmallVector<ArgInfo, 8> ArgList; 2560 bool isVarArg; 2561 if (ParseArgumentList(ArgList, isVarArg)) 2562 return true; 2563 2564 // Reject names on the arguments lists. 2565 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2566 if (!ArgList[i].Name.empty()) 2567 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2568 if (ArgList[i].Attrs.hasAttributes()) 2569 return Error(ArgList[i].Loc, 2570 "argument attributes invalid in function type"); 2571 } 2572 2573 SmallVector<Type*, 16> ArgListTy; 2574 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2575 ArgListTy.push_back(ArgList[i].Ty); 2576 2577 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2578 return false; 2579 } 2580 2581 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2582 /// other structs. 2583 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2584 SmallVector<Type*, 8> Elts; 2585 if (ParseStructBody(Elts)) return true; 2586 2587 Result = StructType::get(Context, Elts, Packed); 2588 return false; 2589 } 2590 2591 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2592 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2593 std::pair<Type*, LocTy> &Entry, 2594 Type *&ResultTy) { 2595 // If the type was already defined, diagnose the redefinition. 2596 if (Entry.first && !Entry.second.isValid()) 2597 return Error(TypeLoc, "redefinition of type"); 2598 2599 // If we have opaque, just return without filling in the definition for the 2600 // struct. This counts as a definition as far as the .ll file goes. 2601 if (EatIfPresent(lltok::kw_opaque)) { 2602 // This type is being defined, so clear the location to indicate this. 2603 Entry.second = SMLoc(); 2604 2605 // If this type number has never been uttered, create it. 2606 if (!Entry.first) 2607 Entry.first = StructType::create(Context, Name); 2608 ResultTy = Entry.first; 2609 return false; 2610 } 2611 2612 // If the type starts with '<', then it is either a packed struct or a vector. 2613 bool isPacked = EatIfPresent(lltok::less); 2614 2615 // If we don't have a struct, then we have a random type alias, which we 2616 // accept for compatibility with old files. These types are not allowed to be 2617 // forward referenced and not allowed to be recursive. 2618 if (Lex.getKind() != lltok::lbrace) { 2619 if (Entry.first) 2620 return Error(TypeLoc, "forward references to non-struct type"); 2621 2622 ResultTy = nullptr; 2623 if (isPacked) 2624 return ParseArrayVectorType(ResultTy, true); 2625 return ParseType(ResultTy); 2626 } 2627 2628 // This type is being defined, so clear the location to indicate this. 2629 Entry.second = SMLoc(); 2630 2631 // If this type number has never been uttered, create it. 2632 if (!Entry.first) 2633 Entry.first = StructType::create(Context, Name); 2634 2635 StructType *STy = cast<StructType>(Entry.first); 2636 2637 SmallVector<Type*, 8> Body; 2638 if (ParseStructBody(Body) || 2639 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2640 return true; 2641 2642 STy->setBody(Body, isPacked); 2643 ResultTy = STy; 2644 return false; 2645 } 2646 2647 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2648 /// StructType 2649 /// ::= '{' '}' 2650 /// ::= '{' Type (',' Type)* '}' 2651 /// ::= '<' '{' '}' '>' 2652 /// ::= '<' '{' Type (',' Type)* '}' '>' 2653 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2654 assert(Lex.getKind() == lltok::lbrace); 2655 Lex.Lex(); // Consume the '{' 2656 2657 // Handle the empty struct. 2658 if (EatIfPresent(lltok::rbrace)) 2659 return false; 2660 2661 LocTy EltTyLoc = Lex.getLoc(); 2662 Type *Ty = nullptr; 2663 if (ParseType(Ty)) return true; 2664 Body.push_back(Ty); 2665 2666 if (!StructType::isValidElementType(Ty)) 2667 return Error(EltTyLoc, "invalid element type for struct"); 2668 2669 while (EatIfPresent(lltok::comma)) { 2670 EltTyLoc = Lex.getLoc(); 2671 if (ParseType(Ty)) return true; 2672 2673 if (!StructType::isValidElementType(Ty)) 2674 return Error(EltTyLoc, "invalid element type for struct"); 2675 2676 Body.push_back(Ty); 2677 } 2678 2679 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2680 } 2681 2682 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2683 /// token has already been consumed. 2684 /// Type 2685 /// ::= '[' APSINTVAL 'x' Types ']' 2686 /// ::= '<' APSINTVAL 'x' Types '>' 2687 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2688 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2689 Lex.getAPSIntVal().getBitWidth() > 64) 2690 return TokError("expected number in address space"); 2691 2692 LocTy SizeLoc = Lex.getLoc(); 2693 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2694 Lex.Lex(); 2695 2696 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2697 return true; 2698 2699 LocTy TypeLoc = Lex.getLoc(); 2700 Type *EltTy = nullptr; 2701 if (ParseType(EltTy)) return true; 2702 2703 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2704 "expected end of sequential type")) 2705 return true; 2706 2707 if (isVector) { 2708 if (Size == 0) 2709 return Error(SizeLoc, "zero element vector is illegal"); 2710 if ((unsigned)Size != Size) 2711 return Error(SizeLoc, "size too large for vector"); 2712 if (!VectorType::isValidElementType(EltTy)) 2713 return Error(TypeLoc, "invalid vector element type"); 2714 Result = VectorType::get(EltTy, unsigned(Size)); 2715 } else { 2716 if (!ArrayType::isValidElementType(EltTy)) 2717 return Error(TypeLoc, "invalid array element type"); 2718 Result = ArrayType::get(EltTy, Size); 2719 } 2720 return false; 2721 } 2722 2723 //===----------------------------------------------------------------------===// 2724 // Function Semantic Analysis. 2725 //===----------------------------------------------------------------------===// 2726 2727 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2728 int functionNumber) 2729 : P(p), F(f), FunctionNumber(functionNumber) { 2730 2731 // Insert unnamed arguments into the NumberedVals list. 2732 for (Argument &A : F.args()) 2733 if (!A.hasName()) 2734 NumberedVals.push_back(&A); 2735 } 2736 2737 LLParser::PerFunctionState::~PerFunctionState() { 2738 // If there were any forward referenced non-basicblock values, delete them. 2739 2740 for (const auto &P : ForwardRefVals) { 2741 if (isa<BasicBlock>(P.second.first)) 2742 continue; 2743 P.second.first->replaceAllUsesWith( 2744 UndefValue::get(P.second.first->getType())); 2745 P.second.first->deleteValue(); 2746 } 2747 2748 for (const auto &P : ForwardRefValIDs) { 2749 if (isa<BasicBlock>(P.second.first)) 2750 continue; 2751 P.second.first->replaceAllUsesWith( 2752 UndefValue::get(P.second.first->getType())); 2753 P.second.first->deleteValue(); 2754 } 2755 } 2756 2757 bool LLParser::PerFunctionState::FinishFunction() { 2758 if (!ForwardRefVals.empty()) 2759 return P.Error(ForwardRefVals.begin()->second.second, 2760 "use of undefined value '%" + ForwardRefVals.begin()->first + 2761 "'"); 2762 if (!ForwardRefValIDs.empty()) 2763 return P.Error(ForwardRefValIDs.begin()->second.second, 2764 "use of undefined value '%" + 2765 Twine(ForwardRefValIDs.begin()->first) + "'"); 2766 return false; 2767 } 2768 2769 /// GetVal - Get a value with the specified name or ID, creating a 2770 /// forward reference record if needed. This can return null if the value 2771 /// exists but does not have the right type. 2772 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2773 LocTy Loc, bool IsCall) { 2774 // Look this name up in the normal function symbol table. 2775 Value *Val = F.getValueSymbolTable()->lookup(Name); 2776 2777 // If this is a forward reference for the value, see if we already created a 2778 // forward ref record. 2779 if (!Val) { 2780 auto I = ForwardRefVals.find(Name); 2781 if (I != ForwardRefVals.end()) 2782 Val = I->second.first; 2783 } 2784 2785 // If we have the value in the symbol table or fwd-ref table, return it. 2786 if (Val) 2787 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2788 2789 // Don't make placeholders with invalid type. 2790 if (!Ty->isFirstClassType()) { 2791 P.Error(Loc, "invalid use of a non-first-class type"); 2792 return nullptr; 2793 } 2794 2795 // Otherwise, create a new forward reference for this value and remember it. 2796 Value *FwdVal; 2797 if (Ty->isLabelTy()) { 2798 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2799 } else { 2800 FwdVal = new Argument(Ty, Name); 2801 } 2802 2803 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2804 return FwdVal; 2805 } 2806 2807 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2808 bool IsCall) { 2809 // Look this name up in the normal function symbol table. 2810 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2811 2812 // If this is a forward reference for the value, see if we already created a 2813 // forward ref record. 2814 if (!Val) { 2815 auto I = ForwardRefValIDs.find(ID); 2816 if (I != ForwardRefValIDs.end()) 2817 Val = I->second.first; 2818 } 2819 2820 // If we have the value in the symbol table or fwd-ref table, return it. 2821 if (Val) 2822 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2823 2824 if (!Ty->isFirstClassType()) { 2825 P.Error(Loc, "invalid use of a non-first-class type"); 2826 return nullptr; 2827 } 2828 2829 // Otherwise, create a new forward reference for this value and remember it. 2830 Value *FwdVal; 2831 if (Ty->isLabelTy()) { 2832 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2833 } else { 2834 FwdVal = new Argument(Ty); 2835 } 2836 2837 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2838 return FwdVal; 2839 } 2840 2841 /// SetInstName - After an instruction is parsed and inserted into its 2842 /// basic block, this installs its name. 2843 bool LLParser::PerFunctionState::SetInstName(int NameID, 2844 const std::string &NameStr, 2845 LocTy NameLoc, Instruction *Inst) { 2846 // If this instruction has void type, it cannot have a name or ID specified. 2847 if (Inst->getType()->isVoidTy()) { 2848 if (NameID != -1 || !NameStr.empty()) 2849 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2850 return false; 2851 } 2852 2853 // If this was a numbered instruction, verify that the instruction is the 2854 // expected value and resolve any forward references. 2855 if (NameStr.empty()) { 2856 // If neither a name nor an ID was specified, just use the next ID. 2857 if (NameID == -1) 2858 NameID = NumberedVals.size(); 2859 2860 if (unsigned(NameID) != NumberedVals.size()) 2861 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2862 Twine(NumberedVals.size()) + "'"); 2863 2864 auto FI = ForwardRefValIDs.find(NameID); 2865 if (FI != ForwardRefValIDs.end()) { 2866 Value *Sentinel = FI->second.first; 2867 if (Sentinel->getType() != Inst->getType()) 2868 return P.Error(NameLoc, "instruction forward referenced with type '" + 2869 getTypeString(FI->second.first->getType()) + "'"); 2870 2871 Sentinel->replaceAllUsesWith(Inst); 2872 Sentinel->deleteValue(); 2873 ForwardRefValIDs.erase(FI); 2874 } 2875 2876 NumberedVals.push_back(Inst); 2877 return false; 2878 } 2879 2880 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2881 auto FI = ForwardRefVals.find(NameStr); 2882 if (FI != ForwardRefVals.end()) { 2883 Value *Sentinel = FI->second.first; 2884 if (Sentinel->getType() != Inst->getType()) 2885 return P.Error(NameLoc, "instruction forward referenced with type '" + 2886 getTypeString(FI->second.first->getType()) + "'"); 2887 2888 Sentinel->replaceAllUsesWith(Inst); 2889 Sentinel->deleteValue(); 2890 ForwardRefVals.erase(FI); 2891 } 2892 2893 // Set the name on the instruction. 2894 Inst->setName(NameStr); 2895 2896 if (Inst->getName() != NameStr) 2897 return P.Error(NameLoc, "multiple definition of local value named '" + 2898 NameStr + "'"); 2899 return false; 2900 } 2901 2902 /// GetBB - Get a basic block with the specified name or ID, creating a 2903 /// forward reference record if needed. 2904 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2905 LocTy Loc) { 2906 return dyn_cast_or_null<BasicBlock>( 2907 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2908 } 2909 2910 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2911 return dyn_cast_or_null<BasicBlock>( 2912 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2913 } 2914 2915 /// DefineBB - Define the specified basic block, which is either named or 2916 /// unnamed. If there is an error, this returns null otherwise it returns 2917 /// the block being defined. 2918 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2919 LocTy Loc) { 2920 BasicBlock *BB; 2921 if (Name.empty()) 2922 BB = GetBB(NumberedVals.size(), Loc); 2923 else 2924 BB = GetBB(Name, Loc); 2925 if (!BB) return nullptr; // Already diagnosed error. 2926 2927 // Move the block to the end of the function. Forward ref'd blocks are 2928 // inserted wherever they happen to be referenced. 2929 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2930 2931 // Remove the block from forward ref sets. 2932 if (Name.empty()) { 2933 ForwardRefValIDs.erase(NumberedVals.size()); 2934 NumberedVals.push_back(BB); 2935 } else { 2936 // BB forward references are already in the function symbol table. 2937 ForwardRefVals.erase(Name); 2938 } 2939 2940 return BB; 2941 } 2942 2943 //===----------------------------------------------------------------------===// 2944 // Constants. 2945 //===----------------------------------------------------------------------===// 2946 2947 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2948 /// type implied. For example, if we parse "4" we don't know what integer type 2949 /// it has. The value will later be combined with its type and checked for 2950 /// sanity. PFS is used to convert function-local operands of metadata (since 2951 /// metadata operands are not just parsed here but also converted to values). 2952 /// PFS can be null when we are not parsing metadata values inside a function. 2953 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2954 ID.Loc = Lex.getLoc(); 2955 switch (Lex.getKind()) { 2956 default: return TokError("expected value token"); 2957 case lltok::GlobalID: // @42 2958 ID.UIntVal = Lex.getUIntVal(); 2959 ID.Kind = ValID::t_GlobalID; 2960 break; 2961 case lltok::GlobalVar: // @foo 2962 ID.StrVal = Lex.getStrVal(); 2963 ID.Kind = ValID::t_GlobalName; 2964 break; 2965 case lltok::LocalVarID: // %42 2966 ID.UIntVal = Lex.getUIntVal(); 2967 ID.Kind = ValID::t_LocalID; 2968 break; 2969 case lltok::LocalVar: // %foo 2970 ID.StrVal = Lex.getStrVal(); 2971 ID.Kind = ValID::t_LocalName; 2972 break; 2973 case lltok::APSInt: 2974 ID.APSIntVal = Lex.getAPSIntVal(); 2975 ID.Kind = ValID::t_APSInt; 2976 break; 2977 case lltok::APFloat: 2978 ID.APFloatVal = Lex.getAPFloatVal(); 2979 ID.Kind = ValID::t_APFloat; 2980 break; 2981 case lltok::kw_true: 2982 ID.ConstantVal = ConstantInt::getTrue(Context); 2983 ID.Kind = ValID::t_Constant; 2984 break; 2985 case lltok::kw_false: 2986 ID.ConstantVal = ConstantInt::getFalse(Context); 2987 ID.Kind = ValID::t_Constant; 2988 break; 2989 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2990 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2991 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2992 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2993 2994 case lltok::lbrace: { 2995 // ValID ::= '{' ConstVector '}' 2996 Lex.Lex(); 2997 SmallVector<Constant*, 16> Elts; 2998 if (ParseGlobalValueVector(Elts) || 2999 ParseToken(lltok::rbrace, "expected end of struct constant")) 3000 return true; 3001 3002 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3003 ID.UIntVal = Elts.size(); 3004 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3005 Elts.size() * sizeof(Elts[0])); 3006 ID.Kind = ValID::t_ConstantStruct; 3007 return false; 3008 } 3009 case lltok::less: { 3010 // ValID ::= '<' ConstVector '>' --> Vector. 3011 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3012 Lex.Lex(); 3013 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3014 3015 SmallVector<Constant*, 16> Elts; 3016 LocTy FirstEltLoc = Lex.getLoc(); 3017 if (ParseGlobalValueVector(Elts) || 3018 (isPackedStruct && 3019 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3020 ParseToken(lltok::greater, "expected end of constant")) 3021 return true; 3022 3023 if (isPackedStruct) { 3024 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3025 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3026 Elts.size() * sizeof(Elts[0])); 3027 ID.UIntVal = Elts.size(); 3028 ID.Kind = ValID::t_PackedConstantStruct; 3029 return false; 3030 } 3031 3032 if (Elts.empty()) 3033 return Error(ID.Loc, "constant vector must not be empty"); 3034 3035 if (!Elts[0]->getType()->isIntegerTy() && 3036 !Elts[0]->getType()->isFloatingPointTy() && 3037 !Elts[0]->getType()->isPointerTy()) 3038 return Error(FirstEltLoc, 3039 "vector elements must have integer, pointer or floating point type"); 3040 3041 // Verify that all the vector elements have the same type. 3042 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3043 if (Elts[i]->getType() != Elts[0]->getType()) 3044 return Error(FirstEltLoc, 3045 "vector element #" + Twine(i) + 3046 " is not of type '" + getTypeString(Elts[0]->getType())); 3047 3048 ID.ConstantVal = ConstantVector::get(Elts); 3049 ID.Kind = ValID::t_Constant; 3050 return false; 3051 } 3052 case lltok::lsquare: { // Array Constant 3053 Lex.Lex(); 3054 SmallVector<Constant*, 16> Elts; 3055 LocTy FirstEltLoc = Lex.getLoc(); 3056 if (ParseGlobalValueVector(Elts) || 3057 ParseToken(lltok::rsquare, "expected end of array constant")) 3058 return true; 3059 3060 // Handle empty element. 3061 if (Elts.empty()) { 3062 // Use undef instead of an array because it's inconvenient to determine 3063 // the element type at this point, there being no elements to examine. 3064 ID.Kind = ValID::t_EmptyArray; 3065 return false; 3066 } 3067 3068 if (!Elts[0]->getType()->isFirstClassType()) 3069 return Error(FirstEltLoc, "invalid array element type: " + 3070 getTypeString(Elts[0]->getType())); 3071 3072 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3073 3074 // Verify all elements are correct type! 3075 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3076 if (Elts[i]->getType() != Elts[0]->getType()) 3077 return Error(FirstEltLoc, 3078 "array element #" + Twine(i) + 3079 " is not of type '" + getTypeString(Elts[0]->getType())); 3080 } 3081 3082 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3083 ID.Kind = ValID::t_Constant; 3084 return false; 3085 } 3086 case lltok::kw_c: // c "foo" 3087 Lex.Lex(); 3088 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3089 false); 3090 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3091 ID.Kind = ValID::t_Constant; 3092 return false; 3093 3094 case lltok::kw_asm: { 3095 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3096 // STRINGCONSTANT 3097 bool HasSideEffect, AlignStack, AsmDialect; 3098 Lex.Lex(); 3099 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3100 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3101 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3102 ParseStringConstant(ID.StrVal) || 3103 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3104 ParseToken(lltok::StringConstant, "expected constraint string")) 3105 return true; 3106 ID.StrVal2 = Lex.getStrVal(); 3107 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3108 (unsigned(AsmDialect)<<2); 3109 ID.Kind = ValID::t_InlineAsm; 3110 return false; 3111 } 3112 3113 case lltok::kw_blockaddress: { 3114 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3115 Lex.Lex(); 3116 3117 ValID Fn, Label; 3118 3119 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3120 ParseValID(Fn) || 3121 ParseToken(lltok::comma, "expected comma in block address expression")|| 3122 ParseValID(Label) || 3123 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3124 return true; 3125 3126 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3127 return Error(Fn.Loc, "expected function name in blockaddress"); 3128 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3129 return Error(Label.Loc, "expected basic block name in blockaddress"); 3130 3131 // Try to find the function (but skip it if it's forward-referenced). 3132 GlobalValue *GV = nullptr; 3133 if (Fn.Kind == ValID::t_GlobalID) { 3134 if (Fn.UIntVal < NumberedVals.size()) 3135 GV = NumberedVals[Fn.UIntVal]; 3136 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3137 GV = M->getNamedValue(Fn.StrVal); 3138 } 3139 Function *F = nullptr; 3140 if (GV) { 3141 // Confirm that it's actually a function with a definition. 3142 if (!isa<Function>(GV)) 3143 return Error(Fn.Loc, "expected function name in blockaddress"); 3144 F = cast<Function>(GV); 3145 if (F->isDeclaration()) 3146 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3147 } 3148 3149 if (!F) { 3150 // Make a global variable as a placeholder for this reference. 3151 GlobalValue *&FwdRef = 3152 ForwardRefBlockAddresses.insert(std::make_pair( 3153 std::move(Fn), 3154 std::map<ValID, GlobalValue *>())) 3155 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3156 .first->second; 3157 if (!FwdRef) 3158 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3159 GlobalValue::InternalLinkage, nullptr, ""); 3160 ID.ConstantVal = FwdRef; 3161 ID.Kind = ValID::t_Constant; 3162 return false; 3163 } 3164 3165 // We found the function; now find the basic block. Don't use PFS, since we 3166 // might be inside a constant expression. 3167 BasicBlock *BB; 3168 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3169 if (Label.Kind == ValID::t_LocalID) 3170 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3171 else 3172 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3173 if (!BB) 3174 return Error(Label.Loc, "referenced value is not a basic block"); 3175 } else { 3176 if (Label.Kind == ValID::t_LocalID) 3177 return Error(Label.Loc, "cannot take address of numeric label after " 3178 "the function is defined"); 3179 BB = dyn_cast_or_null<BasicBlock>( 3180 F->getValueSymbolTable()->lookup(Label.StrVal)); 3181 if (!BB) 3182 return Error(Label.Loc, "referenced value is not a basic block"); 3183 } 3184 3185 ID.ConstantVal = BlockAddress::get(F, BB); 3186 ID.Kind = ValID::t_Constant; 3187 return false; 3188 } 3189 3190 case lltok::kw_trunc: 3191 case lltok::kw_zext: 3192 case lltok::kw_sext: 3193 case lltok::kw_fptrunc: 3194 case lltok::kw_fpext: 3195 case lltok::kw_bitcast: 3196 case lltok::kw_addrspacecast: 3197 case lltok::kw_uitofp: 3198 case lltok::kw_sitofp: 3199 case lltok::kw_fptoui: 3200 case lltok::kw_fptosi: 3201 case lltok::kw_inttoptr: 3202 case lltok::kw_ptrtoint: { 3203 unsigned Opc = Lex.getUIntVal(); 3204 Type *DestTy = nullptr; 3205 Constant *SrcVal; 3206 Lex.Lex(); 3207 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3208 ParseGlobalTypeAndValue(SrcVal) || 3209 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3210 ParseType(DestTy) || 3211 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3212 return true; 3213 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3214 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3215 getTypeString(SrcVal->getType()) + "' to '" + 3216 getTypeString(DestTy) + "'"); 3217 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3218 SrcVal, DestTy); 3219 ID.Kind = ValID::t_Constant; 3220 return false; 3221 } 3222 case lltok::kw_extractvalue: { 3223 Lex.Lex(); 3224 Constant *Val; 3225 SmallVector<unsigned, 4> Indices; 3226 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3227 ParseGlobalTypeAndValue(Val) || 3228 ParseIndexList(Indices) || 3229 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3230 return true; 3231 3232 if (!Val->getType()->isAggregateType()) 3233 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3234 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3235 return Error(ID.Loc, "invalid indices for extractvalue"); 3236 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3237 ID.Kind = ValID::t_Constant; 3238 return false; 3239 } 3240 case lltok::kw_insertvalue: { 3241 Lex.Lex(); 3242 Constant *Val0, *Val1; 3243 SmallVector<unsigned, 4> Indices; 3244 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3245 ParseGlobalTypeAndValue(Val0) || 3246 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3247 ParseGlobalTypeAndValue(Val1) || 3248 ParseIndexList(Indices) || 3249 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3250 return true; 3251 if (!Val0->getType()->isAggregateType()) 3252 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3253 Type *IndexedType = 3254 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3255 if (!IndexedType) 3256 return Error(ID.Loc, "invalid indices for insertvalue"); 3257 if (IndexedType != Val1->getType()) 3258 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3259 getTypeString(Val1->getType()) + 3260 "' instead of '" + getTypeString(IndexedType) + 3261 "'"); 3262 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3263 ID.Kind = ValID::t_Constant; 3264 return false; 3265 } 3266 case lltok::kw_icmp: 3267 case lltok::kw_fcmp: { 3268 unsigned PredVal, Opc = Lex.getUIntVal(); 3269 Constant *Val0, *Val1; 3270 Lex.Lex(); 3271 if (ParseCmpPredicate(PredVal, Opc) || 3272 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3273 ParseGlobalTypeAndValue(Val0) || 3274 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3275 ParseGlobalTypeAndValue(Val1) || 3276 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3277 return true; 3278 3279 if (Val0->getType() != Val1->getType()) 3280 return Error(ID.Loc, "compare operands must have the same type"); 3281 3282 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3283 3284 if (Opc == Instruction::FCmp) { 3285 if (!Val0->getType()->isFPOrFPVectorTy()) 3286 return Error(ID.Loc, "fcmp requires floating point operands"); 3287 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3288 } else { 3289 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3290 if (!Val0->getType()->isIntOrIntVectorTy() && 3291 !Val0->getType()->isPtrOrPtrVectorTy()) 3292 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3293 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3294 } 3295 ID.Kind = ValID::t_Constant; 3296 return false; 3297 } 3298 3299 // Unary Operators. 3300 case lltok::kw_fneg: { 3301 unsigned Opc = Lex.getUIntVal(); 3302 Constant *Val; 3303 Lex.Lex(); 3304 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3305 ParseGlobalTypeAndValue(Val) || 3306 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3307 return true; 3308 3309 // Check that the type is valid for the operator. 3310 switch (Opc) { 3311 case Instruction::FNeg: 3312 if (!Val->getType()->isFPOrFPVectorTy()) 3313 return Error(ID.Loc, "constexpr requires fp operands"); 3314 break; 3315 default: llvm_unreachable("Unknown unary operator!"); 3316 } 3317 unsigned Flags = 0; 3318 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3319 ID.ConstantVal = C; 3320 ID.Kind = ValID::t_Constant; 3321 return false; 3322 } 3323 // Binary Operators. 3324 case lltok::kw_add: 3325 case lltok::kw_fadd: 3326 case lltok::kw_sub: 3327 case lltok::kw_fsub: 3328 case lltok::kw_mul: 3329 case lltok::kw_fmul: 3330 case lltok::kw_udiv: 3331 case lltok::kw_sdiv: 3332 case lltok::kw_fdiv: 3333 case lltok::kw_urem: 3334 case lltok::kw_srem: 3335 case lltok::kw_frem: 3336 case lltok::kw_shl: 3337 case lltok::kw_lshr: 3338 case lltok::kw_ashr: { 3339 bool NUW = false; 3340 bool NSW = false; 3341 bool Exact = false; 3342 unsigned Opc = Lex.getUIntVal(); 3343 Constant *Val0, *Val1; 3344 Lex.Lex(); 3345 LocTy ModifierLoc = Lex.getLoc(); 3346 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3347 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3348 if (EatIfPresent(lltok::kw_nuw)) 3349 NUW = true; 3350 if (EatIfPresent(lltok::kw_nsw)) { 3351 NSW = true; 3352 if (EatIfPresent(lltok::kw_nuw)) 3353 NUW = true; 3354 } 3355 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3356 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3357 if (EatIfPresent(lltok::kw_exact)) 3358 Exact = true; 3359 } 3360 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3361 ParseGlobalTypeAndValue(Val0) || 3362 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3363 ParseGlobalTypeAndValue(Val1) || 3364 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3365 return true; 3366 if (Val0->getType() != Val1->getType()) 3367 return Error(ID.Loc, "operands of constexpr must have same type"); 3368 if (!Val0->getType()->isIntOrIntVectorTy()) { 3369 if (NUW) 3370 return Error(ModifierLoc, "nuw only applies to integer operations"); 3371 if (NSW) 3372 return Error(ModifierLoc, "nsw only applies to integer operations"); 3373 } 3374 // Check that the type is valid for the operator. 3375 switch (Opc) { 3376 case Instruction::Add: 3377 case Instruction::Sub: 3378 case Instruction::Mul: 3379 case Instruction::UDiv: 3380 case Instruction::SDiv: 3381 case Instruction::URem: 3382 case Instruction::SRem: 3383 case Instruction::Shl: 3384 case Instruction::AShr: 3385 case Instruction::LShr: 3386 if (!Val0->getType()->isIntOrIntVectorTy()) 3387 return Error(ID.Loc, "constexpr requires integer operands"); 3388 break; 3389 case Instruction::FAdd: 3390 case Instruction::FSub: 3391 case Instruction::FMul: 3392 case Instruction::FDiv: 3393 case Instruction::FRem: 3394 if (!Val0->getType()->isFPOrFPVectorTy()) 3395 return Error(ID.Loc, "constexpr requires fp operands"); 3396 break; 3397 default: llvm_unreachable("Unknown binary operator!"); 3398 } 3399 unsigned Flags = 0; 3400 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3401 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3402 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3403 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3404 ID.ConstantVal = C; 3405 ID.Kind = ValID::t_Constant; 3406 return false; 3407 } 3408 3409 // Logical Operations 3410 case lltok::kw_and: 3411 case lltok::kw_or: 3412 case lltok::kw_xor: { 3413 unsigned Opc = Lex.getUIntVal(); 3414 Constant *Val0, *Val1; 3415 Lex.Lex(); 3416 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3417 ParseGlobalTypeAndValue(Val0) || 3418 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3419 ParseGlobalTypeAndValue(Val1) || 3420 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3421 return true; 3422 if (Val0->getType() != Val1->getType()) 3423 return Error(ID.Loc, "operands of constexpr must have same type"); 3424 if (!Val0->getType()->isIntOrIntVectorTy()) 3425 return Error(ID.Loc, 3426 "constexpr requires integer or integer vector operands"); 3427 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3428 ID.Kind = ValID::t_Constant; 3429 return false; 3430 } 3431 3432 case lltok::kw_getelementptr: 3433 case lltok::kw_shufflevector: 3434 case lltok::kw_insertelement: 3435 case lltok::kw_extractelement: 3436 case lltok::kw_select: { 3437 unsigned Opc = Lex.getUIntVal(); 3438 SmallVector<Constant*, 16> Elts; 3439 bool InBounds = false; 3440 Type *Ty; 3441 Lex.Lex(); 3442 3443 if (Opc == Instruction::GetElementPtr) 3444 InBounds = EatIfPresent(lltok::kw_inbounds); 3445 3446 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3447 return true; 3448 3449 LocTy ExplicitTypeLoc = Lex.getLoc(); 3450 if (Opc == Instruction::GetElementPtr) { 3451 if (ParseType(Ty) || 3452 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3453 return true; 3454 } 3455 3456 Optional<unsigned> InRangeOp; 3457 if (ParseGlobalValueVector( 3458 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3459 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3460 return true; 3461 3462 if (Opc == Instruction::GetElementPtr) { 3463 if (Elts.size() == 0 || 3464 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3465 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3466 3467 Type *BaseType = Elts[0]->getType(); 3468 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3469 if (Ty != BasePointerType->getElementType()) 3470 return Error( 3471 ExplicitTypeLoc, 3472 "explicit pointee type doesn't match operand's pointee type"); 3473 3474 unsigned GEPWidth = 3475 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3476 3477 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3478 for (Constant *Val : Indices) { 3479 Type *ValTy = Val->getType(); 3480 if (!ValTy->isIntOrIntVectorTy()) 3481 return Error(ID.Loc, "getelementptr index must be an integer"); 3482 if (ValTy->isVectorTy()) { 3483 unsigned ValNumEl = ValTy->getVectorNumElements(); 3484 if (GEPWidth && (ValNumEl != GEPWidth)) 3485 return Error( 3486 ID.Loc, 3487 "getelementptr vector index has a wrong number of elements"); 3488 // GEPWidth may have been unknown because the base is a scalar, 3489 // but it is known now. 3490 GEPWidth = ValNumEl; 3491 } 3492 } 3493 3494 SmallPtrSet<Type*, 4> Visited; 3495 if (!Indices.empty() && !Ty->isSized(&Visited)) 3496 return Error(ID.Loc, "base element of getelementptr must be sized"); 3497 3498 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3499 return Error(ID.Loc, "invalid getelementptr indices"); 3500 3501 if (InRangeOp) { 3502 if (*InRangeOp == 0) 3503 return Error(ID.Loc, 3504 "inrange keyword may not appear on pointer operand"); 3505 --*InRangeOp; 3506 } 3507 3508 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3509 InBounds, InRangeOp); 3510 } else if (Opc == Instruction::Select) { 3511 if (Elts.size() != 3) 3512 return Error(ID.Loc, "expected three operands to select"); 3513 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3514 Elts[2])) 3515 return Error(ID.Loc, Reason); 3516 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3517 } else if (Opc == Instruction::ShuffleVector) { 3518 if (Elts.size() != 3) 3519 return Error(ID.Loc, "expected three operands to shufflevector"); 3520 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3521 return Error(ID.Loc, "invalid operands to shufflevector"); 3522 ID.ConstantVal = 3523 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3524 } else if (Opc == Instruction::ExtractElement) { 3525 if (Elts.size() != 2) 3526 return Error(ID.Loc, "expected two operands to extractelement"); 3527 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3528 return Error(ID.Loc, "invalid extractelement operands"); 3529 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3530 } else { 3531 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3532 if (Elts.size() != 3) 3533 return Error(ID.Loc, "expected three operands to insertelement"); 3534 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3535 return Error(ID.Loc, "invalid insertelement operands"); 3536 ID.ConstantVal = 3537 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3538 } 3539 3540 ID.Kind = ValID::t_Constant; 3541 return false; 3542 } 3543 } 3544 3545 Lex.Lex(); 3546 return false; 3547 } 3548 3549 /// ParseGlobalValue - Parse a global value with the specified type. 3550 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3551 C = nullptr; 3552 ValID ID; 3553 Value *V = nullptr; 3554 bool Parsed = ParseValID(ID) || 3555 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3556 if (V && !(C = dyn_cast<Constant>(V))) 3557 return Error(ID.Loc, "global values must be constants"); 3558 return Parsed; 3559 } 3560 3561 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3562 Type *Ty = nullptr; 3563 return ParseType(Ty) || 3564 ParseGlobalValue(Ty, V); 3565 } 3566 3567 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3568 C = nullptr; 3569 3570 LocTy KwLoc = Lex.getLoc(); 3571 if (!EatIfPresent(lltok::kw_comdat)) 3572 return false; 3573 3574 if (EatIfPresent(lltok::lparen)) { 3575 if (Lex.getKind() != lltok::ComdatVar) 3576 return TokError("expected comdat variable"); 3577 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3578 Lex.Lex(); 3579 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3580 return true; 3581 } else { 3582 if (GlobalName.empty()) 3583 return TokError("comdat cannot be unnamed"); 3584 C = getComdat(GlobalName, KwLoc); 3585 } 3586 3587 return false; 3588 } 3589 3590 /// ParseGlobalValueVector 3591 /// ::= /*empty*/ 3592 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3593 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3594 Optional<unsigned> *InRangeOp) { 3595 // Empty list. 3596 if (Lex.getKind() == lltok::rbrace || 3597 Lex.getKind() == lltok::rsquare || 3598 Lex.getKind() == lltok::greater || 3599 Lex.getKind() == lltok::rparen) 3600 return false; 3601 3602 do { 3603 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3604 *InRangeOp = Elts.size(); 3605 3606 Constant *C; 3607 if (ParseGlobalTypeAndValue(C)) return true; 3608 Elts.push_back(C); 3609 } while (EatIfPresent(lltok::comma)); 3610 3611 return false; 3612 } 3613 3614 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3615 SmallVector<Metadata *, 16> Elts; 3616 if (ParseMDNodeVector(Elts)) 3617 return true; 3618 3619 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3620 return false; 3621 } 3622 3623 /// MDNode: 3624 /// ::= !{ ... } 3625 /// ::= !7 3626 /// ::= !DILocation(...) 3627 bool LLParser::ParseMDNode(MDNode *&N) { 3628 if (Lex.getKind() == lltok::MetadataVar) 3629 return ParseSpecializedMDNode(N); 3630 3631 return ParseToken(lltok::exclaim, "expected '!' here") || 3632 ParseMDNodeTail(N); 3633 } 3634 3635 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3636 // !{ ... } 3637 if (Lex.getKind() == lltok::lbrace) 3638 return ParseMDTuple(N); 3639 3640 // !42 3641 return ParseMDNodeID(N); 3642 } 3643 3644 namespace { 3645 3646 /// Structure to represent an optional metadata field. 3647 template <class FieldTy> struct MDFieldImpl { 3648 typedef MDFieldImpl ImplTy; 3649 FieldTy Val; 3650 bool Seen; 3651 3652 void assign(FieldTy Val) { 3653 Seen = true; 3654 this->Val = std::move(Val); 3655 } 3656 3657 explicit MDFieldImpl(FieldTy Default) 3658 : Val(std::move(Default)), Seen(false) {} 3659 }; 3660 3661 /// Structure to represent an optional metadata field that 3662 /// can be of either type (A or B) and encapsulates the 3663 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3664 /// to reimplement the specifics for representing each Field. 3665 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3666 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3667 FieldTypeA A; 3668 FieldTypeB B; 3669 bool Seen; 3670 3671 enum { 3672 IsInvalid = 0, 3673 IsTypeA = 1, 3674 IsTypeB = 2 3675 } WhatIs; 3676 3677 void assign(FieldTypeA A) { 3678 Seen = true; 3679 this->A = std::move(A); 3680 WhatIs = IsTypeA; 3681 } 3682 3683 void assign(FieldTypeB B) { 3684 Seen = true; 3685 this->B = std::move(B); 3686 WhatIs = IsTypeB; 3687 } 3688 3689 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3690 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3691 WhatIs(IsInvalid) {} 3692 }; 3693 3694 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3695 uint64_t Max; 3696 3697 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3698 : ImplTy(Default), Max(Max) {} 3699 }; 3700 3701 struct LineField : public MDUnsignedField { 3702 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3703 }; 3704 3705 struct ColumnField : public MDUnsignedField { 3706 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3707 }; 3708 3709 struct DwarfTagField : public MDUnsignedField { 3710 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3711 DwarfTagField(dwarf::Tag DefaultTag) 3712 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3713 }; 3714 3715 struct DwarfMacinfoTypeField : public MDUnsignedField { 3716 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3717 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3718 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3719 }; 3720 3721 struct DwarfAttEncodingField : public MDUnsignedField { 3722 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3723 }; 3724 3725 struct DwarfVirtualityField : public MDUnsignedField { 3726 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3727 }; 3728 3729 struct DwarfLangField : public MDUnsignedField { 3730 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3731 }; 3732 3733 struct DwarfCCField : public MDUnsignedField { 3734 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3735 }; 3736 3737 struct EmissionKindField : public MDUnsignedField { 3738 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3739 }; 3740 3741 struct NameTableKindField : public MDUnsignedField { 3742 NameTableKindField() 3743 : MDUnsignedField( 3744 0, (unsigned) 3745 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3746 }; 3747 3748 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3749 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3750 }; 3751 3752 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3753 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3754 }; 3755 3756 struct MDSignedField : public MDFieldImpl<int64_t> { 3757 int64_t Min; 3758 int64_t Max; 3759 3760 MDSignedField(int64_t Default = 0) 3761 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3762 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3763 : ImplTy(Default), Min(Min), Max(Max) {} 3764 }; 3765 3766 struct MDBoolField : public MDFieldImpl<bool> { 3767 MDBoolField(bool Default = false) : ImplTy(Default) {} 3768 }; 3769 3770 struct MDField : public MDFieldImpl<Metadata *> { 3771 bool AllowNull; 3772 3773 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3774 }; 3775 3776 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3777 MDConstant() : ImplTy(nullptr) {} 3778 }; 3779 3780 struct MDStringField : public MDFieldImpl<MDString *> { 3781 bool AllowEmpty; 3782 MDStringField(bool AllowEmpty = true) 3783 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3784 }; 3785 3786 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3787 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3788 }; 3789 3790 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3791 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3792 }; 3793 3794 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3795 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3796 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3797 3798 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3799 bool AllowNull = true) 3800 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3801 3802 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3803 bool isMDField() const { return WhatIs == IsTypeB; } 3804 int64_t getMDSignedValue() const { 3805 assert(isMDSignedField() && "Wrong field type"); 3806 return A.Val; 3807 } 3808 Metadata *getMDFieldValue() const { 3809 assert(isMDField() && "Wrong field type"); 3810 return B.Val; 3811 } 3812 }; 3813 3814 struct MDSignedOrUnsignedField 3815 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3816 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3817 3818 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3819 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3820 int64_t getMDSignedValue() const { 3821 assert(isMDSignedField() && "Wrong field type"); 3822 return A.Val; 3823 } 3824 uint64_t getMDUnsignedValue() const { 3825 assert(isMDUnsignedField() && "Wrong field type"); 3826 return B.Val; 3827 } 3828 }; 3829 3830 } // end anonymous namespace 3831 3832 namespace llvm { 3833 3834 template <> 3835 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3836 MDUnsignedField &Result) { 3837 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3838 return TokError("expected unsigned integer"); 3839 3840 auto &U = Lex.getAPSIntVal(); 3841 if (U.ugt(Result.Max)) 3842 return TokError("value for '" + Name + "' too large, limit is " + 3843 Twine(Result.Max)); 3844 Result.assign(U.getZExtValue()); 3845 assert(Result.Val <= Result.Max && "Expected value in range"); 3846 Lex.Lex(); 3847 return false; 3848 } 3849 3850 template <> 3851 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3852 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3853 } 3854 template <> 3855 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3856 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3857 } 3858 3859 template <> 3860 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3861 if (Lex.getKind() == lltok::APSInt) 3862 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3863 3864 if (Lex.getKind() != lltok::DwarfTag) 3865 return TokError("expected DWARF tag"); 3866 3867 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3868 if (Tag == dwarf::DW_TAG_invalid) 3869 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3870 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3871 3872 Result.assign(Tag); 3873 Lex.Lex(); 3874 return false; 3875 } 3876 3877 template <> 3878 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3879 DwarfMacinfoTypeField &Result) { 3880 if (Lex.getKind() == lltok::APSInt) 3881 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3882 3883 if (Lex.getKind() != lltok::DwarfMacinfo) 3884 return TokError("expected DWARF macinfo type"); 3885 3886 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3887 if (Macinfo == dwarf::DW_MACINFO_invalid) 3888 return TokError( 3889 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3890 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3891 3892 Result.assign(Macinfo); 3893 Lex.Lex(); 3894 return false; 3895 } 3896 3897 template <> 3898 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3899 DwarfVirtualityField &Result) { 3900 if (Lex.getKind() == lltok::APSInt) 3901 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3902 3903 if (Lex.getKind() != lltok::DwarfVirtuality) 3904 return TokError("expected DWARF virtuality code"); 3905 3906 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3907 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3908 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3909 Lex.getStrVal() + "'"); 3910 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3911 Result.assign(Virtuality); 3912 Lex.Lex(); 3913 return false; 3914 } 3915 3916 template <> 3917 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3918 if (Lex.getKind() == lltok::APSInt) 3919 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3920 3921 if (Lex.getKind() != lltok::DwarfLang) 3922 return TokError("expected DWARF language"); 3923 3924 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3925 if (!Lang) 3926 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3927 "'"); 3928 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3929 Result.assign(Lang); 3930 Lex.Lex(); 3931 return false; 3932 } 3933 3934 template <> 3935 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3936 if (Lex.getKind() == lltok::APSInt) 3937 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3938 3939 if (Lex.getKind() != lltok::DwarfCC) 3940 return TokError("expected DWARF calling convention"); 3941 3942 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3943 if (!CC) 3944 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3945 "'"); 3946 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3947 Result.assign(CC); 3948 Lex.Lex(); 3949 return false; 3950 } 3951 3952 template <> 3953 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3954 if (Lex.getKind() == lltok::APSInt) 3955 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3956 3957 if (Lex.getKind() != lltok::EmissionKind) 3958 return TokError("expected emission kind"); 3959 3960 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3961 if (!Kind) 3962 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3963 "'"); 3964 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3965 Result.assign(*Kind); 3966 Lex.Lex(); 3967 return false; 3968 } 3969 3970 template <> 3971 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3972 NameTableKindField &Result) { 3973 if (Lex.getKind() == lltok::APSInt) 3974 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3975 3976 if (Lex.getKind() != lltok::NameTableKind) 3977 return TokError("expected nameTable kind"); 3978 3979 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 3980 if (!Kind) 3981 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 3982 "'"); 3983 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 3984 Result.assign((unsigned)*Kind); 3985 Lex.Lex(); 3986 return false; 3987 } 3988 3989 template <> 3990 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3991 DwarfAttEncodingField &Result) { 3992 if (Lex.getKind() == lltok::APSInt) 3993 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3994 3995 if (Lex.getKind() != lltok::DwarfAttEncoding) 3996 return TokError("expected DWARF type attribute encoding"); 3997 3998 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3999 if (!Encoding) 4000 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4001 Lex.getStrVal() + "'"); 4002 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4003 Result.assign(Encoding); 4004 Lex.Lex(); 4005 return false; 4006 } 4007 4008 /// DIFlagField 4009 /// ::= uint32 4010 /// ::= DIFlagVector 4011 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4012 template <> 4013 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4014 4015 // Parser for a single flag. 4016 auto parseFlag = [&](DINode::DIFlags &Val) { 4017 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4018 uint32_t TempVal = static_cast<uint32_t>(Val); 4019 bool Res = ParseUInt32(TempVal); 4020 Val = static_cast<DINode::DIFlags>(TempVal); 4021 return Res; 4022 } 4023 4024 if (Lex.getKind() != lltok::DIFlag) 4025 return TokError("expected debug info flag"); 4026 4027 Val = DINode::getFlag(Lex.getStrVal()); 4028 if (!Val) 4029 return TokError(Twine("invalid debug info flag flag '") + 4030 Lex.getStrVal() + "'"); 4031 Lex.Lex(); 4032 return false; 4033 }; 4034 4035 // Parse the flags and combine them together. 4036 DINode::DIFlags Combined = DINode::FlagZero; 4037 do { 4038 DINode::DIFlags Val; 4039 if (parseFlag(Val)) 4040 return true; 4041 Combined |= Val; 4042 } while (EatIfPresent(lltok::bar)); 4043 4044 Result.assign(Combined); 4045 return false; 4046 } 4047 4048 /// DISPFlagField 4049 /// ::= uint32 4050 /// ::= DISPFlagVector 4051 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4052 template <> 4053 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4054 4055 // Parser for a single flag. 4056 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4057 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4058 uint32_t TempVal = static_cast<uint32_t>(Val); 4059 bool Res = ParseUInt32(TempVal); 4060 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4061 return Res; 4062 } 4063 4064 if (Lex.getKind() != lltok::DISPFlag) 4065 return TokError("expected debug info flag"); 4066 4067 Val = DISubprogram::getFlag(Lex.getStrVal()); 4068 if (!Val) 4069 return TokError(Twine("invalid subprogram debug info flag '") + 4070 Lex.getStrVal() + "'"); 4071 Lex.Lex(); 4072 return false; 4073 }; 4074 4075 // Parse the flags and combine them together. 4076 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4077 do { 4078 DISubprogram::DISPFlags Val; 4079 if (parseFlag(Val)) 4080 return true; 4081 Combined |= Val; 4082 } while (EatIfPresent(lltok::bar)); 4083 4084 Result.assign(Combined); 4085 return false; 4086 } 4087 4088 template <> 4089 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4090 MDSignedField &Result) { 4091 if (Lex.getKind() != lltok::APSInt) 4092 return TokError("expected signed integer"); 4093 4094 auto &S = Lex.getAPSIntVal(); 4095 if (S < Result.Min) 4096 return TokError("value for '" + Name + "' too small, limit is " + 4097 Twine(Result.Min)); 4098 if (S > Result.Max) 4099 return TokError("value for '" + Name + "' too large, limit is " + 4100 Twine(Result.Max)); 4101 Result.assign(S.getExtValue()); 4102 assert(Result.Val >= Result.Min && "Expected value in range"); 4103 assert(Result.Val <= Result.Max && "Expected value in range"); 4104 Lex.Lex(); 4105 return false; 4106 } 4107 4108 template <> 4109 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4110 switch (Lex.getKind()) { 4111 default: 4112 return TokError("expected 'true' or 'false'"); 4113 case lltok::kw_true: 4114 Result.assign(true); 4115 break; 4116 case lltok::kw_false: 4117 Result.assign(false); 4118 break; 4119 } 4120 Lex.Lex(); 4121 return false; 4122 } 4123 4124 template <> 4125 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4126 if (Lex.getKind() == lltok::kw_null) { 4127 if (!Result.AllowNull) 4128 return TokError("'" + Name + "' cannot be null"); 4129 Lex.Lex(); 4130 Result.assign(nullptr); 4131 return false; 4132 } 4133 4134 Metadata *MD; 4135 if (ParseMetadata(MD, nullptr)) 4136 return true; 4137 4138 Result.assign(MD); 4139 return false; 4140 } 4141 4142 template <> 4143 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4144 MDSignedOrMDField &Result) { 4145 // Try to parse a signed int. 4146 if (Lex.getKind() == lltok::APSInt) { 4147 MDSignedField Res = Result.A; 4148 if (!ParseMDField(Loc, Name, Res)) { 4149 Result.assign(Res); 4150 return false; 4151 } 4152 return true; 4153 } 4154 4155 // Otherwise, try to parse as an MDField. 4156 MDField Res = Result.B; 4157 if (!ParseMDField(Loc, Name, Res)) { 4158 Result.assign(Res); 4159 return false; 4160 } 4161 4162 return true; 4163 } 4164 4165 template <> 4166 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4167 MDSignedOrUnsignedField &Result) { 4168 if (Lex.getKind() != lltok::APSInt) 4169 return false; 4170 4171 if (Lex.getAPSIntVal().isSigned()) { 4172 MDSignedField Res = Result.A; 4173 if (ParseMDField(Loc, Name, Res)) 4174 return true; 4175 Result.assign(Res); 4176 return false; 4177 } 4178 4179 MDUnsignedField Res = Result.B; 4180 if (ParseMDField(Loc, Name, Res)) 4181 return true; 4182 Result.assign(Res); 4183 return false; 4184 } 4185 4186 template <> 4187 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4188 LocTy ValueLoc = Lex.getLoc(); 4189 std::string S; 4190 if (ParseStringConstant(S)) 4191 return true; 4192 4193 if (!Result.AllowEmpty && S.empty()) 4194 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4195 4196 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4197 return false; 4198 } 4199 4200 template <> 4201 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4202 SmallVector<Metadata *, 4> MDs; 4203 if (ParseMDNodeVector(MDs)) 4204 return true; 4205 4206 Result.assign(std::move(MDs)); 4207 return false; 4208 } 4209 4210 template <> 4211 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4212 ChecksumKindField &Result) { 4213 Optional<DIFile::ChecksumKind> CSKind = 4214 DIFile::getChecksumKind(Lex.getStrVal()); 4215 4216 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4217 return TokError( 4218 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4219 4220 Result.assign(*CSKind); 4221 Lex.Lex(); 4222 return false; 4223 } 4224 4225 } // end namespace llvm 4226 4227 template <class ParserTy> 4228 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4229 do { 4230 if (Lex.getKind() != lltok::LabelStr) 4231 return TokError("expected field label here"); 4232 4233 if (parseField()) 4234 return true; 4235 } while (EatIfPresent(lltok::comma)); 4236 4237 return false; 4238 } 4239 4240 template <class ParserTy> 4241 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4242 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4243 Lex.Lex(); 4244 4245 if (ParseToken(lltok::lparen, "expected '(' here")) 4246 return true; 4247 if (Lex.getKind() != lltok::rparen) 4248 if (ParseMDFieldsImplBody(parseField)) 4249 return true; 4250 4251 ClosingLoc = Lex.getLoc(); 4252 return ParseToken(lltok::rparen, "expected ')' here"); 4253 } 4254 4255 template <class FieldTy> 4256 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4257 if (Result.Seen) 4258 return TokError("field '" + Name + "' cannot be specified more than once"); 4259 4260 LocTy Loc = Lex.getLoc(); 4261 Lex.Lex(); 4262 return ParseMDField(Loc, Name, Result); 4263 } 4264 4265 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4266 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4267 4268 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4269 if (Lex.getStrVal() == #CLASS) \ 4270 return Parse##CLASS(N, IsDistinct); 4271 #include "llvm/IR/Metadata.def" 4272 4273 return TokError("expected metadata type"); 4274 } 4275 4276 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4277 #define NOP_FIELD(NAME, TYPE, INIT) 4278 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4279 if (!NAME.Seen) \ 4280 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4281 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4282 if (Lex.getStrVal() == #NAME) \ 4283 return ParseMDField(#NAME, NAME); 4284 #define PARSE_MD_FIELDS() \ 4285 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4286 do { \ 4287 LocTy ClosingLoc; \ 4288 if (ParseMDFieldsImpl([&]() -> bool { \ 4289 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4290 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4291 }, ClosingLoc)) \ 4292 return true; \ 4293 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4294 } while (false) 4295 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4296 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4297 4298 /// ParseDILocationFields: 4299 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4300 /// isImplicitCode: true) 4301 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4302 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4303 OPTIONAL(line, LineField, ); \ 4304 OPTIONAL(column, ColumnField, ); \ 4305 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4306 OPTIONAL(inlinedAt, MDField, ); \ 4307 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4308 PARSE_MD_FIELDS(); 4309 #undef VISIT_MD_FIELDS 4310 4311 Result = 4312 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4313 inlinedAt.Val, isImplicitCode.Val)); 4314 return false; 4315 } 4316 4317 /// ParseGenericDINode: 4318 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4319 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4320 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4321 REQUIRED(tag, DwarfTagField, ); \ 4322 OPTIONAL(header, MDStringField, ); \ 4323 OPTIONAL(operands, MDFieldList, ); 4324 PARSE_MD_FIELDS(); 4325 #undef VISIT_MD_FIELDS 4326 4327 Result = GET_OR_DISTINCT(GenericDINode, 4328 (Context, tag.Val, header.Val, operands.Val)); 4329 return false; 4330 } 4331 4332 /// ParseDISubrange: 4333 /// ::= !DISubrange(count: 30, lowerBound: 2) 4334 /// ::= !DISubrange(count: !node, lowerBound: 2) 4335 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4336 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4337 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4338 OPTIONAL(lowerBound, MDSignedField, ); 4339 PARSE_MD_FIELDS(); 4340 #undef VISIT_MD_FIELDS 4341 4342 if (count.isMDSignedField()) 4343 Result = GET_OR_DISTINCT( 4344 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4345 else if (count.isMDField()) 4346 Result = GET_OR_DISTINCT( 4347 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4348 else 4349 return true; 4350 4351 return false; 4352 } 4353 4354 /// ParseDIEnumerator: 4355 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4356 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4357 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4358 REQUIRED(name, MDStringField, ); \ 4359 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4360 OPTIONAL(isUnsigned, MDBoolField, (false)); 4361 PARSE_MD_FIELDS(); 4362 #undef VISIT_MD_FIELDS 4363 4364 if (isUnsigned.Val && value.isMDSignedField()) 4365 return TokError("unsigned enumerator with negative value"); 4366 4367 int64_t Value = value.isMDSignedField() 4368 ? value.getMDSignedValue() 4369 : static_cast<int64_t>(value.getMDUnsignedValue()); 4370 Result = 4371 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4372 4373 return false; 4374 } 4375 4376 /// ParseDIBasicType: 4377 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4378 /// encoding: DW_ATE_encoding, flags: 0) 4379 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4380 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4381 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4382 OPTIONAL(name, MDStringField, ); \ 4383 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4384 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4385 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4386 OPTIONAL(flags, DIFlagField, ); 4387 PARSE_MD_FIELDS(); 4388 #undef VISIT_MD_FIELDS 4389 4390 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4391 align.Val, encoding.Val, flags.Val)); 4392 return false; 4393 } 4394 4395 /// ParseDIDerivedType: 4396 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4397 /// line: 7, scope: !1, baseType: !2, size: 32, 4398 /// align: 32, offset: 0, flags: 0, extraData: !3, 4399 /// dwarfAddressSpace: 3) 4400 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4401 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4402 REQUIRED(tag, DwarfTagField, ); \ 4403 OPTIONAL(name, MDStringField, ); \ 4404 OPTIONAL(file, MDField, ); \ 4405 OPTIONAL(line, LineField, ); \ 4406 OPTIONAL(scope, MDField, ); \ 4407 REQUIRED(baseType, MDField, ); \ 4408 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4409 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4410 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4411 OPTIONAL(flags, DIFlagField, ); \ 4412 OPTIONAL(extraData, MDField, ); \ 4413 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4414 PARSE_MD_FIELDS(); 4415 #undef VISIT_MD_FIELDS 4416 4417 Optional<unsigned> DWARFAddressSpace; 4418 if (dwarfAddressSpace.Val != UINT32_MAX) 4419 DWARFAddressSpace = dwarfAddressSpace.Val; 4420 4421 Result = GET_OR_DISTINCT(DIDerivedType, 4422 (Context, tag.Val, name.Val, file.Val, line.Val, 4423 scope.Val, baseType.Val, size.Val, align.Val, 4424 offset.Val, DWARFAddressSpace, flags.Val, 4425 extraData.Val)); 4426 return false; 4427 } 4428 4429 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4430 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4431 REQUIRED(tag, DwarfTagField, ); \ 4432 OPTIONAL(name, MDStringField, ); \ 4433 OPTIONAL(file, MDField, ); \ 4434 OPTIONAL(line, LineField, ); \ 4435 OPTIONAL(scope, MDField, ); \ 4436 OPTIONAL(baseType, MDField, ); \ 4437 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4438 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4439 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4440 OPTIONAL(flags, DIFlagField, ); \ 4441 OPTIONAL(elements, MDField, ); \ 4442 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4443 OPTIONAL(vtableHolder, MDField, ); \ 4444 OPTIONAL(templateParams, MDField, ); \ 4445 OPTIONAL(identifier, MDStringField, ); \ 4446 OPTIONAL(discriminator, MDField, ); 4447 PARSE_MD_FIELDS(); 4448 #undef VISIT_MD_FIELDS 4449 4450 // If this has an identifier try to build an ODR type. 4451 if (identifier.Val) 4452 if (auto *CT = DICompositeType::buildODRType( 4453 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4454 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4455 elements.Val, runtimeLang.Val, vtableHolder.Val, 4456 templateParams.Val, discriminator.Val)) { 4457 Result = CT; 4458 return false; 4459 } 4460 4461 // Create a new node, and save it in the context if it belongs in the type 4462 // map. 4463 Result = GET_OR_DISTINCT( 4464 DICompositeType, 4465 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4466 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4467 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4468 discriminator.Val)); 4469 return false; 4470 } 4471 4472 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4473 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4474 OPTIONAL(flags, DIFlagField, ); \ 4475 OPTIONAL(cc, DwarfCCField, ); \ 4476 REQUIRED(types, MDField, ); 4477 PARSE_MD_FIELDS(); 4478 #undef VISIT_MD_FIELDS 4479 4480 Result = GET_OR_DISTINCT(DISubroutineType, 4481 (Context, flags.Val, cc.Val, types.Val)); 4482 return false; 4483 } 4484 4485 /// ParseDIFileType: 4486 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4487 /// checksumkind: CSK_MD5, 4488 /// checksum: "000102030405060708090a0b0c0d0e0f", 4489 /// source: "source file contents") 4490 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4491 // The default constructed value for checksumkind is required, but will never 4492 // be used, as the parser checks if the field was actually Seen before using 4493 // the Val. 4494 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4495 REQUIRED(filename, MDStringField, ); \ 4496 REQUIRED(directory, MDStringField, ); \ 4497 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4498 OPTIONAL(checksum, MDStringField, ); \ 4499 OPTIONAL(source, MDStringField, ); 4500 PARSE_MD_FIELDS(); 4501 #undef VISIT_MD_FIELDS 4502 4503 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4504 if (checksumkind.Seen && checksum.Seen) 4505 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4506 else if (checksumkind.Seen || checksum.Seen) 4507 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4508 4509 Optional<MDString *> OptSource; 4510 if (source.Seen) 4511 OptSource = source.Val; 4512 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4513 OptChecksum, OptSource)); 4514 return false; 4515 } 4516 4517 /// ParseDICompileUnit: 4518 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4519 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4520 /// splitDebugFilename: "abc.debug", 4521 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4522 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4523 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4524 if (!IsDistinct) 4525 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4526 4527 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4528 REQUIRED(language, DwarfLangField, ); \ 4529 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4530 OPTIONAL(producer, MDStringField, ); \ 4531 OPTIONAL(isOptimized, MDBoolField, ); \ 4532 OPTIONAL(flags, MDStringField, ); \ 4533 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4534 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4535 OPTIONAL(emissionKind, EmissionKindField, ); \ 4536 OPTIONAL(enums, MDField, ); \ 4537 OPTIONAL(retainedTypes, MDField, ); \ 4538 OPTIONAL(globals, MDField, ); \ 4539 OPTIONAL(imports, MDField, ); \ 4540 OPTIONAL(macros, MDField, ); \ 4541 OPTIONAL(dwoId, MDUnsignedField, ); \ 4542 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4543 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4544 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4545 OPTIONAL(debugBaseAddress, MDBoolField, = false); 4546 PARSE_MD_FIELDS(); 4547 #undef VISIT_MD_FIELDS 4548 4549 Result = DICompileUnit::getDistinct( 4550 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4551 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4552 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4553 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4554 debugBaseAddress.Val); 4555 return false; 4556 } 4557 4558 /// ParseDISubprogram: 4559 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4560 /// file: !1, line: 7, type: !2, isLocal: false, 4561 /// isDefinition: true, scopeLine: 8, containingType: !3, 4562 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4563 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4564 /// spFlags: 10, isOptimized: false, templateParams: !4, 4565 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4566 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4567 auto Loc = Lex.getLoc(); 4568 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4569 OPTIONAL(scope, MDField, ); \ 4570 OPTIONAL(name, MDStringField, ); \ 4571 OPTIONAL(linkageName, MDStringField, ); \ 4572 OPTIONAL(file, MDField, ); \ 4573 OPTIONAL(line, LineField, ); \ 4574 OPTIONAL(type, MDField, ); \ 4575 OPTIONAL(isLocal, MDBoolField, ); \ 4576 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4577 OPTIONAL(scopeLine, LineField, ); \ 4578 OPTIONAL(containingType, MDField, ); \ 4579 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4580 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4581 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4582 OPTIONAL(flags, DIFlagField, ); \ 4583 OPTIONAL(spFlags, DISPFlagField, ); \ 4584 OPTIONAL(isOptimized, MDBoolField, ); \ 4585 OPTIONAL(unit, MDField, ); \ 4586 OPTIONAL(templateParams, MDField, ); \ 4587 OPTIONAL(declaration, MDField, ); \ 4588 OPTIONAL(retainedNodes, MDField, ); \ 4589 OPTIONAL(thrownTypes, MDField, ); 4590 PARSE_MD_FIELDS(); 4591 #undef VISIT_MD_FIELDS 4592 4593 // An explicit spFlags field takes precedence over individual fields in 4594 // older IR versions. 4595 DISubprogram::DISPFlags SPFlags = 4596 spFlags.Seen ? spFlags.Val 4597 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4598 isOptimized.Val, virtuality.Val); 4599 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4600 return Lex.Error( 4601 Loc, 4602 "missing 'distinct', required for !DISubprogram that is a Definition"); 4603 Result = GET_OR_DISTINCT( 4604 DISubprogram, 4605 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4606 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4607 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4608 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4609 return false; 4610 } 4611 4612 /// ParseDILexicalBlock: 4613 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4614 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4615 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4616 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4617 OPTIONAL(file, MDField, ); \ 4618 OPTIONAL(line, LineField, ); \ 4619 OPTIONAL(column, ColumnField, ); 4620 PARSE_MD_FIELDS(); 4621 #undef VISIT_MD_FIELDS 4622 4623 Result = GET_OR_DISTINCT( 4624 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4625 return false; 4626 } 4627 4628 /// ParseDILexicalBlockFile: 4629 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4630 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4631 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4632 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4633 OPTIONAL(file, MDField, ); \ 4634 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4635 PARSE_MD_FIELDS(); 4636 #undef VISIT_MD_FIELDS 4637 4638 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4639 (Context, scope.Val, file.Val, discriminator.Val)); 4640 return false; 4641 } 4642 4643 /// ParseDINamespace: 4644 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4645 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4646 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4647 REQUIRED(scope, MDField, ); \ 4648 OPTIONAL(name, MDStringField, ); \ 4649 OPTIONAL(exportSymbols, MDBoolField, ); 4650 PARSE_MD_FIELDS(); 4651 #undef VISIT_MD_FIELDS 4652 4653 Result = GET_OR_DISTINCT(DINamespace, 4654 (Context, scope.Val, name.Val, exportSymbols.Val)); 4655 return false; 4656 } 4657 4658 /// ParseDIMacro: 4659 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4660 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4661 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4662 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4663 OPTIONAL(line, LineField, ); \ 4664 REQUIRED(name, MDStringField, ); \ 4665 OPTIONAL(value, MDStringField, ); 4666 PARSE_MD_FIELDS(); 4667 #undef VISIT_MD_FIELDS 4668 4669 Result = GET_OR_DISTINCT(DIMacro, 4670 (Context, type.Val, line.Val, name.Val, value.Val)); 4671 return false; 4672 } 4673 4674 /// ParseDIMacroFile: 4675 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4676 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4677 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4678 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4679 OPTIONAL(line, LineField, ); \ 4680 REQUIRED(file, MDField, ); \ 4681 OPTIONAL(nodes, MDField, ); 4682 PARSE_MD_FIELDS(); 4683 #undef VISIT_MD_FIELDS 4684 4685 Result = GET_OR_DISTINCT(DIMacroFile, 4686 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4687 return false; 4688 } 4689 4690 /// ParseDIModule: 4691 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4692 /// includePath: "/usr/include", isysroot: "/") 4693 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4694 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4695 REQUIRED(scope, MDField, ); \ 4696 REQUIRED(name, MDStringField, ); \ 4697 OPTIONAL(configMacros, MDStringField, ); \ 4698 OPTIONAL(includePath, MDStringField, ); \ 4699 OPTIONAL(isysroot, MDStringField, ); 4700 PARSE_MD_FIELDS(); 4701 #undef VISIT_MD_FIELDS 4702 4703 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4704 configMacros.Val, includePath.Val, isysroot.Val)); 4705 return false; 4706 } 4707 4708 /// ParseDITemplateTypeParameter: 4709 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4710 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4711 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4712 OPTIONAL(name, MDStringField, ); \ 4713 REQUIRED(type, MDField, ); 4714 PARSE_MD_FIELDS(); 4715 #undef VISIT_MD_FIELDS 4716 4717 Result = 4718 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4719 return false; 4720 } 4721 4722 /// ParseDITemplateValueParameter: 4723 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4724 /// name: "V", type: !1, value: i32 7) 4725 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4726 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4727 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4728 OPTIONAL(name, MDStringField, ); \ 4729 OPTIONAL(type, MDField, ); \ 4730 REQUIRED(value, MDField, ); 4731 PARSE_MD_FIELDS(); 4732 #undef VISIT_MD_FIELDS 4733 4734 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4735 (Context, tag.Val, name.Val, type.Val, value.Val)); 4736 return false; 4737 } 4738 4739 /// ParseDIGlobalVariable: 4740 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4741 /// file: !1, line: 7, type: !2, isLocal: false, 4742 /// isDefinition: true, templateParams: !3, 4743 /// declaration: !4, align: 8) 4744 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4745 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4746 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4747 OPTIONAL(scope, MDField, ); \ 4748 OPTIONAL(linkageName, MDStringField, ); \ 4749 OPTIONAL(file, MDField, ); \ 4750 OPTIONAL(line, LineField, ); \ 4751 OPTIONAL(type, MDField, ); \ 4752 OPTIONAL(isLocal, MDBoolField, ); \ 4753 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4754 OPTIONAL(templateParams, MDField, ); \ 4755 OPTIONAL(declaration, MDField, ); \ 4756 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4757 PARSE_MD_FIELDS(); 4758 #undef VISIT_MD_FIELDS 4759 4760 Result = 4761 GET_OR_DISTINCT(DIGlobalVariable, 4762 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4763 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4764 declaration.Val, templateParams.Val, align.Val)); 4765 return false; 4766 } 4767 4768 /// ParseDILocalVariable: 4769 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4770 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4771 /// align: 8) 4772 /// ::= !DILocalVariable(scope: !0, name: "foo", 4773 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4774 /// align: 8) 4775 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4776 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4777 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4778 OPTIONAL(name, MDStringField, ); \ 4779 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4780 OPTIONAL(file, MDField, ); \ 4781 OPTIONAL(line, LineField, ); \ 4782 OPTIONAL(type, MDField, ); \ 4783 OPTIONAL(flags, DIFlagField, ); \ 4784 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4785 PARSE_MD_FIELDS(); 4786 #undef VISIT_MD_FIELDS 4787 4788 Result = GET_OR_DISTINCT(DILocalVariable, 4789 (Context, scope.Val, name.Val, file.Val, line.Val, 4790 type.Val, arg.Val, flags.Val, align.Val)); 4791 return false; 4792 } 4793 4794 /// ParseDILabel: 4795 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4796 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4797 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4798 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4799 REQUIRED(name, MDStringField, ); \ 4800 REQUIRED(file, MDField, ); \ 4801 REQUIRED(line, LineField, ); 4802 PARSE_MD_FIELDS(); 4803 #undef VISIT_MD_FIELDS 4804 4805 Result = GET_OR_DISTINCT(DILabel, 4806 (Context, scope.Val, name.Val, file.Val, line.Val)); 4807 return false; 4808 } 4809 4810 /// ParseDIExpression: 4811 /// ::= !DIExpression(0, 7, -1) 4812 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4813 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4814 Lex.Lex(); 4815 4816 if (ParseToken(lltok::lparen, "expected '(' here")) 4817 return true; 4818 4819 SmallVector<uint64_t, 8> Elements; 4820 if (Lex.getKind() != lltok::rparen) 4821 do { 4822 if (Lex.getKind() == lltok::DwarfOp) { 4823 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4824 Lex.Lex(); 4825 Elements.push_back(Op); 4826 continue; 4827 } 4828 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4829 } 4830 4831 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4832 return TokError("expected unsigned integer"); 4833 4834 auto &U = Lex.getAPSIntVal(); 4835 if (U.ugt(UINT64_MAX)) 4836 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4837 Elements.push_back(U.getZExtValue()); 4838 Lex.Lex(); 4839 } while (EatIfPresent(lltok::comma)); 4840 4841 if (ParseToken(lltok::rparen, "expected ')' here")) 4842 return true; 4843 4844 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4845 return false; 4846 } 4847 4848 /// ParseDIGlobalVariableExpression: 4849 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4850 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4851 bool IsDistinct) { 4852 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4853 REQUIRED(var, MDField, ); \ 4854 REQUIRED(expr, MDField, ); 4855 PARSE_MD_FIELDS(); 4856 #undef VISIT_MD_FIELDS 4857 4858 Result = 4859 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4860 return false; 4861 } 4862 4863 /// ParseDIObjCProperty: 4864 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4865 /// getter: "getFoo", attributes: 7, type: !2) 4866 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4867 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4868 OPTIONAL(name, MDStringField, ); \ 4869 OPTIONAL(file, MDField, ); \ 4870 OPTIONAL(line, LineField, ); \ 4871 OPTIONAL(setter, MDStringField, ); \ 4872 OPTIONAL(getter, MDStringField, ); \ 4873 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4874 OPTIONAL(type, MDField, ); 4875 PARSE_MD_FIELDS(); 4876 #undef VISIT_MD_FIELDS 4877 4878 Result = GET_OR_DISTINCT(DIObjCProperty, 4879 (Context, name.Val, file.Val, line.Val, setter.Val, 4880 getter.Val, attributes.Val, type.Val)); 4881 return false; 4882 } 4883 4884 /// ParseDIImportedEntity: 4885 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4886 /// line: 7, name: "foo") 4887 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4888 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4889 REQUIRED(tag, DwarfTagField, ); \ 4890 REQUIRED(scope, MDField, ); \ 4891 OPTIONAL(entity, MDField, ); \ 4892 OPTIONAL(file, MDField, ); \ 4893 OPTIONAL(line, LineField, ); \ 4894 OPTIONAL(name, MDStringField, ); 4895 PARSE_MD_FIELDS(); 4896 #undef VISIT_MD_FIELDS 4897 4898 Result = GET_OR_DISTINCT( 4899 DIImportedEntity, 4900 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4901 return false; 4902 } 4903 4904 #undef PARSE_MD_FIELD 4905 #undef NOP_FIELD 4906 #undef REQUIRE_FIELD 4907 #undef DECLARE_FIELD 4908 4909 /// ParseMetadataAsValue 4910 /// ::= metadata i32 %local 4911 /// ::= metadata i32 @global 4912 /// ::= metadata i32 7 4913 /// ::= metadata !0 4914 /// ::= metadata !{...} 4915 /// ::= metadata !"string" 4916 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4917 // Note: the type 'metadata' has already been parsed. 4918 Metadata *MD; 4919 if (ParseMetadata(MD, &PFS)) 4920 return true; 4921 4922 V = MetadataAsValue::get(Context, MD); 4923 return false; 4924 } 4925 4926 /// ParseValueAsMetadata 4927 /// ::= i32 %local 4928 /// ::= i32 @global 4929 /// ::= i32 7 4930 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4931 PerFunctionState *PFS) { 4932 Type *Ty; 4933 LocTy Loc; 4934 if (ParseType(Ty, TypeMsg, Loc)) 4935 return true; 4936 if (Ty->isMetadataTy()) 4937 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4938 4939 Value *V; 4940 if (ParseValue(Ty, V, PFS)) 4941 return true; 4942 4943 MD = ValueAsMetadata::get(V); 4944 return false; 4945 } 4946 4947 /// ParseMetadata 4948 /// ::= i32 %local 4949 /// ::= i32 @global 4950 /// ::= i32 7 4951 /// ::= !42 4952 /// ::= !{...} 4953 /// ::= !"string" 4954 /// ::= !DILocation(...) 4955 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4956 if (Lex.getKind() == lltok::MetadataVar) { 4957 MDNode *N; 4958 if (ParseSpecializedMDNode(N)) 4959 return true; 4960 MD = N; 4961 return false; 4962 } 4963 4964 // ValueAsMetadata: 4965 // <type> <value> 4966 if (Lex.getKind() != lltok::exclaim) 4967 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4968 4969 // '!'. 4970 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4971 Lex.Lex(); 4972 4973 // MDString: 4974 // ::= '!' STRINGCONSTANT 4975 if (Lex.getKind() == lltok::StringConstant) { 4976 MDString *S; 4977 if (ParseMDString(S)) 4978 return true; 4979 MD = S; 4980 return false; 4981 } 4982 4983 // MDNode: 4984 // !{ ... } 4985 // !7 4986 MDNode *N; 4987 if (ParseMDNodeTail(N)) 4988 return true; 4989 MD = N; 4990 return false; 4991 } 4992 4993 //===----------------------------------------------------------------------===// 4994 // Function Parsing. 4995 //===----------------------------------------------------------------------===// 4996 4997 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4998 PerFunctionState *PFS, bool IsCall) { 4999 if (Ty->isFunctionTy()) 5000 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5001 5002 switch (ID.Kind) { 5003 case ValID::t_LocalID: 5004 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5005 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5006 return V == nullptr; 5007 case ValID::t_LocalName: 5008 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5009 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5010 return V == nullptr; 5011 case ValID::t_InlineAsm: { 5012 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5013 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5014 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5015 (ID.UIntVal >> 1) & 1, 5016 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5017 return false; 5018 } 5019 case ValID::t_GlobalName: 5020 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5021 return V == nullptr; 5022 case ValID::t_GlobalID: 5023 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5024 return V == nullptr; 5025 case ValID::t_APSInt: 5026 if (!Ty->isIntegerTy()) 5027 return Error(ID.Loc, "integer constant must have integer type"); 5028 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5029 V = ConstantInt::get(Context, ID.APSIntVal); 5030 return false; 5031 case ValID::t_APFloat: 5032 if (!Ty->isFloatingPointTy() || 5033 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5034 return Error(ID.Loc, "floating point constant invalid for type"); 5035 5036 // The lexer has no type info, so builds all half, float, and double FP 5037 // constants as double. Fix this here. Long double does not need this. 5038 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5039 bool Ignored; 5040 if (Ty->isHalfTy()) 5041 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5042 &Ignored); 5043 else if (Ty->isFloatTy()) 5044 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5045 &Ignored); 5046 } 5047 V = ConstantFP::get(Context, ID.APFloatVal); 5048 5049 if (V->getType() != Ty) 5050 return Error(ID.Loc, "floating point constant does not have type '" + 5051 getTypeString(Ty) + "'"); 5052 5053 return false; 5054 case ValID::t_Null: 5055 if (!Ty->isPointerTy()) 5056 return Error(ID.Loc, "null must be a pointer type"); 5057 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5058 return false; 5059 case ValID::t_Undef: 5060 // FIXME: LabelTy should not be a first-class type. 5061 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5062 return Error(ID.Loc, "invalid type for undef constant"); 5063 V = UndefValue::get(Ty); 5064 return false; 5065 case ValID::t_EmptyArray: 5066 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5067 return Error(ID.Loc, "invalid empty array initializer"); 5068 V = UndefValue::get(Ty); 5069 return false; 5070 case ValID::t_Zero: 5071 // FIXME: LabelTy should not be a first-class type. 5072 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5073 return Error(ID.Loc, "invalid type for null constant"); 5074 V = Constant::getNullValue(Ty); 5075 return false; 5076 case ValID::t_None: 5077 if (!Ty->isTokenTy()) 5078 return Error(ID.Loc, "invalid type for none constant"); 5079 V = Constant::getNullValue(Ty); 5080 return false; 5081 case ValID::t_Constant: 5082 if (ID.ConstantVal->getType() != Ty) 5083 return Error(ID.Loc, "constant expression type mismatch"); 5084 5085 V = ID.ConstantVal; 5086 return false; 5087 case ValID::t_ConstantStruct: 5088 case ValID::t_PackedConstantStruct: 5089 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5090 if (ST->getNumElements() != ID.UIntVal) 5091 return Error(ID.Loc, 5092 "initializer with struct type has wrong # elements"); 5093 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5094 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5095 5096 // Verify that the elements are compatible with the structtype. 5097 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5098 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5099 return Error(ID.Loc, "element " + Twine(i) + 5100 " of struct initializer doesn't match struct element type"); 5101 5102 V = ConstantStruct::get( 5103 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5104 } else 5105 return Error(ID.Loc, "constant expression type mismatch"); 5106 return false; 5107 } 5108 llvm_unreachable("Invalid ValID"); 5109 } 5110 5111 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5112 C = nullptr; 5113 ValID ID; 5114 auto Loc = Lex.getLoc(); 5115 if (ParseValID(ID, /*PFS=*/nullptr)) 5116 return true; 5117 switch (ID.Kind) { 5118 case ValID::t_APSInt: 5119 case ValID::t_APFloat: 5120 case ValID::t_Undef: 5121 case ValID::t_Constant: 5122 case ValID::t_ConstantStruct: 5123 case ValID::t_PackedConstantStruct: { 5124 Value *V; 5125 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5126 return true; 5127 assert(isa<Constant>(V) && "Expected a constant value"); 5128 C = cast<Constant>(V); 5129 return false; 5130 } 5131 case ValID::t_Null: 5132 C = Constant::getNullValue(Ty); 5133 return false; 5134 default: 5135 return Error(Loc, "expected a constant value"); 5136 } 5137 } 5138 5139 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5140 V = nullptr; 5141 ValID ID; 5142 return ParseValID(ID, PFS) || 5143 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5144 } 5145 5146 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5147 Type *Ty = nullptr; 5148 return ParseType(Ty) || 5149 ParseValue(Ty, V, PFS); 5150 } 5151 5152 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5153 PerFunctionState &PFS) { 5154 Value *V; 5155 Loc = Lex.getLoc(); 5156 if (ParseTypeAndValue(V, PFS)) return true; 5157 if (!isa<BasicBlock>(V)) 5158 return Error(Loc, "expected a basic block"); 5159 BB = cast<BasicBlock>(V); 5160 return false; 5161 } 5162 5163 /// FunctionHeader 5164 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5165 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5166 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5167 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5168 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5169 // Parse the linkage. 5170 LocTy LinkageLoc = Lex.getLoc(); 5171 unsigned Linkage; 5172 unsigned Visibility; 5173 unsigned DLLStorageClass; 5174 bool DSOLocal; 5175 AttrBuilder RetAttrs; 5176 unsigned CC; 5177 bool HasLinkage; 5178 Type *RetType = nullptr; 5179 LocTy RetTypeLoc = Lex.getLoc(); 5180 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5181 DSOLocal) || 5182 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5183 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5184 return true; 5185 5186 // Verify that the linkage is ok. 5187 switch ((GlobalValue::LinkageTypes)Linkage) { 5188 case GlobalValue::ExternalLinkage: 5189 break; // always ok. 5190 case GlobalValue::ExternalWeakLinkage: 5191 if (isDefine) 5192 return Error(LinkageLoc, "invalid linkage for function definition"); 5193 break; 5194 case GlobalValue::PrivateLinkage: 5195 case GlobalValue::InternalLinkage: 5196 case GlobalValue::AvailableExternallyLinkage: 5197 case GlobalValue::LinkOnceAnyLinkage: 5198 case GlobalValue::LinkOnceODRLinkage: 5199 case GlobalValue::WeakAnyLinkage: 5200 case GlobalValue::WeakODRLinkage: 5201 if (!isDefine) 5202 return Error(LinkageLoc, "invalid linkage for function declaration"); 5203 break; 5204 case GlobalValue::AppendingLinkage: 5205 case GlobalValue::CommonLinkage: 5206 return Error(LinkageLoc, "invalid function linkage type"); 5207 } 5208 5209 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5210 return Error(LinkageLoc, 5211 "symbol with local linkage must have default visibility"); 5212 5213 if (!FunctionType::isValidReturnType(RetType)) 5214 return Error(RetTypeLoc, "invalid function return type"); 5215 5216 LocTy NameLoc = Lex.getLoc(); 5217 5218 std::string FunctionName; 5219 if (Lex.getKind() == lltok::GlobalVar) { 5220 FunctionName = Lex.getStrVal(); 5221 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5222 unsigned NameID = Lex.getUIntVal(); 5223 5224 if (NameID != NumberedVals.size()) 5225 return TokError("function expected to be numbered '%" + 5226 Twine(NumberedVals.size()) + "'"); 5227 } else { 5228 return TokError("expected function name"); 5229 } 5230 5231 Lex.Lex(); 5232 5233 if (Lex.getKind() != lltok::lparen) 5234 return TokError("expected '(' in function argument list"); 5235 5236 SmallVector<ArgInfo, 8> ArgList; 5237 bool isVarArg; 5238 AttrBuilder FuncAttrs; 5239 std::vector<unsigned> FwdRefAttrGrps; 5240 LocTy BuiltinLoc; 5241 std::string Section; 5242 unsigned Alignment; 5243 std::string GC; 5244 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5245 unsigned AddrSpace = 0; 5246 Constant *Prefix = nullptr; 5247 Constant *Prologue = nullptr; 5248 Constant *PersonalityFn = nullptr; 5249 Comdat *C; 5250 5251 if (ParseArgumentList(ArgList, isVarArg) || 5252 ParseOptionalUnnamedAddr(UnnamedAddr) || 5253 ParseOptionalProgramAddrSpace(AddrSpace) || 5254 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5255 BuiltinLoc) || 5256 (EatIfPresent(lltok::kw_section) && 5257 ParseStringConstant(Section)) || 5258 parseOptionalComdat(FunctionName, C) || 5259 ParseOptionalAlignment(Alignment) || 5260 (EatIfPresent(lltok::kw_gc) && 5261 ParseStringConstant(GC)) || 5262 (EatIfPresent(lltok::kw_prefix) && 5263 ParseGlobalTypeAndValue(Prefix)) || 5264 (EatIfPresent(lltok::kw_prologue) && 5265 ParseGlobalTypeAndValue(Prologue)) || 5266 (EatIfPresent(lltok::kw_personality) && 5267 ParseGlobalTypeAndValue(PersonalityFn))) 5268 return true; 5269 5270 if (FuncAttrs.contains(Attribute::Builtin)) 5271 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5272 5273 // If the alignment was parsed as an attribute, move to the alignment field. 5274 if (FuncAttrs.hasAlignmentAttr()) { 5275 Alignment = FuncAttrs.getAlignment(); 5276 FuncAttrs.removeAttribute(Attribute::Alignment); 5277 } 5278 5279 // Okay, if we got here, the function is syntactically valid. Convert types 5280 // and do semantic checks. 5281 std::vector<Type*> ParamTypeList; 5282 SmallVector<AttributeSet, 8> Attrs; 5283 5284 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5285 ParamTypeList.push_back(ArgList[i].Ty); 5286 Attrs.push_back(ArgList[i].Attrs); 5287 } 5288 5289 AttributeList PAL = 5290 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5291 AttributeSet::get(Context, RetAttrs), Attrs); 5292 5293 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5294 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5295 5296 FunctionType *FT = 5297 FunctionType::get(RetType, ParamTypeList, isVarArg); 5298 PointerType *PFT = PointerType::get(FT, AddrSpace); 5299 5300 Fn = nullptr; 5301 if (!FunctionName.empty()) { 5302 // If this was a definition of a forward reference, remove the definition 5303 // from the forward reference table and fill in the forward ref. 5304 auto FRVI = ForwardRefVals.find(FunctionName); 5305 if (FRVI != ForwardRefVals.end()) { 5306 Fn = M->getFunction(FunctionName); 5307 if (!Fn) 5308 return Error(FRVI->second.second, "invalid forward reference to " 5309 "function as global value!"); 5310 if (Fn->getType() != PFT) 5311 return Error(FRVI->second.second, "invalid forward reference to " 5312 "function '" + FunctionName + "' with wrong type: " 5313 "expected '" + getTypeString(PFT) + "' but was '" + 5314 getTypeString(Fn->getType()) + "'"); 5315 ForwardRefVals.erase(FRVI); 5316 } else if ((Fn = M->getFunction(FunctionName))) { 5317 // Reject redefinitions. 5318 return Error(NameLoc, "invalid redefinition of function '" + 5319 FunctionName + "'"); 5320 } else if (M->getNamedValue(FunctionName)) { 5321 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5322 } 5323 5324 } else { 5325 // If this is a definition of a forward referenced function, make sure the 5326 // types agree. 5327 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5328 if (I != ForwardRefValIDs.end()) { 5329 Fn = cast<Function>(I->second.first); 5330 if (Fn->getType() != PFT) 5331 return Error(NameLoc, "type of definition and forward reference of '@" + 5332 Twine(NumberedVals.size()) + "' disagree: " 5333 "expected '" + getTypeString(PFT) + "' but was '" + 5334 getTypeString(Fn->getType()) + "'"); 5335 ForwardRefValIDs.erase(I); 5336 } 5337 } 5338 5339 if (!Fn) 5340 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5341 FunctionName, M); 5342 else // Move the forward-reference to the correct spot in the module. 5343 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5344 5345 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5346 5347 if (FunctionName.empty()) 5348 NumberedVals.push_back(Fn); 5349 5350 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5351 maybeSetDSOLocal(DSOLocal, *Fn); 5352 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5353 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5354 Fn->setCallingConv(CC); 5355 Fn->setAttributes(PAL); 5356 Fn->setUnnamedAddr(UnnamedAddr); 5357 Fn->setAlignment(Alignment); 5358 Fn->setSection(Section); 5359 Fn->setComdat(C); 5360 Fn->setPersonalityFn(PersonalityFn); 5361 if (!GC.empty()) Fn->setGC(GC); 5362 Fn->setPrefixData(Prefix); 5363 Fn->setPrologueData(Prologue); 5364 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5365 5366 // Add all of the arguments we parsed to the function. 5367 Function::arg_iterator ArgIt = Fn->arg_begin(); 5368 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5369 // If the argument has a name, insert it into the argument symbol table. 5370 if (ArgList[i].Name.empty()) continue; 5371 5372 // Set the name, if it conflicted, it will be auto-renamed. 5373 ArgIt->setName(ArgList[i].Name); 5374 5375 if (ArgIt->getName() != ArgList[i].Name) 5376 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5377 ArgList[i].Name + "'"); 5378 } 5379 5380 if (isDefine) 5381 return false; 5382 5383 // Check the declaration has no block address forward references. 5384 ValID ID; 5385 if (FunctionName.empty()) { 5386 ID.Kind = ValID::t_GlobalID; 5387 ID.UIntVal = NumberedVals.size() - 1; 5388 } else { 5389 ID.Kind = ValID::t_GlobalName; 5390 ID.StrVal = FunctionName; 5391 } 5392 auto Blocks = ForwardRefBlockAddresses.find(ID); 5393 if (Blocks != ForwardRefBlockAddresses.end()) 5394 return Error(Blocks->first.Loc, 5395 "cannot take blockaddress inside a declaration"); 5396 return false; 5397 } 5398 5399 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5400 ValID ID; 5401 if (FunctionNumber == -1) { 5402 ID.Kind = ValID::t_GlobalName; 5403 ID.StrVal = F.getName(); 5404 } else { 5405 ID.Kind = ValID::t_GlobalID; 5406 ID.UIntVal = FunctionNumber; 5407 } 5408 5409 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5410 if (Blocks == P.ForwardRefBlockAddresses.end()) 5411 return false; 5412 5413 for (const auto &I : Blocks->second) { 5414 const ValID &BBID = I.first; 5415 GlobalValue *GV = I.second; 5416 5417 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5418 "Expected local id or name"); 5419 BasicBlock *BB; 5420 if (BBID.Kind == ValID::t_LocalName) 5421 BB = GetBB(BBID.StrVal, BBID.Loc); 5422 else 5423 BB = GetBB(BBID.UIntVal, BBID.Loc); 5424 if (!BB) 5425 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5426 5427 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5428 GV->eraseFromParent(); 5429 } 5430 5431 P.ForwardRefBlockAddresses.erase(Blocks); 5432 return false; 5433 } 5434 5435 /// ParseFunctionBody 5436 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5437 bool LLParser::ParseFunctionBody(Function &Fn) { 5438 if (Lex.getKind() != lltok::lbrace) 5439 return TokError("expected '{' in function body"); 5440 Lex.Lex(); // eat the {. 5441 5442 int FunctionNumber = -1; 5443 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5444 5445 PerFunctionState PFS(*this, Fn, FunctionNumber); 5446 5447 // Resolve block addresses and allow basic blocks to be forward-declared 5448 // within this function. 5449 if (PFS.resolveForwardRefBlockAddresses()) 5450 return true; 5451 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5452 5453 // We need at least one basic block. 5454 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5455 return TokError("function body requires at least one basic block"); 5456 5457 while (Lex.getKind() != lltok::rbrace && 5458 Lex.getKind() != lltok::kw_uselistorder) 5459 if (ParseBasicBlock(PFS)) return true; 5460 5461 while (Lex.getKind() != lltok::rbrace) 5462 if (ParseUseListOrder(&PFS)) 5463 return true; 5464 5465 // Eat the }. 5466 Lex.Lex(); 5467 5468 // Verify function is ok. 5469 return PFS.FinishFunction(); 5470 } 5471 5472 /// ParseBasicBlock 5473 /// ::= LabelStr? Instruction* 5474 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5475 // If this basic block starts out with a name, remember it. 5476 std::string Name; 5477 LocTy NameLoc = Lex.getLoc(); 5478 if (Lex.getKind() == lltok::LabelStr) { 5479 Name = Lex.getStrVal(); 5480 Lex.Lex(); 5481 } 5482 5483 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 5484 if (!BB) 5485 return Error(NameLoc, 5486 "unable to create block named '" + Name + "'"); 5487 5488 std::string NameStr; 5489 5490 // Parse the instructions in this block until we get a terminator. 5491 Instruction *Inst; 5492 do { 5493 // This instruction may have three possibilities for a name: a) none 5494 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5495 LocTy NameLoc = Lex.getLoc(); 5496 int NameID = -1; 5497 NameStr = ""; 5498 5499 if (Lex.getKind() == lltok::LocalVarID) { 5500 NameID = Lex.getUIntVal(); 5501 Lex.Lex(); 5502 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5503 return true; 5504 } else if (Lex.getKind() == lltok::LocalVar) { 5505 NameStr = Lex.getStrVal(); 5506 Lex.Lex(); 5507 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5508 return true; 5509 } 5510 5511 switch (ParseInstruction(Inst, BB, PFS)) { 5512 default: llvm_unreachable("Unknown ParseInstruction result!"); 5513 case InstError: return true; 5514 case InstNormal: 5515 BB->getInstList().push_back(Inst); 5516 5517 // With a normal result, we check to see if the instruction is followed by 5518 // a comma and metadata. 5519 if (EatIfPresent(lltok::comma)) 5520 if (ParseInstructionMetadata(*Inst)) 5521 return true; 5522 break; 5523 case InstExtraComma: 5524 BB->getInstList().push_back(Inst); 5525 5526 // If the instruction parser ate an extra comma at the end of it, it 5527 // *must* be followed by metadata. 5528 if (ParseInstructionMetadata(*Inst)) 5529 return true; 5530 break; 5531 } 5532 5533 // Set the name on the instruction. 5534 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5535 } while (!Inst->isTerminator()); 5536 5537 return false; 5538 } 5539 5540 //===----------------------------------------------------------------------===// 5541 // Instruction Parsing. 5542 //===----------------------------------------------------------------------===// 5543 5544 /// ParseInstruction - Parse one of the many different instructions. 5545 /// 5546 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5547 PerFunctionState &PFS) { 5548 lltok::Kind Token = Lex.getKind(); 5549 if (Token == lltok::Eof) 5550 return TokError("found end of file when expecting more instructions"); 5551 LocTy Loc = Lex.getLoc(); 5552 unsigned KeywordVal = Lex.getUIntVal(); 5553 Lex.Lex(); // Eat the keyword. 5554 5555 switch (Token) { 5556 default: return Error(Loc, "expected instruction opcode"); 5557 // Terminator Instructions. 5558 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5559 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5560 case lltok::kw_br: return ParseBr(Inst, PFS); 5561 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5562 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5563 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5564 case lltok::kw_resume: return ParseResume(Inst, PFS); 5565 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5566 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5567 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5568 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5569 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5570 // Unary Operators. 5571 case lltok::kw_fneg: { 5572 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5573 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, 2); 5574 if (Res != 0) 5575 return Res; 5576 if (FMF.any()) 5577 Inst->setFastMathFlags(FMF); 5578 return false; 5579 } 5580 // Binary Operators. 5581 case lltok::kw_add: 5582 case lltok::kw_sub: 5583 case lltok::kw_mul: 5584 case lltok::kw_shl: { 5585 bool NUW = EatIfPresent(lltok::kw_nuw); 5586 bool NSW = EatIfPresent(lltok::kw_nsw); 5587 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5588 5589 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5590 5591 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5592 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5593 return false; 5594 } 5595 case lltok::kw_fadd: 5596 case lltok::kw_fsub: 5597 case lltok::kw_fmul: 5598 case lltok::kw_fdiv: 5599 case lltok::kw_frem: { 5600 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5601 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5602 if (Res != 0) 5603 return Res; 5604 if (FMF.any()) 5605 Inst->setFastMathFlags(FMF); 5606 return 0; 5607 } 5608 5609 case lltok::kw_sdiv: 5610 case lltok::kw_udiv: 5611 case lltok::kw_lshr: 5612 case lltok::kw_ashr: { 5613 bool Exact = EatIfPresent(lltok::kw_exact); 5614 5615 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5616 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5617 return false; 5618 } 5619 5620 case lltok::kw_urem: 5621 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5622 case lltok::kw_and: 5623 case lltok::kw_or: 5624 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5625 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5626 case lltok::kw_fcmp: { 5627 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5628 int Res = ParseCompare(Inst, PFS, KeywordVal); 5629 if (Res != 0) 5630 return Res; 5631 if (FMF.any()) 5632 Inst->setFastMathFlags(FMF); 5633 return 0; 5634 } 5635 5636 // Casts. 5637 case lltok::kw_trunc: 5638 case lltok::kw_zext: 5639 case lltok::kw_sext: 5640 case lltok::kw_fptrunc: 5641 case lltok::kw_fpext: 5642 case lltok::kw_bitcast: 5643 case lltok::kw_addrspacecast: 5644 case lltok::kw_uitofp: 5645 case lltok::kw_sitofp: 5646 case lltok::kw_fptoui: 5647 case lltok::kw_fptosi: 5648 case lltok::kw_inttoptr: 5649 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5650 // Other. 5651 case lltok::kw_select: return ParseSelect(Inst, PFS); 5652 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5653 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5654 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5655 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5656 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5657 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5658 // Call. 5659 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5660 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5661 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5662 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5663 // Memory. 5664 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5665 case lltok::kw_load: return ParseLoad(Inst, PFS); 5666 case lltok::kw_store: return ParseStore(Inst, PFS); 5667 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5668 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5669 case lltok::kw_fence: return ParseFence(Inst, PFS); 5670 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5671 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5672 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5673 } 5674 } 5675 5676 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5677 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5678 if (Opc == Instruction::FCmp) { 5679 switch (Lex.getKind()) { 5680 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5681 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5682 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5683 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5684 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5685 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5686 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5687 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5688 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5689 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5690 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5691 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5692 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5693 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5694 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5695 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5696 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5697 } 5698 } else { 5699 switch (Lex.getKind()) { 5700 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5701 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5702 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5703 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5704 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5705 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5706 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5707 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5708 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5709 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5710 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5711 } 5712 } 5713 Lex.Lex(); 5714 return false; 5715 } 5716 5717 //===----------------------------------------------------------------------===// 5718 // Terminator Instructions. 5719 //===----------------------------------------------------------------------===// 5720 5721 /// ParseRet - Parse a return instruction. 5722 /// ::= 'ret' void (',' !dbg, !1)* 5723 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5724 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5725 PerFunctionState &PFS) { 5726 SMLoc TypeLoc = Lex.getLoc(); 5727 Type *Ty = nullptr; 5728 if (ParseType(Ty, true /*void allowed*/)) return true; 5729 5730 Type *ResType = PFS.getFunction().getReturnType(); 5731 5732 if (Ty->isVoidTy()) { 5733 if (!ResType->isVoidTy()) 5734 return Error(TypeLoc, "value doesn't match function result type '" + 5735 getTypeString(ResType) + "'"); 5736 5737 Inst = ReturnInst::Create(Context); 5738 return false; 5739 } 5740 5741 Value *RV; 5742 if (ParseValue(Ty, RV, PFS)) return true; 5743 5744 if (ResType != RV->getType()) 5745 return Error(TypeLoc, "value doesn't match function result type '" + 5746 getTypeString(ResType) + "'"); 5747 5748 Inst = ReturnInst::Create(Context, RV); 5749 return false; 5750 } 5751 5752 /// ParseBr 5753 /// ::= 'br' TypeAndValue 5754 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5755 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5756 LocTy Loc, Loc2; 5757 Value *Op0; 5758 BasicBlock *Op1, *Op2; 5759 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5760 5761 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5762 Inst = BranchInst::Create(BB); 5763 return false; 5764 } 5765 5766 if (Op0->getType() != Type::getInt1Ty(Context)) 5767 return Error(Loc, "branch condition must have 'i1' type"); 5768 5769 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5770 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5771 ParseToken(lltok::comma, "expected ',' after true destination") || 5772 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5773 return true; 5774 5775 Inst = BranchInst::Create(Op1, Op2, Op0); 5776 return false; 5777 } 5778 5779 /// ParseSwitch 5780 /// Instruction 5781 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5782 /// JumpTable 5783 /// ::= (TypeAndValue ',' TypeAndValue)* 5784 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5785 LocTy CondLoc, BBLoc; 5786 Value *Cond; 5787 BasicBlock *DefaultBB; 5788 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5789 ParseToken(lltok::comma, "expected ',' after switch condition") || 5790 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5791 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5792 return true; 5793 5794 if (!Cond->getType()->isIntegerTy()) 5795 return Error(CondLoc, "switch condition must have integer type"); 5796 5797 // Parse the jump table pairs. 5798 SmallPtrSet<Value*, 32> SeenCases; 5799 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5800 while (Lex.getKind() != lltok::rsquare) { 5801 Value *Constant; 5802 BasicBlock *DestBB; 5803 5804 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5805 ParseToken(lltok::comma, "expected ',' after case value") || 5806 ParseTypeAndBasicBlock(DestBB, PFS)) 5807 return true; 5808 5809 if (!SeenCases.insert(Constant).second) 5810 return Error(CondLoc, "duplicate case value in switch"); 5811 if (!isa<ConstantInt>(Constant)) 5812 return Error(CondLoc, "case value is not a constant integer"); 5813 5814 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5815 } 5816 5817 Lex.Lex(); // Eat the ']'. 5818 5819 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5820 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5821 SI->addCase(Table[i].first, Table[i].second); 5822 Inst = SI; 5823 return false; 5824 } 5825 5826 /// ParseIndirectBr 5827 /// Instruction 5828 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5829 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5830 LocTy AddrLoc; 5831 Value *Address; 5832 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5833 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5834 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5835 return true; 5836 5837 if (!Address->getType()->isPointerTy()) 5838 return Error(AddrLoc, "indirectbr address must have pointer type"); 5839 5840 // Parse the destination list. 5841 SmallVector<BasicBlock*, 16> DestList; 5842 5843 if (Lex.getKind() != lltok::rsquare) { 5844 BasicBlock *DestBB; 5845 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5846 return true; 5847 DestList.push_back(DestBB); 5848 5849 while (EatIfPresent(lltok::comma)) { 5850 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5851 return true; 5852 DestList.push_back(DestBB); 5853 } 5854 } 5855 5856 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5857 return true; 5858 5859 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5860 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5861 IBI->addDestination(DestList[i]); 5862 Inst = IBI; 5863 return false; 5864 } 5865 5866 /// ParseInvoke 5867 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5868 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5869 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5870 LocTy CallLoc = Lex.getLoc(); 5871 AttrBuilder RetAttrs, FnAttrs; 5872 std::vector<unsigned> FwdRefAttrGrps; 5873 LocTy NoBuiltinLoc; 5874 unsigned CC; 5875 unsigned InvokeAddrSpace; 5876 Type *RetType = nullptr; 5877 LocTy RetTypeLoc; 5878 ValID CalleeID; 5879 SmallVector<ParamInfo, 16> ArgList; 5880 SmallVector<OperandBundleDef, 2> BundleList; 5881 5882 BasicBlock *NormalBB, *UnwindBB; 5883 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5884 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 5885 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5886 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5887 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5888 NoBuiltinLoc) || 5889 ParseOptionalOperandBundles(BundleList, PFS) || 5890 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5891 ParseTypeAndBasicBlock(NormalBB, PFS) || 5892 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5893 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5894 return true; 5895 5896 // If RetType is a non-function pointer type, then this is the short syntax 5897 // for the call, which means that RetType is just the return type. Infer the 5898 // rest of the function argument types from the arguments that are present. 5899 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5900 if (!Ty) { 5901 // Pull out the types of all of the arguments... 5902 std::vector<Type*> ParamTypes; 5903 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5904 ParamTypes.push_back(ArgList[i].V->getType()); 5905 5906 if (!FunctionType::isValidReturnType(RetType)) 5907 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5908 5909 Ty = FunctionType::get(RetType, ParamTypes, false); 5910 } 5911 5912 CalleeID.FTy = Ty; 5913 5914 // Look up the callee. 5915 Value *Callee; 5916 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 5917 Callee, &PFS, /*IsCall=*/true)) 5918 return true; 5919 5920 // Set up the Attribute for the function. 5921 SmallVector<Value *, 8> Args; 5922 SmallVector<AttributeSet, 8> ArgAttrs; 5923 5924 // Loop through FunctionType's arguments and ensure they are specified 5925 // correctly. Also, gather any parameter attributes. 5926 FunctionType::param_iterator I = Ty->param_begin(); 5927 FunctionType::param_iterator E = Ty->param_end(); 5928 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5929 Type *ExpectedTy = nullptr; 5930 if (I != E) { 5931 ExpectedTy = *I++; 5932 } else if (!Ty->isVarArg()) { 5933 return Error(ArgList[i].Loc, "too many arguments specified"); 5934 } 5935 5936 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5937 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5938 getTypeString(ExpectedTy) + "'"); 5939 Args.push_back(ArgList[i].V); 5940 ArgAttrs.push_back(ArgList[i].Attrs); 5941 } 5942 5943 if (I != E) 5944 return Error(CallLoc, "not enough parameters specified for call"); 5945 5946 if (FnAttrs.hasAlignmentAttr()) 5947 return Error(CallLoc, "invoke instructions may not have an alignment"); 5948 5949 // Finish off the Attribute and check them 5950 AttributeList PAL = 5951 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5952 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5953 5954 InvokeInst *II = 5955 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5956 II->setCallingConv(CC); 5957 II->setAttributes(PAL); 5958 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5959 Inst = II; 5960 return false; 5961 } 5962 5963 /// ParseResume 5964 /// ::= 'resume' TypeAndValue 5965 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5966 Value *Exn; LocTy ExnLoc; 5967 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5968 return true; 5969 5970 ResumeInst *RI = ResumeInst::Create(Exn); 5971 Inst = RI; 5972 return false; 5973 } 5974 5975 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5976 PerFunctionState &PFS) { 5977 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5978 return true; 5979 5980 while (Lex.getKind() != lltok::rsquare) { 5981 // If this isn't the first argument, we need a comma. 5982 if (!Args.empty() && 5983 ParseToken(lltok::comma, "expected ',' in argument list")) 5984 return true; 5985 5986 // Parse the argument. 5987 LocTy ArgLoc; 5988 Type *ArgTy = nullptr; 5989 if (ParseType(ArgTy, ArgLoc)) 5990 return true; 5991 5992 Value *V; 5993 if (ArgTy->isMetadataTy()) { 5994 if (ParseMetadataAsValue(V, PFS)) 5995 return true; 5996 } else { 5997 if (ParseValue(ArgTy, V, PFS)) 5998 return true; 5999 } 6000 Args.push_back(V); 6001 } 6002 6003 Lex.Lex(); // Lex the ']'. 6004 return false; 6005 } 6006 6007 /// ParseCleanupRet 6008 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6009 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6010 Value *CleanupPad = nullptr; 6011 6012 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6013 return true; 6014 6015 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6016 return true; 6017 6018 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6019 return true; 6020 6021 BasicBlock *UnwindBB = nullptr; 6022 if (Lex.getKind() == lltok::kw_to) { 6023 Lex.Lex(); 6024 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6025 return true; 6026 } else { 6027 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6028 return true; 6029 } 6030 } 6031 6032 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6033 return false; 6034 } 6035 6036 /// ParseCatchRet 6037 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6038 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6039 Value *CatchPad = nullptr; 6040 6041 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6042 return true; 6043 6044 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6045 return true; 6046 6047 BasicBlock *BB; 6048 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6049 ParseTypeAndBasicBlock(BB, PFS)) 6050 return true; 6051 6052 Inst = CatchReturnInst::Create(CatchPad, BB); 6053 return false; 6054 } 6055 6056 /// ParseCatchSwitch 6057 /// ::= 'catchswitch' within Parent 6058 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6059 Value *ParentPad; 6060 6061 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6062 return true; 6063 6064 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6065 Lex.getKind() != lltok::LocalVarID) 6066 return TokError("expected scope value for catchswitch"); 6067 6068 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6069 return true; 6070 6071 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6072 return true; 6073 6074 SmallVector<BasicBlock *, 32> Table; 6075 do { 6076 BasicBlock *DestBB; 6077 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6078 return true; 6079 Table.push_back(DestBB); 6080 } while (EatIfPresent(lltok::comma)); 6081 6082 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6083 return true; 6084 6085 if (ParseToken(lltok::kw_unwind, 6086 "expected 'unwind' after catchswitch scope")) 6087 return true; 6088 6089 BasicBlock *UnwindBB = nullptr; 6090 if (EatIfPresent(lltok::kw_to)) { 6091 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6092 return true; 6093 } else { 6094 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6095 return true; 6096 } 6097 6098 auto *CatchSwitch = 6099 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6100 for (BasicBlock *DestBB : Table) 6101 CatchSwitch->addHandler(DestBB); 6102 Inst = CatchSwitch; 6103 return false; 6104 } 6105 6106 /// ParseCatchPad 6107 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6108 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6109 Value *CatchSwitch = nullptr; 6110 6111 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6112 return true; 6113 6114 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6115 return TokError("expected scope value for catchpad"); 6116 6117 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6118 return true; 6119 6120 SmallVector<Value *, 8> Args; 6121 if (ParseExceptionArgs(Args, PFS)) 6122 return true; 6123 6124 Inst = CatchPadInst::Create(CatchSwitch, Args); 6125 return false; 6126 } 6127 6128 /// ParseCleanupPad 6129 /// ::= 'cleanuppad' within Parent ParamList 6130 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6131 Value *ParentPad = nullptr; 6132 6133 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6134 return true; 6135 6136 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6137 Lex.getKind() != lltok::LocalVarID) 6138 return TokError("expected scope value for cleanuppad"); 6139 6140 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6141 return true; 6142 6143 SmallVector<Value *, 8> Args; 6144 if (ParseExceptionArgs(Args, PFS)) 6145 return true; 6146 6147 Inst = CleanupPadInst::Create(ParentPad, Args); 6148 return false; 6149 } 6150 6151 //===----------------------------------------------------------------------===// 6152 // Unary Operators. 6153 //===----------------------------------------------------------------------===// 6154 6155 /// ParseUnaryOp 6156 /// ::= UnaryOp TypeAndValue ',' Value 6157 /// 6158 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6159 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6160 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6161 unsigned Opc, unsigned OperandType) { 6162 LocTy Loc; Value *LHS; 6163 if (ParseTypeAndValue(LHS, Loc, PFS)) 6164 return true; 6165 6166 bool Valid; 6167 switch (OperandType) { 6168 default: llvm_unreachable("Unknown operand type!"); 6169 case 0: // int or FP. 6170 Valid = LHS->getType()->isIntOrIntVectorTy() || 6171 LHS->getType()->isFPOrFPVectorTy(); 6172 break; 6173 case 1: 6174 Valid = LHS->getType()->isIntOrIntVectorTy(); 6175 break; 6176 case 2: 6177 Valid = LHS->getType()->isFPOrFPVectorTy(); 6178 break; 6179 } 6180 6181 if (!Valid) 6182 return Error(Loc, "invalid operand type for instruction"); 6183 6184 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6185 return false; 6186 } 6187 6188 //===----------------------------------------------------------------------===// 6189 // Binary Operators. 6190 //===----------------------------------------------------------------------===// 6191 6192 /// ParseArithmetic 6193 /// ::= ArithmeticOps TypeAndValue ',' Value 6194 /// 6195 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6196 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6197 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6198 unsigned Opc, unsigned OperandType) { 6199 LocTy Loc; Value *LHS, *RHS; 6200 if (ParseTypeAndValue(LHS, Loc, PFS) || 6201 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6202 ParseValue(LHS->getType(), RHS, PFS)) 6203 return true; 6204 6205 bool Valid; 6206 switch (OperandType) { 6207 default: llvm_unreachable("Unknown operand type!"); 6208 case 0: // int or FP. 6209 Valid = LHS->getType()->isIntOrIntVectorTy() || 6210 LHS->getType()->isFPOrFPVectorTy(); 6211 break; 6212 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 6213 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 6214 } 6215 6216 if (!Valid) 6217 return Error(Loc, "invalid operand type for instruction"); 6218 6219 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6220 return false; 6221 } 6222 6223 /// ParseLogical 6224 /// ::= ArithmeticOps TypeAndValue ',' Value { 6225 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6226 unsigned Opc) { 6227 LocTy Loc; Value *LHS, *RHS; 6228 if (ParseTypeAndValue(LHS, Loc, PFS) || 6229 ParseToken(lltok::comma, "expected ',' in logical operation") || 6230 ParseValue(LHS->getType(), RHS, PFS)) 6231 return true; 6232 6233 if (!LHS->getType()->isIntOrIntVectorTy()) 6234 return Error(Loc,"instruction requires integer or integer vector operands"); 6235 6236 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6237 return false; 6238 } 6239 6240 /// ParseCompare 6241 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6242 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6243 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6244 unsigned Opc) { 6245 // Parse the integer/fp comparison predicate. 6246 LocTy Loc; 6247 unsigned Pred; 6248 Value *LHS, *RHS; 6249 if (ParseCmpPredicate(Pred, Opc) || 6250 ParseTypeAndValue(LHS, Loc, PFS) || 6251 ParseToken(lltok::comma, "expected ',' after compare value") || 6252 ParseValue(LHS->getType(), RHS, PFS)) 6253 return true; 6254 6255 if (Opc == Instruction::FCmp) { 6256 if (!LHS->getType()->isFPOrFPVectorTy()) 6257 return Error(Loc, "fcmp requires floating point operands"); 6258 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6259 } else { 6260 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6261 if (!LHS->getType()->isIntOrIntVectorTy() && 6262 !LHS->getType()->isPtrOrPtrVectorTy()) 6263 return Error(Loc, "icmp requires integer operands"); 6264 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6265 } 6266 return false; 6267 } 6268 6269 //===----------------------------------------------------------------------===// 6270 // Other Instructions. 6271 //===----------------------------------------------------------------------===// 6272 6273 6274 /// ParseCast 6275 /// ::= CastOpc TypeAndValue 'to' Type 6276 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6277 unsigned Opc) { 6278 LocTy Loc; 6279 Value *Op; 6280 Type *DestTy = nullptr; 6281 if (ParseTypeAndValue(Op, Loc, PFS) || 6282 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6283 ParseType(DestTy)) 6284 return true; 6285 6286 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6287 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6288 return Error(Loc, "invalid cast opcode for cast from '" + 6289 getTypeString(Op->getType()) + "' to '" + 6290 getTypeString(DestTy) + "'"); 6291 } 6292 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6293 return false; 6294 } 6295 6296 /// ParseSelect 6297 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6298 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6299 LocTy Loc; 6300 Value *Op0, *Op1, *Op2; 6301 if (ParseTypeAndValue(Op0, Loc, PFS) || 6302 ParseToken(lltok::comma, "expected ',' after select condition") || 6303 ParseTypeAndValue(Op1, PFS) || 6304 ParseToken(lltok::comma, "expected ',' after select value") || 6305 ParseTypeAndValue(Op2, PFS)) 6306 return true; 6307 6308 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6309 return Error(Loc, Reason); 6310 6311 Inst = SelectInst::Create(Op0, Op1, Op2); 6312 return false; 6313 } 6314 6315 /// ParseVA_Arg 6316 /// ::= 'va_arg' TypeAndValue ',' Type 6317 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6318 Value *Op; 6319 Type *EltTy = nullptr; 6320 LocTy TypeLoc; 6321 if (ParseTypeAndValue(Op, PFS) || 6322 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6323 ParseType(EltTy, TypeLoc)) 6324 return true; 6325 6326 if (!EltTy->isFirstClassType()) 6327 return Error(TypeLoc, "va_arg requires operand with first class type"); 6328 6329 Inst = new VAArgInst(Op, EltTy); 6330 return false; 6331 } 6332 6333 /// ParseExtractElement 6334 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6335 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6336 LocTy Loc; 6337 Value *Op0, *Op1; 6338 if (ParseTypeAndValue(Op0, Loc, PFS) || 6339 ParseToken(lltok::comma, "expected ',' after extract value") || 6340 ParseTypeAndValue(Op1, PFS)) 6341 return true; 6342 6343 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6344 return Error(Loc, "invalid extractelement operands"); 6345 6346 Inst = ExtractElementInst::Create(Op0, Op1); 6347 return false; 6348 } 6349 6350 /// ParseInsertElement 6351 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6352 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6353 LocTy Loc; 6354 Value *Op0, *Op1, *Op2; 6355 if (ParseTypeAndValue(Op0, Loc, PFS) || 6356 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6357 ParseTypeAndValue(Op1, PFS) || 6358 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6359 ParseTypeAndValue(Op2, PFS)) 6360 return true; 6361 6362 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6363 return Error(Loc, "invalid insertelement operands"); 6364 6365 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6366 return false; 6367 } 6368 6369 /// ParseShuffleVector 6370 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6371 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6372 LocTy Loc; 6373 Value *Op0, *Op1, *Op2; 6374 if (ParseTypeAndValue(Op0, Loc, PFS) || 6375 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6376 ParseTypeAndValue(Op1, PFS) || 6377 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6378 ParseTypeAndValue(Op2, PFS)) 6379 return true; 6380 6381 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6382 return Error(Loc, "invalid shufflevector operands"); 6383 6384 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6385 return false; 6386 } 6387 6388 /// ParsePHI 6389 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6390 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6391 Type *Ty = nullptr; LocTy TypeLoc; 6392 Value *Op0, *Op1; 6393 6394 if (ParseType(Ty, TypeLoc) || 6395 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6396 ParseValue(Ty, Op0, PFS) || 6397 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6398 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6399 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6400 return true; 6401 6402 bool AteExtraComma = false; 6403 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6404 6405 while (true) { 6406 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6407 6408 if (!EatIfPresent(lltok::comma)) 6409 break; 6410 6411 if (Lex.getKind() == lltok::MetadataVar) { 6412 AteExtraComma = true; 6413 break; 6414 } 6415 6416 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6417 ParseValue(Ty, Op0, PFS) || 6418 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6419 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6420 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6421 return true; 6422 } 6423 6424 if (!Ty->isFirstClassType()) 6425 return Error(TypeLoc, "phi node must have first class type"); 6426 6427 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6428 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6429 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6430 Inst = PN; 6431 return AteExtraComma ? InstExtraComma : InstNormal; 6432 } 6433 6434 /// ParseLandingPad 6435 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6436 /// Clause 6437 /// ::= 'catch' TypeAndValue 6438 /// ::= 'filter' 6439 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6440 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6441 Type *Ty = nullptr; LocTy TyLoc; 6442 6443 if (ParseType(Ty, TyLoc)) 6444 return true; 6445 6446 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6447 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6448 6449 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6450 LandingPadInst::ClauseType CT; 6451 if (EatIfPresent(lltok::kw_catch)) 6452 CT = LandingPadInst::Catch; 6453 else if (EatIfPresent(lltok::kw_filter)) 6454 CT = LandingPadInst::Filter; 6455 else 6456 return TokError("expected 'catch' or 'filter' clause type"); 6457 6458 Value *V; 6459 LocTy VLoc; 6460 if (ParseTypeAndValue(V, VLoc, PFS)) 6461 return true; 6462 6463 // A 'catch' type expects a non-array constant. A filter clause expects an 6464 // array constant. 6465 if (CT == LandingPadInst::Catch) { 6466 if (isa<ArrayType>(V->getType())) 6467 Error(VLoc, "'catch' clause has an invalid type"); 6468 } else { 6469 if (!isa<ArrayType>(V->getType())) 6470 Error(VLoc, "'filter' clause has an invalid type"); 6471 } 6472 6473 Constant *CV = dyn_cast<Constant>(V); 6474 if (!CV) 6475 return Error(VLoc, "clause argument must be a constant"); 6476 LP->addClause(CV); 6477 } 6478 6479 Inst = LP.release(); 6480 return false; 6481 } 6482 6483 /// ParseCall 6484 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6485 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6486 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6487 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6488 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6489 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6490 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6491 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6492 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6493 CallInst::TailCallKind TCK) { 6494 AttrBuilder RetAttrs, FnAttrs; 6495 std::vector<unsigned> FwdRefAttrGrps; 6496 LocTy BuiltinLoc; 6497 unsigned CallAddrSpace; 6498 unsigned CC; 6499 Type *RetType = nullptr; 6500 LocTy RetTypeLoc; 6501 ValID CalleeID; 6502 SmallVector<ParamInfo, 16> ArgList; 6503 SmallVector<OperandBundleDef, 2> BundleList; 6504 LocTy CallLoc = Lex.getLoc(); 6505 6506 if (TCK != CallInst::TCK_None && 6507 ParseToken(lltok::kw_call, 6508 "expected 'tail call', 'musttail call', or 'notail call'")) 6509 return true; 6510 6511 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6512 6513 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6514 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6515 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6516 ParseValID(CalleeID) || 6517 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6518 PFS.getFunction().isVarArg()) || 6519 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6520 ParseOptionalOperandBundles(BundleList, PFS)) 6521 return true; 6522 6523 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6524 return Error(CallLoc, "fast-math-flags specified for call without " 6525 "floating-point scalar or vector return type"); 6526 6527 // If RetType is a non-function pointer type, then this is the short syntax 6528 // for the call, which means that RetType is just the return type. Infer the 6529 // rest of the function argument types from the arguments that are present. 6530 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6531 if (!Ty) { 6532 // Pull out the types of all of the arguments... 6533 std::vector<Type*> ParamTypes; 6534 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6535 ParamTypes.push_back(ArgList[i].V->getType()); 6536 6537 if (!FunctionType::isValidReturnType(RetType)) 6538 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6539 6540 Ty = FunctionType::get(RetType, ParamTypes, false); 6541 } 6542 6543 CalleeID.FTy = Ty; 6544 6545 // Look up the callee. 6546 Value *Callee; 6547 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6548 &PFS, /*IsCall=*/true)) 6549 return true; 6550 6551 // Set up the Attribute for the function. 6552 SmallVector<AttributeSet, 8> Attrs; 6553 6554 SmallVector<Value*, 8> Args; 6555 6556 // Loop through FunctionType's arguments and ensure they are specified 6557 // correctly. Also, gather any parameter attributes. 6558 FunctionType::param_iterator I = Ty->param_begin(); 6559 FunctionType::param_iterator E = Ty->param_end(); 6560 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6561 Type *ExpectedTy = nullptr; 6562 if (I != E) { 6563 ExpectedTy = *I++; 6564 } else if (!Ty->isVarArg()) { 6565 return Error(ArgList[i].Loc, "too many arguments specified"); 6566 } 6567 6568 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6569 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6570 getTypeString(ExpectedTy) + "'"); 6571 Args.push_back(ArgList[i].V); 6572 Attrs.push_back(ArgList[i].Attrs); 6573 } 6574 6575 if (I != E) 6576 return Error(CallLoc, "not enough parameters specified for call"); 6577 6578 if (FnAttrs.hasAlignmentAttr()) 6579 return Error(CallLoc, "call instructions may not have an alignment"); 6580 6581 // Finish off the Attribute and check them 6582 AttributeList PAL = 6583 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6584 AttributeSet::get(Context, RetAttrs), Attrs); 6585 6586 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6587 CI->setTailCallKind(TCK); 6588 CI->setCallingConv(CC); 6589 if (FMF.any()) 6590 CI->setFastMathFlags(FMF); 6591 CI->setAttributes(PAL); 6592 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6593 Inst = CI; 6594 return false; 6595 } 6596 6597 //===----------------------------------------------------------------------===// 6598 // Memory Instructions. 6599 //===----------------------------------------------------------------------===// 6600 6601 /// ParseAlloc 6602 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6603 /// (',' 'align' i32)? (',', 'addrspace(n))? 6604 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6605 Value *Size = nullptr; 6606 LocTy SizeLoc, TyLoc, ASLoc; 6607 unsigned Alignment = 0; 6608 unsigned AddrSpace = 0; 6609 Type *Ty = nullptr; 6610 6611 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6612 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6613 6614 if (ParseType(Ty, TyLoc)) return true; 6615 6616 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6617 return Error(TyLoc, "invalid type for alloca"); 6618 6619 bool AteExtraComma = false; 6620 if (EatIfPresent(lltok::comma)) { 6621 if (Lex.getKind() == lltok::kw_align) { 6622 if (ParseOptionalAlignment(Alignment)) 6623 return true; 6624 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6625 return true; 6626 } else if (Lex.getKind() == lltok::kw_addrspace) { 6627 ASLoc = Lex.getLoc(); 6628 if (ParseOptionalAddrSpace(AddrSpace)) 6629 return true; 6630 } else if (Lex.getKind() == lltok::MetadataVar) { 6631 AteExtraComma = true; 6632 } else { 6633 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6634 return true; 6635 if (EatIfPresent(lltok::comma)) { 6636 if (Lex.getKind() == lltok::kw_align) { 6637 if (ParseOptionalAlignment(Alignment)) 6638 return true; 6639 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6640 return true; 6641 } else if (Lex.getKind() == lltok::kw_addrspace) { 6642 ASLoc = Lex.getLoc(); 6643 if (ParseOptionalAddrSpace(AddrSpace)) 6644 return true; 6645 } else if (Lex.getKind() == lltok::MetadataVar) { 6646 AteExtraComma = true; 6647 } 6648 } 6649 } 6650 } 6651 6652 if (Size && !Size->getType()->isIntegerTy()) 6653 return Error(SizeLoc, "element count must have integer type"); 6654 6655 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6656 AI->setUsedWithInAlloca(IsInAlloca); 6657 AI->setSwiftError(IsSwiftError); 6658 Inst = AI; 6659 return AteExtraComma ? InstExtraComma : InstNormal; 6660 } 6661 6662 /// ParseLoad 6663 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6664 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6665 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6666 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6667 Value *Val; LocTy Loc; 6668 unsigned Alignment = 0; 6669 bool AteExtraComma = false; 6670 bool isAtomic = false; 6671 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6672 SyncScope::ID SSID = SyncScope::System; 6673 6674 if (Lex.getKind() == lltok::kw_atomic) { 6675 isAtomic = true; 6676 Lex.Lex(); 6677 } 6678 6679 bool isVolatile = false; 6680 if (Lex.getKind() == lltok::kw_volatile) { 6681 isVolatile = true; 6682 Lex.Lex(); 6683 } 6684 6685 Type *Ty; 6686 LocTy ExplicitTypeLoc = Lex.getLoc(); 6687 if (ParseType(Ty) || 6688 ParseToken(lltok::comma, "expected comma after load's type") || 6689 ParseTypeAndValue(Val, Loc, PFS) || 6690 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6691 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6692 return true; 6693 6694 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6695 return Error(Loc, "load operand must be a pointer to a first class type"); 6696 if (isAtomic && !Alignment) 6697 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6698 if (Ordering == AtomicOrdering::Release || 6699 Ordering == AtomicOrdering::AcquireRelease) 6700 return Error(Loc, "atomic load cannot use Release ordering"); 6701 6702 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6703 return Error(ExplicitTypeLoc, 6704 "explicit pointee type doesn't match operand's pointee type"); 6705 6706 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6707 return AteExtraComma ? InstExtraComma : InstNormal; 6708 } 6709 6710 /// ParseStore 6711 6712 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6713 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6714 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6715 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6716 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6717 unsigned Alignment = 0; 6718 bool AteExtraComma = false; 6719 bool isAtomic = false; 6720 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6721 SyncScope::ID SSID = SyncScope::System; 6722 6723 if (Lex.getKind() == lltok::kw_atomic) { 6724 isAtomic = true; 6725 Lex.Lex(); 6726 } 6727 6728 bool isVolatile = false; 6729 if (Lex.getKind() == lltok::kw_volatile) { 6730 isVolatile = true; 6731 Lex.Lex(); 6732 } 6733 6734 if (ParseTypeAndValue(Val, Loc, PFS) || 6735 ParseToken(lltok::comma, "expected ',' after store operand") || 6736 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6737 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6738 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6739 return true; 6740 6741 if (!Ptr->getType()->isPointerTy()) 6742 return Error(PtrLoc, "store operand must be a pointer"); 6743 if (!Val->getType()->isFirstClassType()) 6744 return Error(Loc, "store operand must be a first class value"); 6745 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6746 return Error(Loc, "stored value and pointer type do not match"); 6747 if (isAtomic && !Alignment) 6748 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6749 if (Ordering == AtomicOrdering::Acquire || 6750 Ordering == AtomicOrdering::AcquireRelease) 6751 return Error(Loc, "atomic store cannot use Acquire ordering"); 6752 6753 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6754 return AteExtraComma ? InstExtraComma : InstNormal; 6755 } 6756 6757 /// ParseCmpXchg 6758 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6759 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6760 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6761 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6762 bool AteExtraComma = false; 6763 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6764 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6765 SyncScope::ID SSID = SyncScope::System; 6766 bool isVolatile = false; 6767 bool isWeak = false; 6768 6769 if (EatIfPresent(lltok::kw_weak)) 6770 isWeak = true; 6771 6772 if (EatIfPresent(lltok::kw_volatile)) 6773 isVolatile = true; 6774 6775 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6776 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6777 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6778 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6779 ParseTypeAndValue(New, NewLoc, PFS) || 6780 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6781 ParseOrdering(FailureOrdering)) 6782 return true; 6783 6784 if (SuccessOrdering == AtomicOrdering::Unordered || 6785 FailureOrdering == AtomicOrdering::Unordered) 6786 return TokError("cmpxchg cannot be unordered"); 6787 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6788 return TokError("cmpxchg failure argument shall be no stronger than the " 6789 "success argument"); 6790 if (FailureOrdering == AtomicOrdering::Release || 6791 FailureOrdering == AtomicOrdering::AcquireRelease) 6792 return TokError( 6793 "cmpxchg failure ordering cannot include release semantics"); 6794 if (!Ptr->getType()->isPointerTy()) 6795 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6796 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6797 return Error(CmpLoc, "compare value and pointer type do not match"); 6798 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6799 return Error(NewLoc, "new value and pointer type do not match"); 6800 if (!New->getType()->isFirstClassType()) 6801 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6802 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6803 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6804 CXI->setVolatile(isVolatile); 6805 CXI->setWeak(isWeak); 6806 Inst = CXI; 6807 return AteExtraComma ? InstExtraComma : InstNormal; 6808 } 6809 6810 /// ParseAtomicRMW 6811 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6812 /// 'singlethread'? AtomicOrdering 6813 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6814 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6815 bool AteExtraComma = false; 6816 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6817 SyncScope::ID SSID = SyncScope::System; 6818 bool isVolatile = false; 6819 AtomicRMWInst::BinOp Operation; 6820 6821 if (EatIfPresent(lltok::kw_volatile)) 6822 isVolatile = true; 6823 6824 switch (Lex.getKind()) { 6825 default: return TokError("expected binary operation in atomicrmw"); 6826 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6827 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6828 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6829 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6830 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6831 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6832 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6833 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6834 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6835 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6836 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6837 } 6838 Lex.Lex(); // Eat the operation. 6839 6840 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6841 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6842 ParseTypeAndValue(Val, ValLoc, PFS) || 6843 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6844 return true; 6845 6846 if (Ordering == AtomicOrdering::Unordered) 6847 return TokError("atomicrmw cannot be unordered"); 6848 if (!Ptr->getType()->isPointerTy()) 6849 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6850 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6851 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6852 6853 if (!Val->getType()->isIntegerTy()) { 6854 return Error(ValLoc, "atomicrmw " + 6855 AtomicRMWInst::getOperationName(Operation) + 6856 " operand must be an integer"); 6857 } 6858 6859 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6860 if (Size < 8 || (Size & (Size - 1))) 6861 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6862 " integer"); 6863 6864 AtomicRMWInst *RMWI = 6865 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 6866 RMWI->setVolatile(isVolatile); 6867 Inst = RMWI; 6868 return AteExtraComma ? InstExtraComma : InstNormal; 6869 } 6870 6871 /// ParseFence 6872 /// ::= 'fence' 'singlethread'? AtomicOrdering 6873 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6874 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6875 SyncScope::ID SSID = SyncScope::System; 6876 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6877 return true; 6878 6879 if (Ordering == AtomicOrdering::Unordered) 6880 return TokError("fence cannot be unordered"); 6881 if (Ordering == AtomicOrdering::Monotonic) 6882 return TokError("fence cannot be monotonic"); 6883 6884 Inst = new FenceInst(Context, Ordering, SSID); 6885 return InstNormal; 6886 } 6887 6888 /// ParseGetElementPtr 6889 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6890 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6891 Value *Ptr = nullptr; 6892 Value *Val = nullptr; 6893 LocTy Loc, EltLoc; 6894 6895 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6896 6897 Type *Ty = nullptr; 6898 LocTy ExplicitTypeLoc = Lex.getLoc(); 6899 if (ParseType(Ty) || 6900 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6901 ParseTypeAndValue(Ptr, Loc, PFS)) 6902 return true; 6903 6904 Type *BaseType = Ptr->getType(); 6905 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6906 if (!BasePointerType) 6907 return Error(Loc, "base of getelementptr must be a pointer"); 6908 6909 if (Ty != BasePointerType->getElementType()) 6910 return Error(ExplicitTypeLoc, 6911 "explicit pointee type doesn't match operand's pointee type"); 6912 6913 SmallVector<Value*, 16> Indices; 6914 bool AteExtraComma = false; 6915 // GEP returns a vector of pointers if at least one of parameters is a vector. 6916 // All vector parameters should have the same vector width. 6917 unsigned GEPWidth = BaseType->isVectorTy() ? 6918 BaseType->getVectorNumElements() : 0; 6919 6920 while (EatIfPresent(lltok::comma)) { 6921 if (Lex.getKind() == lltok::MetadataVar) { 6922 AteExtraComma = true; 6923 break; 6924 } 6925 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6926 if (!Val->getType()->isIntOrIntVectorTy()) 6927 return Error(EltLoc, "getelementptr index must be an integer"); 6928 6929 if (Val->getType()->isVectorTy()) { 6930 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6931 if (GEPWidth && GEPWidth != ValNumEl) 6932 return Error(EltLoc, 6933 "getelementptr vector index has a wrong number of elements"); 6934 GEPWidth = ValNumEl; 6935 } 6936 Indices.push_back(Val); 6937 } 6938 6939 SmallPtrSet<Type*, 4> Visited; 6940 if (!Indices.empty() && !Ty->isSized(&Visited)) 6941 return Error(Loc, "base element of getelementptr must be sized"); 6942 6943 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6944 return Error(Loc, "invalid getelementptr indices"); 6945 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6946 if (InBounds) 6947 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6948 return AteExtraComma ? InstExtraComma : InstNormal; 6949 } 6950 6951 /// ParseExtractValue 6952 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6953 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6954 Value *Val; LocTy Loc; 6955 SmallVector<unsigned, 4> Indices; 6956 bool AteExtraComma; 6957 if (ParseTypeAndValue(Val, Loc, PFS) || 6958 ParseIndexList(Indices, AteExtraComma)) 6959 return true; 6960 6961 if (!Val->getType()->isAggregateType()) 6962 return Error(Loc, "extractvalue operand must be aggregate type"); 6963 6964 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6965 return Error(Loc, "invalid indices for extractvalue"); 6966 Inst = ExtractValueInst::Create(Val, Indices); 6967 return AteExtraComma ? InstExtraComma : InstNormal; 6968 } 6969 6970 /// ParseInsertValue 6971 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6972 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6973 Value *Val0, *Val1; LocTy Loc0, Loc1; 6974 SmallVector<unsigned, 4> Indices; 6975 bool AteExtraComma; 6976 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6977 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6978 ParseTypeAndValue(Val1, Loc1, PFS) || 6979 ParseIndexList(Indices, AteExtraComma)) 6980 return true; 6981 6982 if (!Val0->getType()->isAggregateType()) 6983 return Error(Loc0, "insertvalue operand must be aggregate type"); 6984 6985 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6986 if (!IndexedType) 6987 return Error(Loc0, "invalid indices for insertvalue"); 6988 if (IndexedType != Val1->getType()) 6989 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6990 getTypeString(Val1->getType()) + "' instead of '" + 6991 getTypeString(IndexedType) + "'"); 6992 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6993 return AteExtraComma ? InstExtraComma : InstNormal; 6994 } 6995 6996 //===----------------------------------------------------------------------===// 6997 // Embedded metadata. 6998 //===----------------------------------------------------------------------===// 6999 7000 /// ParseMDNodeVector 7001 /// ::= { Element (',' Element)* } 7002 /// Element 7003 /// ::= 'null' | TypeAndValue 7004 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7005 if (ParseToken(lltok::lbrace, "expected '{' here")) 7006 return true; 7007 7008 // Check for an empty list. 7009 if (EatIfPresent(lltok::rbrace)) 7010 return false; 7011 7012 do { 7013 // Null is a special case since it is typeless. 7014 if (EatIfPresent(lltok::kw_null)) { 7015 Elts.push_back(nullptr); 7016 continue; 7017 } 7018 7019 Metadata *MD; 7020 if (ParseMetadata(MD, nullptr)) 7021 return true; 7022 Elts.push_back(MD); 7023 } while (EatIfPresent(lltok::comma)); 7024 7025 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7026 } 7027 7028 //===----------------------------------------------------------------------===// 7029 // Use-list order directives. 7030 //===----------------------------------------------------------------------===// 7031 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7032 SMLoc Loc) { 7033 if (V->use_empty()) 7034 return Error(Loc, "value has no uses"); 7035 7036 unsigned NumUses = 0; 7037 SmallDenseMap<const Use *, unsigned, 16> Order; 7038 for (const Use &U : V->uses()) { 7039 if (++NumUses > Indexes.size()) 7040 break; 7041 Order[&U] = Indexes[NumUses - 1]; 7042 } 7043 if (NumUses < 2) 7044 return Error(Loc, "value only has one use"); 7045 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7046 return Error(Loc, 7047 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7048 7049 V->sortUseList([&](const Use &L, const Use &R) { 7050 return Order.lookup(&L) < Order.lookup(&R); 7051 }); 7052 return false; 7053 } 7054 7055 /// ParseUseListOrderIndexes 7056 /// ::= '{' uint32 (',' uint32)+ '}' 7057 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7058 SMLoc Loc = Lex.getLoc(); 7059 if (ParseToken(lltok::lbrace, "expected '{' here")) 7060 return true; 7061 if (Lex.getKind() == lltok::rbrace) 7062 return Lex.Error("expected non-empty list of uselistorder indexes"); 7063 7064 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7065 // indexes should be distinct numbers in the range [0, size-1], and should 7066 // not be in order. 7067 unsigned Offset = 0; 7068 unsigned Max = 0; 7069 bool IsOrdered = true; 7070 assert(Indexes.empty() && "Expected empty order vector"); 7071 do { 7072 unsigned Index; 7073 if (ParseUInt32(Index)) 7074 return true; 7075 7076 // Update consistency checks. 7077 Offset += Index - Indexes.size(); 7078 Max = std::max(Max, Index); 7079 IsOrdered &= Index == Indexes.size(); 7080 7081 Indexes.push_back(Index); 7082 } while (EatIfPresent(lltok::comma)); 7083 7084 if (ParseToken(lltok::rbrace, "expected '}' here")) 7085 return true; 7086 7087 if (Indexes.size() < 2) 7088 return Error(Loc, "expected >= 2 uselistorder indexes"); 7089 if (Offset != 0 || Max >= Indexes.size()) 7090 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7091 if (IsOrdered) 7092 return Error(Loc, "expected uselistorder indexes to change the order"); 7093 7094 return false; 7095 } 7096 7097 /// ParseUseListOrder 7098 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7099 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7100 SMLoc Loc = Lex.getLoc(); 7101 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7102 return true; 7103 7104 Value *V; 7105 SmallVector<unsigned, 16> Indexes; 7106 if (ParseTypeAndValue(V, PFS) || 7107 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7108 ParseUseListOrderIndexes(Indexes)) 7109 return true; 7110 7111 return sortUseListOrder(V, Indexes, Loc); 7112 } 7113 7114 /// ParseUseListOrderBB 7115 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7116 bool LLParser::ParseUseListOrderBB() { 7117 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7118 SMLoc Loc = Lex.getLoc(); 7119 Lex.Lex(); 7120 7121 ValID Fn, Label; 7122 SmallVector<unsigned, 16> Indexes; 7123 if (ParseValID(Fn) || 7124 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7125 ParseValID(Label) || 7126 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7127 ParseUseListOrderIndexes(Indexes)) 7128 return true; 7129 7130 // Check the function. 7131 GlobalValue *GV; 7132 if (Fn.Kind == ValID::t_GlobalName) 7133 GV = M->getNamedValue(Fn.StrVal); 7134 else if (Fn.Kind == ValID::t_GlobalID) 7135 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7136 else 7137 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7138 if (!GV) 7139 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7140 auto *F = dyn_cast<Function>(GV); 7141 if (!F) 7142 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7143 if (F->isDeclaration()) 7144 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7145 7146 // Check the basic block. 7147 if (Label.Kind == ValID::t_LocalID) 7148 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7149 if (Label.Kind != ValID::t_LocalName) 7150 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7151 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7152 if (!V) 7153 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7154 if (!isa<BasicBlock>(V)) 7155 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7156 7157 return sortUseListOrder(V, Indexes, Loc); 7158 } 7159 7160 /// ModuleEntry 7161 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7162 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7163 bool LLParser::ParseModuleEntry(unsigned ID) { 7164 assert(Lex.getKind() == lltok::kw_module); 7165 Lex.Lex(); 7166 7167 std::string Path; 7168 if (ParseToken(lltok::colon, "expected ':' here") || 7169 ParseToken(lltok::lparen, "expected '(' here") || 7170 ParseToken(lltok::kw_path, "expected 'path' here") || 7171 ParseToken(lltok::colon, "expected ':' here") || 7172 ParseStringConstant(Path) || 7173 ParseToken(lltok::comma, "expected ',' here") || 7174 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7175 ParseToken(lltok::colon, "expected ':' here") || 7176 ParseToken(lltok::lparen, "expected '(' here")) 7177 return true; 7178 7179 ModuleHash Hash; 7180 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7181 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7182 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7183 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7184 ParseUInt32(Hash[4])) 7185 return true; 7186 7187 if (ParseToken(lltok::rparen, "expected ')' here") || 7188 ParseToken(lltok::rparen, "expected ')' here")) 7189 return true; 7190 7191 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7192 ModuleIdMap[ID] = ModuleEntry->first(); 7193 7194 return false; 7195 } 7196 7197 /// TypeIdEntry 7198 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7199 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7200 assert(Lex.getKind() == lltok::kw_typeid); 7201 Lex.Lex(); 7202 7203 std::string Name; 7204 if (ParseToken(lltok::colon, "expected ':' here") || 7205 ParseToken(lltok::lparen, "expected '(' here") || 7206 ParseToken(lltok::kw_name, "expected 'name' here") || 7207 ParseToken(lltok::colon, "expected ':' here") || 7208 ParseStringConstant(Name)) 7209 return true; 7210 7211 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7212 if (ParseToken(lltok::comma, "expected ',' here") || 7213 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7214 return true; 7215 7216 // Check if this ID was forward referenced, and if so, update the 7217 // corresponding GUIDs. 7218 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7219 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7220 for (auto TIDRef : FwdRefTIDs->second) { 7221 assert(!*TIDRef.first && 7222 "Forward referenced type id GUID expected to be 0"); 7223 *TIDRef.first = GlobalValue::getGUID(Name); 7224 } 7225 ForwardRefTypeIds.erase(FwdRefTIDs); 7226 } 7227 7228 return false; 7229 } 7230 7231 /// TypeIdSummary 7232 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7233 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7234 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7235 ParseToken(lltok::colon, "expected ':' here") || 7236 ParseToken(lltok::lparen, "expected '(' here") || 7237 ParseTypeTestResolution(TIS.TTRes)) 7238 return true; 7239 7240 if (EatIfPresent(lltok::comma)) { 7241 // Expect optional wpdResolutions field 7242 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7243 return true; 7244 } 7245 7246 if (ParseToken(lltok::rparen, "expected ')' here")) 7247 return true; 7248 7249 return false; 7250 } 7251 7252 /// TypeTestResolution 7253 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7254 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7255 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7256 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7257 /// [',' 'inlinesBits' ':' UInt64]? ')' 7258 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7259 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7260 ParseToken(lltok::colon, "expected ':' here") || 7261 ParseToken(lltok::lparen, "expected '(' here") || 7262 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7263 ParseToken(lltok::colon, "expected ':' here")) 7264 return true; 7265 7266 switch (Lex.getKind()) { 7267 case lltok::kw_unsat: 7268 TTRes.TheKind = TypeTestResolution::Unsat; 7269 break; 7270 case lltok::kw_byteArray: 7271 TTRes.TheKind = TypeTestResolution::ByteArray; 7272 break; 7273 case lltok::kw_inline: 7274 TTRes.TheKind = TypeTestResolution::Inline; 7275 break; 7276 case lltok::kw_single: 7277 TTRes.TheKind = TypeTestResolution::Single; 7278 break; 7279 case lltok::kw_allOnes: 7280 TTRes.TheKind = TypeTestResolution::AllOnes; 7281 break; 7282 default: 7283 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7284 } 7285 Lex.Lex(); 7286 7287 if (ParseToken(lltok::comma, "expected ',' here") || 7288 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7289 ParseToken(lltok::colon, "expected ':' here") || 7290 ParseUInt32(TTRes.SizeM1BitWidth)) 7291 return true; 7292 7293 // Parse optional fields 7294 while (EatIfPresent(lltok::comma)) { 7295 switch (Lex.getKind()) { 7296 case lltok::kw_alignLog2: 7297 Lex.Lex(); 7298 if (ParseToken(lltok::colon, "expected ':'") || 7299 ParseUInt64(TTRes.AlignLog2)) 7300 return true; 7301 break; 7302 case lltok::kw_sizeM1: 7303 Lex.Lex(); 7304 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7305 return true; 7306 break; 7307 case lltok::kw_bitMask: { 7308 unsigned Val; 7309 Lex.Lex(); 7310 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7311 return true; 7312 assert(Val <= 0xff); 7313 TTRes.BitMask = (uint8_t)Val; 7314 break; 7315 } 7316 case lltok::kw_inlineBits: 7317 Lex.Lex(); 7318 if (ParseToken(lltok::colon, "expected ':'") || 7319 ParseUInt64(TTRes.InlineBits)) 7320 return true; 7321 break; 7322 default: 7323 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7324 } 7325 } 7326 7327 if (ParseToken(lltok::rparen, "expected ')' here")) 7328 return true; 7329 7330 return false; 7331 } 7332 7333 /// OptionalWpdResolutions 7334 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7335 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7336 bool LLParser::ParseOptionalWpdResolutions( 7337 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7338 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7339 ParseToken(lltok::colon, "expected ':' here") || 7340 ParseToken(lltok::lparen, "expected '(' here")) 7341 return true; 7342 7343 do { 7344 uint64_t Offset; 7345 WholeProgramDevirtResolution WPDRes; 7346 if (ParseToken(lltok::lparen, "expected '(' here") || 7347 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7348 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7349 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7350 ParseToken(lltok::rparen, "expected ')' here")) 7351 return true; 7352 WPDResMap[Offset] = WPDRes; 7353 } while (EatIfPresent(lltok::comma)); 7354 7355 if (ParseToken(lltok::rparen, "expected ')' here")) 7356 return true; 7357 7358 return false; 7359 } 7360 7361 /// WpdRes 7362 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7363 /// [',' OptionalResByArg]? ')' 7364 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7365 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7366 /// [',' OptionalResByArg]? ')' 7367 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7368 /// [',' OptionalResByArg]? ')' 7369 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7370 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7371 ParseToken(lltok::colon, "expected ':' here") || 7372 ParseToken(lltok::lparen, "expected '(' here") || 7373 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7374 ParseToken(lltok::colon, "expected ':' here")) 7375 return true; 7376 7377 switch (Lex.getKind()) { 7378 case lltok::kw_indir: 7379 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7380 break; 7381 case lltok::kw_singleImpl: 7382 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7383 break; 7384 case lltok::kw_branchFunnel: 7385 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7386 break; 7387 default: 7388 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7389 } 7390 Lex.Lex(); 7391 7392 // Parse optional fields 7393 while (EatIfPresent(lltok::comma)) { 7394 switch (Lex.getKind()) { 7395 case lltok::kw_singleImplName: 7396 Lex.Lex(); 7397 if (ParseToken(lltok::colon, "expected ':' here") || 7398 ParseStringConstant(WPDRes.SingleImplName)) 7399 return true; 7400 break; 7401 case lltok::kw_resByArg: 7402 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7403 return true; 7404 break; 7405 default: 7406 return Error(Lex.getLoc(), 7407 "expected optional WholeProgramDevirtResolution field"); 7408 } 7409 } 7410 7411 if (ParseToken(lltok::rparen, "expected ')' here")) 7412 return true; 7413 7414 return false; 7415 } 7416 7417 /// OptionalResByArg 7418 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7419 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7420 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7421 /// 'virtualConstProp' ) 7422 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7423 /// [',' 'bit' ':' UInt32]? ')' 7424 bool LLParser::ParseOptionalResByArg( 7425 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7426 &ResByArg) { 7427 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7428 ParseToken(lltok::colon, "expected ':' here") || 7429 ParseToken(lltok::lparen, "expected '(' here")) 7430 return true; 7431 7432 do { 7433 std::vector<uint64_t> Args; 7434 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7435 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7436 ParseToken(lltok::colon, "expected ':' here") || 7437 ParseToken(lltok::lparen, "expected '(' here") || 7438 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7439 ParseToken(lltok::colon, "expected ':' here")) 7440 return true; 7441 7442 WholeProgramDevirtResolution::ByArg ByArg; 7443 switch (Lex.getKind()) { 7444 case lltok::kw_indir: 7445 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7446 break; 7447 case lltok::kw_uniformRetVal: 7448 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7449 break; 7450 case lltok::kw_uniqueRetVal: 7451 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7452 break; 7453 case lltok::kw_virtualConstProp: 7454 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7455 break; 7456 default: 7457 return Error(Lex.getLoc(), 7458 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7459 } 7460 Lex.Lex(); 7461 7462 // Parse optional fields 7463 while (EatIfPresent(lltok::comma)) { 7464 switch (Lex.getKind()) { 7465 case lltok::kw_info: 7466 Lex.Lex(); 7467 if (ParseToken(lltok::colon, "expected ':' here") || 7468 ParseUInt64(ByArg.Info)) 7469 return true; 7470 break; 7471 case lltok::kw_byte: 7472 Lex.Lex(); 7473 if (ParseToken(lltok::colon, "expected ':' here") || 7474 ParseUInt32(ByArg.Byte)) 7475 return true; 7476 break; 7477 case lltok::kw_bit: 7478 Lex.Lex(); 7479 if (ParseToken(lltok::colon, "expected ':' here") || 7480 ParseUInt32(ByArg.Bit)) 7481 return true; 7482 break; 7483 default: 7484 return Error(Lex.getLoc(), 7485 "expected optional whole program devirt field"); 7486 } 7487 } 7488 7489 if (ParseToken(lltok::rparen, "expected ')' here")) 7490 return true; 7491 7492 ResByArg[Args] = ByArg; 7493 } while (EatIfPresent(lltok::comma)); 7494 7495 if (ParseToken(lltok::rparen, "expected ')' here")) 7496 return true; 7497 7498 return false; 7499 } 7500 7501 /// OptionalResByArg 7502 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7503 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7504 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7505 ParseToken(lltok::colon, "expected ':' here") || 7506 ParseToken(lltok::lparen, "expected '(' here")) 7507 return true; 7508 7509 do { 7510 uint64_t Val; 7511 if (ParseUInt64(Val)) 7512 return true; 7513 Args.push_back(Val); 7514 } while (EatIfPresent(lltok::comma)); 7515 7516 if (ParseToken(lltok::rparen, "expected ')' here")) 7517 return true; 7518 7519 return false; 7520 } 7521 7522 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7523 7524 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7525 bool ReadOnly = Fwd->isReadOnly(); 7526 *Fwd = Resolved; 7527 if (ReadOnly) 7528 Fwd->setReadOnly(); 7529 } 7530 7531 /// Stores the given Name/GUID and associated summary into the Index. 7532 /// Also updates any forward references to the associated entry ID. 7533 void LLParser::AddGlobalValueToIndex( 7534 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7535 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7536 // First create the ValueInfo utilizing the Name or GUID. 7537 ValueInfo VI; 7538 if (GUID != 0) { 7539 assert(Name.empty()); 7540 VI = Index->getOrInsertValueInfo(GUID); 7541 } else { 7542 assert(!Name.empty()); 7543 if (M) { 7544 auto *GV = M->getNamedValue(Name); 7545 assert(GV); 7546 VI = Index->getOrInsertValueInfo(GV); 7547 } else { 7548 assert( 7549 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7550 "Need a source_filename to compute GUID for local"); 7551 GUID = GlobalValue::getGUID( 7552 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7553 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7554 } 7555 } 7556 7557 // Add the summary if one was provided. 7558 if (Summary) 7559 Index->addGlobalValueSummary(VI, std::move(Summary)); 7560 7561 // Resolve forward references from calls/refs 7562 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7563 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7564 for (auto VIRef : FwdRefVIs->second) { 7565 assert(VIRef.first->getRef() == FwdVIRef && 7566 "Forward referenced ValueInfo expected to be empty"); 7567 resolveFwdRef(VIRef.first, VI); 7568 } 7569 ForwardRefValueInfos.erase(FwdRefVIs); 7570 } 7571 7572 // Resolve forward references from aliases 7573 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7574 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7575 for (auto AliaseeRef : FwdRefAliasees->second) { 7576 assert(!AliaseeRef.first->hasAliasee() && 7577 "Forward referencing alias already has aliasee"); 7578 AliaseeRef.first->setAliasee(VI.getSummaryList().front().get()); 7579 } 7580 ForwardRefAliasees.erase(FwdRefAliasees); 7581 } 7582 7583 // Save the associated ValueInfo for use in later references by ID. 7584 if (ID == NumberedValueInfos.size()) 7585 NumberedValueInfos.push_back(VI); 7586 else { 7587 // Handle non-continuous numbers (to make test simplification easier). 7588 if (ID > NumberedValueInfos.size()) 7589 NumberedValueInfos.resize(ID + 1); 7590 NumberedValueInfos[ID] = VI; 7591 } 7592 } 7593 7594 /// ParseGVEntry 7595 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7596 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7597 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7598 bool LLParser::ParseGVEntry(unsigned ID) { 7599 assert(Lex.getKind() == lltok::kw_gv); 7600 Lex.Lex(); 7601 7602 if (ParseToken(lltok::colon, "expected ':' here") || 7603 ParseToken(lltok::lparen, "expected '(' here")) 7604 return true; 7605 7606 std::string Name; 7607 GlobalValue::GUID GUID = 0; 7608 switch (Lex.getKind()) { 7609 case lltok::kw_name: 7610 Lex.Lex(); 7611 if (ParseToken(lltok::colon, "expected ':' here") || 7612 ParseStringConstant(Name)) 7613 return true; 7614 // Can't create GUID/ValueInfo until we have the linkage. 7615 break; 7616 case lltok::kw_guid: 7617 Lex.Lex(); 7618 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7619 return true; 7620 break; 7621 default: 7622 return Error(Lex.getLoc(), "expected name or guid tag"); 7623 } 7624 7625 if (!EatIfPresent(lltok::comma)) { 7626 // No summaries. Wrap up. 7627 if (ParseToken(lltok::rparen, "expected ')' here")) 7628 return true; 7629 // This was created for a call to an external or indirect target. 7630 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 7631 // created for indirect calls with VP. A Name with no GUID came from 7632 // an external definition. We pass ExternalLinkage since that is only 7633 // used when the GUID must be computed from Name, and in that case 7634 // the symbol must have external linkage. 7635 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 7636 nullptr); 7637 return false; 7638 } 7639 7640 // Have a list of summaries 7641 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 7642 ParseToken(lltok::colon, "expected ':' here")) 7643 return true; 7644 7645 do { 7646 if (ParseToken(lltok::lparen, "expected '(' here")) 7647 return true; 7648 switch (Lex.getKind()) { 7649 case lltok::kw_function: 7650 if (ParseFunctionSummary(Name, GUID, ID)) 7651 return true; 7652 break; 7653 case lltok::kw_variable: 7654 if (ParseVariableSummary(Name, GUID, ID)) 7655 return true; 7656 break; 7657 case lltok::kw_alias: 7658 if (ParseAliasSummary(Name, GUID, ID)) 7659 return true; 7660 break; 7661 default: 7662 return Error(Lex.getLoc(), "expected summary type"); 7663 } 7664 if (ParseToken(lltok::rparen, "expected ')' here")) 7665 return true; 7666 } while (EatIfPresent(lltok::comma)); 7667 7668 if (ParseToken(lltok::rparen, "expected ')' here")) 7669 return true; 7670 7671 return false; 7672 } 7673 7674 /// FunctionSummary 7675 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7676 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 7677 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 7678 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 7679 unsigned ID) { 7680 assert(Lex.getKind() == lltok::kw_function); 7681 Lex.Lex(); 7682 7683 StringRef ModulePath; 7684 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7685 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7686 /*Live=*/false, /*IsLocal=*/false); 7687 unsigned InstCount; 7688 std::vector<FunctionSummary::EdgeTy> Calls; 7689 FunctionSummary::TypeIdInfo TypeIdInfo; 7690 std::vector<ValueInfo> Refs; 7691 // Default is all-zeros (conservative values). 7692 FunctionSummary::FFlags FFlags = {}; 7693 if (ParseToken(lltok::colon, "expected ':' here") || 7694 ParseToken(lltok::lparen, "expected '(' here") || 7695 ParseModuleReference(ModulePath) || 7696 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7697 ParseToken(lltok::comma, "expected ',' here") || 7698 ParseToken(lltok::kw_insts, "expected 'insts' here") || 7699 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 7700 return true; 7701 7702 // Parse optional fields 7703 while (EatIfPresent(lltok::comma)) { 7704 switch (Lex.getKind()) { 7705 case lltok::kw_funcFlags: 7706 if (ParseOptionalFFlags(FFlags)) 7707 return true; 7708 break; 7709 case lltok::kw_calls: 7710 if (ParseOptionalCalls(Calls)) 7711 return true; 7712 break; 7713 case lltok::kw_typeIdInfo: 7714 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 7715 return true; 7716 break; 7717 case lltok::kw_refs: 7718 if (ParseOptionalRefs(Refs)) 7719 return true; 7720 break; 7721 default: 7722 return Error(Lex.getLoc(), "expected optional function summary field"); 7723 } 7724 } 7725 7726 if (ParseToken(lltok::rparen, "expected ')' here")) 7727 return true; 7728 7729 auto FS = llvm::make_unique<FunctionSummary>( 7730 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 7731 std::move(Calls), std::move(TypeIdInfo.TypeTests), 7732 std::move(TypeIdInfo.TypeTestAssumeVCalls), 7733 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 7734 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 7735 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 7736 7737 FS->setModulePath(ModulePath); 7738 7739 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7740 ID, std::move(FS)); 7741 7742 return false; 7743 } 7744 7745 /// VariableSummary 7746 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7747 /// [',' OptionalRefs]? ')' 7748 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 7749 unsigned ID) { 7750 assert(Lex.getKind() == lltok::kw_variable); 7751 Lex.Lex(); 7752 7753 StringRef ModulePath; 7754 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7755 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7756 /*Live=*/false, /*IsLocal=*/false); 7757 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false); 7758 std::vector<ValueInfo> Refs; 7759 if (ParseToken(lltok::colon, "expected ':' here") || 7760 ParseToken(lltok::lparen, "expected '(' here") || 7761 ParseModuleReference(ModulePath) || 7762 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7763 ParseToken(lltok::comma, "expected ',' here") || 7764 ParseGVarFlags(GVarFlags)) 7765 return true; 7766 7767 // Parse optional refs field 7768 if (EatIfPresent(lltok::comma)) { 7769 if (ParseOptionalRefs(Refs)) 7770 return true; 7771 } 7772 7773 if (ParseToken(lltok::rparen, "expected ')' here")) 7774 return true; 7775 7776 auto GS = 7777 llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 7778 7779 GS->setModulePath(ModulePath); 7780 7781 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7782 ID, std::move(GS)); 7783 7784 return false; 7785 } 7786 7787 /// AliasSummary 7788 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 7789 /// 'aliasee' ':' GVReference ')' 7790 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 7791 unsigned ID) { 7792 assert(Lex.getKind() == lltok::kw_alias); 7793 LocTy Loc = Lex.getLoc(); 7794 Lex.Lex(); 7795 7796 StringRef ModulePath; 7797 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7798 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7799 /*Live=*/false, /*IsLocal=*/false); 7800 if (ParseToken(lltok::colon, "expected ':' here") || 7801 ParseToken(lltok::lparen, "expected '(' here") || 7802 ParseModuleReference(ModulePath) || 7803 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7804 ParseToken(lltok::comma, "expected ',' here") || 7805 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 7806 ParseToken(lltok::colon, "expected ':' here")) 7807 return true; 7808 7809 ValueInfo AliaseeVI; 7810 unsigned GVId; 7811 if (ParseGVReference(AliaseeVI, GVId)) 7812 return true; 7813 7814 if (ParseToken(lltok::rparen, "expected ')' here")) 7815 return true; 7816 7817 auto AS = llvm::make_unique<AliasSummary>(GVFlags); 7818 7819 AS->setModulePath(ModulePath); 7820 7821 // Record forward reference if the aliasee is not parsed yet. 7822 if (AliaseeVI.getRef() == FwdVIRef) { 7823 auto FwdRef = ForwardRefAliasees.insert( 7824 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 7825 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 7826 } else 7827 AS->setAliasee(AliaseeVI.getSummaryList().front().get()); 7828 7829 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7830 ID, std::move(AS)); 7831 7832 return false; 7833 } 7834 7835 /// Flag 7836 /// ::= [0|1] 7837 bool LLParser::ParseFlag(unsigned &Val) { 7838 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 7839 return TokError("expected integer"); 7840 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 7841 Lex.Lex(); 7842 return false; 7843 } 7844 7845 /// OptionalFFlags 7846 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 7847 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 7848 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 7849 /// [',' 'noInline' ':' Flag]? ')' 7850 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 7851 assert(Lex.getKind() == lltok::kw_funcFlags); 7852 Lex.Lex(); 7853 7854 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 7855 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 7856 return true; 7857 7858 do { 7859 unsigned Val; 7860 switch (Lex.getKind()) { 7861 case lltok::kw_readNone: 7862 Lex.Lex(); 7863 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7864 return true; 7865 FFlags.ReadNone = Val; 7866 break; 7867 case lltok::kw_readOnly: 7868 Lex.Lex(); 7869 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7870 return true; 7871 FFlags.ReadOnly = Val; 7872 break; 7873 case lltok::kw_noRecurse: 7874 Lex.Lex(); 7875 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7876 return true; 7877 FFlags.NoRecurse = Val; 7878 break; 7879 case lltok::kw_returnDoesNotAlias: 7880 Lex.Lex(); 7881 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7882 return true; 7883 FFlags.ReturnDoesNotAlias = Val; 7884 break; 7885 case lltok::kw_noInline: 7886 Lex.Lex(); 7887 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7888 return true; 7889 FFlags.NoInline = Val; 7890 break; 7891 default: 7892 return Error(Lex.getLoc(), "expected function flag type"); 7893 } 7894 } while (EatIfPresent(lltok::comma)); 7895 7896 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 7897 return true; 7898 7899 return false; 7900 } 7901 7902 /// OptionalCalls 7903 /// := 'calls' ':' '(' Call [',' Call]* ')' 7904 /// Call ::= '(' 'callee' ':' GVReference 7905 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 7906 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 7907 assert(Lex.getKind() == lltok::kw_calls); 7908 Lex.Lex(); 7909 7910 if (ParseToken(lltok::colon, "expected ':' in calls") | 7911 ParseToken(lltok::lparen, "expected '(' in calls")) 7912 return true; 7913 7914 IdToIndexMapType IdToIndexMap; 7915 // Parse each call edge 7916 do { 7917 ValueInfo VI; 7918 if (ParseToken(lltok::lparen, "expected '(' in call") || 7919 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 7920 ParseToken(lltok::colon, "expected ':'")) 7921 return true; 7922 7923 LocTy Loc = Lex.getLoc(); 7924 unsigned GVId; 7925 if (ParseGVReference(VI, GVId)) 7926 return true; 7927 7928 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7929 unsigned RelBF = 0; 7930 if (EatIfPresent(lltok::comma)) { 7931 // Expect either hotness or relbf 7932 if (EatIfPresent(lltok::kw_hotness)) { 7933 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 7934 return true; 7935 } else { 7936 if (ParseToken(lltok::kw_relbf, "expected relbf") || 7937 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 7938 return true; 7939 } 7940 } 7941 // Keep track of the Call array index needing a forward reference. 7942 // We will save the location of the ValueInfo needing an update, but 7943 // can only do so once the std::vector is finalized. 7944 if (VI.getRef() == FwdVIRef) 7945 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 7946 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 7947 7948 if (ParseToken(lltok::rparen, "expected ')' in call")) 7949 return true; 7950 } while (EatIfPresent(lltok::comma)); 7951 7952 // Now that the Calls vector is finalized, it is safe to save the locations 7953 // of any forward GV references that need updating later. 7954 for (auto I : IdToIndexMap) { 7955 for (auto P : I.second) { 7956 assert(Calls[P.first].first.getRef() == FwdVIRef && 7957 "Forward referenced ValueInfo expected to be empty"); 7958 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7959 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7960 FwdRef.first->second.push_back( 7961 std::make_pair(&Calls[P.first].first, P.second)); 7962 } 7963 } 7964 7965 if (ParseToken(lltok::rparen, "expected ')' in calls")) 7966 return true; 7967 7968 return false; 7969 } 7970 7971 /// Hotness 7972 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 7973 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 7974 switch (Lex.getKind()) { 7975 case lltok::kw_unknown: 7976 Hotness = CalleeInfo::HotnessType::Unknown; 7977 break; 7978 case lltok::kw_cold: 7979 Hotness = CalleeInfo::HotnessType::Cold; 7980 break; 7981 case lltok::kw_none: 7982 Hotness = CalleeInfo::HotnessType::None; 7983 break; 7984 case lltok::kw_hot: 7985 Hotness = CalleeInfo::HotnessType::Hot; 7986 break; 7987 case lltok::kw_critical: 7988 Hotness = CalleeInfo::HotnessType::Critical; 7989 break; 7990 default: 7991 return Error(Lex.getLoc(), "invalid call edge hotness"); 7992 } 7993 Lex.Lex(); 7994 return false; 7995 } 7996 7997 /// OptionalRefs 7998 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 7999 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8000 assert(Lex.getKind() == lltok::kw_refs); 8001 Lex.Lex(); 8002 8003 if (ParseToken(lltok::colon, "expected ':' in refs") | 8004 ParseToken(lltok::lparen, "expected '(' in refs")) 8005 return true; 8006 8007 struct ValueContext { 8008 ValueInfo VI; 8009 unsigned GVId; 8010 LocTy Loc; 8011 }; 8012 std::vector<ValueContext> VContexts; 8013 // Parse each ref edge 8014 do { 8015 ValueContext VC; 8016 VC.Loc = Lex.getLoc(); 8017 if (ParseGVReference(VC.VI, VC.GVId)) 8018 return true; 8019 VContexts.push_back(VC); 8020 } while (EatIfPresent(lltok::comma)); 8021 8022 // Sort value contexts so that ones with readonly ValueInfo are at the end 8023 // of VContexts vector. This is needed to match immutableRefCount() behavior. 8024 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8025 return VC1.VI.isReadOnly() < VC2.VI.isReadOnly(); 8026 }); 8027 8028 IdToIndexMapType IdToIndexMap; 8029 for (auto &VC : VContexts) { 8030 // Keep track of the Refs array index needing a forward reference. 8031 // We will save the location of the ValueInfo needing an update, but 8032 // can only do so once the std::vector is finalized. 8033 if (VC.VI.getRef() == FwdVIRef) 8034 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8035 Refs.push_back(VC.VI); 8036 } 8037 8038 // Now that the Refs vector is finalized, it is safe to save the locations 8039 // of any forward GV references that need updating later. 8040 for (auto I : IdToIndexMap) { 8041 for (auto P : I.second) { 8042 assert(Refs[P.first].getRef() == FwdVIRef && 8043 "Forward referenced ValueInfo expected to be empty"); 8044 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8045 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8046 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8047 } 8048 } 8049 8050 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8051 return true; 8052 8053 return false; 8054 } 8055 8056 /// OptionalTypeIdInfo 8057 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8058 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8059 /// [',' TypeCheckedLoadConstVCalls]? ')' 8060 bool LLParser::ParseOptionalTypeIdInfo( 8061 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8062 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8063 Lex.Lex(); 8064 8065 if (ParseToken(lltok::colon, "expected ':' here") || 8066 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8067 return true; 8068 8069 do { 8070 switch (Lex.getKind()) { 8071 case lltok::kw_typeTests: 8072 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8073 return true; 8074 break; 8075 case lltok::kw_typeTestAssumeVCalls: 8076 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8077 TypeIdInfo.TypeTestAssumeVCalls)) 8078 return true; 8079 break; 8080 case lltok::kw_typeCheckedLoadVCalls: 8081 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8082 TypeIdInfo.TypeCheckedLoadVCalls)) 8083 return true; 8084 break; 8085 case lltok::kw_typeTestAssumeConstVCalls: 8086 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8087 TypeIdInfo.TypeTestAssumeConstVCalls)) 8088 return true; 8089 break; 8090 case lltok::kw_typeCheckedLoadConstVCalls: 8091 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8092 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8093 return true; 8094 break; 8095 default: 8096 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8097 } 8098 } while (EatIfPresent(lltok::comma)); 8099 8100 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8101 return true; 8102 8103 return false; 8104 } 8105 8106 /// TypeTests 8107 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8108 /// [',' (SummaryID | UInt64)]* ')' 8109 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8110 assert(Lex.getKind() == lltok::kw_typeTests); 8111 Lex.Lex(); 8112 8113 if (ParseToken(lltok::colon, "expected ':' here") || 8114 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8115 return true; 8116 8117 IdToIndexMapType IdToIndexMap; 8118 do { 8119 GlobalValue::GUID GUID = 0; 8120 if (Lex.getKind() == lltok::SummaryID) { 8121 unsigned ID = Lex.getUIntVal(); 8122 LocTy Loc = Lex.getLoc(); 8123 // Keep track of the TypeTests array index needing a forward reference. 8124 // We will save the location of the GUID needing an update, but 8125 // can only do so once the std::vector is finalized. 8126 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8127 Lex.Lex(); 8128 } else if (ParseUInt64(GUID)) 8129 return true; 8130 TypeTests.push_back(GUID); 8131 } while (EatIfPresent(lltok::comma)); 8132 8133 // Now that the TypeTests vector is finalized, it is safe to save the 8134 // locations of any forward GV references that need updating later. 8135 for (auto I : IdToIndexMap) { 8136 for (auto P : I.second) { 8137 assert(TypeTests[P.first] == 0 && 8138 "Forward referenced type id GUID expected to be 0"); 8139 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8140 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8141 FwdRef.first->second.push_back( 8142 std::make_pair(&TypeTests[P.first], P.second)); 8143 } 8144 } 8145 8146 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8147 return true; 8148 8149 return false; 8150 } 8151 8152 /// VFuncIdList 8153 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8154 bool LLParser::ParseVFuncIdList( 8155 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8156 assert(Lex.getKind() == Kind); 8157 Lex.Lex(); 8158 8159 if (ParseToken(lltok::colon, "expected ':' here") || 8160 ParseToken(lltok::lparen, "expected '(' here")) 8161 return true; 8162 8163 IdToIndexMapType IdToIndexMap; 8164 do { 8165 FunctionSummary::VFuncId VFuncId; 8166 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8167 return true; 8168 VFuncIdList.push_back(VFuncId); 8169 } while (EatIfPresent(lltok::comma)); 8170 8171 if (ParseToken(lltok::rparen, "expected ')' here")) 8172 return true; 8173 8174 // Now that the VFuncIdList vector is finalized, it is safe to save the 8175 // locations of any forward GV references that need updating later. 8176 for (auto I : IdToIndexMap) { 8177 for (auto P : I.second) { 8178 assert(VFuncIdList[P.first].GUID == 0 && 8179 "Forward referenced type id GUID expected to be 0"); 8180 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8181 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8182 FwdRef.first->second.push_back( 8183 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8184 } 8185 } 8186 8187 return false; 8188 } 8189 8190 /// ConstVCallList 8191 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8192 bool LLParser::ParseConstVCallList( 8193 lltok::Kind Kind, 8194 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8195 assert(Lex.getKind() == Kind); 8196 Lex.Lex(); 8197 8198 if (ParseToken(lltok::colon, "expected ':' here") || 8199 ParseToken(lltok::lparen, "expected '(' here")) 8200 return true; 8201 8202 IdToIndexMapType IdToIndexMap; 8203 do { 8204 FunctionSummary::ConstVCall ConstVCall; 8205 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8206 return true; 8207 ConstVCallList.push_back(ConstVCall); 8208 } while (EatIfPresent(lltok::comma)); 8209 8210 if (ParseToken(lltok::rparen, "expected ')' here")) 8211 return true; 8212 8213 // Now that the ConstVCallList vector is finalized, it is safe to save the 8214 // locations of any forward GV references that need updating later. 8215 for (auto I : IdToIndexMap) { 8216 for (auto P : I.second) { 8217 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8218 "Forward referenced type id GUID expected to be 0"); 8219 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8220 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8221 FwdRef.first->second.push_back( 8222 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8223 } 8224 } 8225 8226 return false; 8227 } 8228 8229 /// ConstVCall 8230 /// ::= '(' VFuncId ',' Args ')' 8231 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8232 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8233 if (ParseToken(lltok::lparen, "expected '(' here") || 8234 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8235 return true; 8236 8237 if (EatIfPresent(lltok::comma)) 8238 if (ParseArgs(ConstVCall.Args)) 8239 return true; 8240 8241 if (ParseToken(lltok::rparen, "expected ')' here")) 8242 return true; 8243 8244 return false; 8245 } 8246 8247 /// VFuncId 8248 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8249 /// 'offset' ':' UInt64 ')' 8250 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8251 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8252 assert(Lex.getKind() == lltok::kw_vFuncId); 8253 Lex.Lex(); 8254 8255 if (ParseToken(lltok::colon, "expected ':' here") || 8256 ParseToken(lltok::lparen, "expected '(' here")) 8257 return true; 8258 8259 if (Lex.getKind() == lltok::SummaryID) { 8260 VFuncId.GUID = 0; 8261 unsigned ID = Lex.getUIntVal(); 8262 LocTy Loc = Lex.getLoc(); 8263 // Keep track of the array index needing a forward reference. 8264 // We will save the location of the GUID needing an update, but 8265 // can only do so once the caller's std::vector is finalized. 8266 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8267 Lex.Lex(); 8268 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8269 ParseToken(lltok::colon, "expected ':' here") || 8270 ParseUInt64(VFuncId.GUID)) 8271 return true; 8272 8273 if (ParseToken(lltok::comma, "expected ',' here") || 8274 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8275 ParseToken(lltok::colon, "expected ':' here") || 8276 ParseUInt64(VFuncId.Offset) || 8277 ParseToken(lltok::rparen, "expected ')' here")) 8278 return true; 8279 8280 return false; 8281 } 8282 8283 /// GVFlags 8284 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8285 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8286 /// 'dsoLocal' ':' Flag ')' 8287 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8288 assert(Lex.getKind() == lltok::kw_flags); 8289 Lex.Lex(); 8290 8291 bool HasLinkage; 8292 if (ParseToken(lltok::colon, "expected ':' here") || 8293 ParseToken(lltok::lparen, "expected '(' here") || 8294 ParseToken(lltok::kw_linkage, "expected 'linkage' here") || 8295 ParseToken(lltok::colon, "expected ':' here")) 8296 return true; 8297 8298 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8299 assert(HasLinkage && "Linkage not optional in summary entry"); 8300 Lex.Lex(); 8301 8302 unsigned Flag; 8303 if (ParseToken(lltok::comma, "expected ',' here") || 8304 ParseToken(lltok::kw_notEligibleToImport, 8305 "expected 'notEligibleToImport' here") || 8306 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8307 return true; 8308 GVFlags.NotEligibleToImport = Flag; 8309 8310 if (ParseToken(lltok::comma, "expected ',' here") || 8311 ParseToken(lltok::kw_live, "expected 'live' here") || 8312 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8313 return true; 8314 GVFlags.Live = Flag; 8315 8316 if (ParseToken(lltok::comma, "expected ',' here") || 8317 ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") || 8318 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8319 return true; 8320 GVFlags.DSOLocal = Flag; 8321 8322 if (ParseToken(lltok::rparen, "expected ')' here")) 8323 return true; 8324 8325 return false; 8326 } 8327 8328 /// GVarFlags 8329 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')' 8330 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8331 assert(Lex.getKind() == lltok::kw_varFlags); 8332 Lex.Lex(); 8333 8334 unsigned Flag; 8335 if (ParseToken(lltok::colon, "expected ':' here") || 8336 ParseToken(lltok::lparen, "expected '(' here") || 8337 ParseToken(lltok::kw_readonly, "expected 'readonly' here") || 8338 ParseToken(lltok::colon, "expected ':' here")) 8339 return true; 8340 8341 ParseFlag(Flag); 8342 GVarFlags.ReadOnly = Flag; 8343 8344 if (ParseToken(lltok::rparen, "expected ')' here")) 8345 return true; 8346 return false; 8347 } 8348 8349 /// ModuleReference 8350 /// ::= 'module' ':' UInt 8351 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8352 // Parse module id. 8353 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8354 ParseToken(lltok::colon, "expected ':' here") || 8355 ParseToken(lltok::SummaryID, "expected module ID")) 8356 return true; 8357 8358 unsigned ModuleID = Lex.getUIntVal(); 8359 auto I = ModuleIdMap.find(ModuleID); 8360 // We should have already parsed all module IDs 8361 assert(I != ModuleIdMap.end()); 8362 ModulePath = I->second; 8363 return false; 8364 } 8365 8366 /// GVReference 8367 /// ::= SummaryID 8368 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8369 bool ReadOnly = EatIfPresent(lltok::kw_readonly); 8370 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8371 return true; 8372 8373 GVId = Lex.getUIntVal(); 8374 // Check if we already have a VI for this GV 8375 if (GVId < NumberedValueInfos.size()) { 8376 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8377 VI = NumberedValueInfos[GVId]; 8378 } else 8379 // We will create a forward reference to the stored location. 8380 VI = ValueInfo(false, FwdVIRef); 8381 8382 if (ReadOnly) 8383 VI.setReadOnly(); 8384 return false; 8385 } 8386