1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Statepoint.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include <algorithm> 42 #include <array> 43 #include <cstring> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 const unsigned MaxDepth = 6; 48 49 // Controls the number of uses of the value searched for possible 50 // dominating comparisons. 51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 52 cl::Hidden, cl::init(20)); 53 54 // This optimization is known to cause performance regressions is some cases, 55 // keep it under a temporary flag for now. 56 static cl::opt<bool> 57 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 58 cl::Hidden, cl::init(true)); 59 60 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 61 /// 0). For vector types, returns the element type's bitwidth. 62 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 63 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 64 return BitWidth; 65 66 return DL.getPointerTypeSizeInBits(Ty); 67 } 68 69 namespace { 70 // Simplifying using an assume can only be done in a particular control-flow 71 // context (the context instruction provides that context). If an assume and 72 // the context instruction are not in the same block then the DT helps in 73 // figuring out if we can use it. 74 struct Query { 75 const DataLayout &DL; 76 AssumptionCache *AC; 77 const Instruction *CxtI; 78 const DominatorTree *DT; 79 80 /// Set of assumptions that should be excluded from further queries. 81 /// This is because of the potential for mutual recursion to cause 82 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 83 /// classic case of this is assume(x = y), which will attempt to determine 84 /// bits in x from bits in y, which will attempt to determine bits in y from 85 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 86 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 87 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 88 /// on. 89 std::array<const Value *, MaxDepth> Excluded; 90 unsigned NumExcluded; 91 92 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 93 const DominatorTree *DT) 94 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 95 96 Query(const Query &Q, const Value *NewExcl) 97 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 98 Excluded = Q.Excluded; 99 Excluded[NumExcluded++] = NewExcl; 100 assert(NumExcluded <= Excluded.size()); 101 } 102 103 bool isExcluded(const Value *Value) const { 104 if (NumExcluded == 0) 105 return false; 106 auto End = Excluded.begin() + NumExcluded; 107 return std::find(Excluded.begin(), End, Value) != End; 108 } 109 }; 110 } // end anonymous namespace 111 112 // Given the provided Value and, potentially, a context instruction, return 113 // the preferred context instruction (if any). 114 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 115 // If we've been provided with a context instruction, then use that (provided 116 // it has been inserted). 117 if (CxtI && CxtI->getParent()) 118 return CxtI; 119 120 // If the value is really an already-inserted instruction, then use that. 121 CxtI = dyn_cast<Instruction>(V); 122 if (CxtI && CxtI->getParent()) 123 return CxtI; 124 125 return nullptr; 126 } 127 128 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 129 unsigned Depth, const Query &Q); 130 131 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 132 const DataLayout &DL, unsigned Depth, 133 AssumptionCache *AC, const Instruction *CxtI, 134 const DominatorTree *DT) { 135 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 136 Query(DL, AC, safeCxtI(V, CxtI), DT)); 137 } 138 139 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 140 const DataLayout &DL, 141 AssumptionCache *AC, const Instruction *CxtI, 142 const DominatorTree *DT) { 143 assert(LHS->getType() == RHS->getType() && 144 "LHS and RHS should have the same type"); 145 assert(LHS->getType()->isIntOrIntVectorTy() && 146 "LHS and RHS should be integers"); 147 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 148 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 149 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 150 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 151 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 152 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 153 } 154 155 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 156 unsigned Depth, const Query &Q); 157 158 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 159 const DataLayout &DL, unsigned Depth, 160 AssumptionCache *AC, const Instruction *CxtI, 161 const DominatorTree *DT) { 162 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 163 Query(DL, AC, safeCxtI(V, CxtI), DT)); 164 } 165 166 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 167 const Query &Q); 168 169 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 170 bool OrZero, 171 unsigned Depth, AssumptionCache *AC, 172 const Instruction *CxtI, 173 const DominatorTree *DT) { 174 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 175 Query(DL, AC, safeCxtI(V, CxtI), DT)); 176 } 177 178 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 179 180 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 181 AssumptionCache *AC, const Instruction *CxtI, 182 const DominatorTree *DT) { 183 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 184 } 185 186 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 187 unsigned Depth, 188 AssumptionCache *AC, const Instruction *CxtI, 189 const DominatorTree *DT) { 190 bool NonNegative, Negative; 191 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 192 return NonNegative; 193 } 194 195 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 196 AssumptionCache *AC, const Instruction *CxtI, 197 const DominatorTree *DT) { 198 if (auto *CI = dyn_cast<ConstantInt>(V)) 199 return CI->getValue().isStrictlyPositive(); 200 201 // TODO: We'd doing two recursive queries here. We should factor this such 202 // that only a single query is needed. 203 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 204 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 205 } 206 207 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 208 AssumptionCache *AC, const Instruction *CxtI, 209 const DominatorTree *DT) { 210 bool NonNegative, Negative; 211 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 212 return Negative; 213 } 214 215 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 216 217 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 218 const DataLayout &DL, 219 AssumptionCache *AC, const Instruction *CxtI, 220 const DominatorTree *DT) { 221 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 222 safeCxtI(V1, safeCxtI(V2, CxtI)), 223 DT)); 224 } 225 226 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 227 const Query &Q); 228 229 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 230 const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT) { 233 return ::MaskedValueIsZero(V, Mask, Depth, 234 Query(DL, AC, safeCxtI(V, CxtI), DT)); 235 } 236 237 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 238 const Query &Q); 239 240 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 241 unsigned Depth, AssumptionCache *AC, 242 const Instruction *CxtI, 243 const DominatorTree *DT) { 244 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 245 } 246 247 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 248 bool NSW, 249 APInt &KnownZero, APInt &KnownOne, 250 APInt &KnownZero2, APInt &KnownOne2, 251 unsigned Depth, const Query &Q) { 252 if (!Add) { 253 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 254 // We know that the top bits of C-X are clear if X contains less bits 255 // than C (i.e. no wrap-around can happen). For example, 20-X is 256 // positive if we can prove that X is >= 0 and < 16. 257 if (!CLHS->getValue().isNegative()) { 258 unsigned BitWidth = KnownZero.getBitWidth(); 259 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 260 // NLZ can't be BitWidth with no sign bit 261 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 262 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 263 264 // If all of the MaskV bits are known to be zero, then we know the 265 // output top bits are zero, because we now know that the output is 266 // from [0-C]. 267 if ((KnownZero2 & MaskV) == MaskV) { 268 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 269 // Top bits known zero. 270 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 271 } 272 } 273 } 274 } 275 276 unsigned BitWidth = KnownZero.getBitWidth(); 277 278 // If an initial sequence of bits in the result is not needed, the 279 // corresponding bits in the operands are not needed. 280 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 281 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 282 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 283 284 // Carry in a 1 for a subtract, rather than a 0. 285 APInt CarryIn(BitWidth, 0); 286 if (!Add) { 287 // Sum = LHS + ~RHS + 1 288 std::swap(KnownZero2, KnownOne2); 289 CarryIn.setBit(0); 290 } 291 292 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 293 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 294 295 // Compute known bits of the carry. 296 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 297 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 298 299 // Compute set of known bits (where all three relevant bits are known). 300 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 301 APInt RHSKnown = KnownZero2 | KnownOne2; 302 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 303 APInt Known = LHSKnown & RHSKnown & CarryKnown; 304 305 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 306 "known bits of sum differ"); 307 308 // Compute known bits of the result. 309 KnownZero = ~PossibleSumOne & Known; 310 KnownOne = PossibleSumOne & Known; 311 312 // Are we still trying to solve for the sign bit? 313 if (!Known.isNegative()) { 314 if (NSW) { 315 // Adding two non-negative numbers, or subtracting a negative number from 316 // a non-negative one, can't wrap into negative. 317 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 318 KnownZero |= APInt::getSignBit(BitWidth); 319 // Adding two negative numbers, or subtracting a non-negative number from 320 // a negative one, can't wrap into non-negative. 321 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 322 KnownOne |= APInt::getSignBit(BitWidth); 323 } 324 } 325 } 326 327 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 328 APInt &KnownZero, APInt &KnownOne, 329 APInt &KnownZero2, APInt &KnownOne2, 330 unsigned Depth, const Query &Q) { 331 unsigned BitWidth = KnownZero.getBitWidth(); 332 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 333 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 334 335 bool isKnownNegative = false; 336 bool isKnownNonNegative = false; 337 // If the multiplication is known not to overflow, compute the sign bit. 338 if (NSW) { 339 if (Op0 == Op1) { 340 // The product of a number with itself is non-negative. 341 isKnownNonNegative = true; 342 } else { 343 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 344 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 345 bool isKnownNegativeOp1 = KnownOne.isNegative(); 346 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 347 // The product of two numbers with the same sign is non-negative. 348 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 349 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 350 // The product of a negative number and a non-negative number is either 351 // negative or zero. 352 if (!isKnownNonNegative) 353 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 354 isKnownNonZero(Op0, Depth, Q)) || 355 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 356 isKnownNonZero(Op1, Depth, Q)); 357 } 358 } 359 360 // If low bits are zero in either operand, output low known-0 bits. 361 // Also compute a conservative estimate for high known-0 bits. 362 // More trickiness is possible, but this is sufficient for the 363 // interesting case of alignment computation. 364 KnownOne.clearAllBits(); 365 unsigned TrailZ = KnownZero.countTrailingOnes() + 366 KnownZero2.countTrailingOnes(); 367 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 368 KnownZero2.countLeadingOnes(), 369 BitWidth) - BitWidth; 370 371 TrailZ = std::min(TrailZ, BitWidth); 372 LeadZ = std::min(LeadZ, BitWidth); 373 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 374 APInt::getHighBitsSet(BitWidth, LeadZ); 375 376 // Only make use of no-wrap flags if we failed to compute the sign bit 377 // directly. This matters if the multiplication always overflows, in 378 // which case we prefer to follow the result of the direct computation, 379 // though as the program is invoking undefined behaviour we can choose 380 // whatever we like here. 381 if (isKnownNonNegative && !KnownOne.isNegative()) 382 KnownZero.setBit(BitWidth - 1); 383 else if (isKnownNegative && !KnownZero.isNegative()) 384 KnownOne.setBit(BitWidth - 1); 385 } 386 387 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 388 APInt &KnownZero, 389 APInt &KnownOne) { 390 unsigned BitWidth = KnownZero.getBitWidth(); 391 unsigned NumRanges = Ranges.getNumOperands() / 2; 392 assert(NumRanges >= 1); 393 394 KnownZero.setAllBits(); 395 KnownOne.setAllBits(); 396 397 for (unsigned i = 0; i < NumRanges; ++i) { 398 ConstantInt *Lower = 399 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 400 ConstantInt *Upper = 401 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 402 ConstantRange Range(Lower->getValue(), Upper->getValue()); 403 404 // The first CommonPrefixBits of all values in Range are equal. 405 unsigned CommonPrefixBits = 406 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 407 408 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 409 KnownOne &= Range.getUnsignedMax() & Mask; 410 KnownZero &= ~Range.getUnsignedMax() & Mask; 411 } 412 } 413 414 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 415 SmallVector<const Value *, 16> WorkSet(1, I); 416 SmallPtrSet<const Value *, 32> Visited; 417 SmallPtrSet<const Value *, 16> EphValues; 418 419 // The instruction defining an assumption's condition itself is always 420 // considered ephemeral to that assumption (even if it has other 421 // non-ephemeral users). See r246696's test case for an example. 422 if (is_contained(I->operands(), E)) 423 return true; 424 425 while (!WorkSet.empty()) { 426 const Value *V = WorkSet.pop_back_val(); 427 if (!Visited.insert(V).second) 428 continue; 429 430 // If all uses of this value are ephemeral, then so is this value. 431 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 432 if (V == E) 433 return true; 434 435 EphValues.insert(V); 436 if (const User *U = dyn_cast<User>(V)) 437 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 438 J != JE; ++J) { 439 if (isSafeToSpeculativelyExecute(*J)) 440 WorkSet.push_back(*J); 441 } 442 } 443 } 444 445 return false; 446 } 447 448 // Is this an intrinsic that cannot be speculated but also cannot trap? 449 static bool isAssumeLikeIntrinsic(const Instruction *I) { 450 if (const CallInst *CI = dyn_cast<CallInst>(I)) 451 if (Function *F = CI->getCalledFunction()) 452 switch (F->getIntrinsicID()) { 453 default: break; 454 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 455 case Intrinsic::assume: 456 case Intrinsic::dbg_declare: 457 case Intrinsic::dbg_value: 458 case Intrinsic::invariant_start: 459 case Intrinsic::invariant_end: 460 case Intrinsic::lifetime_start: 461 case Intrinsic::lifetime_end: 462 case Intrinsic::objectsize: 463 case Intrinsic::ptr_annotation: 464 case Intrinsic::var_annotation: 465 return true; 466 } 467 468 return false; 469 } 470 471 bool llvm::isValidAssumeForContext(const Instruction *Inv, 472 const Instruction *CxtI, 473 const DominatorTree *DT) { 474 475 // There are two restrictions on the use of an assume: 476 // 1. The assume must dominate the context (or the control flow must 477 // reach the assume whenever it reaches the context). 478 // 2. The context must not be in the assume's set of ephemeral values 479 // (otherwise we will use the assume to prove that the condition 480 // feeding the assume is trivially true, thus causing the removal of 481 // the assume). 482 483 if (DT) { 484 if (DT->dominates(Inv, CxtI)) 485 return true; 486 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 487 // We don't have a DT, but this trivially dominates. 488 return true; 489 } 490 491 // With or without a DT, the only remaining case we will check is if the 492 // instructions are in the same BB. Give up if that is not the case. 493 if (Inv->getParent() != CxtI->getParent()) 494 return false; 495 496 // If we have a dom tree, then we now know that the assume doens't dominate 497 // the other instruction. If we don't have a dom tree then we can check if 498 // the assume is first in the BB. 499 if (!DT) { 500 // Search forward from the assume until we reach the context (or the end 501 // of the block); the common case is that the assume will come first. 502 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 503 IE = Inv->getParent()->end(); I != IE; ++I) 504 if (&*I == CxtI) 505 return true; 506 } 507 508 // The context comes first, but they're both in the same block. Make sure 509 // there is nothing in between that might interrupt the control flow. 510 for (BasicBlock::const_iterator I = 511 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 512 I != IE; ++I) 513 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 514 return false; 515 516 return !isEphemeralValueOf(Inv, CxtI); 517 } 518 519 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 520 APInt &KnownOne, unsigned Depth, 521 const Query &Q) { 522 // Use of assumptions is context-sensitive. If we don't have a context, we 523 // cannot use them! 524 if (!Q.AC || !Q.CxtI) 525 return; 526 527 unsigned BitWidth = KnownZero.getBitWidth(); 528 529 // Note that the patterns below need to be kept in sync with the code 530 // in AssumptionCache::updateAffectedValues. 531 532 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 533 if (!AssumeVH) 534 continue; 535 CallInst *I = cast<CallInst>(AssumeVH); 536 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 537 "Got assumption for the wrong function!"); 538 if (Q.isExcluded(I)) 539 continue; 540 541 // Warning: This loop can end up being somewhat performance sensetive. 542 // We're running this loop for once for each value queried resulting in a 543 // runtime of ~O(#assumes * #values). 544 545 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 546 "must be an assume intrinsic"); 547 548 Value *Arg = I->getArgOperand(0); 549 550 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 551 assert(BitWidth == 1 && "assume operand is not i1?"); 552 KnownZero.clearAllBits(); 553 KnownOne.setAllBits(); 554 return; 555 } 556 557 // The remaining tests are all recursive, so bail out if we hit the limit. 558 if (Depth == MaxDepth) 559 continue; 560 561 Value *A, *B; 562 auto m_V = m_CombineOr(m_Specific(V), 563 m_CombineOr(m_PtrToInt(m_Specific(V)), 564 m_BitCast(m_Specific(V)))); 565 566 CmpInst::Predicate Pred; 567 ConstantInt *C; 568 // assume(v = a) 569 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 570 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 571 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 572 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 573 KnownZero |= RHSKnownZero; 574 KnownOne |= RHSKnownOne; 575 // assume(v & b = a) 576 } else if (match(Arg, 577 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 578 Pred == ICmpInst::ICMP_EQ && 579 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 580 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 581 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 582 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 583 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 584 585 // For those bits in the mask that are known to be one, we can propagate 586 // known bits from the RHS to V. 587 KnownZero |= RHSKnownZero & MaskKnownOne; 588 KnownOne |= RHSKnownOne & MaskKnownOne; 589 // assume(~(v & b) = a) 590 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 591 m_Value(A))) && 592 Pred == ICmpInst::ICMP_EQ && 593 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 594 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 595 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 596 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 597 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 598 599 // For those bits in the mask that are known to be one, we can propagate 600 // inverted known bits from the RHS to V. 601 KnownZero |= RHSKnownOne & MaskKnownOne; 602 KnownOne |= RHSKnownZero & MaskKnownOne; 603 // assume(v | b = a) 604 } else if (match(Arg, 605 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 606 Pred == ICmpInst::ICMP_EQ && 607 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 608 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 609 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 610 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 611 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 612 613 // For those bits in B that are known to be zero, we can propagate known 614 // bits from the RHS to V. 615 KnownZero |= RHSKnownZero & BKnownZero; 616 KnownOne |= RHSKnownOne & BKnownZero; 617 // assume(~(v | b) = a) 618 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 619 m_Value(A))) && 620 Pred == ICmpInst::ICMP_EQ && 621 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 622 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 623 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 624 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 625 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 626 627 // For those bits in B that are known to be zero, we can propagate 628 // inverted known bits from the RHS to V. 629 KnownZero |= RHSKnownOne & BKnownZero; 630 KnownOne |= RHSKnownZero & BKnownZero; 631 // assume(v ^ b = a) 632 } else if (match(Arg, 633 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 634 Pred == ICmpInst::ICMP_EQ && 635 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 636 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 637 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 638 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 639 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 640 641 // For those bits in B that are known to be zero, we can propagate known 642 // bits from the RHS to V. For those bits in B that are known to be one, 643 // we can propagate inverted known bits from the RHS to V. 644 KnownZero |= RHSKnownZero & BKnownZero; 645 KnownOne |= RHSKnownOne & BKnownZero; 646 KnownZero |= RHSKnownOne & BKnownOne; 647 KnownOne |= RHSKnownZero & BKnownOne; 648 // assume(~(v ^ b) = a) 649 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 650 m_Value(A))) && 651 Pred == ICmpInst::ICMP_EQ && 652 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 653 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 654 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 655 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 656 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 657 658 // For those bits in B that are known to be zero, we can propagate 659 // inverted known bits from the RHS to V. For those bits in B that are 660 // known to be one, we can propagate known bits from the RHS to V. 661 KnownZero |= RHSKnownOne & BKnownZero; 662 KnownOne |= RHSKnownZero & BKnownZero; 663 KnownZero |= RHSKnownZero & BKnownOne; 664 KnownOne |= RHSKnownOne & BKnownOne; 665 // assume(v << c = a) 666 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 667 m_Value(A))) && 668 Pred == ICmpInst::ICMP_EQ && 669 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 670 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 671 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 672 // For those bits in RHS that are known, we can propagate them to known 673 // bits in V shifted to the right by C. 674 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 675 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 676 // assume(~(v << c) = a) 677 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 678 m_Value(A))) && 679 Pred == ICmpInst::ICMP_EQ && 680 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 681 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 682 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 683 // For those bits in RHS that are known, we can propagate them inverted 684 // to known bits in V shifted to the right by C. 685 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 686 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 687 // assume(v >> c = a) 688 } else if (match(Arg, 689 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 690 m_AShr(m_V, m_ConstantInt(C))), 691 m_Value(A))) && 692 Pred == ICmpInst::ICMP_EQ && 693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 694 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 695 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 696 // For those bits in RHS that are known, we can propagate them to known 697 // bits in V shifted to the right by C. 698 KnownZero |= RHSKnownZero << C->getZExtValue(); 699 KnownOne |= RHSKnownOne << C->getZExtValue(); 700 // assume(~(v >> c) = a) 701 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 702 m_LShr(m_V, m_ConstantInt(C)), 703 m_AShr(m_V, m_ConstantInt(C)))), 704 m_Value(A))) && 705 Pred == ICmpInst::ICMP_EQ && 706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 707 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 708 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 709 // For those bits in RHS that are known, we can propagate them inverted 710 // to known bits in V shifted to the right by C. 711 KnownZero |= RHSKnownOne << C->getZExtValue(); 712 KnownOne |= RHSKnownZero << C->getZExtValue(); 713 // assume(v >=_s c) where c is non-negative 714 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 715 Pred == ICmpInst::ICMP_SGE && 716 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 717 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 718 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 719 720 if (RHSKnownZero.isNegative()) { 721 // We know that the sign bit is zero. 722 KnownZero |= APInt::getSignBit(BitWidth); 723 } 724 // assume(v >_s c) where c is at least -1. 725 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 726 Pred == ICmpInst::ICMP_SGT && 727 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 728 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 729 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 730 731 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 732 // We know that the sign bit is zero. 733 KnownZero |= APInt::getSignBit(BitWidth); 734 } 735 // assume(v <=_s c) where c is negative 736 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 737 Pred == ICmpInst::ICMP_SLE && 738 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 739 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 740 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 741 742 if (RHSKnownOne.isNegative()) { 743 // We know that the sign bit is one. 744 KnownOne |= APInt::getSignBit(BitWidth); 745 } 746 // assume(v <_s c) where c is non-positive 747 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 748 Pred == ICmpInst::ICMP_SLT && 749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 750 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 751 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 752 753 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 754 // We know that the sign bit is one. 755 KnownOne |= APInt::getSignBit(BitWidth); 756 } 757 // assume(v <=_u c) 758 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 759 Pred == ICmpInst::ICMP_ULE && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 762 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 763 764 // Whatever high bits in c are zero are known to be zero. 765 KnownZero |= 766 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 767 // assume(v <_u c) 768 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 769 Pred == ICmpInst::ICMP_ULT && 770 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 771 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 772 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 773 774 // Whatever high bits in c are zero are known to be zero (if c is a power 775 // of 2, then one more). 776 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 777 KnownZero |= 778 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 779 else 780 KnownZero |= 781 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 782 } 783 } 784 785 // If assumptions conflict with each other or previous known bits, then we 786 // have a logical fallacy. This should only happen when a program has 787 // undefined behavior. We can't assert/crash, so clear out the known bits and 788 // hope for the best. 789 790 // FIXME: Publish a warning/remark that we have encountered UB or the compiler 791 // is broken. 792 793 // FIXME: Implement a stronger version of "I give up" by invalidating/clearing 794 // the assumption cache. This should indicate that the cache is corrupted so 795 // future callers will not waste time repopulating it with faulty assumptions. 796 797 if ((KnownZero & KnownOne) != 0) { 798 KnownZero.clearAllBits(); 799 KnownOne.clearAllBits(); 800 } 801 } 802 803 // Compute known bits from a shift operator, including those with a 804 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 805 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 806 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 807 // functors that, given the known-zero or known-one bits respectively, and a 808 // shift amount, compute the implied known-zero or known-one bits of the shift 809 // operator's result respectively for that shift amount. The results from calling 810 // KZF and KOF are conservatively combined for all permitted shift amounts. 811 static void computeKnownBitsFromShiftOperator( 812 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, 813 APInt &KnownOne2, unsigned Depth, const Query &Q, 814 function_ref<APInt(const APInt &, unsigned)> KZF, 815 function_ref<APInt(const APInt &, unsigned)> KOF) { 816 unsigned BitWidth = KnownZero.getBitWidth(); 817 818 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 819 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 820 821 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 822 KnownZero = KZF(KnownZero, ShiftAmt); 823 KnownOne = KOF(KnownOne, ShiftAmt); 824 // If there is conflict between KnownZero and KnownOne, this must be an 825 // overflowing left shift, so the shift result is undefined. Clear KnownZero 826 // and KnownOne bits so that other code could propagate this undef. 827 if ((KnownZero & KnownOne) != 0) { 828 KnownZero.clearAllBits(); 829 KnownOne.clearAllBits(); 830 } 831 832 return; 833 } 834 835 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 836 837 // Note: We cannot use KnownZero.getLimitedValue() here, because if 838 // BitWidth > 64 and any upper bits are known, we'll end up returning the 839 // limit value (which implies all bits are known). 840 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 841 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 842 843 // It would be more-clearly correct to use the two temporaries for this 844 // calculation. Reusing the APInts here to prevent unnecessary allocations. 845 KnownZero.clearAllBits(); 846 KnownOne.clearAllBits(); 847 848 // If we know the shifter operand is nonzero, we can sometimes infer more 849 // known bits. However this is expensive to compute, so be lazy about it and 850 // only compute it when absolutely necessary. 851 Optional<bool> ShifterOperandIsNonZero; 852 853 // Early exit if we can't constrain any well-defined shift amount. 854 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 855 ShifterOperandIsNonZero = 856 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 857 if (!*ShifterOperandIsNonZero) 858 return; 859 } 860 861 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 862 863 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 864 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 865 // Combine the shifted known input bits only for those shift amounts 866 // compatible with its known constraints. 867 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 868 continue; 869 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 870 continue; 871 // If we know the shifter is nonzero, we may be able to infer more known 872 // bits. This check is sunk down as far as possible to avoid the expensive 873 // call to isKnownNonZero if the cheaper checks above fail. 874 if (ShiftAmt == 0) { 875 if (!ShifterOperandIsNonZero.hasValue()) 876 ShifterOperandIsNonZero = 877 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 878 if (*ShifterOperandIsNonZero) 879 continue; 880 } 881 882 KnownZero &= KZF(KnownZero2, ShiftAmt); 883 KnownOne &= KOF(KnownOne2, ShiftAmt); 884 } 885 886 // If there are no compatible shift amounts, then we've proven that the shift 887 // amount must be >= the BitWidth, and the result is undefined. We could 888 // return anything we'd like, but we need to make sure the sets of known bits 889 // stay disjoint (it should be better for some other code to actually 890 // propagate the undef than to pick a value here using known bits). 891 if ((KnownZero & KnownOne) != 0) { 892 KnownZero.clearAllBits(); 893 KnownOne.clearAllBits(); 894 } 895 } 896 897 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 898 APInt &KnownOne, unsigned Depth, 899 const Query &Q) { 900 unsigned BitWidth = KnownZero.getBitWidth(); 901 902 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 903 switch (I->getOpcode()) { 904 default: break; 905 case Instruction::Load: 906 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 907 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 908 break; 909 case Instruction::And: { 910 // If either the LHS or the RHS are Zero, the result is zero. 911 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 912 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 913 914 // Output known-1 bits are only known if set in both the LHS & RHS. 915 KnownOne &= KnownOne2; 916 // Output known-0 are known to be clear if zero in either the LHS | RHS. 917 KnownZero |= KnownZero2; 918 919 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 920 // here we handle the more general case of adding any odd number by 921 // matching the form add(x, add(x, y)) where y is odd. 922 // TODO: This could be generalized to clearing any bit set in y where the 923 // following bit is known to be unset in y. 924 Value *Y = nullptr; 925 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 926 m_Value(Y))) || 927 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 928 m_Value(Y)))) { 929 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 930 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 931 if (KnownOne3.countTrailingOnes() > 0) 932 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 933 } 934 break; 935 } 936 case Instruction::Or: { 937 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 938 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 939 940 // Output known-0 bits are only known if clear in both the LHS & RHS. 941 KnownZero &= KnownZero2; 942 // Output known-1 are known to be set if set in either the LHS | RHS. 943 KnownOne |= KnownOne2; 944 break; 945 } 946 case Instruction::Xor: { 947 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 948 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 949 950 // Output known-0 bits are known if clear or set in both the LHS & RHS. 951 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 952 // Output known-1 are known to be set if set in only one of the LHS, RHS. 953 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 954 KnownZero = KnownZeroOut; 955 break; 956 } 957 case Instruction::Mul: { 958 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 959 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 960 KnownOne, KnownZero2, KnownOne2, Depth, Q); 961 break; 962 } 963 case Instruction::UDiv: { 964 // For the purposes of computing leading zeros we can conservatively 965 // treat a udiv as a logical right shift by the power of 2 known to 966 // be less than the denominator. 967 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 968 unsigned LeadZ = KnownZero2.countLeadingOnes(); 969 970 KnownOne2.clearAllBits(); 971 KnownZero2.clearAllBits(); 972 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 973 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 974 if (RHSUnknownLeadingOnes != BitWidth) 975 LeadZ = std::min(BitWidth, 976 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 977 978 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 979 break; 980 } 981 case Instruction::Select: { 982 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 983 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 984 985 const Value *LHS; 986 const Value *RHS; 987 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 988 if (SelectPatternResult::isMinOrMax(SPF)) { 989 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 990 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 991 } else { 992 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 993 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 994 } 995 996 unsigned MaxHighOnes = 0; 997 unsigned MaxHighZeros = 0; 998 if (SPF == SPF_SMAX) { 999 // If both sides are negative, the result is negative. 1000 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) 1001 // We can derive a lower bound on the result by taking the max of the 1002 // leading one bits. 1003 MaxHighOnes = 1004 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1005 // If either side is non-negative, the result is non-negative. 1006 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) 1007 MaxHighZeros = 1; 1008 } else if (SPF == SPF_SMIN) { 1009 // If both sides are non-negative, the result is non-negative. 1010 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) 1011 // We can derive an upper bound on the result by taking the max of the 1012 // leading zero bits. 1013 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 1014 KnownZero2.countLeadingOnes()); 1015 // If either side is negative, the result is negative. 1016 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) 1017 MaxHighOnes = 1; 1018 } else if (SPF == SPF_UMAX) { 1019 // We can derive a lower bound on the result by taking the max of the 1020 // leading one bits. 1021 MaxHighOnes = 1022 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1023 } else if (SPF == SPF_UMIN) { 1024 // We can derive an upper bound on the result by taking the max of the 1025 // leading zero bits. 1026 MaxHighZeros = 1027 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 1028 } 1029 1030 // Only known if known in both the LHS and RHS. 1031 KnownOne &= KnownOne2; 1032 KnownZero &= KnownZero2; 1033 if (MaxHighOnes > 0) 1034 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); 1035 if (MaxHighZeros > 0) 1036 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); 1037 break; 1038 } 1039 case Instruction::FPTrunc: 1040 case Instruction::FPExt: 1041 case Instruction::FPToUI: 1042 case Instruction::FPToSI: 1043 case Instruction::SIToFP: 1044 case Instruction::UIToFP: 1045 break; // Can't work with floating point. 1046 case Instruction::PtrToInt: 1047 case Instruction::IntToPtr: 1048 // Fall through and handle them the same as zext/trunc. 1049 LLVM_FALLTHROUGH; 1050 case Instruction::ZExt: 1051 case Instruction::Trunc: { 1052 Type *SrcTy = I->getOperand(0)->getType(); 1053 1054 unsigned SrcBitWidth; 1055 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1056 // which fall through here. 1057 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1058 1059 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1060 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1061 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1062 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1063 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1064 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1065 // Any top bits are known to be zero. 1066 if (BitWidth > SrcBitWidth) 1067 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1068 break; 1069 } 1070 case Instruction::BitCast: { 1071 Type *SrcTy = I->getOperand(0)->getType(); 1072 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1073 // TODO: For now, not handling conversions like: 1074 // (bitcast i64 %x to <2 x i32>) 1075 !I->getType()->isVectorTy()) { 1076 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1077 break; 1078 } 1079 break; 1080 } 1081 case Instruction::SExt: { 1082 // Compute the bits in the result that are not present in the input. 1083 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1084 1085 KnownZero = KnownZero.trunc(SrcBitWidth); 1086 KnownOne = KnownOne.trunc(SrcBitWidth); 1087 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1088 KnownZero = KnownZero.zext(BitWidth); 1089 KnownOne = KnownOne.zext(BitWidth); 1090 1091 // If the sign bit of the input is known set or clear, then we know the 1092 // top bits of the result. 1093 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1094 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1095 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1096 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1097 break; 1098 } 1099 case Instruction::Shl: { 1100 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1101 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1102 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1103 APInt KZResult = 1104 (KnownZero << ShiftAmt) | 1105 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1106 // If this shift has "nsw" keyword, then the result is either a poison 1107 // value or has the same sign bit as the first operand. 1108 if (NSW && KnownZero.isNegative()) 1109 KZResult.setBit(BitWidth - 1); 1110 return KZResult; 1111 }; 1112 1113 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1114 APInt KOResult = KnownOne << ShiftAmt; 1115 if (NSW && KnownOne.isNegative()) 1116 KOResult.setBit(BitWidth - 1); 1117 return KOResult; 1118 }; 1119 1120 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1121 KnownZero2, KnownOne2, Depth, Q, KZF, 1122 KOF); 1123 break; 1124 } 1125 case Instruction::LShr: { 1126 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1127 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1128 return APIntOps::lshr(KnownZero, ShiftAmt) | 1129 // High bits known zero. 1130 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1131 }; 1132 1133 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1134 return APIntOps::lshr(KnownOne, ShiftAmt); 1135 }; 1136 1137 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1138 KnownZero2, KnownOne2, Depth, Q, KZF, 1139 KOF); 1140 break; 1141 } 1142 case Instruction::AShr: { 1143 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1144 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1145 return APIntOps::ashr(KnownZero, ShiftAmt); 1146 }; 1147 1148 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1149 return APIntOps::ashr(KnownOne, ShiftAmt); 1150 }; 1151 1152 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1153 KnownZero2, KnownOne2, Depth, Q, KZF, 1154 KOF); 1155 break; 1156 } 1157 case Instruction::Sub: { 1158 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1159 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1160 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1161 Q); 1162 break; 1163 } 1164 case Instruction::Add: { 1165 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1166 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1167 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1168 Q); 1169 break; 1170 } 1171 case Instruction::SRem: 1172 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1173 APInt RA = Rem->getValue().abs(); 1174 if (RA.isPowerOf2()) { 1175 APInt LowBits = RA - 1; 1176 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1177 Q); 1178 1179 // The low bits of the first operand are unchanged by the srem. 1180 KnownZero = KnownZero2 & LowBits; 1181 KnownOne = KnownOne2 & LowBits; 1182 1183 // If the first operand is non-negative or has all low bits zero, then 1184 // the upper bits are all zero. 1185 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1186 KnownZero |= ~LowBits; 1187 1188 // If the first operand is negative and not all low bits are zero, then 1189 // the upper bits are all one. 1190 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1191 KnownOne |= ~LowBits; 1192 1193 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1194 } 1195 } 1196 1197 // The sign bit is the LHS's sign bit, except when the result of the 1198 // remainder is zero. 1199 if (KnownZero.isNonNegative()) { 1200 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1201 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1202 Q); 1203 // If it's known zero, our sign bit is also zero. 1204 if (LHSKnownZero.isNegative()) 1205 KnownZero.setBit(BitWidth - 1); 1206 } 1207 1208 break; 1209 case Instruction::URem: { 1210 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1211 const APInt &RA = Rem->getValue(); 1212 if (RA.isPowerOf2()) { 1213 APInt LowBits = (RA - 1); 1214 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1215 KnownZero |= ~LowBits; 1216 KnownOne &= LowBits; 1217 break; 1218 } 1219 } 1220 1221 // Since the result is less than or equal to either operand, any leading 1222 // zero bits in either operand must also exist in the result. 1223 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1224 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1225 1226 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1227 KnownZero2.countLeadingOnes()); 1228 KnownOne.clearAllBits(); 1229 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1230 break; 1231 } 1232 1233 case Instruction::Alloca: { 1234 const AllocaInst *AI = cast<AllocaInst>(I); 1235 unsigned Align = AI->getAlignment(); 1236 if (Align == 0) 1237 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1238 1239 if (Align > 0) 1240 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1241 break; 1242 } 1243 case Instruction::GetElementPtr: { 1244 // Analyze all of the subscripts of this getelementptr instruction 1245 // to determine if we can prove known low zero bits. 1246 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1247 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1248 Q); 1249 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1250 1251 gep_type_iterator GTI = gep_type_begin(I); 1252 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1253 Value *Index = I->getOperand(i); 1254 if (StructType *STy = GTI.getStructTypeOrNull()) { 1255 // Handle struct member offset arithmetic. 1256 1257 // Handle case when index is vector zeroinitializer 1258 Constant *CIndex = cast<Constant>(Index); 1259 if (CIndex->isZeroValue()) 1260 continue; 1261 1262 if (CIndex->getType()->isVectorTy()) 1263 Index = CIndex->getSplatValue(); 1264 1265 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1266 const StructLayout *SL = Q.DL.getStructLayout(STy); 1267 uint64_t Offset = SL->getElementOffset(Idx); 1268 TrailZ = std::min<unsigned>(TrailZ, 1269 countTrailingZeros(Offset)); 1270 } else { 1271 // Handle array index arithmetic. 1272 Type *IndexedTy = GTI.getIndexedType(); 1273 if (!IndexedTy->isSized()) { 1274 TrailZ = 0; 1275 break; 1276 } 1277 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1278 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1279 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1280 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1281 TrailZ = std::min(TrailZ, 1282 unsigned(countTrailingZeros(TypeSize) + 1283 LocalKnownZero.countTrailingOnes())); 1284 } 1285 } 1286 1287 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1288 break; 1289 } 1290 case Instruction::PHI: { 1291 const PHINode *P = cast<PHINode>(I); 1292 // Handle the case of a simple two-predecessor recurrence PHI. 1293 // There's a lot more that could theoretically be done here, but 1294 // this is sufficient to catch some interesting cases. 1295 if (P->getNumIncomingValues() == 2) { 1296 for (unsigned i = 0; i != 2; ++i) { 1297 Value *L = P->getIncomingValue(i); 1298 Value *R = P->getIncomingValue(!i); 1299 Operator *LU = dyn_cast<Operator>(L); 1300 if (!LU) 1301 continue; 1302 unsigned Opcode = LU->getOpcode(); 1303 // Check for operations that have the property that if 1304 // both their operands have low zero bits, the result 1305 // will have low zero bits. 1306 if (Opcode == Instruction::Add || 1307 Opcode == Instruction::Sub || 1308 Opcode == Instruction::And || 1309 Opcode == Instruction::Or || 1310 Opcode == Instruction::Mul) { 1311 Value *LL = LU->getOperand(0); 1312 Value *LR = LU->getOperand(1); 1313 // Find a recurrence. 1314 if (LL == I) 1315 L = LR; 1316 else if (LR == I) 1317 L = LL; 1318 else 1319 break; 1320 // Ok, we have a PHI of the form L op= R. Check for low 1321 // zero bits. 1322 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1323 1324 // We need to take the minimum number of known bits 1325 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1326 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1327 1328 KnownZero = APInt::getLowBitsSet( 1329 BitWidth, std::min(KnownZero2.countTrailingOnes(), 1330 KnownZero3.countTrailingOnes())); 1331 1332 if (DontImproveNonNegativePhiBits) 1333 break; 1334 1335 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1336 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1337 // If initial value of recurrence is nonnegative, and we are adding 1338 // a nonnegative number with nsw, the result can only be nonnegative 1339 // or poison value regardless of the number of times we execute the 1340 // add in phi recurrence. If initial value is negative and we are 1341 // adding a negative number with nsw, the result can only be 1342 // negative or poison value. Similar arguments apply to sub and mul. 1343 // 1344 // (add non-negative, non-negative) --> non-negative 1345 // (add negative, negative) --> negative 1346 if (Opcode == Instruction::Add) { 1347 if (KnownZero2.isNegative() && KnownZero3.isNegative()) 1348 KnownZero.setBit(BitWidth - 1); 1349 else if (KnownOne2.isNegative() && KnownOne3.isNegative()) 1350 KnownOne.setBit(BitWidth - 1); 1351 } 1352 1353 // (sub nsw non-negative, negative) --> non-negative 1354 // (sub nsw negative, non-negative) --> negative 1355 else if (Opcode == Instruction::Sub && LL == I) { 1356 if (KnownZero2.isNegative() && KnownOne3.isNegative()) 1357 KnownZero.setBit(BitWidth - 1); 1358 else if (KnownOne2.isNegative() && KnownZero3.isNegative()) 1359 KnownOne.setBit(BitWidth - 1); 1360 } 1361 1362 // (mul nsw non-negative, non-negative) --> non-negative 1363 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() && 1364 KnownZero3.isNegative()) 1365 KnownZero.setBit(BitWidth - 1); 1366 } 1367 1368 break; 1369 } 1370 } 1371 } 1372 1373 // Unreachable blocks may have zero-operand PHI nodes. 1374 if (P->getNumIncomingValues() == 0) 1375 break; 1376 1377 // Otherwise take the unions of the known bit sets of the operands, 1378 // taking conservative care to avoid excessive recursion. 1379 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1380 // Skip if every incoming value references to ourself. 1381 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1382 break; 1383 1384 KnownZero = APInt::getAllOnesValue(BitWidth); 1385 KnownOne = APInt::getAllOnesValue(BitWidth); 1386 for (Value *IncValue : P->incoming_values()) { 1387 // Skip direct self references. 1388 if (IncValue == P) continue; 1389 1390 KnownZero2 = APInt(BitWidth, 0); 1391 KnownOne2 = APInt(BitWidth, 0); 1392 // Recurse, but cap the recursion to one level, because we don't 1393 // want to waste time spinning around in loops. 1394 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1395 KnownZero &= KnownZero2; 1396 KnownOne &= KnownOne2; 1397 // If all bits have been ruled out, there's no need to check 1398 // more operands. 1399 if (!KnownZero && !KnownOne) 1400 break; 1401 } 1402 } 1403 break; 1404 } 1405 case Instruction::Call: 1406 case Instruction::Invoke: 1407 // If range metadata is attached to this call, set known bits from that, 1408 // and then intersect with known bits based on other properties of the 1409 // function. 1410 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1411 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1412 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1413 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1414 KnownZero |= KnownZero2; 1415 KnownOne |= KnownOne2; 1416 } 1417 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1418 switch (II->getIntrinsicID()) { 1419 default: break; 1420 case Intrinsic::bswap: 1421 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1422 KnownZero |= KnownZero2.byteSwap(); 1423 KnownOne |= KnownOne2.byteSwap(); 1424 break; 1425 case Intrinsic::ctlz: 1426 case Intrinsic::cttz: { 1427 unsigned LowBits = Log2_32(BitWidth)+1; 1428 // If this call is undefined for 0, the result will be less than 2^n. 1429 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1430 LowBits -= 1; 1431 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1432 break; 1433 } 1434 case Intrinsic::ctpop: { 1435 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1436 // We can bound the space the count needs. Also, bits known to be zero 1437 // can't contribute to the population. 1438 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1439 unsigned LeadingZeros = 1440 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1441 assert(LeadingZeros <= BitWidth); 1442 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1443 KnownOne &= ~KnownZero; 1444 // TODO: we could bound KnownOne using the lower bound on the number 1445 // of bits which might be set provided by popcnt KnownOne2. 1446 break; 1447 } 1448 case Intrinsic::x86_sse42_crc32_64_64: 1449 KnownZero |= APInt::getHighBitsSet(64, 32); 1450 break; 1451 } 1452 } 1453 break; 1454 case Instruction::ExtractElement: 1455 // Look through extract element. At the moment we keep this simple and skip 1456 // tracking the specific element. But at least we might find information 1457 // valid for all elements of the vector (for example if vector is sign 1458 // extended, shifted, etc). 1459 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1460 break; 1461 case Instruction::ExtractValue: 1462 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1463 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1464 if (EVI->getNumIndices() != 1) break; 1465 if (EVI->getIndices()[0] == 0) { 1466 switch (II->getIntrinsicID()) { 1467 default: break; 1468 case Intrinsic::uadd_with_overflow: 1469 case Intrinsic::sadd_with_overflow: 1470 computeKnownBitsAddSub(true, II->getArgOperand(0), 1471 II->getArgOperand(1), false, KnownZero, 1472 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1473 break; 1474 case Intrinsic::usub_with_overflow: 1475 case Intrinsic::ssub_with_overflow: 1476 computeKnownBitsAddSub(false, II->getArgOperand(0), 1477 II->getArgOperand(1), false, KnownZero, 1478 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1479 break; 1480 case Intrinsic::umul_with_overflow: 1481 case Intrinsic::smul_with_overflow: 1482 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1483 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1484 Q); 1485 break; 1486 } 1487 } 1488 } 1489 } 1490 } 1491 1492 /// Determine which bits of V are known to be either zero or one and return 1493 /// them in the KnownZero/KnownOne bit sets. 1494 /// 1495 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1496 /// we cannot optimize based on the assumption that it is zero without changing 1497 /// it to be an explicit zero. If we don't change it to zero, other code could 1498 /// optimized based on the contradictory assumption that it is non-zero. 1499 /// Because instcombine aggressively folds operations with undef args anyway, 1500 /// this won't lose us code quality. 1501 /// 1502 /// This function is defined on values with integer type, values with pointer 1503 /// type, and vectors of integers. In the case 1504 /// where V is a vector, known zero, and known one values are the 1505 /// same width as the vector element, and the bit is set only if it is true 1506 /// for all of the elements in the vector. 1507 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1508 unsigned Depth, const Query &Q) { 1509 assert(V && "No Value?"); 1510 assert(Depth <= MaxDepth && "Limit Search Depth"); 1511 unsigned BitWidth = KnownZero.getBitWidth(); 1512 1513 assert((V->getType()->isIntOrIntVectorTy() || 1514 V->getType()->getScalarType()->isPointerTy()) && 1515 "Not integer or pointer type!"); 1516 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1517 (!V->getType()->isIntOrIntVectorTy() || 1518 V->getType()->getScalarSizeInBits() == BitWidth) && 1519 KnownZero.getBitWidth() == BitWidth && 1520 KnownOne.getBitWidth() == BitWidth && 1521 "V, KnownOne and KnownZero should have same BitWidth"); 1522 1523 const APInt *C; 1524 if (match(V, m_APInt(C))) { 1525 // We know all of the bits for a scalar constant or a splat vector constant! 1526 KnownOne = *C; 1527 KnownZero = ~KnownOne; 1528 return; 1529 } 1530 // Null and aggregate-zero are all-zeros. 1531 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1532 KnownOne.clearAllBits(); 1533 KnownZero = APInt::getAllOnesValue(BitWidth); 1534 return; 1535 } 1536 // Handle a constant vector by taking the intersection of the known bits of 1537 // each element. 1538 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1539 // We know that CDS must be a vector of integers. Take the intersection of 1540 // each element. 1541 KnownZero.setAllBits(); KnownOne.setAllBits(); 1542 APInt Elt(KnownZero.getBitWidth(), 0); 1543 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1544 Elt = CDS->getElementAsInteger(i); 1545 KnownZero &= ~Elt; 1546 KnownOne &= Elt; 1547 } 1548 return; 1549 } 1550 1551 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1552 // We know that CV must be a vector of integers. Take the intersection of 1553 // each element. 1554 KnownZero.setAllBits(); KnownOne.setAllBits(); 1555 APInt Elt(KnownZero.getBitWidth(), 0); 1556 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1557 Constant *Element = CV->getAggregateElement(i); 1558 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1559 if (!ElementCI) { 1560 KnownZero.clearAllBits(); 1561 KnownOne.clearAllBits(); 1562 return; 1563 } 1564 Elt = ElementCI->getValue(); 1565 KnownZero &= ~Elt; 1566 KnownOne &= Elt; 1567 } 1568 return; 1569 } 1570 1571 // Start out not knowing anything. 1572 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1573 1574 // We can't imply anything about undefs. 1575 if (isa<UndefValue>(V)) 1576 return; 1577 1578 // There's no point in looking through other users of ConstantData for 1579 // assumptions. Confirm that we've handled them all. 1580 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1581 1582 // Limit search depth. 1583 // All recursive calls that increase depth must come after this. 1584 if (Depth == MaxDepth) 1585 return; 1586 1587 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1588 // the bits of its aliasee. 1589 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1590 if (!GA->isInterposable()) 1591 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1592 return; 1593 } 1594 1595 if (const Operator *I = dyn_cast<Operator>(V)) 1596 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1597 1598 // Aligned pointers have trailing zeros - refine KnownZero set 1599 if (V->getType()->isPointerTy()) { 1600 unsigned Align = V->getPointerAlignment(Q.DL); 1601 if (Align) 1602 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1603 } 1604 1605 // computeKnownBitsFromAssume strictly refines KnownZero and 1606 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1607 1608 // Check whether a nearby assume intrinsic can determine some known bits. 1609 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1610 1611 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1612 } 1613 1614 /// Determine whether the sign bit is known to be zero or one. 1615 /// Convenience wrapper around computeKnownBits. 1616 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1617 unsigned Depth, const Query &Q) { 1618 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1619 if (!BitWidth) { 1620 KnownZero = false; 1621 KnownOne = false; 1622 return; 1623 } 1624 APInt ZeroBits(BitWidth, 0); 1625 APInt OneBits(BitWidth, 0); 1626 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1627 KnownOne = OneBits[BitWidth - 1]; 1628 KnownZero = ZeroBits[BitWidth - 1]; 1629 } 1630 1631 /// Return true if the given value is known to have exactly one 1632 /// bit set when defined. For vectors return true if every element is known to 1633 /// be a power of two when defined. Supports values with integer or pointer 1634 /// types and vectors of integers. 1635 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1636 const Query &Q) { 1637 if (const Constant *C = dyn_cast<Constant>(V)) { 1638 if (C->isNullValue()) 1639 return OrZero; 1640 1641 const APInt *ConstIntOrConstSplatInt; 1642 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1643 return ConstIntOrConstSplatInt->isPowerOf2(); 1644 } 1645 1646 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1647 // it is shifted off the end then the result is undefined. 1648 if (match(V, m_Shl(m_One(), m_Value()))) 1649 return true; 1650 1651 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1652 // bottom. If it is shifted off the bottom then the result is undefined. 1653 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1654 return true; 1655 1656 // The remaining tests are all recursive, so bail out if we hit the limit. 1657 if (Depth++ == MaxDepth) 1658 return false; 1659 1660 Value *X = nullptr, *Y = nullptr; 1661 // A shift left or a logical shift right of a power of two is a power of two 1662 // or zero. 1663 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1664 match(V, m_LShr(m_Value(X), m_Value())))) 1665 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1666 1667 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1668 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1669 1670 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1671 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1672 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1673 1674 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1675 // A power of two and'd with anything is a power of two or zero. 1676 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1677 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1678 return true; 1679 // X & (-X) is always a power of two or zero. 1680 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1681 return true; 1682 return false; 1683 } 1684 1685 // Adding a power-of-two or zero to the same power-of-two or zero yields 1686 // either the original power-of-two, a larger power-of-two or zero. 1687 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1688 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1689 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1690 if (match(X, m_And(m_Specific(Y), m_Value())) || 1691 match(X, m_And(m_Value(), m_Specific(Y)))) 1692 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1693 return true; 1694 if (match(Y, m_And(m_Specific(X), m_Value())) || 1695 match(Y, m_And(m_Value(), m_Specific(X)))) 1696 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1697 return true; 1698 1699 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1700 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1701 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1702 1703 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1704 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1705 // If i8 V is a power of two or zero: 1706 // ZeroBits: 1 1 1 0 1 1 1 1 1707 // ~ZeroBits: 0 0 0 1 0 0 0 0 1708 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1709 // If OrZero isn't set, we cannot give back a zero result. 1710 // Make sure either the LHS or RHS has a bit set. 1711 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1712 return true; 1713 } 1714 } 1715 1716 // An exact divide or right shift can only shift off zero bits, so the result 1717 // is a power of two only if the first operand is a power of two and not 1718 // copying a sign bit (sdiv int_min, 2). 1719 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1720 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1721 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1722 Depth, Q); 1723 } 1724 1725 return false; 1726 } 1727 1728 /// \brief Test whether a GEP's result is known to be non-null. 1729 /// 1730 /// Uses properties inherent in a GEP to try to determine whether it is known 1731 /// to be non-null. 1732 /// 1733 /// Currently this routine does not support vector GEPs. 1734 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1735 const Query &Q) { 1736 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1737 return false; 1738 1739 // FIXME: Support vector-GEPs. 1740 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1741 1742 // If the base pointer is non-null, we cannot walk to a null address with an 1743 // inbounds GEP in address space zero. 1744 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1745 return true; 1746 1747 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1748 // If so, then the GEP cannot produce a null pointer, as doing so would 1749 // inherently violate the inbounds contract within address space zero. 1750 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1751 GTI != GTE; ++GTI) { 1752 // Struct types are easy -- they must always be indexed by a constant. 1753 if (StructType *STy = GTI.getStructTypeOrNull()) { 1754 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1755 unsigned ElementIdx = OpC->getZExtValue(); 1756 const StructLayout *SL = Q.DL.getStructLayout(STy); 1757 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1758 if (ElementOffset > 0) 1759 return true; 1760 continue; 1761 } 1762 1763 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1764 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1765 continue; 1766 1767 // Fast path the constant operand case both for efficiency and so we don't 1768 // increment Depth when just zipping down an all-constant GEP. 1769 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1770 if (!OpC->isZero()) 1771 return true; 1772 continue; 1773 } 1774 1775 // We post-increment Depth here because while isKnownNonZero increments it 1776 // as well, when we pop back up that increment won't persist. We don't want 1777 // to recurse 10k times just because we have 10k GEP operands. We don't 1778 // bail completely out because we want to handle constant GEPs regardless 1779 // of depth. 1780 if (Depth++ >= MaxDepth) 1781 continue; 1782 1783 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1784 return true; 1785 } 1786 1787 return false; 1788 } 1789 1790 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1791 /// ensure that the value it's attached to is never Value? 'RangeType' is 1792 /// is the type of the value described by the range. 1793 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1794 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1795 assert(NumRanges >= 1); 1796 for (unsigned i = 0; i < NumRanges; ++i) { 1797 ConstantInt *Lower = 1798 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1799 ConstantInt *Upper = 1800 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1801 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1802 if (Range.contains(Value)) 1803 return false; 1804 } 1805 return true; 1806 } 1807 1808 /// Return true if the given value is known to be non-zero when defined. 1809 /// For vectors return true if every element is known to be non-zero when 1810 /// defined. Supports values with integer or pointer type and vectors of 1811 /// integers. 1812 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1813 if (auto *C = dyn_cast<Constant>(V)) { 1814 if (C->isNullValue()) 1815 return false; 1816 if (isa<ConstantInt>(C)) 1817 // Must be non-zero due to null test above. 1818 return true; 1819 1820 // For constant vectors, check that all elements are undefined or known 1821 // non-zero to determine that the whole vector is known non-zero. 1822 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1823 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1824 Constant *Elt = C->getAggregateElement(i); 1825 if (!Elt || Elt->isNullValue()) 1826 return false; 1827 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1828 return false; 1829 } 1830 return true; 1831 } 1832 1833 return false; 1834 } 1835 1836 if (auto *I = dyn_cast<Instruction>(V)) { 1837 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1838 // If the possible ranges don't contain zero, then the value is 1839 // definitely non-zero. 1840 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1841 const APInt ZeroValue(Ty->getBitWidth(), 0); 1842 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1843 return true; 1844 } 1845 } 1846 } 1847 1848 // The remaining tests are all recursive, so bail out if we hit the limit. 1849 if (Depth++ >= MaxDepth) 1850 return false; 1851 1852 // Check for pointer simplifications. 1853 if (V->getType()->isPointerTy()) { 1854 if (isKnownNonNull(V)) 1855 return true; 1856 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1857 if (isGEPKnownNonNull(GEP, Depth, Q)) 1858 return true; 1859 } 1860 1861 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1862 1863 // X | Y != 0 if X != 0 or Y != 0. 1864 Value *X = nullptr, *Y = nullptr; 1865 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1866 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1867 1868 // ext X != 0 if X != 0. 1869 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1870 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1871 1872 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1873 // if the lowest bit is shifted off the end. 1874 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1875 // shl nuw can't remove any non-zero bits. 1876 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1877 if (BO->hasNoUnsignedWrap()) 1878 return isKnownNonZero(X, Depth, Q); 1879 1880 APInt KnownZero(BitWidth, 0); 1881 APInt KnownOne(BitWidth, 0); 1882 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1883 if (KnownOne[0]) 1884 return true; 1885 } 1886 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1887 // defined if the sign bit is shifted off the end. 1888 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1889 // shr exact can only shift out zero bits. 1890 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1891 if (BO->isExact()) 1892 return isKnownNonZero(X, Depth, Q); 1893 1894 bool XKnownNonNegative, XKnownNegative; 1895 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1896 if (XKnownNegative) 1897 return true; 1898 1899 // If the shifter operand is a constant, and all of the bits shifted 1900 // out are known to be zero, and X is known non-zero then at least one 1901 // non-zero bit must remain. 1902 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1903 APInt KnownZero(BitWidth, 0); 1904 APInt KnownOne(BitWidth, 0); 1905 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1906 1907 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1908 // Is there a known one in the portion not shifted out? 1909 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1910 return true; 1911 // Are all the bits to be shifted out known zero? 1912 if (KnownZero.countTrailingOnes() >= ShiftVal) 1913 return isKnownNonZero(X, Depth, Q); 1914 } 1915 } 1916 // div exact can only produce a zero if the dividend is zero. 1917 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1918 return isKnownNonZero(X, Depth, Q); 1919 } 1920 // X + Y. 1921 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1922 bool XKnownNonNegative, XKnownNegative; 1923 bool YKnownNonNegative, YKnownNegative; 1924 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1925 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1926 1927 // If X and Y are both non-negative (as signed values) then their sum is not 1928 // zero unless both X and Y are zero. 1929 if (XKnownNonNegative && YKnownNonNegative) 1930 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1931 return true; 1932 1933 // If X and Y are both negative (as signed values) then their sum is not 1934 // zero unless both X and Y equal INT_MIN. 1935 if (BitWidth && XKnownNegative && YKnownNegative) { 1936 APInt KnownZero(BitWidth, 0); 1937 APInt KnownOne(BitWidth, 0); 1938 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1939 // The sign bit of X is set. If some other bit is set then X is not equal 1940 // to INT_MIN. 1941 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1942 if ((KnownOne & Mask) != 0) 1943 return true; 1944 // The sign bit of Y is set. If some other bit is set then Y is not equal 1945 // to INT_MIN. 1946 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1947 if ((KnownOne & Mask) != 0) 1948 return true; 1949 } 1950 1951 // The sum of a non-negative number and a power of two is not zero. 1952 if (XKnownNonNegative && 1953 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1954 return true; 1955 if (YKnownNonNegative && 1956 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1957 return true; 1958 } 1959 // X * Y. 1960 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1961 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1962 // If X and Y are non-zero then so is X * Y as long as the multiplication 1963 // does not overflow. 1964 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1965 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1966 return true; 1967 } 1968 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1969 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1970 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1971 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1972 return true; 1973 } 1974 // PHI 1975 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1976 // Try and detect a recurrence that monotonically increases from a 1977 // starting value, as these are common as induction variables. 1978 if (PN->getNumIncomingValues() == 2) { 1979 Value *Start = PN->getIncomingValue(0); 1980 Value *Induction = PN->getIncomingValue(1); 1981 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1982 std::swap(Start, Induction); 1983 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1984 if (!C->isZero() && !C->isNegative()) { 1985 ConstantInt *X; 1986 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1987 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1988 !X->isNegative()) 1989 return true; 1990 } 1991 } 1992 } 1993 // Check if all incoming values are non-zero constant. 1994 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1995 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1996 }); 1997 if (AllNonZeroConstants) 1998 return true; 1999 } 2000 2001 if (!BitWidth) return false; 2002 APInt KnownZero(BitWidth, 0); 2003 APInt KnownOne(BitWidth, 0); 2004 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2005 return KnownOne != 0; 2006 } 2007 2008 /// Return true if V2 == V1 + X, where X is known non-zero. 2009 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2010 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2011 if (!BO || BO->getOpcode() != Instruction::Add) 2012 return false; 2013 Value *Op = nullptr; 2014 if (V2 == BO->getOperand(0)) 2015 Op = BO->getOperand(1); 2016 else if (V2 == BO->getOperand(1)) 2017 Op = BO->getOperand(0); 2018 else 2019 return false; 2020 return isKnownNonZero(Op, 0, Q); 2021 } 2022 2023 /// Return true if it is known that V1 != V2. 2024 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2025 if (V1->getType()->isVectorTy() || V1 == V2) 2026 return false; 2027 if (V1->getType() != V2->getType()) 2028 // We can't look through casts yet. 2029 return false; 2030 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2031 return true; 2032 2033 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2034 // Are any known bits in V1 contradictory to known bits in V2? If V1 2035 // has a known zero where V2 has a known one, they must not be equal. 2036 auto BitWidth = Ty->getBitWidth(); 2037 APInt KnownZero1(BitWidth, 0); 2038 APInt KnownOne1(BitWidth, 0); 2039 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 2040 APInt KnownZero2(BitWidth, 0); 2041 APInt KnownOne2(BitWidth, 0); 2042 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 2043 2044 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2045 if (OppositeBits.getBoolValue()) 2046 return true; 2047 } 2048 return false; 2049 } 2050 2051 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2052 /// simplify operations downstream. Mask is known to be zero for bits that V 2053 /// cannot have. 2054 /// 2055 /// This function is defined on values with integer type, values with pointer 2056 /// type, and vectors of integers. In the case 2057 /// where V is a vector, the mask, known zero, and known one values are the 2058 /// same width as the vector element, and the bit is set only if it is true 2059 /// for all of the elements in the vector. 2060 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2061 const Query &Q) { 2062 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2063 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2064 return (KnownZero & Mask) == Mask; 2065 } 2066 2067 /// For vector constants, loop over the elements and find the constant with the 2068 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2069 /// or if any element was not analyzed; otherwise, return the count for the 2070 /// element with the minimum number of sign bits. 2071 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2072 unsigned TyBits) { 2073 const auto *CV = dyn_cast<Constant>(V); 2074 if (!CV || !CV->getType()->isVectorTy()) 2075 return 0; 2076 2077 unsigned MinSignBits = TyBits; 2078 unsigned NumElts = CV->getType()->getVectorNumElements(); 2079 for (unsigned i = 0; i != NumElts; ++i) { 2080 // If we find a non-ConstantInt, bail out. 2081 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2082 if (!Elt) 2083 return 0; 2084 2085 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2086 APInt EltVal = Elt->getValue(); 2087 if (EltVal.isNegative()) 2088 EltVal = ~EltVal; 2089 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2090 } 2091 2092 return MinSignBits; 2093 } 2094 2095 /// Return the number of times the sign bit of the register is replicated into 2096 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2097 /// (itself), but other cases can give us information. For example, immediately 2098 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2099 /// other, so we return 3. For vectors, return the number of sign bits for the 2100 /// vector element with the mininum number of known sign bits. 2101 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) { 2102 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2103 unsigned Tmp, Tmp2; 2104 unsigned FirstAnswer = 1; 2105 2106 // Note that ConstantInt is handled by the general computeKnownBits case 2107 // below. 2108 2109 if (Depth == MaxDepth) 2110 return 1; // Limit search depth. 2111 2112 const Operator *U = dyn_cast<Operator>(V); 2113 switch (Operator::getOpcode(V)) { 2114 default: break; 2115 case Instruction::SExt: 2116 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2117 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2118 2119 case Instruction::SDiv: { 2120 const APInt *Denominator; 2121 // sdiv X, C -> adds log(C) sign bits. 2122 if (match(U->getOperand(1), m_APInt(Denominator))) { 2123 2124 // Ignore non-positive denominator. 2125 if (!Denominator->isStrictlyPositive()) 2126 break; 2127 2128 // Calculate the incoming numerator bits. 2129 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2130 2131 // Add floor(log(C)) bits to the numerator bits. 2132 return std::min(TyBits, NumBits + Denominator->logBase2()); 2133 } 2134 break; 2135 } 2136 2137 case Instruction::SRem: { 2138 const APInt *Denominator; 2139 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2140 // positive constant. This let us put a lower bound on the number of sign 2141 // bits. 2142 if (match(U->getOperand(1), m_APInt(Denominator))) { 2143 2144 // Ignore non-positive denominator. 2145 if (!Denominator->isStrictlyPositive()) 2146 break; 2147 2148 // Calculate the incoming numerator bits. SRem by a positive constant 2149 // can't lower the number of sign bits. 2150 unsigned NumrBits = 2151 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2152 2153 // Calculate the leading sign bit constraints by examining the 2154 // denominator. Given that the denominator is positive, there are two 2155 // cases: 2156 // 2157 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2158 // (1 << ceilLogBase2(C)). 2159 // 2160 // 2. the numerator is negative. Then the result range is (-C,0] and 2161 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2162 // 2163 // Thus a lower bound on the number of sign bits is `TyBits - 2164 // ceilLogBase2(C)`. 2165 2166 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2167 return std::max(NumrBits, ResBits); 2168 } 2169 break; 2170 } 2171 2172 case Instruction::AShr: { 2173 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2174 // ashr X, C -> adds C sign bits. Vectors too. 2175 const APInt *ShAmt; 2176 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2177 Tmp += ShAmt->getZExtValue(); 2178 if (Tmp > TyBits) Tmp = TyBits; 2179 } 2180 return Tmp; 2181 } 2182 case Instruction::Shl: { 2183 const APInt *ShAmt; 2184 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2185 // shl destroys sign bits. 2186 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2187 Tmp2 = ShAmt->getZExtValue(); 2188 if (Tmp2 >= TyBits || // Bad shift. 2189 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2190 return Tmp - Tmp2; 2191 } 2192 break; 2193 } 2194 case Instruction::And: 2195 case Instruction::Or: 2196 case Instruction::Xor: // NOT is handled here. 2197 // Logical binary ops preserve the number of sign bits at the worst. 2198 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2199 if (Tmp != 1) { 2200 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2201 FirstAnswer = std::min(Tmp, Tmp2); 2202 // We computed what we know about the sign bits as our first 2203 // answer. Now proceed to the generic code that uses 2204 // computeKnownBits, and pick whichever answer is better. 2205 } 2206 break; 2207 2208 case Instruction::Select: 2209 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2210 if (Tmp == 1) return 1; // Early out. 2211 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2212 return std::min(Tmp, Tmp2); 2213 2214 case Instruction::Add: 2215 // Add can have at most one carry bit. Thus we know that the output 2216 // is, at worst, one more bit than the inputs. 2217 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2218 if (Tmp == 1) return 1; // Early out. 2219 2220 // Special case decrementing a value (ADD X, -1): 2221 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2222 if (CRHS->isAllOnesValue()) { 2223 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2224 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2225 2226 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2227 // sign bits set. 2228 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2229 return TyBits; 2230 2231 // If we are subtracting one from a positive number, there is no carry 2232 // out of the result. 2233 if (KnownZero.isNegative()) 2234 return Tmp; 2235 } 2236 2237 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2238 if (Tmp2 == 1) return 1; 2239 return std::min(Tmp, Tmp2)-1; 2240 2241 case Instruction::Sub: 2242 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2243 if (Tmp2 == 1) return 1; 2244 2245 // Handle NEG. 2246 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2247 if (CLHS->isNullValue()) { 2248 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2249 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2250 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2251 // sign bits set. 2252 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2253 return TyBits; 2254 2255 // If the input is known to be positive (the sign bit is known clear), 2256 // the output of the NEG has the same number of sign bits as the input. 2257 if (KnownZero.isNegative()) 2258 return Tmp2; 2259 2260 // Otherwise, we treat this like a SUB. 2261 } 2262 2263 // Sub can have at most one carry bit. Thus we know that the output 2264 // is, at worst, one more bit than the inputs. 2265 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2266 if (Tmp == 1) return 1; // Early out. 2267 return std::min(Tmp, Tmp2)-1; 2268 2269 case Instruction::PHI: { 2270 const PHINode *PN = cast<PHINode>(U); 2271 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2272 // Don't analyze large in-degree PHIs. 2273 if (NumIncomingValues > 4) break; 2274 // Unreachable blocks may have zero-operand PHI nodes. 2275 if (NumIncomingValues == 0) break; 2276 2277 // Take the minimum of all incoming values. This can't infinitely loop 2278 // because of our depth threshold. 2279 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2280 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2281 if (Tmp == 1) return Tmp; 2282 Tmp = std::min( 2283 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2284 } 2285 return Tmp; 2286 } 2287 2288 case Instruction::Trunc: 2289 // FIXME: it's tricky to do anything useful for this, but it is an important 2290 // case for targets like X86. 2291 break; 2292 2293 case Instruction::ExtractElement: 2294 // Look through extract element. At the moment we keep this simple and skip 2295 // tracking the specific element. But at least we might find information 2296 // valid for all elements of the vector (for example if vector is sign 2297 // extended, shifted, etc). 2298 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2299 } 2300 2301 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2302 // use this information. 2303 2304 // If we can examine all elements of a vector constant successfully, we're 2305 // done (we can't do any better than that). If not, keep trying. 2306 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2307 return VecSignBits; 2308 2309 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2310 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2311 2312 // If we know that the sign bit is either zero or one, determine the number of 2313 // identical bits in the top of the input value. 2314 if (KnownZero.isNegative()) 2315 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2316 2317 if (KnownOne.isNegative()) 2318 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2319 2320 // computeKnownBits gave us no extra information about the top bits. 2321 return FirstAnswer; 2322 } 2323 2324 /// This function computes the integer multiple of Base that equals V. 2325 /// If successful, it returns true and returns the multiple in 2326 /// Multiple. If unsuccessful, it returns false. It looks 2327 /// through SExt instructions only if LookThroughSExt is true. 2328 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2329 bool LookThroughSExt, unsigned Depth) { 2330 const unsigned MaxDepth = 6; 2331 2332 assert(V && "No Value?"); 2333 assert(Depth <= MaxDepth && "Limit Search Depth"); 2334 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2335 2336 Type *T = V->getType(); 2337 2338 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2339 2340 if (Base == 0) 2341 return false; 2342 2343 if (Base == 1) { 2344 Multiple = V; 2345 return true; 2346 } 2347 2348 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2349 Constant *BaseVal = ConstantInt::get(T, Base); 2350 if (CO && CO == BaseVal) { 2351 // Multiple is 1. 2352 Multiple = ConstantInt::get(T, 1); 2353 return true; 2354 } 2355 2356 if (CI && CI->getZExtValue() % Base == 0) { 2357 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2358 return true; 2359 } 2360 2361 if (Depth == MaxDepth) return false; // Limit search depth. 2362 2363 Operator *I = dyn_cast<Operator>(V); 2364 if (!I) return false; 2365 2366 switch (I->getOpcode()) { 2367 default: break; 2368 case Instruction::SExt: 2369 if (!LookThroughSExt) return false; 2370 // otherwise fall through to ZExt 2371 case Instruction::ZExt: 2372 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2373 LookThroughSExt, Depth+1); 2374 case Instruction::Shl: 2375 case Instruction::Mul: { 2376 Value *Op0 = I->getOperand(0); 2377 Value *Op1 = I->getOperand(1); 2378 2379 if (I->getOpcode() == Instruction::Shl) { 2380 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2381 if (!Op1CI) return false; 2382 // Turn Op0 << Op1 into Op0 * 2^Op1 2383 APInt Op1Int = Op1CI->getValue(); 2384 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2385 APInt API(Op1Int.getBitWidth(), 0); 2386 API.setBit(BitToSet); 2387 Op1 = ConstantInt::get(V->getContext(), API); 2388 } 2389 2390 Value *Mul0 = nullptr; 2391 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2392 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2393 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2394 if (Op1C->getType()->getPrimitiveSizeInBits() < 2395 MulC->getType()->getPrimitiveSizeInBits()) 2396 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2397 if (Op1C->getType()->getPrimitiveSizeInBits() > 2398 MulC->getType()->getPrimitiveSizeInBits()) 2399 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2400 2401 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2402 Multiple = ConstantExpr::getMul(MulC, Op1C); 2403 return true; 2404 } 2405 2406 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2407 if (Mul0CI->getValue() == 1) { 2408 // V == Base * Op1, so return Op1 2409 Multiple = Op1; 2410 return true; 2411 } 2412 } 2413 2414 Value *Mul1 = nullptr; 2415 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2416 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2417 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2418 if (Op0C->getType()->getPrimitiveSizeInBits() < 2419 MulC->getType()->getPrimitiveSizeInBits()) 2420 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2421 if (Op0C->getType()->getPrimitiveSizeInBits() > 2422 MulC->getType()->getPrimitiveSizeInBits()) 2423 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2424 2425 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2426 Multiple = ConstantExpr::getMul(MulC, Op0C); 2427 return true; 2428 } 2429 2430 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2431 if (Mul1CI->getValue() == 1) { 2432 // V == Base * Op0, so return Op0 2433 Multiple = Op0; 2434 return true; 2435 } 2436 } 2437 } 2438 } 2439 2440 // We could not determine if V is a multiple of Base. 2441 return false; 2442 } 2443 2444 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2445 const TargetLibraryInfo *TLI) { 2446 const Function *F = ICS.getCalledFunction(); 2447 if (!F) 2448 return Intrinsic::not_intrinsic; 2449 2450 if (F->isIntrinsic()) 2451 return F->getIntrinsicID(); 2452 2453 if (!TLI) 2454 return Intrinsic::not_intrinsic; 2455 2456 LibFunc::Func Func; 2457 // We're going to make assumptions on the semantics of the functions, check 2458 // that the target knows that it's available in this environment and it does 2459 // not have local linkage. 2460 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2461 return Intrinsic::not_intrinsic; 2462 2463 if (!ICS.onlyReadsMemory()) 2464 return Intrinsic::not_intrinsic; 2465 2466 // Otherwise check if we have a call to a function that can be turned into a 2467 // vector intrinsic. 2468 switch (Func) { 2469 default: 2470 break; 2471 case LibFunc::sin: 2472 case LibFunc::sinf: 2473 case LibFunc::sinl: 2474 return Intrinsic::sin; 2475 case LibFunc::cos: 2476 case LibFunc::cosf: 2477 case LibFunc::cosl: 2478 return Intrinsic::cos; 2479 case LibFunc::exp: 2480 case LibFunc::expf: 2481 case LibFunc::expl: 2482 return Intrinsic::exp; 2483 case LibFunc::exp2: 2484 case LibFunc::exp2f: 2485 case LibFunc::exp2l: 2486 return Intrinsic::exp2; 2487 case LibFunc::log: 2488 case LibFunc::logf: 2489 case LibFunc::logl: 2490 return Intrinsic::log; 2491 case LibFunc::log10: 2492 case LibFunc::log10f: 2493 case LibFunc::log10l: 2494 return Intrinsic::log10; 2495 case LibFunc::log2: 2496 case LibFunc::log2f: 2497 case LibFunc::log2l: 2498 return Intrinsic::log2; 2499 case LibFunc::fabs: 2500 case LibFunc::fabsf: 2501 case LibFunc::fabsl: 2502 return Intrinsic::fabs; 2503 case LibFunc::fmin: 2504 case LibFunc::fminf: 2505 case LibFunc::fminl: 2506 return Intrinsic::minnum; 2507 case LibFunc::fmax: 2508 case LibFunc::fmaxf: 2509 case LibFunc::fmaxl: 2510 return Intrinsic::maxnum; 2511 case LibFunc::copysign: 2512 case LibFunc::copysignf: 2513 case LibFunc::copysignl: 2514 return Intrinsic::copysign; 2515 case LibFunc::floor: 2516 case LibFunc::floorf: 2517 case LibFunc::floorl: 2518 return Intrinsic::floor; 2519 case LibFunc::ceil: 2520 case LibFunc::ceilf: 2521 case LibFunc::ceill: 2522 return Intrinsic::ceil; 2523 case LibFunc::trunc: 2524 case LibFunc::truncf: 2525 case LibFunc::truncl: 2526 return Intrinsic::trunc; 2527 case LibFunc::rint: 2528 case LibFunc::rintf: 2529 case LibFunc::rintl: 2530 return Intrinsic::rint; 2531 case LibFunc::nearbyint: 2532 case LibFunc::nearbyintf: 2533 case LibFunc::nearbyintl: 2534 return Intrinsic::nearbyint; 2535 case LibFunc::round: 2536 case LibFunc::roundf: 2537 case LibFunc::roundl: 2538 return Intrinsic::round; 2539 case LibFunc::pow: 2540 case LibFunc::powf: 2541 case LibFunc::powl: 2542 return Intrinsic::pow; 2543 case LibFunc::sqrt: 2544 case LibFunc::sqrtf: 2545 case LibFunc::sqrtl: 2546 if (ICS->hasNoNaNs()) 2547 return Intrinsic::sqrt; 2548 return Intrinsic::not_intrinsic; 2549 } 2550 2551 return Intrinsic::not_intrinsic; 2552 } 2553 2554 /// Return true if we can prove that the specified FP value is never equal to 2555 /// -0.0. 2556 /// 2557 /// NOTE: this function will need to be revisited when we support non-default 2558 /// rounding modes! 2559 /// 2560 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2561 unsigned Depth) { 2562 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2563 return !CFP->getValueAPF().isNegZero(); 2564 2565 if (Depth == MaxDepth) 2566 return false; // Limit search depth. 2567 2568 const Operator *I = dyn_cast<Operator>(V); 2569 if (!I) return false; 2570 2571 // Check if the nsz fast-math flag is set 2572 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2573 if (FPO->hasNoSignedZeros()) 2574 return true; 2575 2576 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2577 if (I->getOpcode() == Instruction::FAdd) 2578 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2579 if (CFP->isNullValue()) 2580 return true; 2581 2582 // sitofp and uitofp turn into +0.0 for zero. 2583 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2584 return true; 2585 2586 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2587 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2588 switch (IID) { 2589 default: 2590 break; 2591 // sqrt(-0.0) = -0.0, no other negative results are possible. 2592 case Intrinsic::sqrt: 2593 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2594 // fabs(x) != -0.0 2595 case Intrinsic::fabs: 2596 return true; 2597 } 2598 } 2599 2600 return false; 2601 } 2602 2603 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2604 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2605 /// bit despite comparing equal. 2606 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2607 const TargetLibraryInfo *TLI, 2608 bool SignBitOnly, 2609 unsigned Depth) { 2610 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2611 return !CFP->getValueAPF().isNegative() || 2612 (!SignBitOnly && CFP->getValueAPF().isZero()); 2613 } 2614 2615 if (Depth == MaxDepth) 2616 return false; // Limit search depth. 2617 2618 const Operator *I = dyn_cast<Operator>(V); 2619 if (!I) 2620 return false; 2621 2622 switch (I->getOpcode()) { 2623 default: 2624 break; 2625 // Unsigned integers are always nonnegative. 2626 case Instruction::UIToFP: 2627 return true; 2628 case Instruction::FMul: 2629 // x*x is always non-negative or a NaN. 2630 if (I->getOperand(0) == I->getOperand(1) && 2631 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2632 return true; 2633 2634 LLVM_FALLTHROUGH; 2635 case Instruction::FAdd: 2636 case Instruction::FDiv: 2637 case Instruction::FRem: 2638 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2639 Depth + 1) && 2640 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2641 Depth + 1); 2642 case Instruction::Select: 2643 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2644 Depth + 1) && 2645 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2646 Depth + 1); 2647 case Instruction::FPExt: 2648 case Instruction::FPTrunc: 2649 // Widening/narrowing never change sign. 2650 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2651 Depth + 1); 2652 case Instruction::Call: 2653 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI); 2654 switch (IID) { 2655 default: 2656 break; 2657 case Intrinsic::maxnum: 2658 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2659 Depth + 1) || 2660 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2661 Depth + 1); 2662 case Intrinsic::minnum: 2663 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2664 Depth + 1) && 2665 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2666 Depth + 1); 2667 case Intrinsic::exp: 2668 case Intrinsic::exp2: 2669 case Intrinsic::fabs: 2670 case Intrinsic::sqrt: 2671 return true; 2672 case Intrinsic::powi: 2673 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2674 // powi(x,n) is non-negative if n is even. 2675 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2676 return true; 2677 } 2678 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2679 Depth + 1); 2680 case Intrinsic::fma: 2681 case Intrinsic::fmuladd: 2682 // x*x+y is non-negative if y is non-negative. 2683 return I->getOperand(0) == I->getOperand(1) && 2684 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2685 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2686 Depth + 1); 2687 } 2688 break; 2689 } 2690 return false; 2691 } 2692 2693 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2694 const TargetLibraryInfo *TLI) { 2695 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2696 } 2697 2698 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2699 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2700 } 2701 2702 /// If the specified value can be set by repeating the same byte in memory, 2703 /// return the i8 value that it is represented with. This is 2704 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2705 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2706 /// byte store (e.g. i16 0x1234), return null. 2707 Value *llvm::isBytewiseValue(Value *V) { 2708 // All byte-wide stores are splatable, even of arbitrary variables. 2709 if (V->getType()->isIntegerTy(8)) return V; 2710 2711 // Handle 'null' ConstantArrayZero etc. 2712 if (Constant *C = dyn_cast<Constant>(V)) 2713 if (C->isNullValue()) 2714 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2715 2716 // Constant float and double values can be handled as integer values if the 2717 // corresponding integer value is "byteable". An important case is 0.0. 2718 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2719 if (CFP->getType()->isFloatTy()) 2720 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2721 if (CFP->getType()->isDoubleTy()) 2722 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2723 // Don't handle long double formats, which have strange constraints. 2724 } 2725 2726 // We can handle constant integers that are multiple of 8 bits. 2727 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2728 if (CI->getBitWidth() % 8 == 0) { 2729 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2730 2731 if (!CI->getValue().isSplat(8)) 2732 return nullptr; 2733 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2734 } 2735 } 2736 2737 // A ConstantDataArray/Vector is splatable if all its members are equal and 2738 // also splatable. 2739 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2740 Value *Elt = CA->getElementAsConstant(0); 2741 Value *Val = isBytewiseValue(Elt); 2742 if (!Val) 2743 return nullptr; 2744 2745 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2746 if (CA->getElementAsConstant(I) != Elt) 2747 return nullptr; 2748 2749 return Val; 2750 } 2751 2752 // Conceptually, we could handle things like: 2753 // %a = zext i8 %X to i16 2754 // %b = shl i16 %a, 8 2755 // %c = or i16 %a, %b 2756 // but until there is an example that actually needs this, it doesn't seem 2757 // worth worrying about. 2758 return nullptr; 2759 } 2760 2761 2762 // This is the recursive version of BuildSubAggregate. It takes a few different 2763 // arguments. Idxs is the index within the nested struct From that we are 2764 // looking at now (which is of type IndexedType). IdxSkip is the number of 2765 // indices from Idxs that should be left out when inserting into the resulting 2766 // struct. To is the result struct built so far, new insertvalue instructions 2767 // build on that. 2768 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2769 SmallVectorImpl<unsigned> &Idxs, 2770 unsigned IdxSkip, 2771 Instruction *InsertBefore) { 2772 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2773 if (STy) { 2774 // Save the original To argument so we can modify it 2775 Value *OrigTo = To; 2776 // General case, the type indexed by Idxs is a struct 2777 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2778 // Process each struct element recursively 2779 Idxs.push_back(i); 2780 Value *PrevTo = To; 2781 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2782 InsertBefore); 2783 Idxs.pop_back(); 2784 if (!To) { 2785 // Couldn't find any inserted value for this index? Cleanup 2786 while (PrevTo != OrigTo) { 2787 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2788 PrevTo = Del->getAggregateOperand(); 2789 Del->eraseFromParent(); 2790 } 2791 // Stop processing elements 2792 break; 2793 } 2794 } 2795 // If we successfully found a value for each of our subaggregates 2796 if (To) 2797 return To; 2798 } 2799 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2800 // the struct's elements had a value that was inserted directly. In the latter 2801 // case, perhaps we can't determine each of the subelements individually, but 2802 // we might be able to find the complete struct somewhere. 2803 2804 // Find the value that is at that particular spot 2805 Value *V = FindInsertedValue(From, Idxs); 2806 2807 if (!V) 2808 return nullptr; 2809 2810 // Insert the value in the new (sub) aggregrate 2811 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2812 "tmp", InsertBefore); 2813 } 2814 2815 // This helper takes a nested struct and extracts a part of it (which is again a 2816 // struct) into a new value. For example, given the struct: 2817 // { a, { b, { c, d }, e } } 2818 // and the indices "1, 1" this returns 2819 // { c, d }. 2820 // 2821 // It does this by inserting an insertvalue for each element in the resulting 2822 // struct, as opposed to just inserting a single struct. This will only work if 2823 // each of the elements of the substruct are known (ie, inserted into From by an 2824 // insertvalue instruction somewhere). 2825 // 2826 // All inserted insertvalue instructions are inserted before InsertBefore 2827 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2828 Instruction *InsertBefore) { 2829 assert(InsertBefore && "Must have someplace to insert!"); 2830 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2831 idx_range); 2832 Value *To = UndefValue::get(IndexedType); 2833 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2834 unsigned IdxSkip = Idxs.size(); 2835 2836 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2837 } 2838 2839 /// Given an aggregrate and an sequence of indices, see if 2840 /// the scalar value indexed is already around as a register, for example if it 2841 /// were inserted directly into the aggregrate. 2842 /// 2843 /// If InsertBefore is not null, this function will duplicate (modified) 2844 /// insertvalues when a part of a nested struct is extracted. 2845 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2846 Instruction *InsertBefore) { 2847 // Nothing to index? Just return V then (this is useful at the end of our 2848 // recursion). 2849 if (idx_range.empty()) 2850 return V; 2851 // We have indices, so V should have an indexable type. 2852 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2853 "Not looking at a struct or array?"); 2854 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2855 "Invalid indices for type?"); 2856 2857 if (Constant *C = dyn_cast<Constant>(V)) { 2858 C = C->getAggregateElement(idx_range[0]); 2859 if (!C) return nullptr; 2860 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2861 } 2862 2863 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2864 // Loop the indices for the insertvalue instruction in parallel with the 2865 // requested indices 2866 const unsigned *req_idx = idx_range.begin(); 2867 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2868 i != e; ++i, ++req_idx) { 2869 if (req_idx == idx_range.end()) { 2870 // We can't handle this without inserting insertvalues 2871 if (!InsertBefore) 2872 return nullptr; 2873 2874 // The requested index identifies a part of a nested aggregate. Handle 2875 // this specially. For example, 2876 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2877 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2878 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2879 // This can be changed into 2880 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2881 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2882 // which allows the unused 0,0 element from the nested struct to be 2883 // removed. 2884 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2885 InsertBefore); 2886 } 2887 2888 // This insert value inserts something else than what we are looking for. 2889 // See if the (aggregate) value inserted into has the value we are 2890 // looking for, then. 2891 if (*req_idx != *i) 2892 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2893 InsertBefore); 2894 } 2895 // If we end up here, the indices of the insertvalue match with those 2896 // requested (though possibly only partially). Now we recursively look at 2897 // the inserted value, passing any remaining indices. 2898 return FindInsertedValue(I->getInsertedValueOperand(), 2899 makeArrayRef(req_idx, idx_range.end()), 2900 InsertBefore); 2901 } 2902 2903 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2904 // If we're extracting a value from an aggregate that was extracted from 2905 // something else, we can extract from that something else directly instead. 2906 // However, we will need to chain I's indices with the requested indices. 2907 2908 // Calculate the number of indices required 2909 unsigned size = I->getNumIndices() + idx_range.size(); 2910 // Allocate some space to put the new indices in 2911 SmallVector<unsigned, 5> Idxs; 2912 Idxs.reserve(size); 2913 // Add indices from the extract value instruction 2914 Idxs.append(I->idx_begin(), I->idx_end()); 2915 2916 // Add requested indices 2917 Idxs.append(idx_range.begin(), idx_range.end()); 2918 2919 assert(Idxs.size() == size 2920 && "Number of indices added not correct?"); 2921 2922 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2923 } 2924 // Otherwise, we don't know (such as, extracting from a function return value 2925 // or load instruction) 2926 return nullptr; 2927 } 2928 2929 /// Analyze the specified pointer to see if it can be expressed as a base 2930 /// pointer plus a constant offset. Return the base and offset to the caller. 2931 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2932 const DataLayout &DL) { 2933 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2934 APInt ByteOffset(BitWidth, 0); 2935 2936 // We walk up the defs but use a visited set to handle unreachable code. In 2937 // that case, we stop after accumulating the cycle once (not that it 2938 // matters). 2939 SmallPtrSet<Value *, 16> Visited; 2940 while (Visited.insert(Ptr).second) { 2941 if (Ptr->getType()->isVectorTy()) 2942 break; 2943 2944 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2945 // If one of the values we have visited is an addrspacecast, then 2946 // the pointer type of this GEP may be different from the type 2947 // of the Ptr parameter which was passed to this function. This 2948 // means when we construct GEPOffset, we need to use the size 2949 // of GEP's pointer type rather than the size of the original 2950 // pointer type. 2951 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 2952 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2953 break; 2954 2955 ByteOffset += GEPOffset.getSExtValue(); 2956 2957 Ptr = GEP->getPointerOperand(); 2958 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2959 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2960 Ptr = cast<Operator>(Ptr)->getOperand(0); 2961 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2962 if (GA->isInterposable()) 2963 break; 2964 Ptr = GA->getAliasee(); 2965 } else { 2966 break; 2967 } 2968 } 2969 Offset = ByteOffset.getSExtValue(); 2970 return Ptr; 2971 } 2972 2973 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 2974 // Make sure the GEP has exactly three arguments. 2975 if (GEP->getNumOperands() != 3) 2976 return false; 2977 2978 // Make sure the index-ee is a pointer to array of i8. 2979 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2980 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2981 return false; 2982 2983 // Check to make sure that the first operand of the GEP is an integer and 2984 // has value 0 so that we are sure we're indexing into the initializer. 2985 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2986 if (!FirstIdx || !FirstIdx->isZero()) 2987 return false; 2988 2989 return true; 2990 } 2991 2992 /// This function computes the length of a null-terminated C string pointed to 2993 /// by V. If successful, it returns true and returns the string in Str. 2994 /// If unsuccessful, it returns false. 2995 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2996 uint64_t Offset, bool TrimAtNul) { 2997 assert(V); 2998 2999 // Look through bitcast instructions and geps. 3000 V = V->stripPointerCasts(); 3001 3002 // If the value is a GEP instruction or constant expression, treat it as an 3003 // offset. 3004 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3005 // The GEP operator should be based on a pointer to string constant, and is 3006 // indexing into the string constant. 3007 if (!isGEPBasedOnPointerToString(GEP)) 3008 return false; 3009 3010 // If the second index isn't a ConstantInt, then this is a variable index 3011 // into the array. If this occurs, we can't say anything meaningful about 3012 // the string. 3013 uint64_t StartIdx = 0; 3014 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3015 StartIdx = CI->getZExtValue(); 3016 else 3017 return false; 3018 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 3019 TrimAtNul); 3020 } 3021 3022 // The GEP instruction, constant or instruction, must reference a global 3023 // variable that is a constant and is initialized. The referenced constant 3024 // initializer is the array that we'll use for optimization. 3025 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3026 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3027 return false; 3028 3029 // Handle the all-zeros case. 3030 if (GV->getInitializer()->isNullValue()) { 3031 // This is a degenerate case. The initializer is constant zero so the 3032 // length of the string must be zero. 3033 Str = ""; 3034 return true; 3035 } 3036 3037 // This must be a ConstantDataArray. 3038 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3039 if (!Array || !Array->isString()) 3040 return false; 3041 3042 // Get the number of elements in the array. 3043 uint64_t NumElts = Array->getType()->getArrayNumElements(); 3044 3045 // Start out with the entire array in the StringRef. 3046 Str = Array->getAsString(); 3047 3048 if (Offset > NumElts) 3049 return false; 3050 3051 // Skip over 'offset' bytes. 3052 Str = Str.substr(Offset); 3053 3054 if (TrimAtNul) { 3055 // Trim off the \0 and anything after it. If the array is not nul 3056 // terminated, we just return the whole end of string. The client may know 3057 // some other way that the string is length-bound. 3058 Str = Str.substr(0, Str.find('\0')); 3059 } 3060 return true; 3061 } 3062 3063 // These next two are very similar to the above, but also look through PHI 3064 // nodes. 3065 // TODO: See if we can integrate these two together. 3066 3067 /// If we can compute the length of the string pointed to by 3068 /// the specified pointer, return 'len+1'. If we can't, return 0. 3069 static uint64_t GetStringLengthH(const Value *V, 3070 SmallPtrSetImpl<const PHINode*> &PHIs) { 3071 // Look through noop bitcast instructions. 3072 V = V->stripPointerCasts(); 3073 3074 // If this is a PHI node, there are two cases: either we have already seen it 3075 // or we haven't. 3076 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3077 if (!PHIs.insert(PN).second) 3078 return ~0ULL; // already in the set. 3079 3080 // If it was new, see if all the input strings are the same length. 3081 uint64_t LenSoFar = ~0ULL; 3082 for (Value *IncValue : PN->incoming_values()) { 3083 uint64_t Len = GetStringLengthH(IncValue, PHIs); 3084 if (Len == 0) return 0; // Unknown length -> unknown. 3085 3086 if (Len == ~0ULL) continue; 3087 3088 if (Len != LenSoFar && LenSoFar != ~0ULL) 3089 return 0; // Disagree -> unknown. 3090 LenSoFar = Len; 3091 } 3092 3093 // Success, all agree. 3094 return LenSoFar; 3095 } 3096 3097 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3098 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3099 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3100 if (Len1 == 0) return 0; 3101 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3102 if (Len2 == 0) return 0; 3103 if (Len1 == ~0ULL) return Len2; 3104 if (Len2 == ~0ULL) return Len1; 3105 if (Len1 != Len2) return 0; 3106 return Len1; 3107 } 3108 3109 // Otherwise, see if we can read the string. 3110 StringRef StrData; 3111 if (!getConstantStringInfo(V, StrData)) 3112 return 0; 3113 3114 return StrData.size()+1; 3115 } 3116 3117 /// If we can compute the length of the string pointed to by 3118 /// the specified pointer, return 'len+1'. If we can't, return 0. 3119 uint64_t llvm::GetStringLength(const Value *V) { 3120 if (!V->getType()->isPointerTy()) return 0; 3121 3122 SmallPtrSet<const PHINode*, 32> PHIs; 3123 uint64_t Len = GetStringLengthH(V, PHIs); 3124 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3125 // an empty string as a length. 3126 return Len == ~0ULL ? 1 : Len; 3127 } 3128 3129 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3130 /// previous iteration of the loop was referring to the same object as \p PN. 3131 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3132 const LoopInfo *LI) { 3133 // Find the loop-defined value. 3134 Loop *L = LI->getLoopFor(PN->getParent()); 3135 if (PN->getNumIncomingValues() != 2) 3136 return true; 3137 3138 // Find the value from previous iteration. 3139 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3140 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3141 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3142 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3143 return true; 3144 3145 // If a new pointer is loaded in the loop, the pointer references a different 3146 // object in every iteration. E.g.: 3147 // for (i) 3148 // int *p = a[i]; 3149 // ... 3150 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3151 if (!L->isLoopInvariant(Load->getPointerOperand())) 3152 return false; 3153 return true; 3154 } 3155 3156 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3157 unsigned MaxLookup) { 3158 if (!V->getType()->isPointerTy()) 3159 return V; 3160 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3161 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3162 V = GEP->getPointerOperand(); 3163 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3164 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3165 V = cast<Operator>(V)->getOperand(0); 3166 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3167 if (GA->isInterposable()) 3168 return V; 3169 V = GA->getAliasee(); 3170 } else { 3171 if (auto CS = CallSite(V)) 3172 if (Value *RV = CS.getReturnedArgOperand()) { 3173 V = RV; 3174 continue; 3175 } 3176 3177 // See if InstructionSimplify knows any relevant tricks. 3178 if (Instruction *I = dyn_cast<Instruction>(V)) 3179 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3180 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3181 V = Simplified; 3182 continue; 3183 } 3184 3185 return V; 3186 } 3187 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3188 } 3189 return V; 3190 } 3191 3192 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3193 const DataLayout &DL, LoopInfo *LI, 3194 unsigned MaxLookup) { 3195 SmallPtrSet<Value *, 4> Visited; 3196 SmallVector<Value *, 4> Worklist; 3197 Worklist.push_back(V); 3198 do { 3199 Value *P = Worklist.pop_back_val(); 3200 P = GetUnderlyingObject(P, DL, MaxLookup); 3201 3202 if (!Visited.insert(P).second) 3203 continue; 3204 3205 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3206 Worklist.push_back(SI->getTrueValue()); 3207 Worklist.push_back(SI->getFalseValue()); 3208 continue; 3209 } 3210 3211 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3212 // If this PHI changes the underlying object in every iteration of the 3213 // loop, don't look through it. Consider: 3214 // int **A; 3215 // for (i) { 3216 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3217 // Curr = A[i]; 3218 // *Prev, *Curr; 3219 // 3220 // Prev is tracking Curr one iteration behind so they refer to different 3221 // underlying objects. 3222 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3223 isSameUnderlyingObjectInLoop(PN, LI)) 3224 for (Value *IncValue : PN->incoming_values()) 3225 Worklist.push_back(IncValue); 3226 continue; 3227 } 3228 3229 Objects.push_back(P); 3230 } while (!Worklist.empty()); 3231 } 3232 3233 /// Return true if the only users of this pointer are lifetime markers. 3234 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3235 for (const User *U : V->users()) { 3236 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3237 if (!II) return false; 3238 3239 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3240 II->getIntrinsicID() != Intrinsic::lifetime_end) 3241 return false; 3242 } 3243 return true; 3244 } 3245 3246 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3247 const Instruction *CtxI, 3248 const DominatorTree *DT) { 3249 const Operator *Inst = dyn_cast<Operator>(V); 3250 if (!Inst) 3251 return false; 3252 3253 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3254 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3255 if (C->canTrap()) 3256 return false; 3257 3258 switch (Inst->getOpcode()) { 3259 default: 3260 return true; 3261 case Instruction::UDiv: 3262 case Instruction::URem: { 3263 // x / y is undefined if y == 0. 3264 const APInt *V; 3265 if (match(Inst->getOperand(1), m_APInt(V))) 3266 return *V != 0; 3267 return false; 3268 } 3269 case Instruction::SDiv: 3270 case Instruction::SRem: { 3271 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3272 const APInt *Numerator, *Denominator; 3273 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3274 return false; 3275 // We cannot hoist this division if the denominator is 0. 3276 if (*Denominator == 0) 3277 return false; 3278 // It's safe to hoist if the denominator is not 0 or -1. 3279 if (*Denominator != -1) 3280 return true; 3281 // At this point we know that the denominator is -1. It is safe to hoist as 3282 // long we know that the numerator is not INT_MIN. 3283 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3284 return !Numerator->isMinSignedValue(); 3285 // The numerator *might* be MinSignedValue. 3286 return false; 3287 } 3288 case Instruction::Load: { 3289 const LoadInst *LI = cast<LoadInst>(Inst); 3290 if (!LI->isUnordered() || 3291 // Speculative load may create a race that did not exist in the source. 3292 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3293 // Speculative load may load data from dirty regions. 3294 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3295 return false; 3296 const DataLayout &DL = LI->getModule()->getDataLayout(); 3297 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3298 LI->getAlignment(), DL, CtxI, DT); 3299 } 3300 case Instruction::Call: { 3301 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3302 switch (II->getIntrinsicID()) { 3303 // These synthetic intrinsics have no side-effects and just mark 3304 // information about their operands. 3305 // FIXME: There are other no-op synthetic instructions that potentially 3306 // should be considered at least *safe* to speculate... 3307 case Intrinsic::dbg_declare: 3308 case Intrinsic::dbg_value: 3309 return true; 3310 3311 case Intrinsic::bitreverse: 3312 case Intrinsic::bswap: 3313 case Intrinsic::ctlz: 3314 case Intrinsic::ctpop: 3315 case Intrinsic::cttz: 3316 case Intrinsic::objectsize: 3317 case Intrinsic::sadd_with_overflow: 3318 case Intrinsic::smul_with_overflow: 3319 case Intrinsic::ssub_with_overflow: 3320 case Intrinsic::uadd_with_overflow: 3321 case Intrinsic::umul_with_overflow: 3322 case Intrinsic::usub_with_overflow: 3323 return true; 3324 // These intrinsics are defined to have the same behavior as libm 3325 // functions except for setting errno. 3326 case Intrinsic::sqrt: 3327 case Intrinsic::fma: 3328 case Intrinsic::fmuladd: 3329 return true; 3330 // These intrinsics are defined to have the same behavior as libm 3331 // functions, and the corresponding libm functions never set errno. 3332 case Intrinsic::trunc: 3333 case Intrinsic::copysign: 3334 case Intrinsic::fabs: 3335 case Intrinsic::minnum: 3336 case Intrinsic::maxnum: 3337 return true; 3338 // These intrinsics are defined to have the same behavior as libm 3339 // functions, which never overflow when operating on the IEEE754 types 3340 // that we support, and never set errno otherwise. 3341 case Intrinsic::ceil: 3342 case Intrinsic::floor: 3343 case Intrinsic::nearbyint: 3344 case Intrinsic::rint: 3345 case Intrinsic::round: 3346 return true; 3347 // TODO: are convert_{from,to}_fp16 safe? 3348 // TODO: can we list target-specific intrinsics here? 3349 default: break; 3350 } 3351 } 3352 return false; // The called function could have undefined behavior or 3353 // side-effects, even if marked readnone nounwind. 3354 } 3355 case Instruction::VAArg: 3356 case Instruction::Alloca: 3357 case Instruction::Invoke: 3358 case Instruction::PHI: 3359 case Instruction::Store: 3360 case Instruction::Ret: 3361 case Instruction::Br: 3362 case Instruction::IndirectBr: 3363 case Instruction::Switch: 3364 case Instruction::Unreachable: 3365 case Instruction::Fence: 3366 case Instruction::AtomicRMW: 3367 case Instruction::AtomicCmpXchg: 3368 case Instruction::LandingPad: 3369 case Instruction::Resume: 3370 case Instruction::CatchSwitch: 3371 case Instruction::CatchPad: 3372 case Instruction::CatchRet: 3373 case Instruction::CleanupPad: 3374 case Instruction::CleanupRet: 3375 return false; // Misc instructions which have effects 3376 } 3377 } 3378 3379 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3380 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3381 } 3382 3383 /// Return true if we know that the specified value is never null. 3384 bool llvm::isKnownNonNull(const Value *V) { 3385 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3386 3387 // Alloca never returns null, malloc might. 3388 if (isa<AllocaInst>(V)) return true; 3389 3390 // A byval, inalloca, or nonnull argument is never null. 3391 if (const Argument *A = dyn_cast<Argument>(V)) 3392 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3393 3394 // A global variable in address space 0 is non null unless extern weak 3395 // or an absolute symbol reference. Other address spaces may have null as a 3396 // valid address for a global, so we can't assume anything. 3397 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3398 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3399 GV->getType()->getAddressSpace() == 0; 3400 3401 // A Load tagged with nonnull metadata is never null. 3402 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3403 return LI->getMetadata(LLVMContext::MD_nonnull); 3404 3405 if (auto CS = ImmutableCallSite(V)) 3406 if (CS.isReturnNonNull()) 3407 return true; 3408 3409 return false; 3410 } 3411 3412 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3413 const Instruction *CtxI, 3414 const DominatorTree *DT) { 3415 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3416 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3417 assert(CtxI && "Context instruction required for analysis"); 3418 assert(DT && "Dominator tree required for analysis"); 3419 3420 unsigned NumUsesExplored = 0; 3421 for (auto *U : V->users()) { 3422 // Avoid massive lists 3423 if (NumUsesExplored >= DomConditionsMaxUses) 3424 break; 3425 NumUsesExplored++; 3426 // Consider only compare instructions uniquely controlling a branch 3427 CmpInst::Predicate Pred; 3428 if (!match(const_cast<User *>(U), 3429 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3430 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3431 continue; 3432 3433 for (auto *CmpU : U->users()) { 3434 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3435 assert(BI->isConditional() && "uses a comparison!"); 3436 3437 BasicBlock *NonNullSuccessor = 3438 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3439 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3440 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3441 return true; 3442 } else if (Pred == ICmpInst::ICMP_NE && 3443 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3444 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3445 return true; 3446 } 3447 } 3448 } 3449 3450 return false; 3451 } 3452 3453 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3454 const DominatorTree *DT) { 3455 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3456 return false; 3457 3458 if (isKnownNonNull(V)) 3459 return true; 3460 3461 if (!CtxI || !DT) 3462 return false; 3463 3464 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3465 } 3466 3467 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3468 const Value *RHS, 3469 const DataLayout &DL, 3470 AssumptionCache *AC, 3471 const Instruction *CxtI, 3472 const DominatorTree *DT) { 3473 // Multiplying n * m significant bits yields a result of n + m significant 3474 // bits. If the total number of significant bits does not exceed the 3475 // result bit width (minus 1), there is no overflow. 3476 // This means if we have enough leading zero bits in the operands 3477 // we can guarantee that the result does not overflow. 3478 // Ref: "Hacker's Delight" by Henry Warren 3479 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3480 APInt LHSKnownZero(BitWidth, 0); 3481 APInt LHSKnownOne(BitWidth, 0); 3482 APInt RHSKnownZero(BitWidth, 0); 3483 APInt RHSKnownOne(BitWidth, 0); 3484 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3485 DT); 3486 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3487 DT); 3488 // Note that underestimating the number of zero bits gives a more 3489 // conservative answer. 3490 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3491 RHSKnownZero.countLeadingOnes(); 3492 // First handle the easy case: if we have enough zero bits there's 3493 // definitely no overflow. 3494 if (ZeroBits >= BitWidth) 3495 return OverflowResult::NeverOverflows; 3496 3497 // Get the largest possible values for each operand. 3498 APInt LHSMax = ~LHSKnownZero; 3499 APInt RHSMax = ~RHSKnownZero; 3500 3501 // We know the multiply operation doesn't overflow if the maximum values for 3502 // each operand will not overflow after we multiply them together. 3503 bool MaxOverflow; 3504 LHSMax.umul_ov(RHSMax, MaxOverflow); 3505 if (!MaxOverflow) 3506 return OverflowResult::NeverOverflows; 3507 3508 // We know it always overflows if multiplying the smallest possible values for 3509 // the operands also results in overflow. 3510 bool MinOverflow; 3511 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3512 if (MinOverflow) 3513 return OverflowResult::AlwaysOverflows; 3514 3515 return OverflowResult::MayOverflow; 3516 } 3517 3518 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3519 const Value *RHS, 3520 const DataLayout &DL, 3521 AssumptionCache *AC, 3522 const Instruction *CxtI, 3523 const DominatorTree *DT) { 3524 bool LHSKnownNonNegative, LHSKnownNegative; 3525 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3526 AC, CxtI, DT); 3527 if (LHSKnownNonNegative || LHSKnownNegative) { 3528 bool RHSKnownNonNegative, RHSKnownNegative; 3529 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3530 AC, CxtI, DT); 3531 3532 if (LHSKnownNegative && RHSKnownNegative) { 3533 // The sign bit is set in both cases: this MUST overflow. 3534 // Create a simple add instruction, and insert it into the struct. 3535 return OverflowResult::AlwaysOverflows; 3536 } 3537 3538 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3539 // The sign bit is clear in both cases: this CANNOT overflow. 3540 // Create a simple add instruction, and insert it into the struct. 3541 return OverflowResult::NeverOverflows; 3542 } 3543 } 3544 3545 return OverflowResult::MayOverflow; 3546 } 3547 3548 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3549 const Value *RHS, 3550 const AddOperator *Add, 3551 const DataLayout &DL, 3552 AssumptionCache *AC, 3553 const Instruction *CxtI, 3554 const DominatorTree *DT) { 3555 if (Add && Add->hasNoSignedWrap()) { 3556 return OverflowResult::NeverOverflows; 3557 } 3558 3559 bool LHSKnownNonNegative, LHSKnownNegative; 3560 bool RHSKnownNonNegative, RHSKnownNegative; 3561 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3562 AC, CxtI, DT); 3563 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3564 AC, CxtI, DT); 3565 3566 if ((LHSKnownNonNegative && RHSKnownNegative) || 3567 (LHSKnownNegative && RHSKnownNonNegative)) { 3568 // The sign bits are opposite: this CANNOT overflow. 3569 return OverflowResult::NeverOverflows; 3570 } 3571 3572 // The remaining code needs Add to be available. Early returns if not so. 3573 if (!Add) 3574 return OverflowResult::MayOverflow; 3575 3576 // If the sign of Add is the same as at least one of the operands, this add 3577 // CANNOT overflow. This is particularly useful when the sum is 3578 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3579 // operands. 3580 bool LHSOrRHSKnownNonNegative = 3581 (LHSKnownNonNegative || RHSKnownNonNegative); 3582 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3583 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3584 bool AddKnownNonNegative, AddKnownNegative; 3585 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3586 /*Depth=*/0, AC, CxtI, DT); 3587 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3588 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3589 return OverflowResult::NeverOverflows; 3590 } 3591 } 3592 3593 return OverflowResult::MayOverflow; 3594 } 3595 3596 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3597 const DominatorTree &DT) { 3598 #ifndef NDEBUG 3599 auto IID = II->getIntrinsicID(); 3600 assert((IID == Intrinsic::sadd_with_overflow || 3601 IID == Intrinsic::uadd_with_overflow || 3602 IID == Intrinsic::ssub_with_overflow || 3603 IID == Intrinsic::usub_with_overflow || 3604 IID == Intrinsic::smul_with_overflow || 3605 IID == Intrinsic::umul_with_overflow) && 3606 "Not an overflow intrinsic!"); 3607 #endif 3608 3609 SmallVector<const BranchInst *, 2> GuardingBranches; 3610 SmallVector<const ExtractValueInst *, 2> Results; 3611 3612 for (const User *U : II->users()) { 3613 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3614 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3615 3616 if (EVI->getIndices()[0] == 0) 3617 Results.push_back(EVI); 3618 else { 3619 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3620 3621 for (const auto *U : EVI->users()) 3622 if (const auto *B = dyn_cast<BranchInst>(U)) { 3623 assert(B->isConditional() && "How else is it using an i1?"); 3624 GuardingBranches.push_back(B); 3625 } 3626 } 3627 } else { 3628 // We are using the aggregate directly in a way we don't want to analyze 3629 // here (storing it to a global, say). 3630 return false; 3631 } 3632 } 3633 3634 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3635 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3636 if (!NoWrapEdge.isSingleEdge()) 3637 return false; 3638 3639 // Check if all users of the add are provably no-wrap. 3640 for (const auto *Result : Results) { 3641 // If the extractvalue itself is not executed on overflow, the we don't 3642 // need to check each use separately, since domination is transitive. 3643 if (DT.dominates(NoWrapEdge, Result->getParent())) 3644 continue; 3645 3646 for (auto &RU : Result->uses()) 3647 if (!DT.dominates(NoWrapEdge, RU)) 3648 return false; 3649 } 3650 3651 return true; 3652 }; 3653 3654 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3655 } 3656 3657 3658 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3659 const DataLayout &DL, 3660 AssumptionCache *AC, 3661 const Instruction *CxtI, 3662 const DominatorTree *DT) { 3663 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3664 Add, DL, AC, CxtI, DT); 3665 } 3666 3667 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3668 const Value *RHS, 3669 const DataLayout &DL, 3670 AssumptionCache *AC, 3671 const Instruction *CxtI, 3672 const DominatorTree *DT) { 3673 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3674 } 3675 3676 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3677 // A memory operation returns normally if it isn't volatile. A volatile 3678 // operation is allowed to trap. 3679 // 3680 // An atomic operation isn't guaranteed to return in a reasonable amount of 3681 // time because it's possible for another thread to interfere with it for an 3682 // arbitrary length of time, but programs aren't allowed to rely on that. 3683 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3684 return !LI->isVolatile(); 3685 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3686 return !SI->isVolatile(); 3687 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3688 return !CXI->isVolatile(); 3689 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3690 return !RMWI->isVolatile(); 3691 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3692 return !MII->isVolatile(); 3693 3694 // If there is no successor, then execution can't transfer to it. 3695 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3696 return !CRI->unwindsToCaller(); 3697 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3698 return !CatchSwitch->unwindsToCaller(); 3699 if (isa<ResumeInst>(I)) 3700 return false; 3701 if (isa<ReturnInst>(I)) 3702 return false; 3703 3704 // Calls can throw, or contain an infinite loop, or kill the process. 3705 if (auto CS = ImmutableCallSite(I)) { 3706 // Call sites that throw have implicit non-local control flow. 3707 if (!CS.doesNotThrow()) 3708 return false; 3709 3710 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3711 // etc. and thus not return. However, LLVM already assumes that 3712 // 3713 // - Thread exiting actions are modeled as writes to memory invisible to 3714 // the program. 3715 // 3716 // - Loops that don't have side effects (side effects are volatile/atomic 3717 // stores and IO) always terminate (see http://llvm.org/PR965). 3718 // Furthermore IO itself is also modeled as writes to memory invisible to 3719 // the program. 3720 // 3721 // We rely on those assumptions here, and use the memory effects of the call 3722 // target as a proxy for checking that it always returns. 3723 3724 // FIXME: This isn't aggressive enough; a call which only writes to a global 3725 // is guaranteed to return. 3726 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3727 match(I, m_Intrinsic<Intrinsic::assume>()); 3728 } 3729 3730 // Other instructions return normally. 3731 return true; 3732 } 3733 3734 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3735 const Loop *L) { 3736 // The loop header is guaranteed to be executed for every iteration. 3737 // 3738 // FIXME: Relax this constraint to cover all basic blocks that are 3739 // guaranteed to be executed at every iteration. 3740 if (I->getParent() != L->getHeader()) return false; 3741 3742 for (const Instruction &LI : *L->getHeader()) { 3743 if (&LI == I) return true; 3744 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3745 } 3746 llvm_unreachable("Instruction not contained in its own parent basic block."); 3747 } 3748 3749 bool llvm::propagatesFullPoison(const Instruction *I) { 3750 switch (I->getOpcode()) { 3751 case Instruction::Add: 3752 case Instruction::Sub: 3753 case Instruction::Xor: 3754 case Instruction::Trunc: 3755 case Instruction::BitCast: 3756 case Instruction::AddrSpaceCast: 3757 // These operations all propagate poison unconditionally. Note that poison 3758 // is not any particular value, so xor or subtraction of poison with 3759 // itself still yields poison, not zero. 3760 return true; 3761 3762 case Instruction::AShr: 3763 case Instruction::SExt: 3764 // For these operations, one bit of the input is replicated across 3765 // multiple output bits. A replicated poison bit is still poison. 3766 return true; 3767 3768 case Instruction::Shl: { 3769 // Left shift *by* a poison value is poison. The number of 3770 // positions to shift is unsigned, so no negative values are 3771 // possible there. Left shift by zero places preserves poison. So 3772 // it only remains to consider left shift of poison by a positive 3773 // number of places. 3774 // 3775 // A left shift by a positive number of places leaves the lowest order bit 3776 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3777 // make the poison operand violate that flag, yielding a fresh full-poison 3778 // value. 3779 auto *OBO = cast<OverflowingBinaryOperator>(I); 3780 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3781 } 3782 3783 case Instruction::Mul: { 3784 // A multiplication by zero yields a non-poison zero result, so we need to 3785 // rule out zero as an operand. Conservatively, multiplication by a 3786 // non-zero constant is not multiplication by zero. 3787 // 3788 // Multiplication by a non-zero constant can leave some bits 3789 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3790 // order bit unpoisoned. So we need to consider that. 3791 // 3792 // Multiplication by 1 preserves poison. If the multiplication has a 3793 // no-wrap flag, then we can make the poison operand violate that flag 3794 // when multiplied by any integer other than 0 and 1. 3795 auto *OBO = cast<OverflowingBinaryOperator>(I); 3796 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3797 for (Value *V : OBO->operands()) { 3798 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3799 // A ConstantInt cannot yield poison, so we can assume that it is 3800 // the other operand that is poison. 3801 return !CI->isZero(); 3802 } 3803 } 3804 } 3805 return false; 3806 } 3807 3808 case Instruction::ICmp: 3809 // Comparing poison with any value yields poison. This is why, for 3810 // instance, x s< (x +nsw 1) can be folded to true. 3811 return true; 3812 3813 case Instruction::GetElementPtr: 3814 // A GEP implicitly represents a sequence of additions, subtractions, 3815 // truncations, sign extensions and multiplications. The multiplications 3816 // are by the non-zero sizes of some set of types, so we do not have to be 3817 // concerned with multiplication by zero. If the GEP is in-bounds, then 3818 // these operations are implicitly no-signed-wrap so poison is propagated 3819 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3820 return cast<GEPOperator>(I)->isInBounds(); 3821 3822 default: 3823 return false; 3824 } 3825 } 3826 3827 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3828 switch (I->getOpcode()) { 3829 case Instruction::Store: 3830 return cast<StoreInst>(I)->getPointerOperand(); 3831 3832 case Instruction::Load: 3833 return cast<LoadInst>(I)->getPointerOperand(); 3834 3835 case Instruction::AtomicCmpXchg: 3836 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3837 3838 case Instruction::AtomicRMW: 3839 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3840 3841 case Instruction::UDiv: 3842 case Instruction::SDiv: 3843 case Instruction::URem: 3844 case Instruction::SRem: 3845 return I->getOperand(1); 3846 3847 default: 3848 return nullptr; 3849 } 3850 } 3851 3852 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3853 // We currently only look for uses of poison values within the same basic 3854 // block, as that makes it easier to guarantee that the uses will be 3855 // executed given that PoisonI is executed. 3856 // 3857 // FIXME: Expand this to consider uses beyond the same basic block. To do 3858 // this, look out for the distinction between post-dominance and strong 3859 // post-dominance. 3860 const BasicBlock *BB = PoisonI->getParent(); 3861 3862 // Set of instructions that we have proved will yield poison if PoisonI 3863 // does. 3864 SmallSet<const Value *, 16> YieldsPoison; 3865 SmallSet<const BasicBlock *, 4> Visited; 3866 YieldsPoison.insert(PoisonI); 3867 Visited.insert(PoisonI->getParent()); 3868 3869 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3870 3871 unsigned Iter = 0; 3872 while (Iter++ < MaxDepth) { 3873 for (auto &I : make_range(Begin, End)) { 3874 if (&I != PoisonI) { 3875 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3876 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3877 return true; 3878 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3879 return false; 3880 } 3881 3882 // Mark poison that propagates from I through uses of I. 3883 if (YieldsPoison.count(&I)) { 3884 for (const User *User : I.users()) { 3885 const Instruction *UserI = cast<Instruction>(User); 3886 if (propagatesFullPoison(UserI)) 3887 YieldsPoison.insert(User); 3888 } 3889 } 3890 } 3891 3892 if (auto *NextBB = BB->getSingleSuccessor()) { 3893 if (Visited.insert(NextBB).second) { 3894 BB = NextBB; 3895 Begin = BB->getFirstNonPHI()->getIterator(); 3896 End = BB->end(); 3897 continue; 3898 } 3899 } 3900 3901 break; 3902 }; 3903 return false; 3904 } 3905 3906 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3907 if (FMF.noNaNs()) 3908 return true; 3909 3910 if (auto *C = dyn_cast<ConstantFP>(V)) 3911 return !C->isNaN(); 3912 return false; 3913 } 3914 3915 static bool isKnownNonZero(const Value *V) { 3916 if (auto *C = dyn_cast<ConstantFP>(V)) 3917 return !C->isZero(); 3918 return false; 3919 } 3920 3921 /// Match non-obvious integer minimum and maximum sequences. 3922 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 3923 Value *CmpLHS, Value *CmpRHS, 3924 Value *TrueVal, Value *FalseVal, 3925 Value *&LHS, Value *&RHS) { 3926 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 3927 return {SPF_UNKNOWN, SPNB_NA, false}; 3928 3929 // Z = X -nsw Y 3930 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 3931 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 3932 if (match(TrueVal, m_Zero()) && 3933 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) { 3934 LHS = TrueVal; 3935 RHS = FalseVal; 3936 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 3937 } 3938 3939 // Z = X -nsw Y 3940 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 3941 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 3942 if (match(FalseVal, m_Zero()) && 3943 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) { 3944 LHS = TrueVal; 3945 RHS = FalseVal; 3946 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 3947 } 3948 3949 const APInt *C1; 3950 if (!match(CmpRHS, m_APInt(C1))) 3951 return {SPF_UNKNOWN, SPNB_NA, false}; 3952 3953 // An unsigned min/max can be written with a signed compare. 3954 const APInt *C2; 3955 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 3956 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 3957 // Is the sign bit set? 3958 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 3959 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 3960 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) { 3961 LHS = TrueVal; 3962 RHS = FalseVal; 3963 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 3964 } 3965 3966 // Is the sign bit clear? 3967 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 3968 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 3969 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 3970 C2->isMinSignedValue()) { 3971 LHS = TrueVal; 3972 RHS = FalseVal; 3973 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 3974 } 3975 } 3976 3977 // Look through 'not' ops to find disguised signed min/max. 3978 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 3979 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 3980 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 3981 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) { 3982 LHS = TrueVal; 3983 RHS = FalseVal; 3984 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 3985 } 3986 3987 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 3988 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 3989 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 3990 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) { 3991 LHS = TrueVal; 3992 RHS = FalseVal; 3993 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 3994 } 3995 3996 return {SPF_UNKNOWN, SPNB_NA, false}; 3997 } 3998 3999 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4000 FastMathFlags FMF, 4001 Value *CmpLHS, Value *CmpRHS, 4002 Value *TrueVal, Value *FalseVal, 4003 Value *&LHS, Value *&RHS) { 4004 LHS = CmpLHS; 4005 RHS = CmpRHS; 4006 4007 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4008 // return inconsistent results between implementations. 4009 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4010 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4011 // Therefore we behave conservatively and only proceed if at least one of the 4012 // operands is known to not be zero, or if we don't care about signed zeroes. 4013 switch (Pred) { 4014 default: break; 4015 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4016 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4017 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4018 !isKnownNonZero(CmpRHS)) 4019 return {SPF_UNKNOWN, SPNB_NA, false}; 4020 } 4021 4022 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4023 bool Ordered = false; 4024 4025 // When given one NaN and one non-NaN input: 4026 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4027 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4028 // ordered comparison fails), which could be NaN or non-NaN. 4029 // so here we discover exactly what NaN behavior is required/accepted. 4030 if (CmpInst::isFPPredicate(Pred)) { 4031 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4032 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4033 4034 if (LHSSafe && RHSSafe) { 4035 // Both operands are known non-NaN. 4036 NaNBehavior = SPNB_RETURNS_ANY; 4037 } else if (CmpInst::isOrdered(Pred)) { 4038 // An ordered comparison will return false when given a NaN, so it 4039 // returns the RHS. 4040 Ordered = true; 4041 if (LHSSafe) 4042 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4043 NaNBehavior = SPNB_RETURNS_NAN; 4044 else if (RHSSafe) 4045 NaNBehavior = SPNB_RETURNS_OTHER; 4046 else 4047 // Completely unsafe. 4048 return {SPF_UNKNOWN, SPNB_NA, false}; 4049 } else { 4050 Ordered = false; 4051 // An unordered comparison will return true when given a NaN, so it 4052 // returns the LHS. 4053 if (LHSSafe) 4054 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4055 NaNBehavior = SPNB_RETURNS_OTHER; 4056 else if (RHSSafe) 4057 NaNBehavior = SPNB_RETURNS_NAN; 4058 else 4059 // Completely unsafe. 4060 return {SPF_UNKNOWN, SPNB_NA, false}; 4061 } 4062 } 4063 4064 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4065 std::swap(CmpLHS, CmpRHS); 4066 Pred = CmpInst::getSwappedPredicate(Pred); 4067 if (NaNBehavior == SPNB_RETURNS_NAN) 4068 NaNBehavior = SPNB_RETURNS_OTHER; 4069 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4070 NaNBehavior = SPNB_RETURNS_NAN; 4071 Ordered = !Ordered; 4072 } 4073 4074 // ([if]cmp X, Y) ? X : Y 4075 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4076 switch (Pred) { 4077 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4078 case ICmpInst::ICMP_UGT: 4079 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4080 case ICmpInst::ICMP_SGT: 4081 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4082 case ICmpInst::ICMP_ULT: 4083 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4084 case ICmpInst::ICMP_SLT: 4085 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4086 case FCmpInst::FCMP_UGT: 4087 case FCmpInst::FCMP_UGE: 4088 case FCmpInst::FCMP_OGT: 4089 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4090 case FCmpInst::FCMP_ULT: 4091 case FCmpInst::FCMP_ULE: 4092 case FCmpInst::FCMP_OLT: 4093 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4094 } 4095 } 4096 4097 const APInt *C1; 4098 if (match(CmpRHS, m_APInt(C1))) { 4099 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4100 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4101 4102 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4103 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4104 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4105 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4106 } 4107 4108 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4109 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4110 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4111 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4112 } 4113 } 4114 } 4115 4116 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4117 } 4118 4119 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4120 Instruction::CastOps *CastOp) { 4121 CastInst *CI = dyn_cast<CastInst>(V1); 4122 Constant *C = dyn_cast<Constant>(V2); 4123 if (!CI) 4124 return nullptr; 4125 *CastOp = CI->getOpcode(); 4126 4127 if (auto *CI2 = dyn_cast<CastInst>(V2)) { 4128 // If V1 and V2 are both the same cast from the same type, we can look 4129 // through V1. 4130 if (CI2->getOpcode() == CI->getOpcode() && 4131 CI2->getSrcTy() == CI->getSrcTy()) 4132 return CI2->getOperand(0); 4133 return nullptr; 4134 } else if (!C) { 4135 return nullptr; 4136 } 4137 4138 Constant *CastedTo = nullptr; 4139 4140 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 4141 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy()); 4142 4143 if (isa<SExtInst>(CI) && CmpI->isSigned()) 4144 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true); 4145 4146 if (isa<TruncInst>(CI)) 4147 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 4148 4149 if (isa<FPTruncInst>(CI)) 4150 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 4151 4152 if (isa<FPExtInst>(CI)) 4153 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 4154 4155 if (isa<FPToUIInst>(CI)) 4156 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 4157 4158 if (isa<FPToSIInst>(CI)) 4159 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 4160 4161 if (isa<UIToFPInst>(CI)) 4162 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 4163 4164 if (isa<SIToFPInst>(CI)) 4165 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 4166 4167 if (!CastedTo) 4168 return nullptr; 4169 4170 Constant *CastedBack = 4171 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true); 4172 // Make sure the cast doesn't lose any information. 4173 if (CastedBack != C) 4174 return nullptr; 4175 4176 return CastedTo; 4177 } 4178 4179 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4180 Instruction::CastOps *CastOp) { 4181 SelectInst *SI = dyn_cast<SelectInst>(V); 4182 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4183 4184 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4185 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4186 4187 CmpInst::Predicate Pred = CmpI->getPredicate(); 4188 Value *CmpLHS = CmpI->getOperand(0); 4189 Value *CmpRHS = CmpI->getOperand(1); 4190 Value *TrueVal = SI->getTrueValue(); 4191 Value *FalseVal = SI->getFalseValue(); 4192 FastMathFlags FMF; 4193 if (isa<FPMathOperator>(CmpI)) 4194 FMF = CmpI->getFastMathFlags(); 4195 4196 // Bail out early. 4197 if (CmpI->isEquality()) 4198 return {SPF_UNKNOWN, SPNB_NA, false}; 4199 4200 // Deal with type mismatches. 4201 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4202 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4203 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4204 cast<CastInst>(TrueVal)->getOperand(0), C, 4205 LHS, RHS); 4206 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4207 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4208 C, cast<CastInst>(FalseVal)->getOperand(0), 4209 LHS, RHS); 4210 } 4211 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4212 LHS, RHS); 4213 } 4214 4215 /// Return true if "icmp Pred LHS RHS" is always true. 4216 static bool isTruePredicate(CmpInst::Predicate Pred, 4217 const Value *LHS, const Value *RHS, 4218 const DataLayout &DL, unsigned Depth, 4219 AssumptionCache *AC, const Instruction *CxtI, 4220 const DominatorTree *DT) { 4221 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4222 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4223 return true; 4224 4225 switch (Pred) { 4226 default: 4227 return false; 4228 4229 case CmpInst::ICMP_SLE: { 4230 const APInt *C; 4231 4232 // LHS s<= LHS +_{nsw} C if C >= 0 4233 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4234 return !C->isNegative(); 4235 return false; 4236 } 4237 4238 case CmpInst::ICMP_ULE: { 4239 const APInt *C; 4240 4241 // LHS u<= LHS +_{nuw} C for any C 4242 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4243 return true; 4244 4245 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4246 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4247 const Value *&X, 4248 const APInt *&CA, const APInt *&CB) { 4249 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4250 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4251 return true; 4252 4253 // If X & C == 0 then (X | C) == X +_{nuw} C 4254 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4255 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4256 unsigned BitWidth = CA->getBitWidth(); 4257 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4258 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4259 4260 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4261 return true; 4262 } 4263 4264 return false; 4265 }; 4266 4267 const Value *X; 4268 const APInt *CLHS, *CRHS; 4269 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4270 return CLHS->ule(*CRHS); 4271 4272 return false; 4273 } 4274 } 4275 } 4276 4277 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4278 /// ALHS ARHS" is true. Otherwise, return None. 4279 static Optional<bool> 4280 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4281 const Value *ARHS, const Value *BLHS, 4282 const Value *BRHS, const DataLayout &DL, 4283 unsigned Depth, AssumptionCache *AC, 4284 const Instruction *CxtI, const DominatorTree *DT) { 4285 switch (Pred) { 4286 default: 4287 return None; 4288 4289 case CmpInst::ICMP_SLT: 4290 case CmpInst::ICMP_SLE: 4291 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4292 DT) && 4293 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4294 return true; 4295 return None; 4296 4297 case CmpInst::ICMP_ULT: 4298 case CmpInst::ICMP_ULE: 4299 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4300 DT) && 4301 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4302 return true; 4303 return None; 4304 } 4305 } 4306 4307 /// Return true if the operands of the two compares match. IsSwappedOps is true 4308 /// when the operands match, but are swapped. 4309 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4310 const Value *BLHS, const Value *BRHS, 4311 bool &IsSwappedOps) { 4312 4313 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4314 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4315 return IsMatchingOps || IsSwappedOps; 4316 } 4317 4318 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4319 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4320 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4321 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4322 const Value *ALHS, 4323 const Value *ARHS, 4324 CmpInst::Predicate BPred, 4325 const Value *BLHS, 4326 const Value *BRHS, 4327 bool IsSwappedOps) { 4328 // Canonicalize the operands so they're matching. 4329 if (IsSwappedOps) { 4330 std::swap(BLHS, BRHS); 4331 BPred = ICmpInst::getSwappedPredicate(BPred); 4332 } 4333 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4334 return true; 4335 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4336 return false; 4337 4338 return None; 4339 } 4340 4341 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4342 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4343 /// C2" is false. Otherwise, return None if we can't infer anything. 4344 static Optional<bool> 4345 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4346 const ConstantInt *C1, 4347 CmpInst::Predicate BPred, 4348 const Value *BLHS, const ConstantInt *C2) { 4349 assert(ALHS == BLHS && "LHS operands must match."); 4350 ConstantRange DomCR = 4351 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4352 ConstantRange CR = 4353 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4354 ConstantRange Intersection = DomCR.intersectWith(CR); 4355 ConstantRange Difference = DomCR.difference(CR); 4356 if (Intersection.isEmptySet()) 4357 return false; 4358 if (Difference.isEmptySet()) 4359 return true; 4360 return None; 4361 } 4362 4363 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4364 const DataLayout &DL, bool InvertAPred, 4365 unsigned Depth, AssumptionCache *AC, 4366 const Instruction *CxtI, 4367 const DominatorTree *DT) { 4368 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4369 if (LHS->getType() != RHS->getType()) 4370 return None; 4371 4372 Type *OpTy = LHS->getType(); 4373 assert(OpTy->getScalarType()->isIntegerTy(1)); 4374 4375 // LHS ==> RHS by definition 4376 if (!InvertAPred && LHS == RHS) 4377 return true; 4378 4379 if (OpTy->isVectorTy()) 4380 // TODO: extending the code below to handle vectors 4381 return None; 4382 assert(OpTy->isIntegerTy(1) && "implied by above"); 4383 4384 ICmpInst::Predicate APred, BPred; 4385 Value *ALHS, *ARHS; 4386 Value *BLHS, *BRHS; 4387 4388 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4389 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4390 return None; 4391 4392 if (InvertAPred) 4393 APred = CmpInst::getInversePredicate(APred); 4394 4395 // Can we infer anything when the two compares have matching operands? 4396 bool IsSwappedOps; 4397 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4398 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4399 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4400 return Implication; 4401 // No amount of additional analysis will infer the second condition, so 4402 // early exit. 4403 return None; 4404 } 4405 4406 // Can we infer anything when the LHS operands match and the RHS operands are 4407 // constants (not necessarily matching)? 4408 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4409 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4410 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4411 cast<ConstantInt>(BRHS))) 4412 return Implication; 4413 // No amount of additional analysis will infer the second condition, so 4414 // early exit. 4415 return None; 4416 } 4417 4418 if (APred == BPred) 4419 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4420 CxtI, DT); 4421 4422 return None; 4423 } 4424