1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/GetElementPtrTypeIterator.h" 28 #include "llvm/IR/GlobalAlias.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/MathExtras.h" 39 #include <cstring> 40 using namespace llvm; 41 using namespace llvm::PatternMatch; 42 43 const unsigned MaxDepth = 6; 44 45 /// Enable an experimental feature to leverage information about dominating 46 /// conditions to compute known bits. The individual options below control how 47 /// hard we search. The defaults are chosen to be fairly aggressive. If you 48 /// run into compile time problems when testing, scale them back and report 49 /// your findings. 50 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions", 51 cl::Hidden, cl::init(false)); 52 53 // This is expensive, so we only do it for the top level query value. 54 // (TODO: evaluate cost vs profit, consider higher thresholds) 55 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth", 56 cl::Hidden, cl::init(1)); 57 58 /// How many dominating blocks should be scanned looking for dominating 59 /// conditions? 60 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", 61 cl::Hidden, 62 cl::init(20)); 63 64 // Controls the number of uses of the value searched for possible 65 // dominating comparisons. 66 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 67 cl::Hidden, cl::init(20)); 68 69 // If true, don't consider only compares whose only use is a branch. 70 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use", 71 cl::Hidden, cl::init(false)); 72 73 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 74 /// 0). For vector types, returns the element type's bitwidth. 75 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 76 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 77 return BitWidth; 78 79 return DL.getPointerTypeSizeInBits(Ty); 80 } 81 82 // Many of these functions have internal versions that take an assumption 83 // exclusion set. This is because of the potential for mutual recursion to 84 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The 85 // classic case of this is assume(x = y), which will attempt to determine 86 // bits in x from bits in y, which will attempt to determine bits in y from 87 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 88 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 89 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. 90 typedef SmallPtrSet<const Value *, 8> ExclInvsSet; 91 92 namespace { 93 // Simplifying using an assume can only be done in a particular control-flow 94 // context (the context instruction provides that context). If an assume and 95 // the context instruction are not in the same block then the DT helps in 96 // figuring out if we can use it. 97 struct Query { 98 ExclInvsSet ExclInvs; 99 AssumptionCache *AC; 100 const Instruction *CxtI; 101 const DominatorTree *DT; 102 103 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr, 104 const DominatorTree *DT = nullptr) 105 : AC(AC), CxtI(CxtI), DT(DT) {} 106 107 Query(const Query &Q, const Value *NewExcl) 108 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) { 109 ExclInvs.insert(NewExcl); 110 } 111 }; 112 } // end anonymous namespace 113 114 // Given the provided Value and, potentially, a context instruction, return 115 // the preferred context instruction (if any). 116 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 117 // If we've been provided with a context instruction, then use that (provided 118 // it has been inserted). 119 if (CxtI && CxtI->getParent()) 120 return CxtI; 121 122 // If the value is really an already-inserted instruction, then use that. 123 CxtI = dyn_cast<Instruction>(V); 124 if (CxtI && CxtI->getParent()) 125 return CxtI; 126 127 return nullptr; 128 } 129 130 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 131 const DataLayout &DL, unsigned Depth, 132 const Query &Q); 133 134 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 135 const DataLayout &DL, unsigned Depth, 136 AssumptionCache *AC, const Instruction *CxtI, 137 const DominatorTree *DT) { 138 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, 139 Query(AC, safeCxtI(V, CxtI), DT)); 140 } 141 142 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 143 AssumptionCache *AC, const Instruction *CxtI, 144 const DominatorTree *DT) { 145 assert(LHS->getType() == RHS->getType() && 146 "LHS and RHS should have the same type"); 147 assert(LHS->getType()->isIntOrIntVectorTy() && 148 "LHS and RHS should be integers"); 149 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 150 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 151 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 152 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 153 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 154 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 155 } 156 157 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 158 const DataLayout &DL, unsigned Depth, 159 const Query &Q); 160 161 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 162 const DataLayout &DL, unsigned Depth, 163 AssumptionCache *AC, const Instruction *CxtI, 164 const DominatorTree *DT) { 165 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, 166 Query(AC, safeCxtI(V, CxtI), DT)); 167 } 168 169 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 170 const Query &Q, const DataLayout &DL); 171 172 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 173 unsigned Depth, AssumptionCache *AC, 174 const Instruction *CxtI, 175 const DominatorTree *DT) { 176 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 177 Query(AC, safeCxtI(V, CxtI), DT), DL); 178 } 179 180 static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 181 const Query &Q); 182 183 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 184 AssumptionCache *AC, const Instruction *CxtI, 185 const DominatorTree *DT) { 186 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 187 } 188 189 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, 190 AssumptionCache *AC, const Instruction *CxtI, 191 const DominatorTree *DT) { 192 bool NonNegative, Negative; 193 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 194 return NonNegative; 195 } 196 197 static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 198 const Query &Q); 199 200 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 201 AssumptionCache *AC, const Instruction *CxtI, 202 const DominatorTree *DT) { 203 return ::isKnownNonEqual(V1, V2, DL, Query(AC, 204 safeCxtI(V1, safeCxtI(V2, CxtI)), 205 DT)); 206 } 207 208 static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 209 unsigned Depth, const Query &Q); 210 211 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 212 unsigned Depth, AssumptionCache *AC, 213 const Instruction *CxtI, const DominatorTree *DT) { 214 return ::MaskedValueIsZero(V, Mask, DL, Depth, 215 Query(AC, safeCxtI(V, CxtI), DT)); 216 } 217 218 static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, 219 unsigned Depth, const Query &Q); 220 221 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 222 unsigned Depth, AssumptionCache *AC, 223 const Instruction *CxtI, 224 const DominatorTree *DT) { 225 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 226 } 227 228 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 229 APInt &KnownZero, APInt &KnownOne, 230 APInt &KnownZero2, APInt &KnownOne2, 231 const DataLayout &DL, unsigned Depth, 232 const Query &Q) { 233 if (!Add) { 234 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 235 // We know that the top bits of C-X are clear if X contains less bits 236 // than C (i.e. no wrap-around can happen). For example, 20-X is 237 // positive if we can prove that X is >= 0 and < 16. 238 if (!CLHS->getValue().isNegative()) { 239 unsigned BitWidth = KnownZero.getBitWidth(); 240 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 241 // NLZ can't be BitWidth with no sign bit 242 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 243 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 244 245 // If all of the MaskV bits are known to be zero, then we know the 246 // output top bits are zero, because we now know that the output is 247 // from [0-C]. 248 if ((KnownZero2 & MaskV) == MaskV) { 249 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 250 // Top bits known zero. 251 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 252 } 253 } 254 } 255 } 256 257 unsigned BitWidth = KnownZero.getBitWidth(); 258 259 // If an initial sequence of bits in the result is not needed, the 260 // corresponding bits in the operands are not needed. 261 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 262 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q); 263 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 264 265 // Carry in a 1 for a subtract, rather than a 0. 266 APInt CarryIn(BitWidth, 0); 267 if (!Add) { 268 // Sum = LHS + ~RHS + 1 269 std::swap(KnownZero2, KnownOne2); 270 CarryIn.setBit(0); 271 } 272 273 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 274 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 275 276 // Compute known bits of the carry. 277 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 278 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 279 280 // Compute set of known bits (where all three relevant bits are known). 281 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 282 APInt RHSKnown = KnownZero2 | KnownOne2; 283 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 284 APInt Known = LHSKnown & RHSKnown & CarryKnown; 285 286 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 287 "known bits of sum differ"); 288 289 // Compute known bits of the result. 290 KnownZero = ~PossibleSumOne & Known; 291 KnownOne = PossibleSumOne & Known; 292 293 // Are we still trying to solve for the sign bit? 294 if (!Known.isNegative()) { 295 if (NSW) { 296 // Adding two non-negative numbers, or subtracting a negative number from 297 // a non-negative one, can't wrap into negative. 298 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 299 KnownZero |= APInt::getSignBit(BitWidth); 300 // Adding two negative numbers, or subtracting a non-negative number from 301 // a negative one, can't wrap into non-negative. 302 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 303 KnownOne |= APInt::getSignBit(BitWidth); 304 } 305 } 306 } 307 308 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 309 APInt &KnownZero, APInt &KnownOne, 310 APInt &KnownZero2, APInt &KnownOne2, 311 const DataLayout &DL, unsigned Depth, 312 const Query &Q) { 313 unsigned BitWidth = KnownZero.getBitWidth(); 314 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q); 315 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q); 316 317 bool isKnownNegative = false; 318 bool isKnownNonNegative = false; 319 // If the multiplication is known not to overflow, compute the sign bit. 320 if (NSW) { 321 if (Op0 == Op1) { 322 // The product of a number with itself is non-negative. 323 isKnownNonNegative = true; 324 } else { 325 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 326 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 327 bool isKnownNegativeOp1 = KnownOne.isNegative(); 328 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 329 // The product of two numbers with the same sign is non-negative. 330 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 331 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 332 // The product of a negative number and a non-negative number is either 333 // negative or zero. 334 if (!isKnownNonNegative) 335 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 336 isKnownNonZero(Op0, DL, Depth, Q)) || 337 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 338 isKnownNonZero(Op1, DL, Depth, Q)); 339 } 340 } 341 342 // If low bits are zero in either operand, output low known-0 bits. 343 // Also compute a conservative estimate for high known-0 bits. 344 // More trickiness is possible, but this is sufficient for the 345 // interesting case of alignment computation. 346 KnownOne.clearAllBits(); 347 unsigned TrailZ = KnownZero.countTrailingOnes() + 348 KnownZero2.countTrailingOnes(); 349 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 350 KnownZero2.countLeadingOnes(), 351 BitWidth) - BitWidth; 352 353 TrailZ = std::min(TrailZ, BitWidth); 354 LeadZ = std::min(LeadZ, BitWidth); 355 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 356 APInt::getHighBitsSet(BitWidth, LeadZ); 357 358 // Only make use of no-wrap flags if we failed to compute the sign bit 359 // directly. This matters if the multiplication always overflows, in 360 // which case we prefer to follow the result of the direct computation, 361 // though as the program is invoking undefined behaviour we can choose 362 // whatever we like here. 363 if (isKnownNonNegative && !KnownOne.isNegative()) 364 KnownZero.setBit(BitWidth - 1); 365 else if (isKnownNegative && !KnownZero.isNegative()) 366 KnownOne.setBit(BitWidth - 1); 367 } 368 369 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 370 APInt &KnownZero, 371 APInt &KnownOne) { 372 unsigned BitWidth = KnownZero.getBitWidth(); 373 unsigned NumRanges = Ranges.getNumOperands() / 2; 374 assert(NumRanges >= 1); 375 376 KnownZero.setAllBits(); 377 KnownOne.setAllBits(); 378 379 for (unsigned i = 0; i < NumRanges; ++i) { 380 ConstantInt *Lower = 381 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 382 ConstantInt *Upper = 383 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 384 ConstantRange Range(Lower->getValue(), Upper->getValue()); 385 386 // The first CommonPrefixBits of all values in Range are equal. 387 unsigned CommonPrefixBits = 388 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 389 390 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 391 KnownOne &= Range.getUnsignedMax() & Mask; 392 KnownZero &= ~Range.getUnsignedMax() & Mask; 393 } 394 } 395 396 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 397 SmallVector<const Value *, 16> WorkSet(1, I); 398 SmallPtrSet<const Value *, 32> Visited; 399 SmallPtrSet<const Value *, 16> EphValues; 400 401 // The instruction defining an assumption's condition itself is always 402 // considered ephemeral to that assumption (even if it has other 403 // non-ephemeral users). See r246696's test case for an example. 404 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end()) 405 return true; 406 407 while (!WorkSet.empty()) { 408 const Value *V = WorkSet.pop_back_val(); 409 if (!Visited.insert(V).second) 410 continue; 411 412 // If all uses of this value are ephemeral, then so is this value. 413 if (std::all_of(V->user_begin(), V->user_end(), 414 [&](const User *U) { return EphValues.count(U); })) { 415 if (V == E) 416 return true; 417 418 EphValues.insert(V); 419 if (const User *U = dyn_cast<User>(V)) 420 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 421 J != JE; ++J) { 422 if (isSafeToSpeculativelyExecute(*J)) 423 WorkSet.push_back(*J); 424 } 425 } 426 } 427 428 return false; 429 } 430 431 // Is this an intrinsic that cannot be speculated but also cannot trap? 432 static bool isAssumeLikeIntrinsic(const Instruction *I) { 433 if (const CallInst *CI = dyn_cast<CallInst>(I)) 434 if (Function *F = CI->getCalledFunction()) 435 switch (F->getIntrinsicID()) { 436 default: break; 437 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 438 case Intrinsic::assume: 439 case Intrinsic::dbg_declare: 440 case Intrinsic::dbg_value: 441 case Intrinsic::invariant_start: 442 case Intrinsic::invariant_end: 443 case Intrinsic::lifetime_start: 444 case Intrinsic::lifetime_end: 445 case Intrinsic::objectsize: 446 case Intrinsic::ptr_annotation: 447 case Intrinsic::var_annotation: 448 return true; 449 } 450 451 return false; 452 } 453 454 static bool isValidAssumeForContext(Value *V, const Query &Q) { 455 Instruction *Inv = cast<Instruction>(V); 456 457 // There are two restrictions on the use of an assume: 458 // 1. The assume must dominate the context (or the control flow must 459 // reach the assume whenever it reaches the context). 460 // 2. The context must not be in the assume's set of ephemeral values 461 // (otherwise we will use the assume to prove that the condition 462 // feeding the assume is trivially true, thus causing the removal of 463 // the assume). 464 465 if (Q.DT) { 466 if (Q.DT->dominates(Inv, Q.CxtI)) { 467 return true; 468 } else if (Inv->getParent() == Q.CxtI->getParent()) { 469 // The context comes first, but they're both in the same block. Make sure 470 // there is nothing in between that might interrupt the control flow. 471 for (BasicBlock::const_iterator I = 472 std::next(BasicBlock::const_iterator(Q.CxtI)), 473 IE(Inv); I != IE; ++I) 474 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 475 return false; 476 477 return !isEphemeralValueOf(Inv, Q.CxtI); 478 } 479 480 return false; 481 } 482 483 // When we don't have a DT, we do a limited search... 484 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) { 485 return true; 486 } else if (Inv->getParent() == Q.CxtI->getParent()) { 487 // Search forward from the assume until we reach the context (or the end 488 // of the block); the common case is that the assume will come first. 489 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 490 IE = Inv->getParent()->end(); I != IE; ++I) 491 if (&*I == Q.CxtI) 492 return true; 493 494 // The context must come first... 495 for (BasicBlock::const_iterator I = 496 std::next(BasicBlock::const_iterator(Q.CxtI)), 497 IE(Inv); I != IE; ++I) 498 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 499 return false; 500 501 return !isEphemeralValueOf(Inv, Q.CxtI); 502 } 503 504 return false; 505 } 506 507 bool llvm::isValidAssumeForContext(const Instruction *I, 508 const Instruction *CxtI, 509 const DominatorTree *DT) { 510 return ::isValidAssumeForContext(const_cast<Instruction *>(I), 511 Query(nullptr, CxtI, DT)); 512 } 513 514 template<typename LHS, typename RHS> 515 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 516 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 517 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 518 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 519 } 520 521 template<typename LHS, typename RHS> 522 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 523 BinaryOp_match<RHS, LHS, Instruction::And>> 524 m_c_And(const LHS &L, const RHS &R) { 525 return m_CombineOr(m_And(L, R), m_And(R, L)); 526 } 527 528 template<typename LHS, typename RHS> 529 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 530 BinaryOp_match<RHS, LHS, Instruction::Or>> 531 m_c_Or(const LHS &L, const RHS &R) { 532 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 533 } 534 535 template<typename LHS, typename RHS> 536 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 537 BinaryOp_match<RHS, LHS, Instruction::Xor>> 538 m_c_Xor(const LHS &L, const RHS &R) { 539 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 540 } 541 542 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is 543 /// true (at the context instruction.) This is mostly a utility function for 544 /// the prototype dominating conditions reasoning below. 545 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, 546 APInt &KnownZero, 547 APInt &KnownOne, 548 const DataLayout &DL, 549 unsigned Depth, const Query &Q) { 550 Value *LHS = Cmp->getOperand(0); 551 Value *RHS = Cmp->getOperand(1); 552 // TODO: We could potentially be more aggressive here. This would be worth 553 // evaluating. If we can, explore commoning this code with the assume 554 // handling logic. 555 if (LHS != V && RHS != V) 556 return; 557 558 const unsigned BitWidth = KnownZero.getBitWidth(); 559 560 switch (Cmp->getPredicate()) { 561 default: 562 // We know nothing from this condition 563 break; 564 // TODO: implement unsigned bound from below (known one bits) 565 // TODO: common condition check implementations with assumes 566 // TODO: implement other patterns from assume (e.g. V & B == A) 567 case ICmpInst::ICMP_SGT: 568 if (LHS == V) { 569 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 570 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 571 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { 572 // We know that the sign bit is zero. 573 KnownZero |= APInt::getSignBit(BitWidth); 574 } 575 } 576 break; 577 case ICmpInst::ICMP_EQ: 578 { 579 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 580 if (LHS == V) 581 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 582 else if (RHS == V) 583 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 584 else 585 llvm_unreachable("missing use?"); 586 KnownZero |= KnownZeroTemp; 587 KnownOne |= KnownOneTemp; 588 } 589 break; 590 case ICmpInst::ICMP_ULE: 591 if (LHS == V) { 592 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 593 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 594 // The known zero bits carry over 595 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 596 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 597 } 598 break; 599 case ICmpInst::ICMP_ULT: 600 if (LHS == V) { 601 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 602 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 603 // Whatever high bits in rhs are zero are known to be zero (if rhs is a 604 // power of 2, then one more). 605 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 606 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL)) 607 SignBits++; 608 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 609 } 610 break; 611 }; 612 } 613 614 /// Compute known bits in 'V' from conditions which are known to be true along 615 /// all paths leading to the context instruction. In particular, look for 616 /// cases where one branch of an interesting condition dominates the context 617 /// instruction. This does not do general dataflow. 618 /// NOTE: This code is EXPERIMENTAL and currently off by default. 619 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, 620 APInt &KnownOne, 621 const DataLayout &DL, 622 unsigned Depth, 623 const Query &Q) { 624 // Need both the dominator tree and the query location to do anything useful 625 if (!Q.DT || !Q.CxtI) 626 return; 627 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI); 628 // The context instruction might be in a statically unreachable block. If 629 // so, asking dominator queries may yield suprising results. (e.g. the block 630 // may not have a dom tree node) 631 if (!Q.DT->isReachableFromEntry(Cxt->getParent())) 632 return; 633 634 // Avoid useless work 635 if (auto VI = dyn_cast<Instruction>(V)) 636 if (VI->getParent() == Cxt->getParent()) 637 return; 638 639 // Note: We currently implement two options. It's not clear which of these 640 // will survive long term, we need data for that. 641 // Option 1 - Try walking the dominator tree looking for conditions which 642 // might apply. This works well for local conditions (loop guards, etc..), 643 // but not as well for things far from the context instruction (presuming a 644 // low max blocks explored). If we can set an high enough limit, this would 645 // be all we need. 646 // Option 2 - We restrict out search to those conditions which are uses of 647 // the value we're interested in. This is independent of dom structure, 648 // but is slightly less powerful without looking through lots of use chains. 649 // It does handle conditions far from the context instruction (e.g. early 650 // function exits on entry) really well though. 651 652 // Option 1 - Search the dom tree 653 unsigned NumBlocksExplored = 0; 654 BasicBlock *Current = Cxt->getParent(); 655 while (true) { 656 // Stop searching if we've gone too far up the chain 657 if (NumBlocksExplored >= DomConditionsMaxDomBlocks) 658 break; 659 NumBlocksExplored++; 660 661 if (!Q.DT->getNode(Current)->getIDom()) 662 break; 663 Current = Q.DT->getNode(Current)->getIDom()->getBlock(); 664 if (!Current) 665 // found function entry 666 break; 667 668 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator()); 669 if (!BI || BI->isUnconditional()) 670 continue; 671 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition()); 672 if (!Cmp) 673 continue; 674 675 // We're looking for conditions that are guaranteed to hold at the context 676 // instruction. Finding a condition where one path dominates the context 677 // isn't enough because both the true and false cases could merge before 678 // the context instruction we're actually interested in. Instead, we need 679 // to ensure that the taken *edge* dominates the context instruction. We 680 // know that the edge must be reachable since we started from a reachable 681 // block. 682 BasicBlock *BB0 = BI->getSuccessor(0); 683 BasicBlockEdge Edge(BI->getParent(), BB0); 684 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 685 continue; 686 687 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 688 Q); 689 } 690 691 // Option 2 - Search the other uses of V 692 unsigned NumUsesExplored = 0; 693 for (auto U : V->users()) { 694 // Avoid massive lists 695 if (NumUsesExplored >= DomConditionsMaxUses) 696 break; 697 NumUsesExplored++; 698 // Consider only compare instructions uniquely controlling a branch 699 ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 700 if (!Cmp) 701 continue; 702 703 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 704 continue; 705 706 for (auto *CmpU : Cmp->users()) { 707 BranchInst *BI = dyn_cast<BranchInst>(CmpU); 708 if (!BI || BI->isUnconditional()) 709 continue; 710 // We're looking for conditions that are guaranteed to hold at the 711 // context instruction. Finding a condition where one path dominates 712 // the context isn't enough because both the true and false cases could 713 // merge before the context instruction we're actually interested in. 714 // Instead, we need to ensure that the taken *edge* dominates the context 715 // instruction. 716 BasicBlock *BB0 = BI->getSuccessor(0); 717 BasicBlockEdge Edge(BI->getParent(), BB0); 718 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 719 continue; 720 721 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 722 Q); 723 } 724 } 725 } 726 727 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 728 APInt &KnownOne, const DataLayout &DL, 729 unsigned Depth, const Query &Q) { 730 // Use of assumptions is context-sensitive. If we don't have a context, we 731 // cannot use them! 732 if (!Q.AC || !Q.CxtI) 733 return; 734 735 unsigned BitWidth = KnownZero.getBitWidth(); 736 737 for (auto &AssumeVH : Q.AC->assumptions()) { 738 if (!AssumeVH) 739 continue; 740 CallInst *I = cast<CallInst>(AssumeVH); 741 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 742 "Got assumption for the wrong function!"); 743 if (Q.ExclInvs.count(I)) 744 continue; 745 746 // Warning: This loop can end up being somewhat performance sensetive. 747 // We're running this loop for once for each value queried resulting in a 748 // runtime of ~O(#assumes * #values). 749 750 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 751 "must be an assume intrinsic"); 752 753 Value *Arg = I->getArgOperand(0); 754 755 if (Arg == V && isValidAssumeForContext(I, Q)) { 756 assert(BitWidth == 1 && "assume operand is not i1?"); 757 KnownZero.clearAllBits(); 758 KnownOne.setAllBits(); 759 return; 760 } 761 762 // The remaining tests are all recursive, so bail out if we hit the limit. 763 if (Depth == MaxDepth) 764 continue; 765 766 Value *A, *B; 767 auto m_V = m_CombineOr(m_Specific(V), 768 m_CombineOr(m_PtrToInt(m_Specific(V)), 769 m_BitCast(m_Specific(V)))); 770 771 CmpInst::Predicate Pred; 772 ConstantInt *C; 773 // assume(v = a) 774 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 775 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 776 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 777 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 778 KnownZero |= RHSKnownZero; 779 KnownOne |= RHSKnownOne; 780 // assume(v & b = a) 781 } else if (match(Arg, 782 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 783 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 784 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 785 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 786 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 787 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 788 789 // For those bits in the mask that are known to be one, we can propagate 790 // known bits from the RHS to V. 791 KnownZero |= RHSKnownZero & MaskKnownOne; 792 KnownOne |= RHSKnownOne & MaskKnownOne; 793 // assume(~(v & b) = a) 794 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 795 m_Value(A))) && 796 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 797 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 798 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 799 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 800 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 801 802 // For those bits in the mask that are known to be one, we can propagate 803 // inverted known bits from the RHS to V. 804 KnownZero |= RHSKnownOne & MaskKnownOne; 805 KnownOne |= RHSKnownZero & MaskKnownOne; 806 // assume(v | b = a) 807 } else if (match(Arg, 808 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 809 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 810 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 811 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 812 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 813 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 814 815 // For those bits in B that are known to be zero, we can propagate known 816 // bits from the RHS to V. 817 KnownZero |= RHSKnownZero & BKnownZero; 818 KnownOne |= RHSKnownOne & BKnownZero; 819 // assume(~(v | b) = a) 820 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 821 m_Value(A))) && 822 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 823 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 824 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 825 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 826 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 827 828 // For those bits in B that are known to be zero, we can propagate 829 // inverted known bits from the RHS to V. 830 KnownZero |= RHSKnownOne & BKnownZero; 831 KnownOne |= RHSKnownZero & BKnownZero; 832 // assume(v ^ b = a) 833 } else if (match(Arg, 834 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 835 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 836 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 837 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 838 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 839 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 840 841 // For those bits in B that are known to be zero, we can propagate known 842 // bits from the RHS to V. For those bits in B that are known to be one, 843 // we can propagate inverted known bits from the RHS to V. 844 KnownZero |= RHSKnownZero & BKnownZero; 845 KnownOne |= RHSKnownOne & BKnownZero; 846 KnownZero |= RHSKnownOne & BKnownOne; 847 KnownOne |= RHSKnownZero & BKnownOne; 848 // assume(~(v ^ b) = a) 849 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 850 m_Value(A))) && 851 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 852 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 853 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 854 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 855 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 856 857 // For those bits in B that are known to be zero, we can propagate 858 // inverted known bits from the RHS to V. For those bits in B that are 859 // known to be one, we can propagate known bits from the RHS to V. 860 KnownZero |= RHSKnownOne & BKnownZero; 861 KnownOne |= RHSKnownZero & BKnownZero; 862 KnownZero |= RHSKnownZero & BKnownOne; 863 KnownOne |= RHSKnownOne & BKnownOne; 864 // assume(v << c = a) 865 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 866 m_Value(A))) && 867 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 868 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 869 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 870 // For those bits in RHS that are known, we can propagate them to known 871 // bits in V shifted to the right by C. 872 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 873 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 874 // assume(~(v << c) = a) 875 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 876 m_Value(A))) && 877 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 878 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 879 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 880 // For those bits in RHS that are known, we can propagate them inverted 881 // to known bits in V shifted to the right by C. 882 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 883 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 884 // assume(v >> c = a) 885 } else if (match(Arg, 886 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 887 m_AShr(m_V, m_ConstantInt(C))), 888 m_Value(A))) && 889 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 890 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 891 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 892 // For those bits in RHS that are known, we can propagate them to known 893 // bits in V shifted to the right by C. 894 KnownZero |= RHSKnownZero << C->getZExtValue(); 895 KnownOne |= RHSKnownOne << C->getZExtValue(); 896 // assume(~(v >> c) = a) 897 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 898 m_LShr(m_V, m_ConstantInt(C)), 899 m_AShr(m_V, m_ConstantInt(C)))), 900 m_Value(A))) && 901 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 902 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 903 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 904 // For those bits in RHS that are known, we can propagate them inverted 905 // to known bits in V shifted to the right by C. 906 KnownZero |= RHSKnownOne << C->getZExtValue(); 907 KnownOne |= RHSKnownZero << C->getZExtValue(); 908 // assume(v >=_s c) where c is non-negative 909 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 910 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) { 911 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 912 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 913 914 if (RHSKnownZero.isNegative()) { 915 // We know that the sign bit is zero. 916 KnownZero |= APInt::getSignBit(BitWidth); 917 } 918 // assume(v >_s c) where c is at least -1. 919 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 920 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) { 921 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 922 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 923 924 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 925 // We know that the sign bit is zero. 926 KnownZero |= APInt::getSignBit(BitWidth); 927 } 928 // assume(v <=_s c) where c is negative 929 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 930 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) { 931 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 932 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 933 934 if (RHSKnownOne.isNegative()) { 935 // We know that the sign bit is one. 936 KnownOne |= APInt::getSignBit(BitWidth); 937 } 938 // assume(v <_s c) where c is non-positive 939 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 940 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) { 941 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 942 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 943 944 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 945 // We know that the sign bit is one. 946 KnownOne |= APInt::getSignBit(BitWidth); 947 } 948 // assume(v <=_u c) 949 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 950 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) { 951 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 952 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 953 954 // Whatever high bits in c are zero are known to be zero. 955 KnownZero |= 956 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 957 // assume(v <_u c) 958 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 959 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) { 960 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 961 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 962 963 // Whatever high bits in c are zero are known to be zero (if c is a power 964 // of 2, then one more). 965 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL)) 966 KnownZero |= 967 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 968 else 969 KnownZero |= 970 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 971 } 972 } 973 } 974 975 // Compute known bits from a shift operator, including those with a 976 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 977 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 978 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 979 // functors that, given the known-zero or known-one bits respectively, and a 980 // shift amount, compute the implied known-zero or known-one bits of the shift 981 // operator's result respectively for that shift amount. The results from calling 982 // KZF and KOF are conservatively combined for all permitted shift amounts. 983 template <typename KZFunctor, typename KOFunctor> 984 static void computeKnownBitsFromShiftOperator(Operator *I, 985 APInt &KnownZero, APInt &KnownOne, 986 APInt &KnownZero2, APInt &KnownOne2, 987 const DataLayout &DL, unsigned Depth, const Query &Q, 988 KZFunctor KZF, KOFunctor KOF) { 989 unsigned BitWidth = KnownZero.getBitWidth(); 990 991 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 992 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 993 994 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 995 KnownZero = KZF(KnownZero, ShiftAmt); 996 KnownOne = KOF(KnownOne, ShiftAmt); 997 return; 998 } 999 1000 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1001 1002 // Note: We cannot use KnownZero.getLimitedValue() here, because if 1003 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1004 // limit value (which implies all bits are known). 1005 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 1006 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 1007 1008 // It would be more-clearly correct to use the two temporaries for this 1009 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1010 KnownZero.clearAllBits(), KnownOne.clearAllBits(); 1011 1012 // If we know the shifter operand is nonzero, we can sometimes infer more 1013 // known bits. However this is expensive to compute, so be lazy about it and 1014 // only compute it when absolutely necessary. 1015 Optional<bool> ShifterOperandIsNonZero; 1016 1017 // Early exit if we can't constrain any well-defined shift amount. 1018 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 1019 ShifterOperandIsNonZero = 1020 isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q); 1021 if (!*ShifterOperandIsNonZero) 1022 return; 1023 } 1024 1025 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1026 1027 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 1028 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1029 // Combine the shifted known input bits only for those shift amounts 1030 // compatible with its known constraints. 1031 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1032 continue; 1033 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1034 continue; 1035 // If we know the shifter is nonzero, we may be able to infer more known 1036 // bits. This check is sunk down as far as possible to avoid the expensive 1037 // call to isKnownNonZero if the cheaper checks above fail. 1038 if (ShiftAmt == 0) { 1039 if (!ShifterOperandIsNonZero.hasValue()) 1040 ShifterOperandIsNonZero = 1041 isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q); 1042 if (*ShifterOperandIsNonZero) 1043 continue; 1044 } 1045 1046 KnownZero &= KZF(KnownZero2, ShiftAmt); 1047 KnownOne &= KOF(KnownOne2, ShiftAmt); 1048 } 1049 1050 // If there are no compatible shift amounts, then we've proven that the shift 1051 // amount must be >= the BitWidth, and the result is undefined. We could 1052 // return anything we'd like, but we need to make sure the sets of known bits 1053 // stay disjoint (it should be better for some other code to actually 1054 // propagate the undef than to pick a value here using known bits). 1055 if ((KnownZero & KnownOne) != 0) 1056 KnownZero.clearAllBits(), KnownOne.clearAllBits(); 1057 } 1058 1059 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 1060 APInt &KnownOne, const DataLayout &DL, 1061 unsigned Depth, const Query &Q) { 1062 unsigned BitWidth = KnownZero.getBitWidth(); 1063 1064 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 1065 switch (I->getOpcode()) { 1066 default: break; 1067 case Instruction::Load: 1068 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 1069 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1070 break; 1071 case Instruction::And: { 1072 // If either the LHS or the RHS are Zero, the result is zero. 1073 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1074 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1075 1076 // Output known-1 bits are only known if set in both the LHS & RHS. 1077 KnownOne &= KnownOne2; 1078 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1079 KnownZero |= KnownZero2; 1080 1081 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1082 // here we handle the more general case of adding any odd number by 1083 // matching the form add(x, add(x, y)) where y is odd. 1084 // TODO: This could be generalized to clearing any bit set in y where the 1085 // following bit is known to be unset in y. 1086 Value *Y = nullptr; 1087 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 1088 m_Value(Y))) || 1089 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 1090 m_Value(Y)))) { 1091 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 1092 computeKnownBits(Y, KnownZero3, KnownOne3, DL, Depth + 1, Q); 1093 if (KnownOne3.countTrailingOnes() > 0) 1094 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 1095 } 1096 break; 1097 } 1098 case Instruction::Or: { 1099 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1100 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1101 1102 // Output known-0 bits are only known if clear in both the LHS & RHS. 1103 KnownZero &= KnownZero2; 1104 // Output known-1 are known to be set if set in either the LHS | RHS. 1105 KnownOne |= KnownOne2; 1106 break; 1107 } 1108 case Instruction::Xor: { 1109 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1110 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1111 1112 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1113 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 1114 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1115 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 1116 KnownZero = KnownZeroOut; 1117 break; 1118 } 1119 case Instruction::Mul: { 1120 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1121 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 1122 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1123 break; 1124 } 1125 case Instruction::UDiv: { 1126 // For the purposes of computing leading zeros we can conservatively 1127 // treat a udiv as a logical right shift by the power of 2 known to 1128 // be less than the denominator. 1129 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1130 unsigned LeadZ = KnownZero2.countLeadingOnes(); 1131 1132 KnownOne2.clearAllBits(); 1133 KnownZero2.clearAllBits(); 1134 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1135 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 1136 if (RHSUnknownLeadingOnes != BitWidth) 1137 LeadZ = std::min(BitWidth, 1138 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 1139 1140 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 1141 break; 1142 } 1143 case Instruction::Select: 1144 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q); 1145 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1146 1147 // Only known if known in both the LHS and RHS. 1148 KnownOne &= KnownOne2; 1149 KnownZero &= KnownZero2; 1150 break; 1151 case Instruction::FPTrunc: 1152 case Instruction::FPExt: 1153 case Instruction::FPToUI: 1154 case Instruction::FPToSI: 1155 case Instruction::SIToFP: 1156 case Instruction::UIToFP: 1157 break; // Can't work with floating point. 1158 case Instruction::PtrToInt: 1159 case Instruction::IntToPtr: 1160 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1161 // FALL THROUGH and handle them the same as zext/trunc. 1162 case Instruction::ZExt: 1163 case Instruction::Trunc: { 1164 Type *SrcTy = I->getOperand(0)->getType(); 1165 1166 unsigned SrcBitWidth; 1167 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1168 // which fall through here. 1169 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType()); 1170 1171 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1172 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1173 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1174 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1175 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1176 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1177 // Any top bits are known to be zero. 1178 if (BitWidth > SrcBitWidth) 1179 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1180 break; 1181 } 1182 case Instruction::BitCast: { 1183 Type *SrcTy = I->getOperand(0)->getType(); 1184 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() || 1185 SrcTy->isFloatingPointTy()) && 1186 // TODO: For now, not handling conversions like: 1187 // (bitcast i64 %x to <2 x i32>) 1188 !I->getType()->isVectorTy()) { 1189 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1190 break; 1191 } 1192 break; 1193 } 1194 case Instruction::SExt: { 1195 // Compute the bits in the result that are not present in the input. 1196 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1197 1198 KnownZero = KnownZero.trunc(SrcBitWidth); 1199 KnownOne = KnownOne.trunc(SrcBitWidth); 1200 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1201 KnownZero = KnownZero.zext(BitWidth); 1202 KnownOne = KnownOne.zext(BitWidth); 1203 1204 // If the sign bit of the input is known set or clear, then we know the 1205 // top bits of the result. 1206 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1207 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1208 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1209 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1210 break; 1211 } 1212 case Instruction::Shl: { 1213 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1214 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1215 return (KnownZero << ShiftAmt) | 1216 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1217 }; 1218 1219 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1220 return KnownOne << ShiftAmt; 1221 }; 1222 1223 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1224 KnownZero2, KnownOne2, DL, Depth, Q, 1225 KZF, KOF); 1226 break; 1227 } 1228 case Instruction::LShr: { 1229 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1230 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1231 return APIntOps::lshr(KnownZero, ShiftAmt) | 1232 // High bits known zero. 1233 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1234 }; 1235 1236 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1237 return APIntOps::lshr(KnownOne, ShiftAmt); 1238 }; 1239 1240 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1241 KnownZero2, KnownOne2, DL, Depth, Q, 1242 KZF, KOF); 1243 break; 1244 } 1245 case Instruction::AShr: { 1246 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1247 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1248 return APIntOps::ashr(KnownZero, ShiftAmt); 1249 }; 1250 1251 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1252 return APIntOps::ashr(KnownOne, ShiftAmt); 1253 }; 1254 1255 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1256 KnownZero2, KnownOne2, DL, Depth, Q, 1257 KZF, KOF); 1258 break; 1259 } 1260 case Instruction::Sub: { 1261 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1262 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1263 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1264 Depth, Q); 1265 break; 1266 } 1267 case Instruction::Add: { 1268 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1269 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1270 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1271 Depth, Q); 1272 break; 1273 } 1274 case Instruction::SRem: 1275 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1276 APInt RA = Rem->getValue().abs(); 1277 if (RA.isPowerOf2()) { 1278 APInt LowBits = RA - 1; 1279 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, 1280 Q); 1281 1282 // The low bits of the first operand are unchanged by the srem. 1283 KnownZero = KnownZero2 & LowBits; 1284 KnownOne = KnownOne2 & LowBits; 1285 1286 // If the first operand is non-negative or has all low bits zero, then 1287 // the upper bits are all zero. 1288 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1289 KnownZero |= ~LowBits; 1290 1291 // If the first operand is negative and not all low bits are zero, then 1292 // the upper bits are all one. 1293 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1294 KnownOne |= ~LowBits; 1295 1296 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1297 } 1298 } 1299 1300 // The sign bit is the LHS's sign bit, except when the result of the 1301 // remainder is zero. 1302 if (KnownZero.isNonNegative()) { 1303 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1304 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL, 1305 Depth + 1, Q); 1306 // If it's known zero, our sign bit is also zero. 1307 if (LHSKnownZero.isNegative()) 1308 KnownZero.setBit(BitWidth - 1); 1309 } 1310 1311 break; 1312 case Instruction::URem: { 1313 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1314 APInt RA = Rem->getValue(); 1315 if (RA.isPowerOf2()) { 1316 APInt LowBits = (RA - 1); 1317 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 1318 Q); 1319 KnownZero |= ~LowBits; 1320 KnownOne &= LowBits; 1321 break; 1322 } 1323 } 1324 1325 // Since the result is less than or equal to either operand, any leading 1326 // zero bits in either operand must also exist in the result. 1327 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1328 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1329 1330 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1331 KnownZero2.countLeadingOnes()); 1332 KnownOne.clearAllBits(); 1333 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1334 break; 1335 } 1336 1337 case Instruction::Alloca: { 1338 AllocaInst *AI = cast<AllocaInst>(I); 1339 unsigned Align = AI->getAlignment(); 1340 if (Align == 0) 1341 Align = DL.getABITypeAlignment(AI->getType()->getElementType()); 1342 1343 if (Align > 0) 1344 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1345 break; 1346 } 1347 case Instruction::GetElementPtr: { 1348 // Analyze all of the subscripts of this getelementptr instruction 1349 // to determine if we can prove known low zero bits. 1350 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1351 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL, 1352 Depth + 1, Q); 1353 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1354 1355 gep_type_iterator GTI = gep_type_begin(I); 1356 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1357 Value *Index = I->getOperand(i); 1358 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1359 // Handle struct member offset arithmetic. 1360 1361 // Handle case when index is vector zeroinitializer 1362 Constant *CIndex = cast<Constant>(Index); 1363 if (CIndex->isZeroValue()) 1364 continue; 1365 1366 if (CIndex->getType()->isVectorTy()) 1367 Index = CIndex->getSplatValue(); 1368 1369 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1370 const StructLayout *SL = DL.getStructLayout(STy); 1371 uint64_t Offset = SL->getElementOffset(Idx); 1372 TrailZ = std::min<unsigned>(TrailZ, 1373 countTrailingZeros(Offset)); 1374 } else { 1375 // Handle array index arithmetic. 1376 Type *IndexedTy = GTI.getIndexedType(); 1377 if (!IndexedTy->isSized()) { 1378 TrailZ = 0; 1379 break; 1380 } 1381 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1382 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy); 1383 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1384 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1, 1385 Q); 1386 TrailZ = std::min(TrailZ, 1387 unsigned(countTrailingZeros(TypeSize) + 1388 LocalKnownZero.countTrailingOnes())); 1389 } 1390 } 1391 1392 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1393 break; 1394 } 1395 case Instruction::PHI: { 1396 PHINode *P = cast<PHINode>(I); 1397 // Handle the case of a simple two-predecessor recurrence PHI. 1398 // There's a lot more that could theoretically be done here, but 1399 // this is sufficient to catch some interesting cases. 1400 if (P->getNumIncomingValues() == 2) { 1401 for (unsigned i = 0; i != 2; ++i) { 1402 Value *L = P->getIncomingValue(i); 1403 Value *R = P->getIncomingValue(!i); 1404 Operator *LU = dyn_cast<Operator>(L); 1405 if (!LU) 1406 continue; 1407 unsigned Opcode = LU->getOpcode(); 1408 // Check for operations that have the property that if 1409 // both their operands have low zero bits, the result 1410 // will have low zero bits. 1411 if (Opcode == Instruction::Add || 1412 Opcode == Instruction::Sub || 1413 Opcode == Instruction::And || 1414 Opcode == Instruction::Or || 1415 Opcode == Instruction::Mul) { 1416 Value *LL = LU->getOperand(0); 1417 Value *LR = LU->getOperand(1); 1418 // Find a recurrence. 1419 if (LL == I) 1420 L = LR; 1421 else if (LR == I) 1422 L = LL; 1423 else 1424 break; 1425 // Ok, we have a PHI of the form L op= R. Check for low 1426 // zero bits. 1427 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q); 1428 1429 // We need to take the minimum number of known bits 1430 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1431 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q); 1432 1433 KnownZero = APInt::getLowBitsSet(BitWidth, 1434 std::min(KnownZero2.countTrailingOnes(), 1435 KnownZero3.countTrailingOnes())); 1436 break; 1437 } 1438 } 1439 } 1440 1441 // Unreachable blocks may have zero-operand PHI nodes. 1442 if (P->getNumIncomingValues() == 0) 1443 break; 1444 1445 // Otherwise take the unions of the known bit sets of the operands, 1446 // taking conservative care to avoid excessive recursion. 1447 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1448 // Skip if every incoming value references to ourself. 1449 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1450 break; 1451 1452 KnownZero = APInt::getAllOnesValue(BitWidth); 1453 KnownOne = APInt::getAllOnesValue(BitWidth); 1454 for (Value *IncValue : P->incoming_values()) { 1455 // Skip direct self references. 1456 if (IncValue == P) continue; 1457 1458 KnownZero2 = APInt(BitWidth, 0); 1459 KnownOne2 = APInt(BitWidth, 0); 1460 // Recurse, but cap the recursion to one level, because we don't 1461 // want to waste time spinning around in loops. 1462 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL, 1463 MaxDepth - 1, Q); 1464 KnownZero &= KnownZero2; 1465 KnownOne &= KnownOne2; 1466 // If all bits have been ruled out, there's no need to check 1467 // more operands. 1468 if (!KnownZero && !KnownOne) 1469 break; 1470 } 1471 } 1472 break; 1473 } 1474 case Instruction::Call: 1475 case Instruction::Invoke: 1476 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1477 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1478 // If a range metadata is attached to this IntrinsicInst, intersect the 1479 // explicit range specified by the metadata and the implicit range of 1480 // the intrinsic. 1481 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1482 switch (II->getIntrinsicID()) { 1483 default: break; 1484 case Intrinsic::bswap: 1485 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, 1486 Depth + 1, Q); 1487 KnownZero |= KnownZero2.byteSwap(); 1488 KnownOne |= KnownOne2.byteSwap(); 1489 break; 1490 case Intrinsic::ctlz: 1491 case Intrinsic::cttz: { 1492 unsigned LowBits = Log2_32(BitWidth)+1; 1493 // If this call is undefined for 0, the result will be less than 2^n. 1494 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1495 LowBits -= 1; 1496 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1497 break; 1498 } 1499 case Intrinsic::ctpop: { 1500 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, 1501 Depth + 1, Q); 1502 // We can bound the space the count needs. Also, bits known to be zero 1503 // can't contribute to the population. 1504 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1505 unsigned LeadingZeros = 1506 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1507 assert(LeadingZeros <= BitWidth); 1508 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1509 KnownOne &= ~KnownZero; 1510 // TODO: we could bound KnownOne using the lower bound on the number 1511 // of bits which might be set provided by popcnt KnownOne2. 1512 break; 1513 } 1514 case Intrinsic::fabs: { 1515 Type *Ty = II->getType(); 1516 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits()); 1517 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit); 1518 break; 1519 } 1520 case Intrinsic::x86_sse42_crc32_64_64: 1521 KnownZero |= APInt::getHighBitsSet(64, 32); 1522 break; 1523 } 1524 } 1525 break; 1526 case Instruction::ExtractValue: 1527 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1528 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1529 if (EVI->getNumIndices() != 1) break; 1530 if (EVI->getIndices()[0] == 0) { 1531 switch (II->getIntrinsicID()) { 1532 default: break; 1533 case Intrinsic::uadd_with_overflow: 1534 case Intrinsic::sadd_with_overflow: 1535 computeKnownBitsAddSub(true, II->getArgOperand(0), 1536 II->getArgOperand(1), false, KnownZero, 1537 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1538 break; 1539 case Intrinsic::usub_with_overflow: 1540 case Intrinsic::ssub_with_overflow: 1541 computeKnownBitsAddSub(false, II->getArgOperand(0), 1542 II->getArgOperand(1), false, KnownZero, 1543 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1544 break; 1545 case Intrinsic::umul_with_overflow: 1546 case Intrinsic::smul_with_overflow: 1547 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1548 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1549 Depth, Q); 1550 break; 1551 } 1552 } 1553 } 1554 } 1555 } 1556 1557 static unsigned getAlignment(const Value *V, const DataLayout &DL) { 1558 unsigned Align = 0; 1559 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1560 Align = GO->getAlignment(); 1561 if (Align == 0) { 1562 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 1563 Type *ObjectType = GVar->getType()->getElementType(); 1564 if (ObjectType->isSized()) { 1565 // If the object is defined in the current Module, we'll be giving 1566 // it the preferred alignment. Otherwise, we have to assume that it 1567 // may only have the minimum ABI alignment. 1568 if (GVar->isStrongDefinitionForLinker()) 1569 Align = DL.getPreferredAlignment(GVar); 1570 else 1571 Align = DL.getABITypeAlignment(ObjectType); 1572 } 1573 } 1574 } 1575 } else if (const Argument *A = dyn_cast<Argument>(V)) { 1576 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 1577 1578 if (!Align && A->hasStructRetAttr()) { 1579 // An sret parameter has at least the ABI alignment of the return type. 1580 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 1581 if (EltTy->isSized()) 1582 Align = DL.getABITypeAlignment(EltTy); 1583 } 1584 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 1585 Align = AI->getAlignment(); 1586 else if (auto CS = ImmutableCallSite(V)) 1587 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex); 1588 else if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1589 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 1590 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 1591 Align = CI->getLimitedValue(); 1592 } 1593 1594 return Align; 1595 } 1596 1597 /// Determine which bits of V are known to be either zero or one and return 1598 /// them in the KnownZero/KnownOne bit sets. 1599 /// 1600 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1601 /// we cannot optimize based on the assumption that it is zero without changing 1602 /// it to be an explicit zero. If we don't change it to zero, other code could 1603 /// optimized based on the contradictory assumption that it is non-zero. 1604 /// Because instcombine aggressively folds operations with undef args anyway, 1605 /// this won't lose us code quality. 1606 /// 1607 /// This function is defined on values with integer type, values with pointer 1608 /// type, and vectors of integers. In the case 1609 /// where V is a vector, known zero, and known one values are the 1610 /// same width as the vector element, and the bit is set only if it is true 1611 /// for all of the elements in the vector. 1612 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1613 const DataLayout &DL, unsigned Depth, const Query &Q) { 1614 assert(V && "No Value?"); 1615 assert(Depth <= MaxDepth && "Limit Search Depth"); 1616 unsigned BitWidth = KnownZero.getBitWidth(); 1617 1618 assert((V->getType()->isIntOrIntVectorTy() || 1619 V->getType()->isFPOrFPVectorTy() || 1620 V->getType()->getScalarType()->isPointerTy()) && 1621 "Not integer, floating point, or pointer type!"); 1622 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1623 (!V->getType()->isIntOrIntVectorTy() || 1624 V->getType()->getScalarSizeInBits() == BitWidth) && 1625 KnownZero.getBitWidth() == BitWidth && 1626 KnownOne.getBitWidth() == BitWidth && 1627 "V, KnownOne and KnownZero should have same BitWidth"); 1628 1629 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1630 // We know all of the bits for a constant! 1631 KnownOne = CI->getValue(); 1632 KnownZero = ~KnownOne; 1633 return; 1634 } 1635 // Null and aggregate-zero are all-zeros. 1636 if (isa<ConstantPointerNull>(V) || 1637 isa<ConstantAggregateZero>(V)) { 1638 KnownOne.clearAllBits(); 1639 KnownZero = APInt::getAllOnesValue(BitWidth); 1640 return; 1641 } 1642 // Handle a constant vector by taking the intersection of the known bits of 1643 // each element. There is no real need to handle ConstantVector here, because 1644 // we don't handle undef in any particularly useful way. 1645 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1646 // We know that CDS must be a vector of integers. Take the intersection of 1647 // each element. 1648 KnownZero.setAllBits(); KnownOne.setAllBits(); 1649 APInt Elt(KnownZero.getBitWidth(), 0); 1650 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1651 Elt = CDS->getElementAsInteger(i); 1652 KnownZero &= ~Elt; 1653 KnownOne &= Elt; 1654 } 1655 return; 1656 } 1657 1658 // Start out not knowing anything. 1659 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1660 1661 // Limit search depth. 1662 // All recursive calls that increase depth must come after this. 1663 if (Depth == MaxDepth) 1664 return; 1665 1666 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1667 // the bits of its aliasee. 1668 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1669 if (!GA->mayBeOverridden()) 1670 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q); 1671 return; 1672 } 1673 1674 if (Operator *I = dyn_cast<Operator>(V)) 1675 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q); 1676 1677 // Aligned pointers have trailing zeros - refine KnownZero set 1678 if (V->getType()->isPointerTy()) { 1679 unsigned Align = getAlignment(V, DL); 1680 if (Align) 1681 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1682 } 1683 1684 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition 1685 // strictly refines KnownZero and KnownOne. Therefore, we run them after 1686 // computeKnownBitsFromOperator. 1687 1688 // Check whether a nearby assume intrinsic can determine some known bits. 1689 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); 1690 1691 // Check whether there's a dominating condition which implies something about 1692 // this value at the given context. 1693 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1694 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth, 1695 Q); 1696 1697 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1698 } 1699 1700 /// Determine whether the sign bit is known to be zero or one. 1701 /// Convenience wrapper around computeKnownBits. 1702 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1703 const DataLayout &DL, unsigned Depth, const Query &Q) { 1704 unsigned BitWidth = getBitWidth(V->getType(), DL); 1705 if (!BitWidth) { 1706 KnownZero = false; 1707 KnownOne = false; 1708 return; 1709 } 1710 APInt ZeroBits(BitWidth, 0); 1711 APInt OneBits(BitWidth, 0); 1712 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q); 1713 KnownOne = OneBits[BitWidth - 1]; 1714 KnownZero = ZeroBits[BitWidth - 1]; 1715 } 1716 1717 /// Return true if the given value is known to have exactly one 1718 /// bit set when defined. For vectors return true if every element is known to 1719 /// be a power of two when defined. Supports values with integer or pointer 1720 /// types and vectors of integers. 1721 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1722 const Query &Q, const DataLayout &DL) { 1723 if (Constant *C = dyn_cast<Constant>(V)) { 1724 if (C->isNullValue()) 1725 return OrZero; 1726 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1727 return CI->getValue().isPowerOf2(); 1728 // TODO: Handle vector constants. 1729 } 1730 1731 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1732 // it is shifted off the end then the result is undefined. 1733 if (match(V, m_Shl(m_One(), m_Value()))) 1734 return true; 1735 1736 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1737 // bottom. If it is shifted off the bottom then the result is undefined. 1738 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1739 return true; 1740 1741 // The remaining tests are all recursive, so bail out if we hit the limit. 1742 if (Depth++ == MaxDepth) 1743 return false; 1744 1745 Value *X = nullptr, *Y = nullptr; 1746 // A shift left or a logical shift right of a power of two is a power of two 1747 // or zero. 1748 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1749 match(V, m_LShr(m_Value(X), m_Value())))) 1750 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL); 1751 1752 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1753 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL); 1754 1755 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1756 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) && 1757 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL); 1758 1759 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1760 // A power of two and'd with anything is a power of two or zero. 1761 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) || 1762 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL)) 1763 return true; 1764 // X & (-X) is always a power of two or zero. 1765 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1766 return true; 1767 return false; 1768 } 1769 1770 // Adding a power-of-two or zero to the same power-of-two or zero yields 1771 // either the original power-of-two, a larger power-of-two or zero. 1772 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1773 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1774 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1775 if (match(X, m_And(m_Specific(Y), m_Value())) || 1776 match(X, m_And(m_Value(), m_Specific(Y)))) 1777 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL)) 1778 return true; 1779 if (match(Y, m_And(m_Specific(X), m_Value())) || 1780 match(Y, m_And(m_Value(), m_Specific(X)))) 1781 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL)) 1782 return true; 1783 1784 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1785 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1786 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q); 1787 1788 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1789 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q); 1790 // If i8 V is a power of two or zero: 1791 // ZeroBits: 1 1 1 0 1 1 1 1 1792 // ~ZeroBits: 0 0 0 1 0 0 0 0 1793 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1794 // If OrZero isn't set, we cannot give back a zero result. 1795 // Make sure either the LHS or RHS has a bit set. 1796 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1797 return true; 1798 } 1799 } 1800 1801 // An exact divide or right shift can only shift off zero bits, so the result 1802 // is a power of two only if the first operand is a power of two and not 1803 // copying a sign bit (sdiv int_min, 2). 1804 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1805 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1806 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1807 Depth, Q, DL); 1808 } 1809 1810 return false; 1811 } 1812 1813 /// \brief Test whether a GEP's result is known to be non-null. 1814 /// 1815 /// Uses properties inherent in a GEP to try to determine whether it is known 1816 /// to be non-null. 1817 /// 1818 /// Currently this routine does not support vector GEPs. 1819 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL, 1820 unsigned Depth, const Query &Q) { 1821 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1822 return false; 1823 1824 // FIXME: Support vector-GEPs. 1825 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1826 1827 // If the base pointer is non-null, we cannot walk to a null address with an 1828 // inbounds GEP in address space zero. 1829 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q)) 1830 return true; 1831 1832 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1833 // If so, then the GEP cannot produce a null pointer, as doing so would 1834 // inherently violate the inbounds contract within address space zero. 1835 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1836 GTI != GTE; ++GTI) { 1837 // Struct types are easy -- they must always be indexed by a constant. 1838 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1839 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1840 unsigned ElementIdx = OpC->getZExtValue(); 1841 const StructLayout *SL = DL.getStructLayout(STy); 1842 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1843 if (ElementOffset > 0) 1844 return true; 1845 continue; 1846 } 1847 1848 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1849 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1850 continue; 1851 1852 // Fast path the constant operand case both for efficiency and so we don't 1853 // increment Depth when just zipping down an all-constant GEP. 1854 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1855 if (!OpC->isZero()) 1856 return true; 1857 continue; 1858 } 1859 1860 // We post-increment Depth here because while isKnownNonZero increments it 1861 // as well, when we pop back up that increment won't persist. We don't want 1862 // to recurse 10k times just because we have 10k GEP operands. We don't 1863 // bail completely out because we want to handle constant GEPs regardless 1864 // of depth. 1865 if (Depth++ >= MaxDepth) 1866 continue; 1867 1868 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q)) 1869 return true; 1870 } 1871 1872 return false; 1873 } 1874 1875 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1876 /// ensure that the value it's attached to is never Value? 'RangeType' is 1877 /// is the type of the value described by the range. 1878 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1879 const APInt& Value) { 1880 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1881 assert(NumRanges >= 1); 1882 for (unsigned i = 0; i < NumRanges; ++i) { 1883 ConstantInt *Lower = 1884 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1885 ConstantInt *Upper = 1886 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1887 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1888 if (Range.contains(Value)) 1889 return false; 1890 } 1891 return true; 1892 } 1893 1894 /// Return true if the given value is known to be non-zero when defined. 1895 /// For vectors return true if every element is known to be non-zero when 1896 /// defined. Supports values with integer or pointer type and vectors of 1897 /// integers. 1898 bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 1899 const Query &Q) { 1900 if (Constant *C = dyn_cast<Constant>(V)) { 1901 if (C->isNullValue()) 1902 return false; 1903 if (isa<ConstantInt>(C)) 1904 // Must be non-zero due to null test above. 1905 return true; 1906 // TODO: Handle vectors 1907 return false; 1908 } 1909 1910 if (Instruction* I = dyn_cast<Instruction>(V)) { 1911 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1912 // If the possible ranges don't contain zero, then the value is 1913 // definitely non-zero. 1914 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1915 const APInt ZeroValue(Ty->getBitWidth(), 0); 1916 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1917 return true; 1918 } 1919 } 1920 } 1921 1922 // The remaining tests are all recursive, so bail out if we hit the limit. 1923 if (Depth++ >= MaxDepth) 1924 return false; 1925 1926 // Check for pointer simplifications. 1927 if (V->getType()->isPointerTy()) { 1928 if (isKnownNonNull(V)) 1929 return true; 1930 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1931 if (isGEPKnownNonNull(GEP, DL, Depth, Q)) 1932 return true; 1933 } 1934 1935 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL); 1936 1937 // X | Y != 0 if X != 0 or Y != 0. 1938 Value *X = nullptr, *Y = nullptr; 1939 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1940 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q); 1941 1942 // ext X != 0 if X != 0. 1943 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1944 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q); 1945 1946 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1947 // if the lowest bit is shifted off the end. 1948 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1949 // shl nuw can't remove any non-zero bits. 1950 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1951 if (BO->hasNoUnsignedWrap()) 1952 return isKnownNonZero(X, DL, Depth, Q); 1953 1954 APInt KnownZero(BitWidth, 0); 1955 APInt KnownOne(BitWidth, 0); 1956 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1957 if (KnownOne[0]) 1958 return true; 1959 } 1960 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1961 // defined if the sign bit is shifted off the end. 1962 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1963 // shr exact can only shift out zero bits. 1964 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1965 if (BO->isExact()) 1966 return isKnownNonZero(X, DL, Depth, Q); 1967 1968 bool XKnownNonNegative, XKnownNegative; 1969 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1970 if (XKnownNegative) 1971 return true; 1972 1973 // If the shifter operand is a constant, and all of the bits shifted 1974 // out are known to be zero, and X is known non-zero then at least one 1975 // non-zero bit must remain. 1976 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1977 APInt KnownZero(BitWidth, 0); 1978 APInt KnownOne(BitWidth, 0); 1979 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1980 1981 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1982 // Is there a known one in the portion not shifted out? 1983 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1984 return true; 1985 // Are all the bits to be shifted out known zero? 1986 if (KnownZero.countTrailingOnes() >= ShiftVal) 1987 return isKnownNonZero(X, DL, Depth, Q); 1988 } 1989 } 1990 // div exact can only produce a zero if the dividend is zero. 1991 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1992 return isKnownNonZero(X, DL, Depth, Q); 1993 } 1994 // X + Y. 1995 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1996 bool XKnownNonNegative, XKnownNegative; 1997 bool YKnownNonNegative, YKnownNegative; 1998 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1999 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q); 2000 2001 // If X and Y are both non-negative (as signed values) then their sum is not 2002 // zero unless both X and Y are zero. 2003 if (XKnownNonNegative && YKnownNonNegative) 2004 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q)) 2005 return true; 2006 2007 // If X and Y are both negative (as signed values) then their sum is not 2008 // zero unless both X and Y equal INT_MIN. 2009 if (BitWidth && XKnownNegative && YKnownNegative) { 2010 APInt KnownZero(BitWidth, 0); 2011 APInt KnownOne(BitWidth, 0); 2012 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2013 // The sign bit of X is set. If some other bit is set then X is not equal 2014 // to INT_MIN. 2015 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 2016 if ((KnownOne & Mask) != 0) 2017 return true; 2018 // The sign bit of Y is set. If some other bit is set then Y is not equal 2019 // to INT_MIN. 2020 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q); 2021 if ((KnownOne & Mask) != 0) 2022 return true; 2023 } 2024 2025 // The sum of a non-negative number and a power of two is not zero. 2026 if (XKnownNonNegative && 2027 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL)) 2028 return true; 2029 if (YKnownNonNegative && 2030 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL)) 2031 return true; 2032 } 2033 // X * Y. 2034 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2035 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2036 // If X and Y are non-zero then so is X * Y as long as the multiplication 2037 // does not overflow. 2038 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 2039 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q)) 2040 return true; 2041 } 2042 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2043 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2044 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) && 2045 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q)) 2046 return true; 2047 } 2048 // PHI 2049 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2050 // Try and detect a recurrence that monotonically increases from a 2051 // starting value, as these are common as induction variables. 2052 if (PN->getNumIncomingValues() == 2) { 2053 Value *Start = PN->getIncomingValue(0); 2054 Value *Induction = PN->getIncomingValue(1); 2055 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2056 std::swap(Start, Induction); 2057 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2058 if (!C->isZero() && !C->isNegative()) { 2059 ConstantInt *X; 2060 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2061 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2062 !X->isNegative()) 2063 return true; 2064 } 2065 } 2066 } 2067 } 2068 2069 if (!BitWidth) return false; 2070 APInt KnownZero(BitWidth, 0); 2071 APInt KnownOne(BitWidth, 0); 2072 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2073 return KnownOne != 0; 2074 } 2075 2076 /// Return true if V2 == V1 + X, where X is known non-zero. 2077 static bool isAddOfNonZero(Value *V1, Value *V2, const DataLayout &DL, 2078 const Query &Q) { 2079 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2080 if (!BO || BO->getOpcode() != Instruction::Add) 2081 return false; 2082 Value *Op = nullptr; 2083 if (V2 == BO->getOperand(0)) 2084 Op = BO->getOperand(1); 2085 else if (V2 == BO->getOperand(1)) 2086 Op = BO->getOperand(0); 2087 else 2088 return false; 2089 return isKnownNonZero(Op, DL, 0, Q); 2090 } 2091 2092 /// Return true if it is known that V1 != V2. 2093 static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 2094 const Query &Q) { 2095 if (V1->getType()->isVectorTy() || V1 == V2) 2096 return false; 2097 if (V1->getType() != V2->getType()) 2098 // We can't look through casts yet. 2099 return false; 2100 if (isAddOfNonZero(V1, V2, DL, Q) || isAddOfNonZero(V2, V1, DL, Q)) 2101 return true; 2102 2103 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2104 // Are any known bits in V1 contradictory to known bits in V2? If V1 2105 // has a known zero where V2 has a known one, they must not be equal. 2106 auto BitWidth = Ty->getBitWidth(); 2107 APInt KnownZero1(BitWidth, 0); 2108 APInt KnownOne1(BitWidth, 0); 2109 computeKnownBits(V1, KnownZero1, KnownOne1, DL, 0, Q); 2110 APInt KnownZero2(BitWidth, 0); 2111 APInt KnownOne2(BitWidth, 0); 2112 computeKnownBits(V2, KnownZero2, KnownOne2, DL, 0, Q); 2113 2114 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2115 if (OppositeBits.getBoolValue()) 2116 return true; 2117 } 2118 return false; 2119 } 2120 2121 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2122 /// simplify operations downstream. Mask is known to be zero for bits that V 2123 /// cannot have. 2124 /// 2125 /// This function is defined on values with integer type, values with pointer 2126 /// type, and vectors of integers. In the case 2127 /// where V is a vector, the mask, known zero, and known one values are the 2128 /// same width as the vector element, and the bit is set only if it is true 2129 /// for all of the elements in the vector. 2130 bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 2131 unsigned Depth, const Query &Q) { 2132 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2133 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2134 return (KnownZero & Mask) == Mask; 2135 } 2136 2137 2138 2139 /// Return the number of times the sign bit of the register is replicated into 2140 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2141 /// (itself), but other cases can give us information. For example, immediately 2142 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2143 /// other, so we return 3. 2144 /// 2145 /// 'Op' must have a scalar integer type. 2146 /// 2147 unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth, 2148 const Query &Q) { 2149 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType()); 2150 unsigned Tmp, Tmp2; 2151 unsigned FirstAnswer = 1; 2152 2153 // Note that ConstantInt is handled by the general computeKnownBits case 2154 // below. 2155 2156 if (Depth == 6) 2157 return 1; // Limit search depth. 2158 2159 Operator *U = dyn_cast<Operator>(V); 2160 switch (Operator::getOpcode(V)) { 2161 default: break; 2162 case Instruction::SExt: 2163 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2164 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp; 2165 2166 case Instruction::SDiv: { 2167 const APInt *Denominator; 2168 // sdiv X, C -> adds log(C) sign bits. 2169 if (match(U->getOperand(1), m_APInt(Denominator))) { 2170 2171 // Ignore non-positive denominator. 2172 if (!Denominator->isStrictlyPositive()) 2173 break; 2174 2175 // Calculate the incoming numerator bits. 2176 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2177 2178 // Add floor(log(C)) bits to the numerator bits. 2179 return std::min(TyBits, NumBits + Denominator->logBase2()); 2180 } 2181 break; 2182 } 2183 2184 case Instruction::SRem: { 2185 const APInt *Denominator; 2186 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2187 // positive constant. This let us put a lower bound on the number of sign 2188 // bits. 2189 if (match(U->getOperand(1), m_APInt(Denominator))) { 2190 2191 // Ignore non-positive denominator. 2192 if (!Denominator->isStrictlyPositive()) 2193 break; 2194 2195 // Calculate the incoming numerator bits. SRem by a positive constant 2196 // can't lower the number of sign bits. 2197 unsigned NumrBits = 2198 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2199 2200 // Calculate the leading sign bit constraints by examining the 2201 // denominator. Given that the denominator is positive, there are two 2202 // cases: 2203 // 2204 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2205 // (1 << ceilLogBase2(C)). 2206 // 2207 // 2. the numerator is negative. Then the result range is (-C,0] and 2208 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2209 // 2210 // Thus a lower bound on the number of sign bits is `TyBits - 2211 // ceilLogBase2(C)`. 2212 2213 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2214 return std::max(NumrBits, ResBits); 2215 } 2216 break; 2217 } 2218 2219 case Instruction::AShr: { 2220 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2221 // ashr X, C -> adds C sign bits. Vectors too. 2222 const APInt *ShAmt; 2223 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2224 Tmp += ShAmt->getZExtValue(); 2225 if (Tmp > TyBits) Tmp = TyBits; 2226 } 2227 return Tmp; 2228 } 2229 case Instruction::Shl: { 2230 const APInt *ShAmt; 2231 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2232 // shl destroys sign bits. 2233 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2234 Tmp2 = ShAmt->getZExtValue(); 2235 if (Tmp2 >= TyBits || // Bad shift. 2236 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2237 return Tmp - Tmp2; 2238 } 2239 break; 2240 } 2241 case Instruction::And: 2242 case Instruction::Or: 2243 case Instruction::Xor: // NOT is handled here. 2244 // Logical binary ops preserve the number of sign bits at the worst. 2245 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2246 if (Tmp != 1) { 2247 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2248 FirstAnswer = std::min(Tmp, Tmp2); 2249 // We computed what we know about the sign bits as our first 2250 // answer. Now proceed to the generic code that uses 2251 // computeKnownBits, and pick whichever answer is better. 2252 } 2253 break; 2254 2255 case Instruction::Select: 2256 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2257 if (Tmp == 1) return 1; // Early out. 2258 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q); 2259 return std::min(Tmp, Tmp2); 2260 2261 case Instruction::Add: 2262 // Add can have at most one carry bit. Thus we know that the output 2263 // is, at worst, one more bit than the inputs. 2264 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2265 if (Tmp == 1) return 1; // Early out. 2266 2267 // Special case decrementing a value (ADD X, -1): 2268 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2269 if (CRHS->isAllOnesValue()) { 2270 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2271 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 2272 Q); 2273 2274 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2275 // sign bits set. 2276 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2277 return TyBits; 2278 2279 // If we are subtracting one from a positive number, there is no carry 2280 // out of the result. 2281 if (KnownZero.isNegative()) 2282 return Tmp; 2283 } 2284 2285 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2286 if (Tmp2 == 1) return 1; 2287 return std::min(Tmp, Tmp2)-1; 2288 2289 case Instruction::Sub: 2290 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2291 if (Tmp2 == 1) return 1; 2292 2293 // Handle NEG. 2294 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2295 if (CLHS->isNullValue()) { 2296 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2297 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, 2298 Q); 2299 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2300 // sign bits set. 2301 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2302 return TyBits; 2303 2304 // If the input is known to be positive (the sign bit is known clear), 2305 // the output of the NEG has the same number of sign bits as the input. 2306 if (KnownZero.isNegative()) 2307 return Tmp2; 2308 2309 // Otherwise, we treat this like a SUB. 2310 } 2311 2312 // Sub can have at most one carry bit. Thus we know that the output 2313 // is, at worst, one more bit than the inputs. 2314 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2315 if (Tmp == 1) return 1; // Early out. 2316 return std::min(Tmp, Tmp2)-1; 2317 2318 case Instruction::PHI: { 2319 PHINode *PN = cast<PHINode>(U); 2320 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2321 // Don't analyze large in-degree PHIs. 2322 if (NumIncomingValues > 4) break; 2323 // Unreachable blocks may have zero-operand PHI nodes. 2324 if (NumIncomingValues == 0) break; 2325 2326 // Take the minimum of all incoming values. This can't infinitely loop 2327 // because of our depth threshold. 2328 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q); 2329 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2330 if (Tmp == 1) return Tmp; 2331 Tmp = std::min( 2332 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q)); 2333 } 2334 return Tmp; 2335 } 2336 2337 case Instruction::Trunc: 2338 // FIXME: it's tricky to do anything useful for this, but it is an important 2339 // case for targets like X86. 2340 break; 2341 } 2342 2343 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2344 // use this information. 2345 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2346 APInt Mask; 2347 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2348 2349 if (KnownZero.isNegative()) { // sign bit is 0 2350 Mask = KnownZero; 2351 } else if (KnownOne.isNegative()) { // sign bit is 1; 2352 Mask = KnownOne; 2353 } else { 2354 // Nothing known. 2355 return FirstAnswer; 2356 } 2357 2358 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2359 // the number of identical bits in the top of the input value. 2360 Mask = ~Mask; 2361 Mask <<= Mask.getBitWidth()-TyBits; 2362 // Return # leading zeros. We use 'min' here in case Val was zero before 2363 // shifting. We don't want to return '64' as for an i32 "0". 2364 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2365 } 2366 2367 /// This function computes the integer multiple of Base that equals V. 2368 /// If successful, it returns true and returns the multiple in 2369 /// Multiple. If unsuccessful, it returns false. It looks 2370 /// through SExt instructions only if LookThroughSExt is true. 2371 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2372 bool LookThroughSExt, unsigned Depth) { 2373 const unsigned MaxDepth = 6; 2374 2375 assert(V && "No Value?"); 2376 assert(Depth <= MaxDepth && "Limit Search Depth"); 2377 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2378 2379 Type *T = V->getType(); 2380 2381 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2382 2383 if (Base == 0) 2384 return false; 2385 2386 if (Base == 1) { 2387 Multiple = V; 2388 return true; 2389 } 2390 2391 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2392 Constant *BaseVal = ConstantInt::get(T, Base); 2393 if (CO && CO == BaseVal) { 2394 // Multiple is 1. 2395 Multiple = ConstantInt::get(T, 1); 2396 return true; 2397 } 2398 2399 if (CI && CI->getZExtValue() % Base == 0) { 2400 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2401 return true; 2402 } 2403 2404 if (Depth == MaxDepth) return false; // Limit search depth. 2405 2406 Operator *I = dyn_cast<Operator>(V); 2407 if (!I) return false; 2408 2409 switch (I->getOpcode()) { 2410 default: break; 2411 case Instruction::SExt: 2412 if (!LookThroughSExt) return false; 2413 // otherwise fall through to ZExt 2414 case Instruction::ZExt: 2415 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2416 LookThroughSExt, Depth+1); 2417 case Instruction::Shl: 2418 case Instruction::Mul: { 2419 Value *Op0 = I->getOperand(0); 2420 Value *Op1 = I->getOperand(1); 2421 2422 if (I->getOpcode() == Instruction::Shl) { 2423 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2424 if (!Op1CI) return false; 2425 // Turn Op0 << Op1 into Op0 * 2^Op1 2426 APInt Op1Int = Op1CI->getValue(); 2427 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2428 APInt API(Op1Int.getBitWidth(), 0); 2429 API.setBit(BitToSet); 2430 Op1 = ConstantInt::get(V->getContext(), API); 2431 } 2432 2433 Value *Mul0 = nullptr; 2434 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2435 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2436 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2437 if (Op1C->getType()->getPrimitiveSizeInBits() < 2438 MulC->getType()->getPrimitiveSizeInBits()) 2439 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2440 if (Op1C->getType()->getPrimitiveSizeInBits() > 2441 MulC->getType()->getPrimitiveSizeInBits()) 2442 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2443 2444 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2445 Multiple = ConstantExpr::getMul(MulC, Op1C); 2446 return true; 2447 } 2448 2449 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2450 if (Mul0CI->getValue() == 1) { 2451 // V == Base * Op1, so return Op1 2452 Multiple = Op1; 2453 return true; 2454 } 2455 } 2456 2457 Value *Mul1 = nullptr; 2458 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2459 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2460 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2461 if (Op0C->getType()->getPrimitiveSizeInBits() < 2462 MulC->getType()->getPrimitiveSizeInBits()) 2463 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2464 if (Op0C->getType()->getPrimitiveSizeInBits() > 2465 MulC->getType()->getPrimitiveSizeInBits()) 2466 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2467 2468 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2469 Multiple = ConstantExpr::getMul(MulC, Op0C); 2470 return true; 2471 } 2472 2473 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2474 if (Mul1CI->getValue() == 1) { 2475 // V == Base * Op0, so return Op0 2476 Multiple = Op0; 2477 return true; 2478 } 2479 } 2480 } 2481 } 2482 2483 // We could not determine if V is a multiple of Base. 2484 return false; 2485 } 2486 2487 /// Return true if we can prove that the specified FP value is never equal to 2488 /// -0.0. 2489 /// 2490 /// NOTE: this function will need to be revisited when we support non-default 2491 /// rounding modes! 2492 /// 2493 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2494 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2495 return !CFP->getValueAPF().isNegZero(); 2496 2497 // FIXME: Magic number! At the least, this should be given a name because it's 2498 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2499 // expose it as a parameter, so it can be used for testing / experimenting. 2500 if (Depth == 6) 2501 return false; // Limit search depth. 2502 2503 const Operator *I = dyn_cast<Operator>(V); 2504 if (!I) return false; 2505 2506 // Check if the nsz fast-math flag is set 2507 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2508 if (FPO->hasNoSignedZeros()) 2509 return true; 2510 2511 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2512 if (I->getOpcode() == Instruction::FAdd) 2513 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2514 if (CFP->isNullValue()) 2515 return true; 2516 2517 // sitofp and uitofp turn into +0.0 for zero. 2518 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2519 return true; 2520 2521 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2522 // sqrt(-0.0) = -0.0, no other negative results are possible. 2523 if (II->getIntrinsicID() == Intrinsic::sqrt) 2524 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2525 2526 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2527 if (const Function *F = CI->getCalledFunction()) { 2528 if (F->isDeclaration()) { 2529 // abs(x) != -0.0 2530 if (F->getName() == "abs") return true; 2531 // fabs[lf](x) != -0.0 2532 if (F->getName() == "fabs") return true; 2533 if (F->getName() == "fabsf") return true; 2534 if (F->getName() == "fabsl") return true; 2535 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2536 F->getName() == "sqrtl") 2537 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2538 } 2539 } 2540 2541 return false; 2542 } 2543 2544 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { 2545 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2546 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2547 2548 // FIXME: Magic number! At the least, this should be given a name because it's 2549 // used similarly in CannotBeNegativeZero(). A better fix may be to 2550 // expose it as a parameter, so it can be used for testing / experimenting. 2551 if (Depth == 6) 2552 return false; // Limit search depth. 2553 2554 const Operator *I = dyn_cast<Operator>(V); 2555 if (!I) return false; 2556 2557 switch (I->getOpcode()) { 2558 default: break; 2559 // Unsigned integers are always nonnegative. 2560 case Instruction::UIToFP: 2561 return true; 2562 case Instruction::FMul: 2563 // x*x is always non-negative or a NaN. 2564 if (I->getOperand(0) == I->getOperand(1)) 2565 return true; 2566 // Fall through 2567 case Instruction::FAdd: 2568 case Instruction::FDiv: 2569 case Instruction::FRem: 2570 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2571 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2572 case Instruction::Select: 2573 return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) && 2574 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2575 case Instruction::FPExt: 2576 case Instruction::FPTrunc: 2577 // Widening/narrowing never change sign. 2578 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2579 case Instruction::Call: 2580 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2581 switch (II->getIntrinsicID()) { 2582 default: break; 2583 case Intrinsic::maxnum: 2584 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) || 2585 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2586 case Intrinsic::minnum: 2587 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2588 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2589 case Intrinsic::exp: 2590 case Intrinsic::exp2: 2591 case Intrinsic::fabs: 2592 case Intrinsic::sqrt: 2593 return true; 2594 case Intrinsic::powi: 2595 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2596 // powi(x,n) is non-negative if n is even. 2597 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2598 return true; 2599 } 2600 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2601 case Intrinsic::fma: 2602 case Intrinsic::fmuladd: 2603 // x*x+y is non-negative if y is non-negative. 2604 return I->getOperand(0) == I->getOperand(1) && 2605 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2606 } 2607 break; 2608 } 2609 return false; 2610 } 2611 2612 /// If the specified value can be set by repeating the same byte in memory, 2613 /// return the i8 value that it is represented with. This is 2614 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2615 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2616 /// byte store (e.g. i16 0x1234), return null. 2617 Value *llvm::isBytewiseValue(Value *V) { 2618 // All byte-wide stores are splatable, even of arbitrary variables. 2619 if (V->getType()->isIntegerTy(8)) return V; 2620 2621 // Handle 'null' ConstantArrayZero etc. 2622 if (Constant *C = dyn_cast<Constant>(V)) 2623 if (C->isNullValue()) 2624 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2625 2626 // Constant float and double values can be handled as integer values if the 2627 // corresponding integer value is "byteable". An important case is 0.0. 2628 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2629 if (CFP->getType()->isFloatTy()) 2630 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2631 if (CFP->getType()->isDoubleTy()) 2632 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2633 // Don't handle long double formats, which have strange constraints. 2634 } 2635 2636 // We can handle constant integers that are multiple of 8 bits. 2637 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2638 if (CI->getBitWidth() % 8 == 0) { 2639 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2640 2641 if (!CI->getValue().isSplat(8)) 2642 return nullptr; 2643 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2644 } 2645 } 2646 2647 // A ConstantDataArray/Vector is splatable if all its members are equal and 2648 // also splatable. 2649 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2650 Value *Elt = CA->getElementAsConstant(0); 2651 Value *Val = isBytewiseValue(Elt); 2652 if (!Val) 2653 return nullptr; 2654 2655 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2656 if (CA->getElementAsConstant(I) != Elt) 2657 return nullptr; 2658 2659 return Val; 2660 } 2661 2662 // Conceptually, we could handle things like: 2663 // %a = zext i8 %X to i16 2664 // %b = shl i16 %a, 8 2665 // %c = or i16 %a, %b 2666 // but until there is an example that actually needs this, it doesn't seem 2667 // worth worrying about. 2668 return nullptr; 2669 } 2670 2671 2672 // This is the recursive version of BuildSubAggregate. It takes a few different 2673 // arguments. Idxs is the index within the nested struct From that we are 2674 // looking at now (which is of type IndexedType). IdxSkip is the number of 2675 // indices from Idxs that should be left out when inserting into the resulting 2676 // struct. To is the result struct built so far, new insertvalue instructions 2677 // build on that. 2678 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2679 SmallVectorImpl<unsigned> &Idxs, 2680 unsigned IdxSkip, 2681 Instruction *InsertBefore) { 2682 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2683 if (STy) { 2684 // Save the original To argument so we can modify it 2685 Value *OrigTo = To; 2686 // General case, the type indexed by Idxs is a struct 2687 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2688 // Process each struct element recursively 2689 Idxs.push_back(i); 2690 Value *PrevTo = To; 2691 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2692 InsertBefore); 2693 Idxs.pop_back(); 2694 if (!To) { 2695 // Couldn't find any inserted value for this index? Cleanup 2696 while (PrevTo != OrigTo) { 2697 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2698 PrevTo = Del->getAggregateOperand(); 2699 Del->eraseFromParent(); 2700 } 2701 // Stop processing elements 2702 break; 2703 } 2704 } 2705 // If we successfully found a value for each of our subaggregates 2706 if (To) 2707 return To; 2708 } 2709 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2710 // the struct's elements had a value that was inserted directly. In the latter 2711 // case, perhaps we can't determine each of the subelements individually, but 2712 // we might be able to find the complete struct somewhere. 2713 2714 // Find the value that is at that particular spot 2715 Value *V = FindInsertedValue(From, Idxs); 2716 2717 if (!V) 2718 return nullptr; 2719 2720 // Insert the value in the new (sub) aggregrate 2721 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2722 "tmp", InsertBefore); 2723 } 2724 2725 // This helper takes a nested struct and extracts a part of it (which is again a 2726 // struct) into a new value. For example, given the struct: 2727 // { a, { b, { c, d }, e } } 2728 // and the indices "1, 1" this returns 2729 // { c, d }. 2730 // 2731 // It does this by inserting an insertvalue for each element in the resulting 2732 // struct, as opposed to just inserting a single struct. This will only work if 2733 // each of the elements of the substruct are known (ie, inserted into From by an 2734 // insertvalue instruction somewhere). 2735 // 2736 // All inserted insertvalue instructions are inserted before InsertBefore 2737 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2738 Instruction *InsertBefore) { 2739 assert(InsertBefore && "Must have someplace to insert!"); 2740 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2741 idx_range); 2742 Value *To = UndefValue::get(IndexedType); 2743 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2744 unsigned IdxSkip = Idxs.size(); 2745 2746 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2747 } 2748 2749 /// Given an aggregrate and an sequence of indices, see if 2750 /// the scalar value indexed is already around as a register, for example if it 2751 /// were inserted directly into the aggregrate. 2752 /// 2753 /// If InsertBefore is not null, this function will duplicate (modified) 2754 /// insertvalues when a part of a nested struct is extracted. 2755 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2756 Instruction *InsertBefore) { 2757 // Nothing to index? Just return V then (this is useful at the end of our 2758 // recursion). 2759 if (idx_range.empty()) 2760 return V; 2761 // We have indices, so V should have an indexable type. 2762 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2763 "Not looking at a struct or array?"); 2764 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2765 "Invalid indices for type?"); 2766 2767 if (Constant *C = dyn_cast<Constant>(V)) { 2768 C = C->getAggregateElement(idx_range[0]); 2769 if (!C) return nullptr; 2770 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2771 } 2772 2773 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2774 // Loop the indices for the insertvalue instruction in parallel with the 2775 // requested indices 2776 const unsigned *req_idx = idx_range.begin(); 2777 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2778 i != e; ++i, ++req_idx) { 2779 if (req_idx == idx_range.end()) { 2780 // We can't handle this without inserting insertvalues 2781 if (!InsertBefore) 2782 return nullptr; 2783 2784 // The requested index identifies a part of a nested aggregate. Handle 2785 // this specially. For example, 2786 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2787 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2788 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2789 // This can be changed into 2790 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2791 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2792 // which allows the unused 0,0 element from the nested struct to be 2793 // removed. 2794 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2795 InsertBefore); 2796 } 2797 2798 // This insert value inserts something else than what we are looking for. 2799 // See if the (aggregate) value inserted into has the value we are 2800 // looking for, then. 2801 if (*req_idx != *i) 2802 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2803 InsertBefore); 2804 } 2805 // If we end up here, the indices of the insertvalue match with those 2806 // requested (though possibly only partially). Now we recursively look at 2807 // the inserted value, passing any remaining indices. 2808 return FindInsertedValue(I->getInsertedValueOperand(), 2809 makeArrayRef(req_idx, idx_range.end()), 2810 InsertBefore); 2811 } 2812 2813 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2814 // If we're extracting a value from an aggregate that was extracted from 2815 // something else, we can extract from that something else directly instead. 2816 // However, we will need to chain I's indices with the requested indices. 2817 2818 // Calculate the number of indices required 2819 unsigned size = I->getNumIndices() + idx_range.size(); 2820 // Allocate some space to put the new indices in 2821 SmallVector<unsigned, 5> Idxs; 2822 Idxs.reserve(size); 2823 // Add indices from the extract value instruction 2824 Idxs.append(I->idx_begin(), I->idx_end()); 2825 2826 // Add requested indices 2827 Idxs.append(idx_range.begin(), idx_range.end()); 2828 2829 assert(Idxs.size() == size 2830 && "Number of indices added not correct?"); 2831 2832 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2833 } 2834 // Otherwise, we don't know (such as, extracting from a function return value 2835 // or load instruction) 2836 return nullptr; 2837 } 2838 2839 /// Analyze the specified pointer to see if it can be expressed as a base 2840 /// pointer plus a constant offset. Return the base and offset to the caller. 2841 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2842 const DataLayout &DL) { 2843 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2844 APInt ByteOffset(BitWidth, 0); 2845 2846 // We walk up the defs but use a visited set to handle unreachable code. In 2847 // that case, we stop after accumulating the cycle once (not that it 2848 // matters). 2849 SmallPtrSet<Value *, 16> Visited; 2850 while (Visited.insert(Ptr).second) { 2851 if (Ptr->getType()->isVectorTy()) 2852 break; 2853 2854 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2855 APInt GEPOffset(BitWidth, 0); 2856 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2857 break; 2858 2859 ByteOffset += GEPOffset; 2860 2861 Ptr = GEP->getPointerOperand(); 2862 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2863 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2864 Ptr = cast<Operator>(Ptr)->getOperand(0); 2865 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2866 if (GA->mayBeOverridden()) 2867 break; 2868 Ptr = GA->getAliasee(); 2869 } else { 2870 break; 2871 } 2872 } 2873 Offset = ByteOffset.getSExtValue(); 2874 return Ptr; 2875 } 2876 2877 2878 /// This function computes the length of a null-terminated C string pointed to 2879 /// by V. If successful, it returns true and returns the string in Str. 2880 /// If unsuccessful, it returns false. 2881 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2882 uint64_t Offset, bool TrimAtNul) { 2883 assert(V); 2884 2885 // Look through bitcast instructions and geps. 2886 V = V->stripPointerCasts(); 2887 2888 // If the value is a GEP instruction or constant expression, treat it as an 2889 // offset. 2890 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2891 // Make sure the GEP has exactly three arguments. 2892 if (GEP->getNumOperands() != 3) 2893 return false; 2894 2895 // Make sure the index-ee is a pointer to array of i8. 2896 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 2897 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 2898 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2899 return false; 2900 2901 // Check to make sure that the first operand of the GEP is an integer and 2902 // has value 0 so that we are sure we're indexing into the initializer. 2903 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2904 if (!FirstIdx || !FirstIdx->isZero()) 2905 return false; 2906 2907 // If the second index isn't a ConstantInt, then this is a variable index 2908 // into the array. If this occurs, we can't say anything meaningful about 2909 // the string. 2910 uint64_t StartIdx = 0; 2911 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2912 StartIdx = CI->getZExtValue(); 2913 else 2914 return false; 2915 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2916 TrimAtNul); 2917 } 2918 2919 // The GEP instruction, constant or instruction, must reference a global 2920 // variable that is a constant and is initialized. The referenced constant 2921 // initializer is the array that we'll use for optimization. 2922 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2923 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2924 return false; 2925 2926 // Handle the all-zeros case 2927 if (GV->getInitializer()->isNullValue()) { 2928 // This is a degenerate case. The initializer is constant zero so the 2929 // length of the string must be zero. 2930 Str = ""; 2931 return true; 2932 } 2933 2934 // Must be a Constant Array 2935 const ConstantDataArray *Array = 2936 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2937 if (!Array || !Array->isString()) 2938 return false; 2939 2940 // Get the number of elements in the array 2941 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2942 2943 // Start out with the entire array in the StringRef. 2944 Str = Array->getAsString(); 2945 2946 if (Offset > NumElts) 2947 return false; 2948 2949 // Skip over 'offset' bytes. 2950 Str = Str.substr(Offset); 2951 2952 if (TrimAtNul) { 2953 // Trim off the \0 and anything after it. If the array is not nul 2954 // terminated, we just return the whole end of string. The client may know 2955 // some other way that the string is length-bound. 2956 Str = Str.substr(0, Str.find('\0')); 2957 } 2958 return true; 2959 } 2960 2961 // These next two are very similar to the above, but also look through PHI 2962 // nodes. 2963 // TODO: See if we can integrate these two together. 2964 2965 /// If we can compute the length of the string pointed to by 2966 /// the specified pointer, return 'len+1'. If we can't, return 0. 2967 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2968 // Look through noop bitcast instructions. 2969 V = V->stripPointerCasts(); 2970 2971 // If this is a PHI node, there are two cases: either we have already seen it 2972 // or we haven't. 2973 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2974 if (!PHIs.insert(PN).second) 2975 return ~0ULL; // already in the set. 2976 2977 // If it was new, see if all the input strings are the same length. 2978 uint64_t LenSoFar = ~0ULL; 2979 for (Value *IncValue : PN->incoming_values()) { 2980 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2981 if (Len == 0) return 0; // Unknown length -> unknown. 2982 2983 if (Len == ~0ULL) continue; 2984 2985 if (Len != LenSoFar && LenSoFar != ~0ULL) 2986 return 0; // Disagree -> unknown. 2987 LenSoFar = Len; 2988 } 2989 2990 // Success, all agree. 2991 return LenSoFar; 2992 } 2993 2994 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2995 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2996 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2997 if (Len1 == 0) return 0; 2998 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2999 if (Len2 == 0) return 0; 3000 if (Len1 == ~0ULL) return Len2; 3001 if (Len2 == ~0ULL) return Len1; 3002 if (Len1 != Len2) return 0; 3003 return Len1; 3004 } 3005 3006 // Otherwise, see if we can read the string. 3007 StringRef StrData; 3008 if (!getConstantStringInfo(V, StrData)) 3009 return 0; 3010 3011 return StrData.size()+1; 3012 } 3013 3014 /// If we can compute the length of the string pointed to by 3015 /// the specified pointer, return 'len+1'. If we can't, return 0. 3016 uint64_t llvm::GetStringLength(Value *V) { 3017 if (!V->getType()->isPointerTy()) return 0; 3018 3019 SmallPtrSet<PHINode*, 32> PHIs; 3020 uint64_t Len = GetStringLengthH(V, PHIs); 3021 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3022 // an empty string as a length. 3023 return Len == ~0ULL ? 1 : Len; 3024 } 3025 3026 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3027 /// previous iteration of the loop was referring to the same object as \p PN. 3028 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 3029 // Find the loop-defined value. 3030 Loop *L = LI->getLoopFor(PN->getParent()); 3031 if (PN->getNumIncomingValues() != 2) 3032 return true; 3033 3034 // Find the value from previous iteration. 3035 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3036 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3037 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3038 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3039 return true; 3040 3041 // If a new pointer is loaded in the loop, the pointer references a different 3042 // object in every iteration. E.g.: 3043 // for (i) 3044 // int *p = a[i]; 3045 // ... 3046 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3047 if (!L->isLoopInvariant(Load->getPointerOperand())) 3048 return false; 3049 return true; 3050 } 3051 3052 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3053 unsigned MaxLookup) { 3054 if (!V->getType()->isPointerTy()) 3055 return V; 3056 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3057 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3058 V = GEP->getPointerOperand(); 3059 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3060 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3061 V = cast<Operator>(V)->getOperand(0); 3062 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3063 if (GA->mayBeOverridden()) 3064 return V; 3065 V = GA->getAliasee(); 3066 } else { 3067 // See if InstructionSimplify knows any relevant tricks. 3068 if (Instruction *I = dyn_cast<Instruction>(V)) 3069 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3070 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3071 V = Simplified; 3072 continue; 3073 } 3074 3075 return V; 3076 } 3077 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3078 } 3079 return V; 3080 } 3081 3082 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3083 const DataLayout &DL, LoopInfo *LI, 3084 unsigned MaxLookup) { 3085 SmallPtrSet<Value *, 4> Visited; 3086 SmallVector<Value *, 4> Worklist; 3087 Worklist.push_back(V); 3088 do { 3089 Value *P = Worklist.pop_back_val(); 3090 P = GetUnderlyingObject(P, DL, MaxLookup); 3091 3092 if (!Visited.insert(P).second) 3093 continue; 3094 3095 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3096 Worklist.push_back(SI->getTrueValue()); 3097 Worklist.push_back(SI->getFalseValue()); 3098 continue; 3099 } 3100 3101 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3102 // If this PHI changes the underlying object in every iteration of the 3103 // loop, don't look through it. Consider: 3104 // int **A; 3105 // for (i) { 3106 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3107 // Curr = A[i]; 3108 // *Prev, *Curr; 3109 // 3110 // Prev is tracking Curr one iteration behind so they refer to different 3111 // underlying objects. 3112 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3113 isSameUnderlyingObjectInLoop(PN, LI)) 3114 for (Value *IncValue : PN->incoming_values()) 3115 Worklist.push_back(IncValue); 3116 continue; 3117 } 3118 3119 Objects.push_back(P); 3120 } while (!Worklist.empty()); 3121 } 3122 3123 /// Return true if the only users of this pointer are lifetime markers. 3124 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3125 for (const User *U : V->users()) { 3126 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3127 if (!II) return false; 3128 3129 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3130 II->getIntrinsicID() != Intrinsic::lifetime_end) 3131 return false; 3132 } 3133 return true; 3134 } 3135 3136 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset, 3137 Type *Ty, const DataLayout &DL, 3138 const Instruction *CtxI, 3139 const DominatorTree *DT, 3140 const TargetLibraryInfo *TLI) { 3141 assert(Offset.isNonNegative() && "offset can't be negative"); 3142 assert(Ty->isSized() && "must be sized"); 3143 3144 APInt DerefBytes(Offset.getBitWidth(), 0); 3145 bool CheckForNonNull = false; 3146 if (const Argument *A = dyn_cast<Argument>(BV)) { 3147 DerefBytes = A->getDereferenceableBytes(); 3148 if (!DerefBytes.getBoolValue()) { 3149 DerefBytes = A->getDereferenceableOrNullBytes(); 3150 CheckForNonNull = true; 3151 } 3152 } else if (auto CS = ImmutableCallSite(BV)) { 3153 DerefBytes = CS.getDereferenceableBytes(0); 3154 if (!DerefBytes.getBoolValue()) { 3155 DerefBytes = CS.getDereferenceableOrNullBytes(0); 3156 CheckForNonNull = true; 3157 } 3158 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) { 3159 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 3160 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3161 DerefBytes = CI->getLimitedValue(); 3162 } 3163 if (!DerefBytes.getBoolValue()) { 3164 if (MDNode *MD = 3165 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 3166 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3167 DerefBytes = CI->getLimitedValue(); 3168 } 3169 CheckForNonNull = true; 3170 } 3171 } 3172 3173 if (DerefBytes.getBoolValue()) 3174 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty))) 3175 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI)) 3176 return true; 3177 3178 return false; 3179 } 3180 3181 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL, 3182 const Instruction *CtxI, 3183 const DominatorTree *DT, 3184 const TargetLibraryInfo *TLI) { 3185 Type *VTy = V->getType(); 3186 Type *Ty = VTy->getPointerElementType(); 3187 if (!Ty->isSized()) 3188 return false; 3189 3190 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3191 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI); 3192 } 3193 3194 static bool isAligned(const Value *Base, APInt Offset, unsigned Align, 3195 const DataLayout &DL) { 3196 APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL)); 3197 3198 if (!BaseAlign) { 3199 Type *Ty = Base->getType()->getPointerElementType(); 3200 if (!Ty->isSized()) 3201 return false; 3202 BaseAlign = DL.getABITypeAlignment(Ty); 3203 } 3204 3205 APInt Alignment(Offset.getBitWidth(), Align); 3206 3207 assert(Alignment.isPowerOf2() && "must be a power of 2!"); 3208 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); 3209 } 3210 3211 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { 3212 Type *Ty = Base->getType(); 3213 assert(Ty->isSized() && "must be sized"); 3214 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 3215 return isAligned(Base, Offset, Align, DL); 3216 } 3217 3218 /// Test if V is always a pointer to allocated and suitably aligned memory for 3219 /// a simple load or store. 3220 static bool isDereferenceableAndAlignedPointer( 3221 const Value *V, unsigned Align, const DataLayout &DL, 3222 const Instruction *CtxI, const DominatorTree *DT, 3223 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) { 3224 // Note that it is not safe to speculate into a malloc'd region because 3225 // malloc may return null. 3226 3227 // These are obviously ok if aligned. 3228 if (isa<AllocaInst>(V)) 3229 return isAligned(V, Align, DL); 3230 3231 // It's not always safe to follow a bitcast, for example: 3232 // bitcast i8* (alloca i8) to i32* 3233 // would result in a 4-byte load from a 1-byte alloca. However, 3234 // if we're casting from a pointer from a type of larger size 3235 // to a type of smaller size (or the same size), and the alignment 3236 // is at least as large as for the resulting pointer type, then 3237 // we can look through the bitcast. 3238 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 3239 Type *STy = BC->getSrcTy()->getPointerElementType(), 3240 *DTy = BC->getDestTy()->getPointerElementType(); 3241 if (STy->isSized() && DTy->isSized() && 3242 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) && 3243 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy))) 3244 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL, 3245 CtxI, DT, TLI, Visited); 3246 } 3247 3248 // Global variables which can't collapse to null are ok. 3249 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 3250 if (!GV->hasExternalWeakLinkage()) 3251 return isAligned(V, Align, DL); 3252 3253 // byval arguments are okay. 3254 if (const Argument *A = dyn_cast<Argument>(V)) 3255 if (A->hasByValAttr()) 3256 return isAligned(V, Align, DL); 3257 3258 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI)) 3259 return isAligned(V, Align, DL); 3260 3261 // For GEPs, determine if the indexing lands within the allocated object. 3262 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3263 Type *VTy = GEP->getType(); 3264 Type *Ty = VTy->getPointerElementType(); 3265 const Value *Base = GEP->getPointerOperand(); 3266 3267 // Conservatively require that the base pointer be fully dereferenceable 3268 // and aligned. 3269 if (!Visited.insert(Base).second) 3270 return false; 3271 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI, 3272 Visited)) 3273 return false; 3274 3275 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0); 3276 if (!GEP->accumulateConstantOffset(DL, Offset)) 3277 return false; 3278 3279 // Check if the load is within the bounds of the underlying object 3280 // and offset is aligned. 3281 uint64_t LoadSize = DL.getTypeStoreSize(Ty); 3282 Type *BaseType = Base->getType()->getPointerElementType(); 3283 assert(isPowerOf2_32(Align) && "must be a power of 2!"); 3284 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) && 3285 !(Offset & APInt(Offset.getBitWidth(), Align-1)); 3286 } 3287 3288 // For gc.relocate, look through relocations 3289 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 3290 return isDereferenceableAndAlignedPointer( 3291 RelocateInst->getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited); 3292 3293 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 3294 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL, 3295 CtxI, DT, TLI, Visited); 3296 3297 // If we don't know, assume the worst. 3298 return false; 3299 } 3300 3301 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, 3302 const DataLayout &DL, 3303 const Instruction *CtxI, 3304 const DominatorTree *DT, 3305 const TargetLibraryInfo *TLI) { 3306 // When dereferenceability information is provided by a dereferenceable 3307 // attribute, we know exactly how many bytes are dereferenceable. If we can 3308 // determine the exact offset to the attributed variable, we can use that 3309 // information here. 3310 Type *VTy = V->getType(); 3311 Type *Ty = VTy->getPointerElementType(); 3312 3313 // Require ABI alignment for loads without alignment specification 3314 if (Align == 0) 3315 Align = DL.getABITypeAlignment(Ty); 3316 3317 if (Ty->isSized()) { 3318 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3319 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 3320 3321 if (Offset.isNonNegative()) 3322 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) && 3323 isAligned(BV, Offset, Align, DL)) 3324 return true; 3325 } 3326 3327 SmallPtrSet<const Value *, 32> Visited; 3328 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI, 3329 Visited); 3330 } 3331 3332 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, 3333 const Instruction *CtxI, 3334 const DominatorTree *DT, 3335 const TargetLibraryInfo *TLI) { 3336 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI); 3337 } 3338 3339 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3340 const Instruction *CtxI, 3341 const DominatorTree *DT, 3342 const TargetLibraryInfo *TLI) { 3343 const Operator *Inst = dyn_cast<Operator>(V); 3344 if (!Inst) 3345 return false; 3346 3347 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3348 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3349 if (C->canTrap()) 3350 return false; 3351 3352 switch (Inst->getOpcode()) { 3353 default: 3354 return true; 3355 case Instruction::UDiv: 3356 case Instruction::URem: { 3357 // x / y is undefined if y == 0. 3358 const APInt *V; 3359 if (match(Inst->getOperand(1), m_APInt(V))) 3360 return *V != 0; 3361 return false; 3362 } 3363 case Instruction::SDiv: 3364 case Instruction::SRem: { 3365 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3366 const APInt *Numerator, *Denominator; 3367 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3368 return false; 3369 // We cannot hoist this division if the denominator is 0. 3370 if (*Denominator == 0) 3371 return false; 3372 // It's safe to hoist if the denominator is not 0 or -1. 3373 if (*Denominator != -1) 3374 return true; 3375 // At this point we know that the denominator is -1. It is safe to hoist as 3376 // long we know that the numerator is not INT_MIN. 3377 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3378 return !Numerator->isMinSignedValue(); 3379 // The numerator *might* be MinSignedValue. 3380 return false; 3381 } 3382 case Instruction::Load: { 3383 const LoadInst *LI = cast<LoadInst>(Inst); 3384 if (!LI->isUnordered() || 3385 // Speculative load may create a race that did not exist in the source. 3386 LI->getParent()->getParent()->hasFnAttribute( 3387 Attribute::SanitizeThread) || 3388 // Speculative load may load data from dirty regions. 3389 LI->getParent()->getParent()->hasFnAttribute( 3390 Attribute::SanitizeAddress)) 3391 return false; 3392 const DataLayout &DL = LI->getModule()->getDataLayout(); 3393 return isDereferenceableAndAlignedPointer( 3394 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); 3395 } 3396 case Instruction::Call: { 3397 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3398 switch (II->getIntrinsicID()) { 3399 // These synthetic intrinsics have no side-effects and just mark 3400 // information about their operands. 3401 // FIXME: There are other no-op synthetic instructions that potentially 3402 // should be considered at least *safe* to speculate... 3403 case Intrinsic::dbg_declare: 3404 case Intrinsic::dbg_value: 3405 return true; 3406 3407 case Intrinsic::bswap: 3408 case Intrinsic::ctlz: 3409 case Intrinsic::ctpop: 3410 case Intrinsic::cttz: 3411 case Intrinsic::objectsize: 3412 case Intrinsic::sadd_with_overflow: 3413 case Intrinsic::smul_with_overflow: 3414 case Intrinsic::ssub_with_overflow: 3415 case Intrinsic::uadd_with_overflow: 3416 case Intrinsic::umul_with_overflow: 3417 case Intrinsic::usub_with_overflow: 3418 return true; 3419 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 3420 // errno like libm sqrt would. 3421 case Intrinsic::sqrt: 3422 case Intrinsic::fma: 3423 case Intrinsic::fmuladd: 3424 case Intrinsic::fabs: 3425 case Intrinsic::minnum: 3426 case Intrinsic::maxnum: 3427 return true; 3428 // TODO: some fp intrinsics are marked as having the same error handling 3429 // as libm. They're safe to speculate when they won't error. 3430 // TODO: are convert_{from,to}_fp16 safe? 3431 // TODO: can we list target-specific intrinsics here? 3432 default: break; 3433 } 3434 } 3435 return false; // The called function could have undefined behavior or 3436 // side-effects, even if marked readnone nounwind. 3437 } 3438 case Instruction::VAArg: 3439 case Instruction::Alloca: 3440 case Instruction::Invoke: 3441 case Instruction::PHI: 3442 case Instruction::Store: 3443 case Instruction::Ret: 3444 case Instruction::Br: 3445 case Instruction::IndirectBr: 3446 case Instruction::Switch: 3447 case Instruction::Unreachable: 3448 case Instruction::Fence: 3449 case Instruction::AtomicRMW: 3450 case Instruction::AtomicCmpXchg: 3451 case Instruction::LandingPad: 3452 case Instruction::Resume: 3453 case Instruction::CatchSwitch: 3454 case Instruction::CatchPad: 3455 case Instruction::CatchRet: 3456 case Instruction::CleanupPad: 3457 case Instruction::CleanupRet: 3458 return false; // Misc instructions which have effects 3459 } 3460 } 3461 3462 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3463 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3464 } 3465 3466 /// Return true if we know that the specified value is never null. 3467 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3468 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3469 3470 // Alloca never returns null, malloc might. 3471 if (isa<AllocaInst>(V)) return true; 3472 3473 // A byval, inalloca, or nonnull argument is never null. 3474 if (const Argument *A = dyn_cast<Argument>(V)) 3475 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3476 3477 // A global variable in address space 0 is non null unless extern weak. 3478 // Other address spaces may have null as a valid address for a global, 3479 // so we can't assume anything. 3480 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3481 return !GV->hasExternalWeakLinkage() && 3482 GV->getType()->getAddressSpace() == 0; 3483 3484 // A Load tagged w/nonnull metadata is never null. 3485 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3486 return LI->getMetadata(LLVMContext::MD_nonnull); 3487 3488 if (auto CS = ImmutableCallSite(V)) 3489 if (CS.isReturnNonNull()) 3490 return true; 3491 3492 return false; 3493 } 3494 3495 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3496 const Instruction *CtxI, 3497 const DominatorTree *DT) { 3498 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3499 3500 unsigned NumUsesExplored = 0; 3501 for (auto U : V->users()) { 3502 // Avoid massive lists 3503 if (NumUsesExplored >= DomConditionsMaxUses) 3504 break; 3505 NumUsesExplored++; 3506 // Consider only compare instructions uniquely controlling a branch 3507 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3508 if (!Cmp) 3509 continue; 3510 3511 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 3512 continue; 3513 3514 for (auto *CmpU : Cmp->users()) { 3515 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3516 if (!BI) 3517 continue; 3518 3519 assert(BI->isConditional() && "uses a comparison!"); 3520 3521 BasicBlock *NonNullSuccessor = nullptr; 3522 CmpInst::Predicate Pred; 3523 3524 if (match(const_cast<ICmpInst*>(Cmp), 3525 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3526 if (Pred == ICmpInst::ICMP_EQ) 3527 NonNullSuccessor = BI->getSuccessor(1); 3528 else if (Pred == ICmpInst::ICMP_NE) 3529 NonNullSuccessor = BI->getSuccessor(0); 3530 } 3531 3532 if (NonNullSuccessor) { 3533 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3534 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3535 return true; 3536 } 3537 } 3538 } 3539 3540 return false; 3541 } 3542 3543 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3544 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3545 if (isKnownNonNull(V, TLI)) 3546 return true; 3547 3548 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3549 } 3550 3551 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3552 const DataLayout &DL, 3553 AssumptionCache *AC, 3554 const Instruction *CxtI, 3555 const DominatorTree *DT) { 3556 // Multiplying n * m significant bits yields a result of n + m significant 3557 // bits. If the total number of significant bits does not exceed the 3558 // result bit width (minus 1), there is no overflow. 3559 // This means if we have enough leading zero bits in the operands 3560 // we can guarantee that the result does not overflow. 3561 // Ref: "Hacker's Delight" by Henry Warren 3562 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3563 APInt LHSKnownZero(BitWidth, 0); 3564 APInt LHSKnownOne(BitWidth, 0); 3565 APInt RHSKnownZero(BitWidth, 0); 3566 APInt RHSKnownOne(BitWidth, 0); 3567 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3568 DT); 3569 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3570 DT); 3571 // Note that underestimating the number of zero bits gives a more 3572 // conservative answer. 3573 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3574 RHSKnownZero.countLeadingOnes(); 3575 // First handle the easy case: if we have enough zero bits there's 3576 // definitely no overflow. 3577 if (ZeroBits >= BitWidth) 3578 return OverflowResult::NeverOverflows; 3579 3580 // Get the largest possible values for each operand. 3581 APInt LHSMax = ~LHSKnownZero; 3582 APInt RHSMax = ~RHSKnownZero; 3583 3584 // We know the multiply operation doesn't overflow if the maximum values for 3585 // each operand will not overflow after we multiply them together. 3586 bool MaxOverflow; 3587 LHSMax.umul_ov(RHSMax, MaxOverflow); 3588 if (!MaxOverflow) 3589 return OverflowResult::NeverOverflows; 3590 3591 // We know it always overflows if multiplying the smallest possible values for 3592 // the operands also results in overflow. 3593 bool MinOverflow; 3594 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3595 if (MinOverflow) 3596 return OverflowResult::AlwaysOverflows; 3597 3598 return OverflowResult::MayOverflow; 3599 } 3600 3601 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3602 const DataLayout &DL, 3603 AssumptionCache *AC, 3604 const Instruction *CxtI, 3605 const DominatorTree *DT) { 3606 bool LHSKnownNonNegative, LHSKnownNegative; 3607 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3608 AC, CxtI, DT); 3609 if (LHSKnownNonNegative || LHSKnownNegative) { 3610 bool RHSKnownNonNegative, RHSKnownNegative; 3611 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3612 AC, CxtI, DT); 3613 3614 if (LHSKnownNegative && RHSKnownNegative) { 3615 // The sign bit is set in both cases: this MUST overflow. 3616 // Create a simple add instruction, and insert it into the struct. 3617 return OverflowResult::AlwaysOverflows; 3618 } 3619 3620 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3621 // The sign bit is clear in both cases: this CANNOT overflow. 3622 // Create a simple add instruction, and insert it into the struct. 3623 return OverflowResult::NeverOverflows; 3624 } 3625 } 3626 3627 return OverflowResult::MayOverflow; 3628 } 3629 3630 static OverflowResult computeOverflowForSignedAdd( 3631 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, 3632 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { 3633 if (Add && Add->hasNoSignedWrap()) { 3634 return OverflowResult::NeverOverflows; 3635 } 3636 3637 bool LHSKnownNonNegative, LHSKnownNegative; 3638 bool RHSKnownNonNegative, RHSKnownNegative; 3639 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3640 AC, CxtI, DT); 3641 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3642 AC, CxtI, DT); 3643 3644 if ((LHSKnownNonNegative && RHSKnownNegative) || 3645 (LHSKnownNegative && RHSKnownNonNegative)) { 3646 // The sign bits are opposite: this CANNOT overflow. 3647 return OverflowResult::NeverOverflows; 3648 } 3649 3650 // The remaining code needs Add to be available. Early returns if not so. 3651 if (!Add) 3652 return OverflowResult::MayOverflow; 3653 3654 // If the sign of Add is the same as at least one of the operands, this add 3655 // CANNOT overflow. This is particularly useful when the sum is 3656 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3657 // operands. 3658 bool LHSOrRHSKnownNonNegative = 3659 (LHSKnownNonNegative || RHSKnownNonNegative); 3660 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3661 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3662 bool AddKnownNonNegative, AddKnownNegative; 3663 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3664 /*Depth=*/0, AC, CxtI, DT); 3665 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3666 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3667 return OverflowResult::NeverOverflows; 3668 } 3669 } 3670 3671 return OverflowResult::MayOverflow; 3672 } 3673 3674 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, 3675 const DataLayout &DL, 3676 AssumptionCache *AC, 3677 const Instruction *CxtI, 3678 const DominatorTree *DT) { 3679 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3680 Add, DL, AC, CxtI, DT); 3681 } 3682 3683 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, 3684 const DataLayout &DL, 3685 AssumptionCache *AC, 3686 const Instruction *CxtI, 3687 const DominatorTree *DT) { 3688 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3689 } 3690 3691 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3692 // FIXME: This conservative implementation can be relaxed. E.g. most 3693 // atomic operations are guaranteed to terminate on most platforms 3694 // and most functions terminate. 3695 3696 return !I->isAtomic() && // atomics may never succeed on some platforms 3697 !isa<CallInst>(I) && // could throw and might not terminate 3698 !isa<InvokeInst>(I) && // might not terminate and could throw to 3699 // non-successor (see bug 24185 for details). 3700 !isa<ResumeInst>(I) && // has no successors 3701 !isa<ReturnInst>(I); // has no successors 3702 } 3703 3704 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3705 const Loop *L) { 3706 // The loop header is guaranteed to be executed for every iteration. 3707 // 3708 // FIXME: Relax this constraint to cover all basic blocks that are 3709 // guaranteed to be executed at every iteration. 3710 if (I->getParent() != L->getHeader()) return false; 3711 3712 for (const Instruction &LI : *L->getHeader()) { 3713 if (&LI == I) return true; 3714 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3715 } 3716 llvm_unreachable("Instruction not contained in its own parent basic block."); 3717 } 3718 3719 bool llvm::propagatesFullPoison(const Instruction *I) { 3720 switch (I->getOpcode()) { 3721 case Instruction::Add: 3722 case Instruction::Sub: 3723 case Instruction::Xor: 3724 case Instruction::Trunc: 3725 case Instruction::BitCast: 3726 case Instruction::AddrSpaceCast: 3727 // These operations all propagate poison unconditionally. Note that poison 3728 // is not any particular value, so xor or subtraction of poison with 3729 // itself still yields poison, not zero. 3730 return true; 3731 3732 case Instruction::AShr: 3733 case Instruction::SExt: 3734 // For these operations, one bit of the input is replicated across 3735 // multiple output bits. A replicated poison bit is still poison. 3736 return true; 3737 3738 case Instruction::Shl: { 3739 // Left shift *by* a poison value is poison. The number of 3740 // positions to shift is unsigned, so no negative values are 3741 // possible there. Left shift by zero places preserves poison. So 3742 // it only remains to consider left shift of poison by a positive 3743 // number of places. 3744 // 3745 // A left shift by a positive number of places leaves the lowest order bit 3746 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3747 // make the poison operand violate that flag, yielding a fresh full-poison 3748 // value. 3749 auto *OBO = cast<OverflowingBinaryOperator>(I); 3750 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3751 } 3752 3753 case Instruction::Mul: { 3754 // A multiplication by zero yields a non-poison zero result, so we need to 3755 // rule out zero as an operand. Conservatively, multiplication by a 3756 // non-zero constant is not multiplication by zero. 3757 // 3758 // Multiplication by a non-zero constant can leave some bits 3759 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3760 // order bit unpoisoned. So we need to consider that. 3761 // 3762 // Multiplication by 1 preserves poison. If the multiplication has a 3763 // no-wrap flag, then we can make the poison operand violate that flag 3764 // when multiplied by any integer other than 0 and 1. 3765 auto *OBO = cast<OverflowingBinaryOperator>(I); 3766 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3767 for (Value *V : OBO->operands()) { 3768 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3769 // A ConstantInt cannot yield poison, so we can assume that it is 3770 // the other operand that is poison. 3771 return !CI->isZero(); 3772 } 3773 } 3774 } 3775 return false; 3776 } 3777 3778 case Instruction::GetElementPtr: 3779 // A GEP implicitly represents a sequence of additions, subtractions, 3780 // truncations, sign extensions and multiplications. The multiplications 3781 // are by the non-zero sizes of some set of types, so we do not have to be 3782 // concerned with multiplication by zero. If the GEP is in-bounds, then 3783 // these operations are implicitly no-signed-wrap so poison is propagated 3784 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3785 return cast<GEPOperator>(I)->isInBounds(); 3786 3787 default: 3788 return false; 3789 } 3790 } 3791 3792 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3793 switch (I->getOpcode()) { 3794 case Instruction::Store: 3795 return cast<StoreInst>(I)->getPointerOperand(); 3796 3797 case Instruction::Load: 3798 return cast<LoadInst>(I)->getPointerOperand(); 3799 3800 case Instruction::AtomicCmpXchg: 3801 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3802 3803 case Instruction::AtomicRMW: 3804 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3805 3806 case Instruction::UDiv: 3807 case Instruction::SDiv: 3808 case Instruction::URem: 3809 case Instruction::SRem: 3810 return I->getOperand(1); 3811 3812 default: 3813 return nullptr; 3814 } 3815 } 3816 3817 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3818 // We currently only look for uses of poison values within the same basic 3819 // block, as that makes it easier to guarantee that the uses will be 3820 // executed given that PoisonI is executed. 3821 // 3822 // FIXME: Expand this to consider uses beyond the same basic block. To do 3823 // this, look out for the distinction between post-dominance and strong 3824 // post-dominance. 3825 const BasicBlock *BB = PoisonI->getParent(); 3826 3827 // Set of instructions that we have proved will yield poison if PoisonI 3828 // does. 3829 SmallSet<const Value *, 16> YieldsPoison; 3830 YieldsPoison.insert(PoisonI); 3831 3832 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end(); 3833 I != E; ++I) { 3834 if (&*I != PoisonI) { 3835 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I); 3836 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true; 3837 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 3838 return false; 3839 } 3840 3841 // Mark poison that propagates from I through uses of I. 3842 if (YieldsPoison.count(&*I)) { 3843 for (const User *User : I->users()) { 3844 const Instruction *UserI = cast<Instruction>(User); 3845 if (UserI->getParent() == BB && propagatesFullPoison(UserI)) 3846 YieldsPoison.insert(User); 3847 } 3848 } 3849 } 3850 return false; 3851 } 3852 3853 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { 3854 if (FMF.noNaNs()) 3855 return true; 3856 3857 if (auto *C = dyn_cast<ConstantFP>(V)) 3858 return !C->isNaN(); 3859 return false; 3860 } 3861 3862 static bool isKnownNonZero(Value *V) { 3863 if (auto *C = dyn_cast<ConstantFP>(V)) 3864 return !C->isZero(); 3865 return false; 3866 } 3867 3868 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3869 FastMathFlags FMF, 3870 Value *CmpLHS, Value *CmpRHS, 3871 Value *TrueVal, Value *FalseVal, 3872 Value *&LHS, Value *&RHS) { 3873 LHS = CmpLHS; 3874 RHS = CmpRHS; 3875 3876 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3877 // return inconsistent results between implementations. 3878 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3879 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3880 // Therefore we behave conservatively and only proceed if at least one of the 3881 // operands is known to not be zero, or if we don't care about signed zeroes. 3882 switch (Pred) { 3883 default: break; 3884 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3885 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3886 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3887 !isKnownNonZero(CmpRHS)) 3888 return {SPF_UNKNOWN, SPNB_NA, false}; 3889 } 3890 3891 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3892 bool Ordered = false; 3893 3894 // When given one NaN and one non-NaN input: 3895 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3896 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3897 // ordered comparison fails), which could be NaN or non-NaN. 3898 // so here we discover exactly what NaN behavior is required/accepted. 3899 if (CmpInst::isFPPredicate(Pred)) { 3900 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3901 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3902 3903 if (LHSSafe && RHSSafe) { 3904 // Both operands are known non-NaN. 3905 NaNBehavior = SPNB_RETURNS_ANY; 3906 } else if (CmpInst::isOrdered(Pred)) { 3907 // An ordered comparison will return false when given a NaN, so it 3908 // returns the RHS. 3909 Ordered = true; 3910 if (LHSSafe) 3911 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3912 NaNBehavior = SPNB_RETURNS_NAN; 3913 else if (RHSSafe) 3914 NaNBehavior = SPNB_RETURNS_OTHER; 3915 else 3916 // Completely unsafe. 3917 return {SPF_UNKNOWN, SPNB_NA, false}; 3918 } else { 3919 Ordered = false; 3920 // An unordered comparison will return true when given a NaN, so it 3921 // returns the LHS. 3922 if (LHSSafe) 3923 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3924 NaNBehavior = SPNB_RETURNS_OTHER; 3925 else if (RHSSafe) 3926 NaNBehavior = SPNB_RETURNS_NAN; 3927 else 3928 // Completely unsafe. 3929 return {SPF_UNKNOWN, SPNB_NA, false}; 3930 } 3931 } 3932 3933 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3934 std::swap(CmpLHS, CmpRHS); 3935 Pred = CmpInst::getSwappedPredicate(Pred); 3936 if (NaNBehavior == SPNB_RETURNS_NAN) 3937 NaNBehavior = SPNB_RETURNS_OTHER; 3938 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3939 NaNBehavior = SPNB_RETURNS_NAN; 3940 Ordered = !Ordered; 3941 } 3942 3943 // ([if]cmp X, Y) ? X : Y 3944 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3945 switch (Pred) { 3946 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3947 case ICmpInst::ICMP_UGT: 3948 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3949 case ICmpInst::ICMP_SGT: 3950 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3951 case ICmpInst::ICMP_ULT: 3952 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3953 case ICmpInst::ICMP_SLT: 3954 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3955 case FCmpInst::FCMP_UGT: 3956 case FCmpInst::FCMP_UGE: 3957 case FCmpInst::FCMP_OGT: 3958 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3959 case FCmpInst::FCMP_ULT: 3960 case FCmpInst::FCMP_ULE: 3961 case FCmpInst::FCMP_OLT: 3962 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3963 } 3964 } 3965 3966 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3967 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3968 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3969 3970 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3971 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3972 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3973 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3974 } 3975 3976 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3977 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3978 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3979 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3980 } 3981 } 3982 3983 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3984 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3985 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() && 3986 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3987 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3988 LHS = TrueVal; 3989 RHS = FalseVal; 3990 return {SPF_SMIN, SPNB_NA, false}; 3991 } 3992 } 3993 } 3994 3995 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3996 3997 return {SPF_UNKNOWN, SPNB_NA, false}; 3998 } 3999 4000 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4001 Instruction::CastOps *CastOp) { 4002 CastInst *CI = dyn_cast<CastInst>(V1); 4003 Constant *C = dyn_cast<Constant>(V2); 4004 CastInst *CI2 = dyn_cast<CastInst>(V2); 4005 if (!CI) 4006 return nullptr; 4007 *CastOp = CI->getOpcode(); 4008 4009 if (CI2) { 4010 // If V1 and V2 are both the same cast from the same type, we can look 4011 // through V1. 4012 if (CI2->getOpcode() == CI->getOpcode() && 4013 CI2->getSrcTy() == CI->getSrcTy()) 4014 return CI2->getOperand(0); 4015 return nullptr; 4016 } else if (!C) { 4017 return nullptr; 4018 } 4019 4020 if (isa<SExtInst>(CI) && CmpI->isSigned()) { 4021 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); 4022 // This is only valid if the truncated value can be sign-extended 4023 // back to the original value. 4024 if (ConstantExpr::getSExt(T, C->getType()) == C) 4025 return T; 4026 return nullptr; 4027 } 4028 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 4029 return ConstantExpr::getTrunc(C, CI->getSrcTy()); 4030 4031 if (isa<TruncInst>(CI)) 4032 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 4033 4034 if (isa<FPToUIInst>(CI)) 4035 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 4036 4037 if (isa<FPToSIInst>(CI)) 4038 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 4039 4040 if (isa<UIToFPInst>(CI)) 4041 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 4042 4043 if (isa<SIToFPInst>(CI)) 4044 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 4045 4046 if (isa<FPTruncInst>(CI)) 4047 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 4048 4049 if (isa<FPExtInst>(CI)) 4050 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 4051 4052 return nullptr; 4053 } 4054 4055 SelectPatternResult llvm::matchSelectPattern(Value *V, 4056 Value *&LHS, Value *&RHS, 4057 Instruction::CastOps *CastOp) { 4058 SelectInst *SI = dyn_cast<SelectInst>(V); 4059 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4060 4061 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4062 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4063 4064 CmpInst::Predicate Pred = CmpI->getPredicate(); 4065 Value *CmpLHS = CmpI->getOperand(0); 4066 Value *CmpRHS = CmpI->getOperand(1); 4067 Value *TrueVal = SI->getTrueValue(); 4068 Value *FalseVal = SI->getFalseValue(); 4069 FastMathFlags FMF; 4070 if (isa<FPMathOperator>(CmpI)) 4071 FMF = CmpI->getFastMathFlags(); 4072 4073 // Bail out early. 4074 if (CmpI->isEquality()) 4075 return {SPF_UNKNOWN, SPNB_NA, false}; 4076 4077 // Deal with type mismatches. 4078 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4079 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4080 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4081 cast<CastInst>(TrueVal)->getOperand(0), C, 4082 LHS, RHS); 4083 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4084 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4085 C, cast<CastInst>(FalseVal)->getOperand(0), 4086 LHS, RHS); 4087 } 4088 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4089 LHS, RHS); 4090 } 4091 4092 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) { 4093 const unsigned NumRanges = Ranges.getNumOperands() / 2; 4094 assert(NumRanges >= 1 && "Must have at least one range!"); 4095 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 4096 4097 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 4098 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 4099 4100 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 4101 4102 for (unsigned i = 1; i < NumRanges; ++i) { 4103 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 4104 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 4105 4106 // Note: unionWith will potentially create a range that contains values not 4107 // contained in any of the original N ranges. 4108 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 4109 } 4110 4111 return CR; 4112 } 4113 4114 /// Return true if "icmp Pred LHS RHS" is always true. 4115 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 4116 const DataLayout &DL, unsigned Depth, 4117 AssumptionCache *AC, const Instruction *CxtI, 4118 const DominatorTree *DT) { 4119 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4120 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4121 return true; 4122 4123 switch (Pred) { 4124 default: 4125 return false; 4126 4127 case CmpInst::ICMP_SLE: { 4128 const APInt *C; 4129 4130 // LHS s<= LHS +_{nsw} C if C >= 0 4131 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4132 return !C->isNegative(); 4133 return false; 4134 } 4135 4136 case CmpInst::ICMP_ULE: { 4137 const APInt *C; 4138 4139 // LHS u<= LHS +_{nuw} C for any C 4140 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4141 return true; 4142 4143 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4144 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X, 4145 const APInt *&CA, const APInt *&CB) { 4146 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4147 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4148 return true; 4149 4150 // If X & C == 0 then (X | C) == X +_{nuw} C 4151 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4152 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4153 unsigned BitWidth = CA->getBitWidth(); 4154 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4155 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4156 4157 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4158 return true; 4159 } 4160 4161 return false; 4162 }; 4163 4164 Value *X; 4165 const APInt *CLHS, *CRHS; 4166 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4167 return CLHS->ule(*CRHS); 4168 4169 return false; 4170 } 4171 } 4172 } 4173 4174 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4175 /// ALHS ARHS" is true. 4176 static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, 4177 Value *ARHS, Value *BLHS, Value *BRHS, 4178 const DataLayout &DL, unsigned Depth, 4179 AssumptionCache *AC, const Instruction *CxtI, 4180 const DominatorTree *DT) { 4181 switch (Pred) { 4182 default: 4183 return false; 4184 4185 case CmpInst::ICMP_SLT: 4186 case CmpInst::ICMP_SLE: 4187 return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4188 DT) && 4189 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, 4190 DT); 4191 4192 case CmpInst::ICMP_ULT: 4193 case CmpInst::ICMP_ULE: 4194 return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4195 DT) && 4196 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, 4197 DT); 4198 } 4199 } 4200 4201 bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL, 4202 unsigned Depth, AssumptionCache *AC, 4203 const Instruction *CxtI, 4204 const DominatorTree *DT) { 4205 assert(LHS->getType() == RHS->getType() && "mismatched type"); 4206 Type *OpTy = LHS->getType(); 4207 assert(OpTy->getScalarType()->isIntegerTy(1)); 4208 4209 // LHS ==> RHS by definition 4210 if (LHS == RHS) return true; 4211 4212 if (OpTy->isVectorTy()) 4213 // TODO: extending the code below to handle vectors 4214 return false; 4215 assert(OpTy->isIntegerTy(1) && "implied by above"); 4216 4217 ICmpInst::Predicate APred, BPred; 4218 Value *ALHS, *ARHS; 4219 Value *BLHS, *BRHS; 4220 4221 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4222 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4223 return false; 4224 4225 if (APred == BPred) 4226 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4227 CxtI, DT); 4228 4229 return false; 4230 } 4231