1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution expander, 11 // which is used to generate the code corresponding to a given scalar evolution 12 // expression. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/ScalarEvolutionExpander.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 using namespace PatternMatch; 33 34 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 35 /// reusing an existing cast if a suitable one exists, moving an existing 36 /// cast if a suitable one exists but isn't in the right place, or 37 /// creating a new one. 38 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 39 Instruction::CastOps Op, 40 BasicBlock::iterator IP) { 41 // This function must be called with the builder having a valid insertion 42 // point. It doesn't need to be the actual IP where the uses of the returned 43 // cast will be added, but it must dominate such IP. 44 // We use this precondition to produce a cast that will dominate all its 45 // uses. In particular, this is crucial for the case where the builder's 46 // insertion point *is* the point where we were asked to put the cast. 47 // Since we don't know the builder's insertion point is actually 48 // where the uses will be added (only that it dominates it), we are 49 // not allowed to move it. 50 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 51 52 Instruction *Ret = nullptr; 53 54 // Check to see if there is already a cast! 55 for (User *U : V->users()) 56 if (U->getType() == Ty) 57 if (CastInst *CI = dyn_cast<CastInst>(U)) 58 if (CI->getOpcode() == Op) { 59 // If the cast isn't where we want it, create a new cast at IP. 60 // Likewise, do not reuse a cast at BIP because it must dominate 61 // instructions that might be inserted before BIP. 62 if (BasicBlock::iterator(CI) != IP || BIP == IP) { 63 // Create a new cast, and leave the old cast in place in case 64 // it is being used as an insert point. Clear its operand 65 // so that it doesn't hold anything live. 66 Ret = CastInst::Create(Op, V, Ty, "", &*IP); 67 Ret->takeName(CI); 68 CI->replaceAllUsesWith(Ret); 69 CI->setOperand(0, UndefValue::get(V->getType())); 70 break; 71 } 72 Ret = CI; 73 break; 74 } 75 76 // Create a new cast. 77 if (!Ret) 78 Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP); 79 80 // We assert at the end of the function since IP might point to an 81 // instruction with different dominance properties than a cast 82 // (an invoke for example) and not dominate BIP (but the cast does). 83 assert(SE.DT.dominates(Ret, &*BIP)); 84 85 rememberInstruction(Ret); 86 return Ret; 87 } 88 89 static BasicBlock::iterator findInsertPointAfter(Instruction *I, 90 BasicBlock *MustDominate) { 91 BasicBlock::iterator IP = ++I->getIterator(); 92 if (auto *II = dyn_cast<InvokeInst>(I)) 93 IP = II->getNormalDest()->begin(); 94 95 while (isa<PHINode>(IP)) 96 ++IP; 97 98 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 99 ++IP; 100 } else if (isa<CatchSwitchInst>(IP)) { 101 IP = MustDominate->getFirstInsertionPt(); 102 } else { 103 assert(!IP->isEHPad() && "unexpected eh pad!"); 104 } 105 106 return IP; 107 } 108 109 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 110 /// which must be possible with a noop cast, doing what we can to share 111 /// the casts. 112 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 113 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 114 assert((Op == Instruction::BitCast || 115 Op == Instruction::PtrToInt || 116 Op == Instruction::IntToPtr) && 117 "InsertNoopCastOfTo cannot perform non-noop casts!"); 118 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 119 "InsertNoopCastOfTo cannot change sizes!"); 120 121 // Short-circuit unnecessary bitcasts. 122 if (Op == Instruction::BitCast) { 123 if (V->getType() == Ty) 124 return V; 125 if (CastInst *CI = dyn_cast<CastInst>(V)) { 126 if (CI->getOperand(0)->getType() == Ty) 127 return CI->getOperand(0); 128 } 129 } 130 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 131 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 132 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 133 if (CastInst *CI = dyn_cast<CastInst>(V)) 134 if ((CI->getOpcode() == Instruction::PtrToInt || 135 CI->getOpcode() == Instruction::IntToPtr) && 136 SE.getTypeSizeInBits(CI->getType()) == 137 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 138 return CI->getOperand(0); 139 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 140 if ((CE->getOpcode() == Instruction::PtrToInt || 141 CE->getOpcode() == Instruction::IntToPtr) && 142 SE.getTypeSizeInBits(CE->getType()) == 143 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 144 return CE->getOperand(0); 145 } 146 147 // Fold a cast of a constant. 148 if (Constant *C = dyn_cast<Constant>(V)) 149 return ConstantExpr::getCast(Op, C, Ty); 150 151 // Cast the argument at the beginning of the entry block, after 152 // any bitcasts of other arguments. 153 if (Argument *A = dyn_cast<Argument>(V)) { 154 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 155 while ((isa<BitCastInst>(IP) && 156 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 157 cast<BitCastInst>(IP)->getOperand(0) != A) || 158 isa<DbgInfoIntrinsic>(IP)) 159 ++IP; 160 return ReuseOrCreateCast(A, Ty, Op, IP); 161 } 162 163 // Cast the instruction immediately after the instruction. 164 Instruction *I = cast<Instruction>(V); 165 BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock()); 166 return ReuseOrCreateCast(I, Ty, Op, IP); 167 } 168 169 /// InsertBinop - Insert the specified binary operator, doing a small amount 170 /// of work to avoid inserting an obviously redundant operation. 171 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 172 Value *LHS, Value *RHS) { 173 // Fold a binop with constant operands. 174 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 175 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 176 return ConstantExpr::get(Opcode, CLHS, CRHS); 177 178 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 179 unsigned ScanLimit = 6; 180 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 181 // Scanning starts from the last instruction before the insertion point. 182 BasicBlock::iterator IP = Builder.GetInsertPoint(); 183 if (IP != BlockBegin) { 184 --IP; 185 for (; ScanLimit; --IP, --ScanLimit) { 186 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 187 // generated code. 188 if (isa<DbgInfoIntrinsic>(IP)) 189 ScanLimit++; 190 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 191 IP->getOperand(1) == RHS) 192 return &*IP; 193 if (IP == BlockBegin) break; 194 } 195 } 196 197 // Save the original insertion point so we can restore it when we're done. 198 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 199 SCEVInsertPointGuard Guard(Builder, this); 200 201 // Move the insertion point out of as many loops as we can. 202 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 203 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 204 BasicBlock *Preheader = L->getLoopPreheader(); 205 if (!Preheader) break; 206 207 // Ok, move up a level. 208 Builder.SetInsertPoint(Preheader->getTerminator()); 209 } 210 211 // If we haven't found this binop, insert it. 212 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); 213 BO->setDebugLoc(Loc); 214 rememberInstruction(BO); 215 216 return BO; 217 } 218 219 /// FactorOutConstant - Test if S is divisible by Factor, using signed 220 /// division. If so, update S with Factor divided out and return true. 221 /// S need not be evenly divisible if a reasonable remainder can be 222 /// computed. 223 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made 224 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and 225 /// check to see if the divide was folded. 226 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 227 const SCEV *Factor, ScalarEvolution &SE, 228 const DataLayout &DL) { 229 // Everything is divisible by one. 230 if (Factor->isOne()) 231 return true; 232 233 // x/x == 1. 234 if (S == Factor) { 235 S = SE.getConstant(S->getType(), 1); 236 return true; 237 } 238 239 // For a Constant, check for a multiple of the given factor. 240 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 241 // 0/x == 0. 242 if (C->isZero()) 243 return true; 244 // Check for divisibility. 245 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 246 ConstantInt *CI = 247 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 248 // If the quotient is zero and the remainder is non-zero, reject 249 // the value at this scale. It will be considered for subsequent 250 // smaller scales. 251 if (!CI->isZero()) { 252 const SCEV *Div = SE.getConstant(CI); 253 S = Div; 254 Remainder = SE.getAddExpr( 255 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 256 return true; 257 } 258 } 259 } 260 261 // In a Mul, check if there is a constant operand which is a multiple 262 // of the given factor. 263 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 264 // Size is known, check if there is a constant operand which is a multiple 265 // of the given factor. If so, we can factor it. 266 const SCEVConstant *FC = cast<SCEVConstant>(Factor); 267 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 268 if (!C->getAPInt().srem(FC->getAPInt())) { 269 SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); 270 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 271 S = SE.getMulExpr(NewMulOps); 272 return true; 273 } 274 } 275 276 // In an AddRec, check if both start and step are divisible. 277 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 278 const SCEV *Step = A->getStepRecurrence(SE); 279 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 280 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 281 return false; 282 if (!StepRem->isZero()) 283 return false; 284 const SCEV *Start = A->getStart(); 285 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 286 return false; 287 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 288 A->getNoWrapFlags(SCEV::FlagNW)); 289 return true; 290 } 291 292 return false; 293 } 294 295 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 296 /// is the number of SCEVAddRecExprs present, which are kept at the end of 297 /// the list. 298 /// 299 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 300 Type *Ty, 301 ScalarEvolution &SE) { 302 unsigned NumAddRecs = 0; 303 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 304 ++NumAddRecs; 305 // Group Ops into non-addrecs and addrecs. 306 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 307 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 308 // Let ScalarEvolution sort and simplify the non-addrecs list. 309 const SCEV *Sum = NoAddRecs.empty() ? 310 SE.getConstant(Ty, 0) : 311 SE.getAddExpr(NoAddRecs); 312 // If it returned an add, use the operands. Otherwise it simplified 313 // the sum into a single value, so just use that. 314 Ops.clear(); 315 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 316 Ops.append(Add->op_begin(), Add->op_end()); 317 else if (!Sum->isZero()) 318 Ops.push_back(Sum); 319 // Then append the addrecs. 320 Ops.append(AddRecs.begin(), AddRecs.end()); 321 } 322 323 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 324 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 325 /// This helps expose more opportunities for folding parts of the expressions 326 /// into GEP indices. 327 /// 328 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 329 Type *Ty, 330 ScalarEvolution &SE) { 331 // Find the addrecs. 332 SmallVector<const SCEV *, 8> AddRecs; 333 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 334 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 335 const SCEV *Start = A->getStart(); 336 if (Start->isZero()) break; 337 const SCEV *Zero = SE.getConstant(Ty, 0); 338 AddRecs.push_back(SE.getAddRecExpr(Zero, 339 A->getStepRecurrence(SE), 340 A->getLoop(), 341 A->getNoWrapFlags(SCEV::FlagNW))); 342 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 343 Ops[i] = Zero; 344 Ops.append(Add->op_begin(), Add->op_end()); 345 e += Add->getNumOperands(); 346 } else { 347 Ops[i] = Start; 348 } 349 } 350 if (!AddRecs.empty()) { 351 // Add the addrecs onto the end of the list. 352 Ops.append(AddRecs.begin(), AddRecs.end()); 353 // Resort the operand list, moving any constants to the front. 354 SimplifyAddOperands(Ops, Ty, SE); 355 } 356 } 357 358 /// expandAddToGEP - Expand an addition expression with a pointer type into 359 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 360 /// BasicAliasAnalysis and other passes analyze the result. See the rules 361 /// for getelementptr vs. inttoptr in 362 /// http://llvm.org/docs/LangRef.html#pointeraliasing 363 /// for details. 364 /// 365 /// Design note: The correctness of using getelementptr here depends on 366 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 367 /// they may introduce pointer arithmetic which may not be safely converted 368 /// into getelementptr. 369 /// 370 /// Design note: It might seem desirable for this function to be more 371 /// loop-aware. If some of the indices are loop-invariant while others 372 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 373 /// loop-invariant portions of the overall computation outside the loop. 374 /// However, there are a few reasons this is not done here. Hoisting simple 375 /// arithmetic is a low-level optimization that often isn't very 376 /// important until late in the optimization process. In fact, passes 377 /// like InstructionCombining will combine GEPs, even if it means 378 /// pushing loop-invariant computation down into loops, so even if the 379 /// GEPs were split here, the work would quickly be undone. The 380 /// LoopStrengthReduction pass, which is usually run quite late (and 381 /// after the last InstructionCombining pass), takes care of hoisting 382 /// loop-invariant portions of expressions, after considering what 383 /// can be folded using target addressing modes. 384 /// 385 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 386 const SCEV *const *op_end, 387 PointerType *PTy, 388 Type *Ty, 389 Value *V) { 390 Type *OriginalElTy = PTy->getElementType(); 391 Type *ElTy = OriginalElTy; 392 SmallVector<Value *, 4> GepIndices; 393 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 394 bool AnyNonZeroIndices = false; 395 396 // Split AddRecs up into parts as either of the parts may be usable 397 // without the other. 398 SplitAddRecs(Ops, Ty, SE); 399 400 Type *IntPtrTy = DL.getIntPtrType(PTy); 401 402 // Descend down the pointer's type and attempt to convert the other 403 // operands into GEP indices, at each level. The first index in a GEP 404 // indexes into the array implied by the pointer operand; the rest of 405 // the indices index into the element or field type selected by the 406 // preceding index. 407 for (;;) { 408 // If the scale size is not 0, attempt to factor out a scale for 409 // array indexing. 410 SmallVector<const SCEV *, 8> ScaledOps; 411 if (ElTy->isSized()) { 412 const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy); 413 if (!ElSize->isZero()) { 414 SmallVector<const SCEV *, 8> NewOps; 415 for (const SCEV *Op : Ops) { 416 const SCEV *Remainder = SE.getConstant(Ty, 0); 417 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 418 // Op now has ElSize factored out. 419 ScaledOps.push_back(Op); 420 if (!Remainder->isZero()) 421 NewOps.push_back(Remainder); 422 AnyNonZeroIndices = true; 423 } else { 424 // The operand was not divisible, so add it to the list of operands 425 // we'll scan next iteration. 426 NewOps.push_back(Op); 427 } 428 } 429 // If we made any changes, update Ops. 430 if (!ScaledOps.empty()) { 431 Ops = NewOps; 432 SimplifyAddOperands(Ops, Ty, SE); 433 } 434 } 435 } 436 437 // Record the scaled array index for this level of the type. If 438 // we didn't find any operands that could be factored, tentatively 439 // assume that element zero was selected (since the zero offset 440 // would obviously be folded away). 441 Value *Scaled = ScaledOps.empty() ? 442 Constant::getNullValue(Ty) : 443 expandCodeFor(SE.getAddExpr(ScaledOps), Ty); 444 GepIndices.push_back(Scaled); 445 446 // Collect struct field index operands. 447 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 448 bool FoundFieldNo = false; 449 // An empty struct has no fields. 450 if (STy->getNumElements() == 0) break; 451 // Field offsets are known. See if a constant offset falls within any of 452 // the struct fields. 453 if (Ops.empty()) 454 break; 455 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 456 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 457 const StructLayout &SL = *DL.getStructLayout(STy); 458 uint64_t FullOffset = C->getValue()->getZExtValue(); 459 if (FullOffset < SL.getSizeInBytes()) { 460 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 461 GepIndices.push_back( 462 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 463 ElTy = STy->getTypeAtIndex(ElIdx); 464 Ops[0] = 465 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 466 AnyNonZeroIndices = true; 467 FoundFieldNo = true; 468 } 469 } 470 // If no struct field offsets were found, tentatively assume that 471 // field zero was selected (since the zero offset would obviously 472 // be folded away). 473 if (!FoundFieldNo) { 474 ElTy = STy->getTypeAtIndex(0u); 475 GepIndices.push_back( 476 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 477 } 478 } 479 480 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 481 ElTy = ATy->getElementType(); 482 else 483 break; 484 } 485 486 // If none of the operands were convertible to proper GEP indices, cast 487 // the base to i8* and do an ugly getelementptr with that. It's still 488 // better than ptrtoint+arithmetic+inttoptr at least. 489 if (!AnyNonZeroIndices) { 490 // Cast the base to i8*. 491 V = InsertNoopCastOfTo(V, 492 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 493 494 assert(!isa<Instruction>(V) || 495 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 496 497 // Expand the operands for a plain byte offset. 498 Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty); 499 500 // Fold a GEP with constant operands. 501 if (Constant *CLHS = dyn_cast<Constant>(V)) 502 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 503 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 504 CLHS, CRHS); 505 506 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 507 unsigned ScanLimit = 6; 508 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 509 // Scanning starts from the last instruction before the insertion point. 510 BasicBlock::iterator IP = Builder.GetInsertPoint(); 511 if (IP != BlockBegin) { 512 --IP; 513 for (; ScanLimit; --IP, --ScanLimit) { 514 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 515 // generated code. 516 if (isa<DbgInfoIntrinsic>(IP)) 517 ScanLimit++; 518 if (IP->getOpcode() == Instruction::GetElementPtr && 519 IP->getOperand(0) == V && IP->getOperand(1) == Idx) 520 return &*IP; 521 if (IP == BlockBegin) break; 522 } 523 } 524 525 // Save the original insertion point so we can restore it when we're done. 526 SCEVInsertPointGuard Guard(Builder, this); 527 528 // Move the insertion point out of as many loops as we can. 529 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 530 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 531 BasicBlock *Preheader = L->getLoopPreheader(); 532 if (!Preheader) break; 533 534 // Ok, move up a level. 535 Builder.SetInsertPoint(Preheader->getTerminator()); 536 } 537 538 // Emit a GEP. 539 Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 540 rememberInstruction(GEP); 541 542 return GEP; 543 } 544 545 { 546 SCEVInsertPointGuard Guard(Builder, this); 547 548 // Move the insertion point out of as many loops as we can. 549 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 550 if (!L->isLoopInvariant(V)) break; 551 552 bool AnyIndexNotLoopInvariant = any_of( 553 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 554 555 if (AnyIndexNotLoopInvariant) 556 break; 557 558 BasicBlock *Preheader = L->getLoopPreheader(); 559 if (!Preheader) break; 560 561 // Ok, move up a level. 562 Builder.SetInsertPoint(Preheader->getTerminator()); 563 } 564 565 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 566 // because ScalarEvolution may have changed the address arithmetic to 567 // compute a value which is beyond the end of the allocated object. 568 Value *Casted = V; 569 if (V->getType() != PTy) 570 Casted = InsertNoopCastOfTo(Casted, PTy); 571 Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep"); 572 Ops.push_back(SE.getUnknown(GEP)); 573 rememberInstruction(GEP); 574 } 575 576 return expand(SE.getAddExpr(Ops)); 577 } 578 579 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 580 /// SCEV expansion. If they are nested, this is the most nested. If they are 581 /// neighboring, pick the later. 582 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 583 DominatorTree &DT) { 584 if (!A) return B; 585 if (!B) return A; 586 if (A->contains(B)) return B; 587 if (B->contains(A)) return A; 588 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 589 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 590 return A; // Arbitrarily break the tie. 591 } 592 593 /// getRelevantLoop - Get the most relevant loop associated with the given 594 /// expression, according to PickMostRelevantLoop. 595 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 596 // Test whether we've already computed the most relevant loop for this SCEV. 597 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 598 if (!Pair.second) 599 return Pair.first->second; 600 601 if (isa<SCEVConstant>(S)) 602 // A constant has no relevant loops. 603 return nullptr; 604 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 605 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 606 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 607 // A non-instruction has no relevant loops. 608 return nullptr; 609 } 610 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 611 const Loop *L = nullptr; 612 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 613 L = AR->getLoop(); 614 for (const SCEV *Op : N->operands()) 615 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 616 return RelevantLoops[N] = L; 617 } 618 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 619 const Loop *Result = getRelevantLoop(C->getOperand()); 620 return RelevantLoops[C] = Result; 621 } 622 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 623 const Loop *Result = PickMostRelevantLoop( 624 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 625 return RelevantLoops[D] = Result; 626 } 627 llvm_unreachable("Unexpected SCEV type!"); 628 } 629 630 namespace { 631 632 /// LoopCompare - Compare loops by PickMostRelevantLoop. 633 class LoopCompare { 634 DominatorTree &DT; 635 public: 636 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 637 638 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 639 std::pair<const Loop *, const SCEV *> RHS) const { 640 // Keep pointer operands sorted at the end. 641 if (LHS.second->getType()->isPointerTy() != 642 RHS.second->getType()->isPointerTy()) 643 return LHS.second->getType()->isPointerTy(); 644 645 // Compare loops with PickMostRelevantLoop. 646 if (LHS.first != RHS.first) 647 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 648 649 // If one operand is a non-constant negative and the other is not, 650 // put the non-constant negative on the right so that a sub can 651 // be used instead of a negate and add. 652 if (LHS.second->isNonConstantNegative()) { 653 if (!RHS.second->isNonConstantNegative()) 654 return false; 655 } else if (RHS.second->isNonConstantNegative()) 656 return true; 657 658 // Otherwise they are equivalent according to this comparison. 659 return false; 660 } 661 }; 662 663 } 664 665 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 666 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 667 668 // Collect all the add operands in a loop, along with their associated loops. 669 // Iterate in reverse so that constants are emitted last, all else equal, and 670 // so that pointer operands are inserted first, which the code below relies on 671 // to form more involved GEPs. 672 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 673 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), 674 E(S->op_begin()); I != E; ++I) 675 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 676 677 // Sort by loop. Use a stable sort so that constants follow non-constants and 678 // pointer operands precede non-pointer operands. 679 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT)); 680 681 // Emit instructions to add all the operands. Hoist as much as possible 682 // out of loops, and form meaningful getelementptrs where possible. 683 Value *Sum = nullptr; 684 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 685 const Loop *CurLoop = I->first; 686 const SCEV *Op = I->second; 687 if (!Sum) { 688 // This is the first operand. Just expand it. 689 Sum = expand(Op); 690 ++I; 691 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 692 // The running sum expression is a pointer. Try to form a getelementptr 693 // at this level with that as the base. 694 SmallVector<const SCEV *, 4> NewOps; 695 for (; I != E && I->first == CurLoop; ++I) { 696 // If the operand is SCEVUnknown and not instructions, peek through 697 // it, to enable more of it to be folded into the GEP. 698 const SCEV *X = I->second; 699 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 700 if (!isa<Instruction>(U->getValue())) 701 X = SE.getSCEV(U->getValue()); 702 NewOps.push_back(X); 703 } 704 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 705 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { 706 // The running sum is an integer, and there's a pointer at this level. 707 // Try to form a getelementptr. If the running sum is instructions, 708 // use a SCEVUnknown to avoid re-analyzing them. 709 SmallVector<const SCEV *, 4> NewOps; 710 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : 711 SE.getSCEV(Sum)); 712 for (++I; I != E && I->first == CurLoop; ++I) 713 NewOps.push_back(I->second); 714 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); 715 } else if (Op->isNonConstantNegative()) { 716 // Instead of doing a negate and add, just do a subtract. 717 Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty); 718 Sum = InsertNoopCastOfTo(Sum, Ty); 719 Sum = InsertBinop(Instruction::Sub, Sum, W); 720 ++I; 721 } else { 722 // A simple add. 723 Value *W = expandCodeFor(Op, Ty); 724 Sum = InsertNoopCastOfTo(Sum, Ty); 725 // Canonicalize a constant to the RHS. 726 if (isa<Constant>(Sum)) std::swap(Sum, W); 727 Sum = InsertBinop(Instruction::Add, Sum, W); 728 ++I; 729 } 730 } 731 732 return Sum; 733 } 734 735 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 736 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 737 738 // Collect all the mul operands in a loop, along with their associated loops. 739 // Iterate in reverse so that constants are emitted last, all else equal. 740 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 741 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), 742 E(S->op_begin()); I != E; ++I) 743 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 744 745 // Sort by loop. Use a stable sort so that constants follow non-constants. 746 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT)); 747 748 // Emit instructions to mul all the operands. Hoist as much as possible 749 // out of loops. 750 Value *Prod = nullptr; 751 for (const auto &I : OpsAndLoops) { 752 const SCEV *Op = I.second; 753 if (!Prod) { 754 // This is the first operand. Just expand it. 755 Prod = expand(Op); 756 } else if (Op->isAllOnesValue()) { 757 // Instead of doing a multiply by negative one, just do a negate. 758 Prod = InsertNoopCastOfTo(Prod, Ty); 759 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod); 760 } else { 761 // A simple mul. 762 Value *W = expandCodeFor(Op, Ty); 763 Prod = InsertNoopCastOfTo(Prod, Ty); 764 // Canonicalize a constant to the RHS. 765 if (isa<Constant>(Prod)) std::swap(Prod, W); 766 const APInt *RHS; 767 if (match(W, m_Power2(RHS))) { 768 // Canonicalize Prod*(1<<C) to Prod<<C. 769 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 770 Prod = InsertBinop(Instruction::Shl, Prod, 771 ConstantInt::get(Ty, RHS->logBase2())); 772 } else { 773 Prod = InsertBinop(Instruction::Mul, Prod, W); 774 } 775 } 776 } 777 778 return Prod; 779 } 780 781 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 782 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 783 784 Value *LHS = expandCodeFor(S->getLHS(), Ty); 785 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 786 const APInt &RHS = SC->getAPInt(); 787 if (RHS.isPowerOf2()) 788 return InsertBinop(Instruction::LShr, LHS, 789 ConstantInt::get(Ty, RHS.logBase2())); 790 } 791 792 Value *RHS = expandCodeFor(S->getRHS(), Ty); 793 return InsertBinop(Instruction::UDiv, LHS, RHS); 794 } 795 796 /// Move parts of Base into Rest to leave Base with the minimal 797 /// expression that provides a pointer operand suitable for a 798 /// GEP expansion. 799 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, 800 ScalarEvolution &SE) { 801 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { 802 Base = A->getStart(); 803 Rest = SE.getAddExpr(Rest, 804 SE.getAddRecExpr(SE.getConstant(A->getType(), 0), 805 A->getStepRecurrence(SE), 806 A->getLoop(), 807 A->getNoWrapFlags(SCEV::FlagNW))); 808 } 809 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { 810 Base = A->getOperand(A->getNumOperands()-1); 811 SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end()); 812 NewAddOps.back() = Rest; 813 Rest = SE.getAddExpr(NewAddOps); 814 ExposePointerBase(Base, Rest, SE); 815 } 816 } 817 818 /// Determine if this is a well-behaved chain of instructions leading back to 819 /// the PHI. If so, it may be reused by expanded expressions. 820 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 821 const Loop *L) { 822 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 823 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 824 return false; 825 // If any of the operands don't dominate the insert position, bail. 826 // Addrec operands are always loop-invariant, so this can only happen 827 // if there are instructions which haven't been hoisted. 828 if (L == IVIncInsertLoop) { 829 for (User::op_iterator OI = IncV->op_begin()+1, 830 OE = IncV->op_end(); OI != OE; ++OI) 831 if (Instruction *OInst = dyn_cast<Instruction>(OI)) 832 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 833 return false; 834 } 835 // Advance to the next instruction. 836 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 837 if (!IncV) 838 return false; 839 840 if (IncV->mayHaveSideEffects()) 841 return false; 842 843 if (IncV != PN) 844 return true; 845 846 return isNormalAddRecExprPHI(PN, IncV, L); 847 } 848 849 /// getIVIncOperand returns an induction variable increment's induction 850 /// variable operand. 851 /// 852 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 853 /// operands dominate InsertPos. 854 /// 855 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 856 /// simple patterns generated by getAddRecExprPHILiterally and 857 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 858 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 859 Instruction *InsertPos, 860 bool allowScale) { 861 if (IncV == InsertPos) 862 return nullptr; 863 864 switch (IncV->getOpcode()) { 865 default: 866 return nullptr; 867 // Check for a simple Add/Sub or GEP of a loop invariant step. 868 case Instruction::Add: 869 case Instruction::Sub: { 870 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 871 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 872 return dyn_cast<Instruction>(IncV->getOperand(0)); 873 return nullptr; 874 } 875 case Instruction::BitCast: 876 return dyn_cast<Instruction>(IncV->getOperand(0)); 877 case Instruction::GetElementPtr: 878 for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) { 879 if (isa<Constant>(*I)) 880 continue; 881 if (Instruction *OInst = dyn_cast<Instruction>(*I)) { 882 if (!SE.DT.dominates(OInst, InsertPos)) 883 return nullptr; 884 } 885 if (allowScale) { 886 // allow any kind of GEP as long as it can be hoisted. 887 continue; 888 } 889 // This must be a pointer addition of constants (pretty), which is already 890 // handled, or some number of address-size elements (ugly). Ugly geps 891 // have 2 operands. i1* is used by the expander to represent an 892 // address-size element. 893 if (IncV->getNumOperands() != 2) 894 return nullptr; 895 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 896 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 897 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 898 return nullptr; 899 break; 900 } 901 return dyn_cast<Instruction>(IncV->getOperand(0)); 902 } 903 } 904 905 /// If the insert point of the current builder or any of the builders on the 906 /// stack of saved builders has 'I' as its insert point, update it to point to 907 /// the instruction after 'I'. This is intended to be used when the instruction 908 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 909 /// different block, the inconsistent insert point (with a mismatched 910 /// Instruction and Block) can lead to an instruction being inserted in a block 911 /// other than its parent. 912 void SCEVExpander::fixupInsertPoints(Instruction *I) { 913 BasicBlock::iterator It(*I); 914 BasicBlock::iterator NewInsertPt = std::next(It); 915 if (Builder.GetInsertPoint() == It) 916 Builder.SetInsertPoint(&*NewInsertPt); 917 for (auto *InsertPtGuard : InsertPointGuards) 918 if (InsertPtGuard->GetInsertPoint() == It) 919 InsertPtGuard->SetInsertPoint(NewInsertPt); 920 } 921 922 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 923 /// it available to other uses in this loop. Recursively hoist any operands, 924 /// until we reach a value that dominates InsertPos. 925 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 926 if (SE.DT.dominates(IncV, InsertPos)) 927 return true; 928 929 // InsertPos must itself dominate IncV so that IncV's new position satisfies 930 // its existing users. 931 if (isa<PHINode>(InsertPos) || 932 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 933 return false; 934 935 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 936 return false; 937 938 // Check that the chain of IV operands leading back to Phi can be hoisted. 939 SmallVector<Instruction*, 4> IVIncs; 940 for(;;) { 941 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 942 if (!Oper) 943 return false; 944 // IncV is safe to hoist. 945 IVIncs.push_back(IncV); 946 IncV = Oper; 947 if (SE.DT.dominates(IncV, InsertPos)) 948 break; 949 } 950 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { 951 fixupInsertPoints(*I); 952 (*I)->moveBefore(InsertPos); 953 } 954 return true; 955 } 956 957 /// Determine if this cyclic phi is in a form that would have been generated by 958 /// LSR. We don't care if the phi was actually expanded in this pass, as long 959 /// as it is in a low-cost form, for example, no implied multiplication. This 960 /// should match any patterns generated by getAddRecExprPHILiterally and 961 /// expandAddtoGEP. 962 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 963 const Loop *L) { 964 for(Instruction *IVOper = IncV; 965 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 966 /*allowScale=*/false));) { 967 if (IVOper == PN) 968 return true; 969 } 970 return false; 971 } 972 973 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 974 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 975 /// need to materialize IV increments elsewhere to handle difficult situations. 976 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 977 Type *ExpandTy, Type *IntTy, 978 bool useSubtract) { 979 Value *IncV; 980 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 981 if (ExpandTy->isPointerTy()) { 982 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 983 // If the step isn't constant, don't use an implicitly scaled GEP, because 984 // that would require a multiply inside the loop. 985 if (!isa<ConstantInt>(StepV)) 986 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 987 GEPPtrTy->getAddressSpace()); 988 const SCEV *const StepArray[1] = { SE.getSCEV(StepV) }; 989 IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN); 990 if (IncV->getType() != PN->getType()) { 991 IncV = Builder.CreateBitCast(IncV, PN->getType()); 992 rememberInstruction(IncV); 993 } 994 } else { 995 IncV = useSubtract ? 996 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 997 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 998 rememberInstruction(IncV); 999 } 1000 return IncV; 1001 } 1002 1003 /// \brief Hoist the addrec instruction chain rooted in the loop phi above the 1004 /// position. This routine assumes that this is possible (has been checked). 1005 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, 1006 Instruction *Pos, PHINode *LoopPhi) { 1007 do { 1008 if (DT->dominates(InstToHoist, Pos)) 1009 break; 1010 // Make sure the increment is where we want it. But don't move it 1011 // down past a potential existing post-inc user. 1012 fixupInsertPoints(InstToHoist); 1013 InstToHoist->moveBefore(Pos); 1014 Pos = InstToHoist; 1015 InstToHoist = cast<Instruction>(InstToHoist->getOperand(0)); 1016 } while (InstToHoist != LoopPhi); 1017 } 1018 1019 /// \brief Check whether we can cheaply express the requested SCEV in terms of 1020 /// the available PHI SCEV by truncation and/or inversion of the step. 1021 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1022 const SCEVAddRecExpr *Phi, 1023 const SCEVAddRecExpr *Requested, 1024 bool &InvertStep) { 1025 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1026 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1027 1028 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1029 return false; 1030 1031 // Try truncate it if necessary. 1032 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1033 if (!Phi) 1034 return false; 1035 1036 // Check whether truncation will help. 1037 if (Phi == Requested) { 1038 InvertStep = false; 1039 return true; 1040 } 1041 1042 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1043 if (SE.getAddExpr(Requested->getStart(), 1044 SE.getNegativeSCEV(Requested)) == Phi) { 1045 InvertStep = true; 1046 return true; 1047 } 1048 1049 return false; 1050 } 1051 1052 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1053 if (!isa<IntegerType>(AR->getType())) 1054 return false; 1055 1056 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1057 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1058 const SCEV *Step = AR->getStepRecurrence(SE); 1059 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1060 SE.getSignExtendExpr(AR, WideTy)); 1061 const SCEV *ExtendAfterOp = 1062 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1063 return ExtendAfterOp == OpAfterExtend; 1064 } 1065 1066 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1067 if (!isa<IntegerType>(AR->getType())) 1068 return false; 1069 1070 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1071 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1072 const SCEV *Step = AR->getStepRecurrence(SE); 1073 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1074 SE.getZeroExtendExpr(AR, WideTy)); 1075 const SCEV *ExtendAfterOp = 1076 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1077 return ExtendAfterOp == OpAfterExtend; 1078 } 1079 1080 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1081 /// the base addrec, which is the addrec without any non-loop-dominating 1082 /// values, and return the PHI. 1083 PHINode * 1084 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1085 const Loop *L, 1086 Type *ExpandTy, 1087 Type *IntTy, 1088 Type *&TruncTy, 1089 bool &InvertStep) { 1090 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1091 1092 // Reuse a previously-inserted PHI, if present. 1093 BasicBlock *LatchBlock = L->getLoopLatch(); 1094 if (LatchBlock) { 1095 PHINode *AddRecPhiMatch = nullptr; 1096 Instruction *IncV = nullptr; 1097 TruncTy = nullptr; 1098 InvertStep = false; 1099 1100 // Only try partially matching scevs that need truncation and/or 1101 // step-inversion if we know this loop is outside the current loop. 1102 bool TryNonMatchingSCEV = 1103 IVIncInsertLoop && 1104 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1105 1106 for (auto &I : *L->getHeader()) { 1107 auto *PN = dyn_cast<PHINode>(&I); 1108 if (!PN || !SE.isSCEVable(PN->getType())) 1109 continue; 1110 1111 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PN)); 1112 if (!PhiSCEV) 1113 continue; 1114 1115 bool IsMatchingSCEV = PhiSCEV == Normalized; 1116 // We only handle truncation and inversion of phi recurrences for the 1117 // expanded expression if the expanded expression's loop dominates the 1118 // loop we insert to. Check now, so we can bail out early. 1119 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1120 continue; 1121 1122 Instruction *TempIncV = 1123 cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)); 1124 1125 // Check whether we can reuse this PHI node. 1126 if (LSRMode) { 1127 if (!isExpandedAddRecExprPHI(PN, TempIncV, L)) 1128 continue; 1129 if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos)) 1130 continue; 1131 } else { 1132 if (!isNormalAddRecExprPHI(PN, TempIncV, L)) 1133 continue; 1134 } 1135 1136 // Stop if we have found an exact match SCEV. 1137 if (IsMatchingSCEV) { 1138 IncV = TempIncV; 1139 TruncTy = nullptr; 1140 InvertStep = false; 1141 AddRecPhiMatch = PN; 1142 break; 1143 } 1144 1145 // Try whether the phi can be translated into the requested form 1146 // (truncated and/or offset by a constant). 1147 if ((!TruncTy || InvertStep) && 1148 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1149 // Record the phi node. But don't stop we might find an exact match 1150 // later. 1151 AddRecPhiMatch = PN; 1152 IncV = TempIncV; 1153 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1154 } 1155 } 1156 1157 if (AddRecPhiMatch) { 1158 // Potentially, move the increment. We have made sure in 1159 // isExpandedAddRecExprPHI or hoistIVInc that this is possible. 1160 if (L == IVIncInsertLoop) 1161 hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch); 1162 1163 // Ok, the add recurrence looks usable. 1164 // Remember this PHI, even in post-inc mode. 1165 InsertedValues.insert(AddRecPhiMatch); 1166 // Remember the increment. 1167 rememberInstruction(IncV); 1168 return AddRecPhiMatch; 1169 } 1170 } 1171 1172 // Save the original insertion point so we can restore it when we're done. 1173 SCEVInsertPointGuard Guard(Builder, this); 1174 1175 // Another AddRec may need to be recursively expanded below. For example, if 1176 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1177 // loop. Remove this loop from the PostIncLoops set before expanding such 1178 // AddRecs. Otherwise, we cannot find a valid position for the step 1179 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1180 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1181 // so it's not worth implementing SmallPtrSet::swap. 1182 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1183 PostIncLoops.clear(); 1184 1185 // Expand code for the start value into the loop preheader. 1186 assert(L->getLoopPreheader() && 1187 "Can't expand add recurrences without a loop preheader!"); 1188 Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy, 1189 L->getLoopPreheader()->getTerminator()); 1190 1191 // StartV must have been be inserted into L's preheader to dominate the new 1192 // phi. 1193 assert(!isa<Instruction>(StartV) || 1194 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1195 L->getHeader())); 1196 1197 // Expand code for the step value. Do this before creating the PHI so that PHI 1198 // reuse code doesn't see an incomplete PHI. 1199 const SCEV *Step = Normalized->getStepRecurrence(SE); 1200 // If the stride is negative, insert a sub instead of an add for the increment 1201 // (unless it's a constant, because subtracts of constants are canonicalized 1202 // to adds). 1203 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1204 if (useSubtract) 1205 Step = SE.getNegativeSCEV(Step); 1206 // Expand the step somewhere that dominates the loop header. 1207 Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); 1208 1209 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1210 // we actually do emit an addition. It does not apply if we emit a 1211 // subtraction. 1212 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1213 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1214 1215 // Create the PHI. 1216 BasicBlock *Header = L->getHeader(); 1217 Builder.SetInsertPoint(Header, Header->begin()); 1218 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1219 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1220 Twine(IVName) + ".iv"); 1221 rememberInstruction(PN); 1222 1223 // Create the step instructions and populate the PHI. 1224 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1225 BasicBlock *Pred = *HPI; 1226 1227 // Add a start value. 1228 if (!L->contains(Pred)) { 1229 PN->addIncoming(StartV, Pred); 1230 continue; 1231 } 1232 1233 // Create a step value and add it to the PHI. 1234 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1235 // instructions at IVIncInsertPos. 1236 Instruction *InsertPos = L == IVIncInsertLoop ? 1237 IVIncInsertPos : Pred->getTerminator(); 1238 Builder.SetInsertPoint(InsertPos); 1239 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1240 1241 if (isa<OverflowingBinaryOperator>(IncV)) { 1242 if (IncrementIsNUW) 1243 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1244 if (IncrementIsNSW) 1245 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1246 } 1247 PN->addIncoming(IncV, Pred); 1248 } 1249 1250 // After expanding subexpressions, restore the PostIncLoops set so the caller 1251 // can ensure that IVIncrement dominates the current uses. 1252 PostIncLoops = SavedPostIncLoops; 1253 1254 // Remember this PHI, even in post-inc mode. 1255 InsertedValues.insert(PN); 1256 1257 return PN; 1258 } 1259 1260 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1261 Type *STy = S->getType(); 1262 Type *IntTy = SE.getEffectiveSCEVType(STy); 1263 const Loop *L = S->getLoop(); 1264 1265 // Determine a normalized form of this expression, which is the expression 1266 // before any post-inc adjustment is made. 1267 const SCEVAddRecExpr *Normalized = S; 1268 if (PostIncLoops.count(L)) { 1269 PostIncLoopSet Loops; 1270 Loops.insert(L); 1271 Normalized = cast<SCEVAddRecExpr>(TransformForPostIncUse( 1272 Normalize, S, nullptr, nullptr, Loops, SE, SE.DT)); 1273 } 1274 1275 // Strip off any non-loop-dominating component from the addrec start. 1276 const SCEV *Start = Normalized->getStart(); 1277 const SCEV *PostLoopOffset = nullptr; 1278 if (!SE.properlyDominates(Start, L->getHeader())) { 1279 PostLoopOffset = Start; 1280 Start = SE.getConstant(Normalized->getType(), 0); 1281 Normalized = cast<SCEVAddRecExpr>( 1282 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1283 Normalized->getLoop(), 1284 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1285 } 1286 1287 // Strip off any non-loop-dominating component from the addrec step. 1288 const SCEV *Step = Normalized->getStepRecurrence(SE); 1289 const SCEV *PostLoopScale = nullptr; 1290 if (!SE.dominates(Step, L->getHeader())) { 1291 PostLoopScale = Step; 1292 Step = SE.getConstant(Normalized->getType(), 1); 1293 if (!Start->isZero()) { 1294 // The normalization below assumes that Start is constant zero, so if 1295 // it isn't re-associate Start to PostLoopOffset. 1296 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1297 PostLoopOffset = Start; 1298 Start = SE.getConstant(Normalized->getType(), 0); 1299 } 1300 Normalized = 1301 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1302 Start, Step, Normalized->getLoop(), 1303 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1304 } 1305 1306 // Expand the core addrec. If we need post-loop scaling, force it to 1307 // expand to an integer type to avoid the need for additional casting. 1308 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1309 // In some cases, we decide to reuse an existing phi node but need to truncate 1310 // it and/or invert the step. 1311 Type *TruncTy = nullptr; 1312 bool InvertStep = false; 1313 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy, 1314 TruncTy, InvertStep); 1315 1316 // Accommodate post-inc mode, if necessary. 1317 Value *Result; 1318 if (!PostIncLoops.count(L)) 1319 Result = PN; 1320 else { 1321 // In PostInc mode, use the post-incremented value. 1322 BasicBlock *LatchBlock = L->getLoopLatch(); 1323 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1324 Result = PN->getIncomingValueForBlock(LatchBlock); 1325 1326 // For an expansion to use the postinc form, the client must call 1327 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1328 // or dominated by IVIncInsertPos. 1329 if (isa<Instruction>(Result) && 1330 !SE.DT.dominates(cast<Instruction>(Result), 1331 &*Builder.GetInsertPoint())) { 1332 // The induction variable's postinc expansion does not dominate this use. 1333 // IVUsers tries to prevent this case, so it is rare. However, it can 1334 // happen when an IVUser outside the loop is not dominated by the latch 1335 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1336 // all cases. Consider a phi outide whose operand is replaced during 1337 // expansion with the value of the postinc user. Without fundamentally 1338 // changing the way postinc users are tracked, the only remedy is 1339 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1340 // but hopefully expandCodeFor handles that. 1341 bool useSubtract = 1342 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1343 if (useSubtract) 1344 Step = SE.getNegativeSCEV(Step); 1345 Value *StepV; 1346 { 1347 // Expand the step somewhere that dominates the loop header. 1348 SCEVInsertPointGuard Guard(Builder, this); 1349 StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); 1350 } 1351 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1352 } 1353 } 1354 1355 // We have decided to reuse an induction variable of a dominating loop. Apply 1356 // truncation and/or invertion of the step. 1357 if (TruncTy) { 1358 Type *ResTy = Result->getType(); 1359 // Normalize the result type. 1360 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1361 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1362 // Truncate the result. 1363 if (TruncTy != Result->getType()) { 1364 Result = Builder.CreateTrunc(Result, TruncTy); 1365 rememberInstruction(Result); 1366 } 1367 // Invert the result. 1368 if (InvertStep) { 1369 Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy), 1370 Result); 1371 rememberInstruction(Result); 1372 } 1373 } 1374 1375 // Re-apply any non-loop-dominating scale. 1376 if (PostLoopScale) { 1377 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1378 Result = InsertNoopCastOfTo(Result, IntTy); 1379 Result = Builder.CreateMul(Result, 1380 expandCodeFor(PostLoopScale, IntTy)); 1381 rememberInstruction(Result); 1382 } 1383 1384 // Re-apply any non-loop-dominating offset. 1385 if (PostLoopOffset) { 1386 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1387 const SCEV *const OffsetArray[1] = { PostLoopOffset }; 1388 Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result); 1389 } else { 1390 Result = InsertNoopCastOfTo(Result, IntTy); 1391 Result = Builder.CreateAdd(Result, 1392 expandCodeFor(PostLoopOffset, IntTy)); 1393 rememberInstruction(Result); 1394 } 1395 } 1396 1397 return Result; 1398 } 1399 1400 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1401 if (!CanonicalMode) return expandAddRecExprLiterally(S); 1402 1403 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1404 const Loop *L = S->getLoop(); 1405 1406 // First check for an existing canonical IV in a suitable type. 1407 PHINode *CanonicalIV = nullptr; 1408 if (PHINode *PN = L->getCanonicalInductionVariable()) 1409 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1410 CanonicalIV = PN; 1411 1412 // Rewrite an AddRec in terms of the canonical induction variable, if 1413 // its type is more narrow. 1414 if (CanonicalIV && 1415 SE.getTypeSizeInBits(CanonicalIV->getType()) > 1416 SE.getTypeSizeInBits(Ty)) { 1417 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1418 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1419 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1420 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1421 S->getNoWrapFlags(SCEV::FlagNW))); 1422 BasicBlock::iterator NewInsertPt = 1423 findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock()); 1424 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1425 &*NewInsertPt); 1426 return V; 1427 } 1428 1429 // {X,+,F} --> X + {0,+,F} 1430 if (!S->getStart()->isZero()) { 1431 SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end()); 1432 NewOps[0] = SE.getConstant(Ty, 0); 1433 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1434 S->getNoWrapFlags(SCEV::FlagNW)); 1435 1436 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the 1437 // comments on expandAddToGEP for details. 1438 const SCEV *Base = S->getStart(); 1439 const SCEV *RestArray[1] = { Rest }; 1440 // Dig into the expression to find the pointer base for a GEP. 1441 ExposePointerBase(Base, RestArray[0], SE); 1442 // If we found a pointer, expand the AddRec with a GEP. 1443 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { 1444 // Make sure the Base isn't something exotic, such as a multiplied 1445 // or divided pointer value. In those cases, the result type isn't 1446 // actually a pointer type. 1447 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { 1448 Value *StartV = expand(Base); 1449 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1450 return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV); 1451 } 1452 } 1453 1454 // Just do a normal add. Pre-expand the operands to suppress folding. 1455 // 1456 // The LHS and RHS values are factored out of the expand call to make the 1457 // output independent of the argument evaluation order. 1458 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1459 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1460 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1461 } 1462 1463 // If we don't yet have a canonical IV, create one. 1464 if (!CanonicalIV) { 1465 // Create and insert the PHI node for the induction variable in the 1466 // specified loop. 1467 BasicBlock *Header = L->getHeader(); 1468 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1469 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1470 &Header->front()); 1471 rememberInstruction(CanonicalIV); 1472 1473 SmallSet<BasicBlock *, 4> PredSeen; 1474 Constant *One = ConstantInt::get(Ty, 1); 1475 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1476 BasicBlock *HP = *HPI; 1477 if (!PredSeen.insert(HP).second) { 1478 // There must be an incoming value for each predecessor, even the 1479 // duplicates! 1480 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1481 continue; 1482 } 1483 1484 if (L->contains(HP)) { 1485 // Insert a unit add instruction right before the terminator 1486 // corresponding to the back-edge. 1487 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1488 "indvar.next", 1489 HP->getTerminator()); 1490 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1491 rememberInstruction(Add); 1492 CanonicalIV->addIncoming(Add, HP); 1493 } else { 1494 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1495 } 1496 } 1497 } 1498 1499 // {0,+,1} --> Insert a canonical induction variable into the loop! 1500 if (S->isAffine() && S->getOperand(1)->isOne()) { 1501 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1502 "IVs with types different from the canonical IV should " 1503 "already have been handled!"); 1504 return CanonicalIV; 1505 } 1506 1507 // {0,+,F} --> {0,+,1} * F 1508 1509 // If this is a simple linear addrec, emit it now as a special case. 1510 if (S->isAffine()) // {0,+,F} --> i*F 1511 return 1512 expand(SE.getTruncateOrNoop( 1513 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1514 SE.getNoopOrAnyExtend(S->getOperand(1), 1515 CanonicalIV->getType())), 1516 Ty)); 1517 1518 // If this is a chain of recurrences, turn it into a closed form, using the 1519 // folders, then expandCodeFor the closed form. This allows the folders to 1520 // simplify the expression without having to build a bunch of special code 1521 // into this folder. 1522 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1523 1524 // Promote S up to the canonical IV type, if the cast is foldable. 1525 const SCEV *NewS = S; 1526 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1527 if (isa<SCEVAddRecExpr>(Ext)) 1528 NewS = Ext; 1529 1530 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1531 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; 1532 1533 // Truncate the result down to the original type, if needed. 1534 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1535 return expand(T); 1536 } 1537 1538 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1539 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1540 Value *V = expandCodeFor(S->getOperand(), 1541 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1542 Value *I = Builder.CreateTrunc(V, Ty); 1543 rememberInstruction(I); 1544 return I; 1545 } 1546 1547 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1548 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1549 Value *V = expandCodeFor(S->getOperand(), 1550 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1551 Value *I = Builder.CreateZExt(V, Ty); 1552 rememberInstruction(I); 1553 return I; 1554 } 1555 1556 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1557 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1558 Value *V = expandCodeFor(S->getOperand(), 1559 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1560 Value *I = Builder.CreateSExt(V, Ty); 1561 rememberInstruction(I); 1562 return I; 1563 } 1564 1565 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1566 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1567 Type *Ty = LHS->getType(); 1568 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1569 // In the case of mixed integer and pointer types, do the 1570 // rest of the comparisons as integer. 1571 if (S->getOperand(i)->getType() != Ty) { 1572 Ty = SE.getEffectiveSCEVType(Ty); 1573 LHS = InsertNoopCastOfTo(LHS, Ty); 1574 } 1575 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1576 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); 1577 rememberInstruction(ICmp); 1578 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); 1579 rememberInstruction(Sel); 1580 LHS = Sel; 1581 } 1582 // In the case of mixed integer and pointer types, cast the 1583 // final result back to the pointer type. 1584 if (LHS->getType() != S->getType()) 1585 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1586 return LHS; 1587 } 1588 1589 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1590 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1591 Type *Ty = LHS->getType(); 1592 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1593 // In the case of mixed integer and pointer types, do the 1594 // rest of the comparisons as integer. 1595 if (S->getOperand(i)->getType() != Ty) { 1596 Ty = SE.getEffectiveSCEVType(Ty); 1597 LHS = InsertNoopCastOfTo(LHS, Ty); 1598 } 1599 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1600 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); 1601 rememberInstruction(ICmp); 1602 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); 1603 rememberInstruction(Sel); 1604 LHS = Sel; 1605 } 1606 // In the case of mixed integer and pointer types, cast the 1607 // final result back to the pointer type. 1608 if (LHS->getType() != S->getType()) 1609 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1610 return LHS; 1611 } 1612 1613 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 1614 Instruction *IP) { 1615 setInsertPoint(IP); 1616 return expandCodeFor(SH, Ty); 1617 } 1618 1619 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 1620 // Expand the code for this SCEV. 1621 Value *V = expand(SH); 1622 if (Ty) { 1623 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1624 "non-trivial casts should be done with the SCEVs directly!"); 1625 V = InsertNoopCastOfTo(V, Ty); 1626 } 1627 return V; 1628 } 1629 1630 ScalarEvolution::ValueOffsetPair 1631 SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1632 const Instruction *InsertPt) { 1633 SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S); 1634 // If the expansion is not in CanonicalMode, and the SCEV contains any 1635 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1636 if (CanonicalMode || !SE.containsAddRecurrence(S)) { 1637 // If S is scConstant, it may be worse to reuse an existing Value. 1638 if (S->getSCEVType() != scConstant && Set) { 1639 // Choose a Value from the set which dominates the insertPt. 1640 // insertPt should be inside the Value's parent loop so as not to break 1641 // the LCSSA form. 1642 for (auto const &VOPair : *Set) { 1643 Value *V = VOPair.first; 1644 ConstantInt *Offset = VOPair.second; 1645 Instruction *EntInst = nullptr; 1646 if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) && 1647 S->getType() == V->getType() && 1648 EntInst->getFunction() == InsertPt->getFunction() && 1649 SE.DT.dominates(EntInst, InsertPt) && 1650 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1651 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1652 return {V, Offset}; 1653 } 1654 } 1655 } 1656 return {nullptr, nullptr}; 1657 } 1658 1659 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1660 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1661 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1662 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1663 // the expansion will try to reuse Value from ExprValueMap, and only when it 1664 // fails, expand the SCEV literally. 1665 Value *SCEVExpander::expand(const SCEV *S) { 1666 // Compute an insertion point for this SCEV object. Hoist the instructions 1667 // as far out in the loop nest as possible. 1668 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1669 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1670 L = L->getParentLoop()) 1671 if (SE.isLoopInvariant(S, L)) { 1672 if (!L) break; 1673 if (BasicBlock *Preheader = L->getLoopPreheader()) 1674 InsertPt = Preheader->getTerminator(); 1675 else { 1676 // LSR sets the insertion point for AddRec start/step values to the 1677 // block start to simplify value reuse, even though it's an invalid 1678 // position. SCEVExpander must correct for this in all cases. 1679 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1680 } 1681 } else { 1682 // If the SCEV is computable at this level, insert it into the header 1683 // after the PHIs (and after any other instructions that we've inserted 1684 // there) so that it is guaranteed to dominate any user inside the loop. 1685 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1686 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1687 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1688 (isInsertedInstruction(InsertPt) || 1689 isa<DbgInfoIntrinsic>(InsertPt))) { 1690 InsertPt = &*std::next(InsertPt->getIterator()); 1691 } 1692 break; 1693 } 1694 1695 // Check to see if we already expanded this here. 1696 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1697 if (I != InsertedExpressions.end()) 1698 return I->second; 1699 1700 SCEVInsertPointGuard Guard(Builder, this); 1701 Builder.SetInsertPoint(InsertPt); 1702 1703 // Expand the expression into instructions. 1704 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt); 1705 Value *V = VO.first; 1706 1707 if (!V) 1708 V = visit(S); 1709 else if (VO.second) { 1710 if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) { 1711 Type *Ety = Vty->getPointerElementType(); 1712 int64_t Offset = VO.second->getSExtValue(); 1713 int64_t ESize = SE.getTypeSizeInBits(Ety); 1714 if ((Offset * 8) % ESize == 0) { 1715 ConstantInt *Idx = 1716 ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize); 1717 V = Builder.CreateGEP(Ety, V, Idx, "scevgep"); 1718 } else { 1719 ConstantInt *Idx = 1720 ConstantInt::getSigned(VO.second->getType(), -Offset); 1721 unsigned AS = Vty->getAddressSpace(); 1722 V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS)); 1723 V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx, 1724 "uglygep"); 1725 V = Builder.CreateBitCast(V, Vty); 1726 } 1727 } else { 1728 V = Builder.CreateSub(V, VO.second); 1729 } 1730 } 1731 // Remember the expanded value for this SCEV at this location. 1732 // 1733 // This is independent of PostIncLoops. The mapped value simply materializes 1734 // the expression at this insertion point. If the mapped value happened to be 1735 // a postinc expansion, it could be reused by a non-postinc user, but only if 1736 // its insertion point was already at the head of the loop. 1737 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1738 return V; 1739 } 1740 1741 void SCEVExpander::rememberInstruction(Value *I) { 1742 if (!PostIncLoops.empty()) 1743 InsertedPostIncValues.insert(I); 1744 else 1745 InsertedValues.insert(I); 1746 } 1747 1748 /// getOrInsertCanonicalInductionVariable - This method returns the 1749 /// canonical induction variable of the specified type for the specified 1750 /// loop (inserting one if there is none). A canonical induction variable 1751 /// starts at zero and steps by one on each iteration. 1752 PHINode * 1753 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L, 1754 Type *Ty) { 1755 assert(Ty->isIntegerTy() && "Can only insert integer induction variables!"); 1756 1757 // Build a SCEV for {0,+,1}<L>. 1758 // Conservatively use FlagAnyWrap for now. 1759 const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0), 1760 SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap); 1761 1762 // Emit code for it. 1763 SCEVInsertPointGuard Guard(Builder, this); 1764 PHINode *V = 1765 cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front())); 1766 1767 return V; 1768 } 1769 1770 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1771 /// replace them with their most canonical representative. Return the number of 1772 /// phis eliminated. 1773 /// 1774 /// This does not depend on any SCEVExpander state but should be used in 1775 /// the same context that SCEVExpander is used. 1776 unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1777 SmallVectorImpl<WeakVH> &DeadInsts, 1778 const TargetTransformInfo *TTI) { 1779 // Find integer phis in order of increasing width. 1780 SmallVector<PHINode*, 8> Phis; 1781 for (auto &I : *L->getHeader()) { 1782 if (auto *PN = dyn_cast<PHINode>(&I)) 1783 Phis.push_back(PN); 1784 else 1785 break; 1786 } 1787 1788 if (TTI) 1789 std::sort(Phis.begin(), Phis.end(), [](Value *LHS, Value *RHS) { 1790 // Put pointers at the back and make sure pointer < pointer = false. 1791 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1792 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1793 return RHS->getType()->getPrimitiveSizeInBits() < 1794 LHS->getType()->getPrimitiveSizeInBits(); 1795 }); 1796 1797 unsigned NumElim = 0; 1798 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1799 // Process phis from wide to narrow. Map wide phis to their truncation 1800 // so narrow phis can reuse them. 1801 for (PHINode *Phi : Phis) { 1802 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1803 if (Value *V = SimplifyInstruction(PN, DL, &SE.TLI, &SE.DT, &SE.AC)) 1804 return V; 1805 if (!SE.isSCEVable(PN->getType())) 1806 return nullptr; 1807 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1808 if (!Const) 1809 return nullptr; 1810 return Const->getValue(); 1811 }; 1812 1813 // Fold constant phis. They may be congruent to other constant phis and 1814 // would confuse the logic below that expects proper IVs. 1815 if (Value *V = SimplifyPHINode(Phi)) { 1816 if (V->getType() != Phi->getType()) 1817 continue; 1818 Phi->replaceAllUsesWith(V); 1819 DeadInsts.emplace_back(Phi); 1820 ++NumElim; 1821 DEBUG_WITH_TYPE(DebugType, dbgs() 1822 << "INDVARS: Eliminated constant iv: " << *Phi << '\n'); 1823 continue; 1824 } 1825 1826 if (!SE.isSCEVable(Phi->getType())) 1827 continue; 1828 1829 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1830 if (!OrigPhiRef) { 1831 OrigPhiRef = Phi; 1832 if (Phi->getType()->isIntegerTy() && TTI && 1833 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1834 // This phi can be freely truncated to the narrowest phi type. Map the 1835 // truncated expression to it so it will be reused for narrow types. 1836 const SCEV *TruncExpr = 1837 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 1838 ExprToIVMap[TruncExpr] = Phi; 1839 } 1840 continue; 1841 } 1842 1843 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1844 // sense. 1845 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1846 continue; 1847 1848 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1849 Instruction *OrigInc = dyn_cast<Instruction>( 1850 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 1851 Instruction *IsomorphicInc = 1852 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1853 1854 if (OrigInc && IsomorphicInc) { 1855 // If this phi has the same width but is more canonical, replace the 1856 // original with it. As part of the "more canonical" determination, 1857 // respect a prior decision to use an IV chain. 1858 if (OrigPhiRef->getType() == Phi->getType() && 1859 !(ChainedPhis.count(Phi) || 1860 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 1861 (ChainedPhis.count(Phi) || 1862 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1863 std::swap(OrigPhiRef, Phi); 1864 std::swap(OrigInc, IsomorphicInc); 1865 } 1866 // Replacing the congruent phi is sufficient because acyclic 1867 // redundancy elimination, CSE/GVN, should handle the 1868 // rest. However, once SCEV proves that a phi is congruent, 1869 // it's often the head of an IV user cycle that is isomorphic 1870 // with the original phi. It's worth eagerly cleaning up the 1871 // common case of a single IV increment so that DeleteDeadPHIs 1872 // can remove cycles that had postinc uses. 1873 const SCEV *TruncExpr = 1874 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 1875 if (OrigInc != IsomorphicInc && 1876 TruncExpr == SE.getSCEV(IsomorphicInc) && 1877 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 1878 hoistIVInc(OrigInc, IsomorphicInc)) { 1879 DEBUG_WITH_TYPE(DebugType, 1880 dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1881 << *IsomorphicInc << '\n'); 1882 Value *NewInc = OrigInc; 1883 if (OrigInc->getType() != IsomorphicInc->getType()) { 1884 Instruction *IP = nullptr; 1885 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 1886 IP = &*PN->getParent()->getFirstInsertionPt(); 1887 else 1888 IP = OrigInc->getNextNode(); 1889 1890 IRBuilder<> Builder(IP); 1891 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1892 NewInc = Builder.CreateTruncOrBitCast( 1893 OrigInc, IsomorphicInc->getType(), IVName); 1894 } 1895 IsomorphicInc->replaceAllUsesWith(NewInc); 1896 DeadInsts.emplace_back(IsomorphicInc); 1897 } 1898 } 1899 } 1900 DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: " 1901 << *Phi << '\n'); 1902 ++NumElim; 1903 Value *NewIV = OrigPhiRef; 1904 if (OrigPhiRef->getType() != Phi->getType()) { 1905 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 1906 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 1907 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 1908 } 1909 Phi->replaceAllUsesWith(NewIV); 1910 DeadInsts.emplace_back(Phi); 1911 } 1912 return NumElim; 1913 } 1914 1915 Value *SCEVExpander::getExactExistingExpansion(const SCEV *S, 1916 const Instruction *At, Loop *L) { 1917 Optional<ScalarEvolution::ValueOffsetPair> VO = 1918 getRelatedExistingExpansion(S, At, L); 1919 if (VO && VO.getValue().second == nullptr) 1920 return VO.getValue().first; 1921 return nullptr; 1922 } 1923 1924 Optional<ScalarEvolution::ValueOffsetPair> 1925 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At, 1926 Loop *L) { 1927 using namespace llvm::PatternMatch; 1928 1929 SmallVector<BasicBlock *, 4> ExitingBlocks; 1930 L->getExitingBlocks(ExitingBlocks); 1931 1932 // Look for suitable value in simple conditions at the loop exits. 1933 for (BasicBlock *BB : ExitingBlocks) { 1934 ICmpInst::Predicate Pred; 1935 Instruction *LHS, *RHS; 1936 BasicBlock *TrueBB, *FalseBB; 1937 1938 if (!match(BB->getTerminator(), 1939 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 1940 TrueBB, FalseBB))) 1941 continue; 1942 1943 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 1944 return ScalarEvolution::ValueOffsetPair(LHS, nullptr); 1945 1946 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 1947 return ScalarEvolution::ValueOffsetPair(RHS, nullptr); 1948 } 1949 1950 // Use expand's logic which is used for reusing a previous Value in 1951 // ExprValueMap. 1952 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At); 1953 if (VO.first) 1954 return VO; 1955 1956 // There is potential to make this significantly smarter, but this simple 1957 // heuristic already gets some interesting cases. 1958 1959 // Can not find suitable value. 1960 return None; 1961 } 1962 1963 bool SCEVExpander::isHighCostExpansionHelper( 1964 const SCEV *S, Loop *L, const Instruction *At, 1965 SmallPtrSetImpl<const SCEV *> &Processed) { 1966 1967 // If we can find an existing value for this scev available at the point "At" 1968 // then consider the expression cheap. 1969 if (At && getRelatedExistingExpansion(S, At, L)) 1970 return false; 1971 1972 // Zero/One operand expressions 1973 switch (S->getSCEVType()) { 1974 case scUnknown: 1975 case scConstant: 1976 return false; 1977 case scTruncate: 1978 return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(), 1979 L, At, Processed); 1980 case scZeroExtend: 1981 return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(), 1982 L, At, Processed); 1983 case scSignExtend: 1984 return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(), 1985 L, At, Processed); 1986 } 1987 1988 if (!Processed.insert(S).second) 1989 return false; 1990 1991 if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) { 1992 // If the divisor is a power of two and the SCEV type fits in a native 1993 // integer, consider the division cheap irrespective of whether it occurs in 1994 // the user code since it can be lowered into a right shift. 1995 if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS())) 1996 if (SC->getAPInt().isPowerOf2()) { 1997 const DataLayout &DL = 1998 L->getHeader()->getParent()->getParent()->getDataLayout(); 1999 unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth(); 2000 return DL.isIllegalInteger(Width); 2001 } 2002 2003 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2004 // HowManyLessThans produced to compute a precise expression, rather than a 2005 // UDiv from the user's code. If we can't find a UDiv in the code with some 2006 // simple searching, assume the former consider UDivExpr expensive to 2007 // compute. 2008 BasicBlock *ExitingBB = L->getExitingBlock(); 2009 if (!ExitingBB) 2010 return true; 2011 2012 // At the beginning of this function we already tried to find existing value 2013 // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern 2014 // involving division. This is just a simple search heuristic. 2015 if (!At) 2016 At = &ExitingBB->back(); 2017 if (!getRelatedExistingExpansion( 2018 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L)) 2019 return true; 2020 } 2021 2022 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 2023 // the exit condition. 2024 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 2025 return true; 2026 2027 // Recurse past nary expressions, which commonly occur in the 2028 // BackedgeTakenCount. They may already exist in program code, and if not, 2029 // they are not too expensive rematerialize. 2030 if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) { 2031 for (auto *Op : NAry->operands()) 2032 if (isHighCostExpansionHelper(Op, L, At, Processed)) 2033 return true; 2034 } 2035 2036 // If we haven't recognized an expensive SCEV pattern, assume it's an 2037 // expression produced by program code. 2038 return false; 2039 } 2040 2041 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2042 Instruction *IP) { 2043 assert(IP); 2044 switch (Pred->getKind()) { 2045 case SCEVPredicate::P_Union: 2046 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2047 case SCEVPredicate::P_Equal: 2048 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); 2049 case SCEVPredicate::P_Wrap: { 2050 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2051 return expandWrapPredicate(AddRecPred, IP); 2052 } 2053 } 2054 llvm_unreachable("Unknown SCEV predicate type"); 2055 } 2056 2057 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, 2058 Instruction *IP) { 2059 Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP); 2060 Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP); 2061 2062 Builder.SetInsertPoint(IP); 2063 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); 2064 return I; 2065 } 2066 2067 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2068 Instruction *Loc, bool Signed) { 2069 assert(AR->isAffine() && "Cannot generate RT check for " 2070 "non-affine expression"); 2071 2072 SCEVUnionPredicate Pred; 2073 const SCEV *ExitCount = 2074 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2075 2076 assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count"); 2077 2078 const SCEV *Step = AR->getStepRecurrence(SE); 2079 const SCEV *Start = AR->getStart(); 2080 2081 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2082 unsigned DstBits = SE.getTypeSizeInBits(AR->getType()); 2083 2084 // The expression {Start,+,Step} has nusw/nssw if 2085 // Step < 0, Start - |Step| * Backedge <= Start 2086 // Step >= 0, Start + |Step| * Backedge > Start 2087 // and |Step| * Backedge doesn't unsigned overflow. 2088 2089 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2090 Builder.SetInsertPoint(Loc); 2091 Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc); 2092 2093 IntegerType *Ty = 2094 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(AR->getType())); 2095 2096 Value *StepValue = expandCodeFor(Step, Ty, Loc); 2097 Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc); 2098 Value *StartValue = expandCodeFor(Start, Ty, Loc); 2099 2100 ConstantInt *Zero = 2101 ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); 2102 2103 Builder.SetInsertPoint(Loc); 2104 // Compute |Step| 2105 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2106 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2107 2108 // Get the backedge taken count and truncate or extended to the AR type. 2109 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2110 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2111 Intrinsic::umul_with_overflow, Ty); 2112 2113 // Compute |Step| * Backedge 2114 CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2115 Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2116 Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2117 2118 // Compute: 2119 // Start + |Step| * Backedge < Start 2120 // Start - |Step| * Backedge > Start 2121 Value *Add = Builder.CreateAdd(StartValue, MulV); 2122 Value *Sub = Builder.CreateSub(StartValue, MulV); 2123 2124 Value *EndCompareGT = Builder.CreateICmp( 2125 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2126 2127 Value *EndCompareLT = Builder.CreateICmp( 2128 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2129 2130 // Select the answer based on the sign of Step. 2131 Value *EndCheck = 2132 Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2133 2134 // If the backedge taken count type is larger than the AR type, 2135 // check that we don't drop any bits by truncating it. If we are 2136 // droping bits, then we have overflow (unless the step is zero). 2137 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2138 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2139 auto *BackedgeCheck = 2140 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2141 ConstantInt::get(Loc->getContext(), MaxVal)); 2142 BackedgeCheck = Builder.CreateAnd( 2143 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2144 2145 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2146 } 2147 2148 EndCheck = Builder.CreateOr(EndCheck, OfMul); 2149 return EndCheck; 2150 } 2151 2152 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2153 Instruction *IP) { 2154 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2155 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2156 2157 // Add a check for NUSW 2158 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2159 NUSWCheck = generateOverflowCheck(A, IP, false); 2160 2161 // Add a check for NSSW 2162 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2163 NSSWCheck = generateOverflowCheck(A, IP, true); 2164 2165 if (NUSWCheck && NSSWCheck) 2166 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2167 2168 if (NUSWCheck) 2169 return NUSWCheck; 2170 2171 if (NSSWCheck) 2172 return NSSWCheck; 2173 2174 return ConstantInt::getFalse(IP->getContext()); 2175 } 2176 2177 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2178 Instruction *IP) { 2179 auto *BoolType = IntegerType::get(IP->getContext(), 1); 2180 Value *Check = ConstantInt::getNullValue(BoolType); 2181 2182 // Loop over all checks in this set. 2183 for (auto Pred : Union->getPredicates()) { 2184 auto *NextCheck = expandCodeForPredicate(Pred, IP); 2185 Builder.SetInsertPoint(IP); 2186 Check = Builder.CreateOr(Check, NextCheck); 2187 } 2188 2189 return Check; 2190 } 2191 2192 namespace { 2193 // Search for a SCEV subexpression that is not safe to expand. Any expression 2194 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2195 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2196 // instruction, but the important thing is that we prove the denominator is 2197 // nonzero before expansion. 2198 // 2199 // IVUsers already checks that IV-derived expressions are safe. So this check is 2200 // only needed when the expression includes some subexpression that is not IV 2201 // derived. 2202 // 2203 // Currently, we only allow division by a nonzero constant here. If this is 2204 // inadequate, we could easily allow division by SCEVUnknown by using 2205 // ValueTracking to check isKnownNonZero(). 2206 // 2207 // We cannot generally expand recurrences unless the step dominates the loop 2208 // header. The expander handles the special case of affine recurrences by 2209 // scaling the recurrence outside the loop, but this technique isn't generally 2210 // applicable. Expanding a nested recurrence outside a loop requires computing 2211 // binomial coefficients. This could be done, but the recurrence has to be in a 2212 // perfectly reduced form, which can't be guaranteed. 2213 struct SCEVFindUnsafe { 2214 ScalarEvolution &SE; 2215 bool IsUnsafe; 2216 2217 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} 2218 2219 bool follow(const SCEV *S) { 2220 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2221 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); 2222 if (!SC || SC->getValue()->isZero()) { 2223 IsUnsafe = true; 2224 return false; 2225 } 2226 } 2227 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2228 const SCEV *Step = AR->getStepRecurrence(SE); 2229 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2230 IsUnsafe = true; 2231 return false; 2232 } 2233 } 2234 return true; 2235 } 2236 bool isDone() const { return IsUnsafe; } 2237 }; 2238 } 2239 2240 namespace llvm { 2241 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { 2242 SCEVFindUnsafe Search(SE); 2243 visitAll(S, Search); 2244 return !Search.IsUnsafe; 2245 } 2246 } 2247