1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DepthFirstIterator.h" 66 #include "llvm/ADT/EquivalenceClasses.h" 67 #include "llvm/ADT/FoldingSet.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/ScopeExit.h" 72 #include "llvm/ADT/Sequence.h" 73 #include "llvm/ADT/SetVector.h" 74 #include "llvm/ADT/SmallPtrSet.h" 75 #include "llvm/ADT/SmallSet.h" 76 #include "llvm/ADT/SmallVector.h" 77 #include "llvm/ADT/Statistic.h" 78 #include "llvm/ADT/StringRef.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/ConstantFolding.h" 81 #include "llvm/Analysis/InstructionSimplify.h" 82 #include "llvm/Analysis/LoopInfo.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/CallSite.h" 91 #include "llvm/IR/Constant.h" 92 #include "llvm/IR/ConstantRange.h" 93 #include "llvm/IR/Constants.h" 94 #include "llvm/IR/DataLayout.h" 95 #include "llvm/IR/DerivedTypes.h" 96 #include "llvm/IR/Dominators.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/GlobalAlias.h" 99 #include "llvm/IR/GlobalValue.h" 100 #include "llvm/IR/GlobalVariable.h" 101 #include "llvm/IR/InstIterator.h" 102 #include "llvm/IR/InstrTypes.h" 103 #include "llvm/IR/Instruction.h" 104 #include "llvm/IR/Instructions.h" 105 #include "llvm/IR/IntrinsicInst.h" 106 #include "llvm/IR/Intrinsics.h" 107 #include "llvm/IR/LLVMContext.h" 108 #include "llvm/IR/Metadata.h" 109 #include "llvm/IR/Operator.h" 110 #include "llvm/IR/PatternMatch.h" 111 #include "llvm/IR/Type.h" 112 #include "llvm/IR/Use.h" 113 #include "llvm/IR/User.h" 114 #include "llvm/IR/Value.h" 115 #include "llvm/IR/Verifier.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 139 #define DEBUG_TYPE "scalar-evolution" 140 141 STATISTIC(NumArrayLenItCounts, 142 "Number of trip counts computed with array length"); 143 STATISTIC(NumTripCountsComputed, 144 "Number of loops with predictable loop counts"); 145 STATISTIC(NumTripCountsNotComputed, 146 "Number of loops without predictable loop counts"); 147 STATISTIC(NumBruteForceTripCountsComputed, 148 "Number of loops with trip counts computed by force"); 149 150 static cl::opt<unsigned> 151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 152 cl::desc("Maximum number of iterations SCEV will " 153 "symbolically execute a constant " 154 "derived loop"), 155 cl::init(100)); 156 157 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 158 static cl::opt<bool> VerifySCEV( 159 "verify-scev", cl::Hidden, 160 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 161 static cl::opt<bool> 162 VerifySCEVMap("verify-scev-maps", cl::Hidden, 163 cl::desc("Verify no dangling value in ScalarEvolution's " 164 "ExprValueMap (slow)")); 165 166 static cl::opt<bool> VerifyIR( 167 "scev-verify-ir", cl::Hidden, 168 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 169 cl::init(false)); 170 171 static cl::opt<unsigned> MulOpsInlineThreshold( 172 "scev-mulops-inline-threshold", cl::Hidden, 173 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 174 cl::init(32)); 175 176 static cl::opt<unsigned> AddOpsInlineThreshold( 177 "scev-addops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining addition operands into a SCEV"), 179 cl::init(500)); 180 181 static cl::opt<unsigned> MaxSCEVCompareDepth( 182 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 183 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 184 cl::init(32)); 185 186 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 187 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 189 cl::init(2)); 190 191 static cl::opt<unsigned> MaxValueCompareDepth( 192 "scalar-evolution-max-value-compare-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive value complexity comparisons"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> 197 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive arithmetics"), 199 cl::init(32)); 200 201 static cl::opt<unsigned> MaxConstantEvolvingDepth( 202 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 204 205 static cl::opt<unsigned> 206 MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive SExt/ZExt"), 208 cl::init(8)); 209 210 static cl::opt<unsigned> 211 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 212 cl::desc("Max coefficients in AddRec during evolving"), 213 cl::init(8)); 214 215 //===----------------------------------------------------------------------===// 216 // SCEV class definitions 217 //===----------------------------------------------------------------------===// 218 219 //===----------------------------------------------------------------------===// 220 // Implementation of the SCEV class. 221 // 222 223 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 224 LLVM_DUMP_METHOD void SCEV::dump() const { 225 print(dbgs()); 226 dbgs() << '\n'; 227 } 228 #endif 229 230 void SCEV::print(raw_ostream &OS) const { 231 switch (static_cast<SCEVTypes>(getSCEVType())) { 232 case scConstant: 233 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 234 return; 235 case scTruncate: { 236 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 237 const SCEV *Op = Trunc->getOperand(); 238 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 239 << *Trunc->getType() << ")"; 240 return; 241 } 242 case scZeroExtend: { 243 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 244 const SCEV *Op = ZExt->getOperand(); 245 OS << "(zext " << *Op->getType() << " " << *Op << " to " 246 << *ZExt->getType() << ")"; 247 return; 248 } 249 case scSignExtend: { 250 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 251 const SCEV *Op = SExt->getOperand(); 252 OS << "(sext " << *Op->getType() << " " << *Op << " to " 253 << *SExt->getType() << ")"; 254 return; 255 } 256 case scAddRecExpr: { 257 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 258 OS << "{" << *AR->getOperand(0); 259 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 260 OS << ",+," << *AR->getOperand(i); 261 OS << "}<"; 262 if (AR->hasNoUnsignedWrap()) 263 OS << "nuw><"; 264 if (AR->hasNoSignedWrap()) 265 OS << "nsw><"; 266 if (AR->hasNoSelfWrap() && 267 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 268 OS << "nw><"; 269 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 270 OS << ">"; 271 return; 272 } 273 case scAddExpr: 274 case scMulExpr: 275 case scUMaxExpr: 276 case scSMaxExpr: { 277 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 278 const char *OpStr = nullptr; 279 switch (NAry->getSCEVType()) { 280 case scAddExpr: OpStr = " + "; break; 281 case scMulExpr: OpStr = " * "; break; 282 case scUMaxExpr: OpStr = " umax "; break; 283 case scSMaxExpr: OpStr = " smax "; break; 284 } 285 OS << "("; 286 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 287 I != E; ++I) { 288 OS << **I; 289 if (std::next(I) != E) 290 OS << OpStr; 291 } 292 OS << ")"; 293 switch (NAry->getSCEVType()) { 294 case scAddExpr: 295 case scMulExpr: 296 if (NAry->hasNoUnsignedWrap()) 297 OS << "<nuw>"; 298 if (NAry->hasNoSignedWrap()) 299 OS << "<nsw>"; 300 } 301 return; 302 } 303 case scUDivExpr: { 304 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 305 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 306 return; 307 } 308 case scUnknown: { 309 const SCEVUnknown *U = cast<SCEVUnknown>(this); 310 Type *AllocTy; 311 if (U->isSizeOf(AllocTy)) { 312 OS << "sizeof(" << *AllocTy << ")"; 313 return; 314 } 315 if (U->isAlignOf(AllocTy)) { 316 OS << "alignof(" << *AllocTy << ")"; 317 return; 318 } 319 320 Type *CTy; 321 Constant *FieldNo; 322 if (U->isOffsetOf(CTy, FieldNo)) { 323 OS << "offsetof(" << *CTy << ", "; 324 FieldNo->printAsOperand(OS, false); 325 OS << ")"; 326 return; 327 } 328 329 // Otherwise just print it normally. 330 U->getValue()->printAsOperand(OS, false); 331 return; 332 } 333 case scCouldNotCompute: 334 OS << "***COULDNOTCOMPUTE***"; 335 return; 336 } 337 llvm_unreachable("Unknown SCEV kind!"); 338 } 339 340 Type *SCEV::getType() const { 341 switch (static_cast<SCEVTypes>(getSCEVType())) { 342 case scConstant: 343 return cast<SCEVConstant>(this)->getType(); 344 case scTruncate: 345 case scZeroExtend: 346 case scSignExtend: 347 return cast<SCEVCastExpr>(this)->getType(); 348 case scAddRecExpr: 349 case scMulExpr: 350 case scUMaxExpr: 351 case scSMaxExpr: 352 return cast<SCEVNAryExpr>(this)->getType(); 353 case scAddExpr: 354 return cast<SCEVAddExpr>(this)->getType(); 355 case scUDivExpr: 356 return cast<SCEVUDivExpr>(this)->getType(); 357 case scUnknown: 358 return cast<SCEVUnknown>(this)->getType(); 359 case scCouldNotCompute: 360 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 361 } 362 llvm_unreachable("Unknown SCEV kind!"); 363 } 364 365 bool SCEV::isZero() const { 366 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 367 return SC->getValue()->isZero(); 368 return false; 369 } 370 371 bool SCEV::isOne() const { 372 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 373 return SC->getValue()->isOne(); 374 return false; 375 } 376 377 bool SCEV::isAllOnesValue() const { 378 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 379 return SC->getValue()->isMinusOne(); 380 return false; 381 } 382 383 bool SCEV::isNonConstantNegative() const { 384 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 385 if (!Mul) return false; 386 387 // If there is a constant factor, it will be first. 388 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 389 if (!SC) return false; 390 391 // Return true if the value is negative, this matches things like (-42 * V). 392 return SC->getAPInt().isNegative(); 393 } 394 395 SCEVCouldNotCompute::SCEVCouldNotCompute() : 396 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 397 398 bool SCEVCouldNotCompute::classof(const SCEV *S) { 399 return S->getSCEVType() == scCouldNotCompute; 400 } 401 402 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 403 FoldingSetNodeID ID; 404 ID.AddInteger(scConstant); 405 ID.AddPointer(V); 406 void *IP = nullptr; 407 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 408 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 409 UniqueSCEVs.InsertNode(S, IP); 410 return S; 411 } 412 413 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 414 return getConstant(ConstantInt::get(getContext(), Val)); 415 } 416 417 const SCEV * 418 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 419 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 420 return getConstant(ConstantInt::get(ITy, V, isSigned)); 421 } 422 423 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 424 unsigned SCEVTy, const SCEV *op, Type *ty) 425 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 426 427 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 428 const SCEV *op, Type *ty) 429 : SCEVCastExpr(ID, scTruncate, op, ty) { 430 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 431 "Cannot truncate non-integer value!"); 432 } 433 434 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 435 const SCEV *op, Type *ty) 436 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 437 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 438 "Cannot zero extend non-integer value!"); 439 } 440 441 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 442 const SCEV *op, Type *ty) 443 : SCEVCastExpr(ID, scSignExtend, op, ty) { 444 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 445 "Cannot sign extend non-integer value!"); 446 } 447 448 void SCEVUnknown::deleted() { 449 // Clear this SCEVUnknown from various maps. 450 SE->forgetMemoizedResults(this); 451 452 // Remove this SCEVUnknown from the uniquing map. 453 SE->UniqueSCEVs.RemoveNode(this); 454 455 // Release the value. 456 setValPtr(nullptr); 457 } 458 459 void SCEVUnknown::allUsesReplacedWith(Value *New) { 460 // Remove this SCEVUnknown from the uniquing map. 461 SE->UniqueSCEVs.RemoveNode(this); 462 463 // Update this SCEVUnknown to point to the new value. This is needed 464 // because there may still be outstanding SCEVs which still point to 465 // this SCEVUnknown. 466 setValPtr(New); 467 } 468 469 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 470 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 471 if (VCE->getOpcode() == Instruction::PtrToInt) 472 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 473 if (CE->getOpcode() == Instruction::GetElementPtr && 474 CE->getOperand(0)->isNullValue() && 475 CE->getNumOperands() == 2) 476 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 477 if (CI->isOne()) { 478 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 479 ->getElementType(); 480 return true; 481 } 482 483 return false; 484 } 485 486 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 487 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 488 if (VCE->getOpcode() == Instruction::PtrToInt) 489 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 490 if (CE->getOpcode() == Instruction::GetElementPtr && 491 CE->getOperand(0)->isNullValue()) { 492 Type *Ty = 493 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 494 if (StructType *STy = dyn_cast<StructType>(Ty)) 495 if (!STy->isPacked() && 496 CE->getNumOperands() == 3 && 497 CE->getOperand(1)->isNullValue()) { 498 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 499 if (CI->isOne() && 500 STy->getNumElements() == 2 && 501 STy->getElementType(0)->isIntegerTy(1)) { 502 AllocTy = STy->getElementType(1); 503 return true; 504 } 505 } 506 } 507 508 return false; 509 } 510 511 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 512 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 513 if (VCE->getOpcode() == Instruction::PtrToInt) 514 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 515 if (CE->getOpcode() == Instruction::GetElementPtr && 516 CE->getNumOperands() == 3 && 517 CE->getOperand(0)->isNullValue() && 518 CE->getOperand(1)->isNullValue()) { 519 Type *Ty = 520 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 521 // Ignore vector types here so that ScalarEvolutionExpander doesn't 522 // emit getelementptrs that index into vectors. 523 if (Ty->isStructTy() || Ty->isArrayTy()) { 524 CTy = Ty; 525 FieldNo = CE->getOperand(2); 526 return true; 527 } 528 } 529 530 return false; 531 } 532 533 //===----------------------------------------------------------------------===// 534 // SCEV Utilities 535 //===----------------------------------------------------------------------===// 536 537 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 538 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 539 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 540 /// have been previously deemed to be "equally complex" by this routine. It is 541 /// intended to avoid exponential time complexity in cases like: 542 /// 543 /// %a = f(%x, %y) 544 /// %b = f(%a, %a) 545 /// %c = f(%b, %b) 546 /// 547 /// %d = f(%x, %y) 548 /// %e = f(%d, %d) 549 /// %f = f(%e, %e) 550 /// 551 /// CompareValueComplexity(%f, %c) 552 /// 553 /// Since we do not continue running this routine on expression trees once we 554 /// have seen unequal values, there is no need to track them in the cache. 555 static int 556 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 557 const LoopInfo *const LI, Value *LV, Value *RV, 558 unsigned Depth) { 559 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 560 return 0; 561 562 // Order pointer values after integer values. This helps SCEVExpander form 563 // GEPs. 564 bool LIsPointer = LV->getType()->isPointerTy(), 565 RIsPointer = RV->getType()->isPointerTy(); 566 if (LIsPointer != RIsPointer) 567 return (int)LIsPointer - (int)RIsPointer; 568 569 // Compare getValueID values. 570 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 571 if (LID != RID) 572 return (int)LID - (int)RID; 573 574 // Sort arguments by their position. 575 if (const auto *LA = dyn_cast<Argument>(LV)) { 576 const auto *RA = cast<Argument>(RV); 577 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 578 return (int)LArgNo - (int)RArgNo; 579 } 580 581 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 582 const auto *RGV = cast<GlobalValue>(RV); 583 584 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 585 auto LT = GV->getLinkage(); 586 return !(GlobalValue::isPrivateLinkage(LT) || 587 GlobalValue::isInternalLinkage(LT)); 588 }; 589 590 // Use the names to distinguish the two values, but only if the 591 // names are semantically important. 592 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 593 return LGV->getName().compare(RGV->getName()); 594 } 595 596 // For instructions, compare their loop depth, and their operand count. This 597 // is pretty loose. 598 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 599 const auto *RInst = cast<Instruction>(RV); 600 601 // Compare loop depths. 602 const BasicBlock *LParent = LInst->getParent(), 603 *RParent = RInst->getParent(); 604 if (LParent != RParent) { 605 unsigned LDepth = LI->getLoopDepth(LParent), 606 RDepth = LI->getLoopDepth(RParent); 607 if (LDepth != RDepth) 608 return (int)LDepth - (int)RDepth; 609 } 610 611 // Compare the number of operands. 612 unsigned LNumOps = LInst->getNumOperands(), 613 RNumOps = RInst->getNumOperands(); 614 if (LNumOps != RNumOps) 615 return (int)LNumOps - (int)RNumOps; 616 617 for (unsigned Idx : seq(0u, LNumOps)) { 618 int Result = 619 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 620 RInst->getOperand(Idx), Depth + 1); 621 if (Result != 0) 622 return Result; 623 } 624 } 625 626 EqCacheValue.unionSets(LV, RV); 627 return 0; 628 } 629 630 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 631 // than RHS, respectively. A three-way result allows recursive comparisons to be 632 // more efficient. 633 static int CompareSCEVComplexity( 634 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 635 EquivalenceClasses<const Value *> &EqCacheValue, 636 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 637 DominatorTree &DT, unsigned Depth = 0) { 638 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 639 if (LHS == RHS) 640 return 0; 641 642 // Primarily, sort the SCEVs by their getSCEVType(). 643 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 644 if (LType != RType) 645 return (int)LType - (int)RType; 646 647 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 648 return 0; 649 // Aside from the getSCEVType() ordering, the particular ordering 650 // isn't very important except that it's beneficial to be consistent, 651 // so that (a + b) and (b + a) don't end up as different expressions. 652 switch (static_cast<SCEVTypes>(LType)) { 653 case scUnknown: { 654 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 655 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 656 657 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 658 RU->getValue(), Depth + 1); 659 if (X == 0) 660 EqCacheSCEV.unionSets(LHS, RHS); 661 return X; 662 } 663 664 case scConstant: { 665 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 666 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 667 668 // Compare constant values. 669 const APInt &LA = LC->getAPInt(); 670 const APInt &RA = RC->getAPInt(); 671 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 672 if (LBitWidth != RBitWidth) 673 return (int)LBitWidth - (int)RBitWidth; 674 return LA.ult(RA) ? -1 : 1; 675 } 676 677 case scAddRecExpr: { 678 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 679 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 680 681 // There is always a dominance between two recs that are used by one SCEV, 682 // so we can safely sort recs by loop header dominance. We require such 683 // order in getAddExpr. 684 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 685 if (LLoop != RLoop) { 686 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 687 assert(LHead != RHead && "Two loops share the same header?"); 688 if (DT.dominates(LHead, RHead)) 689 return 1; 690 else 691 assert(DT.dominates(RHead, LHead) && 692 "No dominance between recurrences used by one SCEV?"); 693 return -1; 694 } 695 696 // Addrec complexity grows with operand count. 697 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 698 if (LNumOps != RNumOps) 699 return (int)LNumOps - (int)RNumOps; 700 701 // Lexicographically compare. 702 for (unsigned i = 0; i != LNumOps; ++i) { 703 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 704 LA->getOperand(i), RA->getOperand(i), DT, 705 Depth + 1); 706 if (X != 0) 707 return X; 708 } 709 EqCacheSCEV.unionSets(LHS, RHS); 710 return 0; 711 } 712 713 case scAddExpr: 714 case scMulExpr: 715 case scSMaxExpr: 716 case scUMaxExpr: { 717 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 718 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 719 720 // Lexicographically compare n-ary expressions. 721 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 722 if (LNumOps != RNumOps) 723 return (int)LNumOps - (int)RNumOps; 724 725 for (unsigned i = 0; i != LNumOps; ++i) { 726 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 727 LC->getOperand(i), RC->getOperand(i), DT, 728 Depth + 1); 729 if (X != 0) 730 return X; 731 } 732 EqCacheSCEV.unionSets(LHS, RHS); 733 return 0; 734 } 735 736 case scUDivExpr: { 737 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 738 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 739 740 // Lexicographically compare udiv expressions. 741 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 742 RC->getLHS(), DT, Depth + 1); 743 if (X != 0) 744 return X; 745 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 746 RC->getRHS(), DT, Depth + 1); 747 if (X == 0) 748 EqCacheSCEV.unionSets(LHS, RHS); 749 return X; 750 } 751 752 case scTruncate: 753 case scZeroExtend: 754 case scSignExtend: { 755 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 756 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 757 758 // Compare cast expressions by operand. 759 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 760 LC->getOperand(), RC->getOperand(), DT, 761 Depth + 1); 762 if (X == 0) 763 EqCacheSCEV.unionSets(LHS, RHS); 764 return X; 765 } 766 767 case scCouldNotCompute: 768 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 769 } 770 llvm_unreachable("Unknown SCEV kind!"); 771 } 772 773 /// Given a list of SCEV objects, order them by their complexity, and group 774 /// objects of the same complexity together by value. When this routine is 775 /// finished, we know that any duplicates in the vector are consecutive and that 776 /// complexity is monotonically increasing. 777 /// 778 /// Note that we go take special precautions to ensure that we get deterministic 779 /// results from this routine. In other words, we don't want the results of 780 /// this to depend on where the addresses of various SCEV objects happened to 781 /// land in memory. 782 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 783 LoopInfo *LI, DominatorTree &DT) { 784 if (Ops.size() < 2) return; // Noop 785 786 EquivalenceClasses<const SCEV *> EqCacheSCEV; 787 EquivalenceClasses<const Value *> EqCacheValue; 788 if (Ops.size() == 2) { 789 // This is the common case, which also happens to be trivially simple. 790 // Special case it. 791 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 792 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 793 std::swap(LHS, RHS); 794 return; 795 } 796 797 // Do the rough sort by complexity. 798 std::stable_sort(Ops.begin(), Ops.end(), 799 [&](const SCEV *LHS, const SCEV *RHS) { 800 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 801 LHS, RHS, DT) < 0; 802 }); 803 804 // Now that we are sorted by complexity, group elements of the same 805 // complexity. Note that this is, at worst, N^2, but the vector is likely to 806 // be extremely short in practice. Note that we take this approach because we 807 // do not want to depend on the addresses of the objects we are grouping. 808 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 809 const SCEV *S = Ops[i]; 810 unsigned Complexity = S->getSCEVType(); 811 812 // If there are any objects of the same complexity and same value as this 813 // one, group them. 814 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 815 if (Ops[j] == S) { // Found a duplicate. 816 // Move it to immediately after i'th element. 817 std::swap(Ops[i+1], Ops[j]); 818 ++i; // no need to rescan it. 819 if (i == e-2) return; // Done! 820 } 821 } 822 } 823 } 824 825 // Returns the size of the SCEV S. 826 static inline int sizeOfSCEV(const SCEV *S) { 827 struct FindSCEVSize { 828 int Size = 0; 829 830 FindSCEVSize() = default; 831 832 bool follow(const SCEV *S) { 833 ++Size; 834 // Keep looking at all operands of S. 835 return true; 836 } 837 838 bool isDone() const { 839 return false; 840 } 841 }; 842 843 FindSCEVSize F; 844 SCEVTraversal<FindSCEVSize> ST(F); 845 ST.visitAll(S); 846 return F.Size; 847 } 848 849 namespace { 850 851 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 852 public: 853 // Computes the Quotient and Remainder of the division of Numerator by 854 // Denominator. 855 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 856 const SCEV *Denominator, const SCEV **Quotient, 857 const SCEV **Remainder) { 858 assert(Numerator && Denominator && "Uninitialized SCEV"); 859 860 SCEVDivision D(SE, Numerator, Denominator); 861 862 // Check for the trivial case here to avoid having to check for it in the 863 // rest of the code. 864 if (Numerator == Denominator) { 865 *Quotient = D.One; 866 *Remainder = D.Zero; 867 return; 868 } 869 870 if (Numerator->isZero()) { 871 *Quotient = D.Zero; 872 *Remainder = D.Zero; 873 return; 874 } 875 876 // A simple case when N/1. The quotient is N. 877 if (Denominator->isOne()) { 878 *Quotient = Numerator; 879 *Remainder = D.Zero; 880 return; 881 } 882 883 // Split the Denominator when it is a product. 884 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 885 const SCEV *Q, *R; 886 *Quotient = Numerator; 887 for (const SCEV *Op : T->operands()) { 888 divide(SE, *Quotient, Op, &Q, &R); 889 *Quotient = Q; 890 891 // Bail out when the Numerator is not divisible by one of the terms of 892 // the Denominator. 893 if (!R->isZero()) { 894 *Quotient = D.Zero; 895 *Remainder = Numerator; 896 return; 897 } 898 } 899 *Remainder = D.Zero; 900 return; 901 } 902 903 D.visit(Numerator); 904 *Quotient = D.Quotient; 905 *Remainder = D.Remainder; 906 } 907 908 // Except in the trivial case described above, we do not know how to divide 909 // Expr by Denominator for the following functions with empty implementation. 910 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 911 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 912 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 913 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 914 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 915 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 916 void visitUnknown(const SCEVUnknown *Numerator) {} 917 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 918 919 void visitConstant(const SCEVConstant *Numerator) { 920 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 921 APInt NumeratorVal = Numerator->getAPInt(); 922 APInt DenominatorVal = D->getAPInt(); 923 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 924 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 925 926 if (NumeratorBW > DenominatorBW) 927 DenominatorVal = DenominatorVal.sext(NumeratorBW); 928 else if (NumeratorBW < DenominatorBW) 929 NumeratorVal = NumeratorVal.sext(DenominatorBW); 930 931 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 932 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 933 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 934 Quotient = SE.getConstant(QuotientVal); 935 Remainder = SE.getConstant(RemainderVal); 936 return; 937 } 938 } 939 940 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 941 const SCEV *StartQ, *StartR, *StepQ, *StepR; 942 if (!Numerator->isAffine()) 943 return cannotDivide(Numerator); 944 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 945 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 946 // Bail out if the types do not match. 947 Type *Ty = Denominator->getType(); 948 if (Ty != StartQ->getType() || Ty != StartR->getType() || 949 Ty != StepQ->getType() || Ty != StepR->getType()) 950 return cannotDivide(Numerator); 951 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 952 Numerator->getNoWrapFlags()); 953 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 954 Numerator->getNoWrapFlags()); 955 } 956 957 void visitAddExpr(const SCEVAddExpr *Numerator) { 958 SmallVector<const SCEV *, 2> Qs, Rs; 959 Type *Ty = Denominator->getType(); 960 961 for (const SCEV *Op : Numerator->operands()) { 962 const SCEV *Q, *R; 963 divide(SE, Op, Denominator, &Q, &R); 964 965 // Bail out if types do not match. 966 if (Ty != Q->getType() || Ty != R->getType()) 967 return cannotDivide(Numerator); 968 969 Qs.push_back(Q); 970 Rs.push_back(R); 971 } 972 973 if (Qs.size() == 1) { 974 Quotient = Qs[0]; 975 Remainder = Rs[0]; 976 return; 977 } 978 979 Quotient = SE.getAddExpr(Qs); 980 Remainder = SE.getAddExpr(Rs); 981 } 982 983 void visitMulExpr(const SCEVMulExpr *Numerator) { 984 SmallVector<const SCEV *, 2> Qs; 985 Type *Ty = Denominator->getType(); 986 987 bool FoundDenominatorTerm = false; 988 for (const SCEV *Op : Numerator->operands()) { 989 // Bail out if types do not match. 990 if (Ty != Op->getType()) 991 return cannotDivide(Numerator); 992 993 if (FoundDenominatorTerm) { 994 Qs.push_back(Op); 995 continue; 996 } 997 998 // Check whether Denominator divides one of the product operands. 999 const SCEV *Q, *R; 1000 divide(SE, Op, Denominator, &Q, &R); 1001 if (!R->isZero()) { 1002 Qs.push_back(Op); 1003 continue; 1004 } 1005 1006 // Bail out if types do not match. 1007 if (Ty != Q->getType()) 1008 return cannotDivide(Numerator); 1009 1010 FoundDenominatorTerm = true; 1011 Qs.push_back(Q); 1012 } 1013 1014 if (FoundDenominatorTerm) { 1015 Remainder = Zero; 1016 if (Qs.size() == 1) 1017 Quotient = Qs[0]; 1018 else 1019 Quotient = SE.getMulExpr(Qs); 1020 return; 1021 } 1022 1023 if (!isa<SCEVUnknown>(Denominator)) 1024 return cannotDivide(Numerator); 1025 1026 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 1027 ValueToValueMap RewriteMap; 1028 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1029 cast<SCEVConstant>(Zero)->getValue(); 1030 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1031 1032 if (Remainder->isZero()) { 1033 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 1034 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1035 cast<SCEVConstant>(One)->getValue(); 1036 Quotient = 1037 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1038 return; 1039 } 1040 1041 // Quotient is (Numerator - Remainder) divided by Denominator. 1042 const SCEV *Q, *R; 1043 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 1044 // This SCEV does not seem to simplify: fail the division here. 1045 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 1046 return cannotDivide(Numerator); 1047 divide(SE, Diff, Denominator, &Q, &R); 1048 if (R != Zero) 1049 return cannotDivide(Numerator); 1050 Quotient = Q; 1051 } 1052 1053 private: 1054 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 1055 const SCEV *Denominator) 1056 : SE(S), Denominator(Denominator) { 1057 Zero = SE.getZero(Denominator->getType()); 1058 One = SE.getOne(Denominator->getType()); 1059 1060 // We generally do not know how to divide Expr by Denominator. We 1061 // initialize the division to a "cannot divide" state to simplify the rest 1062 // of the code. 1063 cannotDivide(Numerator); 1064 } 1065 1066 // Convenience function for giving up on the division. We set the quotient to 1067 // be equal to zero and the remainder to be equal to the numerator. 1068 void cannotDivide(const SCEV *Numerator) { 1069 Quotient = Zero; 1070 Remainder = Numerator; 1071 } 1072 1073 ScalarEvolution &SE; 1074 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 1075 }; 1076 1077 } // end anonymous namespace 1078 1079 //===----------------------------------------------------------------------===// 1080 // Simple SCEV method implementations 1081 //===----------------------------------------------------------------------===// 1082 1083 /// Compute BC(It, K). The result has width W. Assume, K > 0. 1084 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 1085 ScalarEvolution &SE, 1086 Type *ResultTy) { 1087 // Handle the simplest case efficiently. 1088 if (K == 1) 1089 return SE.getTruncateOrZeroExtend(It, ResultTy); 1090 1091 // We are using the following formula for BC(It, K): 1092 // 1093 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 1094 // 1095 // Suppose, W is the bitwidth of the return value. We must be prepared for 1096 // overflow. Hence, we must assure that the result of our computation is 1097 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 1098 // safe in modular arithmetic. 1099 // 1100 // However, this code doesn't use exactly that formula; the formula it uses 1101 // is something like the following, where T is the number of factors of 2 in 1102 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 1103 // exponentiation: 1104 // 1105 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 1106 // 1107 // This formula is trivially equivalent to the previous formula. However, 1108 // this formula can be implemented much more efficiently. The trick is that 1109 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 1110 // arithmetic. To do exact division in modular arithmetic, all we have 1111 // to do is multiply by the inverse. Therefore, this step can be done at 1112 // width W. 1113 // 1114 // The next issue is how to safely do the division by 2^T. The way this 1115 // is done is by doing the multiplication step at a width of at least W + T 1116 // bits. This way, the bottom W+T bits of the product are accurate. Then, 1117 // when we perform the division by 2^T (which is equivalent to a right shift 1118 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 1119 // truncated out after the division by 2^T. 1120 // 1121 // In comparison to just directly using the first formula, this technique 1122 // is much more efficient; using the first formula requires W * K bits, 1123 // but this formula less than W + K bits. Also, the first formula requires 1124 // a division step, whereas this formula only requires multiplies and shifts. 1125 // 1126 // It doesn't matter whether the subtraction step is done in the calculation 1127 // width or the input iteration count's width; if the subtraction overflows, 1128 // the result must be zero anyway. We prefer here to do it in the width of 1129 // the induction variable because it helps a lot for certain cases; CodeGen 1130 // isn't smart enough to ignore the overflow, which leads to much less 1131 // efficient code if the width of the subtraction is wider than the native 1132 // register width. 1133 // 1134 // (It's possible to not widen at all by pulling out factors of 2 before 1135 // the multiplication; for example, K=2 can be calculated as 1136 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1137 // extra arithmetic, so it's not an obvious win, and it gets 1138 // much more complicated for K > 3.) 1139 1140 // Protection from insane SCEVs; this bound is conservative, 1141 // but it probably doesn't matter. 1142 if (K > 1000) 1143 return SE.getCouldNotCompute(); 1144 1145 unsigned W = SE.getTypeSizeInBits(ResultTy); 1146 1147 // Calculate K! / 2^T and T; we divide out the factors of two before 1148 // multiplying for calculating K! / 2^T to avoid overflow. 1149 // Other overflow doesn't matter because we only care about the bottom 1150 // W bits of the result. 1151 APInt OddFactorial(W, 1); 1152 unsigned T = 1; 1153 for (unsigned i = 3; i <= K; ++i) { 1154 APInt Mult(W, i); 1155 unsigned TwoFactors = Mult.countTrailingZeros(); 1156 T += TwoFactors; 1157 Mult.lshrInPlace(TwoFactors); 1158 OddFactorial *= Mult; 1159 } 1160 1161 // We need at least W + T bits for the multiplication step 1162 unsigned CalculationBits = W + T; 1163 1164 // Calculate 2^T, at width T+W. 1165 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1166 1167 // Calculate the multiplicative inverse of K! / 2^T; 1168 // this multiplication factor will perform the exact division by 1169 // K! / 2^T. 1170 APInt Mod = APInt::getSignedMinValue(W+1); 1171 APInt MultiplyFactor = OddFactorial.zext(W+1); 1172 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1173 MultiplyFactor = MultiplyFactor.trunc(W); 1174 1175 // Calculate the product, at width T+W 1176 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1177 CalculationBits); 1178 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1179 for (unsigned i = 1; i != K; ++i) { 1180 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1181 Dividend = SE.getMulExpr(Dividend, 1182 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1183 } 1184 1185 // Divide by 2^T 1186 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1187 1188 // Truncate the result, and divide by K! / 2^T. 1189 1190 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1191 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1192 } 1193 1194 /// Return the value of this chain of recurrences at the specified iteration 1195 /// number. We can evaluate this recurrence by multiplying each element in the 1196 /// chain by the binomial coefficient corresponding to it. In other words, we 1197 /// can evaluate {A,+,B,+,C,+,D} as: 1198 /// 1199 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1200 /// 1201 /// where BC(It, k) stands for binomial coefficient. 1202 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1203 ScalarEvolution &SE) const { 1204 const SCEV *Result = getStart(); 1205 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1206 // The computation is correct in the face of overflow provided that the 1207 // multiplication is performed _after_ the evaluation of the binomial 1208 // coefficient. 1209 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1210 if (isa<SCEVCouldNotCompute>(Coeff)) 1211 return Coeff; 1212 1213 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1214 } 1215 return Result; 1216 } 1217 1218 //===----------------------------------------------------------------------===// 1219 // SCEV Expression folder implementations 1220 //===----------------------------------------------------------------------===// 1221 1222 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1223 Type *Ty) { 1224 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1225 "This is not a truncating conversion!"); 1226 assert(isSCEVable(Ty) && 1227 "This is not a conversion to a SCEVable type!"); 1228 Ty = getEffectiveSCEVType(Ty); 1229 1230 FoldingSetNodeID ID; 1231 ID.AddInteger(scTruncate); 1232 ID.AddPointer(Op); 1233 ID.AddPointer(Ty); 1234 void *IP = nullptr; 1235 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1236 1237 // Fold if the operand is constant. 1238 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1239 return getConstant( 1240 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1241 1242 // trunc(trunc(x)) --> trunc(x) 1243 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1244 return getTruncateExpr(ST->getOperand(), Ty); 1245 1246 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1247 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1248 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1249 1250 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1251 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1252 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1253 1254 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1255 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1256 // if after transforming we have at most one truncate, not counting truncates 1257 // that replace other casts. 1258 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1259 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1260 SmallVector<const SCEV *, 4> Operands; 1261 unsigned numTruncs = 0; 1262 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1263 ++i) { 1264 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty); 1265 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S)) 1266 numTruncs++; 1267 Operands.push_back(S); 1268 } 1269 if (numTruncs < 2) { 1270 if (isa<SCEVAddExpr>(Op)) 1271 return getAddExpr(Operands); 1272 else if (isa<SCEVMulExpr>(Op)) 1273 return getMulExpr(Operands); 1274 else 1275 llvm_unreachable("Unexpected SCEV type for Op."); 1276 } 1277 // Although we checked in the beginning that ID is not in the cache, it is 1278 // possible that during recursion and different modification ID was inserted 1279 // into the cache. So if we find it, just return it. 1280 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1281 return S; 1282 } 1283 1284 // If the input value is a chrec scev, truncate the chrec's operands. 1285 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1286 SmallVector<const SCEV *, 4> Operands; 1287 for (const SCEV *Op : AddRec->operands()) 1288 Operands.push_back(getTruncateExpr(Op, Ty)); 1289 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1290 } 1291 1292 // The cast wasn't folded; create an explicit cast node. We can reuse 1293 // the existing insert position since if we get here, we won't have 1294 // made any changes which would invalidate it. 1295 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1296 Op, Ty); 1297 UniqueSCEVs.InsertNode(S, IP); 1298 addToLoopUseLists(S); 1299 return S; 1300 } 1301 1302 // Get the limit of a recurrence such that incrementing by Step cannot cause 1303 // signed overflow as long as the value of the recurrence within the 1304 // loop does not exceed this limit before incrementing. 1305 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1306 ICmpInst::Predicate *Pred, 1307 ScalarEvolution *SE) { 1308 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1309 if (SE->isKnownPositive(Step)) { 1310 *Pred = ICmpInst::ICMP_SLT; 1311 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1312 SE->getSignedRangeMax(Step)); 1313 } 1314 if (SE->isKnownNegative(Step)) { 1315 *Pred = ICmpInst::ICMP_SGT; 1316 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1317 SE->getSignedRangeMin(Step)); 1318 } 1319 return nullptr; 1320 } 1321 1322 // Get the limit of a recurrence such that incrementing by Step cannot cause 1323 // unsigned overflow as long as the value of the recurrence within the loop does 1324 // not exceed this limit before incrementing. 1325 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1326 ICmpInst::Predicate *Pred, 1327 ScalarEvolution *SE) { 1328 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1329 *Pred = ICmpInst::ICMP_ULT; 1330 1331 return SE->getConstant(APInt::getMinValue(BitWidth) - 1332 SE->getUnsignedRangeMax(Step)); 1333 } 1334 1335 namespace { 1336 1337 struct ExtendOpTraitsBase { 1338 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1339 unsigned); 1340 }; 1341 1342 // Used to make code generic over signed and unsigned overflow. 1343 template <typename ExtendOp> struct ExtendOpTraits { 1344 // Members present: 1345 // 1346 // static const SCEV::NoWrapFlags WrapType; 1347 // 1348 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1349 // 1350 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1351 // ICmpInst::Predicate *Pred, 1352 // ScalarEvolution *SE); 1353 }; 1354 1355 template <> 1356 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1357 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1358 1359 static const GetExtendExprTy GetExtendExpr; 1360 1361 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1362 ICmpInst::Predicate *Pred, 1363 ScalarEvolution *SE) { 1364 return getSignedOverflowLimitForStep(Step, Pred, SE); 1365 } 1366 }; 1367 1368 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1369 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1370 1371 template <> 1372 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1373 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1374 1375 static const GetExtendExprTy GetExtendExpr; 1376 1377 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1378 ICmpInst::Predicate *Pred, 1379 ScalarEvolution *SE) { 1380 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1381 } 1382 }; 1383 1384 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1385 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1386 1387 } // end anonymous namespace 1388 1389 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1390 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1391 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1392 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1393 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1394 // expression "Step + sext/zext(PreIncAR)" is congruent with 1395 // "sext/zext(PostIncAR)" 1396 template <typename ExtendOpTy> 1397 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1398 ScalarEvolution *SE, unsigned Depth) { 1399 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1400 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1401 1402 const Loop *L = AR->getLoop(); 1403 const SCEV *Start = AR->getStart(); 1404 const SCEV *Step = AR->getStepRecurrence(*SE); 1405 1406 // Check for a simple looking step prior to loop entry. 1407 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1408 if (!SA) 1409 return nullptr; 1410 1411 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1412 // subtraction is expensive. For this purpose, perform a quick and dirty 1413 // difference, by checking for Step in the operand list. 1414 SmallVector<const SCEV *, 4> DiffOps; 1415 for (const SCEV *Op : SA->operands()) 1416 if (Op != Step) 1417 DiffOps.push_back(Op); 1418 1419 if (DiffOps.size() == SA->getNumOperands()) 1420 return nullptr; 1421 1422 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1423 // `Step`: 1424 1425 // 1. NSW/NUW flags on the step increment. 1426 auto PreStartFlags = 1427 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1428 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1429 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1430 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1431 1432 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1433 // "S+X does not sign/unsign-overflow". 1434 // 1435 1436 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1437 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1438 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1439 return PreStart; 1440 1441 // 2. Direct overflow check on the step operation's expression. 1442 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1443 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1444 const SCEV *OperandExtendedStart = 1445 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1446 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1447 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1448 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1449 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1450 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1451 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1452 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1453 } 1454 return PreStart; 1455 } 1456 1457 // 3. Loop precondition. 1458 ICmpInst::Predicate Pred; 1459 const SCEV *OverflowLimit = 1460 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1461 1462 if (OverflowLimit && 1463 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1464 return PreStart; 1465 1466 return nullptr; 1467 } 1468 1469 // Get the normalized zero or sign extended expression for this AddRec's Start. 1470 template <typename ExtendOpTy> 1471 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1472 ScalarEvolution *SE, 1473 unsigned Depth) { 1474 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1475 1476 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1477 if (!PreStart) 1478 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1479 1480 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1481 Depth), 1482 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1483 } 1484 1485 // Try to prove away overflow by looking at "nearby" add recurrences. A 1486 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1487 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1488 // 1489 // Formally: 1490 // 1491 // {S,+,X} == {S-T,+,X} + T 1492 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1493 // 1494 // If ({S-T,+,X} + T) does not overflow ... (1) 1495 // 1496 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1497 // 1498 // If {S-T,+,X} does not overflow ... (2) 1499 // 1500 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1501 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1502 // 1503 // If (S-T)+T does not overflow ... (3) 1504 // 1505 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1506 // == {Ext(S),+,Ext(X)} == LHS 1507 // 1508 // Thus, if (1), (2) and (3) are true for some T, then 1509 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1510 // 1511 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1512 // does not overflow" restricted to the 0th iteration. Therefore we only need 1513 // to check for (1) and (2). 1514 // 1515 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1516 // is `Delta` (defined below). 1517 template <typename ExtendOpTy> 1518 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1519 const SCEV *Step, 1520 const Loop *L) { 1521 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1522 1523 // We restrict `Start` to a constant to prevent SCEV from spending too much 1524 // time here. It is correct (but more expensive) to continue with a 1525 // non-constant `Start` and do a general SCEV subtraction to compute 1526 // `PreStart` below. 1527 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1528 if (!StartC) 1529 return false; 1530 1531 APInt StartAI = StartC->getAPInt(); 1532 1533 for (unsigned Delta : {-2, -1, 1, 2}) { 1534 const SCEV *PreStart = getConstant(StartAI - Delta); 1535 1536 FoldingSetNodeID ID; 1537 ID.AddInteger(scAddRecExpr); 1538 ID.AddPointer(PreStart); 1539 ID.AddPointer(Step); 1540 ID.AddPointer(L); 1541 void *IP = nullptr; 1542 const auto *PreAR = 1543 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1544 1545 // Give up if we don't already have the add recurrence we need because 1546 // actually constructing an add recurrence is relatively expensive. 1547 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1548 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1549 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1550 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1551 DeltaS, &Pred, this); 1552 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1553 return true; 1554 } 1555 } 1556 1557 return false; 1558 } 1559 1560 // Finds an integer D for an expression (C + x + y + ...) such that the top 1561 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1562 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1563 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1564 // the (C + x + y + ...) expression is \p WholeAddExpr. 1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1566 const SCEVConstant *ConstantTerm, 1567 const SCEVAddExpr *WholeAddExpr) { 1568 const APInt C = ConstantTerm->getAPInt(); 1569 const unsigned BitWidth = C.getBitWidth(); 1570 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1571 uint32_t TZ = BitWidth; 1572 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1573 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1574 if (TZ) { 1575 // Set D to be as many least significant bits of C as possible while still 1576 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1577 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1578 } 1579 return APInt(BitWidth, 0); 1580 } 1581 1582 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1583 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1584 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1585 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1586 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1587 const APInt &ConstantStart, 1588 const SCEV *Step) { 1589 const unsigned BitWidth = ConstantStart.getBitWidth(); 1590 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1591 if (TZ) 1592 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1593 : ConstantStart; 1594 return APInt(BitWidth, 0); 1595 } 1596 1597 const SCEV * 1598 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1599 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1600 "This is not an extending conversion!"); 1601 assert(isSCEVable(Ty) && 1602 "This is not a conversion to a SCEVable type!"); 1603 Ty = getEffectiveSCEVType(Ty); 1604 1605 // Fold if the operand is constant. 1606 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1607 return getConstant( 1608 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1609 1610 // zext(zext(x)) --> zext(x) 1611 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1612 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1613 1614 // Before doing any expensive analysis, check to see if we've already 1615 // computed a SCEV for this Op and Ty. 1616 FoldingSetNodeID ID; 1617 ID.AddInteger(scZeroExtend); 1618 ID.AddPointer(Op); 1619 ID.AddPointer(Ty); 1620 void *IP = nullptr; 1621 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1622 if (Depth > MaxExtDepth) { 1623 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1624 Op, Ty); 1625 UniqueSCEVs.InsertNode(S, IP); 1626 addToLoopUseLists(S); 1627 return S; 1628 } 1629 1630 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1631 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1632 // It's possible the bits taken off by the truncate were all zero bits. If 1633 // so, we should be able to simplify this further. 1634 const SCEV *X = ST->getOperand(); 1635 ConstantRange CR = getUnsignedRange(X); 1636 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1637 unsigned NewBits = getTypeSizeInBits(Ty); 1638 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1639 CR.zextOrTrunc(NewBits))) 1640 return getTruncateOrZeroExtend(X, Ty); 1641 } 1642 1643 // If the input value is a chrec scev, and we can prove that the value 1644 // did not overflow the old, smaller, value, we can zero extend all of the 1645 // operands (often constants). This allows analysis of something like 1646 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1647 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1648 if (AR->isAffine()) { 1649 const SCEV *Start = AR->getStart(); 1650 const SCEV *Step = AR->getStepRecurrence(*this); 1651 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1652 const Loop *L = AR->getLoop(); 1653 1654 if (!AR->hasNoUnsignedWrap()) { 1655 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1656 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1657 } 1658 1659 // If we have special knowledge that this addrec won't overflow, 1660 // we don't need to do any further analysis. 1661 if (AR->hasNoUnsignedWrap()) 1662 return getAddRecExpr( 1663 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1664 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1665 1666 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1667 // Note that this serves two purposes: It filters out loops that are 1668 // simply not analyzable, and it covers the case where this code is 1669 // being called from within backedge-taken count analysis, such that 1670 // attempting to ask for the backedge-taken count would likely result 1671 // in infinite recursion. In the later case, the analysis code will 1672 // cope with a conservative value, and it will take care to purge 1673 // that value once it has finished. 1674 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1675 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1676 // Manually compute the final value for AR, checking for 1677 // overflow. 1678 1679 // Check whether the backedge-taken count can be losslessly casted to 1680 // the addrec's type. The count is always unsigned. 1681 const SCEV *CastedMaxBECount = 1682 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1683 const SCEV *RecastedMaxBECount = 1684 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1685 if (MaxBECount == RecastedMaxBECount) { 1686 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1687 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1688 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1689 SCEV::FlagAnyWrap, Depth + 1); 1690 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1691 SCEV::FlagAnyWrap, 1692 Depth + 1), 1693 WideTy, Depth + 1); 1694 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1695 const SCEV *WideMaxBECount = 1696 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1697 const SCEV *OperandExtendedAdd = 1698 getAddExpr(WideStart, 1699 getMulExpr(WideMaxBECount, 1700 getZeroExtendExpr(Step, WideTy, Depth + 1), 1701 SCEV::FlagAnyWrap, Depth + 1), 1702 SCEV::FlagAnyWrap, Depth + 1); 1703 if (ZAdd == OperandExtendedAdd) { 1704 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1705 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1706 // Return the expression with the addrec on the outside. 1707 return getAddRecExpr( 1708 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1709 Depth + 1), 1710 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1711 AR->getNoWrapFlags()); 1712 } 1713 // Similar to above, only this time treat the step value as signed. 1714 // This covers loops that count down. 1715 OperandExtendedAdd = 1716 getAddExpr(WideStart, 1717 getMulExpr(WideMaxBECount, 1718 getSignExtendExpr(Step, WideTy, Depth + 1), 1719 SCEV::FlagAnyWrap, Depth + 1), 1720 SCEV::FlagAnyWrap, Depth + 1); 1721 if (ZAdd == OperandExtendedAdd) { 1722 // Cache knowledge of AR NW, which is propagated to this AddRec. 1723 // Negative step causes unsigned wrap, but it still can't self-wrap. 1724 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1725 // Return the expression with the addrec on the outside. 1726 return getAddRecExpr( 1727 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1728 Depth + 1), 1729 getSignExtendExpr(Step, Ty, Depth + 1), L, 1730 AR->getNoWrapFlags()); 1731 } 1732 } 1733 } 1734 1735 // Normally, in the cases we can prove no-overflow via a 1736 // backedge guarding condition, we can also compute a backedge 1737 // taken count for the loop. The exceptions are assumptions and 1738 // guards present in the loop -- SCEV is not great at exploiting 1739 // these to compute max backedge taken counts, but can still use 1740 // these to prove lack of overflow. Use this fact to avoid 1741 // doing extra work that may not pay off. 1742 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1743 !AC.assumptions().empty()) { 1744 // If the backedge is guarded by a comparison with the pre-inc 1745 // value the addrec is safe. Also, if the entry is guarded by 1746 // a comparison with the start value and the backedge is 1747 // guarded by a comparison with the post-inc value, the addrec 1748 // is safe. 1749 if (isKnownPositive(Step)) { 1750 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1751 getUnsignedRangeMax(Step)); 1752 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1753 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 1754 // Cache knowledge of AR NUW, which is propagated to this 1755 // AddRec. 1756 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1757 // Return the expression with the addrec on the outside. 1758 return getAddRecExpr( 1759 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1760 Depth + 1), 1761 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1762 AR->getNoWrapFlags()); 1763 } 1764 } else if (isKnownNegative(Step)) { 1765 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1766 getSignedRangeMin(Step)); 1767 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1768 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1769 // Cache knowledge of AR NW, which is propagated to this 1770 // AddRec. Negative step causes unsigned wrap, but it 1771 // still can't self-wrap. 1772 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1773 // Return the expression with the addrec on the outside. 1774 return getAddRecExpr( 1775 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1776 Depth + 1), 1777 getSignExtendExpr(Step, Ty, Depth + 1), L, 1778 AR->getNoWrapFlags()); 1779 } 1780 } 1781 } 1782 1783 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1784 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1785 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1786 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1787 const APInt &C = SC->getAPInt(); 1788 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1789 if (D != 0) { 1790 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1791 const SCEV *SResidual = 1792 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1793 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1794 return getAddExpr(SZExtD, SZExtR, 1795 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1796 Depth + 1); 1797 } 1798 } 1799 1800 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1801 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1802 return getAddRecExpr( 1803 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1804 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1805 } 1806 } 1807 1808 // zext(A % B) --> zext(A) % zext(B) 1809 { 1810 const SCEV *LHS; 1811 const SCEV *RHS; 1812 if (matchURem(Op, LHS, RHS)) 1813 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1814 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1815 } 1816 1817 // zext(A / B) --> zext(A) / zext(B). 1818 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1819 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1820 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1821 1822 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1823 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1824 if (SA->hasNoUnsignedWrap()) { 1825 // If the addition does not unsign overflow then we can, by definition, 1826 // commute the zero extension with the addition operation. 1827 SmallVector<const SCEV *, 4> Ops; 1828 for (const auto *Op : SA->operands()) 1829 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1830 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1831 } 1832 1833 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1834 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1835 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1836 // 1837 // Often address arithmetics contain expressions like 1838 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1839 // This transformation is useful while proving that such expressions are 1840 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1841 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1842 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1843 if (D != 0) { 1844 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1845 const SCEV *SResidual = 1846 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1847 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1848 return getAddExpr(SZExtD, SZExtR, 1849 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1850 Depth + 1); 1851 } 1852 } 1853 } 1854 1855 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1856 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1857 if (SM->hasNoUnsignedWrap()) { 1858 // If the multiply does not unsign overflow then we can, by definition, 1859 // commute the zero extension with the multiply operation. 1860 SmallVector<const SCEV *, 4> Ops; 1861 for (const auto *Op : SM->operands()) 1862 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1863 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1864 } 1865 1866 // zext(2^K * (trunc X to iN)) to iM -> 1867 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1868 // 1869 // Proof: 1870 // 1871 // zext(2^K * (trunc X to iN)) to iM 1872 // = zext((trunc X to iN) << K) to iM 1873 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1874 // (because shl removes the top K bits) 1875 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1876 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1877 // 1878 if (SM->getNumOperands() == 2) 1879 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1880 if (MulLHS->getAPInt().isPowerOf2()) 1881 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1882 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1883 MulLHS->getAPInt().logBase2(); 1884 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1885 return getMulExpr( 1886 getZeroExtendExpr(MulLHS, Ty), 1887 getZeroExtendExpr( 1888 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1889 SCEV::FlagNUW, Depth + 1); 1890 } 1891 } 1892 1893 // The cast wasn't folded; create an explicit cast node. 1894 // Recompute the insert position, as it may have been invalidated. 1895 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1896 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1897 Op, Ty); 1898 UniqueSCEVs.InsertNode(S, IP); 1899 addToLoopUseLists(S); 1900 return S; 1901 } 1902 1903 const SCEV * 1904 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1905 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1906 "This is not an extending conversion!"); 1907 assert(isSCEVable(Ty) && 1908 "This is not a conversion to a SCEVable type!"); 1909 Ty = getEffectiveSCEVType(Ty); 1910 1911 // Fold if the operand is constant. 1912 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1913 return getConstant( 1914 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1915 1916 // sext(sext(x)) --> sext(x) 1917 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1918 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1919 1920 // sext(zext(x)) --> zext(x) 1921 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1922 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1923 1924 // Before doing any expensive analysis, check to see if we've already 1925 // computed a SCEV for this Op and Ty. 1926 FoldingSetNodeID ID; 1927 ID.AddInteger(scSignExtend); 1928 ID.AddPointer(Op); 1929 ID.AddPointer(Ty); 1930 void *IP = nullptr; 1931 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1932 // Limit recursion depth. 1933 if (Depth > MaxExtDepth) { 1934 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1935 Op, Ty); 1936 UniqueSCEVs.InsertNode(S, IP); 1937 addToLoopUseLists(S); 1938 return S; 1939 } 1940 1941 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1942 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1943 // It's possible the bits taken off by the truncate were all sign bits. If 1944 // so, we should be able to simplify this further. 1945 const SCEV *X = ST->getOperand(); 1946 ConstantRange CR = getSignedRange(X); 1947 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1948 unsigned NewBits = getTypeSizeInBits(Ty); 1949 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1950 CR.sextOrTrunc(NewBits))) 1951 return getTruncateOrSignExtend(X, Ty); 1952 } 1953 1954 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1955 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1956 if (SA->hasNoSignedWrap()) { 1957 // If the addition does not sign overflow then we can, by definition, 1958 // commute the sign extension with the addition operation. 1959 SmallVector<const SCEV *, 4> Ops; 1960 for (const auto *Op : SA->operands()) 1961 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1962 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1963 } 1964 1965 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1966 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1967 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1968 // 1969 // For instance, this will bring two seemingly different expressions: 1970 // 1 + sext(5 + 20 * %x + 24 * %y) and 1971 // sext(6 + 20 * %x + 24 * %y) 1972 // to the same form: 1973 // 2 + sext(4 + 20 * %x + 24 * %y) 1974 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1975 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1976 if (D != 0) { 1977 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1978 const SCEV *SResidual = 1979 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1980 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1981 return getAddExpr(SSExtD, SSExtR, 1982 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1983 Depth + 1); 1984 } 1985 } 1986 } 1987 // If the input value is a chrec scev, and we can prove that the value 1988 // did not overflow the old, smaller, value, we can sign extend all of the 1989 // operands (often constants). This allows analysis of something like 1990 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1991 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1992 if (AR->isAffine()) { 1993 const SCEV *Start = AR->getStart(); 1994 const SCEV *Step = AR->getStepRecurrence(*this); 1995 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1996 const Loop *L = AR->getLoop(); 1997 1998 if (!AR->hasNoSignedWrap()) { 1999 auto NewFlags = proveNoWrapViaConstantRanges(AR); 2000 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 2001 } 2002 2003 // If we have special knowledge that this addrec won't overflow, 2004 // we don't need to do any further analysis. 2005 if (AR->hasNoSignedWrap()) 2006 return getAddRecExpr( 2007 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2008 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 2009 2010 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2011 // Note that this serves two purposes: It filters out loops that are 2012 // simply not analyzable, and it covers the case where this code is 2013 // being called from within backedge-taken count analysis, such that 2014 // attempting to ask for the backedge-taken count would likely result 2015 // in infinite recursion. In the later case, the analysis code will 2016 // cope with a conservative value, and it will take care to purge 2017 // that value once it has finished. 2018 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 2019 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2020 // Manually compute the final value for AR, checking for 2021 // overflow. 2022 2023 // Check whether the backedge-taken count can be losslessly casted to 2024 // the addrec's type. The count is always unsigned. 2025 const SCEV *CastedMaxBECount = 2026 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 2027 const SCEV *RecastedMaxBECount = 2028 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 2029 if (MaxBECount == RecastedMaxBECount) { 2030 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2031 // Check whether Start+Step*MaxBECount has no signed overflow. 2032 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2033 SCEV::FlagAnyWrap, Depth + 1); 2034 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2035 SCEV::FlagAnyWrap, 2036 Depth + 1), 2037 WideTy, Depth + 1); 2038 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2039 const SCEV *WideMaxBECount = 2040 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2041 const SCEV *OperandExtendedAdd = 2042 getAddExpr(WideStart, 2043 getMulExpr(WideMaxBECount, 2044 getSignExtendExpr(Step, WideTy, Depth + 1), 2045 SCEV::FlagAnyWrap, Depth + 1), 2046 SCEV::FlagAnyWrap, Depth + 1); 2047 if (SAdd == OperandExtendedAdd) { 2048 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2049 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2050 // Return the expression with the addrec on the outside. 2051 return getAddRecExpr( 2052 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2053 Depth + 1), 2054 getSignExtendExpr(Step, Ty, Depth + 1), L, 2055 AR->getNoWrapFlags()); 2056 } 2057 // Similar to above, only this time treat the step value as unsigned. 2058 // This covers loops that count up with an unsigned step. 2059 OperandExtendedAdd = 2060 getAddExpr(WideStart, 2061 getMulExpr(WideMaxBECount, 2062 getZeroExtendExpr(Step, WideTy, Depth + 1), 2063 SCEV::FlagAnyWrap, Depth + 1), 2064 SCEV::FlagAnyWrap, Depth + 1); 2065 if (SAdd == OperandExtendedAdd) { 2066 // If AR wraps around then 2067 // 2068 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2069 // => SAdd != OperandExtendedAdd 2070 // 2071 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2072 // (SAdd == OperandExtendedAdd => AR is NW) 2073 2074 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 2075 2076 // Return the expression with the addrec on the outside. 2077 return getAddRecExpr( 2078 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2079 Depth + 1), 2080 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2081 AR->getNoWrapFlags()); 2082 } 2083 } 2084 } 2085 2086 // Normally, in the cases we can prove no-overflow via a 2087 // backedge guarding condition, we can also compute a backedge 2088 // taken count for the loop. The exceptions are assumptions and 2089 // guards present in the loop -- SCEV is not great at exploiting 2090 // these to compute max backedge taken counts, but can still use 2091 // these to prove lack of overflow. Use this fact to avoid 2092 // doing extra work that may not pay off. 2093 2094 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 2095 !AC.assumptions().empty()) { 2096 // If the backedge is guarded by a comparison with the pre-inc 2097 // value the addrec is safe. Also, if the entry is guarded by 2098 // a comparison with the start value and the backedge is 2099 // guarded by a comparison with the post-inc value, the addrec 2100 // is safe. 2101 ICmpInst::Predicate Pred; 2102 const SCEV *OverflowLimit = 2103 getSignedOverflowLimitForStep(Step, &Pred, this); 2104 if (OverflowLimit && 2105 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 2106 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 2107 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 2108 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2109 return getAddRecExpr( 2110 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2111 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2112 } 2113 } 2114 2115 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2116 // if D + (C - D + Step * n) could be proven to not signed wrap 2117 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2118 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2119 const APInt &C = SC->getAPInt(); 2120 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2121 if (D != 0) { 2122 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2123 const SCEV *SResidual = 2124 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2125 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2126 return getAddExpr(SSExtD, SSExtR, 2127 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2128 Depth + 1); 2129 } 2130 } 2131 2132 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2133 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2134 return getAddRecExpr( 2135 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2136 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2137 } 2138 } 2139 2140 // If the input value is provably positive and we could not simplify 2141 // away the sext build a zext instead. 2142 if (isKnownNonNegative(Op)) 2143 return getZeroExtendExpr(Op, Ty, Depth + 1); 2144 2145 // The cast wasn't folded; create an explicit cast node. 2146 // Recompute the insert position, as it may have been invalidated. 2147 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2148 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2149 Op, Ty); 2150 UniqueSCEVs.InsertNode(S, IP); 2151 addToLoopUseLists(S); 2152 return S; 2153 } 2154 2155 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2156 /// unspecified bits out to the given type. 2157 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2158 Type *Ty) { 2159 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2160 "This is not an extending conversion!"); 2161 assert(isSCEVable(Ty) && 2162 "This is not a conversion to a SCEVable type!"); 2163 Ty = getEffectiveSCEVType(Ty); 2164 2165 // Sign-extend negative constants. 2166 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2167 if (SC->getAPInt().isNegative()) 2168 return getSignExtendExpr(Op, Ty); 2169 2170 // Peel off a truncate cast. 2171 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2172 const SCEV *NewOp = T->getOperand(); 2173 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2174 return getAnyExtendExpr(NewOp, Ty); 2175 return getTruncateOrNoop(NewOp, Ty); 2176 } 2177 2178 // Next try a zext cast. If the cast is folded, use it. 2179 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2180 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2181 return ZExt; 2182 2183 // Next try a sext cast. If the cast is folded, use it. 2184 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2185 if (!isa<SCEVSignExtendExpr>(SExt)) 2186 return SExt; 2187 2188 // Force the cast to be folded into the operands of an addrec. 2189 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2190 SmallVector<const SCEV *, 4> Ops; 2191 for (const SCEV *Op : AR->operands()) 2192 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2193 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2194 } 2195 2196 // If the expression is obviously signed, use the sext cast value. 2197 if (isa<SCEVSMaxExpr>(Op)) 2198 return SExt; 2199 2200 // Absent any other information, use the zext cast value. 2201 return ZExt; 2202 } 2203 2204 /// Process the given Ops list, which is a list of operands to be added under 2205 /// the given scale, update the given map. This is a helper function for 2206 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2207 /// that would form an add expression like this: 2208 /// 2209 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2210 /// 2211 /// where A and B are constants, update the map with these values: 2212 /// 2213 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2214 /// 2215 /// and add 13 + A*B*29 to AccumulatedConstant. 2216 /// This will allow getAddRecExpr to produce this: 2217 /// 2218 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2219 /// 2220 /// This form often exposes folding opportunities that are hidden in 2221 /// the original operand list. 2222 /// 2223 /// Return true iff it appears that any interesting folding opportunities 2224 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2225 /// the common case where no interesting opportunities are present, and 2226 /// is also used as a check to avoid infinite recursion. 2227 static bool 2228 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2229 SmallVectorImpl<const SCEV *> &NewOps, 2230 APInt &AccumulatedConstant, 2231 const SCEV *const *Ops, size_t NumOperands, 2232 const APInt &Scale, 2233 ScalarEvolution &SE) { 2234 bool Interesting = false; 2235 2236 // Iterate over the add operands. They are sorted, with constants first. 2237 unsigned i = 0; 2238 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2239 ++i; 2240 // Pull a buried constant out to the outside. 2241 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2242 Interesting = true; 2243 AccumulatedConstant += Scale * C->getAPInt(); 2244 } 2245 2246 // Next comes everything else. We're especially interested in multiplies 2247 // here, but they're in the middle, so just visit the rest with one loop. 2248 for (; i != NumOperands; ++i) { 2249 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2250 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2251 APInt NewScale = 2252 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2253 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2254 // A multiplication of a constant with another add; recurse. 2255 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2256 Interesting |= 2257 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2258 Add->op_begin(), Add->getNumOperands(), 2259 NewScale, SE); 2260 } else { 2261 // A multiplication of a constant with some other value. Update 2262 // the map. 2263 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2264 const SCEV *Key = SE.getMulExpr(MulOps); 2265 auto Pair = M.insert({Key, NewScale}); 2266 if (Pair.second) { 2267 NewOps.push_back(Pair.first->first); 2268 } else { 2269 Pair.first->second += NewScale; 2270 // The map already had an entry for this value, which may indicate 2271 // a folding opportunity. 2272 Interesting = true; 2273 } 2274 } 2275 } else { 2276 // An ordinary operand. Update the map. 2277 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2278 M.insert({Ops[i], Scale}); 2279 if (Pair.second) { 2280 NewOps.push_back(Pair.first->first); 2281 } else { 2282 Pair.first->second += Scale; 2283 // The map already had an entry for this value, which may indicate 2284 // a folding opportunity. 2285 Interesting = true; 2286 } 2287 } 2288 } 2289 2290 return Interesting; 2291 } 2292 2293 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2294 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2295 // can't-overflow flags for the operation if possible. 2296 static SCEV::NoWrapFlags 2297 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2298 const SmallVectorImpl<const SCEV *> &Ops, 2299 SCEV::NoWrapFlags Flags) { 2300 using namespace std::placeholders; 2301 2302 using OBO = OverflowingBinaryOperator; 2303 2304 bool CanAnalyze = 2305 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2306 (void)CanAnalyze; 2307 assert(CanAnalyze && "don't call from other places!"); 2308 2309 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2310 SCEV::NoWrapFlags SignOrUnsignWrap = 2311 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2312 2313 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2314 auto IsKnownNonNegative = [&](const SCEV *S) { 2315 return SE->isKnownNonNegative(S); 2316 }; 2317 2318 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2319 Flags = 2320 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2321 2322 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2323 2324 if (SignOrUnsignWrap != SignOrUnsignMask && 2325 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2326 isa<SCEVConstant>(Ops[0])) { 2327 2328 auto Opcode = [&] { 2329 switch (Type) { 2330 case scAddExpr: 2331 return Instruction::Add; 2332 case scMulExpr: 2333 return Instruction::Mul; 2334 default: 2335 llvm_unreachable("Unexpected SCEV op."); 2336 } 2337 }(); 2338 2339 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2340 2341 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2342 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2343 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2344 Opcode, C, OBO::NoSignedWrap); 2345 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2346 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2347 } 2348 2349 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2350 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2351 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2352 Opcode, C, OBO::NoUnsignedWrap); 2353 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2354 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2355 } 2356 } 2357 2358 return Flags; 2359 } 2360 2361 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2362 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2363 } 2364 2365 /// Get a canonical add expression, or something simpler if possible. 2366 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2367 SCEV::NoWrapFlags Flags, 2368 unsigned Depth) { 2369 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2370 "only nuw or nsw allowed"); 2371 assert(!Ops.empty() && "Cannot get empty add!"); 2372 if (Ops.size() == 1) return Ops[0]; 2373 #ifndef NDEBUG 2374 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2375 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2376 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2377 "SCEVAddExpr operand types don't match!"); 2378 #endif 2379 2380 // Sort by complexity, this groups all similar expression types together. 2381 GroupByComplexity(Ops, &LI, DT); 2382 2383 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2384 2385 // If there are any constants, fold them together. 2386 unsigned Idx = 0; 2387 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2388 ++Idx; 2389 assert(Idx < Ops.size()); 2390 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2391 // We found two constants, fold them together! 2392 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2393 if (Ops.size() == 2) return Ops[0]; 2394 Ops.erase(Ops.begin()+1); // Erase the folded element 2395 LHSC = cast<SCEVConstant>(Ops[0]); 2396 } 2397 2398 // If we are left with a constant zero being added, strip it off. 2399 if (LHSC->getValue()->isZero()) { 2400 Ops.erase(Ops.begin()); 2401 --Idx; 2402 } 2403 2404 if (Ops.size() == 1) return Ops[0]; 2405 } 2406 2407 // Limit recursion calls depth. 2408 if (Depth > MaxArithDepth) 2409 return getOrCreateAddExpr(Ops, Flags); 2410 2411 // Okay, check to see if the same value occurs in the operand list more than 2412 // once. If so, merge them together into an multiply expression. Since we 2413 // sorted the list, these values are required to be adjacent. 2414 Type *Ty = Ops[0]->getType(); 2415 bool FoundMatch = false; 2416 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2417 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2418 // Scan ahead to count how many equal operands there are. 2419 unsigned Count = 2; 2420 while (i+Count != e && Ops[i+Count] == Ops[i]) 2421 ++Count; 2422 // Merge the values into a multiply. 2423 const SCEV *Scale = getConstant(Ty, Count); 2424 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2425 if (Ops.size() == Count) 2426 return Mul; 2427 Ops[i] = Mul; 2428 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2429 --i; e -= Count - 1; 2430 FoundMatch = true; 2431 } 2432 if (FoundMatch) 2433 return getAddExpr(Ops, Flags, Depth + 1); 2434 2435 // Check for truncates. If all the operands are truncated from the same 2436 // type, see if factoring out the truncate would permit the result to be 2437 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2438 // if the contents of the resulting outer trunc fold to something simple. 2439 auto FindTruncSrcType = [&]() -> Type * { 2440 // We're ultimately looking to fold an addrec of truncs and muls of only 2441 // constants and truncs, so if we find any other types of SCEV 2442 // as operands of the addrec then we bail and return nullptr here. 2443 // Otherwise, we return the type of the operand of a trunc that we find. 2444 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2445 return T->getOperand()->getType(); 2446 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2447 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2448 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2449 return T->getOperand()->getType(); 2450 } 2451 return nullptr; 2452 }; 2453 if (auto *SrcType = FindTruncSrcType()) { 2454 SmallVector<const SCEV *, 8> LargeOps; 2455 bool Ok = true; 2456 // Check all the operands to see if they can be represented in the 2457 // source type of the truncate. 2458 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2459 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2460 if (T->getOperand()->getType() != SrcType) { 2461 Ok = false; 2462 break; 2463 } 2464 LargeOps.push_back(T->getOperand()); 2465 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2466 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2467 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2468 SmallVector<const SCEV *, 8> LargeMulOps; 2469 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2470 if (const SCEVTruncateExpr *T = 2471 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2472 if (T->getOperand()->getType() != SrcType) { 2473 Ok = false; 2474 break; 2475 } 2476 LargeMulOps.push_back(T->getOperand()); 2477 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2478 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2479 } else { 2480 Ok = false; 2481 break; 2482 } 2483 } 2484 if (Ok) 2485 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2486 } else { 2487 Ok = false; 2488 break; 2489 } 2490 } 2491 if (Ok) { 2492 // Evaluate the expression in the larger type. 2493 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2494 // If it folds to something simple, use it. Otherwise, don't. 2495 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2496 return getTruncateExpr(Fold, Ty); 2497 } 2498 } 2499 2500 // Skip past any other cast SCEVs. 2501 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2502 ++Idx; 2503 2504 // If there are add operands they would be next. 2505 if (Idx < Ops.size()) { 2506 bool DeletedAdd = false; 2507 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2508 if (Ops.size() > AddOpsInlineThreshold || 2509 Add->getNumOperands() > AddOpsInlineThreshold) 2510 break; 2511 // If we have an add, expand the add operands onto the end of the operands 2512 // list. 2513 Ops.erase(Ops.begin()+Idx); 2514 Ops.append(Add->op_begin(), Add->op_end()); 2515 DeletedAdd = true; 2516 } 2517 2518 // If we deleted at least one add, we added operands to the end of the list, 2519 // and they are not necessarily sorted. Recurse to resort and resimplify 2520 // any operands we just acquired. 2521 if (DeletedAdd) 2522 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2523 } 2524 2525 // Skip over the add expression until we get to a multiply. 2526 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2527 ++Idx; 2528 2529 // Check to see if there are any folding opportunities present with 2530 // operands multiplied by constant values. 2531 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2532 uint64_t BitWidth = getTypeSizeInBits(Ty); 2533 DenseMap<const SCEV *, APInt> M; 2534 SmallVector<const SCEV *, 8> NewOps; 2535 APInt AccumulatedConstant(BitWidth, 0); 2536 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2537 Ops.data(), Ops.size(), 2538 APInt(BitWidth, 1), *this)) { 2539 struct APIntCompare { 2540 bool operator()(const APInt &LHS, const APInt &RHS) const { 2541 return LHS.ult(RHS); 2542 } 2543 }; 2544 2545 // Some interesting folding opportunity is present, so its worthwhile to 2546 // re-generate the operands list. Group the operands by constant scale, 2547 // to avoid multiplying by the same constant scale multiple times. 2548 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2549 for (const SCEV *NewOp : NewOps) 2550 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2551 // Re-generate the operands list. 2552 Ops.clear(); 2553 if (AccumulatedConstant != 0) 2554 Ops.push_back(getConstant(AccumulatedConstant)); 2555 for (auto &MulOp : MulOpLists) 2556 if (MulOp.first != 0) 2557 Ops.push_back(getMulExpr( 2558 getConstant(MulOp.first), 2559 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2560 SCEV::FlagAnyWrap, Depth + 1)); 2561 if (Ops.empty()) 2562 return getZero(Ty); 2563 if (Ops.size() == 1) 2564 return Ops[0]; 2565 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2566 } 2567 } 2568 2569 // If we are adding something to a multiply expression, make sure the 2570 // something is not already an operand of the multiply. If so, merge it into 2571 // the multiply. 2572 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2573 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2574 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2575 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2576 if (isa<SCEVConstant>(MulOpSCEV)) 2577 continue; 2578 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2579 if (MulOpSCEV == Ops[AddOp]) { 2580 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2581 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2582 if (Mul->getNumOperands() != 2) { 2583 // If the multiply has more than two operands, we must get the 2584 // Y*Z term. 2585 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2586 Mul->op_begin()+MulOp); 2587 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2588 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2589 } 2590 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2591 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2592 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2593 SCEV::FlagAnyWrap, Depth + 1); 2594 if (Ops.size() == 2) return OuterMul; 2595 if (AddOp < Idx) { 2596 Ops.erase(Ops.begin()+AddOp); 2597 Ops.erase(Ops.begin()+Idx-1); 2598 } else { 2599 Ops.erase(Ops.begin()+Idx); 2600 Ops.erase(Ops.begin()+AddOp-1); 2601 } 2602 Ops.push_back(OuterMul); 2603 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2604 } 2605 2606 // Check this multiply against other multiplies being added together. 2607 for (unsigned OtherMulIdx = Idx+1; 2608 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2609 ++OtherMulIdx) { 2610 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2611 // If MulOp occurs in OtherMul, we can fold the two multiplies 2612 // together. 2613 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2614 OMulOp != e; ++OMulOp) 2615 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2616 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2617 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2618 if (Mul->getNumOperands() != 2) { 2619 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2620 Mul->op_begin()+MulOp); 2621 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2622 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2623 } 2624 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2625 if (OtherMul->getNumOperands() != 2) { 2626 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2627 OtherMul->op_begin()+OMulOp); 2628 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2629 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2630 } 2631 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2632 const SCEV *InnerMulSum = 2633 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2634 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2635 SCEV::FlagAnyWrap, Depth + 1); 2636 if (Ops.size() == 2) return OuterMul; 2637 Ops.erase(Ops.begin()+Idx); 2638 Ops.erase(Ops.begin()+OtherMulIdx-1); 2639 Ops.push_back(OuterMul); 2640 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2641 } 2642 } 2643 } 2644 } 2645 2646 // If there are any add recurrences in the operands list, see if any other 2647 // added values are loop invariant. If so, we can fold them into the 2648 // recurrence. 2649 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2650 ++Idx; 2651 2652 // Scan over all recurrences, trying to fold loop invariants into them. 2653 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2654 // Scan all of the other operands to this add and add them to the vector if 2655 // they are loop invariant w.r.t. the recurrence. 2656 SmallVector<const SCEV *, 8> LIOps; 2657 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2658 const Loop *AddRecLoop = AddRec->getLoop(); 2659 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2660 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2661 LIOps.push_back(Ops[i]); 2662 Ops.erase(Ops.begin()+i); 2663 --i; --e; 2664 } 2665 2666 // If we found some loop invariants, fold them into the recurrence. 2667 if (!LIOps.empty()) { 2668 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2669 LIOps.push_back(AddRec->getStart()); 2670 2671 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2672 AddRec->op_end()); 2673 // This follows from the fact that the no-wrap flags on the outer add 2674 // expression are applicable on the 0th iteration, when the add recurrence 2675 // will be equal to its start value. 2676 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2677 2678 // Build the new addrec. Propagate the NUW and NSW flags if both the 2679 // outer add and the inner addrec are guaranteed to have no overflow. 2680 // Always propagate NW. 2681 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2682 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2683 2684 // If all of the other operands were loop invariant, we are done. 2685 if (Ops.size() == 1) return NewRec; 2686 2687 // Otherwise, add the folded AddRec by the non-invariant parts. 2688 for (unsigned i = 0;; ++i) 2689 if (Ops[i] == AddRec) { 2690 Ops[i] = NewRec; 2691 break; 2692 } 2693 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2694 } 2695 2696 // Okay, if there weren't any loop invariants to be folded, check to see if 2697 // there are multiple AddRec's with the same loop induction variable being 2698 // added together. If so, we can fold them. 2699 for (unsigned OtherIdx = Idx+1; 2700 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2701 ++OtherIdx) { 2702 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2703 // so that the 1st found AddRecExpr is dominated by all others. 2704 assert(DT.dominates( 2705 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2706 AddRec->getLoop()->getHeader()) && 2707 "AddRecExprs are not sorted in reverse dominance order?"); 2708 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2709 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2710 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2711 AddRec->op_end()); 2712 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2713 ++OtherIdx) { 2714 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2715 if (OtherAddRec->getLoop() == AddRecLoop) { 2716 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2717 i != e; ++i) { 2718 if (i >= AddRecOps.size()) { 2719 AddRecOps.append(OtherAddRec->op_begin()+i, 2720 OtherAddRec->op_end()); 2721 break; 2722 } 2723 SmallVector<const SCEV *, 2> TwoOps = { 2724 AddRecOps[i], OtherAddRec->getOperand(i)}; 2725 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2726 } 2727 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2728 } 2729 } 2730 // Step size has changed, so we cannot guarantee no self-wraparound. 2731 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2732 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2733 } 2734 } 2735 2736 // Otherwise couldn't fold anything into this recurrence. Move onto the 2737 // next one. 2738 } 2739 2740 // Okay, it looks like we really DO need an add expr. Check to see if we 2741 // already have one, otherwise create a new one. 2742 return getOrCreateAddExpr(Ops, Flags); 2743 } 2744 2745 const SCEV * 2746 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2747 SCEV::NoWrapFlags Flags) { 2748 FoldingSetNodeID ID; 2749 ID.AddInteger(scAddExpr); 2750 for (const SCEV *Op : Ops) 2751 ID.AddPointer(Op); 2752 void *IP = nullptr; 2753 SCEVAddExpr *S = 2754 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2755 if (!S) { 2756 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2757 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2758 S = new (SCEVAllocator) 2759 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2760 UniqueSCEVs.InsertNode(S, IP); 2761 addToLoopUseLists(S); 2762 } 2763 S->setNoWrapFlags(Flags); 2764 return S; 2765 } 2766 2767 const SCEV * 2768 ScalarEvolution::getOrCreateAddRecExpr(SmallVectorImpl<const SCEV *> &Ops, 2769 const Loop *L, SCEV::NoWrapFlags Flags) { 2770 FoldingSetNodeID ID; 2771 ID.AddInteger(scAddRecExpr); 2772 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2773 ID.AddPointer(Ops[i]); 2774 ID.AddPointer(L); 2775 void *IP = nullptr; 2776 SCEVAddRecExpr *S = 2777 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2778 if (!S) { 2779 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2780 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2781 S = new (SCEVAllocator) 2782 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2783 UniqueSCEVs.InsertNode(S, IP); 2784 addToLoopUseLists(S); 2785 } 2786 S->setNoWrapFlags(Flags); 2787 return S; 2788 } 2789 2790 const SCEV * 2791 ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2792 SCEV::NoWrapFlags Flags) { 2793 FoldingSetNodeID ID; 2794 ID.AddInteger(scMulExpr); 2795 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2796 ID.AddPointer(Ops[i]); 2797 void *IP = nullptr; 2798 SCEVMulExpr *S = 2799 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2800 if (!S) { 2801 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2802 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2803 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2804 O, Ops.size()); 2805 UniqueSCEVs.InsertNode(S, IP); 2806 addToLoopUseLists(S); 2807 } 2808 S->setNoWrapFlags(Flags); 2809 return S; 2810 } 2811 2812 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2813 uint64_t k = i*j; 2814 if (j > 1 && k / j != i) Overflow = true; 2815 return k; 2816 } 2817 2818 /// Compute the result of "n choose k", the binomial coefficient. If an 2819 /// intermediate computation overflows, Overflow will be set and the return will 2820 /// be garbage. Overflow is not cleared on absence of overflow. 2821 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2822 // We use the multiplicative formula: 2823 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2824 // At each iteration, we take the n-th term of the numeral and divide by the 2825 // (k-n)th term of the denominator. This division will always produce an 2826 // integral result, and helps reduce the chance of overflow in the 2827 // intermediate computations. However, we can still overflow even when the 2828 // final result would fit. 2829 2830 if (n == 0 || n == k) return 1; 2831 if (k > n) return 0; 2832 2833 if (k > n/2) 2834 k = n-k; 2835 2836 uint64_t r = 1; 2837 for (uint64_t i = 1; i <= k; ++i) { 2838 r = umul_ov(r, n-(i-1), Overflow); 2839 r /= i; 2840 } 2841 return r; 2842 } 2843 2844 /// Determine if any of the operands in this SCEV are a constant or if 2845 /// any of the add or multiply expressions in this SCEV contain a constant. 2846 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2847 struct FindConstantInAddMulChain { 2848 bool FoundConstant = false; 2849 2850 bool follow(const SCEV *S) { 2851 FoundConstant |= isa<SCEVConstant>(S); 2852 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2853 } 2854 2855 bool isDone() const { 2856 return FoundConstant; 2857 } 2858 }; 2859 2860 FindConstantInAddMulChain F; 2861 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2862 ST.visitAll(StartExpr); 2863 return F.FoundConstant; 2864 } 2865 2866 /// Get a canonical multiply expression, or something simpler if possible. 2867 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2868 SCEV::NoWrapFlags Flags, 2869 unsigned Depth) { 2870 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2871 "only nuw or nsw allowed"); 2872 assert(!Ops.empty() && "Cannot get empty mul!"); 2873 if (Ops.size() == 1) return Ops[0]; 2874 #ifndef NDEBUG 2875 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2876 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2877 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2878 "SCEVMulExpr operand types don't match!"); 2879 #endif 2880 2881 // Sort by complexity, this groups all similar expression types together. 2882 GroupByComplexity(Ops, &LI, DT); 2883 2884 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2885 2886 // Limit recursion calls depth. 2887 if (Depth > MaxArithDepth) 2888 return getOrCreateMulExpr(Ops, Flags); 2889 2890 // If there are any constants, fold them together. 2891 unsigned Idx = 0; 2892 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2893 2894 if (Ops.size() == 2) 2895 // C1*(C2+V) -> C1*C2 + C1*V 2896 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2897 // If any of Add's ops are Adds or Muls with a constant, apply this 2898 // transformation as well. 2899 // 2900 // TODO: There are some cases where this transformation is not 2901 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2902 // this transformation should be narrowed down. 2903 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2904 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2905 SCEV::FlagAnyWrap, Depth + 1), 2906 getMulExpr(LHSC, Add->getOperand(1), 2907 SCEV::FlagAnyWrap, Depth + 1), 2908 SCEV::FlagAnyWrap, Depth + 1); 2909 2910 ++Idx; 2911 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2912 // We found two constants, fold them together! 2913 ConstantInt *Fold = 2914 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2915 Ops[0] = getConstant(Fold); 2916 Ops.erase(Ops.begin()+1); // Erase the folded element 2917 if (Ops.size() == 1) return Ops[0]; 2918 LHSC = cast<SCEVConstant>(Ops[0]); 2919 } 2920 2921 // If we are left with a constant one being multiplied, strip it off. 2922 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { 2923 Ops.erase(Ops.begin()); 2924 --Idx; 2925 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2926 // If we have a multiply of zero, it will always be zero. 2927 return Ops[0]; 2928 } else if (Ops[0]->isAllOnesValue()) { 2929 // If we have a mul by -1 of an add, try distributing the -1 among the 2930 // add operands. 2931 if (Ops.size() == 2) { 2932 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2933 SmallVector<const SCEV *, 4> NewOps; 2934 bool AnyFolded = false; 2935 for (const SCEV *AddOp : Add->operands()) { 2936 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2937 Depth + 1); 2938 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2939 NewOps.push_back(Mul); 2940 } 2941 if (AnyFolded) 2942 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2943 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2944 // Negation preserves a recurrence's no self-wrap property. 2945 SmallVector<const SCEV *, 4> Operands; 2946 for (const SCEV *AddRecOp : AddRec->operands()) 2947 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2948 Depth + 1)); 2949 2950 return getAddRecExpr(Operands, AddRec->getLoop(), 2951 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2952 } 2953 } 2954 } 2955 2956 if (Ops.size() == 1) 2957 return Ops[0]; 2958 } 2959 2960 // Skip over the add expression until we get to a multiply. 2961 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2962 ++Idx; 2963 2964 // If there are mul operands inline them all into this expression. 2965 if (Idx < Ops.size()) { 2966 bool DeletedMul = false; 2967 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2968 if (Ops.size() > MulOpsInlineThreshold) 2969 break; 2970 // If we have an mul, expand the mul operands onto the end of the 2971 // operands list. 2972 Ops.erase(Ops.begin()+Idx); 2973 Ops.append(Mul->op_begin(), Mul->op_end()); 2974 DeletedMul = true; 2975 } 2976 2977 // If we deleted at least one mul, we added operands to the end of the 2978 // list, and they are not necessarily sorted. Recurse to resort and 2979 // resimplify any operands we just acquired. 2980 if (DeletedMul) 2981 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2982 } 2983 2984 // If there are any add recurrences in the operands list, see if any other 2985 // added values are loop invariant. If so, we can fold them into the 2986 // recurrence. 2987 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2988 ++Idx; 2989 2990 // Scan over all recurrences, trying to fold loop invariants into them. 2991 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2992 // Scan all of the other operands to this mul and add them to the vector 2993 // if they are loop invariant w.r.t. the recurrence. 2994 SmallVector<const SCEV *, 8> LIOps; 2995 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2996 const Loop *AddRecLoop = AddRec->getLoop(); 2997 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2998 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2999 LIOps.push_back(Ops[i]); 3000 Ops.erase(Ops.begin()+i); 3001 --i; --e; 3002 } 3003 3004 // If we found some loop invariants, fold them into the recurrence. 3005 if (!LIOps.empty()) { 3006 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3007 SmallVector<const SCEV *, 4> NewOps; 3008 NewOps.reserve(AddRec->getNumOperands()); 3009 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3010 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3011 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3012 SCEV::FlagAnyWrap, Depth + 1)); 3013 3014 // Build the new addrec. Propagate the NUW and NSW flags if both the 3015 // outer mul and the inner addrec are guaranteed to have no overflow. 3016 // 3017 // No self-wrap cannot be guaranteed after changing the step size, but 3018 // will be inferred if either NUW or NSW is true. 3019 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 3020 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 3021 3022 // If all of the other operands were loop invariant, we are done. 3023 if (Ops.size() == 1) return NewRec; 3024 3025 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3026 for (unsigned i = 0;; ++i) 3027 if (Ops[i] == AddRec) { 3028 Ops[i] = NewRec; 3029 break; 3030 } 3031 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3032 } 3033 3034 // Okay, if there weren't any loop invariants to be folded, check to see 3035 // if there are multiple AddRec's with the same loop induction variable 3036 // being multiplied together. If so, we can fold them. 3037 3038 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3039 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3040 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3041 // ]]],+,...up to x=2n}. 3042 // Note that the arguments to choose() are always integers with values 3043 // known at compile time, never SCEV objects. 3044 // 3045 // The implementation avoids pointless extra computations when the two 3046 // addrec's are of different length (mathematically, it's equivalent to 3047 // an infinite stream of zeros on the right). 3048 bool OpsModified = false; 3049 for (unsigned OtherIdx = Idx+1; 3050 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3051 ++OtherIdx) { 3052 const SCEVAddRecExpr *OtherAddRec = 3053 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3054 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3055 continue; 3056 3057 // Limit max number of arguments to avoid creation of unreasonably big 3058 // SCEVAddRecs with very complex operands. 3059 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3060 MaxAddRecSize) 3061 continue; 3062 3063 bool Overflow = false; 3064 Type *Ty = AddRec->getType(); 3065 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3066 SmallVector<const SCEV*, 7> AddRecOps; 3067 for (int x = 0, xe = AddRec->getNumOperands() + 3068 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3069 SmallVector <const SCEV *, 7> SumOps; 3070 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3071 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3072 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3073 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3074 z < ze && !Overflow; ++z) { 3075 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3076 uint64_t Coeff; 3077 if (LargerThan64Bits) 3078 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3079 else 3080 Coeff = Coeff1*Coeff2; 3081 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3082 const SCEV *Term1 = AddRec->getOperand(y-z); 3083 const SCEV *Term2 = OtherAddRec->getOperand(z); 3084 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3085 SCEV::FlagAnyWrap, Depth + 1)); 3086 } 3087 } 3088 if (SumOps.empty()) 3089 SumOps.push_back(getZero(Ty)); 3090 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3091 } 3092 if (!Overflow) { 3093 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 3094 SCEV::FlagAnyWrap); 3095 if (Ops.size() == 2) return NewAddRec; 3096 Ops[Idx] = NewAddRec; 3097 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3098 OpsModified = true; 3099 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3100 if (!AddRec) 3101 break; 3102 } 3103 } 3104 if (OpsModified) 3105 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3106 3107 // Otherwise couldn't fold anything into this recurrence. Move onto the 3108 // next one. 3109 } 3110 3111 // Okay, it looks like we really DO need an mul expr. Check to see if we 3112 // already have one, otherwise create a new one. 3113 return getOrCreateMulExpr(Ops, Flags); 3114 } 3115 3116 /// Represents an unsigned remainder expression based on unsigned division. 3117 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3118 const SCEV *RHS) { 3119 assert(getEffectiveSCEVType(LHS->getType()) == 3120 getEffectiveSCEVType(RHS->getType()) && 3121 "SCEVURemExpr operand types don't match!"); 3122 3123 // Short-circuit easy cases 3124 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3125 // If constant is one, the result is trivial 3126 if (RHSC->getValue()->isOne()) 3127 return getZero(LHS->getType()); // X urem 1 --> 0 3128 3129 // If constant is a power of two, fold into a zext(trunc(LHS)). 3130 if (RHSC->getAPInt().isPowerOf2()) { 3131 Type *FullTy = LHS->getType(); 3132 Type *TruncTy = 3133 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3134 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3135 } 3136 } 3137 3138 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3139 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3140 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3141 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3142 } 3143 3144 /// Get a canonical unsigned division expression, or something simpler if 3145 /// possible. 3146 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3147 const SCEV *RHS) { 3148 assert(getEffectiveSCEVType(LHS->getType()) == 3149 getEffectiveSCEVType(RHS->getType()) && 3150 "SCEVUDivExpr operand types don't match!"); 3151 3152 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3153 if (RHSC->getValue()->isOne()) 3154 return LHS; // X udiv 1 --> x 3155 // If the denominator is zero, the result of the udiv is undefined. Don't 3156 // try to analyze it, because the resolution chosen here may differ from 3157 // the resolution chosen in other parts of the compiler. 3158 if (!RHSC->getValue()->isZero()) { 3159 // Determine if the division can be folded into the operands of 3160 // its operands. 3161 // TODO: Generalize this to non-constants by using known-bits information. 3162 Type *Ty = LHS->getType(); 3163 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3164 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3165 // For non-power-of-two values, effectively round the value up to the 3166 // nearest power of two. 3167 if (!RHSC->getAPInt().isPowerOf2()) 3168 ++MaxShiftAmt; 3169 IntegerType *ExtTy = 3170 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3171 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3172 if (const SCEVConstant *Step = 3173 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3174 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3175 const APInt &StepInt = Step->getAPInt(); 3176 const APInt &DivInt = RHSC->getAPInt(); 3177 if (!StepInt.urem(DivInt) && 3178 getZeroExtendExpr(AR, ExtTy) == 3179 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3180 getZeroExtendExpr(Step, ExtTy), 3181 AR->getLoop(), SCEV::FlagAnyWrap)) { 3182 SmallVector<const SCEV *, 4> Operands; 3183 for (const SCEV *Op : AR->operands()) 3184 Operands.push_back(getUDivExpr(Op, RHS)); 3185 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3186 } 3187 /// Get a canonical UDivExpr for a recurrence. 3188 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3189 // We can currently only fold X%N if X is constant. 3190 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3191 if (StartC && !DivInt.urem(StepInt) && 3192 getZeroExtendExpr(AR, ExtTy) == 3193 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3194 getZeroExtendExpr(Step, ExtTy), 3195 AR->getLoop(), SCEV::FlagAnyWrap)) { 3196 const APInt &StartInt = StartC->getAPInt(); 3197 const APInt &StartRem = StartInt.urem(StepInt); 3198 if (StartRem != 0) 3199 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 3200 AR->getLoop(), SCEV::FlagNW); 3201 } 3202 } 3203 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3204 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3205 SmallVector<const SCEV *, 4> Operands; 3206 for (const SCEV *Op : M->operands()) 3207 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3208 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3209 // Find an operand that's safely divisible. 3210 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3211 const SCEV *Op = M->getOperand(i); 3212 const SCEV *Div = getUDivExpr(Op, RHSC); 3213 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3214 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3215 M->op_end()); 3216 Operands[i] = Div; 3217 return getMulExpr(Operands); 3218 } 3219 } 3220 } 3221 3222 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3223 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3224 if (auto *DivisorConstant = 3225 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3226 bool Overflow = false; 3227 APInt NewRHS = 3228 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3229 if (Overflow) { 3230 return getConstant(RHSC->getType(), 0, false); 3231 } 3232 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3233 } 3234 } 3235 3236 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3237 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3238 SmallVector<const SCEV *, 4> Operands; 3239 for (const SCEV *Op : A->operands()) 3240 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3241 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3242 Operands.clear(); 3243 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3244 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3245 if (isa<SCEVUDivExpr>(Op) || 3246 getMulExpr(Op, RHS) != A->getOperand(i)) 3247 break; 3248 Operands.push_back(Op); 3249 } 3250 if (Operands.size() == A->getNumOperands()) 3251 return getAddExpr(Operands); 3252 } 3253 } 3254 3255 // Fold if both operands are constant. 3256 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3257 Constant *LHSCV = LHSC->getValue(); 3258 Constant *RHSCV = RHSC->getValue(); 3259 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3260 RHSCV))); 3261 } 3262 } 3263 } 3264 3265 FoldingSetNodeID ID; 3266 ID.AddInteger(scUDivExpr); 3267 ID.AddPointer(LHS); 3268 ID.AddPointer(RHS); 3269 void *IP = nullptr; 3270 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3271 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3272 LHS, RHS); 3273 UniqueSCEVs.InsertNode(S, IP); 3274 addToLoopUseLists(S); 3275 return S; 3276 } 3277 3278 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3279 APInt A = C1->getAPInt().abs(); 3280 APInt B = C2->getAPInt().abs(); 3281 uint32_t ABW = A.getBitWidth(); 3282 uint32_t BBW = B.getBitWidth(); 3283 3284 if (ABW > BBW) 3285 B = B.zext(ABW); 3286 else if (ABW < BBW) 3287 A = A.zext(BBW); 3288 3289 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3290 } 3291 3292 /// Get a canonical unsigned division expression, or something simpler if 3293 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3294 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3295 /// it's not exact because the udiv may be clearing bits. 3296 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3297 const SCEV *RHS) { 3298 // TODO: we could try to find factors in all sorts of things, but for now we 3299 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3300 // end of this file for inspiration. 3301 3302 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3303 if (!Mul || !Mul->hasNoUnsignedWrap()) 3304 return getUDivExpr(LHS, RHS); 3305 3306 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3307 // If the mulexpr multiplies by a constant, then that constant must be the 3308 // first element of the mulexpr. 3309 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3310 if (LHSCst == RHSCst) { 3311 SmallVector<const SCEV *, 2> Operands; 3312 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3313 return getMulExpr(Operands); 3314 } 3315 3316 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3317 // that there's a factor provided by one of the other terms. We need to 3318 // check. 3319 APInt Factor = gcd(LHSCst, RHSCst); 3320 if (!Factor.isIntN(1)) { 3321 LHSCst = 3322 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3323 RHSCst = 3324 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3325 SmallVector<const SCEV *, 2> Operands; 3326 Operands.push_back(LHSCst); 3327 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3328 LHS = getMulExpr(Operands); 3329 RHS = RHSCst; 3330 Mul = dyn_cast<SCEVMulExpr>(LHS); 3331 if (!Mul) 3332 return getUDivExactExpr(LHS, RHS); 3333 } 3334 } 3335 } 3336 3337 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3338 if (Mul->getOperand(i) == RHS) { 3339 SmallVector<const SCEV *, 2> Operands; 3340 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3341 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3342 return getMulExpr(Operands); 3343 } 3344 } 3345 3346 return getUDivExpr(LHS, RHS); 3347 } 3348 3349 /// Get an add recurrence expression for the specified loop. Simplify the 3350 /// expression as much as possible. 3351 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3352 const Loop *L, 3353 SCEV::NoWrapFlags Flags) { 3354 SmallVector<const SCEV *, 4> Operands; 3355 Operands.push_back(Start); 3356 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3357 if (StepChrec->getLoop() == L) { 3358 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3359 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3360 } 3361 3362 Operands.push_back(Step); 3363 return getAddRecExpr(Operands, L, Flags); 3364 } 3365 3366 /// Get an add recurrence expression for the specified loop. Simplify the 3367 /// expression as much as possible. 3368 const SCEV * 3369 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3370 const Loop *L, SCEV::NoWrapFlags Flags) { 3371 if (Operands.size() == 1) return Operands[0]; 3372 #ifndef NDEBUG 3373 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3374 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3375 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3376 "SCEVAddRecExpr operand types don't match!"); 3377 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3378 assert(isLoopInvariant(Operands[i], L) && 3379 "SCEVAddRecExpr operand is not loop-invariant!"); 3380 #endif 3381 3382 if (Operands.back()->isZero()) { 3383 Operands.pop_back(); 3384 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3385 } 3386 3387 // It's tempting to want to call getMaxBackedgeTakenCount count here and 3388 // use that information to infer NUW and NSW flags. However, computing a 3389 // BE count requires calling getAddRecExpr, so we may not yet have a 3390 // meaningful BE count at this point (and if we don't, we'd be stuck 3391 // with a SCEVCouldNotCompute as the cached BE count). 3392 3393 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3394 3395 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3396 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3397 const Loop *NestedLoop = NestedAR->getLoop(); 3398 if (L->contains(NestedLoop) 3399 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3400 : (!NestedLoop->contains(L) && 3401 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3402 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3403 NestedAR->op_end()); 3404 Operands[0] = NestedAR->getStart(); 3405 // AddRecs require their operands be loop-invariant with respect to their 3406 // loops. Don't perform this transformation if it would break this 3407 // requirement. 3408 bool AllInvariant = all_of( 3409 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3410 3411 if (AllInvariant) { 3412 // Create a recurrence for the outer loop with the same step size. 3413 // 3414 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3415 // inner recurrence has the same property. 3416 SCEV::NoWrapFlags OuterFlags = 3417 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3418 3419 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3420 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3421 return isLoopInvariant(Op, NestedLoop); 3422 }); 3423 3424 if (AllInvariant) { 3425 // Ok, both add recurrences are valid after the transformation. 3426 // 3427 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3428 // the outer recurrence has the same property. 3429 SCEV::NoWrapFlags InnerFlags = 3430 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3431 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3432 } 3433 } 3434 // Reset Operands to its original state. 3435 Operands[0] = NestedAR; 3436 } 3437 } 3438 3439 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3440 // already have one, otherwise create a new one. 3441 return getOrCreateAddRecExpr(Operands, L, Flags); 3442 } 3443 3444 const SCEV * 3445 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3446 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3447 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3448 // getSCEV(Base)->getType() has the same address space as Base->getType() 3449 // because SCEV::getType() preserves the address space. 3450 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 3451 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3452 // instruction to its SCEV, because the Instruction may be guarded by control 3453 // flow and the no-overflow bits may not be valid for the expression in any 3454 // context. This can be fixed similarly to how these flags are handled for 3455 // adds. 3456 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3457 : SCEV::FlagAnyWrap; 3458 3459 const SCEV *TotalOffset = getZero(IntPtrTy); 3460 // The array size is unimportant. The first thing we do on CurTy is getting 3461 // its element type. 3462 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); 3463 for (const SCEV *IndexExpr : IndexExprs) { 3464 // Compute the (potentially symbolic) offset in bytes for this index. 3465 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3466 // For a struct, add the member offset. 3467 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3468 unsigned FieldNo = Index->getZExtValue(); 3469 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3470 3471 // Add the field offset to the running total offset. 3472 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3473 3474 // Update CurTy to the type of the field at Index. 3475 CurTy = STy->getTypeAtIndex(Index); 3476 } else { 3477 // Update CurTy to its element type. 3478 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3479 // For an array, add the element offset, explicitly scaled. 3480 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3481 // Getelementptr indices are signed. 3482 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3483 3484 // Multiply the index by the element size to compute the element offset. 3485 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3486 3487 // Add the element offset to the running total offset. 3488 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3489 } 3490 } 3491 3492 // Add the total offset from all the GEP indices to the base. 3493 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3494 } 3495 3496 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3497 const SCEV *RHS) { 3498 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3499 return getSMaxExpr(Ops); 3500 } 3501 3502 const SCEV * 3503 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3504 assert(!Ops.empty() && "Cannot get empty smax!"); 3505 if (Ops.size() == 1) return Ops[0]; 3506 #ifndef NDEBUG 3507 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3508 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3509 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3510 "SCEVSMaxExpr operand types don't match!"); 3511 #endif 3512 3513 // Sort by complexity, this groups all similar expression types together. 3514 GroupByComplexity(Ops, &LI, DT); 3515 3516 // If there are any constants, fold them together. 3517 unsigned Idx = 0; 3518 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3519 ++Idx; 3520 assert(Idx < Ops.size()); 3521 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3522 // We found two constants, fold them together! 3523 ConstantInt *Fold = ConstantInt::get( 3524 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3525 Ops[0] = getConstant(Fold); 3526 Ops.erase(Ops.begin()+1); // Erase the folded element 3527 if (Ops.size() == 1) return Ops[0]; 3528 LHSC = cast<SCEVConstant>(Ops[0]); 3529 } 3530 3531 // If we are left with a constant minimum-int, strip it off. 3532 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3533 Ops.erase(Ops.begin()); 3534 --Idx; 3535 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3536 // If we have an smax with a constant maximum-int, it will always be 3537 // maximum-int. 3538 return Ops[0]; 3539 } 3540 3541 if (Ops.size() == 1) return Ops[0]; 3542 } 3543 3544 // Find the first SMax 3545 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3546 ++Idx; 3547 3548 // Check to see if one of the operands is an SMax. If so, expand its operands 3549 // onto our operand list, and recurse to simplify. 3550 if (Idx < Ops.size()) { 3551 bool DeletedSMax = false; 3552 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3553 Ops.erase(Ops.begin()+Idx); 3554 Ops.append(SMax->op_begin(), SMax->op_end()); 3555 DeletedSMax = true; 3556 } 3557 3558 if (DeletedSMax) 3559 return getSMaxExpr(Ops); 3560 } 3561 3562 // Okay, check to see if the same value occurs in the operand list twice. If 3563 // so, delete one. Since we sorted the list, these values are required to 3564 // be adjacent. 3565 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3566 // X smax Y smax Y --> X smax Y 3567 // X smax Y --> X, if X is always greater than Y 3568 if (Ops[i] == Ops[i+1] || 3569 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3570 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3571 --i; --e; 3572 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3573 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3574 --i; --e; 3575 } 3576 3577 if (Ops.size() == 1) return Ops[0]; 3578 3579 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3580 3581 // Okay, it looks like we really DO need an smax expr. Check to see if we 3582 // already have one, otherwise create a new one. 3583 FoldingSetNodeID ID; 3584 ID.AddInteger(scSMaxExpr); 3585 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3586 ID.AddPointer(Ops[i]); 3587 void *IP = nullptr; 3588 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3589 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3590 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3591 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3592 O, Ops.size()); 3593 UniqueSCEVs.InsertNode(S, IP); 3594 addToLoopUseLists(S); 3595 return S; 3596 } 3597 3598 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3599 const SCEV *RHS) { 3600 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3601 return getUMaxExpr(Ops); 3602 } 3603 3604 const SCEV * 3605 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3606 assert(!Ops.empty() && "Cannot get empty umax!"); 3607 if (Ops.size() == 1) return Ops[0]; 3608 #ifndef NDEBUG 3609 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3610 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3611 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3612 "SCEVUMaxExpr operand types don't match!"); 3613 #endif 3614 3615 // Sort by complexity, this groups all similar expression types together. 3616 GroupByComplexity(Ops, &LI, DT); 3617 3618 // If there are any constants, fold them together. 3619 unsigned Idx = 0; 3620 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3621 ++Idx; 3622 assert(Idx < Ops.size()); 3623 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3624 // We found two constants, fold them together! 3625 ConstantInt *Fold = ConstantInt::get( 3626 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3627 Ops[0] = getConstant(Fold); 3628 Ops.erase(Ops.begin()+1); // Erase the folded element 3629 if (Ops.size() == 1) return Ops[0]; 3630 LHSC = cast<SCEVConstant>(Ops[0]); 3631 } 3632 3633 // If we are left with a constant minimum-int, strip it off. 3634 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3635 Ops.erase(Ops.begin()); 3636 --Idx; 3637 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3638 // If we have an umax with a constant maximum-int, it will always be 3639 // maximum-int. 3640 return Ops[0]; 3641 } 3642 3643 if (Ops.size() == 1) return Ops[0]; 3644 } 3645 3646 // Find the first UMax 3647 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3648 ++Idx; 3649 3650 // Check to see if one of the operands is a UMax. If so, expand its operands 3651 // onto our operand list, and recurse to simplify. 3652 if (Idx < Ops.size()) { 3653 bool DeletedUMax = false; 3654 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3655 Ops.erase(Ops.begin()+Idx); 3656 Ops.append(UMax->op_begin(), UMax->op_end()); 3657 DeletedUMax = true; 3658 } 3659 3660 if (DeletedUMax) 3661 return getUMaxExpr(Ops); 3662 } 3663 3664 // Okay, check to see if the same value occurs in the operand list twice. If 3665 // so, delete one. Since we sorted the list, these values are required to 3666 // be adjacent. 3667 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3668 // X umax Y umax Y --> X umax Y 3669 // X umax Y --> X, if X is always greater than Y 3670 if (Ops[i] == Ops[i + 1] || isKnownViaNonRecursiveReasoning( 3671 ICmpInst::ICMP_UGE, Ops[i], Ops[i + 1])) { 3672 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3673 --i; --e; 3674 } else if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, Ops[i], 3675 Ops[i + 1])) { 3676 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3677 --i; --e; 3678 } 3679 3680 if (Ops.size() == 1) return Ops[0]; 3681 3682 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3683 3684 // Okay, it looks like we really DO need a umax expr. Check to see if we 3685 // already have one, otherwise create a new one. 3686 FoldingSetNodeID ID; 3687 ID.AddInteger(scUMaxExpr); 3688 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3689 ID.AddPointer(Ops[i]); 3690 void *IP = nullptr; 3691 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3692 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3693 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3694 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3695 O, Ops.size()); 3696 UniqueSCEVs.InsertNode(S, IP); 3697 addToLoopUseLists(S); 3698 return S; 3699 } 3700 3701 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3702 const SCEV *RHS) { 3703 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3704 return getSMinExpr(Ops); 3705 } 3706 3707 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3708 // ~smax(~x, ~y, ~z) == smin(x, y, z). 3709 SmallVector<const SCEV *, 2> NotOps; 3710 for (auto *S : Ops) 3711 NotOps.push_back(getNotSCEV(S)); 3712 return getNotSCEV(getSMaxExpr(NotOps)); 3713 } 3714 3715 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3716 const SCEV *RHS) { 3717 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3718 return getUMinExpr(Ops); 3719 } 3720 3721 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3722 assert(!Ops.empty() && "At least one operand must be!"); 3723 // Trivial case. 3724 if (Ops.size() == 1) 3725 return Ops[0]; 3726 3727 // ~umax(~x, ~y, ~z) == umin(x, y, z). 3728 SmallVector<const SCEV *, 2> NotOps; 3729 for (auto *S : Ops) 3730 NotOps.push_back(getNotSCEV(S)); 3731 return getNotSCEV(getUMaxExpr(NotOps)); 3732 } 3733 3734 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3735 // We can bypass creating a target-independent 3736 // constant expression and then folding it back into a ConstantInt. 3737 // This is just a compile-time optimization. 3738 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3739 } 3740 3741 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3742 StructType *STy, 3743 unsigned FieldNo) { 3744 // We can bypass creating a target-independent 3745 // constant expression and then folding it back into a ConstantInt. 3746 // This is just a compile-time optimization. 3747 return getConstant( 3748 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3749 } 3750 3751 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3752 // Don't attempt to do anything other than create a SCEVUnknown object 3753 // here. createSCEV only calls getUnknown after checking for all other 3754 // interesting possibilities, and any other code that calls getUnknown 3755 // is doing so in order to hide a value from SCEV canonicalization. 3756 3757 FoldingSetNodeID ID; 3758 ID.AddInteger(scUnknown); 3759 ID.AddPointer(V); 3760 void *IP = nullptr; 3761 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3762 assert(cast<SCEVUnknown>(S)->getValue() == V && 3763 "Stale SCEVUnknown in uniquing map!"); 3764 return S; 3765 } 3766 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3767 FirstUnknown); 3768 FirstUnknown = cast<SCEVUnknown>(S); 3769 UniqueSCEVs.InsertNode(S, IP); 3770 return S; 3771 } 3772 3773 //===----------------------------------------------------------------------===// 3774 // Basic SCEV Analysis and PHI Idiom Recognition Code 3775 // 3776 3777 /// Test if values of the given type are analyzable within the SCEV 3778 /// framework. This primarily includes integer types, and it can optionally 3779 /// include pointer types if the ScalarEvolution class has access to 3780 /// target-specific information. 3781 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3782 // Integers and pointers are always SCEVable. 3783 return Ty->isIntOrPtrTy(); 3784 } 3785 3786 /// Return the size in bits of the specified type, for which isSCEVable must 3787 /// return true. 3788 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3789 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3790 if (Ty->isPointerTy()) 3791 return getDataLayout().getIndexTypeSizeInBits(Ty); 3792 return getDataLayout().getTypeSizeInBits(Ty); 3793 } 3794 3795 /// Return a type with the same bitwidth as the given type and which represents 3796 /// how SCEV will treat the given type, for which isSCEVable must return 3797 /// true. For pointer types, this is the pointer-sized integer type. 3798 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3799 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3800 3801 if (Ty->isIntegerTy()) 3802 return Ty; 3803 3804 // The only other support type is pointer. 3805 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3806 return getDataLayout().getIntPtrType(Ty); 3807 } 3808 3809 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3810 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3811 } 3812 3813 const SCEV *ScalarEvolution::getCouldNotCompute() { 3814 return CouldNotCompute.get(); 3815 } 3816 3817 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3818 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3819 auto *SU = dyn_cast<SCEVUnknown>(S); 3820 return SU && SU->getValue() == nullptr; 3821 }); 3822 3823 return !ContainsNulls; 3824 } 3825 3826 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3827 HasRecMapType::iterator I = HasRecMap.find(S); 3828 if (I != HasRecMap.end()) 3829 return I->second; 3830 3831 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); 3832 HasRecMap.insert({S, FoundAddRec}); 3833 return FoundAddRec; 3834 } 3835 3836 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3837 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3838 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3839 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3840 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3841 if (!Add) 3842 return {S, nullptr}; 3843 3844 if (Add->getNumOperands() != 2) 3845 return {S, nullptr}; 3846 3847 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3848 if (!ConstOp) 3849 return {S, nullptr}; 3850 3851 return {Add->getOperand(1), ConstOp->getValue()}; 3852 } 3853 3854 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3855 /// by the value and offset from any ValueOffsetPair in the set. 3856 SetVector<ScalarEvolution::ValueOffsetPair> * 3857 ScalarEvolution::getSCEVValues(const SCEV *S) { 3858 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3859 if (SI == ExprValueMap.end()) 3860 return nullptr; 3861 #ifndef NDEBUG 3862 if (VerifySCEVMap) { 3863 // Check there is no dangling Value in the set returned. 3864 for (const auto &VE : SI->second) 3865 assert(ValueExprMap.count(VE.first)); 3866 } 3867 #endif 3868 return &SI->second; 3869 } 3870 3871 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3872 /// cannot be used separately. eraseValueFromMap should be used to remove 3873 /// V from ValueExprMap and ExprValueMap at the same time. 3874 void ScalarEvolution::eraseValueFromMap(Value *V) { 3875 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3876 if (I != ValueExprMap.end()) { 3877 const SCEV *S = I->second; 3878 // Remove {V, 0} from the set of ExprValueMap[S] 3879 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3880 SV->remove({V, nullptr}); 3881 3882 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3883 const SCEV *Stripped; 3884 ConstantInt *Offset; 3885 std::tie(Stripped, Offset) = splitAddExpr(S); 3886 if (Offset != nullptr) { 3887 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3888 SV->remove({V, Offset}); 3889 } 3890 ValueExprMap.erase(V); 3891 } 3892 } 3893 3894 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3895 /// TODO: In reality it is better to check the poison recursevely 3896 /// but this is better than nothing. 3897 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3898 if (auto *I = dyn_cast<Instruction>(V)) { 3899 if (isa<OverflowingBinaryOperator>(I)) { 3900 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3901 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3902 return true; 3903 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3904 return true; 3905 } 3906 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3907 return true; 3908 } 3909 return false; 3910 } 3911 3912 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3913 /// create a new one. 3914 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3915 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3916 3917 const SCEV *S = getExistingSCEV(V); 3918 if (S == nullptr) { 3919 S = createSCEV(V); 3920 // During PHI resolution, it is possible to create two SCEVs for the same 3921 // V, so it is needed to double check whether V->S is inserted into 3922 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3923 std::pair<ValueExprMapType::iterator, bool> Pair = 3924 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3925 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3926 ExprValueMap[S].insert({V, nullptr}); 3927 3928 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3929 // ExprValueMap. 3930 const SCEV *Stripped = S; 3931 ConstantInt *Offset = nullptr; 3932 std::tie(Stripped, Offset) = splitAddExpr(S); 3933 // If stripped is SCEVUnknown, don't bother to save 3934 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3935 // increase the complexity of the expansion code. 3936 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3937 // because it may generate add/sub instead of GEP in SCEV expansion. 3938 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3939 !isa<GetElementPtrInst>(V)) 3940 ExprValueMap[Stripped].insert({V, Offset}); 3941 } 3942 } 3943 return S; 3944 } 3945 3946 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3947 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3948 3949 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3950 if (I != ValueExprMap.end()) { 3951 const SCEV *S = I->second; 3952 if (checkValidity(S)) 3953 return S; 3954 eraseValueFromMap(V); 3955 forgetMemoizedResults(S); 3956 } 3957 return nullptr; 3958 } 3959 3960 /// Return a SCEV corresponding to -V = -1*V 3961 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3962 SCEV::NoWrapFlags Flags) { 3963 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3964 return getConstant( 3965 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3966 3967 Type *Ty = V->getType(); 3968 Ty = getEffectiveSCEVType(Ty); 3969 return getMulExpr( 3970 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3971 } 3972 3973 /// Return a SCEV corresponding to ~V = -1-V 3974 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3975 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3976 return getConstant( 3977 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3978 3979 Type *Ty = V->getType(); 3980 Ty = getEffectiveSCEVType(Ty); 3981 const SCEV *AllOnes = 3982 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3983 return getMinusSCEV(AllOnes, V); 3984 } 3985 3986 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3987 SCEV::NoWrapFlags Flags, 3988 unsigned Depth) { 3989 // Fast path: X - X --> 0. 3990 if (LHS == RHS) 3991 return getZero(LHS->getType()); 3992 3993 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3994 // makes it so that we cannot make much use of NUW. 3995 auto AddFlags = SCEV::FlagAnyWrap; 3996 const bool RHSIsNotMinSigned = 3997 !getSignedRangeMin(RHS).isMinSignedValue(); 3998 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3999 // Let M be the minimum representable signed value. Then (-1)*RHS 4000 // signed-wraps if and only if RHS is M. That can happen even for 4001 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4002 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4003 // (-1)*RHS, we need to prove that RHS != M. 4004 // 4005 // If LHS is non-negative and we know that LHS - RHS does not 4006 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4007 // either by proving that RHS > M or that LHS >= 0. 4008 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4009 AddFlags = SCEV::FlagNSW; 4010 } 4011 } 4012 4013 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4014 // RHS is NSW and LHS >= 0. 4015 // 4016 // The difficulty here is that the NSW flag may have been proven 4017 // relative to a loop that is to be found in a recurrence in LHS and 4018 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4019 // larger scope than intended. 4020 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4021 4022 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4023 } 4024 4025 const SCEV * 4026 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 4027 Type *SrcTy = V->getType(); 4028 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4029 "Cannot truncate or zero extend with non-integer arguments!"); 4030 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4031 return V; // No conversion 4032 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4033 return getTruncateExpr(V, Ty); 4034 return getZeroExtendExpr(V, Ty); 4035 } 4036 4037 const SCEV * 4038 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 4039 Type *Ty) { 4040 Type *SrcTy = V->getType(); 4041 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4042 "Cannot truncate or zero extend with non-integer arguments!"); 4043 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4044 return V; // No conversion 4045 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4046 return getTruncateExpr(V, Ty); 4047 return getSignExtendExpr(V, Ty); 4048 } 4049 4050 const SCEV * 4051 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4052 Type *SrcTy = V->getType(); 4053 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4054 "Cannot noop or zero extend with non-integer arguments!"); 4055 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4056 "getNoopOrZeroExtend cannot truncate!"); 4057 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4058 return V; // No conversion 4059 return getZeroExtendExpr(V, Ty); 4060 } 4061 4062 const SCEV * 4063 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4064 Type *SrcTy = V->getType(); 4065 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4066 "Cannot noop or sign extend with non-integer arguments!"); 4067 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4068 "getNoopOrSignExtend cannot truncate!"); 4069 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4070 return V; // No conversion 4071 return getSignExtendExpr(V, Ty); 4072 } 4073 4074 const SCEV * 4075 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4076 Type *SrcTy = V->getType(); 4077 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4078 "Cannot noop or any extend with non-integer arguments!"); 4079 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4080 "getNoopOrAnyExtend cannot truncate!"); 4081 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4082 return V; // No conversion 4083 return getAnyExtendExpr(V, Ty); 4084 } 4085 4086 const SCEV * 4087 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4088 Type *SrcTy = V->getType(); 4089 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4090 "Cannot truncate or noop with non-integer arguments!"); 4091 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4092 "getTruncateOrNoop cannot extend!"); 4093 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4094 return V; // No conversion 4095 return getTruncateExpr(V, Ty); 4096 } 4097 4098 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4099 const SCEV *RHS) { 4100 const SCEV *PromotedLHS = LHS; 4101 const SCEV *PromotedRHS = RHS; 4102 4103 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4104 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4105 else 4106 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4107 4108 return getUMaxExpr(PromotedLHS, PromotedRHS); 4109 } 4110 4111 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4112 const SCEV *RHS) { 4113 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4114 return getUMinFromMismatchedTypes(Ops); 4115 } 4116 4117 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4118 SmallVectorImpl<const SCEV *> &Ops) { 4119 assert(!Ops.empty() && "At least one operand must be!"); 4120 // Trivial case. 4121 if (Ops.size() == 1) 4122 return Ops[0]; 4123 4124 // Find the max type first. 4125 Type *MaxType = nullptr; 4126 for (auto *S : Ops) 4127 if (MaxType) 4128 MaxType = getWiderType(MaxType, S->getType()); 4129 else 4130 MaxType = S->getType(); 4131 4132 // Extend all ops to max type. 4133 SmallVector<const SCEV *, 2> PromotedOps; 4134 for (auto *S : Ops) 4135 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4136 4137 // Generate umin. 4138 return getUMinExpr(PromotedOps); 4139 } 4140 4141 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4142 // A pointer operand may evaluate to a nonpointer expression, such as null. 4143 if (!V->getType()->isPointerTy()) 4144 return V; 4145 4146 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 4147 return getPointerBase(Cast->getOperand()); 4148 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 4149 const SCEV *PtrOp = nullptr; 4150 for (const SCEV *NAryOp : NAry->operands()) { 4151 if (NAryOp->getType()->isPointerTy()) { 4152 // Cannot find the base of an expression with multiple pointer operands. 4153 if (PtrOp) 4154 return V; 4155 PtrOp = NAryOp; 4156 } 4157 } 4158 if (!PtrOp) 4159 return V; 4160 return getPointerBase(PtrOp); 4161 } 4162 return V; 4163 } 4164 4165 /// Push users of the given Instruction onto the given Worklist. 4166 static void 4167 PushDefUseChildren(Instruction *I, 4168 SmallVectorImpl<Instruction *> &Worklist) { 4169 // Push the def-use children onto the Worklist stack. 4170 for (User *U : I->users()) 4171 Worklist.push_back(cast<Instruction>(U)); 4172 } 4173 4174 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4175 SmallVector<Instruction *, 16> Worklist; 4176 PushDefUseChildren(PN, Worklist); 4177 4178 SmallPtrSet<Instruction *, 8> Visited; 4179 Visited.insert(PN); 4180 while (!Worklist.empty()) { 4181 Instruction *I = Worklist.pop_back_val(); 4182 if (!Visited.insert(I).second) 4183 continue; 4184 4185 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4186 if (It != ValueExprMap.end()) { 4187 const SCEV *Old = It->second; 4188 4189 // Short-circuit the def-use traversal if the symbolic name 4190 // ceases to appear in expressions. 4191 if (Old != SymName && !hasOperand(Old, SymName)) 4192 continue; 4193 4194 // SCEVUnknown for a PHI either means that it has an unrecognized 4195 // structure, it's a PHI that's in the progress of being computed 4196 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4197 // additional loop trip count information isn't going to change anything. 4198 // In the second case, createNodeForPHI will perform the necessary 4199 // updates on its own when it gets to that point. In the third, we do 4200 // want to forget the SCEVUnknown. 4201 if (!isa<PHINode>(I) || 4202 !isa<SCEVUnknown>(Old) || 4203 (I != PN && Old == SymName)) { 4204 eraseValueFromMap(It->first); 4205 forgetMemoizedResults(Old); 4206 } 4207 } 4208 4209 PushDefUseChildren(I, Worklist); 4210 } 4211 } 4212 4213 namespace { 4214 4215 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4216 /// expression in case its Loop is L. If it is not L then 4217 /// if IgnoreOtherLoops is true then use AddRec itself 4218 /// otherwise rewrite cannot be done. 4219 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4220 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4221 public: 4222 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4223 bool IgnoreOtherLoops = true) { 4224 SCEVInitRewriter Rewriter(L, SE); 4225 const SCEV *Result = Rewriter.visit(S); 4226 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4227 return SE.getCouldNotCompute(); 4228 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4229 ? SE.getCouldNotCompute() 4230 : Result; 4231 } 4232 4233 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4234 if (!SE.isLoopInvariant(Expr, L)) 4235 SeenLoopVariantSCEVUnknown = true; 4236 return Expr; 4237 } 4238 4239 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4240 // Only re-write AddRecExprs for this loop. 4241 if (Expr->getLoop() == L) 4242 return Expr->getStart(); 4243 SeenOtherLoops = true; 4244 return Expr; 4245 } 4246 4247 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4248 4249 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4250 4251 private: 4252 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4253 : SCEVRewriteVisitor(SE), L(L) {} 4254 4255 const Loop *L; 4256 bool SeenLoopVariantSCEVUnknown = false; 4257 bool SeenOtherLoops = false; 4258 }; 4259 4260 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4261 /// increment expression in case its Loop is L. If it is not L then 4262 /// use AddRec itself. 4263 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4264 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4265 public: 4266 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4267 SCEVPostIncRewriter Rewriter(L, SE); 4268 const SCEV *Result = Rewriter.visit(S); 4269 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4270 ? SE.getCouldNotCompute() 4271 : Result; 4272 } 4273 4274 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4275 if (!SE.isLoopInvariant(Expr, L)) 4276 SeenLoopVariantSCEVUnknown = true; 4277 return Expr; 4278 } 4279 4280 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4281 // Only re-write AddRecExprs for this loop. 4282 if (Expr->getLoop() == L) 4283 return Expr->getPostIncExpr(SE); 4284 SeenOtherLoops = true; 4285 return Expr; 4286 } 4287 4288 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4289 4290 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4291 4292 private: 4293 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4294 : SCEVRewriteVisitor(SE), L(L) {} 4295 4296 const Loop *L; 4297 bool SeenLoopVariantSCEVUnknown = false; 4298 bool SeenOtherLoops = false; 4299 }; 4300 4301 /// This class evaluates the compare condition by matching it against the 4302 /// condition of loop latch. If there is a match we assume a true value 4303 /// for the condition while building SCEV nodes. 4304 class SCEVBackedgeConditionFolder 4305 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4306 public: 4307 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4308 ScalarEvolution &SE) { 4309 bool IsPosBECond = false; 4310 Value *BECond = nullptr; 4311 if (BasicBlock *Latch = L->getLoopLatch()) { 4312 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4313 if (BI && BI->isConditional()) { 4314 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4315 "Both outgoing branches should not target same header!"); 4316 BECond = BI->getCondition(); 4317 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4318 } else { 4319 return S; 4320 } 4321 } 4322 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4323 return Rewriter.visit(S); 4324 } 4325 4326 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4327 const SCEV *Result = Expr; 4328 bool InvariantF = SE.isLoopInvariant(Expr, L); 4329 4330 if (!InvariantF) { 4331 Instruction *I = cast<Instruction>(Expr->getValue()); 4332 switch (I->getOpcode()) { 4333 case Instruction::Select: { 4334 SelectInst *SI = cast<SelectInst>(I); 4335 Optional<const SCEV *> Res = 4336 compareWithBackedgeCondition(SI->getCondition()); 4337 if (Res.hasValue()) { 4338 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4339 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4340 } 4341 break; 4342 } 4343 default: { 4344 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4345 if (Res.hasValue()) 4346 Result = Res.getValue(); 4347 break; 4348 } 4349 } 4350 } 4351 return Result; 4352 } 4353 4354 private: 4355 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4356 bool IsPosBECond, ScalarEvolution &SE) 4357 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4358 IsPositiveBECond(IsPosBECond) {} 4359 4360 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4361 4362 const Loop *L; 4363 /// Loop back condition. 4364 Value *BackedgeCond = nullptr; 4365 /// Set to true if loop back is on positive branch condition. 4366 bool IsPositiveBECond; 4367 }; 4368 4369 Optional<const SCEV *> 4370 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4371 4372 // If value matches the backedge condition for loop latch, 4373 // then return a constant evolution node based on loopback 4374 // branch taken. 4375 if (BackedgeCond == IC) 4376 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4377 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4378 return None; 4379 } 4380 4381 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4382 public: 4383 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4384 ScalarEvolution &SE) { 4385 SCEVShiftRewriter Rewriter(L, SE); 4386 const SCEV *Result = Rewriter.visit(S); 4387 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4388 } 4389 4390 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4391 // Only allow AddRecExprs for this loop. 4392 if (!SE.isLoopInvariant(Expr, L)) 4393 Valid = false; 4394 return Expr; 4395 } 4396 4397 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4398 if (Expr->getLoop() == L && Expr->isAffine()) 4399 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4400 Valid = false; 4401 return Expr; 4402 } 4403 4404 bool isValid() { return Valid; } 4405 4406 private: 4407 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4408 : SCEVRewriteVisitor(SE), L(L) {} 4409 4410 const Loop *L; 4411 bool Valid = true; 4412 }; 4413 4414 } // end anonymous namespace 4415 4416 SCEV::NoWrapFlags 4417 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4418 if (!AR->isAffine()) 4419 return SCEV::FlagAnyWrap; 4420 4421 using OBO = OverflowingBinaryOperator; 4422 4423 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4424 4425 if (!AR->hasNoSignedWrap()) { 4426 ConstantRange AddRecRange = getSignedRange(AR); 4427 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4428 4429 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4430 Instruction::Add, IncRange, OBO::NoSignedWrap); 4431 if (NSWRegion.contains(AddRecRange)) 4432 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4433 } 4434 4435 if (!AR->hasNoUnsignedWrap()) { 4436 ConstantRange AddRecRange = getUnsignedRange(AR); 4437 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4438 4439 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4440 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4441 if (NUWRegion.contains(AddRecRange)) 4442 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4443 } 4444 4445 return Result; 4446 } 4447 4448 namespace { 4449 4450 /// Represents an abstract binary operation. This may exist as a 4451 /// normal instruction or constant expression, or may have been 4452 /// derived from an expression tree. 4453 struct BinaryOp { 4454 unsigned Opcode; 4455 Value *LHS; 4456 Value *RHS; 4457 bool IsNSW = false; 4458 bool IsNUW = false; 4459 4460 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4461 /// constant expression. 4462 Operator *Op = nullptr; 4463 4464 explicit BinaryOp(Operator *Op) 4465 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4466 Op(Op) { 4467 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4468 IsNSW = OBO->hasNoSignedWrap(); 4469 IsNUW = OBO->hasNoUnsignedWrap(); 4470 } 4471 } 4472 4473 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4474 bool IsNUW = false) 4475 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4476 }; 4477 4478 } // end anonymous namespace 4479 4480 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4481 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4482 auto *Op = dyn_cast<Operator>(V); 4483 if (!Op) 4484 return None; 4485 4486 // Implementation detail: all the cleverness here should happen without 4487 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4488 // SCEV expressions when possible, and we should not break that. 4489 4490 switch (Op->getOpcode()) { 4491 case Instruction::Add: 4492 case Instruction::Sub: 4493 case Instruction::Mul: 4494 case Instruction::UDiv: 4495 case Instruction::URem: 4496 case Instruction::And: 4497 case Instruction::Or: 4498 case Instruction::AShr: 4499 case Instruction::Shl: 4500 return BinaryOp(Op); 4501 4502 case Instruction::Xor: 4503 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4504 // If the RHS of the xor is a signmask, then this is just an add. 4505 // Instcombine turns add of signmask into xor as a strength reduction step. 4506 if (RHSC->getValue().isSignMask()) 4507 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4508 return BinaryOp(Op); 4509 4510 case Instruction::LShr: 4511 // Turn logical shift right of a constant into a unsigned divide. 4512 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4513 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4514 4515 // If the shift count is not less than the bitwidth, the result of 4516 // the shift is undefined. Don't try to analyze it, because the 4517 // resolution chosen here may differ from the resolution chosen in 4518 // other parts of the compiler. 4519 if (SA->getValue().ult(BitWidth)) { 4520 Constant *X = 4521 ConstantInt::get(SA->getContext(), 4522 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4523 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4524 } 4525 } 4526 return BinaryOp(Op); 4527 4528 case Instruction::ExtractValue: { 4529 auto *EVI = cast<ExtractValueInst>(Op); 4530 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4531 break; 4532 4533 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 4534 if (!CI) 4535 break; 4536 4537 if (auto *F = CI->getCalledFunction()) 4538 switch (F->getIntrinsicID()) { 4539 case Intrinsic::sadd_with_overflow: 4540 case Intrinsic::uadd_with_overflow: 4541 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4542 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4543 CI->getArgOperand(1)); 4544 4545 // Now that we know that all uses of the arithmetic-result component of 4546 // CI are guarded by the overflow check, we can go ahead and pretend 4547 // that the arithmetic is non-overflowing. 4548 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 4549 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4550 CI->getArgOperand(1), /* IsNSW = */ true, 4551 /* IsNUW = */ false); 4552 else 4553 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4554 CI->getArgOperand(1), /* IsNSW = */ false, 4555 /* IsNUW*/ true); 4556 case Intrinsic::ssub_with_overflow: 4557 case Intrinsic::usub_with_overflow: 4558 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4559 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4560 CI->getArgOperand(1)); 4561 4562 // The same reasoning as sadd/uadd above. 4563 if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow) 4564 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4565 CI->getArgOperand(1), /* IsNSW = */ true, 4566 /* IsNUW = */ false); 4567 else 4568 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4569 CI->getArgOperand(1), /* IsNSW = */ false, 4570 /* IsNUW = */ true); 4571 case Intrinsic::smul_with_overflow: 4572 case Intrinsic::umul_with_overflow: 4573 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 4574 CI->getArgOperand(1)); 4575 default: 4576 break; 4577 } 4578 break; 4579 } 4580 4581 default: 4582 break; 4583 } 4584 4585 return None; 4586 } 4587 4588 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4589 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4590 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4591 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4592 /// follows one of the following patterns: 4593 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4594 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4595 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4596 /// we return the type of the truncation operation, and indicate whether the 4597 /// truncated type should be treated as signed/unsigned by setting 4598 /// \p Signed to true/false, respectively. 4599 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4600 bool &Signed, ScalarEvolution &SE) { 4601 // The case where Op == SymbolicPHI (that is, with no type conversions on 4602 // the way) is handled by the regular add recurrence creating logic and 4603 // would have already been triggered in createAddRecForPHI. Reaching it here 4604 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4605 // because one of the other operands of the SCEVAddExpr updating this PHI is 4606 // not invariant). 4607 // 4608 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4609 // this case predicates that allow us to prove that Op == SymbolicPHI will 4610 // be added. 4611 if (Op == SymbolicPHI) 4612 return nullptr; 4613 4614 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4615 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4616 if (SourceBits != NewBits) 4617 return nullptr; 4618 4619 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4620 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4621 if (!SExt && !ZExt) 4622 return nullptr; 4623 const SCEVTruncateExpr *Trunc = 4624 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4625 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4626 if (!Trunc) 4627 return nullptr; 4628 const SCEV *X = Trunc->getOperand(); 4629 if (X != SymbolicPHI) 4630 return nullptr; 4631 Signed = SExt != nullptr; 4632 return Trunc->getType(); 4633 } 4634 4635 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4636 if (!PN->getType()->isIntegerTy()) 4637 return nullptr; 4638 const Loop *L = LI.getLoopFor(PN->getParent()); 4639 if (!L || L->getHeader() != PN->getParent()) 4640 return nullptr; 4641 return L; 4642 } 4643 4644 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4645 // computation that updates the phi follows the following pattern: 4646 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4647 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4648 // If so, try to see if it can be rewritten as an AddRecExpr under some 4649 // Predicates. If successful, return them as a pair. Also cache the results 4650 // of the analysis. 4651 // 4652 // Example usage scenario: 4653 // Say the Rewriter is called for the following SCEV: 4654 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4655 // where: 4656 // %X = phi i64 (%Start, %BEValue) 4657 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4658 // and call this function with %SymbolicPHI = %X. 4659 // 4660 // The analysis will find that the value coming around the backedge has 4661 // the following SCEV: 4662 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4663 // Upon concluding that this matches the desired pattern, the function 4664 // will return the pair {NewAddRec, SmallPredsVec} where: 4665 // NewAddRec = {%Start,+,%Step} 4666 // SmallPredsVec = {P1, P2, P3} as follows: 4667 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4668 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4669 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4670 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4671 // under the predicates {P1,P2,P3}. 4672 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4673 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4674 // 4675 // TODO's: 4676 // 4677 // 1) Extend the Induction descriptor to also support inductions that involve 4678 // casts: When needed (namely, when we are called in the context of the 4679 // vectorizer induction analysis), a Set of cast instructions will be 4680 // populated by this method, and provided back to isInductionPHI. This is 4681 // needed to allow the vectorizer to properly record them to be ignored by 4682 // the cost model and to avoid vectorizing them (otherwise these casts, 4683 // which are redundant under the runtime overflow checks, will be 4684 // vectorized, which can be costly). 4685 // 4686 // 2) Support additional induction/PHISCEV patterns: We also want to support 4687 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4688 // after the induction update operation (the induction increment): 4689 // 4690 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4691 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4692 // 4693 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4694 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4695 // 4696 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4697 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4698 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4699 SmallVector<const SCEVPredicate *, 3> Predicates; 4700 4701 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4702 // return an AddRec expression under some predicate. 4703 4704 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4705 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4706 assert(L && "Expecting an integer loop header phi"); 4707 4708 // The loop may have multiple entrances or multiple exits; we can analyze 4709 // this phi as an addrec if it has a unique entry value and a unique 4710 // backedge value. 4711 Value *BEValueV = nullptr, *StartValueV = nullptr; 4712 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4713 Value *V = PN->getIncomingValue(i); 4714 if (L->contains(PN->getIncomingBlock(i))) { 4715 if (!BEValueV) { 4716 BEValueV = V; 4717 } else if (BEValueV != V) { 4718 BEValueV = nullptr; 4719 break; 4720 } 4721 } else if (!StartValueV) { 4722 StartValueV = V; 4723 } else if (StartValueV != V) { 4724 StartValueV = nullptr; 4725 break; 4726 } 4727 } 4728 if (!BEValueV || !StartValueV) 4729 return None; 4730 4731 const SCEV *BEValue = getSCEV(BEValueV); 4732 4733 // If the value coming around the backedge is an add with the symbolic 4734 // value we just inserted, possibly with casts that we can ignore under 4735 // an appropriate runtime guard, then we found a simple induction variable! 4736 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4737 if (!Add) 4738 return None; 4739 4740 // If there is a single occurrence of the symbolic value, possibly 4741 // casted, replace it with a recurrence. 4742 unsigned FoundIndex = Add->getNumOperands(); 4743 Type *TruncTy = nullptr; 4744 bool Signed; 4745 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4746 if ((TruncTy = 4747 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4748 if (FoundIndex == e) { 4749 FoundIndex = i; 4750 break; 4751 } 4752 4753 if (FoundIndex == Add->getNumOperands()) 4754 return None; 4755 4756 // Create an add with everything but the specified operand. 4757 SmallVector<const SCEV *, 8> Ops; 4758 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4759 if (i != FoundIndex) 4760 Ops.push_back(Add->getOperand(i)); 4761 const SCEV *Accum = getAddExpr(Ops); 4762 4763 // The runtime checks will not be valid if the step amount is 4764 // varying inside the loop. 4765 if (!isLoopInvariant(Accum, L)) 4766 return None; 4767 4768 // *** Part2: Create the predicates 4769 4770 // Analysis was successful: we have a phi-with-cast pattern for which we 4771 // can return an AddRec expression under the following predicates: 4772 // 4773 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4774 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4775 // P2: An Equal predicate that guarantees that 4776 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4777 // P3: An Equal predicate that guarantees that 4778 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4779 // 4780 // As we next prove, the above predicates guarantee that: 4781 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4782 // 4783 // 4784 // More formally, we want to prove that: 4785 // Expr(i+1) = Start + (i+1) * Accum 4786 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4787 // 4788 // Given that: 4789 // 1) Expr(0) = Start 4790 // 2) Expr(1) = Start + Accum 4791 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4792 // 3) Induction hypothesis (step i): 4793 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4794 // 4795 // Proof: 4796 // Expr(i+1) = 4797 // = Start + (i+1)*Accum 4798 // = (Start + i*Accum) + Accum 4799 // = Expr(i) + Accum 4800 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4801 // :: from step i 4802 // 4803 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4804 // 4805 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4806 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4807 // + Accum :: from P3 4808 // 4809 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4810 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4811 // 4812 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4813 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4814 // 4815 // By induction, the same applies to all iterations 1<=i<n: 4816 // 4817 4818 // Create a truncated addrec for which we will add a no overflow check (P1). 4819 const SCEV *StartVal = getSCEV(StartValueV); 4820 const SCEV *PHISCEV = 4821 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4822 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4823 4824 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4825 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4826 // will be constant. 4827 // 4828 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4829 // add P1. 4830 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4831 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4832 Signed ? SCEVWrapPredicate::IncrementNSSW 4833 : SCEVWrapPredicate::IncrementNUSW; 4834 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4835 Predicates.push_back(AddRecPred); 4836 } 4837 4838 // Create the Equal Predicates P2,P3: 4839 4840 // It is possible that the predicates P2 and/or P3 are computable at 4841 // compile time due to StartVal and/or Accum being constants. 4842 // If either one is, then we can check that now and escape if either P2 4843 // or P3 is false. 4844 4845 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4846 // for each of StartVal and Accum 4847 auto getExtendedExpr = [&](const SCEV *Expr, 4848 bool CreateSignExtend) -> const SCEV * { 4849 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4850 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4851 const SCEV *ExtendedExpr = 4852 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4853 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4854 return ExtendedExpr; 4855 }; 4856 4857 // Given: 4858 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4859 // = getExtendedExpr(Expr) 4860 // Determine whether the predicate P: Expr == ExtendedExpr 4861 // is known to be false at compile time 4862 auto PredIsKnownFalse = [&](const SCEV *Expr, 4863 const SCEV *ExtendedExpr) -> bool { 4864 return Expr != ExtendedExpr && 4865 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4866 }; 4867 4868 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4869 if (PredIsKnownFalse(StartVal, StartExtended)) { 4870 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4871 return None; 4872 } 4873 4874 // The Step is always Signed (because the overflow checks are either 4875 // NSSW or NUSW) 4876 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4877 if (PredIsKnownFalse(Accum, AccumExtended)) { 4878 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4879 return None; 4880 } 4881 4882 auto AppendPredicate = [&](const SCEV *Expr, 4883 const SCEV *ExtendedExpr) -> void { 4884 if (Expr != ExtendedExpr && 4885 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4886 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4887 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4888 Predicates.push_back(Pred); 4889 } 4890 }; 4891 4892 AppendPredicate(StartVal, StartExtended); 4893 AppendPredicate(Accum, AccumExtended); 4894 4895 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4896 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4897 // into NewAR if it will also add the runtime overflow checks specified in 4898 // Predicates. 4899 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4900 4901 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4902 std::make_pair(NewAR, Predicates); 4903 // Remember the result of the analysis for this SCEV at this locayyytion. 4904 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4905 return PredRewrite; 4906 } 4907 4908 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4909 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4910 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4911 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4912 if (!L) 4913 return None; 4914 4915 // Check to see if we already analyzed this PHI. 4916 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4917 if (I != PredicatedSCEVRewrites.end()) { 4918 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4919 I->second; 4920 // Analysis was done before and failed to create an AddRec: 4921 if (Rewrite.first == SymbolicPHI) 4922 return None; 4923 // Analysis was done before and succeeded to create an AddRec under 4924 // a predicate: 4925 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4926 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4927 return Rewrite; 4928 } 4929 4930 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4931 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4932 4933 // Record in the cache that the analysis failed 4934 if (!Rewrite) { 4935 SmallVector<const SCEVPredicate *, 3> Predicates; 4936 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4937 return None; 4938 } 4939 4940 return Rewrite; 4941 } 4942 4943 // FIXME: This utility is currently required because the Rewriter currently 4944 // does not rewrite this expression: 4945 // {0, +, (sext ix (trunc iy to ix) to iy)} 4946 // into {0, +, %step}, 4947 // even when the following Equal predicate exists: 4948 // "%step == (sext ix (trunc iy to ix) to iy)". 4949 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 4950 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 4951 if (AR1 == AR2) 4952 return true; 4953 4954 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 4955 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 4956 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 4957 return false; 4958 return true; 4959 }; 4960 4961 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 4962 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 4963 return false; 4964 return true; 4965 } 4966 4967 /// A helper function for createAddRecFromPHI to handle simple cases. 4968 /// 4969 /// This function tries to find an AddRec expression for the simplest (yet most 4970 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4971 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4972 /// technique for finding the AddRec expression. 4973 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4974 Value *BEValueV, 4975 Value *StartValueV) { 4976 const Loop *L = LI.getLoopFor(PN->getParent()); 4977 assert(L && L->getHeader() == PN->getParent()); 4978 assert(BEValueV && StartValueV); 4979 4980 auto BO = MatchBinaryOp(BEValueV, DT); 4981 if (!BO) 4982 return nullptr; 4983 4984 if (BO->Opcode != Instruction::Add) 4985 return nullptr; 4986 4987 const SCEV *Accum = nullptr; 4988 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4989 Accum = getSCEV(BO->RHS); 4990 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4991 Accum = getSCEV(BO->LHS); 4992 4993 if (!Accum) 4994 return nullptr; 4995 4996 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4997 if (BO->IsNUW) 4998 Flags = setFlags(Flags, SCEV::FlagNUW); 4999 if (BO->IsNSW) 5000 Flags = setFlags(Flags, SCEV::FlagNSW); 5001 5002 const SCEV *StartVal = getSCEV(StartValueV); 5003 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5004 5005 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5006 5007 // We can add Flags to the post-inc expression only if we 5008 // know that it is *undefined behavior* for BEValueV to 5009 // overflow. 5010 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5011 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5012 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5013 5014 return PHISCEV; 5015 } 5016 5017 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5018 const Loop *L = LI.getLoopFor(PN->getParent()); 5019 if (!L || L->getHeader() != PN->getParent()) 5020 return nullptr; 5021 5022 // The loop may have multiple entrances or multiple exits; we can analyze 5023 // this phi as an addrec if it has a unique entry value and a unique 5024 // backedge value. 5025 Value *BEValueV = nullptr, *StartValueV = nullptr; 5026 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5027 Value *V = PN->getIncomingValue(i); 5028 if (L->contains(PN->getIncomingBlock(i))) { 5029 if (!BEValueV) { 5030 BEValueV = V; 5031 } else if (BEValueV != V) { 5032 BEValueV = nullptr; 5033 break; 5034 } 5035 } else if (!StartValueV) { 5036 StartValueV = V; 5037 } else if (StartValueV != V) { 5038 StartValueV = nullptr; 5039 break; 5040 } 5041 } 5042 if (!BEValueV || !StartValueV) 5043 return nullptr; 5044 5045 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5046 "PHI node already processed?"); 5047 5048 // First, try to find AddRec expression without creating a fictituos symbolic 5049 // value for PN. 5050 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5051 return S; 5052 5053 // Handle PHI node value symbolically. 5054 const SCEV *SymbolicName = getUnknown(PN); 5055 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5056 5057 // Using this symbolic name for the PHI, analyze the value coming around 5058 // the back-edge. 5059 const SCEV *BEValue = getSCEV(BEValueV); 5060 5061 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5062 // has a special value for the first iteration of the loop. 5063 5064 // If the value coming around the backedge is an add with the symbolic 5065 // value we just inserted, then we found a simple induction variable! 5066 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5067 // If there is a single occurrence of the symbolic value, replace it 5068 // with a recurrence. 5069 unsigned FoundIndex = Add->getNumOperands(); 5070 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5071 if (Add->getOperand(i) == SymbolicName) 5072 if (FoundIndex == e) { 5073 FoundIndex = i; 5074 break; 5075 } 5076 5077 if (FoundIndex != Add->getNumOperands()) { 5078 // Create an add with everything but the specified operand. 5079 SmallVector<const SCEV *, 8> Ops; 5080 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5081 if (i != FoundIndex) 5082 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5083 L, *this)); 5084 const SCEV *Accum = getAddExpr(Ops); 5085 5086 // This is not a valid addrec if the step amount is varying each 5087 // loop iteration, but is not itself an addrec in this loop. 5088 if (isLoopInvariant(Accum, L) || 5089 (isa<SCEVAddRecExpr>(Accum) && 5090 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5091 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5092 5093 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5094 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5095 if (BO->IsNUW) 5096 Flags = setFlags(Flags, SCEV::FlagNUW); 5097 if (BO->IsNSW) 5098 Flags = setFlags(Flags, SCEV::FlagNSW); 5099 } 5100 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5101 // If the increment is an inbounds GEP, then we know the address 5102 // space cannot be wrapped around. We cannot make any guarantee 5103 // about signed or unsigned overflow because pointers are 5104 // unsigned but we may have a negative index from the base 5105 // pointer. We can guarantee that no unsigned wrap occurs if the 5106 // indices form a positive value. 5107 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5108 Flags = setFlags(Flags, SCEV::FlagNW); 5109 5110 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5111 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5112 Flags = setFlags(Flags, SCEV::FlagNUW); 5113 } 5114 5115 // We cannot transfer nuw and nsw flags from subtraction 5116 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5117 // for instance. 5118 } 5119 5120 const SCEV *StartVal = getSCEV(StartValueV); 5121 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5122 5123 // Okay, for the entire analysis of this edge we assumed the PHI 5124 // to be symbolic. We now need to go back and purge all of the 5125 // entries for the scalars that use the symbolic expression. 5126 forgetSymbolicName(PN, SymbolicName); 5127 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5128 5129 // We can add Flags to the post-inc expression only if we 5130 // know that it is *undefined behavior* for BEValueV to 5131 // overflow. 5132 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5133 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5134 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5135 5136 return PHISCEV; 5137 } 5138 } 5139 } else { 5140 // Otherwise, this could be a loop like this: 5141 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5142 // In this case, j = {1,+,1} and BEValue is j. 5143 // Because the other in-value of i (0) fits the evolution of BEValue 5144 // i really is an addrec evolution. 5145 // 5146 // We can generalize this saying that i is the shifted value of BEValue 5147 // by one iteration: 5148 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5149 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5150 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5151 if (Shifted != getCouldNotCompute() && 5152 Start != getCouldNotCompute()) { 5153 const SCEV *StartVal = getSCEV(StartValueV); 5154 if (Start == StartVal) { 5155 // Okay, for the entire analysis of this edge we assumed the PHI 5156 // to be symbolic. We now need to go back and purge all of the 5157 // entries for the scalars that use the symbolic expression. 5158 forgetSymbolicName(PN, SymbolicName); 5159 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5160 return Shifted; 5161 } 5162 } 5163 } 5164 5165 // Remove the temporary PHI node SCEV that has been inserted while intending 5166 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5167 // as it will prevent later (possibly simpler) SCEV expressions to be added 5168 // to the ValueExprMap. 5169 eraseValueFromMap(PN); 5170 5171 return nullptr; 5172 } 5173 5174 // Checks if the SCEV S is available at BB. S is considered available at BB 5175 // if S can be materialized at BB without introducing a fault. 5176 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5177 BasicBlock *BB) { 5178 struct CheckAvailable { 5179 bool TraversalDone = false; 5180 bool Available = true; 5181 5182 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5183 BasicBlock *BB = nullptr; 5184 DominatorTree &DT; 5185 5186 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5187 : L(L), BB(BB), DT(DT) {} 5188 5189 bool setUnavailable() { 5190 TraversalDone = true; 5191 Available = false; 5192 return false; 5193 } 5194 5195 bool follow(const SCEV *S) { 5196 switch (S->getSCEVType()) { 5197 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 5198 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 5199 // These expressions are available if their operand(s) is/are. 5200 return true; 5201 5202 case scAddRecExpr: { 5203 // We allow add recurrences that are on the loop BB is in, or some 5204 // outer loop. This guarantees availability because the value of the 5205 // add recurrence at BB is simply the "current" value of the induction 5206 // variable. We can relax this in the future; for instance an add 5207 // recurrence on a sibling dominating loop is also available at BB. 5208 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5209 if (L && (ARLoop == L || ARLoop->contains(L))) 5210 return true; 5211 5212 return setUnavailable(); 5213 } 5214 5215 case scUnknown: { 5216 // For SCEVUnknown, we check for simple dominance. 5217 const auto *SU = cast<SCEVUnknown>(S); 5218 Value *V = SU->getValue(); 5219 5220 if (isa<Argument>(V)) 5221 return false; 5222 5223 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5224 return false; 5225 5226 return setUnavailable(); 5227 } 5228 5229 case scUDivExpr: 5230 case scCouldNotCompute: 5231 // We do not try to smart about these at all. 5232 return setUnavailable(); 5233 } 5234 llvm_unreachable("switch should be fully covered!"); 5235 } 5236 5237 bool isDone() { return TraversalDone; } 5238 }; 5239 5240 CheckAvailable CA(L, BB, DT); 5241 SCEVTraversal<CheckAvailable> ST(CA); 5242 5243 ST.visitAll(S); 5244 return CA.Available; 5245 } 5246 5247 // Try to match a control flow sequence that branches out at BI and merges back 5248 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5249 // match. 5250 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5251 Value *&C, Value *&LHS, Value *&RHS) { 5252 C = BI->getCondition(); 5253 5254 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5255 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5256 5257 if (!LeftEdge.isSingleEdge()) 5258 return false; 5259 5260 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5261 5262 Use &LeftUse = Merge->getOperandUse(0); 5263 Use &RightUse = Merge->getOperandUse(1); 5264 5265 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5266 LHS = LeftUse; 5267 RHS = RightUse; 5268 return true; 5269 } 5270 5271 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5272 LHS = RightUse; 5273 RHS = LeftUse; 5274 return true; 5275 } 5276 5277 return false; 5278 } 5279 5280 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5281 auto IsReachable = 5282 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5283 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5284 const Loop *L = LI.getLoopFor(PN->getParent()); 5285 5286 // We don't want to break LCSSA, even in a SCEV expression tree. 5287 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5288 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5289 return nullptr; 5290 5291 // Try to match 5292 // 5293 // br %cond, label %left, label %right 5294 // left: 5295 // br label %merge 5296 // right: 5297 // br label %merge 5298 // merge: 5299 // V = phi [ %x, %left ], [ %y, %right ] 5300 // 5301 // as "select %cond, %x, %y" 5302 5303 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5304 assert(IDom && "At least the entry block should dominate PN"); 5305 5306 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5307 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5308 5309 if (BI && BI->isConditional() && 5310 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5311 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5312 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5313 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5314 } 5315 5316 return nullptr; 5317 } 5318 5319 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5320 if (const SCEV *S = createAddRecFromPHI(PN)) 5321 return S; 5322 5323 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5324 return S; 5325 5326 // If the PHI has a single incoming value, follow that value, unless the 5327 // PHI's incoming blocks are in a different loop, in which case doing so 5328 // risks breaking LCSSA form. Instcombine would normally zap these, but 5329 // it doesn't have DominatorTree information, so it may miss cases. 5330 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5331 if (LI.replacementPreservesLCSSAForm(PN, V)) 5332 return getSCEV(V); 5333 5334 // If it's not a loop phi, we can't handle it yet. 5335 return getUnknown(PN); 5336 } 5337 5338 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5339 Value *Cond, 5340 Value *TrueVal, 5341 Value *FalseVal) { 5342 // Handle "constant" branch or select. This can occur for instance when a 5343 // loop pass transforms an inner loop and moves on to process the outer loop. 5344 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5345 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5346 5347 // Try to match some simple smax or umax patterns. 5348 auto *ICI = dyn_cast<ICmpInst>(Cond); 5349 if (!ICI) 5350 return getUnknown(I); 5351 5352 Value *LHS = ICI->getOperand(0); 5353 Value *RHS = ICI->getOperand(1); 5354 5355 switch (ICI->getPredicate()) { 5356 case ICmpInst::ICMP_SLT: 5357 case ICmpInst::ICMP_SLE: 5358 std::swap(LHS, RHS); 5359 LLVM_FALLTHROUGH; 5360 case ICmpInst::ICMP_SGT: 5361 case ICmpInst::ICMP_SGE: 5362 // a >s b ? a+x : b+x -> smax(a, b)+x 5363 // a >s b ? b+x : a+x -> smin(a, b)+x 5364 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5365 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5366 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5367 const SCEV *LA = getSCEV(TrueVal); 5368 const SCEV *RA = getSCEV(FalseVal); 5369 const SCEV *LDiff = getMinusSCEV(LA, LS); 5370 const SCEV *RDiff = getMinusSCEV(RA, RS); 5371 if (LDiff == RDiff) 5372 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5373 LDiff = getMinusSCEV(LA, RS); 5374 RDiff = getMinusSCEV(RA, LS); 5375 if (LDiff == RDiff) 5376 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5377 } 5378 break; 5379 case ICmpInst::ICMP_ULT: 5380 case ICmpInst::ICMP_ULE: 5381 std::swap(LHS, RHS); 5382 LLVM_FALLTHROUGH; 5383 case ICmpInst::ICMP_UGT: 5384 case ICmpInst::ICMP_UGE: 5385 // a >u b ? a+x : b+x -> umax(a, b)+x 5386 // a >u b ? b+x : a+x -> umin(a, b)+x 5387 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5388 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5389 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5390 const SCEV *LA = getSCEV(TrueVal); 5391 const SCEV *RA = getSCEV(FalseVal); 5392 const SCEV *LDiff = getMinusSCEV(LA, LS); 5393 const SCEV *RDiff = getMinusSCEV(RA, RS); 5394 if (LDiff == RDiff) 5395 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5396 LDiff = getMinusSCEV(LA, RS); 5397 RDiff = getMinusSCEV(RA, LS); 5398 if (LDiff == RDiff) 5399 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5400 } 5401 break; 5402 case ICmpInst::ICMP_NE: 5403 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5404 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5405 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5406 const SCEV *One = getOne(I->getType()); 5407 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5408 const SCEV *LA = getSCEV(TrueVal); 5409 const SCEV *RA = getSCEV(FalseVal); 5410 const SCEV *LDiff = getMinusSCEV(LA, LS); 5411 const SCEV *RDiff = getMinusSCEV(RA, One); 5412 if (LDiff == RDiff) 5413 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5414 } 5415 break; 5416 case ICmpInst::ICMP_EQ: 5417 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5418 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5419 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5420 const SCEV *One = getOne(I->getType()); 5421 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5422 const SCEV *LA = getSCEV(TrueVal); 5423 const SCEV *RA = getSCEV(FalseVal); 5424 const SCEV *LDiff = getMinusSCEV(LA, One); 5425 const SCEV *RDiff = getMinusSCEV(RA, LS); 5426 if (LDiff == RDiff) 5427 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5428 } 5429 break; 5430 default: 5431 break; 5432 } 5433 5434 return getUnknown(I); 5435 } 5436 5437 /// Expand GEP instructions into add and multiply operations. This allows them 5438 /// to be analyzed by regular SCEV code. 5439 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5440 // Don't attempt to analyze GEPs over unsized objects. 5441 if (!GEP->getSourceElementType()->isSized()) 5442 return getUnknown(GEP); 5443 5444 SmallVector<const SCEV *, 4> IndexExprs; 5445 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5446 IndexExprs.push_back(getSCEV(*Index)); 5447 return getGEPExpr(GEP, IndexExprs); 5448 } 5449 5450 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5451 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5452 return C->getAPInt().countTrailingZeros(); 5453 5454 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5455 return std::min(GetMinTrailingZeros(T->getOperand()), 5456 (uint32_t)getTypeSizeInBits(T->getType())); 5457 5458 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5459 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5460 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5461 ? getTypeSizeInBits(E->getType()) 5462 : OpRes; 5463 } 5464 5465 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5466 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5467 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5468 ? getTypeSizeInBits(E->getType()) 5469 : OpRes; 5470 } 5471 5472 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5473 // The result is the min of all operands results. 5474 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5475 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5476 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5477 return MinOpRes; 5478 } 5479 5480 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5481 // The result is the sum of all operands results. 5482 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5483 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5484 for (unsigned i = 1, e = M->getNumOperands(); 5485 SumOpRes != BitWidth && i != e; ++i) 5486 SumOpRes = 5487 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5488 return SumOpRes; 5489 } 5490 5491 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5492 // The result is the min of all operands results. 5493 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5494 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5495 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5496 return MinOpRes; 5497 } 5498 5499 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5500 // The result is the min of all operands results. 5501 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5502 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5503 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5504 return MinOpRes; 5505 } 5506 5507 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5508 // The result is the min of all operands results. 5509 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5510 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5511 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5512 return MinOpRes; 5513 } 5514 5515 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5516 // For a SCEVUnknown, ask ValueTracking. 5517 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5518 return Known.countMinTrailingZeros(); 5519 } 5520 5521 // SCEVUDivExpr 5522 return 0; 5523 } 5524 5525 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5526 auto I = MinTrailingZerosCache.find(S); 5527 if (I != MinTrailingZerosCache.end()) 5528 return I->second; 5529 5530 uint32_t Result = GetMinTrailingZerosImpl(S); 5531 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5532 assert(InsertPair.second && "Should insert a new key"); 5533 return InsertPair.first->second; 5534 } 5535 5536 /// Helper method to assign a range to V from metadata present in the IR. 5537 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5538 if (Instruction *I = dyn_cast<Instruction>(V)) 5539 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5540 return getConstantRangeFromMetadata(*MD); 5541 5542 return None; 5543 } 5544 5545 /// Determine the range for a particular SCEV. If SignHint is 5546 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5547 /// with a "cleaner" unsigned (resp. signed) representation. 5548 const ConstantRange & 5549 ScalarEvolution::getRangeRef(const SCEV *S, 5550 ScalarEvolution::RangeSignHint SignHint) { 5551 DenseMap<const SCEV *, ConstantRange> &Cache = 5552 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5553 : SignedRanges; 5554 5555 // See if we've computed this range already. 5556 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5557 if (I != Cache.end()) 5558 return I->second; 5559 5560 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5561 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5562 5563 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5564 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5565 5566 // If the value has known zeros, the maximum value will have those known zeros 5567 // as well. 5568 uint32_t TZ = GetMinTrailingZeros(S); 5569 if (TZ != 0) { 5570 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5571 ConservativeResult = 5572 ConstantRange(APInt::getMinValue(BitWidth), 5573 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5574 else 5575 ConservativeResult = ConstantRange( 5576 APInt::getSignedMinValue(BitWidth), 5577 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5578 } 5579 5580 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5581 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5582 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5583 X = X.add(getRangeRef(Add->getOperand(i), SignHint)); 5584 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 5585 } 5586 5587 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5588 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5589 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5590 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5591 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 5592 } 5593 5594 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5595 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5596 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5597 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5598 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 5599 } 5600 5601 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5602 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5603 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5604 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5605 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 5606 } 5607 5608 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5609 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5610 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5611 return setRange(UDiv, SignHint, 5612 ConservativeResult.intersectWith(X.udiv(Y))); 5613 } 5614 5615 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5616 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5617 return setRange(ZExt, SignHint, 5618 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 5619 } 5620 5621 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5622 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5623 return setRange(SExt, SignHint, 5624 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 5625 } 5626 5627 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5628 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5629 return setRange(Trunc, SignHint, 5630 ConservativeResult.intersectWith(X.truncate(BitWidth))); 5631 } 5632 5633 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5634 // If there's no unsigned wrap, the value will never be less than its 5635 // initial value. 5636 if (AddRec->hasNoUnsignedWrap()) 5637 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 5638 if (!C->getValue()->isZero()) 5639 ConservativeResult = ConservativeResult.intersectWith( 5640 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 5641 5642 // If there's no signed wrap, and all the operands have the same sign or 5643 // zero, the value won't ever change sign. 5644 if (AddRec->hasNoSignedWrap()) { 5645 bool AllNonNeg = true; 5646 bool AllNonPos = true; 5647 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5648 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 5649 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 5650 } 5651 if (AllNonNeg) 5652 ConservativeResult = ConservativeResult.intersectWith( 5653 ConstantRange(APInt(BitWidth, 0), 5654 APInt::getSignedMinValue(BitWidth))); 5655 else if (AllNonPos) 5656 ConservativeResult = ConservativeResult.intersectWith( 5657 ConstantRange(APInt::getSignedMinValue(BitWidth), 5658 APInt(BitWidth, 1))); 5659 } 5660 5661 // TODO: non-affine addrec 5662 if (AddRec->isAffine()) { 5663 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 5664 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5665 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5666 auto RangeFromAffine = getRangeForAffineAR( 5667 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5668 BitWidth); 5669 if (!RangeFromAffine.isFullSet()) 5670 ConservativeResult = 5671 ConservativeResult.intersectWith(RangeFromAffine); 5672 5673 auto RangeFromFactoring = getRangeViaFactoring( 5674 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5675 BitWidth); 5676 if (!RangeFromFactoring.isFullSet()) 5677 ConservativeResult = 5678 ConservativeResult.intersectWith(RangeFromFactoring); 5679 } 5680 } 5681 5682 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5683 } 5684 5685 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5686 // Check if the IR explicitly contains !range metadata. 5687 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5688 if (MDRange.hasValue()) 5689 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 5690 5691 // Split here to avoid paying the compile-time cost of calling both 5692 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5693 // if needed. 5694 const DataLayout &DL = getDataLayout(); 5695 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5696 // For a SCEVUnknown, ask ValueTracking. 5697 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5698 if (Known.One != ~Known.Zero + 1) 5699 ConservativeResult = 5700 ConservativeResult.intersectWith(ConstantRange(Known.One, 5701 ~Known.Zero + 1)); 5702 } else { 5703 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5704 "generalize as needed!"); 5705 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5706 if (NS > 1) 5707 ConservativeResult = ConservativeResult.intersectWith( 5708 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5709 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 5710 } 5711 5712 // A range of Phi is a subset of union of all ranges of its input. 5713 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5714 // Make sure that we do not run over cycled Phis. 5715 if (PendingPhiRanges.insert(Phi).second) { 5716 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5717 for (auto &Op : Phi->operands()) { 5718 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5719 RangeFromOps = RangeFromOps.unionWith(OpRange); 5720 // No point to continue if we already have a full set. 5721 if (RangeFromOps.isFullSet()) 5722 break; 5723 } 5724 ConservativeResult = ConservativeResult.intersectWith(RangeFromOps); 5725 bool Erased = PendingPhiRanges.erase(Phi); 5726 assert(Erased && "Failed to erase Phi properly?"); 5727 (void) Erased; 5728 } 5729 } 5730 5731 return setRange(U, SignHint, std::move(ConservativeResult)); 5732 } 5733 5734 return setRange(S, SignHint, std::move(ConservativeResult)); 5735 } 5736 5737 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5738 // values that the expression can take. Initially, the expression has a value 5739 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5740 // argument defines if we treat Step as signed or unsigned. 5741 static ConstantRange getRangeForAffineARHelper(APInt Step, 5742 const ConstantRange &StartRange, 5743 const APInt &MaxBECount, 5744 unsigned BitWidth, bool Signed) { 5745 // If either Step or MaxBECount is 0, then the expression won't change, and we 5746 // just need to return the initial range. 5747 if (Step == 0 || MaxBECount == 0) 5748 return StartRange; 5749 5750 // If we don't know anything about the initial value (i.e. StartRange is 5751 // FullRange), then we don't know anything about the final range either. 5752 // Return FullRange. 5753 if (StartRange.isFullSet()) 5754 return ConstantRange(BitWidth, /* isFullSet = */ true); 5755 5756 // If Step is signed and negative, then we use its absolute value, but we also 5757 // note that we're moving in the opposite direction. 5758 bool Descending = Signed && Step.isNegative(); 5759 5760 if (Signed) 5761 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5762 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5763 // This equations hold true due to the well-defined wrap-around behavior of 5764 // APInt. 5765 Step = Step.abs(); 5766 5767 // Check if Offset is more than full span of BitWidth. If it is, the 5768 // expression is guaranteed to overflow. 5769 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5770 return ConstantRange(BitWidth, /* isFullSet = */ true); 5771 5772 // Offset is by how much the expression can change. Checks above guarantee no 5773 // overflow here. 5774 APInt Offset = Step * MaxBECount; 5775 5776 // Minimum value of the final range will match the minimal value of StartRange 5777 // if the expression is increasing and will be decreased by Offset otherwise. 5778 // Maximum value of the final range will match the maximal value of StartRange 5779 // if the expression is decreasing and will be increased by Offset otherwise. 5780 APInt StartLower = StartRange.getLower(); 5781 APInt StartUpper = StartRange.getUpper() - 1; 5782 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5783 : (StartUpper + std::move(Offset)); 5784 5785 // It's possible that the new minimum/maximum value will fall into the initial 5786 // range (due to wrap around). This means that the expression can take any 5787 // value in this bitwidth, and we have to return full range. 5788 if (StartRange.contains(MovedBoundary)) 5789 return ConstantRange(BitWidth, /* isFullSet = */ true); 5790 5791 APInt NewLower = 5792 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5793 APInt NewUpper = 5794 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5795 NewUpper += 1; 5796 5797 // If we end up with full range, return a proper full range. 5798 if (NewLower == NewUpper) 5799 return ConstantRange(BitWidth, /* isFullSet = */ true); 5800 5801 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5802 return ConstantRange(std::move(NewLower), std::move(NewUpper)); 5803 } 5804 5805 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5806 const SCEV *Step, 5807 const SCEV *MaxBECount, 5808 unsigned BitWidth) { 5809 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5810 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5811 "Precondition!"); 5812 5813 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5814 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5815 5816 // First, consider step signed. 5817 ConstantRange StartSRange = getSignedRange(Start); 5818 ConstantRange StepSRange = getSignedRange(Step); 5819 5820 // If Step can be both positive and negative, we need to find ranges for the 5821 // maximum absolute step values in both directions and union them. 5822 ConstantRange SR = 5823 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5824 MaxBECountValue, BitWidth, /* Signed = */ true); 5825 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5826 StartSRange, MaxBECountValue, 5827 BitWidth, /* Signed = */ true)); 5828 5829 // Next, consider step unsigned. 5830 ConstantRange UR = getRangeForAffineARHelper( 5831 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5832 MaxBECountValue, BitWidth, /* Signed = */ false); 5833 5834 // Finally, intersect signed and unsigned ranges. 5835 return SR.intersectWith(UR); 5836 } 5837 5838 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5839 const SCEV *Step, 5840 const SCEV *MaxBECount, 5841 unsigned BitWidth) { 5842 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5843 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5844 5845 struct SelectPattern { 5846 Value *Condition = nullptr; 5847 APInt TrueValue; 5848 APInt FalseValue; 5849 5850 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5851 const SCEV *S) { 5852 Optional<unsigned> CastOp; 5853 APInt Offset(BitWidth, 0); 5854 5855 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5856 "Should be!"); 5857 5858 // Peel off a constant offset: 5859 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5860 // In the future we could consider being smarter here and handle 5861 // {Start+Step,+,Step} too. 5862 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5863 return; 5864 5865 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5866 S = SA->getOperand(1); 5867 } 5868 5869 // Peel off a cast operation 5870 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5871 CastOp = SCast->getSCEVType(); 5872 S = SCast->getOperand(); 5873 } 5874 5875 using namespace llvm::PatternMatch; 5876 5877 auto *SU = dyn_cast<SCEVUnknown>(S); 5878 const APInt *TrueVal, *FalseVal; 5879 if (!SU || 5880 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5881 m_APInt(FalseVal)))) { 5882 Condition = nullptr; 5883 return; 5884 } 5885 5886 TrueValue = *TrueVal; 5887 FalseValue = *FalseVal; 5888 5889 // Re-apply the cast we peeled off earlier 5890 if (CastOp.hasValue()) 5891 switch (*CastOp) { 5892 default: 5893 llvm_unreachable("Unknown SCEV cast type!"); 5894 5895 case scTruncate: 5896 TrueValue = TrueValue.trunc(BitWidth); 5897 FalseValue = FalseValue.trunc(BitWidth); 5898 break; 5899 case scZeroExtend: 5900 TrueValue = TrueValue.zext(BitWidth); 5901 FalseValue = FalseValue.zext(BitWidth); 5902 break; 5903 case scSignExtend: 5904 TrueValue = TrueValue.sext(BitWidth); 5905 FalseValue = FalseValue.sext(BitWidth); 5906 break; 5907 } 5908 5909 // Re-apply the constant offset we peeled off earlier 5910 TrueValue += Offset; 5911 FalseValue += Offset; 5912 } 5913 5914 bool isRecognized() { return Condition != nullptr; } 5915 }; 5916 5917 SelectPattern StartPattern(*this, BitWidth, Start); 5918 if (!StartPattern.isRecognized()) 5919 return ConstantRange(BitWidth, /* isFullSet = */ true); 5920 5921 SelectPattern StepPattern(*this, BitWidth, Step); 5922 if (!StepPattern.isRecognized()) 5923 return ConstantRange(BitWidth, /* isFullSet = */ true); 5924 5925 if (StartPattern.Condition != StepPattern.Condition) { 5926 // We don't handle this case today; but we could, by considering four 5927 // possibilities below instead of two. I'm not sure if there are cases where 5928 // that will help over what getRange already does, though. 5929 return ConstantRange(BitWidth, /* isFullSet = */ true); 5930 } 5931 5932 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5933 // construct arbitrary general SCEV expressions here. This function is called 5934 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5935 // say) can end up caching a suboptimal value. 5936 5937 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5938 // C2352 and C2512 (otherwise it isn't needed). 5939 5940 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5941 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5942 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5943 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5944 5945 ConstantRange TrueRange = 5946 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5947 ConstantRange FalseRange = 5948 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5949 5950 return TrueRange.unionWith(FalseRange); 5951 } 5952 5953 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5954 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5955 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5956 5957 // Return early if there are no flags to propagate to the SCEV. 5958 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5959 if (BinOp->hasNoUnsignedWrap()) 5960 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5961 if (BinOp->hasNoSignedWrap()) 5962 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5963 if (Flags == SCEV::FlagAnyWrap) 5964 return SCEV::FlagAnyWrap; 5965 5966 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5967 } 5968 5969 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5970 // Here we check that I is in the header of the innermost loop containing I, 5971 // since we only deal with instructions in the loop header. The actual loop we 5972 // need to check later will come from an add recurrence, but getting that 5973 // requires computing the SCEV of the operands, which can be expensive. This 5974 // check we can do cheaply to rule out some cases early. 5975 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5976 if (InnermostContainingLoop == nullptr || 5977 InnermostContainingLoop->getHeader() != I->getParent()) 5978 return false; 5979 5980 // Only proceed if we can prove that I does not yield poison. 5981 if (!programUndefinedIfFullPoison(I)) 5982 return false; 5983 5984 // At this point we know that if I is executed, then it does not wrap 5985 // according to at least one of NSW or NUW. If I is not executed, then we do 5986 // not know if the calculation that I represents would wrap. Multiple 5987 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 5988 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 5989 // derived from other instructions that map to the same SCEV. We cannot make 5990 // that guarantee for cases where I is not executed. So we need to find the 5991 // loop that I is considered in relation to and prove that I is executed for 5992 // every iteration of that loop. That implies that the value that I 5993 // calculates does not wrap anywhere in the loop, so then we can apply the 5994 // flags to the SCEV. 5995 // 5996 // We check isLoopInvariant to disambiguate in case we are adding recurrences 5997 // from different loops, so that we know which loop to prove that I is 5998 // executed in. 5999 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6000 // I could be an extractvalue from a call to an overflow intrinsic. 6001 // TODO: We can do better here in some cases. 6002 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6003 return false; 6004 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6005 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6006 bool AllOtherOpsLoopInvariant = true; 6007 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6008 ++OtherOpIndex) { 6009 if (OtherOpIndex != OpIndex) { 6010 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6011 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6012 AllOtherOpsLoopInvariant = false; 6013 break; 6014 } 6015 } 6016 } 6017 if (AllOtherOpsLoopInvariant && 6018 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6019 return true; 6020 } 6021 } 6022 return false; 6023 } 6024 6025 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6026 // If we know that \c I can never be poison period, then that's enough. 6027 if (isSCEVExprNeverPoison(I)) 6028 return true; 6029 6030 // For an add recurrence specifically, we assume that infinite loops without 6031 // side effects are undefined behavior, and then reason as follows: 6032 // 6033 // If the add recurrence is poison in any iteration, it is poison on all 6034 // future iterations (since incrementing poison yields poison). If the result 6035 // of the add recurrence is fed into the loop latch condition and the loop 6036 // does not contain any throws or exiting blocks other than the latch, we now 6037 // have the ability to "choose" whether the backedge is taken or not (by 6038 // choosing a sufficiently evil value for the poison feeding into the branch) 6039 // for every iteration including and after the one in which \p I first became 6040 // poison. There are two possibilities (let's call the iteration in which \p 6041 // I first became poison as K): 6042 // 6043 // 1. In the set of iterations including and after K, the loop body executes 6044 // no side effects. In this case executing the backege an infinte number 6045 // of times will yield undefined behavior. 6046 // 6047 // 2. In the set of iterations including and after K, the loop body executes 6048 // at least one side effect. In this case, that specific instance of side 6049 // effect is control dependent on poison, which also yields undefined 6050 // behavior. 6051 6052 auto *ExitingBB = L->getExitingBlock(); 6053 auto *LatchBB = L->getLoopLatch(); 6054 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6055 return false; 6056 6057 SmallPtrSet<const Instruction *, 16> Pushed; 6058 SmallVector<const Instruction *, 8> PoisonStack; 6059 6060 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6061 // things that are known to be fully poison under that assumption go on the 6062 // PoisonStack. 6063 Pushed.insert(I); 6064 PoisonStack.push_back(I); 6065 6066 bool LatchControlDependentOnPoison = false; 6067 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6068 const Instruction *Poison = PoisonStack.pop_back_val(); 6069 6070 for (auto *PoisonUser : Poison->users()) { 6071 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 6072 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6073 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6074 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6075 assert(BI->isConditional() && "Only possibility!"); 6076 if (BI->getParent() == LatchBB) { 6077 LatchControlDependentOnPoison = true; 6078 break; 6079 } 6080 } 6081 } 6082 } 6083 6084 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6085 } 6086 6087 ScalarEvolution::LoopProperties 6088 ScalarEvolution::getLoopProperties(const Loop *L) { 6089 using LoopProperties = ScalarEvolution::LoopProperties; 6090 6091 auto Itr = LoopPropertiesCache.find(L); 6092 if (Itr == LoopPropertiesCache.end()) { 6093 auto HasSideEffects = [](Instruction *I) { 6094 if (auto *SI = dyn_cast<StoreInst>(I)) 6095 return !SI->isSimple(); 6096 6097 return I->mayHaveSideEffects(); 6098 }; 6099 6100 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6101 /*HasNoSideEffects*/ true}; 6102 6103 for (auto *BB : L->getBlocks()) 6104 for (auto &I : *BB) { 6105 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6106 LP.HasNoAbnormalExits = false; 6107 if (HasSideEffects(&I)) 6108 LP.HasNoSideEffects = false; 6109 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6110 break; // We're already as pessimistic as we can get. 6111 } 6112 6113 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6114 assert(InsertPair.second && "We just checked!"); 6115 Itr = InsertPair.first; 6116 } 6117 6118 return Itr->second; 6119 } 6120 6121 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6122 if (!isSCEVable(V->getType())) 6123 return getUnknown(V); 6124 6125 if (Instruction *I = dyn_cast<Instruction>(V)) { 6126 // Don't attempt to analyze instructions in blocks that aren't 6127 // reachable. Such instructions don't matter, and they aren't required 6128 // to obey basic rules for definitions dominating uses which this 6129 // analysis depends on. 6130 if (!DT.isReachableFromEntry(I->getParent())) 6131 return getUnknown(V); 6132 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6133 return getConstant(CI); 6134 else if (isa<ConstantPointerNull>(V)) 6135 return getZero(V->getType()); 6136 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6137 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6138 else if (!isa<ConstantExpr>(V)) 6139 return getUnknown(V); 6140 6141 Operator *U = cast<Operator>(V); 6142 if (auto BO = MatchBinaryOp(U, DT)) { 6143 switch (BO->Opcode) { 6144 case Instruction::Add: { 6145 // The simple thing to do would be to just call getSCEV on both operands 6146 // and call getAddExpr with the result. However if we're looking at a 6147 // bunch of things all added together, this can be quite inefficient, 6148 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6149 // Instead, gather up all the operands and make a single getAddExpr call. 6150 // LLVM IR canonical form means we need only traverse the left operands. 6151 SmallVector<const SCEV *, 4> AddOps; 6152 do { 6153 if (BO->Op) { 6154 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6155 AddOps.push_back(OpSCEV); 6156 break; 6157 } 6158 6159 // If a NUW or NSW flag can be applied to the SCEV for this 6160 // addition, then compute the SCEV for this addition by itself 6161 // with a separate call to getAddExpr. We need to do that 6162 // instead of pushing the operands of the addition onto AddOps, 6163 // since the flags are only known to apply to this particular 6164 // addition - they may not apply to other additions that can be 6165 // formed with operands from AddOps. 6166 const SCEV *RHS = getSCEV(BO->RHS); 6167 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6168 if (Flags != SCEV::FlagAnyWrap) { 6169 const SCEV *LHS = getSCEV(BO->LHS); 6170 if (BO->Opcode == Instruction::Sub) 6171 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6172 else 6173 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6174 break; 6175 } 6176 } 6177 6178 if (BO->Opcode == Instruction::Sub) 6179 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6180 else 6181 AddOps.push_back(getSCEV(BO->RHS)); 6182 6183 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6184 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6185 NewBO->Opcode != Instruction::Sub)) { 6186 AddOps.push_back(getSCEV(BO->LHS)); 6187 break; 6188 } 6189 BO = NewBO; 6190 } while (true); 6191 6192 return getAddExpr(AddOps); 6193 } 6194 6195 case Instruction::Mul: { 6196 SmallVector<const SCEV *, 4> MulOps; 6197 do { 6198 if (BO->Op) { 6199 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6200 MulOps.push_back(OpSCEV); 6201 break; 6202 } 6203 6204 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6205 if (Flags != SCEV::FlagAnyWrap) { 6206 MulOps.push_back( 6207 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6208 break; 6209 } 6210 } 6211 6212 MulOps.push_back(getSCEV(BO->RHS)); 6213 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6214 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6215 MulOps.push_back(getSCEV(BO->LHS)); 6216 break; 6217 } 6218 BO = NewBO; 6219 } while (true); 6220 6221 return getMulExpr(MulOps); 6222 } 6223 case Instruction::UDiv: 6224 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6225 case Instruction::URem: 6226 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6227 case Instruction::Sub: { 6228 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6229 if (BO->Op) 6230 Flags = getNoWrapFlagsFromUB(BO->Op); 6231 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6232 } 6233 case Instruction::And: 6234 // For an expression like x&255 that merely masks off the high bits, 6235 // use zext(trunc(x)) as the SCEV expression. 6236 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6237 if (CI->isZero()) 6238 return getSCEV(BO->RHS); 6239 if (CI->isMinusOne()) 6240 return getSCEV(BO->LHS); 6241 const APInt &A = CI->getValue(); 6242 6243 // Instcombine's ShrinkDemandedConstant may strip bits out of 6244 // constants, obscuring what would otherwise be a low-bits mask. 6245 // Use computeKnownBits to compute what ShrinkDemandedConstant 6246 // knew about to reconstruct a low-bits mask value. 6247 unsigned LZ = A.countLeadingZeros(); 6248 unsigned TZ = A.countTrailingZeros(); 6249 unsigned BitWidth = A.getBitWidth(); 6250 KnownBits Known(BitWidth); 6251 computeKnownBits(BO->LHS, Known, getDataLayout(), 6252 0, &AC, nullptr, &DT); 6253 6254 APInt EffectiveMask = 6255 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6256 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6257 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6258 const SCEV *LHS = getSCEV(BO->LHS); 6259 const SCEV *ShiftedLHS = nullptr; 6260 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6261 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6262 // For an expression like (x * 8) & 8, simplify the multiply. 6263 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6264 unsigned GCD = std::min(MulZeros, TZ); 6265 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6266 SmallVector<const SCEV*, 4> MulOps; 6267 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6268 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6269 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6270 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6271 } 6272 } 6273 if (!ShiftedLHS) 6274 ShiftedLHS = getUDivExpr(LHS, MulCount); 6275 return getMulExpr( 6276 getZeroExtendExpr( 6277 getTruncateExpr(ShiftedLHS, 6278 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6279 BO->LHS->getType()), 6280 MulCount); 6281 } 6282 } 6283 break; 6284 6285 case Instruction::Or: 6286 // If the RHS of the Or is a constant, we may have something like: 6287 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6288 // optimizations will transparently handle this case. 6289 // 6290 // In order for this transformation to be safe, the LHS must be of the 6291 // form X*(2^n) and the Or constant must be less than 2^n. 6292 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6293 const SCEV *LHS = getSCEV(BO->LHS); 6294 const APInt &CIVal = CI->getValue(); 6295 if (GetMinTrailingZeros(LHS) >= 6296 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6297 // Build a plain add SCEV. 6298 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 6299 // If the LHS of the add was an addrec and it has no-wrap flags, 6300 // transfer the no-wrap flags, since an or won't introduce a wrap. 6301 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 6302 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 6303 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 6304 OldAR->getNoWrapFlags()); 6305 } 6306 return S; 6307 } 6308 } 6309 break; 6310 6311 case Instruction::Xor: 6312 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6313 // If the RHS of xor is -1, then this is a not operation. 6314 if (CI->isMinusOne()) 6315 return getNotSCEV(getSCEV(BO->LHS)); 6316 6317 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6318 // This is a variant of the check for xor with -1, and it handles 6319 // the case where instcombine has trimmed non-demanded bits out 6320 // of an xor with -1. 6321 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6322 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6323 if (LBO->getOpcode() == Instruction::And && 6324 LCI->getValue() == CI->getValue()) 6325 if (const SCEVZeroExtendExpr *Z = 6326 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6327 Type *UTy = BO->LHS->getType(); 6328 const SCEV *Z0 = Z->getOperand(); 6329 Type *Z0Ty = Z0->getType(); 6330 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6331 6332 // If C is a low-bits mask, the zero extend is serving to 6333 // mask off the high bits. Complement the operand and 6334 // re-apply the zext. 6335 if (CI->getValue().isMask(Z0TySize)) 6336 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6337 6338 // If C is a single bit, it may be in the sign-bit position 6339 // before the zero-extend. In this case, represent the xor 6340 // using an add, which is equivalent, and re-apply the zext. 6341 APInt Trunc = CI->getValue().trunc(Z0TySize); 6342 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6343 Trunc.isSignMask()) 6344 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6345 UTy); 6346 } 6347 } 6348 break; 6349 6350 case Instruction::Shl: 6351 // Turn shift left of a constant amount into a multiply. 6352 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6353 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6354 6355 // If the shift count is not less than the bitwidth, the result of 6356 // the shift is undefined. Don't try to analyze it, because the 6357 // resolution chosen here may differ from the resolution chosen in 6358 // other parts of the compiler. 6359 if (SA->getValue().uge(BitWidth)) 6360 break; 6361 6362 // It is currently not resolved how to interpret NSW for left 6363 // shift by BitWidth - 1, so we avoid applying flags in that 6364 // case. Remove this check (or this comment) once the situation 6365 // is resolved. See 6366 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 6367 // and http://reviews.llvm.org/D8890 . 6368 auto Flags = SCEV::FlagAnyWrap; 6369 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 6370 Flags = getNoWrapFlagsFromUB(BO->Op); 6371 6372 Constant *X = ConstantInt::get( 6373 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6374 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6375 } 6376 break; 6377 6378 case Instruction::AShr: { 6379 // AShr X, C, where C is a constant. 6380 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6381 if (!CI) 6382 break; 6383 6384 Type *OuterTy = BO->LHS->getType(); 6385 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6386 // If the shift count is not less than the bitwidth, the result of 6387 // the shift is undefined. Don't try to analyze it, because the 6388 // resolution chosen here may differ from the resolution chosen in 6389 // other parts of the compiler. 6390 if (CI->getValue().uge(BitWidth)) 6391 break; 6392 6393 if (CI->isZero()) 6394 return getSCEV(BO->LHS); // shift by zero --> noop 6395 6396 uint64_t AShrAmt = CI->getZExtValue(); 6397 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6398 6399 Operator *L = dyn_cast<Operator>(BO->LHS); 6400 if (L && L->getOpcode() == Instruction::Shl) { 6401 // X = Shl A, n 6402 // Y = AShr X, m 6403 // Both n and m are constant. 6404 6405 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6406 if (L->getOperand(1) == BO->RHS) 6407 // For a two-shift sext-inreg, i.e. n = m, 6408 // use sext(trunc(x)) as the SCEV expression. 6409 return getSignExtendExpr( 6410 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6411 6412 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6413 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6414 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6415 if (ShlAmt > AShrAmt) { 6416 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6417 // expression. We already checked that ShlAmt < BitWidth, so 6418 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6419 // ShlAmt - AShrAmt < Amt. 6420 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6421 ShlAmt - AShrAmt); 6422 return getSignExtendExpr( 6423 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6424 getConstant(Mul)), OuterTy); 6425 } 6426 } 6427 } 6428 break; 6429 } 6430 } 6431 } 6432 6433 switch (U->getOpcode()) { 6434 case Instruction::Trunc: 6435 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6436 6437 case Instruction::ZExt: 6438 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6439 6440 case Instruction::SExt: 6441 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6442 // The NSW flag of a subtract does not always survive the conversion to 6443 // A + (-1)*B. By pushing sign extension onto its operands we are much 6444 // more likely to preserve NSW and allow later AddRec optimisations. 6445 // 6446 // NOTE: This is effectively duplicating this logic from getSignExtend: 6447 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6448 // but by that point the NSW information has potentially been lost. 6449 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6450 Type *Ty = U->getType(); 6451 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6452 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6453 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6454 } 6455 } 6456 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6457 6458 case Instruction::BitCast: 6459 // BitCasts are no-op casts so we just eliminate the cast. 6460 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6461 return getSCEV(U->getOperand(0)); 6462 break; 6463 6464 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 6465 // lead to pointer expressions which cannot safely be expanded to GEPs, 6466 // because ScalarEvolution doesn't respect the GEP aliasing rules when 6467 // simplifying integer expressions. 6468 6469 case Instruction::GetElementPtr: 6470 return createNodeForGEP(cast<GEPOperator>(U)); 6471 6472 case Instruction::PHI: 6473 return createNodeForPHI(cast<PHINode>(U)); 6474 6475 case Instruction::Select: 6476 // U can also be a select constant expr, which let fall through. Since 6477 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6478 // constant expressions cannot have instructions as operands, we'd have 6479 // returned getUnknown for a select constant expressions anyway. 6480 if (isa<Instruction>(U)) 6481 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6482 U->getOperand(1), U->getOperand(2)); 6483 break; 6484 6485 case Instruction::Call: 6486 case Instruction::Invoke: 6487 if (Value *RV = CallSite(U).getReturnedArgOperand()) 6488 return getSCEV(RV); 6489 break; 6490 } 6491 6492 return getUnknown(V); 6493 } 6494 6495 //===----------------------------------------------------------------------===// 6496 // Iteration Count Computation Code 6497 // 6498 6499 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6500 if (!ExitCount) 6501 return 0; 6502 6503 ConstantInt *ExitConst = ExitCount->getValue(); 6504 6505 // Guard against huge trip counts. 6506 if (ExitConst->getValue().getActiveBits() > 32) 6507 return 0; 6508 6509 // In case of integer overflow, this returns 0, which is correct. 6510 return ((unsigned)ExitConst->getZExtValue()) + 1; 6511 } 6512 6513 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6514 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6515 return getSmallConstantTripCount(L, ExitingBB); 6516 6517 // No trip count information for multiple exits. 6518 return 0; 6519 } 6520 6521 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6522 BasicBlock *ExitingBlock) { 6523 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6524 assert(L->isLoopExiting(ExitingBlock) && 6525 "Exiting block must actually branch out of the loop!"); 6526 const SCEVConstant *ExitCount = 6527 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6528 return getConstantTripCount(ExitCount); 6529 } 6530 6531 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6532 const auto *MaxExitCount = 6533 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); 6534 return getConstantTripCount(MaxExitCount); 6535 } 6536 6537 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6538 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6539 return getSmallConstantTripMultiple(L, ExitingBB); 6540 6541 // No trip multiple information for multiple exits. 6542 return 0; 6543 } 6544 6545 /// Returns the largest constant divisor of the trip count of this loop as a 6546 /// normal unsigned value, if possible. This means that the actual trip count is 6547 /// always a multiple of the returned value (don't forget the trip count could 6548 /// very well be zero as well!). 6549 /// 6550 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6551 /// multiple of a constant (which is also the case if the trip count is simply 6552 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6553 /// if the trip count is very large (>= 2^32). 6554 /// 6555 /// As explained in the comments for getSmallConstantTripCount, this assumes 6556 /// that control exits the loop via ExitingBlock. 6557 unsigned 6558 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6559 BasicBlock *ExitingBlock) { 6560 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6561 assert(L->isLoopExiting(ExitingBlock) && 6562 "Exiting block must actually branch out of the loop!"); 6563 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6564 if (ExitCount == getCouldNotCompute()) 6565 return 1; 6566 6567 // Get the trip count from the BE count by adding 1. 6568 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6569 6570 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6571 if (!TC) 6572 // Attempt to factor more general cases. Returns the greatest power of 6573 // two divisor. If overflow happens, the trip count expression is still 6574 // divisible by the greatest power of 2 divisor returned. 6575 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6576 6577 ConstantInt *Result = TC->getValue(); 6578 6579 // Guard against huge trip counts (this requires checking 6580 // for zero to handle the case where the trip count == -1 and the 6581 // addition wraps). 6582 if (!Result || Result->getValue().getActiveBits() > 32 || 6583 Result->getValue().getActiveBits() == 0) 6584 return 1; 6585 6586 return (unsigned)Result->getZExtValue(); 6587 } 6588 6589 /// Get the expression for the number of loop iterations for which this loop is 6590 /// guaranteed not to exit via ExitingBlock. Otherwise return 6591 /// SCEVCouldNotCompute. 6592 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6593 BasicBlock *ExitingBlock) { 6594 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6595 } 6596 6597 const SCEV * 6598 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6599 SCEVUnionPredicate &Preds) { 6600 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6601 } 6602 6603 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 6604 return getBackedgeTakenInfo(L).getExact(L, this); 6605 } 6606 6607 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 6608 /// known never to be less than the actual backedge taken count. 6609 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 6610 return getBackedgeTakenInfo(L).getMax(this); 6611 } 6612 6613 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6614 return getBackedgeTakenInfo(L).isMaxOrZero(this); 6615 } 6616 6617 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6618 static void 6619 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6620 BasicBlock *Header = L->getHeader(); 6621 6622 // Push all Loop-header PHIs onto the Worklist stack. 6623 for (PHINode &PN : Header->phis()) 6624 Worklist.push_back(&PN); 6625 } 6626 6627 const ScalarEvolution::BackedgeTakenInfo & 6628 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6629 auto &BTI = getBackedgeTakenInfo(L); 6630 if (BTI.hasFullInfo()) 6631 return BTI; 6632 6633 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6634 6635 if (!Pair.second) 6636 return Pair.first->second; 6637 6638 BackedgeTakenInfo Result = 6639 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6640 6641 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6642 } 6643 6644 const ScalarEvolution::BackedgeTakenInfo & 6645 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6646 // Initially insert an invalid entry for this loop. If the insertion 6647 // succeeds, proceed to actually compute a backedge-taken count and 6648 // update the value. The temporary CouldNotCompute value tells SCEV 6649 // code elsewhere that it shouldn't attempt to request a new 6650 // backedge-taken count, which could result in infinite recursion. 6651 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6652 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6653 if (!Pair.second) 6654 return Pair.first->second; 6655 6656 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6657 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6658 // must be cleared in this scope. 6659 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6660 6661 // In product build, there are no usage of statistic. 6662 (void)NumTripCountsComputed; 6663 (void)NumTripCountsNotComputed; 6664 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6665 const SCEV *BEExact = Result.getExact(L, this); 6666 if (BEExact != getCouldNotCompute()) { 6667 assert(isLoopInvariant(BEExact, L) && 6668 isLoopInvariant(Result.getMax(this), L) && 6669 "Computed backedge-taken count isn't loop invariant for loop!"); 6670 ++NumTripCountsComputed; 6671 } 6672 else if (Result.getMax(this) == getCouldNotCompute() && 6673 isa<PHINode>(L->getHeader()->begin())) { 6674 // Only count loops that have phi nodes as not being computable. 6675 ++NumTripCountsNotComputed; 6676 } 6677 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6678 6679 // Now that we know more about the trip count for this loop, forget any 6680 // existing SCEV values for PHI nodes in this loop since they are only 6681 // conservative estimates made without the benefit of trip count 6682 // information. This is similar to the code in forgetLoop, except that 6683 // it handles SCEVUnknown PHI nodes specially. 6684 if (Result.hasAnyInfo()) { 6685 SmallVector<Instruction *, 16> Worklist; 6686 PushLoopPHIs(L, Worklist); 6687 6688 SmallPtrSet<Instruction *, 8> Discovered; 6689 while (!Worklist.empty()) { 6690 Instruction *I = Worklist.pop_back_val(); 6691 6692 ValueExprMapType::iterator It = 6693 ValueExprMap.find_as(static_cast<Value *>(I)); 6694 if (It != ValueExprMap.end()) { 6695 const SCEV *Old = It->second; 6696 6697 // SCEVUnknown for a PHI either means that it has an unrecognized 6698 // structure, or it's a PHI that's in the progress of being computed 6699 // by createNodeForPHI. In the former case, additional loop trip 6700 // count information isn't going to change anything. In the later 6701 // case, createNodeForPHI will perform the necessary updates on its 6702 // own when it gets to that point. 6703 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6704 eraseValueFromMap(It->first); 6705 forgetMemoizedResults(Old); 6706 } 6707 if (PHINode *PN = dyn_cast<PHINode>(I)) 6708 ConstantEvolutionLoopExitValue.erase(PN); 6709 } 6710 6711 // Since we don't need to invalidate anything for correctness and we're 6712 // only invalidating to make SCEV's results more precise, we get to stop 6713 // early to avoid invalidating too much. This is especially important in 6714 // cases like: 6715 // 6716 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 6717 // loop0: 6718 // %pn0 = phi 6719 // ... 6720 // loop1: 6721 // %pn1 = phi 6722 // ... 6723 // 6724 // where both loop0 and loop1's backedge taken count uses the SCEV 6725 // expression for %v. If we don't have the early stop below then in cases 6726 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 6727 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 6728 // count for loop1, effectively nullifying SCEV's trip count cache. 6729 for (auto *U : I->users()) 6730 if (auto *I = dyn_cast<Instruction>(U)) { 6731 auto *LoopForUser = LI.getLoopFor(I->getParent()); 6732 if (LoopForUser && L->contains(LoopForUser) && 6733 Discovered.insert(I).second) 6734 Worklist.push_back(I); 6735 } 6736 } 6737 } 6738 6739 // Re-lookup the insert position, since the call to 6740 // computeBackedgeTakenCount above could result in a 6741 // recusive call to getBackedgeTakenInfo (on a different 6742 // loop), which would invalidate the iterator computed 6743 // earlier. 6744 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6745 } 6746 6747 void ScalarEvolution::forgetLoop(const Loop *L) { 6748 // Drop any stored trip count value. 6749 auto RemoveLoopFromBackedgeMap = 6750 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6751 auto BTCPos = Map.find(L); 6752 if (BTCPos != Map.end()) { 6753 BTCPos->second.clear(); 6754 Map.erase(BTCPos); 6755 } 6756 }; 6757 6758 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6759 SmallVector<Instruction *, 32> Worklist; 6760 SmallPtrSet<Instruction *, 16> Visited; 6761 6762 // Iterate over all the loops and sub-loops to drop SCEV information. 6763 while (!LoopWorklist.empty()) { 6764 auto *CurrL = LoopWorklist.pop_back_val(); 6765 6766 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6767 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6768 6769 // Drop information about predicated SCEV rewrites for this loop. 6770 for (auto I = PredicatedSCEVRewrites.begin(); 6771 I != PredicatedSCEVRewrites.end();) { 6772 std::pair<const SCEV *, const Loop *> Entry = I->first; 6773 if (Entry.second == CurrL) 6774 PredicatedSCEVRewrites.erase(I++); 6775 else 6776 ++I; 6777 } 6778 6779 auto LoopUsersItr = LoopUsers.find(CurrL); 6780 if (LoopUsersItr != LoopUsers.end()) { 6781 for (auto *S : LoopUsersItr->second) 6782 forgetMemoizedResults(S); 6783 LoopUsers.erase(LoopUsersItr); 6784 } 6785 6786 // Drop information about expressions based on loop-header PHIs. 6787 PushLoopPHIs(CurrL, Worklist); 6788 6789 while (!Worklist.empty()) { 6790 Instruction *I = Worklist.pop_back_val(); 6791 if (!Visited.insert(I).second) 6792 continue; 6793 6794 ValueExprMapType::iterator It = 6795 ValueExprMap.find_as(static_cast<Value *>(I)); 6796 if (It != ValueExprMap.end()) { 6797 eraseValueFromMap(It->first); 6798 forgetMemoizedResults(It->second); 6799 if (PHINode *PN = dyn_cast<PHINode>(I)) 6800 ConstantEvolutionLoopExitValue.erase(PN); 6801 } 6802 6803 PushDefUseChildren(I, Worklist); 6804 } 6805 6806 LoopPropertiesCache.erase(CurrL); 6807 // Forget all contained loops too, to avoid dangling entries in the 6808 // ValuesAtScopes map. 6809 LoopWorklist.append(CurrL->begin(), CurrL->end()); 6810 } 6811 } 6812 6813 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 6814 while (Loop *Parent = L->getParentLoop()) 6815 L = Parent; 6816 forgetLoop(L); 6817 } 6818 6819 void ScalarEvolution::forgetValue(Value *V) { 6820 Instruction *I = dyn_cast<Instruction>(V); 6821 if (!I) return; 6822 6823 // Drop information about expressions based on loop-header PHIs. 6824 SmallVector<Instruction *, 16> Worklist; 6825 Worklist.push_back(I); 6826 6827 SmallPtrSet<Instruction *, 8> Visited; 6828 while (!Worklist.empty()) { 6829 I = Worklist.pop_back_val(); 6830 if (!Visited.insert(I).second) 6831 continue; 6832 6833 ValueExprMapType::iterator It = 6834 ValueExprMap.find_as(static_cast<Value *>(I)); 6835 if (It != ValueExprMap.end()) { 6836 eraseValueFromMap(It->first); 6837 forgetMemoizedResults(It->second); 6838 if (PHINode *PN = dyn_cast<PHINode>(I)) 6839 ConstantEvolutionLoopExitValue.erase(PN); 6840 } 6841 6842 PushDefUseChildren(I, Worklist); 6843 } 6844 } 6845 6846 /// Get the exact loop backedge taken count considering all loop exits. A 6847 /// computable result can only be returned for loops with all exiting blocks 6848 /// dominating the latch. howFarToZero assumes that the limit of each loop test 6849 /// is never skipped. This is a valid assumption as long as the loop exits via 6850 /// that test. For precise results, it is the caller's responsibility to specify 6851 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 6852 const SCEV * 6853 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 6854 SCEVUnionPredicate *Preds) const { 6855 // If any exits were not computable, the loop is not computable. 6856 if (!isComplete() || ExitNotTaken.empty()) 6857 return SE->getCouldNotCompute(); 6858 6859 const BasicBlock *Latch = L->getLoopLatch(); 6860 // All exiting blocks we have collected must dominate the only backedge. 6861 if (!Latch) 6862 return SE->getCouldNotCompute(); 6863 6864 // All exiting blocks we have gathered dominate loop's latch, so exact trip 6865 // count is simply a minimum out of all these calculated exit counts. 6866 SmallVector<const SCEV *, 2> Ops; 6867 for (auto &ENT : ExitNotTaken) { 6868 const SCEV *BECount = ENT.ExactNotTaken; 6869 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 6870 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 6871 "We should only have known counts for exiting blocks that dominate " 6872 "latch!"); 6873 6874 Ops.push_back(BECount); 6875 6876 if (Preds && !ENT.hasAlwaysTruePredicate()) 6877 Preds->add(ENT.Predicate.get()); 6878 6879 assert((Preds || ENT.hasAlwaysTruePredicate()) && 6880 "Predicate should be always true!"); 6881 } 6882 6883 return SE->getUMinFromMismatchedTypes(Ops); 6884 } 6885 6886 /// Get the exact not taken count for this loop exit. 6887 const SCEV * 6888 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 6889 ScalarEvolution *SE) const { 6890 for (auto &ENT : ExitNotTaken) 6891 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6892 return ENT.ExactNotTaken; 6893 6894 return SE->getCouldNotCompute(); 6895 } 6896 6897 /// getMax - Get the max backedge taken count for the loop. 6898 const SCEV * 6899 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 6900 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6901 return !ENT.hasAlwaysTruePredicate(); 6902 }; 6903 6904 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 6905 return SE->getCouldNotCompute(); 6906 6907 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 6908 "No point in having a non-constant max backedge taken count!"); 6909 return getMax(); 6910 } 6911 6912 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 6913 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6914 return !ENT.hasAlwaysTruePredicate(); 6915 }; 6916 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 6917 } 6918 6919 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 6920 ScalarEvolution *SE) const { 6921 if (getMax() && getMax() != SE->getCouldNotCompute() && 6922 SE->hasOperand(getMax(), S)) 6923 return true; 6924 6925 for (auto &ENT : ExitNotTaken) 6926 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 6927 SE->hasOperand(ENT.ExactNotTaken, S)) 6928 return true; 6929 6930 return false; 6931 } 6932 6933 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 6934 : ExactNotTaken(E), MaxNotTaken(E) { 6935 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6936 isa<SCEVConstant>(MaxNotTaken)) && 6937 "No point in having a non-constant max backedge taken count!"); 6938 } 6939 6940 ScalarEvolution::ExitLimit::ExitLimit( 6941 const SCEV *E, const SCEV *M, bool MaxOrZero, 6942 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 6943 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 6944 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 6945 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 6946 "Exact is not allowed to be less precise than Max"); 6947 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6948 isa<SCEVConstant>(MaxNotTaken)) && 6949 "No point in having a non-constant max backedge taken count!"); 6950 for (auto *PredSet : PredSetList) 6951 for (auto *P : *PredSet) 6952 addPredicate(P); 6953 } 6954 6955 ScalarEvolution::ExitLimit::ExitLimit( 6956 const SCEV *E, const SCEV *M, bool MaxOrZero, 6957 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 6958 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 6959 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6960 isa<SCEVConstant>(MaxNotTaken)) && 6961 "No point in having a non-constant max backedge taken count!"); 6962 } 6963 6964 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 6965 bool MaxOrZero) 6966 : ExitLimit(E, M, MaxOrZero, None) { 6967 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6968 isa<SCEVConstant>(MaxNotTaken)) && 6969 "No point in having a non-constant max backedge taken count!"); 6970 } 6971 6972 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 6973 /// computable exit into a persistent ExitNotTakenInfo array. 6974 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 6975 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 6976 &&ExitCounts, 6977 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 6978 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 6979 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6980 6981 ExitNotTaken.reserve(ExitCounts.size()); 6982 std::transform( 6983 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 6984 [&](const EdgeExitInfo &EEI) { 6985 BasicBlock *ExitBB = EEI.first; 6986 const ExitLimit &EL = EEI.second; 6987 if (EL.Predicates.empty()) 6988 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 6989 6990 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 6991 for (auto *Pred : EL.Predicates) 6992 Predicate->add(Pred); 6993 6994 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); 6995 }); 6996 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 6997 "No point in having a non-constant max backedge taken count!"); 6998 } 6999 7000 /// Invalidate this result and free the ExitNotTakenInfo array. 7001 void ScalarEvolution::BackedgeTakenInfo::clear() { 7002 ExitNotTaken.clear(); 7003 } 7004 7005 /// Compute the number of times the backedge of the specified loop will execute. 7006 ScalarEvolution::BackedgeTakenInfo 7007 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7008 bool AllowPredicates) { 7009 SmallVector<BasicBlock *, 8> ExitingBlocks; 7010 L->getExitingBlocks(ExitingBlocks); 7011 7012 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7013 7014 SmallVector<EdgeExitInfo, 4> ExitCounts; 7015 bool CouldComputeBECount = true; 7016 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7017 const SCEV *MustExitMaxBECount = nullptr; 7018 const SCEV *MayExitMaxBECount = nullptr; 7019 bool MustExitMaxOrZero = false; 7020 7021 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7022 // and compute maxBECount. 7023 // Do a union of all the predicates here. 7024 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7025 BasicBlock *ExitBB = ExitingBlocks[i]; 7026 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7027 7028 assert((AllowPredicates || EL.Predicates.empty()) && 7029 "Predicated exit limit when predicates are not allowed!"); 7030 7031 // 1. For each exit that can be computed, add an entry to ExitCounts. 7032 // CouldComputeBECount is true only if all exits can be computed. 7033 if (EL.ExactNotTaken == getCouldNotCompute()) 7034 // We couldn't compute an exact value for this exit, so 7035 // we won't be able to compute an exact value for the loop. 7036 CouldComputeBECount = false; 7037 else 7038 ExitCounts.emplace_back(ExitBB, EL); 7039 7040 // 2. Derive the loop's MaxBECount from each exit's max number of 7041 // non-exiting iterations. Partition the loop exits into two kinds: 7042 // LoopMustExits and LoopMayExits. 7043 // 7044 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7045 // is a LoopMayExit. If any computable LoopMustExit is found, then 7046 // MaxBECount is the minimum EL.MaxNotTaken of computable 7047 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7048 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7049 // computable EL.MaxNotTaken. 7050 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7051 DT.dominates(ExitBB, Latch)) { 7052 if (!MustExitMaxBECount) { 7053 MustExitMaxBECount = EL.MaxNotTaken; 7054 MustExitMaxOrZero = EL.MaxOrZero; 7055 } else { 7056 MustExitMaxBECount = 7057 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7058 } 7059 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7060 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7061 MayExitMaxBECount = EL.MaxNotTaken; 7062 else { 7063 MayExitMaxBECount = 7064 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7065 } 7066 } 7067 } 7068 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7069 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7070 // The loop backedge will be taken the maximum or zero times if there's 7071 // a single exit that must be taken the maximum or zero times. 7072 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7073 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7074 MaxBECount, MaxOrZero); 7075 } 7076 7077 ScalarEvolution::ExitLimit 7078 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7079 bool AllowPredicates) { 7080 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7081 // If our exiting block does not dominate the latch, then its connection with 7082 // loop's exit limit may be far from trivial. 7083 const BasicBlock *Latch = L->getLoopLatch(); 7084 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7085 return getCouldNotCompute(); 7086 7087 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7088 Instruction *Term = ExitingBlock->getTerminator(); 7089 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7090 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7091 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7092 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7093 "It should have one successor in loop and one exit block!"); 7094 // Proceed to the next level to examine the exit condition expression. 7095 return computeExitLimitFromCond( 7096 L, BI->getCondition(), ExitIfTrue, 7097 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7098 } 7099 7100 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7101 // For switch, make sure that there is a single exit from the loop. 7102 BasicBlock *Exit = nullptr; 7103 for (auto *SBB : successors(ExitingBlock)) 7104 if (!L->contains(SBB)) { 7105 if (Exit) // Multiple exit successors. 7106 return getCouldNotCompute(); 7107 Exit = SBB; 7108 } 7109 assert(Exit && "Exiting block must have at least one exit"); 7110 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7111 /*ControlsExit=*/IsOnlyExit); 7112 } 7113 7114 return getCouldNotCompute(); 7115 } 7116 7117 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7118 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7119 bool ControlsExit, bool AllowPredicates) { 7120 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7121 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7122 ControlsExit, AllowPredicates); 7123 } 7124 7125 Optional<ScalarEvolution::ExitLimit> 7126 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7127 bool ExitIfTrue, bool ControlsExit, 7128 bool AllowPredicates) { 7129 (void)this->L; 7130 (void)this->ExitIfTrue; 7131 (void)this->AllowPredicates; 7132 7133 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7134 this->AllowPredicates == AllowPredicates && 7135 "Variance in assumed invariant key components!"); 7136 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7137 if (Itr == TripCountMap.end()) 7138 return None; 7139 return Itr->second; 7140 } 7141 7142 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7143 bool ExitIfTrue, 7144 bool ControlsExit, 7145 bool AllowPredicates, 7146 const ExitLimit &EL) { 7147 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7148 this->AllowPredicates == AllowPredicates && 7149 "Variance in assumed invariant key components!"); 7150 7151 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7152 assert(InsertResult.second && "Expected successful insertion!"); 7153 (void)InsertResult; 7154 (void)ExitIfTrue; 7155 } 7156 7157 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7158 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7159 bool ControlsExit, bool AllowPredicates) { 7160 7161 if (auto MaybeEL = 7162 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7163 return *MaybeEL; 7164 7165 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7166 ControlsExit, AllowPredicates); 7167 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7168 return EL; 7169 } 7170 7171 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7172 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7173 bool ControlsExit, bool AllowPredicates) { 7174 // Check if the controlling expression for this loop is an And or Or. 7175 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7176 if (BO->getOpcode() == Instruction::And) { 7177 // Recurse on the operands of the and. 7178 bool EitherMayExit = !ExitIfTrue; 7179 ExitLimit EL0 = computeExitLimitFromCondCached( 7180 Cache, L, BO->getOperand(0), ExitIfTrue, 7181 ControlsExit && !EitherMayExit, AllowPredicates); 7182 ExitLimit EL1 = computeExitLimitFromCondCached( 7183 Cache, L, BO->getOperand(1), ExitIfTrue, 7184 ControlsExit && !EitherMayExit, AllowPredicates); 7185 const SCEV *BECount = getCouldNotCompute(); 7186 const SCEV *MaxBECount = getCouldNotCompute(); 7187 if (EitherMayExit) { 7188 // Both conditions must be true for the loop to continue executing. 7189 // Choose the less conservative count. 7190 if (EL0.ExactNotTaken == getCouldNotCompute() || 7191 EL1.ExactNotTaken == getCouldNotCompute()) 7192 BECount = getCouldNotCompute(); 7193 else 7194 BECount = 7195 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7196 if (EL0.MaxNotTaken == getCouldNotCompute()) 7197 MaxBECount = EL1.MaxNotTaken; 7198 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7199 MaxBECount = EL0.MaxNotTaken; 7200 else 7201 MaxBECount = 7202 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7203 } else { 7204 // Both conditions must be true at the same time for the loop to exit. 7205 // For now, be conservative. 7206 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7207 MaxBECount = EL0.MaxNotTaken; 7208 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7209 BECount = EL0.ExactNotTaken; 7210 } 7211 7212 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7213 // to be more aggressive when computing BECount than when computing 7214 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7215 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7216 // to not. 7217 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7218 !isa<SCEVCouldNotCompute>(BECount)) 7219 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7220 7221 return ExitLimit(BECount, MaxBECount, false, 7222 {&EL0.Predicates, &EL1.Predicates}); 7223 } 7224 if (BO->getOpcode() == Instruction::Or) { 7225 // Recurse on the operands of the or. 7226 bool EitherMayExit = ExitIfTrue; 7227 ExitLimit EL0 = computeExitLimitFromCondCached( 7228 Cache, L, BO->getOperand(0), ExitIfTrue, 7229 ControlsExit && !EitherMayExit, AllowPredicates); 7230 ExitLimit EL1 = computeExitLimitFromCondCached( 7231 Cache, L, BO->getOperand(1), ExitIfTrue, 7232 ControlsExit && !EitherMayExit, AllowPredicates); 7233 const SCEV *BECount = getCouldNotCompute(); 7234 const SCEV *MaxBECount = getCouldNotCompute(); 7235 if (EitherMayExit) { 7236 // Both conditions must be false for the loop to continue executing. 7237 // Choose the less conservative count. 7238 if (EL0.ExactNotTaken == getCouldNotCompute() || 7239 EL1.ExactNotTaken == getCouldNotCompute()) 7240 BECount = getCouldNotCompute(); 7241 else 7242 BECount = 7243 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7244 if (EL0.MaxNotTaken == getCouldNotCompute()) 7245 MaxBECount = EL1.MaxNotTaken; 7246 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7247 MaxBECount = EL0.MaxNotTaken; 7248 else 7249 MaxBECount = 7250 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7251 } else { 7252 // Both conditions must be false at the same time for the loop to exit. 7253 // For now, be conservative. 7254 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7255 MaxBECount = EL0.MaxNotTaken; 7256 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7257 BECount = EL0.ExactNotTaken; 7258 } 7259 7260 return ExitLimit(BECount, MaxBECount, false, 7261 {&EL0.Predicates, &EL1.Predicates}); 7262 } 7263 } 7264 7265 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7266 // Proceed to the next level to examine the icmp. 7267 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7268 ExitLimit EL = 7269 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7270 if (EL.hasFullInfo() || !AllowPredicates) 7271 return EL; 7272 7273 // Try again, but use SCEV predicates this time. 7274 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7275 /*AllowPredicates=*/true); 7276 } 7277 7278 // Check for a constant condition. These are normally stripped out by 7279 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7280 // preserve the CFG and is temporarily leaving constant conditions 7281 // in place. 7282 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7283 if (ExitIfTrue == !CI->getZExtValue()) 7284 // The backedge is always taken. 7285 return getCouldNotCompute(); 7286 else 7287 // The backedge is never taken. 7288 return getZero(CI->getType()); 7289 } 7290 7291 // If it's not an integer or pointer comparison then compute it the hard way. 7292 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7293 } 7294 7295 ScalarEvolution::ExitLimit 7296 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7297 ICmpInst *ExitCond, 7298 bool ExitIfTrue, 7299 bool ControlsExit, 7300 bool AllowPredicates) { 7301 // If the condition was exit on true, convert the condition to exit on false 7302 ICmpInst::Predicate Pred; 7303 if (!ExitIfTrue) 7304 Pred = ExitCond->getPredicate(); 7305 else 7306 Pred = ExitCond->getInversePredicate(); 7307 const ICmpInst::Predicate OriginalPred = Pred; 7308 7309 // Handle common loops like: for (X = "string"; *X; ++X) 7310 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7311 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7312 ExitLimit ItCnt = 7313 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7314 if (ItCnt.hasAnyInfo()) 7315 return ItCnt; 7316 } 7317 7318 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7319 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7320 7321 // Try to evaluate any dependencies out of the loop. 7322 LHS = getSCEVAtScope(LHS, L); 7323 RHS = getSCEVAtScope(RHS, L); 7324 7325 // At this point, we would like to compute how many iterations of the 7326 // loop the predicate will return true for these inputs. 7327 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7328 // If there is a loop-invariant, force it into the RHS. 7329 std::swap(LHS, RHS); 7330 Pred = ICmpInst::getSwappedPredicate(Pred); 7331 } 7332 7333 // Simplify the operands before analyzing them. 7334 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7335 7336 // If we have a comparison of a chrec against a constant, try to use value 7337 // ranges to answer this query. 7338 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7339 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7340 if (AddRec->getLoop() == L) { 7341 // Form the constant range. 7342 ConstantRange CompRange = 7343 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7344 7345 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7346 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7347 } 7348 7349 switch (Pred) { 7350 case ICmpInst::ICMP_NE: { // while (X != Y) 7351 // Convert to: while (X-Y != 0) 7352 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7353 AllowPredicates); 7354 if (EL.hasAnyInfo()) return EL; 7355 break; 7356 } 7357 case ICmpInst::ICMP_EQ: { // while (X == Y) 7358 // Convert to: while (X-Y == 0) 7359 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7360 if (EL.hasAnyInfo()) return EL; 7361 break; 7362 } 7363 case ICmpInst::ICMP_SLT: 7364 case ICmpInst::ICMP_ULT: { // while (X < Y) 7365 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7366 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7367 AllowPredicates); 7368 if (EL.hasAnyInfo()) return EL; 7369 break; 7370 } 7371 case ICmpInst::ICMP_SGT: 7372 case ICmpInst::ICMP_UGT: { // while (X > Y) 7373 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7374 ExitLimit EL = 7375 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7376 AllowPredicates); 7377 if (EL.hasAnyInfo()) return EL; 7378 break; 7379 } 7380 default: 7381 break; 7382 } 7383 7384 auto *ExhaustiveCount = 7385 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7386 7387 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7388 return ExhaustiveCount; 7389 7390 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7391 ExitCond->getOperand(1), L, OriginalPred); 7392 } 7393 7394 ScalarEvolution::ExitLimit 7395 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7396 SwitchInst *Switch, 7397 BasicBlock *ExitingBlock, 7398 bool ControlsExit) { 7399 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7400 7401 // Give up if the exit is the default dest of a switch. 7402 if (Switch->getDefaultDest() == ExitingBlock) 7403 return getCouldNotCompute(); 7404 7405 assert(L->contains(Switch->getDefaultDest()) && 7406 "Default case must not exit the loop!"); 7407 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7408 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7409 7410 // while (X != Y) --> while (X-Y != 0) 7411 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7412 if (EL.hasAnyInfo()) 7413 return EL; 7414 7415 return getCouldNotCompute(); 7416 } 7417 7418 static ConstantInt * 7419 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7420 ScalarEvolution &SE) { 7421 const SCEV *InVal = SE.getConstant(C); 7422 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7423 assert(isa<SCEVConstant>(Val) && 7424 "Evaluation of SCEV at constant didn't fold correctly?"); 7425 return cast<SCEVConstant>(Val)->getValue(); 7426 } 7427 7428 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7429 /// compute the backedge execution count. 7430 ScalarEvolution::ExitLimit 7431 ScalarEvolution::computeLoadConstantCompareExitLimit( 7432 LoadInst *LI, 7433 Constant *RHS, 7434 const Loop *L, 7435 ICmpInst::Predicate predicate) { 7436 if (LI->isVolatile()) return getCouldNotCompute(); 7437 7438 // Check to see if the loaded pointer is a getelementptr of a global. 7439 // TODO: Use SCEV instead of manually grubbing with GEPs. 7440 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7441 if (!GEP) return getCouldNotCompute(); 7442 7443 // Make sure that it is really a constant global we are gepping, with an 7444 // initializer, and make sure the first IDX is really 0. 7445 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7446 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7447 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7448 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7449 return getCouldNotCompute(); 7450 7451 // Okay, we allow one non-constant index into the GEP instruction. 7452 Value *VarIdx = nullptr; 7453 std::vector<Constant*> Indexes; 7454 unsigned VarIdxNum = 0; 7455 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7456 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7457 Indexes.push_back(CI); 7458 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7459 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7460 VarIdx = GEP->getOperand(i); 7461 VarIdxNum = i-2; 7462 Indexes.push_back(nullptr); 7463 } 7464 7465 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7466 if (!VarIdx) 7467 return getCouldNotCompute(); 7468 7469 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7470 // Check to see if X is a loop variant variable value now. 7471 const SCEV *Idx = getSCEV(VarIdx); 7472 Idx = getSCEVAtScope(Idx, L); 7473 7474 // We can only recognize very limited forms of loop index expressions, in 7475 // particular, only affine AddRec's like {C1,+,C2}. 7476 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7477 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7478 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7479 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7480 return getCouldNotCompute(); 7481 7482 unsigned MaxSteps = MaxBruteForceIterations; 7483 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7484 ConstantInt *ItCst = ConstantInt::get( 7485 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7486 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7487 7488 // Form the GEP offset. 7489 Indexes[VarIdxNum] = Val; 7490 7491 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7492 Indexes); 7493 if (!Result) break; // Cannot compute! 7494 7495 // Evaluate the condition for this iteration. 7496 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7497 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7498 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7499 ++NumArrayLenItCounts; 7500 return getConstant(ItCst); // Found terminating iteration! 7501 } 7502 } 7503 return getCouldNotCompute(); 7504 } 7505 7506 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7507 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7508 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7509 if (!RHS) 7510 return getCouldNotCompute(); 7511 7512 const BasicBlock *Latch = L->getLoopLatch(); 7513 if (!Latch) 7514 return getCouldNotCompute(); 7515 7516 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7517 if (!Predecessor) 7518 return getCouldNotCompute(); 7519 7520 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7521 // Return LHS in OutLHS and shift_opt in OutOpCode. 7522 auto MatchPositiveShift = 7523 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7524 7525 using namespace PatternMatch; 7526 7527 ConstantInt *ShiftAmt; 7528 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7529 OutOpCode = Instruction::LShr; 7530 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7531 OutOpCode = Instruction::AShr; 7532 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7533 OutOpCode = Instruction::Shl; 7534 else 7535 return false; 7536 7537 return ShiftAmt->getValue().isStrictlyPositive(); 7538 }; 7539 7540 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7541 // 7542 // loop: 7543 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7544 // %iv.shifted = lshr i32 %iv, <positive constant> 7545 // 7546 // Return true on a successful match. Return the corresponding PHI node (%iv 7547 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7548 auto MatchShiftRecurrence = 7549 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7550 Optional<Instruction::BinaryOps> PostShiftOpCode; 7551 7552 { 7553 Instruction::BinaryOps OpC; 7554 Value *V; 7555 7556 // If we encounter a shift instruction, "peel off" the shift operation, 7557 // and remember that we did so. Later when we inspect %iv's backedge 7558 // value, we will make sure that the backedge value uses the same 7559 // operation. 7560 // 7561 // Note: the peeled shift operation does not have to be the same 7562 // instruction as the one feeding into the PHI's backedge value. We only 7563 // really care about it being the same *kind* of shift instruction -- 7564 // that's all that is required for our later inferences to hold. 7565 if (MatchPositiveShift(LHS, V, OpC)) { 7566 PostShiftOpCode = OpC; 7567 LHS = V; 7568 } 7569 } 7570 7571 PNOut = dyn_cast<PHINode>(LHS); 7572 if (!PNOut || PNOut->getParent() != L->getHeader()) 7573 return false; 7574 7575 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7576 Value *OpLHS; 7577 7578 return 7579 // The backedge value for the PHI node must be a shift by a positive 7580 // amount 7581 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7582 7583 // of the PHI node itself 7584 OpLHS == PNOut && 7585 7586 // and the kind of shift should be match the kind of shift we peeled 7587 // off, if any. 7588 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7589 }; 7590 7591 PHINode *PN; 7592 Instruction::BinaryOps OpCode; 7593 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7594 return getCouldNotCompute(); 7595 7596 const DataLayout &DL = getDataLayout(); 7597 7598 // The key rationale for this optimization is that for some kinds of shift 7599 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7600 // within a finite number of iterations. If the condition guarding the 7601 // backedge (in the sense that the backedge is taken if the condition is true) 7602 // is false for the value the shift recurrence stabilizes to, then we know 7603 // that the backedge is taken only a finite number of times. 7604 7605 ConstantInt *StableValue = nullptr; 7606 switch (OpCode) { 7607 default: 7608 llvm_unreachable("Impossible case!"); 7609 7610 case Instruction::AShr: { 7611 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7612 // bitwidth(K) iterations. 7613 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7614 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7615 Predecessor->getTerminator(), &DT); 7616 auto *Ty = cast<IntegerType>(RHS->getType()); 7617 if (Known.isNonNegative()) 7618 StableValue = ConstantInt::get(Ty, 0); 7619 else if (Known.isNegative()) 7620 StableValue = ConstantInt::get(Ty, -1, true); 7621 else 7622 return getCouldNotCompute(); 7623 7624 break; 7625 } 7626 case Instruction::LShr: 7627 case Instruction::Shl: 7628 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7629 // stabilize to 0 in at most bitwidth(K) iterations. 7630 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7631 break; 7632 } 7633 7634 auto *Result = 7635 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7636 assert(Result->getType()->isIntegerTy(1) && 7637 "Otherwise cannot be an operand to a branch instruction"); 7638 7639 if (Result->isZeroValue()) { 7640 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7641 const SCEV *UpperBound = 7642 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7643 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7644 } 7645 7646 return getCouldNotCompute(); 7647 } 7648 7649 /// Return true if we can constant fold an instruction of the specified type, 7650 /// assuming that all operands were constants. 7651 static bool CanConstantFold(const Instruction *I) { 7652 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7653 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7654 isa<LoadInst>(I)) 7655 return true; 7656 7657 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7658 if (const Function *F = CI->getCalledFunction()) 7659 return canConstantFoldCallTo(CI, F); 7660 return false; 7661 } 7662 7663 /// Determine whether this instruction can constant evolve within this loop 7664 /// assuming its operands can all constant evolve. 7665 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7666 // An instruction outside of the loop can't be derived from a loop PHI. 7667 if (!L->contains(I)) return false; 7668 7669 if (isa<PHINode>(I)) { 7670 // We don't currently keep track of the control flow needed to evaluate 7671 // PHIs, so we cannot handle PHIs inside of loops. 7672 return L->getHeader() == I->getParent(); 7673 } 7674 7675 // If we won't be able to constant fold this expression even if the operands 7676 // are constants, bail early. 7677 return CanConstantFold(I); 7678 } 7679 7680 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7681 /// recursing through each instruction operand until reaching a loop header phi. 7682 static PHINode * 7683 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7684 DenseMap<Instruction *, PHINode *> &PHIMap, 7685 unsigned Depth) { 7686 if (Depth > MaxConstantEvolvingDepth) 7687 return nullptr; 7688 7689 // Otherwise, we can evaluate this instruction if all of its operands are 7690 // constant or derived from a PHI node themselves. 7691 PHINode *PHI = nullptr; 7692 for (Value *Op : UseInst->operands()) { 7693 if (isa<Constant>(Op)) continue; 7694 7695 Instruction *OpInst = dyn_cast<Instruction>(Op); 7696 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7697 7698 PHINode *P = dyn_cast<PHINode>(OpInst); 7699 if (!P) 7700 // If this operand is already visited, reuse the prior result. 7701 // We may have P != PHI if this is the deepest point at which the 7702 // inconsistent paths meet. 7703 P = PHIMap.lookup(OpInst); 7704 if (!P) { 7705 // Recurse and memoize the results, whether a phi is found or not. 7706 // This recursive call invalidates pointers into PHIMap. 7707 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7708 PHIMap[OpInst] = P; 7709 } 7710 if (!P) 7711 return nullptr; // Not evolving from PHI 7712 if (PHI && PHI != P) 7713 return nullptr; // Evolving from multiple different PHIs. 7714 PHI = P; 7715 } 7716 // This is a expression evolving from a constant PHI! 7717 return PHI; 7718 } 7719 7720 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7721 /// in the loop that V is derived from. We allow arbitrary operations along the 7722 /// way, but the operands of an operation must either be constants or a value 7723 /// derived from a constant PHI. If this expression does not fit with these 7724 /// constraints, return null. 7725 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7726 Instruction *I = dyn_cast<Instruction>(V); 7727 if (!I || !canConstantEvolve(I, L)) return nullptr; 7728 7729 if (PHINode *PN = dyn_cast<PHINode>(I)) 7730 return PN; 7731 7732 // Record non-constant instructions contained by the loop. 7733 DenseMap<Instruction *, PHINode *> PHIMap; 7734 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7735 } 7736 7737 /// EvaluateExpression - Given an expression that passes the 7738 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7739 /// in the loop has the value PHIVal. If we can't fold this expression for some 7740 /// reason, return null. 7741 static Constant *EvaluateExpression(Value *V, const Loop *L, 7742 DenseMap<Instruction *, Constant *> &Vals, 7743 const DataLayout &DL, 7744 const TargetLibraryInfo *TLI) { 7745 // Convenient constant check, but redundant for recursive calls. 7746 if (Constant *C = dyn_cast<Constant>(V)) return C; 7747 Instruction *I = dyn_cast<Instruction>(V); 7748 if (!I) return nullptr; 7749 7750 if (Constant *C = Vals.lookup(I)) return C; 7751 7752 // An instruction inside the loop depends on a value outside the loop that we 7753 // weren't given a mapping for, or a value such as a call inside the loop. 7754 if (!canConstantEvolve(I, L)) return nullptr; 7755 7756 // An unmapped PHI can be due to a branch or another loop inside this loop, 7757 // or due to this not being the initial iteration through a loop where we 7758 // couldn't compute the evolution of this particular PHI last time. 7759 if (isa<PHINode>(I)) return nullptr; 7760 7761 std::vector<Constant*> Operands(I->getNumOperands()); 7762 7763 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7764 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7765 if (!Operand) { 7766 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7767 if (!Operands[i]) return nullptr; 7768 continue; 7769 } 7770 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7771 Vals[Operand] = C; 7772 if (!C) return nullptr; 7773 Operands[i] = C; 7774 } 7775 7776 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7777 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7778 Operands[1], DL, TLI); 7779 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7780 if (!LI->isVolatile()) 7781 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7782 } 7783 return ConstantFoldInstOperands(I, Operands, DL, TLI); 7784 } 7785 7786 7787 // If every incoming value to PN except the one for BB is a specific Constant, 7788 // return that, else return nullptr. 7789 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 7790 Constant *IncomingVal = nullptr; 7791 7792 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 7793 if (PN->getIncomingBlock(i) == BB) 7794 continue; 7795 7796 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 7797 if (!CurrentVal) 7798 return nullptr; 7799 7800 if (IncomingVal != CurrentVal) { 7801 if (IncomingVal) 7802 return nullptr; 7803 IncomingVal = CurrentVal; 7804 } 7805 } 7806 7807 return IncomingVal; 7808 } 7809 7810 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 7811 /// in the header of its containing loop, we know the loop executes a 7812 /// constant number of times, and the PHI node is just a recurrence 7813 /// involving constants, fold it. 7814 Constant * 7815 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 7816 const APInt &BEs, 7817 const Loop *L) { 7818 auto I = ConstantEvolutionLoopExitValue.find(PN); 7819 if (I != ConstantEvolutionLoopExitValue.end()) 7820 return I->second; 7821 7822 if (BEs.ugt(MaxBruteForceIterations)) 7823 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 7824 7825 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 7826 7827 DenseMap<Instruction *, Constant *> CurrentIterVals; 7828 BasicBlock *Header = L->getHeader(); 7829 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7830 7831 BasicBlock *Latch = L->getLoopLatch(); 7832 if (!Latch) 7833 return nullptr; 7834 7835 for (PHINode &PHI : Header->phis()) { 7836 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7837 CurrentIterVals[&PHI] = StartCST; 7838 } 7839 if (!CurrentIterVals.count(PN)) 7840 return RetVal = nullptr; 7841 7842 Value *BEValue = PN->getIncomingValueForBlock(Latch); 7843 7844 // Execute the loop symbolically to determine the exit value. 7845 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 7846 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 7847 7848 unsigned NumIterations = BEs.getZExtValue(); // must be in range 7849 unsigned IterationNum = 0; 7850 const DataLayout &DL = getDataLayout(); 7851 for (; ; ++IterationNum) { 7852 if (IterationNum == NumIterations) 7853 return RetVal = CurrentIterVals[PN]; // Got exit value! 7854 7855 // Compute the value of the PHIs for the next iteration. 7856 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 7857 DenseMap<Instruction *, Constant *> NextIterVals; 7858 Constant *NextPHI = 7859 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7860 if (!NextPHI) 7861 return nullptr; // Couldn't evaluate! 7862 NextIterVals[PN] = NextPHI; 7863 7864 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 7865 7866 // Also evaluate the other PHI nodes. However, we don't get to stop if we 7867 // cease to be able to evaluate one of them or if they stop evolving, 7868 // because that doesn't necessarily prevent us from computing PN. 7869 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 7870 for (const auto &I : CurrentIterVals) { 7871 PHINode *PHI = dyn_cast<PHINode>(I.first); 7872 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 7873 PHIsToCompute.emplace_back(PHI, I.second); 7874 } 7875 // We use two distinct loops because EvaluateExpression may invalidate any 7876 // iterators into CurrentIterVals. 7877 for (const auto &I : PHIsToCompute) { 7878 PHINode *PHI = I.first; 7879 Constant *&NextPHI = NextIterVals[PHI]; 7880 if (!NextPHI) { // Not already computed. 7881 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7882 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7883 } 7884 if (NextPHI != I.second) 7885 StoppedEvolving = false; 7886 } 7887 7888 // If all entries in CurrentIterVals == NextIterVals then we can stop 7889 // iterating, the loop can't continue to change. 7890 if (StoppedEvolving) 7891 return RetVal = CurrentIterVals[PN]; 7892 7893 CurrentIterVals.swap(NextIterVals); 7894 } 7895 } 7896 7897 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 7898 Value *Cond, 7899 bool ExitWhen) { 7900 PHINode *PN = getConstantEvolvingPHI(Cond, L); 7901 if (!PN) return getCouldNotCompute(); 7902 7903 // If the loop is canonicalized, the PHI will have exactly two entries. 7904 // That's the only form we support here. 7905 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 7906 7907 DenseMap<Instruction *, Constant *> CurrentIterVals; 7908 BasicBlock *Header = L->getHeader(); 7909 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7910 7911 BasicBlock *Latch = L->getLoopLatch(); 7912 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7913 7914 for (PHINode &PHI : Header->phis()) { 7915 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7916 CurrentIterVals[&PHI] = StartCST; 7917 } 7918 if (!CurrentIterVals.count(PN)) 7919 return getCouldNotCompute(); 7920 7921 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7922 // the loop symbolically to determine when the condition gets a value of 7923 // "ExitWhen". 7924 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7925 const DataLayout &DL = getDataLayout(); 7926 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7927 auto *CondVal = dyn_cast_or_null<ConstantInt>( 7928 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 7929 7930 // Couldn't symbolically evaluate. 7931 if (!CondVal) return getCouldNotCompute(); 7932 7933 if (CondVal->getValue() == uint64_t(ExitWhen)) { 7934 ++NumBruteForceTripCountsComputed; 7935 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 7936 } 7937 7938 // Update all the PHI nodes for the next iteration. 7939 DenseMap<Instruction *, Constant *> NextIterVals; 7940 7941 // Create a list of which PHIs we need to compute. We want to do this before 7942 // calling EvaluateExpression on them because that may invalidate iterators 7943 // into CurrentIterVals. 7944 SmallVector<PHINode *, 8> PHIsToCompute; 7945 for (const auto &I : CurrentIterVals) { 7946 PHINode *PHI = dyn_cast<PHINode>(I.first); 7947 if (!PHI || PHI->getParent() != Header) continue; 7948 PHIsToCompute.push_back(PHI); 7949 } 7950 for (PHINode *PHI : PHIsToCompute) { 7951 Constant *&NextPHI = NextIterVals[PHI]; 7952 if (NextPHI) continue; // Already computed! 7953 7954 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7955 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7956 } 7957 CurrentIterVals.swap(NextIterVals); 7958 } 7959 7960 // Too many iterations were needed to evaluate. 7961 return getCouldNotCompute(); 7962 } 7963 7964 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 7965 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 7966 ValuesAtScopes[V]; 7967 // Check to see if we've folded this expression at this loop before. 7968 for (auto &LS : Values) 7969 if (LS.first == L) 7970 return LS.second ? LS.second : V; 7971 7972 Values.emplace_back(L, nullptr); 7973 7974 // Otherwise compute it. 7975 const SCEV *C = computeSCEVAtScope(V, L); 7976 for (auto &LS : reverse(ValuesAtScopes[V])) 7977 if (LS.first == L) { 7978 LS.second = C; 7979 break; 7980 } 7981 return C; 7982 } 7983 7984 /// This builds up a Constant using the ConstantExpr interface. That way, we 7985 /// will return Constants for objects which aren't represented by a 7986 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 7987 /// Returns NULL if the SCEV isn't representable as a Constant. 7988 static Constant *BuildConstantFromSCEV(const SCEV *V) { 7989 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 7990 case scCouldNotCompute: 7991 case scAddRecExpr: 7992 break; 7993 case scConstant: 7994 return cast<SCEVConstant>(V)->getValue(); 7995 case scUnknown: 7996 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 7997 case scSignExtend: { 7998 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 7999 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8000 return ConstantExpr::getSExt(CastOp, SS->getType()); 8001 break; 8002 } 8003 case scZeroExtend: { 8004 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8005 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8006 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8007 break; 8008 } 8009 case scTruncate: { 8010 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8011 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8012 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8013 break; 8014 } 8015 case scAddExpr: { 8016 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8017 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8018 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8019 unsigned AS = PTy->getAddressSpace(); 8020 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8021 C = ConstantExpr::getBitCast(C, DestPtrTy); 8022 } 8023 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8024 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8025 if (!C2) return nullptr; 8026 8027 // First pointer! 8028 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8029 unsigned AS = C2->getType()->getPointerAddressSpace(); 8030 std::swap(C, C2); 8031 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8032 // The offsets have been converted to bytes. We can add bytes to an 8033 // i8* by GEP with the byte count in the first index. 8034 C = ConstantExpr::getBitCast(C, DestPtrTy); 8035 } 8036 8037 // Don't bother trying to sum two pointers. We probably can't 8038 // statically compute a load that results from it anyway. 8039 if (C2->getType()->isPointerTy()) 8040 return nullptr; 8041 8042 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8043 if (PTy->getElementType()->isStructTy()) 8044 C2 = ConstantExpr::getIntegerCast( 8045 C2, Type::getInt32Ty(C->getContext()), true); 8046 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8047 } else 8048 C = ConstantExpr::getAdd(C, C2); 8049 } 8050 return C; 8051 } 8052 break; 8053 } 8054 case scMulExpr: { 8055 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8056 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8057 // Don't bother with pointers at all. 8058 if (C->getType()->isPointerTy()) return nullptr; 8059 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8060 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8061 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 8062 C = ConstantExpr::getMul(C, C2); 8063 } 8064 return C; 8065 } 8066 break; 8067 } 8068 case scUDivExpr: { 8069 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8070 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8071 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8072 if (LHS->getType() == RHS->getType()) 8073 return ConstantExpr::getUDiv(LHS, RHS); 8074 break; 8075 } 8076 case scSMaxExpr: 8077 case scUMaxExpr: 8078 break; // TODO: smax, umax. 8079 } 8080 return nullptr; 8081 } 8082 8083 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8084 if (isa<SCEVConstant>(V)) return V; 8085 8086 // If this instruction is evolved from a constant-evolving PHI, compute the 8087 // exit value from the loop without using SCEVs. 8088 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8089 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8090 const Loop *LI = this->LI[I->getParent()]; 8091 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 8092 if (PHINode *PN = dyn_cast<PHINode>(I)) 8093 if (PN->getParent() == LI->getHeader()) { 8094 // Okay, there is no closed form solution for the PHI node. Check 8095 // to see if the loop that contains it has a known backedge-taken 8096 // count. If so, we may be able to force computation of the exit 8097 // value. 8098 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 8099 if (const SCEVConstant *BTCC = 8100 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8101 8102 // This trivial case can show up in some degenerate cases where 8103 // the incoming IR has not yet been fully simplified. 8104 if (BTCC->getValue()->isZero()) { 8105 Value *InitValue = nullptr; 8106 bool MultipleInitValues = false; 8107 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8108 if (!LI->contains(PN->getIncomingBlock(i))) { 8109 if (!InitValue) 8110 InitValue = PN->getIncomingValue(i); 8111 else if (InitValue != PN->getIncomingValue(i)) { 8112 MultipleInitValues = true; 8113 break; 8114 } 8115 } 8116 if (!MultipleInitValues && InitValue) 8117 return getSCEV(InitValue); 8118 } 8119 } 8120 // Okay, we know how many times the containing loop executes. If 8121 // this is a constant evolving PHI node, get the final value at 8122 // the specified iteration number. 8123 Constant *RV = 8124 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 8125 if (RV) return getSCEV(RV); 8126 } 8127 } 8128 8129 // Okay, this is an expression that we cannot symbolically evaluate 8130 // into a SCEV. Check to see if it's possible to symbolically evaluate 8131 // the arguments into constants, and if so, try to constant propagate the 8132 // result. This is particularly useful for computing loop exit values. 8133 if (CanConstantFold(I)) { 8134 SmallVector<Constant *, 4> Operands; 8135 bool MadeImprovement = false; 8136 for (Value *Op : I->operands()) { 8137 if (Constant *C = dyn_cast<Constant>(Op)) { 8138 Operands.push_back(C); 8139 continue; 8140 } 8141 8142 // If any of the operands is non-constant and if they are 8143 // non-integer and non-pointer, don't even try to analyze them 8144 // with scev techniques. 8145 if (!isSCEVable(Op->getType())) 8146 return V; 8147 8148 const SCEV *OrigV = getSCEV(Op); 8149 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8150 MadeImprovement |= OrigV != OpV; 8151 8152 Constant *C = BuildConstantFromSCEV(OpV); 8153 if (!C) return V; 8154 if (C->getType() != Op->getType()) 8155 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8156 Op->getType(), 8157 false), 8158 C, Op->getType()); 8159 Operands.push_back(C); 8160 } 8161 8162 // Check to see if getSCEVAtScope actually made an improvement. 8163 if (MadeImprovement) { 8164 Constant *C = nullptr; 8165 const DataLayout &DL = getDataLayout(); 8166 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8167 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8168 Operands[1], DL, &TLI); 8169 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 8170 if (!LI->isVolatile()) 8171 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8172 } else 8173 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8174 if (!C) return V; 8175 return getSCEV(C); 8176 } 8177 } 8178 } 8179 8180 // This is some other type of SCEVUnknown, just return it. 8181 return V; 8182 } 8183 8184 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8185 // Avoid performing the look-up in the common case where the specified 8186 // expression has no loop-variant portions. 8187 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8188 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8189 if (OpAtScope != Comm->getOperand(i)) { 8190 // Okay, at least one of these operands is loop variant but might be 8191 // foldable. Build a new instance of the folded commutative expression. 8192 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8193 Comm->op_begin()+i); 8194 NewOps.push_back(OpAtScope); 8195 8196 for (++i; i != e; ++i) { 8197 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8198 NewOps.push_back(OpAtScope); 8199 } 8200 if (isa<SCEVAddExpr>(Comm)) 8201 return getAddExpr(NewOps); 8202 if (isa<SCEVMulExpr>(Comm)) 8203 return getMulExpr(NewOps); 8204 if (isa<SCEVSMaxExpr>(Comm)) 8205 return getSMaxExpr(NewOps); 8206 if (isa<SCEVUMaxExpr>(Comm)) 8207 return getUMaxExpr(NewOps); 8208 llvm_unreachable("Unknown commutative SCEV type!"); 8209 } 8210 } 8211 // If we got here, all operands are loop invariant. 8212 return Comm; 8213 } 8214 8215 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8216 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8217 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8218 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8219 return Div; // must be loop invariant 8220 return getUDivExpr(LHS, RHS); 8221 } 8222 8223 // If this is a loop recurrence for a loop that does not contain L, then we 8224 // are dealing with the final value computed by the loop. 8225 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8226 // First, attempt to evaluate each operand. 8227 // Avoid performing the look-up in the common case where the specified 8228 // expression has no loop-variant portions. 8229 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8230 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8231 if (OpAtScope == AddRec->getOperand(i)) 8232 continue; 8233 8234 // Okay, at least one of these operands is loop variant but might be 8235 // foldable. Build a new instance of the folded commutative expression. 8236 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8237 AddRec->op_begin()+i); 8238 NewOps.push_back(OpAtScope); 8239 for (++i; i != e; ++i) 8240 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8241 8242 const SCEV *FoldedRec = 8243 getAddRecExpr(NewOps, AddRec->getLoop(), 8244 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8245 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8246 // The addrec may be folded to a nonrecurrence, for example, if the 8247 // induction variable is multiplied by zero after constant folding. Go 8248 // ahead and return the folded value. 8249 if (!AddRec) 8250 return FoldedRec; 8251 break; 8252 } 8253 8254 // If the scope is outside the addrec's loop, evaluate it by using the 8255 // loop exit value of the addrec. 8256 if (!AddRec->getLoop()->contains(L)) { 8257 // To evaluate this recurrence, we need to know how many times the AddRec 8258 // loop iterates. Compute this now. 8259 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8260 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8261 8262 // Then, evaluate the AddRec. 8263 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8264 } 8265 8266 return AddRec; 8267 } 8268 8269 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8270 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8271 if (Op == Cast->getOperand()) 8272 return Cast; // must be loop invariant 8273 return getZeroExtendExpr(Op, Cast->getType()); 8274 } 8275 8276 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8277 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8278 if (Op == Cast->getOperand()) 8279 return Cast; // must be loop invariant 8280 return getSignExtendExpr(Op, Cast->getType()); 8281 } 8282 8283 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8284 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8285 if (Op == Cast->getOperand()) 8286 return Cast; // must be loop invariant 8287 return getTruncateExpr(Op, Cast->getType()); 8288 } 8289 8290 llvm_unreachable("Unknown SCEV type!"); 8291 } 8292 8293 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8294 return getSCEVAtScope(getSCEV(V), L); 8295 } 8296 8297 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8298 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8299 return stripInjectiveFunctions(ZExt->getOperand()); 8300 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8301 return stripInjectiveFunctions(SExt->getOperand()); 8302 return S; 8303 } 8304 8305 /// Finds the minimum unsigned root of the following equation: 8306 /// 8307 /// A * X = B (mod N) 8308 /// 8309 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8310 /// A and B isn't important. 8311 /// 8312 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8313 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8314 ScalarEvolution &SE) { 8315 uint32_t BW = A.getBitWidth(); 8316 assert(BW == SE.getTypeSizeInBits(B->getType())); 8317 assert(A != 0 && "A must be non-zero."); 8318 8319 // 1. D = gcd(A, N) 8320 // 8321 // The gcd of A and N may have only one prime factor: 2. The number of 8322 // trailing zeros in A is its multiplicity 8323 uint32_t Mult2 = A.countTrailingZeros(); 8324 // D = 2^Mult2 8325 8326 // 2. Check if B is divisible by D. 8327 // 8328 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8329 // is not less than multiplicity of this prime factor for D. 8330 if (SE.GetMinTrailingZeros(B) < Mult2) 8331 return SE.getCouldNotCompute(); 8332 8333 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8334 // modulo (N / D). 8335 // 8336 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8337 // (N / D) in general. The inverse itself always fits into BW bits, though, 8338 // so we immediately truncate it. 8339 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8340 APInt Mod(BW + 1, 0); 8341 Mod.setBit(BW - Mult2); // Mod = N / D 8342 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8343 8344 // 4. Compute the minimum unsigned root of the equation: 8345 // I * (B / D) mod (N / D) 8346 // To simplify the computation, we factor out the divide by D: 8347 // (I * B mod N) / D 8348 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8349 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8350 } 8351 8352 /// For a given quadratic addrec, generate coefficients of the corresponding 8353 /// quadratic equation, multiplied by a common value to ensure that they are 8354 /// integers. 8355 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8356 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8357 /// were multiplied by, and BitWidth is the bit width of the original addrec 8358 /// coefficients. 8359 /// This function returns None if the addrec coefficients are not compile- 8360 /// time constants. 8361 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8362 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8363 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8364 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8365 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8366 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8367 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8368 << *AddRec << '\n'); 8369 8370 // We currently can only solve this if the coefficients are constants. 8371 if (!LC || !MC || !NC) { 8372 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8373 return None; 8374 } 8375 8376 APInt L = LC->getAPInt(); 8377 APInt M = MC->getAPInt(); 8378 APInt N = NC->getAPInt(); 8379 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8380 8381 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8382 unsigned NewWidth = BitWidth + 1; 8383 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8384 << BitWidth << '\n'); 8385 // The sign-extension (as opposed to a zero-extension) here matches the 8386 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8387 N = N.sext(NewWidth); 8388 M = M.sext(NewWidth); 8389 L = L.sext(NewWidth); 8390 8391 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8392 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8393 // L+M, L+2M+N, L+3M+3N, ... 8394 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8395 // 8396 // The equation Acc = 0 is then 8397 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8398 // In a quadratic form it becomes: 8399 // N n^2 + (2M-N) n + 2L = 0. 8400 8401 APInt A = N; 8402 APInt B = 2 * M - A; 8403 APInt C = 2 * L; 8404 APInt T = APInt(NewWidth, 2); 8405 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8406 << "x + " << C << ", coeff bw: " << NewWidth 8407 << ", multiplied by " << T << '\n'); 8408 return std::make_tuple(A, B, C, T, BitWidth); 8409 } 8410 8411 /// Helper function to compare optional APInts: 8412 /// (a) if X and Y both exist, return min(X, Y), 8413 /// (b) if neither X nor Y exist, return None, 8414 /// (c) if exactly one of X and Y exists, return that value. 8415 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8416 if (X.hasValue() && Y.hasValue()) { 8417 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8418 APInt XW = X->sextOrSelf(W); 8419 APInt YW = Y->sextOrSelf(W); 8420 return XW.slt(YW) ? *X : *Y; 8421 } 8422 if (!X.hasValue() && !Y.hasValue()) 8423 return None; 8424 return X.hasValue() ? *X : *Y; 8425 } 8426 8427 /// Helper function to truncate an optional APInt to a given BitWidth. 8428 /// When solving addrec-related equations, it is preferable to return a value 8429 /// that has the same bit width as the original addrec's coefficients. If the 8430 /// solution fits in the original bit width, truncate it (except for i1). 8431 /// Returning a value of a different bit width may inhibit some optimizations. 8432 /// 8433 /// In general, a solution to a quadratic equation generated from an addrec 8434 /// may require BW+1 bits, where BW is the bit width of the addrec's 8435 /// coefficients. The reason is that the coefficients of the quadratic 8436 /// equation are BW+1 bits wide (to avoid truncation when converting from 8437 /// the addrec to the equation). 8438 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8439 if (!X.hasValue()) 8440 return None; 8441 unsigned W = X->getBitWidth(); 8442 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8443 return X->trunc(BitWidth); 8444 return X; 8445 } 8446 8447 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8448 /// iterations. The values L, M, N are assumed to be signed, and they 8449 /// should all have the same bit widths. 8450 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8451 /// where BW is the bit width of the addrec's coefficients. 8452 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8453 /// returned as such, otherwise the bit width of the returned value may 8454 /// be greater than BW. 8455 /// 8456 /// This function returns None if 8457 /// (a) the addrec coefficients are not constant, or 8458 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8459 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8460 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8461 static Optional<APInt> 8462 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8463 APInt A, B, C, M; 8464 unsigned BitWidth; 8465 auto T = GetQuadraticEquation(AddRec); 8466 if (!T.hasValue()) 8467 return None; 8468 8469 std::tie(A, B, C, M, BitWidth) = *T; 8470 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8471 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8472 if (!X.hasValue()) 8473 return None; 8474 8475 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 8476 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 8477 if (!V->isZero()) 8478 return None; 8479 8480 return TruncIfPossible(X, BitWidth); 8481 } 8482 8483 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 8484 /// iterations. The values M, N are assumed to be signed, and they 8485 /// should all have the same bit widths. 8486 /// Find the least n such that c(n) does not belong to the given range, 8487 /// while c(n-1) does. 8488 /// 8489 /// This function returns None if 8490 /// (a) the addrec coefficients are not constant, or 8491 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 8492 /// bounds of the range. 8493 static Optional<APInt> 8494 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 8495 const ConstantRange &Range, ScalarEvolution &SE) { 8496 assert(AddRec->getOperand(0)->isZero() && 8497 "Starting value of addrec should be 0"); 8498 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 8499 << Range << ", addrec " << *AddRec << '\n'); 8500 // This case is handled in getNumIterationsInRange. Here we can assume that 8501 // we start in the range. 8502 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 8503 "Addrec's initial value should be in range"); 8504 8505 APInt A, B, C, M; 8506 unsigned BitWidth; 8507 auto T = GetQuadraticEquation(AddRec); 8508 if (!T.hasValue()) 8509 return None; 8510 8511 // Be careful about the return value: there can be two reasons for not 8512 // returning an actual number. First, if no solutions to the equations 8513 // were found, and second, if the solutions don't leave the given range. 8514 // The first case means that the actual solution is "unknown", the second 8515 // means that it's known, but not valid. If the solution is unknown, we 8516 // cannot make any conclusions. 8517 // Return a pair: the optional solution and a flag indicating if the 8518 // solution was found. 8519 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 8520 // Solve for signed overflow and unsigned overflow, pick the lower 8521 // solution. 8522 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 8523 << Bound << " (before multiplying by " << M << ")\n"); 8524 Bound *= M; // The quadratic equation multiplier. 8525 8526 Optional<APInt> SO = None; 8527 if (BitWidth > 1) { 8528 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8529 "signed overflow\n"); 8530 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 8531 } 8532 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8533 "unsigned overflow\n"); 8534 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 8535 BitWidth+1); 8536 8537 auto LeavesRange = [&] (const APInt &X) { 8538 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 8539 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 8540 if (Range.contains(V0->getValue())) 8541 return false; 8542 // X should be at least 1, so X-1 is non-negative. 8543 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 8544 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 8545 if (Range.contains(V1->getValue())) 8546 return true; 8547 return false; 8548 }; 8549 8550 // If SolveQuadraticEquationWrap returns None, it means that there can 8551 // be a solution, but the function failed to find it. We cannot treat it 8552 // as "no solution". 8553 if (!SO.hasValue() || !UO.hasValue()) 8554 return { None, false }; 8555 8556 // Check the smaller value first to see if it leaves the range. 8557 // At this point, both SO and UO must have values. 8558 Optional<APInt> Min = MinOptional(SO, UO); 8559 if (LeavesRange(*Min)) 8560 return { Min, true }; 8561 Optional<APInt> Max = Min == SO ? UO : SO; 8562 if (LeavesRange(*Max)) 8563 return { Max, true }; 8564 8565 // Solutions were found, but were eliminated, hence the "true". 8566 return { None, true }; 8567 }; 8568 8569 std::tie(A, B, C, M, BitWidth) = *T; 8570 // Lower bound is inclusive, subtract 1 to represent the exiting value. 8571 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 8572 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 8573 auto SL = SolveForBoundary(Lower); 8574 auto SU = SolveForBoundary(Upper); 8575 // If any of the solutions was unknown, no meaninigful conclusions can 8576 // be made. 8577 if (!SL.second || !SU.second) 8578 return None; 8579 8580 // Claim: The correct solution is not some value between Min and Max. 8581 // 8582 // Justification: Assuming that Min and Max are different values, one of 8583 // them is when the first signed overflow happens, the other is when the 8584 // first unsigned overflow happens. Crossing the range boundary is only 8585 // possible via an overflow (treating 0 as a special case of it, modeling 8586 // an overflow as crossing k*2^W for some k). 8587 // 8588 // The interesting case here is when Min was eliminated as an invalid 8589 // solution, but Max was not. The argument is that if there was another 8590 // overflow between Min and Max, it would also have been eliminated if 8591 // it was considered. 8592 // 8593 // For a given boundary, it is possible to have two overflows of the same 8594 // type (signed/unsigned) without having the other type in between: this 8595 // can happen when the vertex of the parabola is between the iterations 8596 // corresponding to the overflows. This is only possible when the two 8597 // overflows cross k*2^W for the same k. In such case, if the second one 8598 // left the range (and was the first one to do so), the first overflow 8599 // would have to enter the range, which would mean that either we had left 8600 // the range before or that we started outside of it. Both of these cases 8601 // are contradictions. 8602 // 8603 // Claim: In the case where SolveForBoundary returns None, the correct 8604 // solution is not some value between the Max for this boundary and the 8605 // Min of the other boundary. 8606 // 8607 // Justification: Assume that we had such Max_A and Min_B corresponding 8608 // to range boundaries A and B and such that Max_A < Min_B. If there was 8609 // a solution between Max_A and Min_B, it would have to be caused by an 8610 // overflow corresponding to either A or B. It cannot correspond to B, 8611 // since Min_B is the first occurrence of such an overflow. If it 8612 // corresponded to A, it would have to be either a signed or an unsigned 8613 // overflow that is larger than both eliminated overflows for A. But 8614 // between the eliminated overflows and this overflow, the values would 8615 // cover the entire value space, thus crossing the other boundary, which 8616 // is a contradiction. 8617 8618 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 8619 } 8620 8621 ScalarEvolution::ExitLimit 8622 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8623 bool AllowPredicates) { 8624 8625 // This is only used for loops with a "x != y" exit test. The exit condition 8626 // is now expressed as a single expression, V = x-y. So the exit test is 8627 // effectively V != 0. We know and take advantage of the fact that this 8628 // expression only being used in a comparison by zero context. 8629 8630 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8631 // If the value is a constant 8632 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8633 // If the value is already zero, the branch will execute zero times. 8634 if (C->getValue()->isZero()) return C; 8635 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8636 } 8637 8638 const SCEVAddRecExpr *AddRec = 8639 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 8640 8641 if (!AddRec && AllowPredicates) 8642 // Try to make this an AddRec using runtime tests, in the first X 8643 // iterations of this loop, where X is the SCEV expression found by the 8644 // algorithm below. 8645 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8646 8647 if (!AddRec || AddRec->getLoop() != L) 8648 return getCouldNotCompute(); 8649 8650 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8651 // the quadratic equation to solve it. 8652 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8653 // We can only use this value if the chrec ends up with an exact zero 8654 // value at this index. When solving for "X*X != 5", for example, we 8655 // should not accept a root of 2. 8656 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 8657 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 8658 return ExitLimit(R, R, false, Predicates); 8659 } 8660 return getCouldNotCompute(); 8661 } 8662 8663 // Otherwise we can only handle this if it is affine. 8664 if (!AddRec->isAffine()) 8665 return getCouldNotCompute(); 8666 8667 // If this is an affine expression, the execution count of this branch is 8668 // the minimum unsigned root of the following equation: 8669 // 8670 // Start + Step*N = 0 (mod 2^BW) 8671 // 8672 // equivalent to: 8673 // 8674 // Step*N = -Start (mod 2^BW) 8675 // 8676 // where BW is the common bit width of Start and Step. 8677 8678 // Get the initial value for the loop. 8679 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8680 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8681 8682 // For now we handle only constant steps. 8683 // 8684 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 8685 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 8686 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 8687 // We have not yet seen any such cases. 8688 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 8689 if (!StepC || StepC->getValue()->isZero()) 8690 return getCouldNotCompute(); 8691 8692 // For positive steps (counting up until unsigned overflow): 8693 // N = -Start/Step (as unsigned) 8694 // For negative steps (counting down to zero): 8695 // N = Start/-Step 8696 // First compute the unsigned distance from zero in the direction of Step. 8697 bool CountDown = StepC->getAPInt().isNegative(); 8698 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 8699 8700 // Handle unitary steps, which cannot wraparound. 8701 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 8702 // N = Distance (as unsigned) 8703 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8704 APInt MaxBECount = getUnsignedRangeMax(Distance); 8705 8706 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8707 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8708 // case, and see if we can improve the bound. 8709 // 8710 // Explicitly handling this here is necessary because getUnsignedRange 8711 // isn't context-sensitive; it doesn't know that we only care about the 8712 // range inside the loop. 8713 const SCEV *Zero = getZero(Distance->getType()); 8714 const SCEV *One = getOne(Distance->getType()); 8715 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8716 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8717 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8718 // as "unsigned_max(Distance + 1) - 1". 8719 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8720 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8721 } 8722 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8723 } 8724 8725 // If the condition controls loop exit (the loop exits only if the expression 8726 // is true) and the addition is no-wrap we can use unsigned divide to 8727 // compute the backedge count. In this case, the step may not divide the 8728 // distance, but we don't care because if the condition is "missed" the loop 8729 // will have undefined behavior due to wrapping. 8730 if (ControlsExit && AddRec->hasNoSelfWrap() && 8731 loopHasNoAbnormalExits(AddRec->getLoop())) { 8732 const SCEV *Exact = 8733 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8734 const SCEV *Max = 8735 Exact == getCouldNotCompute() 8736 ? Exact 8737 : getConstant(getUnsignedRangeMax(Exact)); 8738 return ExitLimit(Exact, Max, false, Predicates); 8739 } 8740 8741 // Solve the general equation. 8742 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 8743 getNegativeSCEV(Start), *this); 8744 const SCEV *M = E == getCouldNotCompute() 8745 ? E 8746 : getConstant(getUnsignedRangeMax(E)); 8747 return ExitLimit(E, M, false, Predicates); 8748 } 8749 8750 ScalarEvolution::ExitLimit 8751 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 8752 // Loops that look like: while (X == 0) are very strange indeed. We don't 8753 // handle them yet except for the trivial case. This could be expanded in the 8754 // future as needed. 8755 8756 // If the value is a constant, check to see if it is known to be non-zero 8757 // already. If so, the backedge will execute zero times. 8758 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8759 if (!C->getValue()->isZero()) 8760 return getZero(C->getType()); 8761 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8762 } 8763 8764 // We could implement others, but I really doubt anyone writes loops like 8765 // this, and if they did, they would already be constant folded. 8766 return getCouldNotCompute(); 8767 } 8768 8769 std::pair<BasicBlock *, BasicBlock *> 8770 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 8771 // If the block has a unique predecessor, then there is no path from the 8772 // predecessor to the block that does not go through the direct edge 8773 // from the predecessor to the block. 8774 if (BasicBlock *Pred = BB->getSinglePredecessor()) 8775 return {Pred, BB}; 8776 8777 // A loop's header is defined to be a block that dominates the loop. 8778 // If the header has a unique predecessor outside the loop, it must be 8779 // a block that has exactly one successor that can reach the loop. 8780 if (Loop *L = LI.getLoopFor(BB)) 8781 return {L->getLoopPredecessor(), L->getHeader()}; 8782 8783 return {nullptr, nullptr}; 8784 } 8785 8786 /// SCEV structural equivalence is usually sufficient for testing whether two 8787 /// expressions are equal, however for the purposes of looking for a condition 8788 /// guarding a loop, it can be useful to be a little more general, since a 8789 /// front-end may have replicated the controlling expression. 8790 static bool HasSameValue(const SCEV *A, const SCEV *B) { 8791 // Quick check to see if they are the same SCEV. 8792 if (A == B) return true; 8793 8794 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 8795 // Not all instructions that are "identical" compute the same value. For 8796 // instance, two distinct alloca instructions allocating the same type are 8797 // identical and do not read memory; but compute distinct values. 8798 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 8799 }; 8800 8801 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 8802 // two different instructions with the same value. Check for this case. 8803 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 8804 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 8805 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 8806 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 8807 if (ComputesEqualValues(AI, BI)) 8808 return true; 8809 8810 // Otherwise assume they may have a different value. 8811 return false; 8812 } 8813 8814 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 8815 const SCEV *&LHS, const SCEV *&RHS, 8816 unsigned Depth) { 8817 bool Changed = false; 8818 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 8819 // '0 != 0'. 8820 auto TrivialCase = [&](bool TriviallyTrue) { 8821 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8822 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 8823 return true; 8824 }; 8825 // If we hit the max recursion limit bail out. 8826 if (Depth >= 3) 8827 return false; 8828 8829 // Canonicalize a constant to the right side. 8830 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 8831 // Check for both operands constant. 8832 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 8833 if (ConstantExpr::getICmp(Pred, 8834 LHSC->getValue(), 8835 RHSC->getValue())->isNullValue()) 8836 return TrivialCase(false); 8837 else 8838 return TrivialCase(true); 8839 } 8840 // Otherwise swap the operands to put the constant on the right. 8841 std::swap(LHS, RHS); 8842 Pred = ICmpInst::getSwappedPredicate(Pred); 8843 Changed = true; 8844 } 8845 8846 // If we're comparing an addrec with a value which is loop-invariant in the 8847 // addrec's loop, put the addrec on the left. Also make a dominance check, 8848 // as both operands could be addrecs loop-invariant in each other's loop. 8849 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 8850 const Loop *L = AR->getLoop(); 8851 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 8852 std::swap(LHS, RHS); 8853 Pred = ICmpInst::getSwappedPredicate(Pred); 8854 Changed = true; 8855 } 8856 } 8857 8858 // If there's a constant operand, canonicalize comparisons with boundary 8859 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 8860 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 8861 const APInt &RA = RC->getAPInt(); 8862 8863 bool SimplifiedByConstantRange = false; 8864 8865 if (!ICmpInst::isEquality(Pred)) { 8866 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 8867 if (ExactCR.isFullSet()) 8868 return TrivialCase(true); 8869 else if (ExactCR.isEmptySet()) 8870 return TrivialCase(false); 8871 8872 APInt NewRHS; 8873 CmpInst::Predicate NewPred; 8874 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 8875 ICmpInst::isEquality(NewPred)) { 8876 // We were able to convert an inequality to an equality. 8877 Pred = NewPred; 8878 RHS = getConstant(NewRHS); 8879 Changed = SimplifiedByConstantRange = true; 8880 } 8881 } 8882 8883 if (!SimplifiedByConstantRange) { 8884 switch (Pred) { 8885 default: 8886 break; 8887 case ICmpInst::ICMP_EQ: 8888 case ICmpInst::ICMP_NE: 8889 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 8890 if (!RA) 8891 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 8892 if (const SCEVMulExpr *ME = 8893 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 8894 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 8895 ME->getOperand(0)->isAllOnesValue()) { 8896 RHS = AE->getOperand(1); 8897 LHS = ME->getOperand(1); 8898 Changed = true; 8899 } 8900 break; 8901 8902 8903 // The "Should have been caught earlier!" messages refer to the fact 8904 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 8905 // should have fired on the corresponding cases, and canonicalized the 8906 // check to trivial case. 8907 8908 case ICmpInst::ICMP_UGE: 8909 assert(!RA.isMinValue() && "Should have been caught earlier!"); 8910 Pred = ICmpInst::ICMP_UGT; 8911 RHS = getConstant(RA - 1); 8912 Changed = true; 8913 break; 8914 case ICmpInst::ICMP_ULE: 8915 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 8916 Pred = ICmpInst::ICMP_ULT; 8917 RHS = getConstant(RA + 1); 8918 Changed = true; 8919 break; 8920 case ICmpInst::ICMP_SGE: 8921 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 8922 Pred = ICmpInst::ICMP_SGT; 8923 RHS = getConstant(RA - 1); 8924 Changed = true; 8925 break; 8926 case ICmpInst::ICMP_SLE: 8927 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 8928 Pred = ICmpInst::ICMP_SLT; 8929 RHS = getConstant(RA + 1); 8930 Changed = true; 8931 break; 8932 } 8933 } 8934 } 8935 8936 // Check for obvious equality. 8937 if (HasSameValue(LHS, RHS)) { 8938 if (ICmpInst::isTrueWhenEqual(Pred)) 8939 return TrivialCase(true); 8940 if (ICmpInst::isFalseWhenEqual(Pred)) 8941 return TrivialCase(false); 8942 } 8943 8944 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 8945 // adding or subtracting 1 from one of the operands. 8946 switch (Pred) { 8947 case ICmpInst::ICMP_SLE: 8948 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 8949 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8950 SCEV::FlagNSW); 8951 Pred = ICmpInst::ICMP_SLT; 8952 Changed = true; 8953 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 8954 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 8955 SCEV::FlagNSW); 8956 Pred = ICmpInst::ICMP_SLT; 8957 Changed = true; 8958 } 8959 break; 8960 case ICmpInst::ICMP_SGE: 8961 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 8962 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 8963 SCEV::FlagNSW); 8964 Pred = ICmpInst::ICMP_SGT; 8965 Changed = true; 8966 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 8967 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8968 SCEV::FlagNSW); 8969 Pred = ICmpInst::ICMP_SGT; 8970 Changed = true; 8971 } 8972 break; 8973 case ICmpInst::ICMP_ULE: 8974 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 8975 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8976 SCEV::FlagNUW); 8977 Pred = ICmpInst::ICMP_ULT; 8978 Changed = true; 8979 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 8980 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 8981 Pred = ICmpInst::ICMP_ULT; 8982 Changed = true; 8983 } 8984 break; 8985 case ICmpInst::ICMP_UGE: 8986 if (!getUnsignedRangeMin(RHS).isMinValue()) { 8987 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 8988 Pred = ICmpInst::ICMP_UGT; 8989 Changed = true; 8990 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 8991 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8992 SCEV::FlagNUW); 8993 Pred = ICmpInst::ICMP_UGT; 8994 Changed = true; 8995 } 8996 break; 8997 default: 8998 break; 8999 } 9000 9001 // TODO: More simplifications are possible here. 9002 9003 // Recursively simplify until we either hit a recursion limit or nothing 9004 // changes. 9005 if (Changed) 9006 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9007 9008 return Changed; 9009 } 9010 9011 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9012 return getSignedRangeMax(S).isNegative(); 9013 } 9014 9015 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9016 return getSignedRangeMin(S).isStrictlyPositive(); 9017 } 9018 9019 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9020 return !getSignedRangeMin(S).isNegative(); 9021 } 9022 9023 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9024 return !getSignedRangeMax(S).isStrictlyPositive(); 9025 } 9026 9027 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9028 return isKnownNegative(S) || isKnownPositive(S); 9029 } 9030 9031 std::pair<const SCEV *, const SCEV *> 9032 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9033 // Compute SCEV on entry of loop L. 9034 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9035 if (Start == getCouldNotCompute()) 9036 return { Start, Start }; 9037 // Compute post increment SCEV for loop L. 9038 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9039 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9040 return { Start, PostInc }; 9041 } 9042 9043 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9044 const SCEV *LHS, const SCEV *RHS) { 9045 // First collect all loops. 9046 SmallPtrSet<const Loop *, 8> LoopsUsed; 9047 getUsedLoops(LHS, LoopsUsed); 9048 getUsedLoops(RHS, LoopsUsed); 9049 9050 if (LoopsUsed.empty()) 9051 return false; 9052 9053 // Domination relationship must be a linear order on collected loops. 9054 #ifndef NDEBUG 9055 for (auto *L1 : LoopsUsed) 9056 for (auto *L2 : LoopsUsed) 9057 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9058 DT.dominates(L2->getHeader(), L1->getHeader())) && 9059 "Domination relationship is not a linear order"); 9060 #endif 9061 9062 const Loop *MDL = 9063 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9064 [&](const Loop *L1, const Loop *L2) { 9065 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9066 }); 9067 9068 // Get init and post increment value for LHS. 9069 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9070 // if LHS contains unknown non-invariant SCEV then bail out. 9071 if (SplitLHS.first == getCouldNotCompute()) 9072 return false; 9073 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9074 // Get init and post increment value for RHS. 9075 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9076 // if RHS contains unknown non-invariant SCEV then bail out. 9077 if (SplitRHS.first == getCouldNotCompute()) 9078 return false; 9079 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9080 // It is possible that init SCEV contains an invariant load but it does 9081 // not dominate MDL and is not available at MDL loop entry, so we should 9082 // check it here. 9083 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9084 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9085 return false; 9086 9087 return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) && 9088 isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9089 SplitRHS.second); 9090 } 9091 9092 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9093 const SCEV *LHS, const SCEV *RHS) { 9094 // Canonicalize the inputs first. 9095 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9096 9097 if (isKnownViaInduction(Pred, LHS, RHS)) 9098 return true; 9099 9100 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9101 return true; 9102 9103 // Otherwise see what can be done with some simple reasoning. 9104 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9105 } 9106 9107 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9108 const SCEVAddRecExpr *LHS, 9109 const SCEV *RHS) { 9110 const Loop *L = LHS->getLoop(); 9111 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9112 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9113 } 9114 9115 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 9116 ICmpInst::Predicate Pred, 9117 bool &Increasing) { 9118 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 9119 9120 #ifndef NDEBUG 9121 // Verify an invariant: inverting the predicate should turn a monotonically 9122 // increasing change to a monotonically decreasing one, and vice versa. 9123 bool IncreasingSwapped; 9124 bool ResultSwapped = isMonotonicPredicateImpl( 9125 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 9126 9127 assert(Result == ResultSwapped && "should be able to analyze both!"); 9128 if (ResultSwapped) 9129 assert(Increasing == !IncreasingSwapped && 9130 "monotonicity should flip as we flip the predicate"); 9131 #endif 9132 9133 return Result; 9134 } 9135 9136 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 9137 ICmpInst::Predicate Pred, 9138 bool &Increasing) { 9139 9140 // A zero step value for LHS means the induction variable is essentially a 9141 // loop invariant value. We don't really depend on the predicate actually 9142 // flipping from false to true (for increasing predicates, and the other way 9143 // around for decreasing predicates), all we care about is that *if* the 9144 // predicate changes then it only changes from false to true. 9145 // 9146 // A zero step value in itself is not very useful, but there may be places 9147 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9148 // as general as possible. 9149 9150 switch (Pred) { 9151 default: 9152 return false; // Conservative answer 9153 9154 case ICmpInst::ICMP_UGT: 9155 case ICmpInst::ICMP_UGE: 9156 case ICmpInst::ICMP_ULT: 9157 case ICmpInst::ICMP_ULE: 9158 if (!LHS->hasNoUnsignedWrap()) 9159 return false; 9160 9161 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 9162 return true; 9163 9164 case ICmpInst::ICMP_SGT: 9165 case ICmpInst::ICMP_SGE: 9166 case ICmpInst::ICMP_SLT: 9167 case ICmpInst::ICMP_SLE: { 9168 if (!LHS->hasNoSignedWrap()) 9169 return false; 9170 9171 const SCEV *Step = LHS->getStepRecurrence(*this); 9172 9173 if (isKnownNonNegative(Step)) { 9174 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 9175 return true; 9176 } 9177 9178 if (isKnownNonPositive(Step)) { 9179 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 9180 return true; 9181 } 9182 9183 return false; 9184 } 9185 9186 } 9187 9188 llvm_unreachable("switch has default clause!"); 9189 } 9190 9191 bool ScalarEvolution::isLoopInvariantPredicate( 9192 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9193 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 9194 const SCEV *&InvariantRHS) { 9195 9196 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9197 if (!isLoopInvariant(RHS, L)) { 9198 if (!isLoopInvariant(LHS, L)) 9199 return false; 9200 9201 std::swap(LHS, RHS); 9202 Pred = ICmpInst::getSwappedPredicate(Pred); 9203 } 9204 9205 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9206 if (!ArLHS || ArLHS->getLoop() != L) 9207 return false; 9208 9209 bool Increasing; 9210 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 9211 return false; 9212 9213 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9214 // true as the loop iterates, and the backedge is control dependent on 9215 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9216 // 9217 // * if the predicate was false in the first iteration then the predicate 9218 // is never evaluated again, since the loop exits without taking the 9219 // backedge. 9220 // * if the predicate was true in the first iteration then it will 9221 // continue to be true for all future iterations since it is 9222 // monotonically increasing. 9223 // 9224 // For both the above possibilities, we can replace the loop varying 9225 // predicate with its value on the first iteration of the loop (which is 9226 // loop invariant). 9227 // 9228 // A similar reasoning applies for a monotonically decreasing predicate, by 9229 // replacing true with false and false with true in the above two bullets. 9230 9231 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9232 9233 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9234 return false; 9235 9236 InvariantPred = Pred; 9237 InvariantLHS = ArLHS->getStart(); 9238 InvariantRHS = RHS; 9239 return true; 9240 } 9241 9242 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9243 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9244 if (HasSameValue(LHS, RHS)) 9245 return ICmpInst::isTrueWhenEqual(Pred); 9246 9247 // This code is split out from isKnownPredicate because it is called from 9248 // within isLoopEntryGuardedByCond. 9249 9250 auto CheckRanges = 9251 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 9252 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 9253 .contains(RangeLHS); 9254 }; 9255 9256 // The check at the top of the function catches the case where the values are 9257 // known to be equal. 9258 if (Pred == CmpInst::ICMP_EQ) 9259 return false; 9260 9261 if (Pred == CmpInst::ICMP_NE) 9262 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9263 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9264 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9265 9266 if (CmpInst::isSigned(Pred)) 9267 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9268 9269 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9270 } 9271 9272 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9273 const SCEV *LHS, 9274 const SCEV *RHS) { 9275 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9276 // Return Y via OutY. 9277 auto MatchBinaryAddToConst = 9278 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9279 SCEV::NoWrapFlags ExpectedFlags) { 9280 const SCEV *NonConstOp, *ConstOp; 9281 SCEV::NoWrapFlags FlagsPresent; 9282 9283 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9284 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9285 return false; 9286 9287 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9288 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9289 }; 9290 9291 APInt C; 9292 9293 switch (Pred) { 9294 default: 9295 break; 9296 9297 case ICmpInst::ICMP_SGE: 9298 std::swap(LHS, RHS); 9299 LLVM_FALLTHROUGH; 9300 case ICmpInst::ICMP_SLE: 9301 // X s<= (X + C)<nsw> if C >= 0 9302 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9303 return true; 9304 9305 // (X + C)<nsw> s<= X if C <= 0 9306 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9307 !C.isStrictlyPositive()) 9308 return true; 9309 break; 9310 9311 case ICmpInst::ICMP_SGT: 9312 std::swap(LHS, RHS); 9313 LLVM_FALLTHROUGH; 9314 case ICmpInst::ICMP_SLT: 9315 // X s< (X + C)<nsw> if C > 0 9316 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9317 C.isStrictlyPositive()) 9318 return true; 9319 9320 // (X + C)<nsw> s< X if C < 0 9321 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9322 return true; 9323 break; 9324 } 9325 9326 return false; 9327 } 9328 9329 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9330 const SCEV *LHS, 9331 const SCEV *RHS) { 9332 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9333 return false; 9334 9335 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9336 // the stack can result in exponential time complexity. 9337 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9338 9339 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9340 // 9341 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9342 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9343 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9344 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9345 // use isKnownPredicate later if needed. 9346 return isKnownNonNegative(RHS) && 9347 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9348 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9349 } 9350 9351 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 9352 ICmpInst::Predicate Pred, 9353 const SCEV *LHS, const SCEV *RHS) { 9354 // No need to even try if we know the module has no guards. 9355 if (!HasGuards) 9356 return false; 9357 9358 return any_of(*BB, [&](Instruction &I) { 9359 using namespace llvm::PatternMatch; 9360 9361 Value *Condition; 9362 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9363 m_Value(Condition))) && 9364 isImpliedCond(Pred, LHS, RHS, Condition, false); 9365 }); 9366 } 9367 9368 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9369 /// protected by a conditional between LHS and RHS. This is used to 9370 /// to eliminate casts. 9371 bool 9372 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9373 ICmpInst::Predicate Pred, 9374 const SCEV *LHS, const SCEV *RHS) { 9375 // Interpret a null as meaning no loop, where there is obviously no guard 9376 // (interprocedural conditions notwithstanding). 9377 if (!L) return true; 9378 9379 if (VerifyIR) 9380 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9381 "This cannot be done on broken IR!"); 9382 9383 9384 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9385 return true; 9386 9387 BasicBlock *Latch = L->getLoopLatch(); 9388 if (!Latch) 9389 return false; 9390 9391 BranchInst *LoopContinuePredicate = 9392 dyn_cast<BranchInst>(Latch->getTerminator()); 9393 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9394 isImpliedCond(Pred, LHS, RHS, 9395 LoopContinuePredicate->getCondition(), 9396 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9397 return true; 9398 9399 // We don't want more than one activation of the following loops on the stack 9400 // -- that can lead to O(n!) time complexity. 9401 if (WalkingBEDominatingConds) 9402 return false; 9403 9404 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9405 9406 // See if we can exploit a trip count to prove the predicate. 9407 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9408 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9409 if (LatchBECount != getCouldNotCompute()) { 9410 // We know that Latch branches back to the loop header exactly 9411 // LatchBECount times. This means the backdege condition at Latch is 9412 // equivalent to "{0,+,1} u< LatchBECount". 9413 Type *Ty = LatchBECount->getType(); 9414 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9415 const SCEV *LoopCounter = 9416 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9417 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9418 LatchBECount)) 9419 return true; 9420 } 9421 9422 // Check conditions due to any @llvm.assume intrinsics. 9423 for (auto &AssumeVH : AC.assumptions()) { 9424 if (!AssumeVH) 9425 continue; 9426 auto *CI = cast<CallInst>(AssumeVH); 9427 if (!DT.dominates(CI, Latch->getTerminator())) 9428 continue; 9429 9430 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9431 return true; 9432 } 9433 9434 // If the loop is not reachable from the entry block, we risk running into an 9435 // infinite loop as we walk up into the dom tree. These loops do not matter 9436 // anyway, so we just return a conservative answer when we see them. 9437 if (!DT.isReachableFromEntry(L->getHeader())) 9438 return false; 9439 9440 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9441 return true; 9442 9443 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9444 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9445 assert(DTN && "should reach the loop header before reaching the root!"); 9446 9447 BasicBlock *BB = DTN->getBlock(); 9448 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9449 return true; 9450 9451 BasicBlock *PBB = BB->getSinglePredecessor(); 9452 if (!PBB) 9453 continue; 9454 9455 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9456 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9457 continue; 9458 9459 Value *Condition = ContinuePredicate->getCondition(); 9460 9461 // If we have an edge `E` within the loop body that dominates the only 9462 // latch, the condition guarding `E` also guards the backedge. This 9463 // reasoning works only for loops with a single latch. 9464 9465 BasicBlockEdge DominatingEdge(PBB, BB); 9466 if (DominatingEdge.isSingleEdge()) { 9467 // We're constructively (and conservatively) enumerating edges within the 9468 // loop body that dominate the latch. The dominator tree better agree 9469 // with us on this: 9470 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9471 9472 if (isImpliedCond(Pred, LHS, RHS, Condition, 9473 BB != ContinuePredicate->getSuccessor(0))) 9474 return true; 9475 } 9476 } 9477 9478 return false; 9479 } 9480 9481 bool 9482 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 9483 ICmpInst::Predicate Pred, 9484 const SCEV *LHS, const SCEV *RHS) { 9485 // Interpret a null as meaning no loop, where there is obviously no guard 9486 // (interprocedural conditions notwithstanding). 9487 if (!L) return false; 9488 9489 if (VerifyIR) 9490 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9491 "This cannot be done on broken IR!"); 9492 9493 // Both LHS and RHS must be available at loop entry. 9494 assert(isAvailableAtLoopEntry(LHS, L) && 9495 "LHS is not available at Loop Entry"); 9496 assert(isAvailableAtLoopEntry(RHS, L) && 9497 "RHS is not available at Loop Entry"); 9498 9499 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9500 return true; 9501 9502 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9503 // the facts (a >= b && a != b) separately. A typical situation is when the 9504 // non-strict comparison is known from ranges and non-equality is known from 9505 // dominating predicates. If we are proving strict comparison, we always try 9506 // to prove non-equality and non-strict comparison separately. 9507 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9508 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9509 bool ProvedNonStrictComparison = false; 9510 bool ProvedNonEquality = false; 9511 9512 if (ProvingStrictComparison) { 9513 ProvedNonStrictComparison = 9514 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9515 ProvedNonEquality = 9516 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9517 if (ProvedNonStrictComparison && ProvedNonEquality) 9518 return true; 9519 } 9520 9521 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9522 auto ProveViaGuard = [&](BasicBlock *Block) { 9523 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9524 return true; 9525 if (ProvingStrictComparison) { 9526 if (!ProvedNonStrictComparison) 9527 ProvedNonStrictComparison = 9528 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9529 if (!ProvedNonEquality) 9530 ProvedNonEquality = 9531 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9532 if (ProvedNonStrictComparison && ProvedNonEquality) 9533 return true; 9534 } 9535 return false; 9536 }; 9537 9538 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9539 auto ProveViaCond = [&](Value *Condition, bool Inverse) { 9540 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse)) 9541 return true; 9542 if (ProvingStrictComparison) { 9543 if (!ProvedNonStrictComparison) 9544 ProvedNonStrictComparison = 9545 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse); 9546 if (!ProvedNonEquality) 9547 ProvedNonEquality = 9548 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse); 9549 if (ProvedNonStrictComparison && ProvedNonEquality) 9550 return true; 9551 } 9552 return false; 9553 }; 9554 9555 // Starting at the loop predecessor, climb up the predecessor chain, as long 9556 // as there are predecessors that can be found that have unique successors 9557 // leading to the original header. 9558 for (std::pair<BasicBlock *, BasicBlock *> 9559 Pair(L->getLoopPredecessor(), L->getHeader()); 9560 Pair.first; 9561 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9562 9563 if (ProveViaGuard(Pair.first)) 9564 return true; 9565 9566 BranchInst *LoopEntryPredicate = 9567 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9568 if (!LoopEntryPredicate || 9569 LoopEntryPredicate->isUnconditional()) 9570 continue; 9571 9572 if (ProveViaCond(LoopEntryPredicate->getCondition(), 9573 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9574 return true; 9575 } 9576 9577 // Check conditions due to any @llvm.assume intrinsics. 9578 for (auto &AssumeVH : AC.assumptions()) { 9579 if (!AssumeVH) 9580 continue; 9581 auto *CI = cast<CallInst>(AssumeVH); 9582 if (!DT.dominates(CI, L->getHeader())) 9583 continue; 9584 9585 if (ProveViaCond(CI->getArgOperand(0), false)) 9586 return true; 9587 } 9588 9589 return false; 9590 } 9591 9592 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 9593 const SCEV *LHS, const SCEV *RHS, 9594 Value *FoundCondValue, 9595 bool Inverse) { 9596 if (!PendingLoopPredicates.insert(FoundCondValue).second) 9597 return false; 9598 9599 auto ClearOnExit = 9600 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 9601 9602 // Recursively handle And and Or conditions. 9603 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 9604 if (BO->getOpcode() == Instruction::And) { 9605 if (!Inverse) 9606 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9607 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9608 } else if (BO->getOpcode() == Instruction::Or) { 9609 if (Inverse) 9610 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9611 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9612 } 9613 } 9614 9615 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 9616 if (!ICI) return false; 9617 9618 // Now that we found a conditional branch that dominates the loop or controls 9619 // the loop latch. Check to see if it is the comparison we are looking for. 9620 ICmpInst::Predicate FoundPred; 9621 if (Inverse) 9622 FoundPred = ICI->getInversePredicate(); 9623 else 9624 FoundPred = ICI->getPredicate(); 9625 9626 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 9627 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 9628 9629 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 9630 } 9631 9632 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9633 const SCEV *RHS, 9634 ICmpInst::Predicate FoundPred, 9635 const SCEV *FoundLHS, 9636 const SCEV *FoundRHS) { 9637 // Balance the types. 9638 if (getTypeSizeInBits(LHS->getType()) < 9639 getTypeSizeInBits(FoundLHS->getType())) { 9640 if (CmpInst::isSigned(Pred)) { 9641 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 9642 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 9643 } else { 9644 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 9645 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 9646 } 9647 } else if (getTypeSizeInBits(LHS->getType()) > 9648 getTypeSizeInBits(FoundLHS->getType())) { 9649 if (CmpInst::isSigned(FoundPred)) { 9650 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 9651 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 9652 } else { 9653 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 9654 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 9655 } 9656 } 9657 9658 // Canonicalize the query to match the way instcombine will have 9659 // canonicalized the comparison. 9660 if (SimplifyICmpOperands(Pred, LHS, RHS)) 9661 if (LHS == RHS) 9662 return CmpInst::isTrueWhenEqual(Pred); 9663 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 9664 if (FoundLHS == FoundRHS) 9665 return CmpInst::isFalseWhenEqual(FoundPred); 9666 9667 // Check to see if we can make the LHS or RHS match. 9668 if (LHS == FoundRHS || RHS == FoundLHS) { 9669 if (isa<SCEVConstant>(RHS)) { 9670 std::swap(FoundLHS, FoundRHS); 9671 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 9672 } else { 9673 std::swap(LHS, RHS); 9674 Pred = ICmpInst::getSwappedPredicate(Pred); 9675 } 9676 } 9677 9678 // Check whether the found predicate is the same as the desired predicate. 9679 if (FoundPred == Pred) 9680 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9681 9682 // Check whether swapping the found predicate makes it the same as the 9683 // desired predicate. 9684 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 9685 if (isa<SCEVConstant>(RHS)) 9686 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 9687 else 9688 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 9689 RHS, LHS, FoundLHS, FoundRHS); 9690 } 9691 9692 // Unsigned comparison is the same as signed comparison when both the operands 9693 // are non-negative. 9694 if (CmpInst::isUnsigned(FoundPred) && 9695 CmpInst::getSignedPredicate(FoundPred) == Pred && 9696 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 9697 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9698 9699 // Check if we can make progress by sharpening ranges. 9700 if (FoundPred == ICmpInst::ICMP_NE && 9701 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 9702 9703 const SCEVConstant *C = nullptr; 9704 const SCEV *V = nullptr; 9705 9706 if (isa<SCEVConstant>(FoundLHS)) { 9707 C = cast<SCEVConstant>(FoundLHS); 9708 V = FoundRHS; 9709 } else { 9710 C = cast<SCEVConstant>(FoundRHS); 9711 V = FoundLHS; 9712 } 9713 9714 // The guarding predicate tells us that C != V. If the known range 9715 // of V is [C, t), we can sharpen the range to [C + 1, t). The 9716 // range we consider has to correspond to same signedness as the 9717 // predicate we're interested in folding. 9718 9719 APInt Min = ICmpInst::isSigned(Pred) ? 9720 getSignedRangeMin(V) : getUnsignedRangeMin(V); 9721 9722 if (Min == C->getAPInt()) { 9723 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 9724 // This is true even if (Min + 1) wraps around -- in case of 9725 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 9726 9727 APInt SharperMin = Min + 1; 9728 9729 switch (Pred) { 9730 case ICmpInst::ICMP_SGE: 9731 case ICmpInst::ICMP_UGE: 9732 // We know V `Pred` SharperMin. If this implies LHS `Pred` 9733 // RHS, we're done. 9734 if (isImpliedCondOperands(Pred, LHS, RHS, V, 9735 getConstant(SharperMin))) 9736 return true; 9737 LLVM_FALLTHROUGH; 9738 9739 case ICmpInst::ICMP_SGT: 9740 case ICmpInst::ICMP_UGT: 9741 // We know from the range information that (V `Pred` Min || 9742 // V == Min). We know from the guarding condition that !(V 9743 // == Min). This gives us 9744 // 9745 // V `Pred` Min || V == Min && !(V == Min) 9746 // => V `Pred` Min 9747 // 9748 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 9749 9750 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 9751 return true; 9752 LLVM_FALLTHROUGH; 9753 9754 default: 9755 // No change 9756 break; 9757 } 9758 } 9759 } 9760 9761 // Check whether the actual condition is beyond sufficient. 9762 if (FoundPred == ICmpInst::ICMP_EQ) 9763 if (ICmpInst::isTrueWhenEqual(Pred)) 9764 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9765 return true; 9766 if (Pred == ICmpInst::ICMP_NE) 9767 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 9768 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 9769 return true; 9770 9771 // Otherwise assume the worst. 9772 return false; 9773 } 9774 9775 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 9776 const SCEV *&L, const SCEV *&R, 9777 SCEV::NoWrapFlags &Flags) { 9778 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 9779 if (!AE || AE->getNumOperands() != 2) 9780 return false; 9781 9782 L = AE->getOperand(0); 9783 R = AE->getOperand(1); 9784 Flags = AE->getNoWrapFlags(); 9785 return true; 9786 } 9787 9788 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 9789 const SCEV *Less) { 9790 // We avoid subtracting expressions here because this function is usually 9791 // fairly deep in the call stack (i.e. is called many times). 9792 9793 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 9794 const auto *LAR = cast<SCEVAddRecExpr>(Less); 9795 const auto *MAR = cast<SCEVAddRecExpr>(More); 9796 9797 if (LAR->getLoop() != MAR->getLoop()) 9798 return None; 9799 9800 // We look at affine expressions only; not for correctness but to keep 9801 // getStepRecurrence cheap. 9802 if (!LAR->isAffine() || !MAR->isAffine()) 9803 return None; 9804 9805 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 9806 return None; 9807 9808 Less = LAR->getStart(); 9809 More = MAR->getStart(); 9810 9811 // fall through 9812 } 9813 9814 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 9815 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 9816 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 9817 return M - L; 9818 } 9819 9820 SCEV::NoWrapFlags Flags; 9821 const SCEV *LLess = nullptr, *RLess = nullptr; 9822 const SCEV *LMore = nullptr, *RMore = nullptr; 9823 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 9824 // Compare (X + C1) vs X. 9825 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 9826 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 9827 if (RLess == More) 9828 return -(C1->getAPInt()); 9829 9830 // Compare X vs (X + C2). 9831 if (splitBinaryAdd(More, LMore, RMore, Flags)) 9832 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 9833 if (RMore == Less) 9834 return C2->getAPInt(); 9835 9836 // Compare (X + C1) vs (X + C2). 9837 if (C1 && C2 && RLess == RMore) 9838 return C2->getAPInt() - C1->getAPInt(); 9839 9840 return None; 9841 } 9842 9843 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 9844 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9845 const SCEV *FoundLHS, const SCEV *FoundRHS) { 9846 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 9847 return false; 9848 9849 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9850 if (!AddRecLHS) 9851 return false; 9852 9853 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 9854 if (!AddRecFoundLHS) 9855 return false; 9856 9857 // We'd like to let SCEV reason about control dependencies, so we constrain 9858 // both the inequalities to be about add recurrences on the same loop. This 9859 // way we can use isLoopEntryGuardedByCond later. 9860 9861 const Loop *L = AddRecFoundLHS->getLoop(); 9862 if (L != AddRecLHS->getLoop()) 9863 return false; 9864 9865 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 9866 // 9867 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 9868 // ... (2) 9869 // 9870 // Informal proof for (2), assuming (1) [*]: 9871 // 9872 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 9873 // 9874 // Then 9875 // 9876 // FoundLHS s< FoundRHS s< INT_MIN - C 9877 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 9878 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 9879 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 9880 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 9881 // <=> FoundLHS + C s< FoundRHS + C 9882 // 9883 // [*]: (1) can be proved by ruling out overflow. 9884 // 9885 // [**]: This can be proved by analyzing all the four possibilities: 9886 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 9887 // (A s>= 0, B s>= 0). 9888 // 9889 // Note: 9890 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 9891 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 9892 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 9893 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 9894 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 9895 // C)". 9896 9897 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 9898 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 9899 if (!LDiff || !RDiff || *LDiff != *RDiff) 9900 return false; 9901 9902 if (LDiff->isMinValue()) 9903 return true; 9904 9905 APInt FoundRHSLimit; 9906 9907 if (Pred == CmpInst::ICMP_ULT) { 9908 FoundRHSLimit = -(*RDiff); 9909 } else { 9910 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 9911 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 9912 } 9913 9914 // Try to prove (1) or (2), as needed. 9915 return isAvailableAtLoopEntry(FoundRHS, L) && 9916 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 9917 getConstant(FoundRHSLimit)); 9918 } 9919 9920 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 9921 const SCEV *LHS, const SCEV *RHS, 9922 const SCEV *FoundLHS, 9923 const SCEV *FoundRHS, unsigned Depth) { 9924 const PHINode *LPhi = nullptr, *RPhi = nullptr; 9925 9926 auto ClearOnExit = make_scope_exit([&]() { 9927 if (LPhi) { 9928 bool Erased = PendingMerges.erase(LPhi); 9929 assert(Erased && "Failed to erase LPhi!"); 9930 (void)Erased; 9931 } 9932 if (RPhi) { 9933 bool Erased = PendingMerges.erase(RPhi); 9934 assert(Erased && "Failed to erase RPhi!"); 9935 (void)Erased; 9936 } 9937 }); 9938 9939 // Find respective Phis and check that they are not being pending. 9940 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 9941 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 9942 if (!PendingMerges.insert(Phi).second) 9943 return false; 9944 LPhi = Phi; 9945 } 9946 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 9947 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 9948 // If we detect a loop of Phi nodes being processed by this method, for 9949 // example: 9950 // 9951 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 9952 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 9953 // 9954 // we don't want to deal with a case that complex, so return conservative 9955 // answer false. 9956 if (!PendingMerges.insert(Phi).second) 9957 return false; 9958 RPhi = Phi; 9959 } 9960 9961 // If none of LHS, RHS is a Phi, nothing to do here. 9962 if (!LPhi && !RPhi) 9963 return false; 9964 9965 // If there is a SCEVUnknown Phi we are interested in, make it left. 9966 if (!LPhi) { 9967 std::swap(LHS, RHS); 9968 std::swap(FoundLHS, FoundRHS); 9969 std::swap(LPhi, RPhi); 9970 Pred = ICmpInst::getSwappedPredicate(Pred); 9971 } 9972 9973 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 9974 const BasicBlock *LBB = LPhi->getParent(); 9975 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 9976 9977 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 9978 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 9979 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 9980 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 9981 }; 9982 9983 if (RPhi && RPhi->getParent() == LBB) { 9984 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 9985 // If we compare two Phis from the same block, and for each entry block 9986 // the predicate is true for incoming values from this block, then the 9987 // predicate is also true for the Phis. 9988 for (const BasicBlock *IncBB : predecessors(LBB)) { 9989 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 9990 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 9991 if (!ProvedEasily(L, R)) 9992 return false; 9993 } 9994 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 9995 // Case two: RHS is also a Phi from the same basic block, and it is an 9996 // AddRec. It means that there is a loop which has both AddRec and Unknown 9997 // PHIs, for it we can compare incoming values of AddRec from above the loop 9998 // and latch with their respective incoming values of LPhi. 9999 // TODO: Generalize to handle loops with many inputs in a header. 10000 if (LPhi->getNumIncomingValues() != 2) return false; 10001 10002 auto *RLoop = RAR->getLoop(); 10003 auto *Predecessor = RLoop->getLoopPredecessor(); 10004 assert(Predecessor && "Loop with AddRec with no predecessor?"); 10005 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 10006 if (!ProvedEasily(L1, RAR->getStart())) 10007 return false; 10008 auto *Latch = RLoop->getLoopLatch(); 10009 assert(Latch && "Loop with AddRec with no latch?"); 10010 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 10011 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 10012 return false; 10013 } else { 10014 // In all other cases go over inputs of LHS and compare each of them to RHS, 10015 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 10016 // At this point RHS is either a non-Phi, or it is a Phi from some block 10017 // different from LBB. 10018 for (const BasicBlock *IncBB : predecessors(LBB)) { 10019 // Check that RHS is available in this block. 10020 if (!dominates(RHS, IncBB)) 10021 return false; 10022 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10023 if (!ProvedEasily(L, RHS)) 10024 return false; 10025 } 10026 } 10027 return true; 10028 } 10029 10030 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 10031 const SCEV *LHS, const SCEV *RHS, 10032 const SCEV *FoundLHS, 10033 const SCEV *FoundRHS) { 10034 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10035 return true; 10036 10037 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10038 return true; 10039 10040 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 10041 FoundLHS, FoundRHS) || 10042 // ~x < ~y --> x > y 10043 isImpliedCondOperandsHelper(Pred, LHS, RHS, 10044 getNotSCEV(FoundRHS), 10045 getNotSCEV(FoundLHS)); 10046 } 10047 10048 /// If Expr computes ~A, return A else return nullptr 10049 static const SCEV *MatchNotExpr(const SCEV *Expr) { 10050 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 10051 if (!Add || Add->getNumOperands() != 2 || 10052 !Add->getOperand(0)->isAllOnesValue()) 10053 return nullptr; 10054 10055 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 10056 if (!AddRHS || AddRHS->getNumOperands() != 2 || 10057 !AddRHS->getOperand(0)->isAllOnesValue()) 10058 return nullptr; 10059 10060 return AddRHS->getOperand(1); 10061 } 10062 10063 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 10064 template<typename MaxExprType> 10065 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 10066 const SCEV *Candidate) { 10067 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 10068 if (!MaxExpr) return false; 10069 10070 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 10071 } 10072 10073 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 10074 template<typename MaxExprType> 10075 static bool IsMinConsistingOf(ScalarEvolution &SE, 10076 const SCEV *MaybeMinExpr, 10077 const SCEV *Candidate) { 10078 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 10079 if (!MaybeMaxExpr) 10080 return false; 10081 10082 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 10083 } 10084 10085 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10086 ICmpInst::Predicate Pred, 10087 const SCEV *LHS, const SCEV *RHS) { 10088 // If both sides are affine addrecs for the same loop, with equal 10089 // steps, and we know the recurrences don't wrap, then we only 10090 // need to check the predicate on the starting values. 10091 10092 if (!ICmpInst::isRelational(Pred)) 10093 return false; 10094 10095 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10096 if (!LAR) 10097 return false; 10098 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10099 if (!RAR) 10100 return false; 10101 if (LAR->getLoop() != RAR->getLoop()) 10102 return false; 10103 if (!LAR->isAffine() || !RAR->isAffine()) 10104 return false; 10105 10106 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10107 return false; 10108 10109 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10110 SCEV::FlagNSW : SCEV::FlagNUW; 10111 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10112 return false; 10113 10114 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10115 } 10116 10117 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10118 /// expression? 10119 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10120 ICmpInst::Predicate Pred, 10121 const SCEV *LHS, const SCEV *RHS) { 10122 switch (Pred) { 10123 default: 10124 return false; 10125 10126 case ICmpInst::ICMP_SGE: 10127 std::swap(LHS, RHS); 10128 LLVM_FALLTHROUGH; 10129 case ICmpInst::ICMP_SLE: 10130 return 10131 // min(A, ...) <= A 10132 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 10133 // A <= max(A, ...) 10134 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10135 10136 case ICmpInst::ICMP_UGE: 10137 std::swap(LHS, RHS); 10138 LLVM_FALLTHROUGH; 10139 case ICmpInst::ICMP_ULE: 10140 return 10141 // min(A, ...) <= A 10142 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 10143 // A <= max(A, ...) 10144 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10145 } 10146 10147 llvm_unreachable("covered switch fell through?!"); 10148 } 10149 10150 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10151 const SCEV *LHS, const SCEV *RHS, 10152 const SCEV *FoundLHS, 10153 const SCEV *FoundRHS, 10154 unsigned Depth) { 10155 assert(getTypeSizeInBits(LHS->getType()) == 10156 getTypeSizeInBits(RHS->getType()) && 10157 "LHS and RHS have different sizes?"); 10158 assert(getTypeSizeInBits(FoundLHS->getType()) == 10159 getTypeSizeInBits(FoundRHS->getType()) && 10160 "FoundLHS and FoundRHS have different sizes?"); 10161 // We want to avoid hurting the compile time with analysis of too big trees. 10162 if (Depth > MaxSCEVOperationsImplicationDepth) 10163 return false; 10164 // We only want to work with ICMP_SGT comparison so far. 10165 // TODO: Extend to ICMP_UGT? 10166 if (Pred == ICmpInst::ICMP_SLT) { 10167 Pred = ICmpInst::ICMP_SGT; 10168 std::swap(LHS, RHS); 10169 std::swap(FoundLHS, FoundRHS); 10170 } 10171 if (Pred != ICmpInst::ICMP_SGT) 10172 return false; 10173 10174 auto GetOpFromSExt = [&](const SCEV *S) { 10175 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10176 return Ext->getOperand(); 10177 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10178 // the constant in some cases. 10179 return S; 10180 }; 10181 10182 // Acquire values from extensions. 10183 auto *OrigLHS = LHS; 10184 auto *OrigFoundLHS = FoundLHS; 10185 LHS = GetOpFromSExt(LHS); 10186 FoundLHS = GetOpFromSExt(FoundLHS); 10187 10188 // Is the SGT predicate can be proved trivially or using the found context. 10189 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10190 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10191 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10192 FoundRHS, Depth + 1); 10193 }; 10194 10195 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10196 // We want to avoid creation of any new non-constant SCEV. Since we are 10197 // going to compare the operands to RHS, we should be certain that we don't 10198 // need any size extensions for this. So let's decline all cases when the 10199 // sizes of types of LHS and RHS do not match. 10200 // TODO: Maybe try to get RHS from sext to catch more cases? 10201 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10202 return false; 10203 10204 // Should not overflow. 10205 if (!LHSAddExpr->hasNoSignedWrap()) 10206 return false; 10207 10208 auto *LL = LHSAddExpr->getOperand(0); 10209 auto *LR = LHSAddExpr->getOperand(1); 10210 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 10211 10212 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10213 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10214 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10215 }; 10216 // Try to prove the following rule: 10217 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10218 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10219 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10220 return true; 10221 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10222 Value *LL, *LR; 10223 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10224 10225 using namespace llvm::PatternMatch; 10226 10227 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10228 // Rules for division. 10229 // We are going to perform some comparisons with Denominator and its 10230 // derivative expressions. In general case, creating a SCEV for it may 10231 // lead to a complex analysis of the entire graph, and in particular it 10232 // can request trip count recalculation for the same loop. This would 10233 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10234 // this, we only want to create SCEVs that are constants in this section. 10235 // So we bail if Denominator is not a constant. 10236 if (!isa<ConstantInt>(LR)) 10237 return false; 10238 10239 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10240 10241 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10242 // then a SCEV for the numerator already exists and matches with FoundLHS. 10243 auto *Numerator = getExistingSCEV(LL); 10244 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 10245 return false; 10246 10247 // Make sure that the numerator matches with FoundLHS and the denominator 10248 // is positive. 10249 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 10250 return false; 10251 10252 auto *DTy = Denominator->getType(); 10253 auto *FRHSTy = FoundRHS->getType(); 10254 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 10255 // One of types is a pointer and another one is not. We cannot extend 10256 // them properly to a wider type, so let us just reject this case. 10257 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 10258 // to avoid this check. 10259 return false; 10260 10261 // Given that: 10262 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 10263 auto *WTy = getWiderType(DTy, FRHSTy); 10264 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 10265 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 10266 10267 // Try to prove the following rule: 10268 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 10269 // For example, given that FoundLHS > 2. It means that FoundLHS is at 10270 // least 3. If we divide it by Denominator < 4, we will have at least 1. 10271 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 10272 if (isKnownNonPositive(RHS) && 10273 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 10274 return true; 10275 10276 // Try to prove the following rule: 10277 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 10278 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 10279 // If we divide it by Denominator > 2, then: 10280 // 1. If FoundLHS is negative, then the result is 0. 10281 // 2. If FoundLHS is non-negative, then the result is non-negative. 10282 // Anyways, the result is non-negative. 10283 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 10284 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 10285 if (isKnownNegative(RHS) && 10286 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 10287 return true; 10288 } 10289 } 10290 10291 // If our expression contained SCEVUnknown Phis, and we split it down and now 10292 // need to prove something for them, try to prove the predicate for every 10293 // possible incoming values of those Phis. 10294 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10295 return true; 10296 10297 return false; 10298 } 10299 10300 bool 10301 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10302 const SCEV *LHS, const SCEV *RHS) { 10303 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10304 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10305 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10306 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10307 } 10308 10309 bool 10310 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10311 const SCEV *LHS, const SCEV *RHS, 10312 const SCEV *FoundLHS, 10313 const SCEV *FoundRHS) { 10314 switch (Pred) { 10315 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10316 case ICmpInst::ICMP_EQ: 10317 case ICmpInst::ICMP_NE: 10318 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10319 return true; 10320 break; 10321 case ICmpInst::ICMP_SLT: 10322 case ICmpInst::ICMP_SLE: 10323 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10324 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10325 return true; 10326 break; 10327 case ICmpInst::ICMP_SGT: 10328 case ICmpInst::ICMP_SGE: 10329 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10330 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10331 return true; 10332 break; 10333 case ICmpInst::ICMP_ULT: 10334 case ICmpInst::ICMP_ULE: 10335 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10336 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10337 return true; 10338 break; 10339 case ICmpInst::ICMP_UGT: 10340 case ICmpInst::ICMP_UGE: 10341 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10342 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10343 return true; 10344 break; 10345 } 10346 10347 // Maybe it can be proved via operations? 10348 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10349 return true; 10350 10351 return false; 10352 } 10353 10354 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10355 const SCEV *LHS, 10356 const SCEV *RHS, 10357 const SCEV *FoundLHS, 10358 const SCEV *FoundRHS) { 10359 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10360 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10361 // reduce the compile time impact of this optimization. 10362 return false; 10363 10364 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10365 if (!Addend) 10366 return false; 10367 10368 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10369 10370 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10371 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10372 ConstantRange FoundLHSRange = 10373 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10374 10375 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10376 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10377 10378 // We can also compute the range of values for `LHS` that satisfy the 10379 // consequent, "`LHS` `Pred` `RHS`": 10380 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10381 ConstantRange SatisfyingLHSRange = 10382 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10383 10384 // The antecedent implies the consequent if every value of `LHS` that 10385 // satisfies the antecedent also satisfies the consequent. 10386 return SatisfyingLHSRange.contains(LHSRange); 10387 } 10388 10389 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10390 bool IsSigned, bool NoWrap) { 10391 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10392 10393 if (NoWrap) return false; 10394 10395 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10396 const SCEV *One = getOne(Stride->getType()); 10397 10398 if (IsSigned) { 10399 APInt MaxRHS = getSignedRangeMax(RHS); 10400 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10401 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10402 10403 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 10404 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 10405 } 10406 10407 APInt MaxRHS = getUnsignedRangeMax(RHS); 10408 APInt MaxValue = APInt::getMaxValue(BitWidth); 10409 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10410 10411 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 10412 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 10413 } 10414 10415 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 10416 bool IsSigned, bool NoWrap) { 10417 if (NoWrap) return false; 10418 10419 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10420 const SCEV *One = getOne(Stride->getType()); 10421 10422 if (IsSigned) { 10423 APInt MinRHS = getSignedRangeMin(RHS); 10424 APInt MinValue = APInt::getSignedMinValue(BitWidth); 10425 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10426 10427 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 10428 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 10429 } 10430 10431 APInt MinRHS = getUnsignedRangeMin(RHS); 10432 APInt MinValue = APInt::getMinValue(BitWidth); 10433 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10434 10435 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 10436 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 10437 } 10438 10439 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 10440 bool Equality) { 10441 const SCEV *One = getOne(Step->getType()); 10442 Delta = Equality ? getAddExpr(Delta, Step) 10443 : getAddExpr(Delta, getMinusSCEV(Step, One)); 10444 return getUDivExpr(Delta, Step); 10445 } 10446 10447 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 10448 const SCEV *Stride, 10449 const SCEV *End, 10450 unsigned BitWidth, 10451 bool IsSigned) { 10452 10453 assert(!isKnownNonPositive(Stride) && 10454 "Stride is expected strictly positive!"); 10455 // Calculate the maximum backedge count based on the range of values 10456 // permitted by Start, End, and Stride. 10457 const SCEV *MaxBECount; 10458 APInt MinStart = 10459 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 10460 10461 APInt StrideForMaxBECount = 10462 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 10463 10464 // We already know that the stride is positive, so we paper over conservatism 10465 // in our range computation by forcing StrideForMaxBECount to be at least one. 10466 // In theory this is unnecessary, but we expect MaxBECount to be a 10467 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 10468 // is nothing to constant fold it to). 10469 APInt One(BitWidth, 1, IsSigned); 10470 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 10471 10472 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 10473 : APInt::getMaxValue(BitWidth); 10474 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 10475 10476 // Although End can be a MAX expression we estimate MaxEnd considering only 10477 // the case End = RHS of the loop termination condition. This is safe because 10478 // in the other case (End - Start) is zero, leading to a zero maximum backedge 10479 // taken count. 10480 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 10481 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 10482 10483 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 10484 getConstant(StrideForMaxBECount) /* Step */, 10485 false /* Equality */); 10486 10487 return MaxBECount; 10488 } 10489 10490 ScalarEvolution::ExitLimit 10491 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 10492 const Loop *L, bool IsSigned, 10493 bool ControlsExit, bool AllowPredicates) { 10494 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10495 10496 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10497 bool PredicatedIV = false; 10498 10499 if (!IV && AllowPredicates) { 10500 // Try to make this an AddRec using runtime tests, in the first X 10501 // iterations of this loop, where X is the SCEV expression found by the 10502 // algorithm below. 10503 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10504 PredicatedIV = true; 10505 } 10506 10507 // Avoid weird loops 10508 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10509 return getCouldNotCompute(); 10510 10511 bool NoWrap = ControlsExit && 10512 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10513 10514 const SCEV *Stride = IV->getStepRecurrence(*this); 10515 10516 bool PositiveStride = isKnownPositive(Stride); 10517 10518 // Avoid negative or zero stride values. 10519 if (!PositiveStride) { 10520 // We can compute the correct backedge taken count for loops with unknown 10521 // strides if we can prove that the loop is not an infinite loop with side 10522 // effects. Here's the loop structure we are trying to handle - 10523 // 10524 // i = start 10525 // do { 10526 // A[i] = i; 10527 // i += s; 10528 // } while (i < end); 10529 // 10530 // The backedge taken count for such loops is evaluated as - 10531 // (max(end, start + stride) - start - 1) /u stride 10532 // 10533 // The additional preconditions that we need to check to prove correctness 10534 // of the above formula is as follows - 10535 // 10536 // a) IV is either nuw or nsw depending upon signedness (indicated by the 10537 // NoWrap flag). 10538 // b) loop is single exit with no side effects. 10539 // 10540 // 10541 // Precondition a) implies that if the stride is negative, this is a single 10542 // trip loop. The backedge taken count formula reduces to zero in this case. 10543 // 10544 // Precondition b) implies that the unknown stride cannot be zero otherwise 10545 // we have UB. 10546 // 10547 // The positive stride case is the same as isKnownPositive(Stride) returning 10548 // true (original behavior of the function). 10549 // 10550 // We want to make sure that the stride is truly unknown as there are edge 10551 // cases where ScalarEvolution propagates no wrap flags to the 10552 // post-increment/decrement IV even though the increment/decrement operation 10553 // itself is wrapping. The computed backedge taken count may be wrong in 10554 // such cases. This is prevented by checking that the stride is not known to 10555 // be either positive or non-positive. For example, no wrap flags are 10556 // propagated to the post-increment IV of this loop with a trip count of 2 - 10557 // 10558 // unsigned char i; 10559 // for(i=127; i<128; i+=129) 10560 // A[i] = i; 10561 // 10562 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 10563 !loopHasNoSideEffects(L)) 10564 return getCouldNotCompute(); 10565 } else if (!Stride->isOne() && 10566 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 10567 // Avoid proven overflow cases: this will ensure that the backedge taken 10568 // count will not generate any unsigned overflow. Relaxed no-overflow 10569 // conditions exploit NoWrapFlags, allowing to optimize in presence of 10570 // undefined behaviors like the case of C language. 10571 return getCouldNotCompute(); 10572 10573 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 10574 : ICmpInst::ICMP_ULT; 10575 const SCEV *Start = IV->getStart(); 10576 const SCEV *End = RHS; 10577 // When the RHS is not invariant, we do not know the end bound of the loop and 10578 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 10579 // calculate the MaxBECount, given the start, stride and max value for the end 10580 // bound of the loop (RHS), and the fact that IV does not overflow (which is 10581 // checked above). 10582 if (!isLoopInvariant(RHS, L)) { 10583 const SCEV *MaxBECount = computeMaxBECountForLT( 10584 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10585 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 10586 false /*MaxOrZero*/, Predicates); 10587 } 10588 // If the backedge is taken at least once, then it will be taken 10589 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 10590 // is the LHS value of the less-than comparison the first time it is evaluated 10591 // and End is the RHS. 10592 const SCEV *BECountIfBackedgeTaken = 10593 computeBECount(getMinusSCEV(End, Start), Stride, false); 10594 // If the loop entry is guarded by the result of the backedge test of the 10595 // first loop iteration, then we know the backedge will be taken at least 10596 // once and so the backedge taken count is as above. If not then we use the 10597 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 10598 // as if the backedge is taken at least once max(End,Start) is End and so the 10599 // result is as above, and if not max(End,Start) is Start so we get a backedge 10600 // count of zero. 10601 const SCEV *BECount; 10602 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 10603 BECount = BECountIfBackedgeTaken; 10604 else { 10605 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 10606 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 10607 } 10608 10609 const SCEV *MaxBECount; 10610 bool MaxOrZero = false; 10611 if (isa<SCEVConstant>(BECount)) 10612 MaxBECount = BECount; 10613 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 10614 // If we know exactly how many times the backedge will be taken if it's 10615 // taken at least once, then the backedge count will either be that or 10616 // zero. 10617 MaxBECount = BECountIfBackedgeTaken; 10618 MaxOrZero = true; 10619 } else { 10620 MaxBECount = computeMaxBECountForLT( 10621 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10622 } 10623 10624 if (isa<SCEVCouldNotCompute>(MaxBECount) && 10625 !isa<SCEVCouldNotCompute>(BECount)) 10626 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 10627 10628 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 10629 } 10630 10631 ScalarEvolution::ExitLimit 10632 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 10633 const Loop *L, bool IsSigned, 10634 bool ControlsExit, bool AllowPredicates) { 10635 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10636 // We handle only IV > Invariant 10637 if (!isLoopInvariant(RHS, L)) 10638 return getCouldNotCompute(); 10639 10640 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10641 if (!IV && AllowPredicates) 10642 // Try to make this an AddRec using runtime tests, in the first X 10643 // iterations of this loop, where X is the SCEV expression found by the 10644 // algorithm below. 10645 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10646 10647 // Avoid weird loops 10648 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10649 return getCouldNotCompute(); 10650 10651 bool NoWrap = ControlsExit && 10652 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10653 10654 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 10655 10656 // Avoid negative or zero stride values 10657 if (!isKnownPositive(Stride)) 10658 return getCouldNotCompute(); 10659 10660 // Avoid proven overflow cases: this will ensure that the backedge taken count 10661 // will not generate any unsigned overflow. Relaxed no-overflow conditions 10662 // exploit NoWrapFlags, allowing to optimize in presence of undefined 10663 // behaviors like the case of C language. 10664 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 10665 return getCouldNotCompute(); 10666 10667 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 10668 : ICmpInst::ICMP_UGT; 10669 10670 const SCEV *Start = IV->getStart(); 10671 const SCEV *End = RHS; 10672 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 10673 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 10674 10675 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 10676 10677 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 10678 : getUnsignedRangeMax(Start); 10679 10680 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 10681 : getUnsignedRangeMin(Stride); 10682 10683 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 10684 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 10685 : APInt::getMinValue(BitWidth) + (MinStride - 1); 10686 10687 // Although End can be a MIN expression we estimate MinEnd considering only 10688 // the case End = RHS. This is safe because in the other case (Start - End) 10689 // is zero, leading to a zero maximum backedge taken count. 10690 APInt MinEnd = 10691 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 10692 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 10693 10694 10695 const SCEV *MaxBECount = getCouldNotCompute(); 10696 if (isa<SCEVConstant>(BECount)) 10697 MaxBECount = BECount; 10698 else 10699 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 10700 getConstant(MinStride), false); 10701 10702 if (isa<SCEVCouldNotCompute>(MaxBECount)) 10703 MaxBECount = BECount; 10704 10705 return ExitLimit(BECount, MaxBECount, false, Predicates); 10706 } 10707 10708 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 10709 ScalarEvolution &SE) const { 10710 if (Range.isFullSet()) // Infinite loop. 10711 return SE.getCouldNotCompute(); 10712 10713 // If the start is a non-zero constant, shift the range to simplify things. 10714 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 10715 if (!SC->getValue()->isZero()) { 10716 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 10717 Operands[0] = SE.getZero(SC->getType()); 10718 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 10719 getNoWrapFlags(FlagNW)); 10720 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 10721 return ShiftedAddRec->getNumIterationsInRange( 10722 Range.subtract(SC->getAPInt()), SE); 10723 // This is strange and shouldn't happen. 10724 return SE.getCouldNotCompute(); 10725 } 10726 10727 // The only time we can solve this is when we have all constant indices. 10728 // Otherwise, we cannot determine the overflow conditions. 10729 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 10730 return SE.getCouldNotCompute(); 10731 10732 // Okay at this point we know that all elements of the chrec are constants and 10733 // that the start element is zero. 10734 10735 // First check to see if the range contains zero. If not, the first 10736 // iteration exits. 10737 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 10738 if (!Range.contains(APInt(BitWidth, 0))) 10739 return SE.getZero(getType()); 10740 10741 if (isAffine()) { 10742 // If this is an affine expression then we have this situation: 10743 // Solve {0,+,A} in Range === Ax in Range 10744 10745 // We know that zero is in the range. If A is positive then we know that 10746 // the upper value of the range must be the first possible exit value. 10747 // If A is negative then the lower of the range is the last possible loop 10748 // value. Also note that we already checked for a full range. 10749 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 10750 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 10751 10752 // The exit value should be (End+A)/A. 10753 APInt ExitVal = (End + A).udiv(A); 10754 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 10755 10756 // Evaluate at the exit value. If we really did fall out of the valid 10757 // range, then we computed our trip count, otherwise wrap around or other 10758 // things must have happened. 10759 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 10760 if (Range.contains(Val->getValue())) 10761 return SE.getCouldNotCompute(); // Something strange happened 10762 10763 // Ensure that the previous value is in the range. This is a sanity check. 10764 assert(Range.contains( 10765 EvaluateConstantChrecAtConstant(this, 10766 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 10767 "Linear scev computation is off in a bad way!"); 10768 return SE.getConstant(ExitValue); 10769 } 10770 10771 if (isQuadratic()) { 10772 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 10773 return SE.getConstant(S.getValue()); 10774 } 10775 10776 return SE.getCouldNotCompute(); 10777 } 10778 10779 const SCEVAddRecExpr * 10780 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 10781 assert(getNumOperands() > 1 && "AddRec with zero step?"); 10782 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 10783 // but in this case we cannot guarantee that the value returned will be an 10784 // AddRec because SCEV does not have a fixed point where it stops 10785 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 10786 // may happen if we reach arithmetic depth limit while simplifying. So we 10787 // construct the returned value explicitly. 10788 SmallVector<const SCEV *, 3> Ops; 10789 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 10790 // (this + Step) is {A+B,+,B+C,+...,+,N}. 10791 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 10792 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 10793 // We know that the last operand is not a constant zero (otherwise it would 10794 // have been popped out earlier). This guarantees us that if the result has 10795 // the same last operand, then it will also not be popped out, meaning that 10796 // the returned value will be an AddRec. 10797 const SCEV *Last = getOperand(getNumOperands() - 1); 10798 assert(!Last->isZero() && "Recurrency with zero step?"); 10799 Ops.push_back(Last); 10800 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 10801 SCEV::FlagAnyWrap)); 10802 } 10803 10804 // Return true when S contains at least an undef value. 10805 static inline bool containsUndefs(const SCEV *S) { 10806 return SCEVExprContains(S, [](const SCEV *S) { 10807 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 10808 return isa<UndefValue>(SU->getValue()); 10809 else if (const auto *SC = dyn_cast<SCEVConstant>(S)) 10810 return isa<UndefValue>(SC->getValue()); 10811 return false; 10812 }); 10813 } 10814 10815 namespace { 10816 10817 // Collect all steps of SCEV expressions. 10818 struct SCEVCollectStrides { 10819 ScalarEvolution &SE; 10820 SmallVectorImpl<const SCEV *> &Strides; 10821 10822 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 10823 : SE(SE), Strides(S) {} 10824 10825 bool follow(const SCEV *S) { 10826 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 10827 Strides.push_back(AR->getStepRecurrence(SE)); 10828 return true; 10829 } 10830 10831 bool isDone() const { return false; } 10832 }; 10833 10834 // Collect all SCEVUnknown and SCEVMulExpr expressions. 10835 struct SCEVCollectTerms { 10836 SmallVectorImpl<const SCEV *> &Terms; 10837 10838 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 10839 10840 bool follow(const SCEV *S) { 10841 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 10842 isa<SCEVSignExtendExpr>(S)) { 10843 if (!containsUndefs(S)) 10844 Terms.push_back(S); 10845 10846 // Stop recursion: once we collected a term, do not walk its operands. 10847 return false; 10848 } 10849 10850 // Keep looking. 10851 return true; 10852 } 10853 10854 bool isDone() const { return false; } 10855 }; 10856 10857 // Check if a SCEV contains an AddRecExpr. 10858 struct SCEVHasAddRec { 10859 bool &ContainsAddRec; 10860 10861 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 10862 ContainsAddRec = false; 10863 } 10864 10865 bool follow(const SCEV *S) { 10866 if (isa<SCEVAddRecExpr>(S)) { 10867 ContainsAddRec = true; 10868 10869 // Stop recursion: once we collected a term, do not walk its operands. 10870 return false; 10871 } 10872 10873 // Keep looking. 10874 return true; 10875 } 10876 10877 bool isDone() const { return false; } 10878 }; 10879 10880 // Find factors that are multiplied with an expression that (possibly as a 10881 // subexpression) contains an AddRecExpr. In the expression: 10882 // 10883 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 10884 // 10885 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 10886 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 10887 // parameters as they form a product with an induction variable. 10888 // 10889 // This collector expects all array size parameters to be in the same MulExpr. 10890 // It might be necessary to later add support for collecting parameters that are 10891 // spread over different nested MulExpr. 10892 struct SCEVCollectAddRecMultiplies { 10893 SmallVectorImpl<const SCEV *> &Terms; 10894 ScalarEvolution &SE; 10895 10896 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 10897 : Terms(T), SE(SE) {} 10898 10899 bool follow(const SCEV *S) { 10900 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 10901 bool HasAddRec = false; 10902 SmallVector<const SCEV *, 0> Operands; 10903 for (auto Op : Mul->operands()) { 10904 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 10905 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 10906 Operands.push_back(Op); 10907 } else if (Unknown) { 10908 HasAddRec = true; 10909 } else { 10910 bool ContainsAddRec; 10911 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 10912 visitAll(Op, ContiansAddRec); 10913 HasAddRec |= ContainsAddRec; 10914 } 10915 } 10916 if (Operands.size() == 0) 10917 return true; 10918 10919 if (!HasAddRec) 10920 return false; 10921 10922 Terms.push_back(SE.getMulExpr(Operands)); 10923 // Stop recursion: once we collected a term, do not walk its operands. 10924 return false; 10925 } 10926 10927 // Keep looking. 10928 return true; 10929 } 10930 10931 bool isDone() const { return false; } 10932 }; 10933 10934 } // end anonymous namespace 10935 10936 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 10937 /// two places: 10938 /// 1) The strides of AddRec expressions. 10939 /// 2) Unknowns that are multiplied with AddRec expressions. 10940 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 10941 SmallVectorImpl<const SCEV *> &Terms) { 10942 SmallVector<const SCEV *, 4> Strides; 10943 SCEVCollectStrides StrideCollector(*this, Strides); 10944 visitAll(Expr, StrideCollector); 10945 10946 LLVM_DEBUG({ 10947 dbgs() << "Strides:\n"; 10948 for (const SCEV *S : Strides) 10949 dbgs() << *S << "\n"; 10950 }); 10951 10952 for (const SCEV *S : Strides) { 10953 SCEVCollectTerms TermCollector(Terms); 10954 visitAll(S, TermCollector); 10955 } 10956 10957 LLVM_DEBUG({ 10958 dbgs() << "Terms:\n"; 10959 for (const SCEV *T : Terms) 10960 dbgs() << *T << "\n"; 10961 }); 10962 10963 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 10964 visitAll(Expr, MulCollector); 10965 } 10966 10967 static bool findArrayDimensionsRec(ScalarEvolution &SE, 10968 SmallVectorImpl<const SCEV *> &Terms, 10969 SmallVectorImpl<const SCEV *> &Sizes) { 10970 int Last = Terms.size() - 1; 10971 const SCEV *Step = Terms[Last]; 10972 10973 // End of recursion. 10974 if (Last == 0) { 10975 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 10976 SmallVector<const SCEV *, 2> Qs; 10977 for (const SCEV *Op : M->operands()) 10978 if (!isa<SCEVConstant>(Op)) 10979 Qs.push_back(Op); 10980 10981 Step = SE.getMulExpr(Qs); 10982 } 10983 10984 Sizes.push_back(Step); 10985 return true; 10986 } 10987 10988 for (const SCEV *&Term : Terms) { 10989 // Normalize the terms before the next call to findArrayDimensionsRec. 10990 const SCEV *Q, *R; 10991 SCEVDivision::divide(SE, Term, Step, &Q, &R); 10992 10993 // Bail out when GCD does not evenly divide one of the terms. 10994 if (!R->isZero()) 10995 return false; 10996 10997 Term = Q; 10998 } 10999 11000 // Remove all SCEVConstants. 11001 Terms.erase( 11002 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 11003 Terms.end()); 11004 11005 if (Terms.size() > 0) 11006 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 11007 return false; 11008 11009 Sizes.push_back(Step); 11010 return true; 11011 } 11012 11013 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 11014 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 11015 for (const SCEV *T : Terms) 11016 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) 11017 return true; 11018 return false; 11019 } 11020 11021 // Return the number of product terms in S. 11022 static inline int numberOfTerms(const SCEV *S) { 11023 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 11024 return Expr->getNumOperands(); 11025 return 1; 11026 } 11027 11028 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 11029 if (isa<SCEVConstant>(T)) 11030 return nullptr; 11031 11032 if (isa<SCEVUnknown>(T)) 11033 return T; 11034 11035 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 11036 SmallVector<const SCEV *, 2> Factors; 11037 for (const SCEV *Op : M->operands()) 11038 if (!isa<SCEVConstant>(Op)) 11039 Factors.push_back(Op); 11040 11041 return SE.getMulExpr(Factors); 11042 } 11043 11044 return T; 11045 } 11046 11047 /// Return the size of an element read or written by Inst. 11048 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11049 Type *Ty; 11050 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11051 Ty = Store->getValueOperand()->getType(); 11052 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11053 Ty = Load->getType(); 11054 else 11055 return nullptr; 11056 11057 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11058 return getSizeOfExpr(ETy, Ty); 11059 } 11060 11061 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11062 SmallVectorImpl<const SCEV *> &Sizes, 11063 const SCEV *ElementSize) { 11064 if (Terms.size() < 1 || !ElementSize) 11065 return; 11066 11067 // Early return when Terms do not contain parameters: we do not delinearize 11068 // non parametric SCEVs. 11069 if (!containsParameters(Terms)) 11070 return; 11071 11072 LLVM_DEBUG({ 11073 dbgs() << "Terms:\n"; 11074 for (const SCEV *T : Terms) 11075 dbgs() << *T << "\n"; 11076 }); 11077 11078 // Remove duplicates. 11079 array_pod_sort(Terms.begin(), Terms.end()); 11080 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11081 11082 // Put larger terms first. 11083 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11084 return numberOfTerms(LHS) > numberOfTerms(RHS); 11085 }); 11086 11087 // Try to divide all terms by the element size. If term is not divisible by 11088 // element size, proceed with the original term. 11089 for (const SCEV *&Term : Terms) { 11090 const SCEV *Q, *R; 11091 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11092 if (!Q->isZero()) 11093 Term = Q; 11094 } 11095 11096 SmallVector<const SCEV *, 4> NewTerms; 11097 11098 // Remove constant factors. 11099 for (const SCEV *T : Terms) 11100 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11101 NewTerms.push_back(NewT); 11102 11103 LLVM_DEBUG({ 11104 dbgs() << "Terms after sorting:\n"; 11105 for (const SCEV *T : NewTerms) 11106 dbgs() << *T << "\n"; 11107 }); 11108 11109 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11110 Sizes.clear(); 11111 return; 11112 } 11113 11114 // The last element to be pushed into Sizes is the size of an element. 11115 Sizes.push_back(ElementSize); 11116 11117 LLVM_DEBUG({ 11118 dbgs() << "Sizes:\n"; 11119 for (const SCEV *S : Sizes) 11120 dbgs() << *S << "\n"; 11121 }); 11122 } 11123 11124 void ScalarEvolution::computeAccessFunctions( 11125 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11126 SmallVectorImpl<const SCEV *> &Sizes) { 11127 // Early exit in case this SCEV is not an affine multivariate function. 11128 if (Sizes.empty()) 11129 return; 11130 11131 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11132 if (!AR->isAffine()) 11133 return; 11134 11135 const SCEV *Res = Expr; 11136 int Last = Sizes.size() - 1; 11137 for (int i = Last; i >= 0; i--) { 11138 const SCEV *Q, *R; 11139 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11140 11141 LLVM_DEBUG({ 11142 dbgs() << "Res: " << *Res << "\n"; 11143 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11144 dbgs() << "Res divided by Sizes[i]:\n"; 11145 dbgs() << "Quotient: " << *Q << "\n"; 11146 dbgs() << "Remainder: " << *R << "\n"; 11147 }); 11148 11149 Res = Q; 11150 11151 // Do not record the last subscript corresponding to the size of elements in 11152 // the array. 11153 if (i == Last) { 11154 11155 // Bail out if the remainder is too complex. 11156 if (isa<SCEVAddRecExpr>(R)) { 11157 Subscripts.clear(); 11158 Sizes.clear(); 11159 return; 11160 } 11161 11162 continue; 11163 } 11164 11165 // Record the access function for the current subscript. 11166 Subscripts.push_back(R); 11167 } 11168 11169 // Also push in last position the remainder of the last division: it will be 11170 // the access function of the innermost dimension. 11171 Subscripts.push_back(Res); 11172 11173 std::reverse(Subscripts.begin(), Subscripts.end()); 11174 11175 LLVM_DEBUG({ 11176 dbgs() << "Subscripts:\n"; 11177 for (const SCEV *S : Subscripts) 11178 dbgs() << *S << "\n"; 11179 }); 11180 } 11181 11182 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11183 /// sizes of an array access. Returns the remainder of the delinearization that 11184 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11185 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11186 /// expressions in the stride and base of a SCEV corresponding to the 11187 /// computation of a GCD (greatest common divisor) of base and stride. When 11188 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11189 /// 11190 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11191 /// 11192 /// void foo(long n, long m, long o, double A[n][m][o]) { 11193 /// 11194 /// for (long i = 0; i < n; i++) 11195 /// for (long j = 0; j < m; j++) 11196 /// for (long k = 0; k < o; k++) 11197 /// A[i][j][k] = 1.0; 11198 /// } 11199 /// 11200 /// the delinearization input is the following AddRec SCEV: 11201 /// 11202 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11203 /// 11204 /// From this SCEV, we are able to say that the base offset of the access is %A 11205 /// because it appears as an offset that does not divide any of the strides in 11206 /// the loops: 11207 /// 11208 /// CHECK: Base offset: %A 11209 /// 11210 /// and then SCEV->delinearize determines the size of some of the dimensions of 11211 /// the array as these are the multiples by which the strides are happening: 11212 /// 11213 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 11214 /// 11215 /// Note that the outermost dimension remains of UnknownSize because there are 11216 /// no strides that would help identifying the size of the last dimension: when 11217 /// the array has been statically allocated, one could compute the size of that 11218 /// dimension by dividing the overall size of the array by the size of the known 11219 /// dimensions: %m * %o * 8. 11220 /// 11221 /// Finally delinearize provides the access functions for the array reference 11222 /// that does correspond to A[i][j][k] of the above C testcase: 11223 /// 11224 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 11225 /// 11226 /// The testcases are checking the output of a function pass: 11227 /// DelinearizationPass that walks through all loads and stores of a function 11228 /// asking for the SCEV of the memory access with respect to all enclosing 11229 /// loops, calling SCEV->delinearize on that and printing the results. 11230 void ScalarEvolution::delinearize(const SCEV *Expr, 11231 SmallVectorImpl<const SCEV *> &Subscripts, 11232 SmallVectorImpl<const SCEV *> &Sizes, 11233 const SCEV *ElementSize) { 11234 // First step: collect parametric terms. 11235 SmallVector<const SCEV *, 4> Terms; 11236 collectParametricTerms(Expr, Terms); 11237 11238 if (Terms.empty()) 11239 return; 11240 11241 // Second step: find subscript sizes. 11242 findArrayDimensions(Terms, Sizes, ElementSize); 11243 11244 if (Sizes.empty()) 11245 return; 11246 11247 // Third step: compute the access functions for each subscript. 11248 computeAccessFunctions(Expr, Subscripts, Sizes); 11249 11250 if (Subscripts.empty()) 11251 return; 11252 11253 LLVM_DEBUG({ 11254 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11255 dbgs() << "ArrayDecl[UnknownSize]"; 11256 for (const SCEV *S : Sizes) 11257 dbgs() << "[" << *S << "]"; 11258 11259 dbgs() << "\nArrayRef"; 11260 for (const SCEV *S : Subscripts) 11261 dbgs() << "[" << *S << "]"; 11262 dbgs() << "\n"; 11263 }); 11264 } 11265 11266 //===----------------------------------------------------------------------===// 11267 // SCEVCallbackVH Class Implementation 11268 //===----------------------------------------------------------------------===// 11269 11270 void ScalarEvolution::SCEVCallbackVH::deleted() { 11271 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11272 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11273 SE->ConstantEvolutionLoopExitValue.erase(PN); 11274 SE->eraseValueFromMap(getValPtr()); 11275 // this now dangles! 11276 } 11277 11278 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11279 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11280 11281 // Forget all the expressions associated with users of the old value, 11282 // so that future queries will recompute the expressions using the new 11283 // value. 11284 Value *Old = getValPtr(); 11285 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11286 SmallPtrSet<User *, 8> Visited; 11287 while (!Worklist.empty()) { 11288 User *U = Worklist.pop_back_val(); 11289 // Deleting the Old value will cause this to dangle. Postpone 11290 // that until everything else is done. 11291 if (U == Old) 11292 continue; 11293 if (!Visited.insert(U).second) 11294 continue; 11295 if (PHINode *PN = dyn_cast<PHINode>(U)) 11296 SE->ConstantEvolutionLoopExitValue.erase(PN); 11297 SE->eraseValueFromMap(U); 11298 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11299 } 11300 // Delete the Old value. 11301 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11302 SE->ConstantEvolutionLoopExitValue.erase(PN); 11303 SE->eraseValueFromMap(Old); 11304 // this now dangles! 11305 } 11306 11307 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11308 : CallbackVH(V), SE(se) {} 11309 11310 //===----------------------------------------------------------------------===// 11311 // ScalarEvolution Class Implementation 11312 //===----------------------------------------------------------------------===// 11313 11314 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11315 AssumptionCache &AC, DominatorTree &DT, 11316 LoopInfo &LI) 11317 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11318 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11319 LoopDispositions(64), BlockDispositions(64) { 11320 // To use guards for proving predicates, we need to scan every instruction in 11321 // relevant basic blocks, and not just terminators. Doing this is a waste of 11322 // time if the IR does not actually contain any calls to 11323 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11324 // 11325 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11326 // to _add_ guards to the module when there weren't any before, and wants 11327 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11328 // efficient in lieu of being smart in that rather obscure case. 11329 11330 auto *GuardDecl = F.getParent()->getFunction( 11331 Intrinsic::getName(Intrinsic::experimental_guard)); 11332 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11333 } 11334 11335 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11336 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11337 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11338 ValueExprMap(std::move(Arg.ValueExprMap)), 11339 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11340 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11341 PendingMerges(std::move(Arg.PendingMerges)), 11342 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11343 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11344 PredicatedBackedgeTakenCounts( 11345 std::move(Arg.PredicatedBackedgeTakenCounts)), 11346 ConstantEvolutionLoopExitValue( 11347 std::move(Arg.ConstantEvolutionLoopExitValue)), 11348 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 11349 LoopDispositions(std::move(Arg.LoopDispositions)), 11350 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 11351 BlockDispositions(std::move(Arg.BlockDispositions)), 11352 UnsignedRanges(std::move(Arg.UnsignedRanges)), 11353 SignedRanges(std::move(Arg.SignedRanges)), 11354 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 11355 UniquePreds(std::move(Arg.UniquePreds)), 11356 SCEVAllocator(std::move(Arg.SCEVAllocator)), 11357 LoopUsers(std::move(Arg.LoopUsers)), 11358 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 11359 FirstUnknown(Arg.FirstUnknown) { 11360 Arg.FirstUnknown = nullptr; 11361 } 11362 11363 ScalarEvolution::~ScalarEvolution() { 11364 // Iterate through all the SCEVUnknown instances and call their 11365 // destructors, so that they release their references to their values. 11366 for (SCEVUnknown *U = FirstUnknown; U;) { 11367 SCEVUnknown *Tmp = U; 11368 U = U->Next; 11369 Tmp->~SCEVUnknown(); 11370 } 11371 FirstUnknown = nullptr; 11372 11373 ExprValueMap.clear(); 11374 ValueExprMap.clear(); 11375 HasRecMap.clear(); 11376 11377 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 11378 // that a loop had multiple computable exits. 11379 for (auto &BTCI : BackedgeTakenCounts) 11380 BTCI.second.clear(); 11381 for (auto &BTCI : PredicatedBackedgeTakenCounts) 11382 BTCI.second.clear(); 11383 11384 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 11385 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 11386 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 11387 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 11388 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 11389 } 11390 11391 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 11392 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 11393 } 11394 11395 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 11396 const Loop *L) { 11397 // Print all inner loops first 11398 for (Loop *I : *L) 11399 PrintLoopInfo(OS, SE, I); 11400 11401 OS << "Loop "; 11402 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11403 OS << ": "; 11404 11405 SmallVector<BasicBlock *, 8> ExitBlocks; 11406 L->getExitBlocks(ExitBlocks); 11407 if (ExitBlocks.size() != 1) 11408 OS << "<multiple exits> "; 11409 11410 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11411 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 11412 } else { 11413 OS << "Unpredictable backedge-taken count. "; 11414 } 11415 11416 OS << "\n" 11417 "Loop "; 11418 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11419 OS << ": "; 11420 11421 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 11422 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 11423 if (SE->isBackedgeTakenCountMaxOrZero(L)) 11424 OS << ", actual taken count either this or zero."; 11425 } else { 11426 OS << "Unpredictable max backedge-taken count. "; 11427 } 11428 11429 OS << "\n" 11430 "Loop "; 11431 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11432 OS << ": "; 11433 11434 SCEVUnionPredicate Pred; 11435 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 11436 if (!isa<SCEVCouldNotCompute>(PBT)) { 11437 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 11438 OS << " Predicates:\n"; 11439 Pred.print(OS, 4); 11440 } else { 11441 OS << "Unpredictable predicated backedge-taken count. "; 11442 } 11443 OS << "\n"; 11444 11445 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11446 OS << "Loop "; 11447 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11448 OS << ": "; 11449 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 11450 } 11451 } 11452 11453 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 11454 switch (LD) { 11455 case ScalarEvolution::LoopVariant: 11456 return "Variant"; 11457 case ScalarEvolution::LoopInvariant: 11458 return "Invariant"; 11459 case ScalarEvolution::LoopComputable: 11460 return "Computable"; 11461 } 11462 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 11463 } 11464 11465 void ScalarEvolution::print(raw_ostream &OS) const { 11466 // ScalarEvolution's implementation of the print method is to print 11467 // out SCEV values of all instructions that are interesting. Doing 11468 // this potentially causes it to create new SCEV objects though, 11469 // which technically conflicts with the const qualifier. This isn't 11470 // observable from outside the class though, so casting away the 11471 // const isn't dangerous. 11472 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11473 11474 OS << "Classifying expressions for: "; 11475 F.printAsOperand(OS, /*PrintType=*/false); 11476 OS << "\n"; 11477 for (Instruction &I : instructions(F)) 11478 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 11479 OS << I << '\n'; 11480 OS << " --> "; 11481 const SCEV *SV = SE.getSCEV(&I); 11482 SV->print(OS); 11483 if (!isa<SCEVCouldNotCompute>(SV)) { 11484 OS << " U: "; 11485 SE.getUnsignedRange(SV).print(OS); 11486 OS << " S: "; 11487 SE.getSignedRange(SV).print(OS); 11488 } 11489 11490 const Loop *L = LI.getLoopFor(I.getParent()); 11491 11492 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 11493 if (AtUse != SV) { 11494 OS << " --> "; 11495 AtUse->print(OS); 11496 if (!isa<SCEVCouldNotCompute>(AtUse)) { 11497 OS << " U: "; 11498 SE.getUnsignedRange(AtUse).print(OS); 11499 OS << " S: "; 11500 SE.getSignedRange(AtUse).print(OS); 11501 } 11502 } 11503 11504 if (L) { 11505 OS << "\t\t" "Exits: "; 11506 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 11507 if (!SE.isLoopInvariant(ExitValue, L)) { 11508 OS << "<<Unknown>>"; 11509 } else { 11510 OS << *ExitValue; 11511 } 11512 11513 bool First = true; 11514 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 11515 if (First) { 11516 OS << "\t\t" "LoopDispositions: { "; 11517 First = false; 11518 } else { 11519 OS << ", "; 11520 } 11521 11522 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11523 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 11524 } 11525 11526 for (auto *InnerL : depth_first(L)) { 11527 if (InnerL == L) 11528 continue; 11529 if (First) { 11530 OS << "\t\t" "LoopDispositions: { "; 11531 First = false; 11532 } else { 11533 OS << ", "; 11534 } 11535 11536 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11537 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 11538 } 11539 11540 OS << " }"; 11541 } 11542 11543 OS << "\n"; 11544 } 11545 11546 OS << "Determining loop execution counts for: "; 11547 F.printAsOperand(OS, /*PrintType=*/false); 11548 OS << "\n"; 11549 for (Loop *I : LI) 11550 PrintLoopInfo(OS, &SE, I); 11551 } 11552 11553 ScalarEvolution::LoopDisposition 11554 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 11555 auto &Values = LoopDispositions[S]; 11556 for (auto &V : Values) { 11557 if (V.getPointer() == L) 11558 return V.getInt(); 11559 } 11560 Values.emplace_back(L, LoopVariant); 11561 LoopDisposition D = computeLoopDisposition(S, L); 11562 auto &Values2 = LoopDispositions[S]; 11563 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11564 if (V.getPointer() == L) { 11565 V.setInt(D); 11566 break; 11567 } 11568 } 11569 return D; 11570 } 11571 11572 ScalarEvolution::LoopDisposition 11573 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 11574 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11575 case scConstant: 11576 return LoopInvariant; 11577 case scTruncate: 11578 case scZeroExtend: 11579 case scSignExtend: 11580 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 11581 case scAddRecExpr: { 11582 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11583 11584 // If L is the addrec's loop, it's computable. 11585 if (AR->getLoop() == L) 11586 return LoopComputable; 11587 11588 // Add recurrences are never invariant in the function-body (null loop). 11589 if (!L) 11590 return LoopVariant; 11591 11592 // Everything that is not defined at loop entry is variant. 11593 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 11594 return LoopVariant; 11595 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 11596 " dominate the contained loop's header?"); 11597 11598 // This recurrence is invariant w.r.t. L if AR's loop contains L. 11599 if (AR->getLoop()->contains(L)) 11600 return LoopInvariant; 11601 11602 // This recurrence is variant w.r.t. L if any of its operands 11603 // are variant. 11604 for (auto *Op : AR->operands()) 11605 if (!isLoopInvariant(Op, L)) 11606 return LoopVariant; 11607 11608 // Otherwise it's loop-invariant. 11609 return LoopInvariant; 11610 } 11611 case scAddExpr: 11612 case scMulExpr: 11613 case scUMaxExpr: 11614 case scSMaxExpr: { 11615 bool HasVarying = false; 11616 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 11617 LoopDisposition D = getLoopDisposition(Op, L); 11618 if (D == LoopVariant) 11619 return LoopVariant; 11620 if (D == LoopComputable) 11621 HasVarying = true; 11622 } 11623 return HasVarying ? LoopComputable : LoopInvariant; 11624 } 11625 case scUDivExpr: { 11626 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11627 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 11628 if (LD == LoopVariant) 11629 return LoopVariant; 11630 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 11631 if (RD == LoopVariant) 11632 return LoopVariant; 11633 return (LD == LoopInvariant && RD == LoopInvariant) ? 11634 LoopInvariant : LoopComputable; 11635 } 11636 case scUnknown: 11637 // All non-instruction values are loop invariant. All instructions are loop 11638 // invariant if they are not contained in the specified loop. 11639 // Instructions are never considered invariant in the function body 11640 // (null loop) because they are defined within the "loop". 11641 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 11642 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 11643 return LoopInvariant; 11644 case scCouldNotCompute: 11645 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11646 } 11647 llvm_unreachable("Unknown SCEV kind!"); 11648 } 11649 11650 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 11651 return getLoopDisposition(S, L) == LoopInvariant; 11652 } 11653 11654 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 11655 return getLoopDisposition(S, L) == LoopComputable; 11656 } 11657 11658 ScalarEvolution::BlockDisposition 11659 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11660 auto &Values = BlockDispositions[S]; 11661 for (auto &V : Values) { 11662 if (V.getPointer() == BB) 11663 return V.getInt(); 11664 } 11665 Values.emplace_back(BB, DoesNotDominateBlock); 11666 BlockDisposition D = computeBlockDisposition(S, BB); 11667 auto &Values2 = BlockDispositions[S]; 11668 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11669 if (V.getPointer() == BB) { 11670 V.setInt(D); 11671 break; 11672 } 11673 } 11674 return D; 11675 } 11676 11677 ScalarEvolution::BlockDisposition 11678 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11679 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11680 case scConstant: 11681 return ProperlyDominatesBlock; 11682 case scTruncate: 11683 case scZeroExtend: 11684 case scSignExtend: 11685 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 11686 case scAddRecExpr: { 11687 // This uses a "dominates" query instead of "properly dominates" query 11688 // to test for proper dominance too, because the instruction which 11689 // produces the addrec's value is a PHI, and a PHI effectively properly 11690 // dominates its entire containing block. 11691 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11692 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 11693 return DoesNotDominateBlock; 11694 11695 // Fall through into SCEVNAryExpr handling. 11696 LLVM_FALLTHROUGH; 11697 } 11698 case scAddExpr: 11699 case scMulExpr: 11700 case scUMaxExpr: 11701 case scSMaxExpr: { 11702 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 11703 bool Proper = true; 11704 for (const SCEV *NAryOp : NAry->operands()) { 11705 BlockDisposition D = getBlockDisposition(NAryOp, BB); 11706 if (D == DoesNotDominateBlock) 11707 return DoesNotDominateBlock; 11708 if (D == DominatesBlock) 11709 Proper = false; 11710 } 11711 return Proper ? ProperlyDominatesBlock : DominatesBlock; 11712 } 11713 case scUDivExpr: { 11714 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11715 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 11716 BlockDisposition LD = getBlockDisposition(LHS, BB); 11717 if (LD == DoesNotDominateBlock) 11718 return DoesNotDominateBlock; 11719 BlockDisposition RD = getBlockDisposition(RHS, BB); 11720 if (RD == DoesNotDominateBlock) 11721 return DoesNotDominateBlock; 11722 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 11723 ProperlyDominatesBlock : DominatesBlock; 11724 } 11725 case scUnknown: 11726 if (Instruction *I = 11727 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 11728 if (I->getParent() == BB) 11729 return DominatesBlock; 11730 if (DT.properlyDominates(I->getParent(), BB)) 11731 return ProperlyDominatesBlock; 11732 return DoesNotDominateBlock; 11733 } 11734 return ProperlyDominatesBlock; 11735 case scCouldNotCompute: 11736 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11737 } 11738 llvm_unreachable("Unknown SCEV kind!"); 11739 } 11740 11741 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 11742 return getBlockDisposition(S, BB) >= DominatesBlock; 11743 } 11744 11745 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 11746 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 11747 } 11748 11749 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 11750 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 11751 } 11752 11753 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 11754 auto IsS = [&](const SCEV *X) { return S == X; }; 11755 auto ContainsS = [&](const SCEV *X) { 11756 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 11757 }; 11758 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 11759 } 11760 11761 void 11762 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 11763 ValuesAtScopes.erase(S); 11764 LoopDispositions.erase(S); 11765 BlockDispositions.erase(S); 11766 UnsignedRanges.erase(S); 11767 SignedRanges.erase(S); 11768 ExprValueMap.erase(S); 11769 HasRecMap.erase(S); 11770 MinTrailingZerosCache.erase(S); 11771 11772 for (auto I = PredicatedSCEVRewrites.begin(); 11773 I != PredicatedSCEVRewrites.end();) { 11774 std::pair<const SCEV *, const Loop *> Entry = I->first; 11775 if (Entry.first == S) 11776 PredicatedSCEVRewrites.erase(I++); 11777 else 11778 ++I; 11779 } 11780 11781 auto RemoveSCEVFromBackedgeMap = 11782 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 11783 for (auto I = Map.begin(), E = Map.end(); I != E;) { 11784 BackedgeTakenInfo &BEInfo = I->second; 11785 if (BEInfo.hasOperand(S, this)) { 11786 BEInfo.clear(); 11787 Map.erase(I++); 11788 } else 11789 ++I; 11790 } 11791 }; 11792 11793 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 11794 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 11795 } 11796 11797 void 11798 ScalarEvolution::getUsedLoops(const SCEV *S, 11799 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 11800 struct FindUsedLoops { 11801 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 11802 : LoopsUsed(LoopsUsed) {} 11803 SmallPtrSetImpl<const Loop *> &LoopsUsed; 11804 bool follow(const SCEV *S) { 11805 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 11806 LoopsUsed.insert(AR->getLoop()); 11807 return true; 11808 } 11809 11810 bool isDone() const { return false; } 11811 }; 11812 11813 FindUsedLoops F(LoopsUsed); 11814 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 11815 } 11816 11817 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 11818 SmallPtrSet<const Loop *, 8> LoopsUsed; 11819 getUsedLoops(S, LoopsUsed); 11820 for (auto *L : LoopsUsed) 11821 LoopUsers[L].push_back(S); 11822 } 11823 11824 void ScalarEvolution::verify() const { 11825 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11826 ScalarEvolution SE2(F, TLI, AC, DT, LI); 11827 11828 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 11829 11830 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 11831 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 11832 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 11833 11834 const SCEV *visitConstant(const SCEVConstant *Constant) { 11835 return SE.getConstant(Constant->getAPInt()); 11836 } 11837 11838 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11839 return SE.getUnknown(Expr->getValue()); 11840 } 11841 11842 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 11843 return SE.getCouldNotCompute(); 11844 } 11845 }; 11846 11847 SCEVMapper SCM(SE2); 11848 11849 while (!LoopStack.empty()) { 11850 auto *L = LoopStack.pop_back_val(); 11851 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 11852 11853 auto *CurBECount = SCM.visit( 11854 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 11855 auto *NewBECount = SE2.getBackedgeTakenCount(L); 11856 11857 if (CurBECount == SE2.getCouldNotCompute() || 11858 NewBECount == SE2.getCouldNotCompute()) { 11859 // NB! This situation is legal, but is very suspicious -- whatever pass 11860 // change the loop to make a trip count go from could not compute to 11861 // computable or vice-versa *should have* invalidated SCEV. However, we 11862 // choose not to assert here (for now) since we don't want false 11863 // positives. 11864 continue; 11865 } 11866 11867 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 11868 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 11869 // not propagate undef aggressively). This means we can (and do) fail 11870 // verification in cases where a transform makes the trip count of a loop 11871 // go from "undef" to "undef+1" (say). The transform is fine, since in 11872 // both cases the loop iterates "undef" times, but SCEV thinks we 11873 // increased the trip count of the loop by 1 incorrectly. 11874 continue; 11875 } 11876 11877 if (SE.getTypeSizeInBits(CurBECount->getType()) > 11878 SE.getTypeSizeInBits(NewBECount->getType())) 11879 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 11880 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 11881 SE.getTypeSizeInBits(NewBECount->getType())) 11882 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 11883 11884 auto *ConstantDelta = 11885 dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount)); 11886 11887 if (ConstantDelta && ConstantDelta->getAPInt() != 0) { 11888 dbgs() << "Trip Count Changed!\n"; 11889 dbgs() << "Old: " << *CurBECount << "\n"; 11890 dbgs() << "New: " << *NewBECount << "\n"; 11891 dbgs() << "Delta: " << *ConstantDelta << "\n"; 11892 std::abort(); 11893 } 11894 } 11895 } 11896 11897 bool ScalarEvolution::invalidate( 11898 Function &F, const PreservedAnalyses &PA, 11899 FunctionAnalysisManager::Invalidator &Inv) { 11900 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 11901 // of its dependencies is invalidated. 11902 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 11903 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 11904 Inv.invalidate<AssumptionAnalysis>(F, PA) || 11905 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 11906 Inv.invalidate<LoopAnalysis>(F, PA); 11907 } 11908 11909 AnalysisKey ScalarEvolutionAnalysis::Key; 11910 11911 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 11912 FunctionAnalysisManager &AM) { 11913 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 11914 AM.getResult<AssumptionAnalysis>(F), 11915 AM.getResult<DominatorTreeAnalysis>(F), 11916 AM.getResult<LoopAnalysis>(F)); 11917 } 11918 11919 PreservedAnalyses 11920 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 11921 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 11922 return PreservedAnalyses::all(); 11923 } 11924 11925 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 11926 "Scalar Evolution Analysis", false, true) 11927 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11928 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 11929 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 11930 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 11931 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 11932 "Scalar Evolution Analysis", false, true) 11933 11934 char ScalarEvolutionWrapperPass::ID = 0; 11935 11936 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 11937 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 11938 } 11939 11940 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 11941 SE.reset(new ScalarEvolution( 11942 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 11943 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 11944 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 11945 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 11946 return false; 11947 } 11948 11949 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 11950 11951 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 11952 SE->print(OS); 11953 } 11954 11955 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 11956 if (!VerifySCEV) 11957 return; 11958 11959 SE->verify(); 11960 } 11961 11962 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 11963 AU.setPreservesAll(); 11964 AU.addRequiredTransitive<AssumptionCacheTracker>(); 11965 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 11966 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 11967 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 11968 } 11969 11970 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 11971 const SCEV *RHS) { 11972 FoldingSetNodeID ID; 11973 assert(LHS->getType() == RHS->getType() && 11974 "Type mismatch between LHS and RHS"); 11975 // Unique this node based on the arguments 11976 ID.AddInteger(SCEVPredicate::P_Equal); 11977 ID.AddPointer(LHS); 11978 ID.AddPointer(RHS); 11979 void *IP = nullptr; 11980 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 11981 return S; 11982 SCEVEqualPredicate *Eq = new (SCEVAllocator) 11983 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 11984 UniquePreds.InsertNode(Eq, IP); 11985 return Eq; 11986 } 11987 11988 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 11989 const SCEVAddRecExpr *AR, 11990 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 11991 FoldingSetNodeID ID; 11992 // Unique this node based on the arguments 11993 ID.AddInteger(SCEVPredicate::P_Wrap); 11994 ID.AddPointer(AR); 11995 ID.AddInteger(AddedFlags); 11996 void *IP = nullptr; 11997 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 11998 return S; 11999 auto *OF = new (SCEVAllocator) 12000 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12001 UniquePreds.InsertNode(OF, IP); 12002 return OF; 12003 } 12004 12005 namespace { 12006 12007 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12008 public: 12009 12010 /// Rewrites \p S in the context of a loop L and the SCEV predication 12011 /// infrastructure. 12012 /// 12013 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12014 /// equivalences present in \p Pred. 12015 /// 12016 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12017 /// \p NewPreds such that the result will be an AddRecExpr. 12018 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12019 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12020 SCEVUnionPredicate *Pred) { 12021 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12022 return Rewriter.visit(S); 12023 } 12024 12025 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12026 if (Pred) { 12027 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12028 for (auto *Pred : ExprPreds) 12029 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12030 if (IPred->getLHS() == Expr) 12031 return IPred->getRHS(); 12032 } 12033 return convertToAddRecWithPreds(Expr); 12034 } 12035 12036 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12037 const SCEV *Operand = visit(Expr->getOperand()); 12038 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12039 if (AR && AR->getLoop() == L && AR->isAffine()) { 12040 // This couldn't be folded because the operand didn't have the nuw 12041 // flag. Add the nusw flag as an assumption that we could make. 12042 const SCEV *Step = AR->getStepRecurrence(SE); 12043 Type *Ty = Expr->getType(); 12044 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12045 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12046 SE.getSignExtendExpr(Step, Ty), L, 12047 AR->getNoWrapFlags()); 12048 } 12049 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12050 } 12051 12052 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12053 const SCEV *Operand = visit(Expr->getOperand()); 12054 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12055 if (AR && AR->getLoop() == L && AR->isAffine()) { 12056 // This couldn't be folded because the operand didn't have the nsw 12057 // flag. Add the nssw flag as an assumption that we could make. 12058 const SCEV *Step = AR->getStepRecurrence(SE); 12059 Type *Ty = Expr->getType(); 12060 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12061 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12062 SE.getSignExtendExpr(Step, Ty), L, 12063 AR->getNoWrapFlags()); 12064 } 12065 return SE.getSignExtendExpr(Operand, Expr->getType()); 12066 } 12067 12068 private: 12069 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12070 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12071 SCEVUnionPredicate *Pred) 12072 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12073 12074 bool addOverflowAssumption(const SCEVPredicate *P) { 12075 if (!NewPreds) { 12076 // Check if we've already made this assumption. 12077 return Pred && Pred->implies(P); 12078 } 12079 NewPreds->insert(P); 12080 return true; 12081 } 12082 12083 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12084 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12085 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12086 return addOverflowAssumption(A); 12087 } 12088 12089 // If \p Expr represents a PHINode, we try to see if it can be represented 12090 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12091 // to add this predicate as a runtime overflow check, we return the AddRec. 12092 // If \p Expr does not meet these conditions (is not a PHI node, or we 12093 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12094 // return \p Expr. 12095 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12096 if (!isa<PHINode>(Expr->getValue())) 12097 return Expr; 12098 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12099 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12100 if (!PredicatedRewrite) 12101 return Expr; 12102 for (auto *P : PredicatedRewrite->second){ 12103 // Wrap predicates from outer loops are not supported. 12104 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12105 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12106 if (L != AR->getLoop()) 12107 return Expr; 12108 } 12109 if (!addOverflowAssumption(P)) 12110 return Expr; 12111 } 12112 return PredicatedRewrite->first; 12113 } 12114 12115 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12116 SCEVUnionPredicate *Pred; 12117 const Loop *L; 12118 }; 12119 12120 } // end anonymous namespace 12121 12122 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 12123 SCEVUnionPredicate &Preds) { 12124 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 12125 } 12126 12127 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 12128 const SCEV *S, const Loop *L, 12129 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 12130 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 12131 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 12132 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 12133 12134 if (!AddRec) 12135 return nullptr; 12136 12137 // Since the transformation was successful, we can now transfer the SCEV 12138 // predicates. 12139 for (auto *P : TransformPreds) 12140 Preds.insert(P); 12141 12142 return AddRec; 12143 } 12144 12145 /// SCEV predicates 12146 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 12147 SCEVPredicateKind Kind) 12148 : FastID(ID), Kind(Kind) {} 12149 12150 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 12151 const SCEV *LHS, const SCEV *RHS) 12152 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 12153 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 12154 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 12155 } 12156 12157 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 12158 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 12159 12160 if (!Op) 12161 return false; 12162 12163 return Op->LHS == LHS && Op->RHS == RHS; 12164 } 12165 12166 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 12167 12168 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 12169 12170 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 12171 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 12172 } 12173 12174 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 12175 const SCEVAddRecExpr *AR, 12176 IncrementWrapFlags Flags) 12177 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 12178 12179 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 12180 12181 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 12182 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 12183 12184 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 12185 } 12186 12187 bool SCEVWrapPredicate::isAlwaysTrue() const { 12188 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 12189 IncrementWrapFlags IFlags = Flags; 12190 12191 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 12192 IFlags = clearFlags(IFlags, IncrementNSSW); 12193 12194 return IFlags == IncrementAnyWrap; 12195 } 12196 12197 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 12198 OS.indent(Depth) << *getExpr() << " Added Flags: "; 12199 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 12200 OS << "<nusw>"; 12201 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 12202 OS << "<nssw>"; 12203 OS << "\n"; 12204 } 12205 12206 SCEVWrapPredicate::IncrementWrapFlags 12207 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 12208 ScalarEvolution &SE) { 12209 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 12210 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 12211 12212 // We can safely transfer the NSW flag as NSSW. 12213 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 12214 ImpliedFlags = IncrementNSSW; 12215 12216 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 12217 // If the increment is positive, the SCEV NUW flag will also imply the 12218 // WrapPredicate NUSW flag. 12219 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 12220 if (Step->getValue()->getValue().isNonNegative()) 12221 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 12222 } 12223 12224 return ImpliedFlags; 12225 } 12226 12227 /// Union predicates don't get cached so create a dummy set ID for it. 12228 SCEVUnionPredicate::SCEVUnionPredicate() 12229 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 12230 12231 bool SCEVUnionPredicate::isAlwaysTrue() const { 12232 return all_of(Preds, 12233 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 12234 } 12235 12236 ArrayRef<const SCEVPredicate *> 12237 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 12238 auto I = SCEVToPreds.find(Expr); 12239 if (I == SCEVToPreds.end()) 12240 return ArrayRef<const SCEVPredicate *>(); 12241 return I->second; 12242 } 12243 12244 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 12245 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 12246 return all_of(Set->Preds, 12247 [this](const SCEVPredicate *I) { return this->implies(I); }); 12248 12249 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12250 if (ScevPredsIt == SCEVToPreds.end()) 12251 return false; 12252 auto &SCEVPreds = ScevPredsIt->second; 12253 12254 return any_of(SCEVPreds, 12255 [N](const SCEVPredicate *I) { return I->implies(N); }); 12256 } 12257 12258 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12259 12260 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 12261 for (auto Pred : Preds) 12262 Pred->print(OS, Depth); 12263 } 12264 12265 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 12266 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 12267 for (auto Pred : Set->Preds) 12268 add(Pred); 12269 return; 12270 } 12271 12272 if (implies(N)) 12273 return; 12274 12275 const SCEV *Key = N->getExpr(); 12276 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12277 " associated expression!"); 12278 12279 SCEVToPreds[Key].push_back(N); 12280 Preds.push_back(N); 12281 } 12282 12283 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12284 Loop &L) 12285 : SE(SE), L(L) {} 12286 12287 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12288 const SCEV *Expr = SE.getSCEV(V); 12289 RewriteEntry &Entry = RewriteMap[Expr]; 12290 12291 // If we already have an entry and the version matches, return it. 12292 if (Entry.second && Generation == Entry.first) 12293 return Entry.second; 12294 12295 // We found an entry but it's stale. Rewrite the stale entry 12296 // according to the current predicate. 12297 if (Entry.second) 12298 Expr = Entry.second; 12299 12300 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 12301 Entry = {Generation, NewSCEV}; 12302 12303 return NewSCEV; 12304 } 12305 12306 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 12307 if (!BackedgeCount) { 12308 SCEVUnionPredicate BackedgePred; 12309 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 12310 addPredicate(BackedgePred); 12311 } 12312 return BackedgeCount; 12313 } 12314 12315 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 12316 if (Preds.implies(&Pred)) 12317 return; 12318 Preds.add(&Pred); 12319 updateGeneration(); 12320 } 12321 12322 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 12323 return Preds; 12324 } 12325 12326 void PredicatedScalarEvolution::updateGeneration() { 12327 // If the generation number wrapped recompute everything. 12328 if (++Generation == 0) { 12329 for (auto &II : RewriteMap) { 12330 const SCEV *Rewritten = II.second.second; 12331 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 12332 } 12333 } 12334 } 12335 12336 void PredicatedScalarEvolution::setNoOverflow( 12337 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12338 const SCEV *Expr = getSCEV(V); 12339 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12340 12341 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 12342 12343 // Clear the statically implied flags. 12344 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 12345 addPredicate(*SE.getWrapPredicate(AR, Flags)); 12346 12347 auto II = FlagsMap.insert({V, Flags}); 12348 if (!II.second) 12349 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 12350 } 12351 12352 bool PredicatedScalarEvolution::hasNoOverflow( 12353 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12354 const SCEV *Expr = getSCEV(V); 12355 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12356 12357 Flags = SCEVWrapPredicate::clearFlags( 12358 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 12359 12360 auto II = FlagsMap.find(V); 12361 12362 if (II != FlagsMap.end()) 12363 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 12364 12365 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 12366 } 12367 12368 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 12369 const SCEV *Expr = this->getSCEV(V); 12370 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 12371 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 12372 12373 if (!New) 12374 return nullptr; 12375 12376 for (auto *P : NewPreds) 12377 Preds.add(P); 12378 12379 updateGeneration(); 12380 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 12381 return New; 12382 } 12383 12384 PredicatedScalarEvolution::PredicatedScalarEvolution( 12385 const PredicatedScalarEvolution &Init) 12386 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 12387 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 12388 for (const auto &I : Init.FlagsMap) 12389 FlagsMap.insert(I); 12390 } 12391 12392 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 12393 // For each block. 12394 for (auto *BB : L.getBlocks()) 12395 for (auto &I : *BB) { 12396 if (!SE.isSCEVable(I.getType())) 12397 continue; 12398 12399 auto *Expr = SE.getSCEV(&I); 12400 auto II = RewriteMap.find(Expr); 12401 12402 if (II == RewriteMap.end()) 12403 continue; 12404 12405 // Don't print things that are not interesting. 12406 if (II->second.second == Expr) 12407 continue; 12408 12409 OS.indent(Depth) << "[PSE]" << I << ":\n"; 12410 OS.indent(Depth + 2) << *Expr << "\n"; 12411 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 12412 } 12413 } 12414 12415 // Match the mathematical pattern A - (A / B) * B, where A and B can be 12416 // arbitrary expressions. 12417 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 12418 // 4, A / B becomes X / 8). 12419 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 12420 const SCEV *&RHS) { 12421 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 12422 if (Add == nullptr || Add->getNumOperands() != 2) 12423 return false; 12424 12425 const SCEV *A = Add->getOperand(1); 12426 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 12427 12428 if (Mul == nullptr) 12429 return false; 12430 12431 const auto MatchURemWithDivisor = [&](const SCEV *B) { 12432 // (SomeExpr + (-(SomeExpr / B) * B)). 12433 if (Expr == getURemExpr(A, B)) { 12434 LHS = A; 12435 RHS = B; 12436 return true; 12437 } 12438 return false; 12439 }; 12440 12441 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 12442 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 12443 return MatchURemWithDivisor(Mul->getOperand(1)) || 12444 MatchURemWithDivisor(Mul->getOperand(2)); 12445 12446 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 12447 if (Mul->getNumOperands() == 2) 12448 return MatchURemWithDivisor(Mul->getOperand(1)) || 12449 MatchURemWithDivisor(Mul->getOperand(0)) || 12450 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 12451 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 12452 return false; 12453 } 12454