1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/MustExecute.h" 11 #include "llvm/Analysis/InstructionSimplify.h" 12 #include "llvm/Analysis/LoopInfo.h" 13 #include "llvm/Analysis/Passes.h" 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/IR/AssemblyAnnotationWriter.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/InstIterator.h" 18 #include "llvm/IR/LLVMContext.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/FormattedStream.h" 22 #include "llvm/Support/raw_ostream.h" 23 using namespace llvm; 24 25 const DenseMap<BasicBlock *, ColorVector> & 26 LoopSafetyInfo::getBlockColors() const { 27 return BlockColors; 28 } 29 30 void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) { 31 ColorVector &ColorsForNewBlock = BlockColors[New]; 32 ColorVector &ColorsForOldBlock = BlockColors[Old]; 33 ColorsForNewBlock = ColorsForOldBlock; 34 } 35 36 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { 37 (void)BB; 38 return anyBlockMayThrow(); 39 } 40 41 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const { 42 return MayThrow; 43 } 44 45 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { 46 assert(CurLoop != nullptr && "CurLoop can't be null"); 47 BasicBlock *Header = CurLoop->getHeader(); 48 // Iterate over header and compute safety info. 49 HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header); 50 MayThrow = HeaderMayThrow; 51 // Iterate over loop instructions and compute safety info. 52 // Skip header as it has been computed and stored in HeaderMayThrow. 53 // The first block in loopinfo.Blocks is guaranteed to be the header. 54 assert(Header == *CurLoop->getBlocks().begin() && 55 "First block must be header"); 56 for (Loop::block_iterator BB = std::next(CurLoop->block_begin()), 57 BBE = CurLoop->block_end(); 58 (BB != BBE) && !MayThrow; ++BB) 59 MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB); 60 61 computeBlockColors(CurLoop); 62 } 63 64 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { 65 return ICF.hasICF(BB); 66 } 67 68 bool ICFLoopSafetyInfo::anyBlockMayThrow() const { 69 return MayThrow; 70 } 71 72 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { 73 assert(CurLoop != nullptr && "CurLoop can't be null"); 74 ICF.clear(); 75 MW.clear(); 76 MayThrow = false; 77 // Figure out the fact that at least one block may throw. 78 for (auto &BB : CurLoop->blocks()) 79 if (ICF.hasICF(&*BB)) { 80 MayThrow = true; 81 break; 82 } 83 computeBlockColors(CurLoop); 84 } 85 86 void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst, 87 const BasicBlock *BB) { 88 ICF.insertInstructionTo(Inst, BB); 89 MW.insertInstructionTo(Inst, BB); 90 } 91 92 void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) { 93 ICF.removeInstruction(Inst); 94 MW.removeInstruction(Inst); 95 } 96 97 void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) { 98 // Compute funclet colors if we might sink/hoist in a function with a funclet 99 // personality routine. 100 Function *Fn = CurLoop->getHeader()->getParent(); 101 if (Fn->hasPersonalityFn()) 102 if (Constant *PersonalityFn = Fn->getPersonalityFn()) 103 if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn))) 104 BlockColors = colorEHFunclets(*Fn); 105 } 106 107 /// Return true if we can prove that the given ExitBlock is not reached on the 108 /// first iteration of the given loop. That is, the backedge of the loop must 109 /// be executed before the ExitBlock is executed in any dynamic execution trace. 110 static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock, 111 const DominatorTree *DT, 112 const Loop *CurLoop) { 113 auto *CondExitBlock = ExitBlock->getSinglePredecessor(); 114 if (!CondExitBlock) 115 // expect unique exits 116 return false; 117 assert(CurLoop->contains(CondExitBlock) && "meaning of exit block"); 118 auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator()); 119 if (!BI || !BI->isConditional()) 120 return false; 121 // If condition is constant and false leads to ExitBlock then we always 122 // execute the true branch. 123 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) 124 return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock; 125 auto *Cond = dyn_cast<CmpInst>(BI->getCondition()); 126 if (!Cond) 127 return false; 128 // todo: this would be a lot more powerful if we used scev, but all the 129 // plumbing is currently missing to pass a pointer in from the pass 130 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known 131 auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0)); 132 auto *RHS = Cond->getOperand(1); 133 if (!LHS || LHS->getParent() != CurLoop->getHeader()) 134 return false; 135 auto DL = ExitBlock->getModule()->getDataLayout(); 136 auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 137 auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(), 138 IVStart, RHS, 139 {DL, /*TLI*/ nullptr, 140 DT, /*AC*/ nullptr, BI}); 141 auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull); 142 if (!SimpleCst) 143 return false; 144 if (ExitBlock == BI->getSuccessor(0)) 145 return SimpleCst->isZeroValue(); 146 assert(ExitBlock == BI->getSuccessor(1) && "implied by above"); 147 return SimpleCst->isAllOnesValue(); 148 } 149 150 /// Collect all blocks from \p CurLoop which lie on all possible paths from 151 /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set 152 /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty. 153 static void collectTransitivePredecessors( 154 const Loop *CurLoop, const BasicBlock *BB, 155 SmallPtrSetImpl<const BasicBlock *> &Predecessors) { 156 assert(Predecessors.empty() && "Garbage in predecessors set?"); 157 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 158 if (BB == CurLoop->getHeader()) 159 return; 160 SmallVector<const BasicBlock *, 4> WorkList; 161 for (auto *Pred : predecessors(BB)) { 162 Predecessors.insert(Pred); 163 WorkList.push_back(Pred); 164 } 165 while (!WorkList.empty()) { 166 auto *Pred = WorkList.pop_back_val(); 167 assert(CurLoop->contains(Pred) && "Should only reach loop blocks!"); 168 // We are not interested in backedges and we don't want to leave loop. 169 if (Pred == CurLoop->getHeader()) 170 continue; 171 // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all 172 // blocks of this inner loop, even those that are always executed AFTER the 173 // BB. It may make our analysis more conservative than it could be, see test 174 // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll. 175 // We can ignore backedge of all loops containing BB to get a sligtly more 176 // optimistic result. 177 for (auto *PredPred : predecessors(Pred)) 178 if (Predecessors.insert(PredPred).second) 179 WorkList.push_back(PredPred); 180 } 181 } 182 183 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop, 184 const BasicBlock *BB, 185 const DominatorTree *DT) const { 186 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 187 188 // Fast path: header is always reached once the loop is entered. 189 if (BB == CurLoop->getHeader()) 190 return true; 191 192 // Collect all transitive predecessors of BB in the same loop. This set will 193 // be a subset of the blocks within the loop. 194 SmallPtrSet<const BasicBlock *, 4> Predecessors; 195 collectTransitivePredecessors(CurLoop, BB, Predecessors); 196 197 // Make sure that all successors of all predecessors of BB are either: 198 // 1) BB, 199 // 2) Also predecessors of BB, 200 // 3) Exit blocks which are not taken on 1st iteration. 201 // Memoize blocks we've already checked. 202 SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors; 203 for (auto *Pred : Predecessors) { 204 // Predecessor block may throw, so it has a side exit. 205 if (blockMayThrow(Pred)) 206 return false; 207 for (auto *Succ : successors(Pred)) 208 if (CheckedSuccessors.insert(Succ).second && 209 Succ != BB && !Predecessors.count(Succ)) 210 // By discharging conditions that are not executed on the 1st iteration, 211 // we guarantee that *at least* on the first iteration all paths from 212 // header that *may* execute will lead us to the block of interest. So 213 // that if we had virtually peeled one iteration away, in this peeled 214 // iteration the set of predecessors would contain only paths from 215 // header to BB without any exiting edges that may execute. 216 // 217 // TODO: We only do it for exiting edges currently. We could use the 218 // same function to skip some of the edges within the loop if we know 219 // that they will not be taken on the 1st iteration. 220 // 221 // TODO: If we somehow know the number of iterations in loop, the same 222 // check may be done for any arbitrary N-th iteration as long as N is 223 // not greater than minimum number of iterations in this loop. 224 if (CurLoop->contains(Succ) || 225 !CanProveNotTakenFirstIteration(Succ, DT, CurLoop)) 226 return false; 227 } 228 229 // All predecessors can only lead us to BB. 230 return true; 231 } 232 233 /// Returns true if the instruction in a loop is guaranteed to execute at least 234 /// once. 235 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, 236 const DominatorTree *DT, 237 const Loop *CurLoop) const { 238 // If the instruction is in the header block for the loop (which is very 239 // common), it is always guaranteed to dominate the exit blocks. Since this 240 // is a common case, and can save some work, check it now. 241 if (Inst.getParent() == CurLoop->getHeader()) 242 // If there's a throw in the header block, we can't guarantee we'll reach 243 // Inst unless we can prove that Inst comes before the potential implicit 244 // exit. At the moment, we use a (cheap) hack for the common case where 245 // the instruction of interest is the first one in the block. 246 return !HeaderMayThrow || 247 Inst.getParent()->getFirstNonPHIOrDbg() == &Inst; 248 249 // If there is a path from header to exit or latch that doesn't lead to our 250 // instruction's block, return false. 251 return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT); 252 } 253 254 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, 255 const DominatorTree *DT, 256 const Loop *CurLoop) const { 257 return !ICF.isDominatedByICFIFromSameBlock(&Inst) && 258 allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT); 259 } 260 261 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB, 262 const Loop *CurLoop) const { 263 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 264 265 // Fast path: there are no instructions before header. 266 if (BB == CurLoop->getHeader()) 267 return true; 268 269 // Collect all transitive predecessors of BB in the same loop. This set will 270 // be a subset of the blocks within the loop. 271 SmallPtrSet<const BasicBlock *, 4> Predecessors; 272 collectTransitivePredecessors(CurLoop, BB, Predecessors); 273 // Find if there any instruction in either predecessor that could write 274 // to memory. 275 for (auto *Pred : Predecessors) 276 if (MW.mayWriteToMemory(Pred)) 277 return false; 278 return true; 279 } 280 281 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I, 282 const Loop *CurLoop) const { 283 auto *BB = I.getParent(); 284 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 285 return !MW.isDominatedByMemoryWriteFromSameBlock(&I) && 286 doesNotWriteMemoryBefore(BB, CurLoop); 287 } 288 289 namespace { 290 struct MustExecutePrinter : public FunctionPass { 291 292 static char ID; // Pass identification, replacement for typeid 293 MustExecutePrinter() : FunctionPass(ID) { 294 initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry()); 295 } 296 void getAnalysisUsage(AnalysisUsage &AU) const override { 297 AU.setPreservesAll(); 298 AU.addRequired<DominatorTreeWrapperPass>(); 299 AU.addRequired<LoopInfoWrapperPass>(); 300 } 301 bool runOnFunction(Function &F) override; 302 }; 303 } 304 305 char MustExecutePrinter::ID = 0; 306 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute", 307 "Instructions which execute on loop entry", false, true) 308 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 309 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 310 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute", 311 "Instructions which execute on loop entry", false, true) 312 313 FunctionPass *llvm::createMustExecutePrinter() { 314 return new MustExecutePrinter(); 315 } 316 317 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) { 318 // TODO: merge these two routines. For the moment, we display the best 319 // result obtained by *either* implementation. This is a bit unfair since no 320 // caller actually gets the full power at the moment. 321 SimpleLoopSafetyInfo LSI; 322 LSI.computeLoopSafetyInfo(L); 323 return LSI.isGuaranteedToExecute(I, DT, L) || 324 isGuaranteedToExecuteForEveryIteration(&I, L); 325 } 326 327 namespace { 328 /// An assembly annotator class to print must execute information in 329 /// comments. 330 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter { 331 DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec; 332 333 public: 334 MustExecuteAnnotatedWriter(const Function &F, 335 DominatorTree &DT, LoopInfo &LI) { 336 for (auto &I: instructions(F)) { 337 Loop *L = LI.getLoopFor(I.getParent()); 338 while (L) { 339 if (isMustExecuteIn(I, L, &DT)) { 340 MustExec[&I].push_back(L); 341 } 342 L = L->getParentLoop(); 343 }; 344 } 345 } 346 MustExecuteAnnotatedWriter(const Module &M, 347 DominatorTree &DT, LoopInfo &LI) { 348 for (auto &F : M) 349 for (auto &I: instructions(F)) { 350 Loop *L = LI.getLoopFor(I.getParent()); 351 while (L) { 352 if (isMustExecuteIn(I, L, &DT)) { 353 MustExec[&I].push_back(L); 354 } 355 L = L->getParentLoop(); 356 }; 357 } 358 } 359 360 361 void printInfoComment(const Value &V, formatted_raw_ostream &OS) override { 362 if (!MustExec.count(&V)) 363 return; 364 365 const auto &Loops = MustExec.lookup(&V); 366 const auto NumLoops = Loops.size(); 367 if (NumLoops > 1) 368 OS << " ; (mustexec in " << NumLoops << " loops: "; 369 else 370 OS << " ; (mustexec in: "; 371 372 bool first = true; 373 for (const Loop *L : Loops) { 374 if (!first) 375 OS << ", "; 376 first = false; 377 OS << L->getHeader()->getName(); 378 } 379 OS << ")"; 380 } 381 }; 382 } // namespace 383 384 bool MustExecutePrinter::runOnFunction(Function &F) { 385 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 386 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 387 388 MustExecuteAnnotatedWriter Writer(F, DT, LI); 389 F.print(dbgs(), &Writer); 390 391 return false; 392 } 393