1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/ScalarEvolutionExpander.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DiagnosticInfo.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 using namespace llvm; 27 28 #define DEBUG_TYPE "loop-accesses" 29 30 static cl::opt<unsigned, true> 31 VectorizationFactor("force-vector-width", cl::Hidden, 32 cl::desc("Sets the SIMD width. Zero is autoselect."), 33 cl::location(VectorizerParams::VectorizationFactor)); 34 unsigned VectorizerParams::VectorizationFactor; 35 36 static cl::opt<unsigned, true> 37 VectorizationInterleave("force-vector-interleave", cl::Hidden, 38 cl::desc("Sets the vectorization interleave count. " 39 "Zero is autoselect."), 40 cl::location( 41 VectorizerParams::VectorizationInterleave)); 42 unsigned VectorizerParams::VectorizationInterleave; 43 44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 45 "runtime-memory-check-threshold", cl::Hidden, 46 cl::desc("When performing memory disambiguation checks at runtime do not " 47 "generate more than this number of comparisons (default = 8)."), 48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 50 51 /// \brief The maximum iterations used to merge memory checks 52 static cl::opt<unsigned> MemoryCheckMergeThreshold( 53 "memory-check-merge-threshold", cl::Hidden, 54 cl::desc("Maximum number of comparisons done when trying to merge " 55 "runtime memory checks. (default = 100)"), 56 cl::init(100)); 57 58 /// Maximum SIMD width. 59 const unsigned VectorizerParams::MaxVectorWidth = 64; 60 61 /// \brief We collect interesting dependences up to this threshold. 62 static cl::opt<unsigned> MaxInterestingDependence( 63 "max-interesting-dependences", cl::Hidden, 64 cl::desc("Maximum number of interesting dependences collected by " 65 "loop-access analysis (default = 100)"), 66 cl::init(100)); 67 68 bool VectorizerParams::isInterleaveForced() { 69 return ::VectorizationInterleave.getNumOccurrences() > 0; 70 } 71 72 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 73 const Function *TheFunction, 74 const Loop *TheLoop, 75 const char *PassName) { 76 DebugLoc DL = TheLoop->getStartLoc(); 77 if (const Instruction *I = Message.getInstr()) 78 DL = I->getDebugLoc(); 79 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 80 *TheFunction, DL, Message.str()); 81 } 82 83 Value *llvm::stripIntegerCast(Value *V) { 84 if (CastInst *CI = dyn_cast<CastInst>(V)) 85 if (CI->getOperand(0)->getType()->isIntegerTy()) 86 return CI->getOperand(0); 87 return V; 88 } 89 90 const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, 91 const ValueToValueMap &PtrToStride, 92 Value *Ptr, Value *OrigPtr) { 93 94 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 95 96 // If there is an entry in the map return the SCEV of the pointer with the 97 // symbolic stride replaced by one. 98 ValueToValueMap::const_iterator SI = 99 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 100 if (SI != PtrToStride.end()) { 101 Value *StrideVal = SI->second; 102 103 // Strip casts. 104 StrideVal = stripIntegerCast(StrideVal); 105 106 // Replace symbolic stride by one. 107 Value *One = ConstantInt::get(StrideVal->getType(), 1); 108 ValueToValueMap RewriteMap; 109 RewriteMap[StrideVal] = One; 110 111 const SCEV *ByOne = 112 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 113 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 114 << "\n"); 115 return ByOne; 116 } 117 118 // Otherwise, just return the SCEV of the original pointer. 119 return SE->getSCEV(Ptr); 120 } 121 122 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 123 unsigned DepSetId, unsigned ASId, 124 const ValueToValueMap &Strides) { 125 // Get the stride replaced scev. 126 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 127 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 128 assert(AR && "Invalid addrec expression"); 129 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 130 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 131 Pointers.emplace_back(Ptr, AR->getStart(), ScEnd, WritePtr, DepSetId, ASId, 132 Sc); 133 } 134 135 bool RuntimePointerChecking::needsChecking( 136 const CheckingPtrGroup &M, const CheckingPtrGroup &N, 137 const SmallVectorImpl<int> *PtrPartition) const { 138 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 139 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 140 if (needsChecking(M.Members[I], N.Members[J], PtrPartition)) 141 return true; 142 return false; 143 } 144 145 /// Compare \p I and \p J and return the minimum. 146 /// Return nullptr in case we couldn't find an answer. 147 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 148 ScalarEvolution *SE) { 149 const SCEV *Diff = SE->getMinusSCEV(J, I); 150 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 151 152 if (!C) 153 return nullptr; 154 if (C->getValue()->isNegative()) 155 return J; 156 return I; 157 } 158 159 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 160 const SCEV *Start = RtCheck.Pointers[Index].Start; 161 const SCEV *End = RtCheck.Pointers[Index].End; 162 163 // Compare the starts and ends with the known minimum and maximum 164 // of this set. We need to know how we compare against the min/max 165 // of the set in order to be able to emit memchecks. 166 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 167 if (!Min0) 168 return false; 169 170 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 171 if (!Min1) 172 return false; 173 174 // Update the low bound expression if we've found a new min value. 175 if (Min0 == Start) 176 Low = Start; 177 178 // Update the high bound expression if we've found a new max value. 179 if (Min1 != End) 180 High = End; 181 182 Members.push_back(Index); 183 return true; 184 } 185 186 void RuntimePointerChecking::groupChecks( 187 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 188 // We build the groups from dependency candidates equivalence classes 189 // because: 190 // - We know that pointers in the same equivalence class share 191 // the same underlying object and therefore there is a chance 192 // that we can compare pointers 193 // - We wouldn't be able to merge two pointers for which we need 194 // to emit a memcheck. The classes in DepCands are already 195 // conveniently built such that no two pointers in the same 196 // class need checking against each other. 197 198 // We use the following (greedy) algorithm to construct the groups 199 // For every pointer in the equivalence class: 200 // For each existing group: 201 // - if the difference between this pointer and the min/max bounds 202 // of the group is a constant, then make the pointer part of the 203 // group and update the min/max bounds of that group as required. 204 205 CheckingGroups.clear(); 206 207 // If we don't have the dependency partitions, construct a new 208 // checking pointer group for each pointer. 209 if (!UseDependencies) { 210 for (unsigned I = 0; I < Pointers.size(); ++I) 211 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 212 return; 213 } 214 215 unsigned TotalComparisons = 0; 216 217 DenseMap<Value *, unsigned> PositionMap; 218 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 219 PositionMap[Pointers[Index].PointerValue] = Index; 220 221 // We need to keep track of what pointers we've already seen so we 222 // don't process them twice. 223 SmallSet<unsigned, 2> Seen; 224 225 // Go through all equivalence classes, get the the "pointer check groups" 226 // and add them to the overall solution. We use the order in which accesses 227 // appear in 'Pointers' to enforce determinism. 228 for (unsigned I = 0; I < Pointers.size(); ++I) { 229 // We've seen this pointer before, and therefore already processed 230 // its equivalence class. 231 if (Seen.count(I)) 232 continue; 233 234 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 235 Pointers[I].IsWritePtr); 236 237 SmallVector<CheckingPtrGroup, 2> Groups; 238 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 239 240 // Because DepCands is constructed by visiting accesses in the order in 241 // which they appear in alias sets (which is deterministic) and the 242 // iteration order within an equivalence class member is only dependent on 243 // the order in which unions and insertions are performed on the 244 // equivalence class, the iteration order is deterministic. 245 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 246 MI != ME; ++MI) { 247 unsigned Pointer = PositionMap[MI->getPointer()]; 248 bool Merged = false; 249 // Mark this pointer as seen. 250 Seen.insert(Pointer); 251 252 // Go through all the existing sets and see if we can find one 253 // which can include this pointer. 254 for (CheckingPtrGroup &Group : Groups) { 255 // Don't perform more than a certain amount of comparisons. 256 // This should limit the cost of grouping the pointers to something 257 // reasonable. If we do end up hitting this threshold, the algorithm 258 // will create separate groups for all remaining pointers. 259 if (TotalComparisons > MemoryCheckMergeThreshold) 260 break; 261 262 TotalComparisons++; 263 264 if (Group.addPointer(Pointer)) { 265 Merged = true; 266 break; 267 } 268 } 269 270 if (!Merged) 271 // We couldn't add this pointer to any existing set or the threshold 272 // for the number of comparisons has been reached. Create a new group 273 // to hold the current pointer. 274 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 275 } 276 277 // We've computed the grouped checks for this partition. 278 // Save the results and continue with the next one. 279 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 280 } 281 } 282 283 bool RuntimePointerChecking::needsChecking( 284 unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const { 285 const PointerInfo &PointerI = Pointers[I]; 286 const PointerInfo &PointerJ = Pointers[J]; 287 288 // No need to check if two readonly pointers intersect. 289 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 290 return false; 291 292 // Only need to check pointers between two different dependency sets. 293 if (PointerI.DependencySetId == PointerJ.DependencySetId) 294 return false; 295 296 // Only need to check pointers in the same alias set. 297 if (PointerI.AliasSetId != PointerJ.AliasSetId) 298 return false; 299 300 // If PtrPartition is set omit checks between pointers of the same partition. 301 // Partition number -1 means that the pointer is used in multiple partitions. 302 // In this case we can't omit the check. 303 if (PtrPartition && (*PtrPartition)[I] != -1 && 304 (*PtrPartition)[I] == (*PtrPartition)[J]) 305 return false; 306 307 return true; 308 } 309 310 void RuntimePointerChecking::print( 311 raw_ostream &OS, unsigned Depth, 312 const SmallVectorImpl<int> *PtrPartition) const { 313 314 OS.indent(Depth) << "Run-time memory checks:\n"; 315 316 unsigned N = 0; 317 for (unsigned I = 0; I < CheckingGroups.size(); ++I) 318 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) 319 if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition)) { 320 OS.indent(Depth) << "Check " << N++ << ":\n"; 321 OS.indent(Depth + 2) << "Comparing group " << I << ":\n"; 322 323 for (unsigned K = 0; K < CheckingGroups[I].Members.size(); ++K) { 324 OS.indent(Depth + 2) 325 << *Pointers[CheckingGroups[I].Members[K]].PointerValue << "\n"; 326 if (PtrPartition) 327 OS << " (Partition: " 328 << (*PtrPartition)[CheckingGroups[I].Members[K]] << ")" 329 << "\n"; 330 } 331 332 OS.indent(Depth + 2) << "Against group " << J << ":\n"; 333 334 for (unsigned K = 0; K < CheckingGroups[J].Members.size(); ++K) { 335 OS.indent(Depth + 2) 336 << *Pointers[CheckingGroups[J].Members[K]].PointerValue << "\n"; 337 if (PtrPartition) 338 OS << " (Partition: " 339 << (*PtrPartition)[CheckingGroups[J].Members[K]] << ")" 340 << "\n"; 341 } 342 } 343 344 OS.indent(Depth) << "Grouped accesses:\n"; 345 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 346 OS.indent(Depth + 2) << "Group " << I << ":\n"; 347 OS.indent(Depth + 4) << "(Low: " << *CheckingGroups[I].Low 348 << " High: " << *CheckingGroups[I].High << ")\n"; 349 for (unsigned J = 0; J < CheckingGroups[I].Members.size(); ++J) { 350 OS.indent(Depth + 6) << "Member: " 351 << *Pointers[CheckingGroups[I].Members[J]].Expr 352 << "\n"; 353 } 354 } 355 } 356 357 unsigned RuntimePointerChecking::getNumberOfChecks( 358 const SmallVectorImpl<int> *PtrPartition) const { 359 360 unsigned NumPartitions = CheckingGroups.size(); 361 unsigned CheckCount = 0; 362 363 for (unsigned I = 0; I < NumPartitions; ++I) 364 for (unsigned J = I + 1; J < NumPartitions; ++J) 365 if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition)) 366 CheckCount++; 367 return CheckCount; 368 } 369 370 bool RuntimePointerChecking::needsAnyChecking( 371 const SmallVectorImpl<int> *PtrPartition) const { 372 unsigned NumPointers = Pointers.size(); 373 374 for (unsigned I = 0; I < NumPointers; ++I) 375 for (unsigned J = I + 1; J < NumPointers; ++J) 376 if (needsChecking(I, J, PtrPartition)) 377 return true; 378 return false; 379 } 380 381 namespace { 382 /// \brief Analyses memory accesses in a loop. 383 /// 384 /// Checks whether run time pointer checks are needed and builds sets for data 385 /// dependence checking. 386 class AccessAnalysis { 387 public: 388 /// \brief Read or write access location. 389 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 390 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 391 392 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 393 MemoryDepChecker::DepCandidates &DA) 394 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), 395 IsRTCheckAnalysisNeeded(false) {} 396 397 /// \brief Register a load and whether it is only read from. 398 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 399 Value *Ptr = const_cast<Value*>(Loc.Ptr); 400 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 401 Accesses.insert(MemAccessInfo(Ptr, false)); 402 if (IsReadOnly) 403 ReadOnlyPtr.insert(Ptr); 404 } 405 406 /// \brief Register a store. 407 void addStore(MemoryLocation &Loc) { 408 Value *Ptr = const_cast<Value*>(Loc.Ptr); 409 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 410 Accesses.insert(MemAccessInfo(Ptr, true)); 411 } 412 413 /// \brief Check whether we can check the pointers at runtime for 414 /// non-intersection. 415 /// 416 /// Returns true if we need no check or if we do and we can generate them 417 /// (i.e. the pointers have computable bounds). 418 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 419 Loop *TheLoop, const ValueToValueMap &Strides, 420 bool ShouldCheckStride = false); 421 422 /// \brief Goes over all memory accesses, checks whether a RT check is needed 423 /// and builds sets of dependent accesses. 424 void buildDependenceSets() { 425 processMemAccesses(); 426 } 427 428 /// \brief Initial processing of memory accesses determined that we need to 429 /// perform dependency checking. 430 /// 431 /// Note that this can later be cleared if we retry memcheck analysis without 432 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 433 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 434 435 /// We decided that no dependence analysis would be used. Reset the state. 436 void resetDepChecks(MemoryDepChecker &DepChecker) { 437 CheckDeps.clear(); 438 DepChecker.clearInterestingDependences(); 439 } 440 441 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 442 443 private: 444 typedef SetVector<MemAccessInfo> PtrAccessSet; 445 446 /// \brief Go over all memory access and check whether runtime pointer checks 447 /// are needed and build sets of dependency check candidates. 448 void processMemAccesses(); 449 450 /// Set of all accesses. 451 PtrAccessSet Accesses; 452 453 const DataLayout &DL; 454 455 /// Set of accesses that need a further dependence check. 456 MemAccessInfoSet CheckDeps; 457 458 /// Set of pointers that are read only. 459 SmallPtrSet<Value*, 16> ReadOnlyPtr; 460 461 /// An alias set tracker to partition the access set by underlying object and 462 //intrinsic property (such as TBAA metadata). 463 AliasSetTracker AST; 464 465 LoopInfo *LI; 466 467 /// Sets of potentially dependent accesses - members of one set share an 468 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 469 /// dependence check. 470 MemoryDepChecker::DepCandidates &DepCands; 471 472 /// \brief Initial processing of memory accesses determined that we may need 473 /// to add memchecks. Perform the analysis to determine the necessary checks. 474 /// 475 /// Note that, this is different from isDependencyCheckNeeded. When we retry 476 /// memcheck analysis without dependency checking 477 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 478 /// while this remains set if we have potentially dependent accesses. 479 bool IsRTCheckAnalysisNeeded; 480 }; 481 482 } // end anonymous namespace 483 484 /// \brief Check whether a pointer can participate in a runtime bounds check. 485 static bool hasComputableBounds(ScalarEvolution *SE, 486 const ValueToValueMap &Strides, Value *Ptr) { 487 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 488 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 489 if (!AR) 490 return false; 491 492 return AR->isAffine(); 493 } 494 495 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 496 ScalarEvolution *SE, Loop *TheLoop, 497 const ValueToValueMap &StridesMap, 498 bool ShouldCheckStride) { 499 // Find pointers with computable bounds. We are going to use this information 500 // to place a runtime bound check. 501 bool CanDoRT = true; 502 503 bool NeedRTCheck = false; 504 if (!IsRTCheckAnalysisNeeded) return true; 505 506 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 507 508 // We assign a consecutive id to access from different alias sets. 509 // Accesses between different groups doesn't need to be checked. 510 unsigned ASId = 1; 511 for (auto &AS : AST) { 512 int NumReadPtrChecks = 0; 513 int NumWritePtrChecks = 0; 514 515 // We assign consecutive id to access from different dependence sets. 516 // Accesses within the same set don't need a runtime check. 517 unsigned RunningDepId = 1; 518 DenseMap<Value *, unsigned> DepSetId; 519 520 for (auto A : AS) { 521 Value *Ptr = A.getValue(); 522 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 523 MemAccessInfo Access(Ptr, IsWrite); 524 525 if (IsWrite) 526 ++NumWritePtrChecks; 527 else 528 ++NumReadPtrChecks; 529 530 if (hasComputableBounds(SE, StridesMap, Ptr) && 531 // When we run after a failing dependency check we have to make sure 532 // we don't have wrapping pointers. 533 (!ShouldCheckStride || 534 isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) { 535 // The id of the dependence set. 536 unsigned DepId; 537 538 if (IsDepCheckNeeded) { 539 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 540 unsigned &LeaderId = DepSetId[Leader]; 541 if (!LeaderId) 542 LeaderId = RunningDepId++; 543 DepId = LeaderId; 544 } else 545 // Each access has its own dependence set. 546 DepId = RunningDepId++; 547 548 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 549 550 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 551 } else { 552 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 553 CanDoRT = false; 554 } 555 } 556 557 // If we have at least two writes or one write and a read then we need to 558 // check them. But there is no need to checks if there is only one 559 // dependence set for this alias set. 560 // 561 // Note that this function computes CanDoRT and NeedRTCheck independently. 562 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 563 // for which we couldn't find the bounds but we don't actually need to emit 564 // any checks so it does not matter. 565 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 566 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 567 NumWritePtrChecks >= 1)); 568 569 ++ASId; 570 } 571 572 // If the pointers that we would use for the bounds comparison have different 573 // address spaces, assume the values aren't directly comparable, so we can't 574 // use them for the runtime check. We also have to assume they could 575 // overlap. In the future there should be metadata for whether address spaces 576 // are disjoint. 577 unsigned NumPointers = RtCheck.Pointers.size(); 578 for (unsigned i = 0; i < NumPointers; ++i) { 579 for (unsigned j = i + 1; j < NumPointers; ++j) { 580 // Only need to check pointers between two different dependency sets. 581 if (RtCheck.Pointers[i].DependencySetId == 582 RtCheck.Pointers[j].DependencySetId) 583 continue; 584 // Only need to check pointers in the same alias set. 585 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 586 continue; 587 588 Value *PtrI = RtCheck.Pointers[i].PointerValue; 589 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 590 591 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 592 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 593 if (ASi != ASj) { 594 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 595 " different address spaces\n"); 596 return false; 597 } 598 } 599 } 600 601 if (NeedRTCheck && CanDoRT) 602 RtCheck.groupChecks(DepCands, IsDepCheckNeeded); 603 604 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks(nullptr) 605 << " pointer comparisons.\n"); 606 607 RtCheck.Need = NeedRTCheck; 608 609 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 610 if (!CanDoRTIfNeeded) 611 RtCheck.reset(); 612 return CanDoRTIfNeeded; 613 } 614 615 void AccessAnalysis::processMemAccesses() { 616 // We process the set twice: first we process read-write pointers, last we 617 // process read-only pointers. This allows us to skip dependence tests for 618 // read-only pointers. 619 620 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 621 DEBUG(dbgs() << " AST: "; AST.dump()); 622 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 623 DEBUG({ 624 for (auto A : Accesses) 625 dbgs() << "\t" << *A.getPointer() << " (" << 626 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 627 "read-only" : "read")) << ")\n"; 628 }); 629 630 // The AliasSetTracker has nicely partitioned our pointers by metadata 631 // compatibility and potential for underlying-object overlap. As a result, we 632 // only need to check for potential pointer dependencies within each alias 633 // set. 634 for (auto &AS : AST) { 635 // Note that both the alias-set tracker and the alias sets themselves used 636 // linked lists internally and so the iteration order here is deterministic 637 // (matching the original instruction order within each set). 638 639 bool SetHasWrite = false; 640 641 // Map of pointers to last access encountered. 642 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 643 UnderlyingObjToAccessMap ObjToLastAccess; 644 645 // Set of access to check after all writes have been processed. 646 PtrAccessSet DeferredAccesses; 647 648 // Iterate over each alias set twice, once to process read/write pointers, 649 // and then to process read-only pointers. 650 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 651 bool UseDeferred = SetIteration > 0; 652 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 653 654 for (auto AV : AS) { 655 Value *Ptr = AV.getValue(); 656 657 // For a single memory access in AliasSetTracker, Accesses may contain 658 // both read and write, and they both need to be handled for CheckDeps. 659 for (auto AC : S) { 660 if (AC.getPointer() != Ptr) 661 continue; 662 663 bool IsWrite = AC.getInt(); 664 665 // If we're using the deferred access set, then it contains only 666 // reads. 667 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 668 if (UseDeferred && !IsReadOnlyPtr) 669 continue; 670 // Otherwise, the pointer must be in the PtrAccessSet, either as a 671 // read or a write. 672 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 673 S.count(MemAccessInfo(Ptr, false))) && 674 "Alias-set pointer not in the access set?"); 675 676 MemAccessInfo Access(Ptr, IsWrite); 677 DepCands.insert(Access); 678 679 // Memorize read-only pointers for later processing and skip them in 680 // the first round (they need to be checked after we have seen all 681 // write pointers). Note: we also mark pointer that are not 682 // consecutive as "read-only" pointers (so that we check 683 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 684 if (!UseDeferred && IsReadOnlyPtr) { 685 DeferredAccesses.insert(Access); 686 continue; 687 } 688 689 // If this is a write - check other reads and writes for conflicts. If 690 // this is a read only check other writes for conflicts (but only if 691 // there is no other write to the ptr - this is an optimization to 692 // catch "a[i] = a[i] + " without having to do a dependence check). 693 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 694 CheckDeps.insert(Access); 695 IsRTCheckAnalysisNeeded = true; 696 } 697 698 if (IsWrite) 699 SetHasWrite = true; 700 701 // Create sets of pointers connected by a shared alias set and 702 // underlying object. 703 typedef SmallVector<Value *, 16> ValueVector; 704 ValueVector TempObjects; 705 706 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 707 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 708 for (Value *UnderlyingObj : TempObjects) { 709 UnderlyingObjToAccessMap::iterator Prev = 710 ObjToLastAccess.find(UnderlyingObj); 711 if (Prev != ObjToLastAccess.end()) 712 DepCands.unionSets(Access, Prev->second); 713 714 ObjToLastAccess[UnderlyingObj] = Access; 715 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 716 } 717 } 718 } 719 } 720 } 721 } 722 723 static bool isInBoundsGep(Value *Ptr) { 724 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 725 return GEP->isInBounds(); 726 return false; 727 } 728 729 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 730 /// i.e. monotonically increasing/decreasing. 731 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 732 ScalarEvolution *SE, const Loop *L) { 733 // FIXME: This should probably only return true for NUW. 734 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 735 return true; 736 737 // Scalar evolution does not propagate the non-wrapping flags to values that 738 // are derived from a non-wrapping induction variable because non-wrapping 739 // could be flow-sensitive. 740 // 741 // Look through the potentially overflowing instruction to try to prove 742 // non-wrapping for the *specific* value of Ptr. 743 744 // The arithmetic implied by an inbounds GEP can't overflow. 745 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 746 if (!GEP || !GEP->isInBounds()) 747 return false; 748 749 // Make sure there is only one non-const index and analyze that. 750 Value *NonConstIndex = nullptr; 751 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 752 if (!isa<ConstantInt>(*Index)) { 753 if (NonConstIndex) 754 return false; 755 NonConstIndex = *Index; 756 } 757 if (!NonConstIndex) 758 // The recurrence is on the pointer, ignore for now. 759 return false; 760 761 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 762 // AddRec using a NSW operation. 763 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 764 if (OBO->hasNoSignedWrap() && 765 // Assume constant for other the operand so that the AddRec can be 766 // easily found. 767 isa<ConstantInt>(OBO->getOperand(1))) { 768 auto *OpScev = SE->getSCEV(OBO->getOperand(0)); 769 770 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 771 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 772 } 773 774 return false; 775 } 776 777 /// \brief Check whether the access through \p Ptr has a constant stride. 778 int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, 779 const ValueToValueMap &StridesMap) { 780 const Type *Ty = Ptr->getType(); 781 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 782 783 // Make sure that the pointer does not point to aggregate types. 784 const PointerType *PtrTy = cast<PointerType>(Ty); 785 if (PtrTy->getElementType()->isAggregateType()) { 786 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 787 << *Ptr << "\n"); 788 return 0; 789 } 790 791 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 792 793 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 794 if (!AR) { 795 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " 796 << *Ptr << " SCEV: " << *PtrScev << "\n"); 797 return 0; 798 } 799 800 // The accesss function must stride over the innermost loop. 801 if (Lp != AR->getLoop()) { 802 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 803 *Ptr << " SCEV: " << *PtrScev << "\n"); 804 } 805 806 // The address calculation must not wrap. Otherwise, a dependence could be 807 // inverted. 808 // An inbounds getelementptr that is a AddRec with a unit stride 809 // cannot wrap per definition. The unit stride requirement is checked later. 810 // An getelementptr without an inbounds attribute and unit stride would have 811 // to access the pointer value "0" which is undefined behavior in address 812 // space 0, therefore we can also vectorize this case. 813 bool IsInBoundsGEP = isInBoundsGep(Ptr); 814 bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp); 815 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 816 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 817 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 818 << *Ptr << " SCEV: " << *PtrScev << "\n"); 819 return 0; 820 } 821 822 // Check the step is constant. 823 const SCEV *Step = AR->getStepRecurrence(*SE); 824 825 // Calculate the pointer stride and check if it is constant. 826 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 827 if (!C) { 828 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 829 " SCEV: " << *PtrScev << "\n"); 830 return 0; 831 } 832 833 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 834 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 835 const APInt &APStepVal = C->getValue()->getValue(); 836 837 // Huge step value - give up. 838 if (APStepVal.getBitWidth() > 64) 839 return 0; 840 841 int64_t StepVal = APStepVal.getSExtValue(); 842 843 // Strided access. 844 int64_t Stride = StepVal / Size; 845 int64_t Rem = StepVal % Size; 846 if (Rem) 847 return 0; 848 849 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 850 // know we can't "wrap around the address space". In case of address space 851 // zero we know that this won't happen without triggering undefined behavior. 852 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 853 Stride != 1 && Stride != -1) 854 return 0; 855 856 return Stride; 857 } 858 859 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 860 switch (Type) { 861 case NoDep: 862 case Forward: 863 case BackwardVectorizable: 864 return true; 865 866 case Unknown: 867 case ForwardButPreventsForwarding: 868 case Backward: 869 case BackwardVectorizableButPreventsForwarding: 870 return false; 871 } 872 llvm_unreachable("unexpected DepType!"); 873 } 874 875 bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) { 876 switch (Type) { 877 case NoDep: 878 case Forward: 879 return false; 880 881 case BackwardVectorizable: 882 case Unknown: 883 case ForwardButPreventsForwarding: 884 case Backward: 885 case BackwardVectorizableButPreventsForwarding: 886 return true; 887 } 888 llvm_unreachable("unexpected DepType!"); 889 } 890 891 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 892 switch (Type) { 893 case NoDep: 894 case Forward: 895 case ForwardButPreventsForwarding: 896 return false; 897 898 case Unknown: 899 case BackwardVectorizable: 900 case Backward: 901 case BackwardVectorizableButPreventsForwarding: 902 return true; 903 } 904 llvm_unreachable("unexpected DepType!"); 905 } 906 907 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 908 unsigned TypeByteSize) { 909 // If loads occur at a distance that is not a multiple of a feasible vector 910 // factor store-load forwarding does not take place. 911 // Positive dependences might cause troubles because vectorizing them might 912 // prevent store-load forwarding making vectorized code run a lot slower. 913 // a[i] = a[i-3] ^ a[i-8]; 914 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 915 // hence on your typical architecture store-load forwarding does not take 916 // place. Vectorizing in such cases does not make sense. 917 // Store-load forwarding distance. 918 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 919 // Maximum vector factor. 920 unsigned MaxVFWithoutSLForwardIssues = 921 VectorizerParams::MaxVectorWidth * TypeByteSize; 922 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 923 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 924 925 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 926 vf *= 2) { 927 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 928 MaxVFWithoutSLForwardIssues = (vf >>=1); 929 break; 930 } 931 } 932 933 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 934 DEBUG(dbgs() << "LAA: Distance " << Distance << 935 " that could cause a store-load forwarding conflict\n"); 936 return true; 937 } 938 939 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 940 MaxVFWithoutSLForwardIssues != 941 VectorizerParams::MaxVectorWidth * TypeByteSize) 942 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 943 return false; 944 } 945 946 /// \brief Check the dependence for two accesses with the same stride \p Stride. 947 /// \p Distance is the positive distance and \p TypeByteSize is type size in 948 /// bytes. 949 /// 950 /// \returns true if they are independent. 951 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride, 952 unsigned TypeByteSize) { 953 assert(Stride > 1 && "The stride must be greater than 1"); 954 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 955 assert(Distance > 0 && "The distance must be non-zero"); 956 957 // Skip if the distance is not multiple of type byte size. 958 if (Distance % TypeByteSize) 959 return false; 960 961 unsigned ScaledDist = Distance / TypeByteSize; 962 963 // No dependence if the scaled distance is not multiple of the stride. 964 // E.g. 965 // for (i = 0; i < 1024 ; i += 4) 966 // A[i+2] = A[i] + 1; 967 // 968 // Two accesses in memory (scaled distance is 2, stride is 4): 969 // | A[0] | | | | A[4] | | | | 970 // | | | A[2] | | | | A[6] | | 971 // 972 // E.g. 973 // for (i = 0; i < 1024 ; i += 3) 974 // A[i+4] = A[i] + 1; 975 // 976 // Two accesses in memory (scaled distance is 4, stride is 3): 977 // | A[0] | | | A[3] | | | A[6] | | | 978 // | | | | | A[4] | | | A[7] | | 979 return ScaledDist % Stride; 980 } 981 982 MemoryDepChecker::Dependence::DepType 983 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 984 const MemAccessInfo &B, unsigned BIdx, 985 const ValueToValueMap &Strides) { 986 assert (AIdx < BIdx && "Must pass arguments in program order"); 987 988 Value *APtr = A.getPointer(); 989 Value *BPtr = B.getPointer(); 990 bool AIsWrite = A.getInt(); 991 bool BIsWrite = B.getInt(); 992 993 // Two reads are independent. 994 if (!AIsWrite && !BIsWrite) 995 return Dependence::NoDep; 996 997 // We cannot check pointers in different address spaces. 998 if (APtr->getType()->getPointerAddressSpace() != 999 BPtr->getType()->getPointerAddressSpace()) 1000 return Dependence::Unknown; 1001 1002 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 1003 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 1004 1005 int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides); 1006 int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides); 1007 1008 const SCEV *Src = AScev; 1009 const SCEV *Sink = BScev; 1010 1011 // If the induction step is negative we have to invert source and sink of the 1012 // dependence. 1013 if (StrideAPtr < 0) { 1014 //Src = BScev; 1015 //Sink = AScev; 1016 std::swap(APtr, BPtr); 1017 std::swap(Src, Sink); 1018 std::swap(AIsWrite, BIsWrite); 1019 std::swap(AIdx, BIdx); 1020 std::swap(StrideAPtr, StrideBPtr); 1021 } 1022 1023 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 1024 1025 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1026 << "(Induction step: " << StrideAPtr << ")\n"); 1027 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1028 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1029 1030 // Need accesses with constant stride. We don't want to vectorize 1031 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1032 // the address space. 1033 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1034 DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1035 return Dependence::Unknown; 1036 } 1037 1038 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1039 if (!C) { 1040 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1041 ShouldRetryWithRuntimeCheck = true; 1042 return Dependence::Unknown; 1043 } 1044 1045 Type *ATy = APtr->getType()->getPointerElementType(); 1046 Type *BTy = BPtr->getType()->getPointerElementType(); 1047 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1048 unsigned TypeByteSize = DL.getTypeAllocSize(ATy); 1049 1050 // Negative distances are not plausible dependencies. 1051 const APInt &Val = C->getValue()->getValue(); 1052 if (Val.isNegative()) { 1053 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1054 if (IsTrueDataDependence && 1055 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1056 ATy != BTy)) 1057 return Dependence::ForwardButPreventsForwarding; 1058 1059 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); 1060 return Dependence::Forward; 1061 } 1062 1063 // Write to the same location with the same size. 1064 // Could be improved to assert type sizes are the same (i32 == float, etc). 1065 if (Val == 0) { 1066 if (ATy == BTy) 1067 return Dependence::NoDep; 1068 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 1069 return Dependence::Unknown; 1070 } 1071 1072 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1073 1074 if (ATy != BTy) { 1075 DEBUG(dbgs() << 1076 "LAA: ReadWrite-Write positive dependency with different types\n"); 1077 return Dependence::Unknown; 1078 } 1079 1080 unsigned Distance = (unsigned) Val.getZExtValue(); 1081 1082 unsigned Stride = std::abs(StrideAPtr); 1083 if (Stride > 1 && 1084 areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) { 1085 DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1086 return Dependence::NoDep; 1087 } 1088 1089 // Bail out early if passed-in parameters make vectorization not feasible. 1090 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1091 VectorizerParams::VectorizationFactor : 1); 1092 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1093 VectorizerParams::VectorizationInterleave : 1); 1094 // The minimum number of iterations for a vectorized/unrolled version. 1095 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1096 1097 // It's not vectorizable if the distance is smaller than the minimum distance 1098 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1099 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1100 // TypeByteSize (No need to plus the last gap distance). 1101 // 1102 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1103 // foo(int *A) { 1104 // int *B = (int *)((char *)A + 14); 1105 // for (i = 0 ; i < 1024 ; i += 2) 1106 // B[i] = A[i] + 1; 1107 // } 1108 // 1109 // Two accesses in memory (stride is 2): 1110 // | A[0] | | A[2] | | A[4] | | A[6] | | 1111 // | B[0] | | B[2] | | B[4] | 1112 // 1113 // Distance needs for vectorizing iterations except the last iteration: 1114 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1115 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1116 // 1117 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1118 // 12, which is less than distance. 1119 // 1120 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1121 // the minimum distance needed is 28, which is greater than distance. It is 1122 // not safe to do vectorization. 1123 unsigned MinDistanceNeeded = 1124 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1125 if (MinDistanceNeeded > Distance) { 1126 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1127 << '\n'); 1128 return Dependence::Backward; 1129 } 1130 1131 // Unsafe if the minimum distance needed is greater than max safe distance. 1132 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1133 DEBUG(dbgs() << "LAA: Failure because it needs at least " 1134 << MinDistanceNeeded << " size in bytes"); 1135 return Dependence::Backward; 1136 } 1137 1138 // Positive distance bigger than max vectorization factor. 1139 // FIXME: Should use max factor instead of max distance in bytes, which could 1140 // not handle different types. 1141 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1142 // void foo (int *A, char *B) { 1143 // for (unsigned i = 0; i < 1024; i++) { 1144 // A[i+2] = A[i] + 1; 1145 // B[i+2] = B[i] + 1; 1146 // } 1147 // } 1148 // 1149 // This case is currently unsafe according to the max safe distance. If we 1150 // analyze the two accesses on array B, the max safe dependence distance 1151 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1152 // is 8, which is less than 2 and forbidden vectorization, But actually 1153 // both A and B could be vectorized by 2 iterations. 1154 MaxSafeDepDistBytes = 1155 Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes; 1156 1157 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1158 if (IsTrueDataDependence && 1159 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1160 return Dependence::BackwardVectorizableButPreventsForwarding; 1161 1162 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1163 << " with max VF = " 1164 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 1165 1166 return Dependence::BackwardVectorizable; 1167 } 1168 1169 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1170 MemAccessInfoSet &CheckDeps, 1171 const ValueToValueMap &Strides) { 1172 1173 MaxSafeDepDistBytes = -1U; 1174 while (!CheckDeps.empty()) { 1175 MemAccessInfo CurAccess = *CheckDeps.begin(); 1176 1177 // Get the relevant memory access set. 1178 EquivalenceClasses<MemAccessInfo>::iterator I = 1179 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1180 1181 // Check accesses within this set. 1182 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 1183 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 1184 1185 // Check every access pair. 1186 while (AI != AE) { 1187 CheckDeps.erase(*AI); 1188 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1189 while (OI != AE) { 1190 // Check every accessing instruction pair in program order. 1191 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1192 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1193 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1194 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1195 auto A = std::make_pair(&*AI, *I1); 1196 auto B = std::make_pair(&*OI, *I2); 1197 1198 assert(*I1 != *I2); 1199 if (*I1 > *I2) 1200 std::swap(A, B); 1201 1202 Dependence::DepType Type = 1203 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1204 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 1205 1206 // Gather dependences unless we accumulated MaxInterestingDependence 1207 // dependences. In that case return as soon as we find the first 1208 // unsafe dependence. This puts a limit on this quadratic 1209 // algorithm. 1210 if (RecordInterestingDependences) { 1211 if (Dependence::isInterestingDependence(Type)) 1212 InterestingDependences.push_back( 1213 Dependence(A.second, B.second, Type)); 1214 1215 if (InterestingDependences.size() >= MaxInterestingDependence) { 1216 RecordInterestingDependences = false; 1217 InterestingDependences.clear(); 1218 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 1219 } 1220 } 1221 if (!RecordInterestingDependences && !SafeForVectorization) 1222 return false; 1223 } 1224 ++OI; 1225 } 1226 AI++; 1227 } 1228 } 1229 1230 DEBUG(dbgs() << "Total Interesting Dependences: " 1231 << InterestingDependences.size() << "\n"); 1232 return SafeForVectorization; 1233 } 1234 1235 SmallVector<Instruction *, 4> 1236 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1237 MemAccessInfo Access(Ptr, isWrite); 1238 auto &IndexVector = Accesses.find(Access)->second; 1239 1240 SmallVector<Instruction *, 4> Insts; 1241 std::transform(IndexVector.begin(), IndexVector.end(), 1242 std::back_inserter(Insts), 1243 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1244 return Insts; 1245 } 1246 1247 const char *MemoryDepChecker::Dependence::DepName[] = { 1248 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1249 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1250 1251 void MemoryDepChecker::Dependence::print( 1252 raw_ostream &OS, unsigned Depth, 1253 const SmallVectorImpl<Instruction *> &Instrs) const { 1254 OS.indent(Depth) << DepName[Type] << ":\n"; 1255 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1256 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1257 } 1258 1259 bool LoopAccessInfo::canAnalyzeLoop() { 1260 // We need to have a loop header. 1261 DEBUG(dbgs() << "LAA: Found a loop: " << 1262 TheLoop->getHeader()->getName() << '\n'); 1263 1264 // We can only analyze innermost loops. 1265 if (!TheLoop->empty()) { 1266 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1267 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 1268 return false; 1269 } 1270 1271 // We must have a single backedge. 1272 if (TheLoop->getNumBackEdges() != 1) { 1273 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1274 emitAnalysis( 1275 LoopAccessReport() << 1276 "loop control flow is not understood by analyzer"); 1277 return false; 1278 } 1279 1280 // We must have a single exiting block. 1281 if (!TheLoop->getExitingBlock()) { 1282 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1283 emitAnalysis( 1284 LoopAccessReport() << 1285 "loop control flow is not understood by analyzer"); 1286 return false; 1287 } 1288 1289 // We only handle bottom-tested loops, i.e. loop in which the condition is 1290 // checked at the end of each iteration. With that we can assume that all 1291 // instructions in the loop are executed the same number of times. 1292 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1293 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1294 emitAnalysis( 1295 LoopAccessReport() << 1296 "loop control flow is not understood by analyzer"); 1297 return false; 1298 } 1299 1300 // ScalarEvolution needs to be able to find the exit count. 1301 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 1302 if (ExitCount == SE->getCouldNotCompute()) { 1303 emitAnalysis(LoopAccessReport() << 1304 "could not determine number of loop iterations"); 1305 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1306 return false; 1307 } 1308 1309 return true; 1310 } 1311 1312 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { 1313 1314 typedef SmallVector<Value*, 16> ValueVector; 1315 typedef SmallPtrSet<Value*, 16> ValueSet; 1316 1317 // Holds the Load and Store *instructions*. 1318 ValueVector Loads; 1319 ValueVector Stores; 1320 1321 // Holds all the different accesses in the loop. 1322 unsigned NumReads = 0; 1323 unsigned NumReadWrites = 0; 1324 1325 PtrRtChecking.Pointers.clear(); 1326 PtrRtChecking.Need = false; 1327 1328 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1329 1330 // For each block. 1331 for (Loop::block_iterator bb = TheLoop->block_begin(), 1332 be = TheLoop->block_end(); bb != be; ++bb) { 1333 1334 // Scan the BB and collect legal loads and stores. 1335 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 1336 ++it) { 1337 1338 // If this is a load, save it. If this instruction can read from memory 1339 // but is not a load, then we quit. Notice that we don't handle function 1340 // calls that read or write. 1341 if (it->mayReadFromMemory()) { 1342 // Many math library functions read the rounding mode. We will only 1343 // vectorize a loop if it contains known function calls that don't set 1344 // the flag. Therefore, it is safe to ignore this read from memory. 1345 CallInst *Call = dyn_cast<CallInst>(it); 1346 if (Call && getIntrinsicIDForCall(Call, TLI)) 1347 continue; 1348 1349 // If the function has an explicit vectorized counterpart, we can safely 1350 // assume that it can be vectorized. 1351 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1352 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1353 continue; 1354 1355 LoadInst *Ld = dyn_cast<LoadInst>(it); 1356 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1357 emitAnalysis(LoopAccessReport(Ld) 1358 << "read with atomic ordering or volatile read"); 1359 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1360 CanVecMem = false; 1361 return; 1362 } 1363 NumLoads++; 1364 Loads.push_back(Ld); 1365 DepChecker.addAccess(Ld); 1366 continue; 1367 } 1368 1369 // Save 'store' instructions. Abort if other instructions write to memory. 1370 if (it->mayWriteToMemory()) { 1371 StoreInst *St = dyn_cast<StoreInst>(it); 1372 if (!St) { 1373 emitAnalysis(LoopAccessReport(it) << 1374 "instruction cannot be vectorized"); 1375 CanVecMem = false; 1376 return; 1377 } 1378 if (!St->isSimple() && !IsAnnotatedParallel) { 1379 emitAnalysis(LoopAccessReport(St) 1380 << "write with atomic ordering or volatile write"); 1381 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1382 CanVecMem = false; 1383 return; 1384 } 1385 NumStores++; 1386 Stores.push_back(St); 1387 DepChecker.addAccess(St); 1388 } 1389 } // Next instr. 1390 } // Next block. 1391 1392 // Now we have two lists that hold the loads and the stores. 1393 // Next, we find the pointers that they use. 1394 1395 // Check if we see any stores. If there are no stores, then we don't 1396 // care if the pointers are *restrict*. 1397 if (!Stores.size()) { 1398 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1399 CanVecMem = true; 1400 return; 1401 } 1402 1403 MemoryDepChecker::DepCandidates DependentAccesses; 1404 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1405 AA, LI, DependentAccesses); 1406 1407 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1408 // multiple times on the same object. If the ptr is accessed twice, once 1409 // for read and once for write, it will only appear once (on the write 1410 // list). This is okay, since we are going to check for conflicts between 1411 // writes and between reads and writes, but not between reads and reads. 1412 ValueSet Seen; 1413 1414 ValueVector::iterator I, IE; 1415 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 1416 StoreInst *ST = cast<StoreInst>(*I); 1417 Value* Ptr = ST->getPointerOperand(); 1418 // Check for store to loop invariant address. 1419 StoreToLoopInvariantAddress |= isUniform(Ptr); 1420 // If we did *not* see this pointer before, insert it to the read-write 1421 // list. At this phase it is only a 'write' list. 1422 if (Seen.insert(Ptr).second) { 1423 ++NumReadWrites; 1424 1425 MemoryLocation Loc = MemoryLocation::get(ST); 1426 // The TBAA metadata could have a control dependency on the predication 1427 // condition, so we cannot rely on it when determining whether or not we 1428 // need runtime pointer checks. 1429 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1430 Loc.AATags.TBAA = nullptr; 1431 1432 Accesses.addStore(Loc); 1433 } 1434 } 1435 1436 if (IsAnnotatedParallel) { 1437 DEBUG(dbgs() 1438 << "LAA: A loop annotated parallel, ignore memory dependency " 1439 << "checks.\n"); 1440 CanVecMem = true; 1441 return; 1442 } 1443 1444 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 1445 LoadInst *LD = cast<LoadInst>(*I); 1446 Value* Ptr = LD->getPointerOperand(); 1447 // If we did *not* see this pointer before, insert it to the 1448 // read list. If we *did* see it before, then it is already in 1449 // the read-write list. This allows us to vectorize expressions 1450 // such as A[i] += x; Because the address of A[i] is a read-write 1451 // pointer. This only works if the index of A[i] is consecutive. 1452 // If the address of i is unknown (for example A[B[i]]) then we may 1453 // read a few words, modify, and write a few words, and some of the 1454 // words may be written to the same address. 1455 bool IsReadOnlyPtr = false; 1456 if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) { 1457 ++NumReads; 1458 IsReadOnlyPtr = true; 1459 } 1460 1461 MemoryLocation Loc = MemoryLocation::get(LD); 1462 // The TBAA metadata could have a control dependency on the predication 1463 // condition, so we cannot rely on it when determining whether or not we 1464 // need runtime pointer checks. 1465 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1466 Loc.AATags.TBAA = nullptr; 1467 1468 Accesses.addLoad(Loc, IsReadOnlyPtr); 1469 } 1470 1471 // If we write (or read-write) to a single destination and there are no 1472 // other reads in this loop then is it safe to vectorize. 1473 if (NumReadWrites == 1 && NumReads == 0) { 1474 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1475 CanVecMem = true; 1476 return; 1477 } 1478 1479 // Build dependence sets and check whether we need a runtime pointer bounds 1480 // check. 1481 Accesses.buildDependenceSets(); 1482 1483 // Find pointers with computable bounds. We are going to use this information 1484 // to place a runtime bound check. 1485 bool CanDoRTIfNeeded = 1486 Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides); 1487 if (!CanDoRTIfNeeded) { 1488 emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1489 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1490 << "the array bounds.\n"); 1491 CanVecMem = false; 1492 return; 1493 } 1494 1495 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1496 1497 CanVecMem = true; 1498 if (Accesses.isDependencyCheckNeeded()) { 1499 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1500 CanVecMem = DepChecker.areDepsSafe( 1501 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 1502 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 1503 1504 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1505 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1506 1507 // Clear the dependency checks. We assume they are not needed. 1508 Accesses.resetDepChecks(DepChecker); 1509 1510 PtrRtChecking.reset(); 1511 PtrRtChecking.Need = true; 1512 1513 CanDoRTIfNeeded = 1514 Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true); 1515 1516 // Check that we found the bounds for the pointer. 1517 if (!CanDoRTIfNeeded) { 1518 emitAnalysis(LoopAccessReport() 1519 << "cannot check memory dependencies at runtime"); 1520 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1521 CanVecMem = false; 1522 return; 1523 } 1524 1525 CanVecMem = true; 1526 } 1527 } 1528 1529 if (CanVecMem) 1530 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1531 << (PtrRtChecking.Need ? "" : " don't") 1532 << " need runtime memory checks.\n"); 1533 else { 1534 emitAnalysis(LoopAccessReport() << 1535 "unsafe dependent memory operations in loop"); 1536 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1537 } 1538 } 1539 1540 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1541 DominatorTree *DT) { 1542 assert(TheLoop->contains(BB) && "Unknown block used"); 1543 1544 // Blocks that do not dominate the latch need predication. 1545 BasicBlock* Latch = TheLoop->getLoopLatch(); 1546 return !DT->dominates(BB, Latch); 1547 } 1548 1549 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1550 assert(!Report && "Multiple reports generated"); 1551 Report = Message; 1552 } 1553 1554 bool LoopAccessInfo::isUniform(Value *V) const { 1555 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1556 } 1557 1558 // FIXME: this function is currently a duplicate of the one in 1559 // LoopVectorize.cpp. 1560 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1561 Instruction *Loc) { 1562 if (FirstInst) 1563 return FirstInst; 1564 if (Instruction *I = dyn_cast<Instruction>(V)) 1565 return I->getParent() == Loc->getParent() ? I : nullptr; 1566 return nullptr; 1567 } 1568 1569 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck( 1570 Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const { 1571 if (!PtrRtChecking.Need) 1572 return std::make_pair(nullptr, nullptr); 1573 1574 SmallVector<TrackingVH<Value>, 2> Starts; 1575 SmallVector<TrackingVH<Value>, 2> Ends; 1576 1577 LLVMContext &Ctx = Loc->getContext(); 1578 SCEVExpander Exp(*SE, DL, "induction"); 1579 Instruction *FirstInst = nullptr; 1580 1581 for (unsigned i = 0; i < PtrRtChecking.CheckingGroups.size(); ++i) { 1582 const RuntimePointerChecking::CheckingPtrGroup &CG = 1583 PtrRtChecking.CheckingGroups[i]; 1584 Value *Ptr = PtrRtChecking.Pointers[CG.Members[0]].PointerValue; 1585 const SCEV *Sc = SE->getSCEV(Ptr); 1586 1587 if (SE->isLoopInvariant(Sc, TheLoop)) { 1588 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 1589 << "\n"); 1590 Starts.push_back(Ptr); 1591 Ends.push_back(Ptr); 1592 } else { 1593 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1594 1595 // Use this type for pointer arithmetic. 1596 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1597 Value *Start = nullptr, *End = nullptr; 1598 1599 DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1600 Start = Exp.expandCodeFor(CG.Low, PtrArithTy, Loc); 1601 End = Exp.expandCodeFor(CG.High, PtrArithTy, Loc); 1602 DEBUG(dbgs() << "Start: " << *CG.Low << " End: " << *CG.High << "\n"); 1603 Starts.push_back(Start); 1604 Ends.push_back(End); 1605 } 1606 } 1607 1608 IRBuilder<> ChkBuilder(Loc); 1609 // Our instructions might fold to a constant. 1610 Value *MemoryRuntimeCheck = nullptr; 1611 for (unsigned i = 0; i < PtrRtChecking.CheckingGroups.size(); ++i) { 1612 for (unsigned j = i + 1; j < PtrRtChecking.CheckingGroups.size(); ++j) { 1613 const RuntimePointerChecking::CheckingPtrGroup &CGI = 1614 PtrRtChecking.CheckingGroups[i]; 1615 const RuntimePointerChecking::CheckingPtrGroup &CGJ = 1616 PtrRtChecking.CheckingGroups[j]; 1617 1618 if (!PtrRtChecking.needsChecking(CGI, CGJ, PtrPartition)) 1619 continue; 1620 1621 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1622 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1623 1624 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1625 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1626 "Trying to bounds check pointers with different address spaces"); 1627 1628 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1629 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1630 1631 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1632 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1633 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1634 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1635 1636 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1637 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1638 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1639 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1640 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1641 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1642 if (MemoryRuntimeCheck) { 1643 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1644 "conflict.rdx"); 1645 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1646 } 1647 MemoryRuntimeCheck = IsConflict; 1648 } 1649 } 1650 1651 if (!MemoryRuntimeCheck) 1652 return std::make_pair(nullptr, nullptr); 1653 1654 // We have to do this trickery because the IRBuilder might fold the check to a 1655 // constant expression in which case there is no Instruction anchored in a 1656 // the block. 1657 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1658 ConstantInt::getTrue(Ctx)); 1659 ChkBuilder.Insert(Check, "memcheck.conflict"); 1660 FirstInst = getFirstInst(FirstInst, Check, Loc); 1661 return std::make_pair(FirstInst, Check); 1662 } 1663 1664 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1665 const DataLayout &DL, 1666 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1667 DominatorTree *DT, LoopInfo *LI, 1668 const ValueToValueMap &Strides) 1669 : PtrRtChecking(SE), DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL), 1670 TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), 1671 MaxSafeDepDistBytes(-1U), CanVecMem(false), 1672 StoreToLoopInvariantAddress(false) { 1673 if (canAnalyzeLoop()) 1674 analyzeLoop(Strides); 1675 } 1676 1677 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1678 if (CanVecMem) { 1679 if (PtrRtChecking.Need) 1680 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; 1681 else 1682 OS.indent(Depth) << "Memory dependences are safe\n"; 1683 } 1684 1685 if (Report) 1686 OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1687 1688 if (auto *InterestingDependences = DepChecker.getInterestingDependences()) { 1689 OS.indent(Depth) << "Interesting Dependences:\n"; 1690 for (auto &Dep : *InterestingDependences) { 1691 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); 1692 OS << "\n"; 1693 } 1694 } else 1695 OS.indent(Depth) << "Too many interesting dependences, not recorded\n"; 1696 1697 // List the pair of accesses need run-time checks to prove independence. 1698 PtrRtChecking.print(OS, Depth); 1699 OS << "\n"; 1700 1701 OS.indent(Depth) << "Store to invariant address was " 1702 << (StoreToLoopInvariantAddress ? "" : "not ") 1703 << "found in loop.\n"; 1704 } 1705 1706 const LoopAccessInfo & 1707 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { 1708 auto &LAI = LoopAccessInfoMap[L]; 1709 1710 #ifndef NDEBUG 1711 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && 1712 "Symbolic strides changed for loop"); 1713 #endif 1714 1715 if (!LAI) { 1716 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1717 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, 1718 Strides); 1719 #ifndef NDEBUG 1720 LAI->NumSymbolicStrides = Strides.size(); 1721 #endif 1722 } 1723 return *LAI.get(); 1724 } 1725 1726 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { 1727 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); 1728 1729 ValueToValueMap NoSymbolicStrides; 1730 1731 for (Loop *TopLevelLoop : *LI) 1732 for (Loop *L : depth_first(TopLevelLoop)) { 1733 OS.indent(2) << L->getHeader()->getName() << ":\n"; 1734 auto &LAI = LAA.getInfo(L, NoSymbolicStrides); 1735 LAI.print(OS, 4); 1736 } 1737 } 1738 1739 bool LoopAccessAnalysis::runOnFunction(Function &F) { 1740 SE = &getAnalysis<ScalarEvolution>(); 1741 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1742 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1743 AA = &getAnalysis<AliasAnalysis>(); 1744 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1745 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1746 1747 return false; 1748 } 1749 1750 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1751 AU.addRequired<ScalarEvolution>(); 1752 AU.addRequired<AliasAnalysis>(); 1753 AU.addRequired<DominatorTreeWrapperPass>(); 1754 AU.addRequired<LoopInfoWrapperPass>(); 1755 1756 AU.setPreservesAll(); 1757 } 1758 1759 char LoopAccessAnalysis::ID = 0; 1760 static const char laa_name[] = "Loop Access Analysis"; 1761 #define LAA_NAME "loop-accesses" 1762 1763 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1764 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 1765 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 1766 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1767 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1768 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1769 1770 namespace llvm { 1771 Pass *createLAAPass() { 1772 return new LoopAccessAnalysis(); 1773 } 1774 } 1775