1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/LoopPassManager.h" 18 #include "llvm/Analysis/ScalarEvolutionExpander.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/Analysis/VectorUtils.h" 22 #include "llvm/IR/DiagnosticInfo.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PassManager.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "loop-accesses" 31 32 static cl::opt<unsigned, true> 33 VectorizationFactor("force-vector-width", cl::Hidden, 34 cl::desc("Sets the SIMD width. Zero is autoselect."), 35 cl::location(VectorizerParams::VectorizationFactor)); 36 unsigned VectorizerParams::VectorizationFactor; 37 38 static cl::opt<unsigned, true> 39 VectorizationInterleave("force-vector-interleave", cl::Hidden, 40 cl::desc("Sets the vectorization interleave count. " 41 "Zero is autoselect."), 42 cl::location( 43 VectorizerParams::VectorizationInterleave)); 44 unsigned VectorizerParams::VectorizationInterleave; 45 46 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 47 "runtime-memory-check-threshold", cl::Hidden, 48 cl::desc("When performing memory disambiguation checks at runtime do not " 49 "generate more than this number of comparisons (default = 8)."), 50 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 51 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 52 53 /// \brief The maximum iterations used to merge memory checks 54 static cl::opt<unsigned> MemoryCheckMergeThreshold( 55 "memory-check-merge-threshold", cl::Hidden, 56 cl::desc("Maximum number of comparisons done when trying to merge " 57 "runtime memory checks. (default = 100)"), 58 cl::init(100)); 59 60 /// Maximum SIMD width. 61 const unsigned VectorizerParams::MaxVectorWidth = 64; 62 63 /// \brief We collect dependences up to this threshold. 64 static cl::opt<unsigned> 65 MaxDependences("max-dependences", cl::Hidden, 66 cl::desc("Maximum number of dependences collected by " 67 "loop-access analysis (default = 100)"), 68 cl::init(100)); 69 70 /// This enables versioning on the strides of symbolically striding memory 71 /// accesses in code like the following. 72 /// for (i = 0; i < N; ++i) 73 /// A[i * Stride1] += B[i * Stride2] ... 74 /// 75 /// Will be roughly translated to 76 /// if (Stride1 == 1 && Stride2 == 1) { 77 /// for (i = 0; i < N; i+=4) 78 /// A[i:i+3] += ... 79 /// } else 80 /// ... 81 static cl::opt<bool> EnableMemAccessVersioning( 82 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 83 cl::desc("Enable symbolic stride memory access versioning")); 84 85 /// \brief Enable store-to-load forwarding conflict detection. This option can 86 /// be disabled for correctness testing. 87 static cl::opt<bool> EnableForwardingConflictDetection( 88 "store-to-load-forwarding-conflict-detection", cl::Hidden, 89 cl::desc("Enable conflict detection in loop-access analysis"), 90 cl::init(true)); 91 92 bool VectorizerParams::isInterleaveForced() { 93 return ::VectorizationInterleave.getNumOccurrences() > 0; 94 } 95 96 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 97 const Function *TheFunction, 98 const Loop *TheLoop, 99 const char *PassName) { 100 DebugLoc DL = TheLoop->getStartLoc(); 101 if (const Instruction *I = Message.getInstr()) 102 DL = I->getDebugLoc(); 103 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 104 *TheFunction, DL, Message.str()); 105 } 106 107 Value *llvm::stripIntegerCast(Value *V) { 108 if (auto *CI = dyn_cast<CastInst>(V)) 109 if (CI->getOperand(0)->getType()->isIntegerTy()) 110 return CI->getOperand(0); 111 return V; 112 } 113 114 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 115 const ValueToValueMap &PtrToStride, 116 Value *Ptr, Value *OrigPtr) { 117 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 118 119 // If there is an entry in the map return the SCEV of the pointer with the 120 // symbolic stride replaced by one. 121 ValueToValueMap::const_iterator SI = 122 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 123 if (SI != PtrToStride.end()) { 124 Value *StrideVal = SI->second; 125 126 // Strip casts. 127 StrideVal = stripIntegerCast(StrideVal); 128 129 // Replace symbolic stride by one. 130 Value *One = ConstantInt::get(StrideVal->getType(), 1); 131 ValueToValueMap RewriteMap; 132 RewriteMap[StrideVal] = One; 133 134 ScalarEvolution *SE = PSE.getSE(); 135 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 136 const auto *CT = 137 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 138 139 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 140 auto *Expr = PSE.getSCEV(Ptr); 141 142 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr 143 << "\n"); 144 return Expr; 145 } 146 147 // Otherwise, just return the SCEV of the original pointer. 148 return OrigSCEV; 149 } 150 151 /// Calculate Start and End points of memory access. 152 /// Let's assume A is the first access and B is a memory access on N-th loop 153 /// iteration. Then B is calculated as: 154 /// B = A + Step*N . 155 /// Step value may be positive or negative. 156 /// N is a calculated back-edge taken count: 157 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 158 /// Start and End points are calculated in the following way: 159 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 160 /// where SizeOfElt is the size of single memory access in bytes. 161 /// 162 /// There is no conflict when the intervals are disjoint: 163 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 164 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 165 unsigned DepSetId, unsigned ASId, 166 const ValueToValueMap &Strides, 167 PredicatedScalarEvolution &PSE) { 168 // Get the stride replaced scev. 169 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 170 ScalarEvolution *SE = PSE.getSE(); 171 172 const SCEV *ScStart; 173 const SCEV *ScEnd; 174 175 if (SE->isLoopInvariant(Sc, Lp)) 176 ScStart = ScEnd = Sc; 177 else { 178 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 179 assert(AR && "Invalid addrec expression"); 180 const SCEV *Ex = PSE.getBackedgeTakenCount(); 181 182 ScStart = AR->getStart(); 183 ScEnd = AR->evaluateAtIteration(Ex, *SE); 184 const SCEV *Step = AR->getStepRecurrence(*SE); 185 186 // For expressions with negative step, the upper bound is ScStart and the 187 // lower bound is ScEnd. 188 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 189 if (CStep->getValue()->isNegative()) 190 std::swap(ScStart, ScEnd); 191 } else { 192 // Fallback case: the step is not constant, but we can still 193 // get the upper and lower bounds of the interval by using min/max 194 // expressions. 195 ScStart = SE->getUMinExpr(ScStart, ScEnd); 196 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 197 } 198 // Add the size of the pointed element to ScEnd. 199 unsigned EltSize = 200 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 201 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 202 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 203 } 204 205 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 206 } 207 208 SmallVector<RuntimePointerChecking::PointerCheck, 4> 209 RuntimePointerChecking::generateChecks() const { 210 SmallVector<PointerCheck, 4> Checks; 211 212 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 213 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 214 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 215 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 216 217 if (needsChecking(CGI, CGJ)) 218 Checks.push_back(std::make_pair(&CGI, &CGJ)); 219 } 220 } 221 return Checks; 222 } 223 224 void RuntimePointerChecking::generateChecks( 225 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 226 assert(Checks.empty() && "Checks is not empty"); 227 groupChecks(DepCands, UseDependencies); 228 Checks = generateChecks(); 229 } 230 231 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 232 const CheckingPtrGroup &N) const { 233 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 234 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 235 if (needsChecking(M.Members[I], N.Members[J])) 236 return true; 237 return false; 238 } 239 240 /// Compare \p I and \p J and return the minimum. 241 /// Return nullptr in case we couldn't find an answer. 242 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 243 ScalarEvolution *SE) { 244 const SCEV *Diff = SE->getMinusSCEV(J, I); 245 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 246 247 if (!C) 248 return nullptr; 249 if (C->getValue()->isNegative()) 250 return J; 251 return I; 252 } 253 254 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 255 const SCEV *Start = RtCheck.Pointers[Index].Start; 256 const SCEV *End = RtCheck.Pointers[Index].End; 257 258 // Compare the starts and ends with the known minimum and maximum 259 // of this set. We need to know how we compare against the min/max 260 // of the set in order to be able to emit memchecks. 261 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 262 if (!Min0) 263 return false; 264 265 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 266 if (!Min1) 267 return false; 268 269 // Update the low bound expression if we've found a new min value. 270 if (Min0 == Start) 271 Low = Start; 272 273 // Update the high bound expression if we've found a new max value. 274 if (Min1 != End) 275 High = End; 276 277 Members.push_back(Index); 278 return true; 279 } 280 281 void RuntimePointerChecking::groupChecks( 282 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 283 // We build the groups from dependency candidates equivalence classes 284 // because: 285 // - We know that pointers in the same equivalence class share 286 // the same underlying object and therefore there is a chance 287 // that we can compare pointers 288 // - We wouldn't be able to merge two pointers for which we need 289 // to emit a memcheck. The classes in DepCands are already 290 // conveniently built such that no two pointers in the same 291 // class need checking against each other. 292 293 // We use the following (greedy) algorithm to construct the groups 294 // For every pointer in the equivalence class: 295 // For each existing group: 296 // - if the difference between this pointer and the min/max bounds 297 // of the group is a constant, then make the pointer part of the 298 // group and update the min/max bounds of that group as required. 299 300 CheckingGroups.clear(); 301 302 // If we need to check two pointers to the same underlying object 303 // with a non-constant difference, we shouldn't perform any pointer 304 // grouping with those pointers. This is because we can easily get 305 // into cases where the resulting check would return false, even when 306 // the accesses are safe. 307 // 308 // The following example shows this: 309 // for (i = 0; i < 1000; ++i) 310 // a[5000 + i * m] = a[i] + a[i + 9000] 311 // 312 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 313 // (0, 10000) which is always false. However, if m is 1, there is no 314 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 315 // us to perform an accurate check in this case. 316 // 317 // The above case requires that we have an UnknownDependence between 318 // accesses to the same underlying object. This cannot happen unless 319 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 320 // is also false. In this case we will use the fallback path and create 321 // separate checking groups for all pointers. 322 323 // If we don't have the dependency partitions, construct a new 324 // checking pointer group for each pointer. This is also required 325 // for correctness, because in this case we can have checking between 326 // pointers to the same underlying object. 327 if (!UseDependencies) { 328 for (unsigned I = 0; I < Pointers.size(); ++I) 329 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 330 return; 331 } 332 333 unsigned TotalComparisons = 0; 334 335 DenseMap<Value *, unsigned> PositionMap; 336 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 337 PositionMap[Pointers[Index].PointerValue] = Index; 338 339 // We need to keep track of what pointers we've already seen so we 340 // don't process them twice. 341 SmallSet<unsigned, 2> Seen; 342 343 // Go through all equivalence classes, get the "pointer check groups" 344 // and add them to the overall solution. We use the order in which accesses 345 // appear in 'Pointers' to enforce determinism. 346 for (unsigned I = 0; I < Pointers.size(); ++I) { 347 // We've seen this pointer before, and therefore already processed 348 // its equivalence class. 349 if (Seen.count(I)) 350 continue; 351 352 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 353 Pointers[I].IsWritePtr); 354 355 SmallVector<CheckingPtrGroup, 2> Groups; 356 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 357 358 // Because DepCands is constructed by visiting accesses in the order in 359 // which they appear in alias sets (which is deterministic) and the 360 // iteration order within an equivalence class member is only dependent on 361 // the order in which unions and insertions are performed on the 362 // equivalence class, the iteration order is deterministic. 363 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 364 MI != ME; ++MI) { 365 unsigned Pointer = PositionMap[MI->getPointer()]; 366 bool Merged = false; 367 // Mark this pointer as seen. 368 Seen.insert(Pointer); 369 370 // Go through all the existing sets and see if we can find one 371 // which can include this pointer. 372 for (CheckingPtrGroup &Group : Groups) { 373 // Don't perform more than a certain amount of comparisons. 374 // This should limit the cost of grouping the pointers to something 375 // reasonable. If we do end up hitting this threshold, the algorithm 376 // will create separate groups for all remaining pointers. 377 if (TotalComparisons > MemoryCheckMergeThreshold) 378 break; 379 380 TotalComparisons++; 381 382 if (Group.addPointer(Pointer)) { 383 Merged = true; 384 break; 385 } 386 } 387 388 if (!Merged) 389 // We couldn't add this pointer to any existing set or the threshold 390 // for the number of comparisons has been reached. Create a new group 391 // to hold the current pointer. 392 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 393 } 394 395 // We've computed the grouped checks for this partition. 396 // Save the results and continue with the next one. 397 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 398 } 399 } 400 401 bool RuntimePointerChecking::arePointersInSamePartition( 402 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 403 unsigned PtrIdx2) { 404 return (PtrToPartition[PtrIdx1] != -1 && 405 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 406 } 407 408 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 409 const PointerInfo &PointerI = Pointers[I]; 410 const PointerInfo &PointerJ = Pointers[J]; 411 412 // No need to check if two readonly pointers intersect. 413 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 414 return false; 415 416 // Only need to check pointers between two different dependency sets. 417 if (PointerI.DependencySetId == PointerJ.DependencySetId) 418 return false; 419 420 // Only need to check pointers in the same alias set. 421 if (PointerI.AliasSetId != PointerJ.AliasSetId) 422 return false; 423 424 return true; 425 } 426 427 void RuntimePointerChecking::printChecks( 428 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 429 unsigned Depth) const { 430 unsigned N = 0; 431 for (const auto &Check : Checks) { 432 const auto &First = Check.first->Members, &Second = Check.second->Members; 433 434 OS.indent(Depth) << "Check " << N++ << ":\n"; 435 436 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 437 for (unsigned K = 0; K < First.size(); ++K) 438 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 439 440 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 441 for (unsigned K = 0; K < Second.size(); ++K) 442 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 443 } 444 } 445 446 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 447 448 OS.indent(Depth) << "Run-time memory checks:\n"; 449 printChecks(OS, Checks, Depth); 450 451 OS.indent(Depth) << "Grouped accesses:\n"; 452 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 453 const auto &CG = CheckingGroups[I]; 454 455 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 456 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 457 << ")\n"; 458 for (unsigned J = 0; J < CG.Members.size(); ++J) { 459 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 460 << "\n"; 461 } 462 } 463 } 464 465 namespace { 466 /// \brief Analyses memory accesses in a loop. 467 /// 468 /// Checks whether run time pointer checks are needed and builds sets for data 469 /// dependence checking. 470 class AccessAnalysis { 471 public: 472 /// \brief Read or write access location. 473 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 474 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 475 476 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 477 MemoryDepChecker::DepCandidates &DA, 478 PredicatedScalarEvolution &PSE) 479 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), 480 PSE(PSE) {} 481 482 /// \brief Register a load and whether it is only read from. 483 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 484 Value *Ptr = const_cast<Value*>(Loc.Ptr); 485 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 486 Accesses.insert(MemAccessInfo(Ptr, false)); 487 if (IsReadOnly) 488 ReadOnlyPtr.insert(Ptr); 489 } 490 491 /// \brief Register a store. 492 void addStore(MemoryLocation &Loc) { 493 Value *Ptr = const_cast<Value*>(Loc.Ptr); 494 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 495 Accesses.insert(MemAccessInfo(Ptr, true)); 496 } 497 498 /// \brief Check whether we can check the pointers at runtime for 499 /// non-intersection. 500 /// 501 /// Returns true if we need no check or if we do and we can generate them 502 /// (i.e. the pointers have computable bounds). 503 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 504 Loop *TheLoop, const ValueToValueMap &Strides, 505 bool ShouldCheckWrap = false); 506 507 /// \brief Goes over all memory accesses, checks whether a RT check is needed 508 /// and builds sets of dependent accesses. 509 void buildDependenceSets() { 510 processMemAccesses(); 511 } 512 513 /// \brief Initial processing of memory accesses determined that we need to 514 /// perform dependency checking. 515 /// 516 /// Note that this can later be cleared if we retry memcheck analysis without 517 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 518 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 519 520 /// We decided that no dependence analysis would be used. Reset the state. 521 void resetDepChecks(MemoryDepChecker &DepChecker) { 522 CheckDeps.clear(); 523 DepChecker.clearDependences(); 524 } 525 526 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 527 528 private: 529 typedef SetVector<MemAccessInfo> PtrAccessSet; 530 531 /// \brief Go over all memory access and check whether runtime pointer checks 532 /// are needed and build sets of dependency check candidates. 533 void processMemAccesses(); 534 535 /// Set of all accesses. 536 PtrAccessSet Accesses; 537 538 const DataLayout &DL; 539 540 /// Set of accesses that need a further dependence check. 541 MemAccessInfoSet CheckDeps; 542 543 /// Set of pointers that are read only. 544 SmallPtrSet<Value*, 16> ReadOnlyPtr; 545 546 /// An alias set tracker to partition the access set by underlying object and 547 //intrinsic property (such as TBAA metadata). 548 AliasSetTracker AST; 549 550 LoopInfo *LI; 551 552 /// Sets of potentially dependent accesses - members of one set share an 553 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 554 /// dependence check. 555 MemoryDepChecker::DepCandidates &DepCands; 556 557 /// \brief Initial processing of memory accesses determined that we may need 558 /// to add memchecks. Perform the analysis to determine the necessary checks. 559 /// 560 /// Note that, this is different from isDependencyCheckNeeded. When we retry 561 /// memcheck analysis without dependency checking 562 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 563 /// while this remains set if we have potentially dependent accesses. 564 bool IsRTCheckAnalysisNeeded; 565 566 /// The SCEV predicate containing all the SCEV-related assumptions. 567 PredicatedScalarEvolution &PSE; 568 }; 569 570 } // end anonymous namespace 571 572 /// \brief Check whether a pointer can participate in a runtime bounds check. 573 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 574 const ValueToValueMap &Strides, Value *Ptr, 575 Loop *L) { 576 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 577 578 // The bounds for loop-invariant pointer is trivial. 579 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 580 return true; 581 582 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 583 if (!AR) 584 return false; 585 586 return AR->isAffine(); 587 } 588 589 /// \brief Check whether a pointer address cannot wrap. 590 static bool isNoWrap(PredicatedScalarEvolution &PSE, 591 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 592 const SCEV *PtrScev = PSE.getSCEV(Ptr); 593 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 594 return true; 595 596 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 597 return Stride == 1; 598 } 599 600 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 601 ScalarEvolution *SE, Loop *TheLoop, 602 const ValueToValueMap &StridesMap, 603 bool ShouldCheckWrap) { 604 // Find pointers with computable bounds. We are going to use this information 605 // to place a runtime bound check. 606 bool CanDoRT = true; 607 608 bool NeedRTCheck = false; 609 if (!IsRTCheckAnalysisNeeded) return true; 610 611 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 612 613 // We assign a consecutive id to access from different alias sets. 614 // Accesses between different groups doesn't need to be checked. 615 unsigned ASId = 1; 616 for (auto &AS : AST) { 617 int NumReadPtrChecks = 0; 618 int NumWritePtrChecks = 0; 619 620 // We assign consecutive id to access from different dependence sets. 621 // Accesses within the same set don't need a runtime check. 622 unsigned RunningDepId = 1; 623 DenseMap<Value *, unsigned> DepSetId; 624 625 for (auto A : AS) { 626 Value *Ptr = A.getValue(); 627 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 628 MemAccessInfo Access(Ptr, IsWrite); 629 630 if (IsWrite) 631 ++NumWritePtrChecks; 632 else 633 ++NumReadPtrChecks; 634 635 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && 636 // When we run after a failing dependency check we have to make sure 637 // we don't have wrapping pointers. 638 (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) { 639 // The id of the dependence set. 640 unsigned DepId; 641 642 if (IsDepCheckNeeded) { 643 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 644 unsigned &LeaderId = DepSetId[Leader]; 645 if (!LeaderId) 646 LeaderId = RunningDepId++; 647 DepId = LeaderId; 648 } else 649 // Each access has its own dependence set. 650 DepId = RunningDepId++; 651 652 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 653 654 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 655 } else { 656 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 657 CanDoRT = false; 658 } 659 } 660 661 // If we have at least two writes or one write and a read then we need to 662 // check them. But there is no need to checks if there is only one 663 // dependence set for this alias set. 664 // 665 // Note that this function computes CanDoRT and NeedRTCheck independently. 666 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 667 // for which we couldn't find the bounds but we don't actually need to emit 668 // any checks so it does not matter. 669 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 670 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 671 NumWritePtrChecks >= 1)); 672 673 ++ASId; 674 } 675 676 // If the pointers that we would use for the bounds comparison have different 677 // address spaces, assume the values aren't directly comparable, so we can't 678 // use them for the runtime check. We also have to assume they could 679 // overlap. In the future there should be metadata for whether address spaces 680 // are disjoint. 681 unsigned NumPointers = RtCheck.Pointers.size(); 682 for (unsigned i = 0; i < NumPointers; ++i) { 683 for (unsigned j = i + 1; j < NumPointers; ++j) { 684 // Only need to check pointers between two different dependency sets. 685 if (RtCheck.Pointers[i].DependencySetId == 686 RtCheck.Pointers[j].DependencySetId) 687 continue; 688 // Only need to check pointers in the same alias set. 689 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 690 continue; 691 692 Value *PtrI = RtCheck.Pointers[i].PointerValue; 693 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 694 695 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 696 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 697 if (ASi != ASj) { 698 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 699 " different address spaces\n"); 700 return false; 701 } 702 } 703 } 704 705 if (NeedRTCheck && CanDoRT) 706 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 707 708 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 709 << " pointer comparisons.\n"); 710 711 RtCheck.Need = NeedRTCheck; 712 713 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 714 if (!CanDoRTIfNeeded) 715 RtCheck.reset(); 716 return CanDoRTIfNeeded; 717 } 718 719 void AccessAnalysis::processMemAccesses() { 720 // We process the set twice: first we process read-write pointers, last we 721 // process read-only pointers. This allows us to skip dependence tests for 722 // read-only pointers. 723 724 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 725 DEBUG(dbgs() << " AST: "; AST.dump()); 726 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 727 DEBUG({ 728 for (auto A : Accesses) 729 dbgs() << "\t" << *A.getPointer() << " (" << 730 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 731 "read-only" : "read")) << ")\n"; 732 }); 733 734 // The AliasSetTracker has nicely partitioned our pointers by metadata 735 // compatibility and potential for underlying-object overlap. As a result, we 736 // only need to check for potential pointer dependencies within each alias 737 // set. 738 for (auto &AS : AST) { 739 // Note that both the alias-set tracker and the alias sets themselves used 740 // linked lists internally and so the iteration order here is deterministic 741 // (matching the original instruction order within each set). 742 743 bool SetHasWrite = false; 744 745 // Map of pointers to last access encountered. 746 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 747 UnderlyingObjToAccessMap ObjToLastAccess; 748 749 // Set of access to check after all writes have been processed. 750 PtrAccessSet DeferredAccesses; 751 752 // Iterate over each alias set twice, once to process read/write pointers, 753 // and then to process read-only pointers. 754 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 755 bool UseDeferred = SetIteration > 0; 756 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 757 758 for (auto AV : AS) { 759 Value *Ptr = AV.getValue(); 760 761 // For a single memory access in AliasSetTracker, Accesses may contain 762 // both read and write, and they both need to be handled for CheckDeps. 763 for (auto AC : S) { 764 if (AC.getPointer() != Ptr) 765 continue; 766 767 bool IsWrite = AC.getInt(); 768 769 // If we're using the deferred access set, then it contains only 770 // reads. 771 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 772 if (UseDeferred && !IsReadOnlyPtr) 773 continue; 774 // Otherwise, the pointer must be in the PtrAccessSet, either as a 775 // read or a write. 776 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 777 S.count(MemAccessInfo(Ptr, false))) && 778 "Alias-set pointer not in the access set?"); 779 780 MemAccessInfo Access(Ptr, IsWrite); 781 DepCands.insert(Access); 782 783 // Memorize read-only pointers for later processing and skip them in 784 // the first round (they need to be checked after we have seen all 785 // write pointers). Note: we also mark pointer that are not 786 // consecutive as "read-only" pointers (so that we check 787 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 788 if (!UseDeferred && IsReadOnlyPtr) { 789 DeferredAccesses.insert(Access); 790 continue; 791 } 792 793 // If this is a write - check other reads and writes for conflicts. If 794 // this is a read only check other writes for conflicts (but only if 795 // there is no other write to the ptr - this is an optimization to 796 // catch "a[i] = a[i] + " without having to do a dependence check). 797 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 798 CheckDeps.insert(Access); 799 IsRTCheckAnalysisNeeded = true; 800 } 801 802 if (IsWrite) 803 SetHasWrite = true; 804 805 // Create sets of pointers connected by a shared alias set and 806 // underlying object. 807 typedef SmallVector<Value *, 16> ValueVector; 808 ValueVector TempObjects; 809 810 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 811 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 812 for (Value *UnderlyingObj : TempObjects) { 813 // nullptr never alias, don't join sets for pointer that have "null" 814 // in their UnderlyingObjects list. 815 if (isa<ConstantPointerNull>(UnderlyingObj)) 816 continue; 817 818 UnderlyingObjToAccessMap::iterator Prev = 819 ObjToLastAccess.find(UnderlyingObj); 820 if (Prev != ObjToLastAccess.end()) 821 DepCands.unionSets(Access, Prev->second); 822 823 ObjToLastAccess[UnderlyingObj] = Access; 824 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 825 } 826 } 827 } 828 } 829 } 830 } 831 832 static bool isInBoundsGep(Value *Ptr) { 833 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 834 return GEP->isInBounds(); 835 return false; 836 } 837 838 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 839 /// i.e. monotonically increasing/decreasing. 840 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 841 PredicatedScalarEvolution &PSE, const Loop *L) { 842 // FIXME: This should probably only return true for NUW. 843 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 844 return true; 845 846 // Scalar evolution does not propagate the non-wrapping flags to values that 847 // are derived from a non-wrapping induction variable because non-wrapping 848 // could be flow-sensitive. 849 // 850 // Look through the potentially overflowing instruction to try to prove 851 // non-wrapping for the *specific* value of Ptr. 852 853 // The arithmetic implied by an inbounds GEP can't overflow. 854 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 855 if (!GEP || !GEP->isInBounds()) 856 return false; 857 858 // Make sure there is only one non-const index and analyze that. 859 Value *NonConstIndex = nullptr; 860 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 861 if (!isa<ConstantInt>(Index)) { 862 if (NonConstIndex) 863 return false; 864 NonConstIndex = Index; 865 } 866 if (!NonConstIndex) 867 // The recurrence is on the pointer, ignore for now. 868 return false; 869 870 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 871 // AddRec using a NSW operation. 872 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 873 if (OBO->hasNoSignedWrap() && 874 // Assume constant for other the operand so that the AddRec can be 875 // easily found. 876 isa<ConstantInt>(OBO->getOperand(1))) { 877 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 878 879 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 880 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 881 } 882 883 return false; 884 } 885 886 /// \brief Check whether the access through \p Ptr has a constant stride. 887 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 888 const Loop *Lp, const ValueToValueMap &StridesMap, 889 bool Assume) { 890 Type *Ty = Ptr->getType(); 891 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 892 893 // Make sure that the pointer does not point to aggregate types. 894 auto *PtrTy = cast<PointerType>(Ty); 895 if (PtrTy->getElementType()->isAggregateType()) { 896 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr 897 << "\n"); 898 return 0; 899 } 900 901 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 902 903 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 904 if (Assume && !AR) 905 AR = PSE.getAsAddRec(Ptr); 906 907 if (!AR) { 908 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 909 << " SCEV: " << *PtrScev << "\n"); 910 return 0; 911 } 912 913 // The accesss function must stride over the innermost loop. 914 if (Lp != AR->getLoop()) { 915 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 916 *Ptr << " SCEV: " << *AR << "\n"); 917 return 0; 918 } 919 920 // The address calculation must not wrap. Otherwise, a dependence could be 921 // inverted. 922 // An inbounds getelementptr that is a AddRec with a unit stride 923 // cannot wrap per definition. The unit stride requirement is checked later. 924 // An getelementptr without an inbounds attribute and unit stride would have 925 // to access the pointer value "0" which is undefined behavior in address 926 // space 0, therefore we can also vectorize this case. 927 bool IsInBoundsGEP = isInBoundsGep(Ptr); 928 bool IsNoWrapAddRec = 929 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 930 isNoWrapAddRec(Ptr, AR, PSE, Lp); 931 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 932 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 933 if (Assume) { 934 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 935 IsNoWrapAddRec = true; 936 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 937 << "LAA: Pointer: " << *Ptr << "\n" 938 << "LAA: SCEV: " << *AR << "\n" 939 << "LAA: Added an overflow assumption\n"); 940 } else { 941 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 942 << *Ptr << " SCEV: " << *AR << "\n"); 943 return 0; 944 } 945 } 946 947 // Check the step is constant. 948 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 949 950 // Calculate the pointer stride and check if it is constant. 951 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 952 if (!C) { 953 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 954 " SCEV: " << *AR << "\n"); 955 return 0; 956 } 957 958 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 959 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 960 const APInt &APStepVal = C->getAPInt(); 961 962 // Huge step value - give up. 963 if (APStepVal.getBitWidth() > 64) 964 return 0; 965 966 int64_t StepVal = APStepVal.getSExtValue(); 967 968 // Strided access. 969 int64_t Stride = StepVal / Size; 970 int64_t Rem = StepVal % Size; 971 if (Rem) 972 return 0; 973 974 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 975 // know we can't "wrap around the address space". In case of address space 976 // zero we know that this won't happen without triggering undefined behavior. 977 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 978 Stride != 1 && Stride != -1) { 979 if (Assume) { 980 // We can avoid this case by adding a run-time check. 981 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 982 << "inbouds or in address space 0 may wrap:\n" 983 << "LAA: Pointer: " << *Ptr << "\n" 984 << "LAA: SCEV: " << *AR << "\n" 985 << "LAA: Added an overflow assumption\n"); 986 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 987 } else 988 return 0; 989 } 990 991 return Stride; 992 } 993 994 /// Take the pointer operand from the Load/Store instruction. 995 /// Returns NULL if this is not a valid Load/Store instruction. 996 static Value *getPointerOperand(Value *I) { 997 if (auto *LI = dyn_cast<LoadInst>(I)) 998 return LI->getPointerOperand(); 999 if (auto *SI = dyn_cast<StoreInst>(I)) 1000 return SI->getPointerOperand(); 1001 return nullptr; 1002 } 1003 1004 /// Take the address space operand from the Load/Store instruction. 1005 /// Returns -1 if this is not a valid Load/Store instruction. 1006 static unsigned getAddressSpaceOperand(Value *I) { 1007 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1008 return L->getPointerAddressSpace(); 1009 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1010 return S->getPointerAddressSpace(); 1011 return -1; 1012 } 1013 1014 /// Returns true if the memory operations \p A and \p B are consecutive. 1015 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1016 ScalarEvolution &SE, bool CheckType) { 1017 Value *PtrA = getPointerOperand(A); 1018 Value *PtrB = getPointerOperand(B); 1019 unsigned ASA = getAddressSpaceOperand(A); 1020 unsigned ASB = getAddressSpaceOperand(B); 1021 1022 // Check that the address spaces match and that the pointers are valid. 1023 if (!PtrA || !PtrB || (ASA != ASB)) 1024 return false; 1025 1026 // Make sure that A and B are different pointers. 1027 if (PtrA == PtrB) 1028 return false; 1029 1030 // Make sure that A and B have the same type if required. 1031 if(CheckType && PtrA->getType() != PtrB->getType()) 1032 return false; 1033 1034 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 1035 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1036 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 1037 1038 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1039 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1040 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1041 1042 // OffsetDelta = OffsetB - OffsetA; 1043 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1044 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1045 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1046 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 1047 const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 1048 // Check if they are based on the same pointer. That makes the offsets 1049 // sufficient. 1050 if (PtrA == PtrB) 1051 return OffsetDelta == Size; 1052 1053 // Compute the necessary base pointer delta to have the necessary final delta 1054 // equal to the size. 1055 // BaseDelta = Size - OffsetDelta; 1056 const SCEV *SizeSCEV = SE.getConstant(Size); 1057 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1058 1059 // Otherwise compute the distance with SCEV between the base pointers. 1060 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1061 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1062 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1063 return X == PtrSCEVB; 1064 } 1065 1066 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1067 switch (Type) { 1068 case NoDep: 1069 case Forward: 1070 case BackwardVectorizable: 1071 return true; 1072 1073 case Unknown: 1074 case ForwardButPreventsForwarding: 1075 case Backward: 1076 case BackwardVectorizableButPreventsForwarding: 1077 return false; 1078 } 1079 llvm_unreachable("unexpected DepType!"); 1080 } 1081 1082 bool MemoryDepChecker::Dependence::isBackward() const { 1083 switch (Type) { 1084 case NoDep: 1085 case Forward: 1086 case ForwardButPreventsForwarding: 1087 case Unknown: 1088 return false; 1089 1090 case BackwardVectorizable: 1091 case Backward: 1092 case BackwardVectorizableButPreventsForwarding: 1093 return true; 1094 } 1095 llvm_unreachable("unexpected DepType!"); 1096 } 1097 1098 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1099 return isBackward() || Type == Unknown; 1100 } 1101 1102 bool MemoryDepChecker::Dependence::isForward() const { 1103 switch (Type) { 1104 case Forward: 1105 case ForwardButPreventsForwarding: 1106 return true; 1107 1108 case NoDep: 1109 case Unknown: 1110 case BackwardVectorizable: 1111 case Backward: 1112 case BackwardVectorizableButPreventsForwarding: 1113 return false; 1114 } 1115 llvm_unreachable("unexpected DepType!"); 1116 } 1117 1118 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1119 uint64_t TypeByteSize) { 1120 // If loads occur at a distance that is not a multiple of a feasible vector 1121 // factor store-load forwarding does not take place. 1122 // Positive dependences might cause troubles because vectorizing them might 1123 // prevent store-load forwarding making vectorized code run a lot slower. 1124 // a[i] = a[i-3] ^ a[i-8]; 1125 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1126 // hence on your typical architecture store-load forwarding does not take 1127 // place. Vectorizing in such cases does not make sense. 1128 // Store-load forwarding distance. 1129 1130 // After this many iterations store-to-load forwarding conflicts should not 1131 // cause any slowdowns. 1132 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1133 // Maximum vector factor. 1134 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1135 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1136 1137 // Compute the smallest VF at which the store and load would be misaligned. 1138 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1139 VF *= 2) { 1140 // If the number of vector iteration between the store and the load are 1141 // small we could incur conflicts. 1142 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1143 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1144 break; 1145 } 1146 } 1147 1148 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1149 DEBUG(dbgs() << "LAA: Distance " << Distance 1150 << " that could cause a store-load forwarding conflict\n"); 1151 return true; 1152 } 1153 1154 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1155 MaxVFWithoutSLForwardIssues != 1156 VectorizerParams::MaxVectorWidth * TypeByteSize) 1157 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1158 return false; 1159 } 1160 1161 /// \brief Check the dependence for two accesses with the same stride \p Stride. 1162 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1163 /// bytes. 1164 /// 1165 /// \returns true if they are independent. 1166 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1167 uint64_t TypeByteSize) { 1168 assert(Stride > 1 && "The stride must be greater than 1"); 1169 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1170 assert(Distance > 0 && "The distance must be non-zero"); 1171 1172 // Skip if the distance is not multiple of type byte size. 1173 if (Distance % TypeByteSize) 1174 return false; 1175 1176 uint64_t ScaledDist = Distance / TypeByteSize; 1177 1178 // No dependence if the scaled distance is not multiple of the stride. 1179 // E.g. 1180 // for (i = 0; i < 1024 ; i += 4) 1181 // A[i+2] = A[i] + 1; 1182 // 1183 // Two accesses in memory (scaled distance is 2, stride is 4): 1184 // | A[0] | | | | A[4] | | | | 1185 // | | | A[2] | | | | A[6] | | 1186 // 1187 // E.g. 1188 // for (i = 0; i < 1024 ; i += 3) 1189 // A[i+4] = A[i] + 1; 1190 // 1191 // Two accesses in memory (scaled distance is 4, stride is 3): 1192 // | A[0] | | | A[3] | | | A[6] | | | 1193 // | | | | | A[4] | | | A[7] | | 1194 return ScaledDist % Stride; 1195 } 1196 1197 MemoryDepChecker::Dependence::DepType 1198 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1199 const MemAccessInfo &B, unsigned BIdx, 1200 const ValueToValueMap &Strides) { 1201 assert (AIdx < BIdx && "Must pass arguments in program order"); 1202 1203 Value *APtr = A.getPointer(); 1204 Value *BPtr = B.getPointer(); 1205 bool AIsWrite = A.getInt(); 1206 bool BIsWrite = B.getInt(); 1207 1208 // Two reads are independent. 1209 if (!AIsWrite && !BIsWrite) 1210 return Dependence::NoDep; 1211 1212 // We cannot check pointers in different address spaces. 1213 if (APtr->getType()->getPointerAddressSpace() != 1214 BPtr->getType()->getPointerAddressSpace()) 1215 return Dependence::Unknown; 1216 1217 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1218 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1219 1220 const SCEV *Src = PSE.getSCEV(APtr); 1221 const SCEV *Sink = PSE.getSCEV(BPtr); 1222 1223 // If the induction step is negative we have to invert source and sink of the 1224 // dependence. 1225 if (StrideAPtr < 0) { 1226 std::swap(APtr, BPtr); 1227 std::swap(Src, Sink); 1228 std::swap(AIsWrite, BIsWrite); 1229 std::swap(AIdx, BIdx); 1230 std::swap(StrideAPtr, StrideBPtr); 1231 } 1232 1233 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1234 1235 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1236 << "(Induction step: " << StrideAPtr << ")\n"); 1237 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1238 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1239 1240 // Need accesses with constant stride. We don't want to vectorize 1241 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1242 // the address space. 1243 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1244 DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1245 return Dependence::Unknown; 1246 } 1247 1248 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1249 if (!C) { 1250 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1251 ShouldRetryWithRuntimeCheck = true; 1252 return Dependence::Unknown; 1253 } 1254 1255 Type *ATy = APtr->getType()->getPointerElementType(); 1256 Type *BTy = BPtr->getType()->getPointerElementType(); 1257 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1258 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1259 1260 const APInt &Val = C->getAPInt(); 1261 int64_t Distance = Val.getSExtValue(); 1262 uint64_t Stride = std::abs(StrideAPtr); 1263 1264 // Attempt to prove strided accesses independent. 1265 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1266 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1267 DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1268 return Dependence::NoDep; 1269 } 1270 1271 // Negative distances are not plausible dependencies. 1272 if (Val.isNegative()) { 1273 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1274 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1275 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1276 ATy != BTy)) { 1277 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1278 return Dependence::ForwardButPreventsForwarding; 1279 } 1280 1281 DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1282 return Dependence::Forward; 1283 } 1284 1285 // Write to the same location with the same size. 1286 // Could be improved to assert type sizes are the same (i32 == float, etc). 1287 if (Val == 0) { 1288 if (ATy == BTy) 1289 return Dependence::Forward; 1290 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 1291 return Dependence::Unknown; 1292 } 1293 1294 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1295 1296 if (ATy != BTy) { 1297 DEBUG(dbgs() << 1298 "LAA: ReadWrite-Write positive dependency with different types\n"); 1299 return Dependence::Unknown; 1300 } 1301 1302 // Bail out early if passed-in parameters make vectorization not feasible. 1303 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1304 VectorizerParams::VectorizationFactor : 1); 1305 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1306 VectorizerParams::VectorizationInterleave : 1); 1307 // The minimum number of iterations for a vectorized/unrolled version. 1308 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1309 1310 // It's not vectorizable if the distance is smaller than the minimum distance 1311 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1312 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1313 // TypeByteSize (No need to plus the last gap distance). 1314 // 1315 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1316 // foo(int *A) { 1317 // int *B = (int *)((char *)A + 14); 1318 // for (i = 0 ; i < 1024 ; i += 2) 1319 // B[i] = A[i] + 1; 1320 // } 1321 // 1322 // Two accesses in memory (stride is 2): 1323 // | A[0] | | A[2] | | A[4] | | A[6] | | 1324 // | B[0] | | B[2] | | B[4] | 1325 // 1326 // Distance needs for vectorizing iterations except the last iteration: 1327 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1328 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1329 // 1330 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1331 // 12, which is less than distance. 1332 // 1333 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1334 // the minimum distance needed is 28, which is greater than distance. It is 1335 // not safe to do vectorization. 1336 uint64_t MinDistanceNeeded = 1337 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1338 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1339 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1340 << '\n'); 1341 return Dependence::Backward; 1342 } 1343 1344 // Unsafe if the minimum distance needed is greater than max safe distance. 1345 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1346 DEBUG(dbgs() << "LAA: Failure because it needs at least " 1347 << MinDistanceNeeded << " size in bytes"); 1348 return Dependence::Backward; 1349 } 1350 1351 // Positive distance bigger than max vectorization factor. 1352 // FIXME: Should use max factor instead of max distance in bytes, which could 1353 // not handle different types. 1354 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1355 // void foo (int *A, char *B) { 1356 // for (unsigned i = 0; i < 1024; i++) { 1357 // A[i+2] = A[i] + 1; 1358 // B[i+2] = B[i] + 1; 1359 // } 1360 // } 1361 // 1362 // This case is currently unsafe according to the max safe distance. If we 1363 // analyze the two accesses on array B, the max safe dependence distance 1364 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1365 // is 8, which is less than 2 and forbidden vectorization, But actually 1366 // both A and B could be vectorized by 2 iterations. 1367 MaxSafeDepDistBytes = 1368 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1369 1370 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1371 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1372 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1373 return Dependence::BackwardVectorizableButPreventsForwarding; 1374 1375 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1376 << " with max VF = " 1377 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 1378 1379 return Dependence::BackwardVectorizable; 1380 } 1381 1382 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1383 MemAccessInfoSet &CheckDeps, 1384 const ValueToValueMap &Strides) { 1385 1386 MaxSafeDepDistBytes = -1; 1387 while (!CheckDeps.empty()) { 1388 MemAccessInfo CurAccess = *CheckDeps.begin(); 1389 1390 // Get the relevant memory access set. 1391 EquivalenceClasses<MemAccessInfo>::iterator I = 1392 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1393 1394 // Check accesses within this set. 1395 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1396 AccessSets.member_begin(I); 1397 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1398 AccessSets.member_end(); 1399 1400 // Check every access pair. 1401 while (AI != AE) { 1402 CheckDeps.erase(*AI); 1403 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1404 while (OI != AE) { 1405 // Check every accessing instruction pair in program order. 1406 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1407 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1408 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1409 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1410 auto A = std::make_pair(&*AI, *I1); 1411 auto B = std::make_pair(&*OI, *I2); 1412 1413 assert(*I1 != *I2); 1414 if (*I1 > *I2) 1415 std::swap(A, B); 1416 1417 Dependence::DepType Type = 1418 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1419 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 1420 1421 // Gather dependences unless we accumulated MaxDependences 1422 // dependences. In that case return as soon as we find the first 1423 // unsafe dependence. This puts a limit on this quadratic 1424 // algorithm. 1425 if (RecordDependences) { 1426 if (Type != Dependence::NoDep) 1427 Dependences.push_back(Dependence(A.second, B.second, Type)); 1428 1429 if (Dependences.size() >= MaxDependences) { 1430 RecordDependences = false; 1431 Dependences.clear(); 1432 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 1433 } 1434 } 1435 if (!RecordDependences && !SafeForVectorization) 1436 return false; 1437 } 1438 ++OI; 1439 } 1440 AI++; 1441 } 1442 } 1443 1444 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1445 return SafeForVectorization; 1446 } 1447 1448 SmallVector<Instruction *, 4> 1449 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1450 MemAccessInfo Access(Ptr, isWrite); 1451 auto &IndexVector = Accesses.find(Access)->second; 1452 1453 SmallVector<Instruction *, 4> Insts; 1454 std::transform(IndexVector.begin(), IndexVector.end(), 1455 std::back_inserter(Insts), 1456 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1457 return Insts; 1458 } 1459 1460 const char *MemoryDepChecker::Dependence::DepName[] = { 1461 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1462 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1463 1464 void MemoryDepChecker::Dependence::print( 1465 raw_ostream &OS, unsigned Depth, 1466 const SmallVectorImpl<Instruction *> &Instrs) const { 1467 OS.indent(Depth) << DepName[Type] << ":\n"; 1468 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1469 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1470 } 1471 1472 bool LoopAccessInfo::canAnalyzeLoop() { 1473 // We need to have a loop header. 1474 DEBUG(dbgs() << "LAA: Found a loop in " 1475 << TheLoop->getHeader()->getParent()->getName() << ": " 1476 << TheLoop->getHeader()->getName() << '\n'); 1477 1478 // We can only analyze innermost loops. 1479 if (!TheLoop->empty()) { 1480 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1481 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 1482 return false; 1483 } 1484 1485 // We must have a single backedge. 1486 if (TheLoop->getNumBackEdges() != 1) { 1487 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1488 emitAnalysis( 1489 LoopAccessReport() << 1490 "loop control flow is not understood by analyzer"); 1491 return false; 1492 } 1493 1494 // We must have a single exiting block. 1495 if (!TheLoop->getExitingBlock()) { 1496 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1497 emitAnalysis( 1498 LoopAccessReport() << 1499 "loop control flow is not understood by analyzer"); 1500 return false; 1501 } 1502 1503 // We only handle bottom-tested loops, i.e. loop in which the condition is 1504 // checked at the end of each iteration. With that we can assume that all 1505 // instructions in the loop are executed the same number of times. 1506 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1507 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1508 emitAnalysis( 1509 LoopAccessReport() << 1510 "loop control flow is not understood by analyzer"); 1511 return false; 1512 } 1513 1514 // ScalarEvolution needs to be able to find the exit count. 1515 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1516 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1517 emitAnalysis(LoopAccessReport() 1518 << "could not determine number of loop iterations"); 1519 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1520 return false; 1521 } 1522 1523 return true; 1524 } 1525 1526 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 1527 const TargetLibraryInfo *TLI, 1528 DominatorTree *DT) { 1529 typedef SmallPtrSet<Value*, 16> ValueSet; 1530 1531 // Holds the Load and Store instructions. 1532 SmallVector<LoadInst *, 16> Loads; 1533 SmallVector<StoreInst *, 16> Stores; 1534 1535 // Holds all the different accesses in the loop. 1536 unsigned NumReads = 0; 1537 unsigned NumReadWrites = 0; 1538 1539 PtrRtChecking->Pointers.clear(); 1540 PtrRtChecking->Need = false; 1541 1542 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1543 1544 // For each block. 1545 for (BasicBlock *BB : TheLoop->blocks()) { 1546 // Scan the BB and collect legal loads and stores. 1547 for (Instruction &I : *BB) { 1548 // If this is a load, save it. If this instruction can read from memory 1549 // but is not a load, then we quit. Notice that we don't handle function 1550 // calls that read or write. 1551 if (I.mayReadFromMemory()) { 1552 // Many math library functions read the rounding mode. We will only 1553 // vectorize a loop if it contains known function calls that don't set 1554 // the flag. Therefore, it is safe to ignore this read from memory. 1555 auto *Call = dyn_cast<CallInst>(&I); 1556 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1557 continue; 1558 1559 // If the function has an explicit vectorized counterpart, we can safely 1560 // assume that it can be vectorized. 1561 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1562 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1563 continue; 1564 1565 auto *Ld = dyn_cast<LoadInst>(&I); 1566 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1567 emitAnalysis(LoopAccessReport(Ld) 1568 << "read with atomic ordering or volatile read"); 1569 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1570 CanVecMem = false; 1571 return; 1572 } 1573 NumLoads++; 1574 Loads.push_back(Ld); 1575 DepChecker->addAccess(Ld); 1576 if (EnableMemAccessVersioning) 1577 collectStridedAccess(Ld); 1578 continue; 1579 } 1580 1581 // Save 'store' instructions. Abort if other instructions write to memory. 1582 if (I.mayWriteToMemory()) { 1583 auto *St = dyn_cast<StoreInst>(&I); 1584 if (!St) { 1585 emitAnalysis(LoopAccessReport(St) 1586 << "instruction cannot be vectorized"); 1587 CanVecMem = false; 1588 return; 1589 } 1590 if (!St->isSimple() && !IsAnnotatedParallel) { 1591 emitAnalysis(LoopAccessReport(St) 1592 << "write with atomic ordering or volatile write"); 1593 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1594 CanVecMem = false; 1595 return; 1596 } 1597 NumStores++; 1598 Stores.push_back(St); 1599 DepChecker->addAccess(St); 1600 if (EnableMemAccessVersioning) 1601 collectStridedAccess(St); 1602 } 1603 } // Next instr. 1604 } // Next block. 1605 1606 // Now we have two lists that hold the loads and the stores. 1607 // Next, we find the pointers that they use. 1608 1609 // Check if we see any stores. If there are no stores, then we don't 1610 // care if the pointers are *restrict*. 1611 if (!Stores.size()) { 1612 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1613 CanVecMem = true; 1614 return; 1615 } 1616 1617 MemoryDepChecker::DepCandidates DependentAccesses; 1618 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1619 AA, LI, DependentAccesses, *PSE); 1620 1621 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1622 // multiple times on the same object. If the ptr is accessed twice, once 1623 // for read and once for write, it will only appear once (on the write 1624 // list). This is okay, since we are going to check for conflicts between 1625 // writes and between reads and writes, but not between reads and reads. 1626 ValueSet Seen; 1627 1628 for (StoreInst *ST : Stores) { 1629 Value *Ptr = ST->getPointerOperand(); 1630 // Check for store to loop invariant address. 1631 StoreToLoopInvariantAddress |= isUniform(Ptr); 1632 // If we did *not* see this pointer before, insert it to the read-write 1633 // list. At this phase it is only a 'write' list. 1634 if (Seen.insert(Ptr).second) { 1635 ++NumReadWrites; 1636 1637 MemoryLocation Loc = MemoryLocation::get(ST); 1638 // The TBAA metadata could have a control dependency on the predication 1639 // condition, so we cannot rely on it when determining whether or not we 1640 // need runtime pointer checks. 1641 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1642 Loc.AATags.TBAA = nullptr; 1643 1644 Accesses.addStore(Loc); 1645 } 1646 } 1647 1648 if (IsAnnotatedParallel) { 1649 DEBUG(dbgs() 1650 << "LAA: A loop annotated parallel, ignore memory dependency " 1651 << "checks.\n"); 1652 CanVecMem = true; 1653 return; 1654 } 1655 1656 for (LoadInst *LD : Loads) { 1657 Value *Ptr = LD->getPointerOperand(); 1658 // If we did *not* see this pointer before, insert it to the 1659 // read list. If we *did* see it before, then it is already in 1660 // the read-write list. This allows us to vectorize expressions 1661 // such as A[i] += x; Because the address of A[i] is a read-write 1662 // pointer. This only works if the index of A[i] is consecutive. 1663 // If the address of i is unknown (for example A[B[i]]) then we may 1664 // read a few words, modify, and write a few words, and some of the 1665 // words may be written to the same address. 1666 bool IsReadOnlyPtr = false; 1667 if (Seen.insert(Ptr).second || 1668 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1669 ++NumReads; 1670 IsReadOnlyPtr = true; 1671 } 1672 1673 MemoryLocation Loc = MemoryLocation::get(LD); 1674 // The TBAA metadata could have a control dependency on the predication 1675 // condition, so we cannot rely on it when determining whether or not we 1676 // need runtime pointer checks. 1677 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1678 Loc.AATags.TBAA = nullptr; 1679 1680 Accesses.addLoad(Loc, IsReadOnlyPtr); 1681 } 1682 1683 // If we write (or read-write) to a single destination and there are no 1684 // other reads in this loop then is it safe to vectorize. 1685 if (NumReadWrites == 1 && NumReads == 0) { 1686 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1687 CanVecMem = true; 1688 return; 1689 } 1690 1691 // Build dependence sets and check whether we need a runtime pointer bounds 1692 // check. 1693 Accesses.buildDependenceSets(); 1694 1695 // Find pointers with computable bounds. We are going to use this information 1696 // to place a runtime bound check. 1697 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 1698 TheLoop, SymbolicStrides); 1699 if (!CanDoRTIfNeeded) { 1700 emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1701 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1702 << "the array bounds.\n"); 1703 CanVecMem = false; 1704 return; 1705 } 1706 1707 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1708 1709 CanVecMem = true; 1710 if (Accesses.isDependencyCheckNeeded()) { 1711 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1712 CanVecMem = DepChecker->areDepsSafe( 1713 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 1714 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 1715 1716 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 1717 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1718 1719 // Clear the dependency checks. We assume they are not needed. 1720 Accesses.resetDepChecks(*DepChecker); 1721 1722 PtrRtChecking->reset(); 1723 PtrRtChecking->Need = true; 1724 1725 auto *SE = PSE->getSE(); 1726 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 1727 SymbolicStrides, true); 1728 1729 // Check that we found the bounds for the pointer. 1730 if (!CanDoRTIfNeeded) { 1731 emitAnalysis(LoopAccessReport() 1732 << "cannot check memory dependencies at runtime"); 1733 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1734 CanVecMem = false; 1735 return; 1736 } 1737 1738 CanVecMem = true; 1739 } 1740 } 1741 1742 if (CanVecMem) 1743 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1744 << (PtrRtChecking->Need ? "" : " don't") 1745 << " need runtime memory checks.\n"); 1746 else { 1747 emitAnalysis( 1748 LoopAccessReport() 1749 << "unsafe dependent memory operations in loop. Use " 1750 "#pragma loop distribute(enable) to allow loop distribution " 1751 "to attempt to isolate the offending operations into a separate " 1752 "loop"); 1753 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1754 } 1755 } 1756 1757 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1758 DominatorTree *DT) { 1759 assert(TheLoop->contains(BB) && "Unknown block used"); 1760 1761 // Blocks that do not dominate the latch need predication. 1762 BasicBlock* Latch = TheLoop->getLoopLatch(); 1763 return !DT->dominates(BB, Latch); 1764 } 1765 1766 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1767 assert(!Report && "Multiple reports generated"); 1768 Report = Message; 1769 } 1770 1771 bool LoopAccessInfo::isUniform(Value *V) const { 1772 return (PSE->getSE()->isLoopInvariant(PSE->getSE()->getSCEV(V), TheLoop)); 1773 } 1774 1775 // FIXME: this function is currently a duplicate of the one in 1776 // LoopVectorize.cpp. 1777 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1778 Instruction *Loc) { 1779 if (FirstInst) 1780 return FirstInst; 1781 if (Instruction *I = dyn_cast<Instruction>(V)) 1782 return I->getParent() == Loc->getParent() ? I : nullptr; 1783 return nullptr; 1784 } 1785 1786 namespace { 1787 /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 1788 /// need to use value-handles because SCEV expansion can invalidate previously 1789 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1790 /// a previous one. 1791 struct PointerBounds { 1792 TrackingVH<Value> Start; 1793 TrackingVH<Value> End; 1794 }; 1795 } // end anonymous namespace 1796 1797 /// \brief Expand code for the lower and upper bound of the pointer group \p CG 1798 /// in \p TheLoop. \return the values for the bounds. 1799 static PointerBounds 1800 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 1801 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 1802 const RuntimePointerChecking &PtrRtChecking) { 1803 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 1804 const SCEV *Sc = SE->getSCEV(Ptr); 1805 1806 if (SE->isLoopInvariant(Sc, TheLoop)) { 1807 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 1808 << "\n"); 1809 return {Ptr, Ptr}; 1810 } else { 1811 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1812 LLVMContext &Ctx = Loc->getContext(); 1813 1814 // Use this type for pointer arithmetic. 1815 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1816 Value *Start = nullptr, *End = nullptr; 1817 1818 DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1819 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1820 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1821 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1822 return {Start, End}; 1823 } 1824 } 1825 1826 /// \brief Turns a collection of checks into a collection of expanded upper and 1827 /// lower bounds for both pointers in the check. 1828 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 1829 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 1830 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 1831 const RuntimePointerChecking &PtrRtChecking) { 1832 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1833 1834 // Here we're relying on the SCEV Expander's cache to only emit code for the 1835 // same bounds once. 1836 std::transform( 1837 PointerChecks.begin(), PointerChecks.end(), 1838 std::back_inserter(ChecksWithBounds), 1839 [&](const RuntimePointerChecking::PointerCheck &Check) { 1840 PointerBounds 1841 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 1842 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 1843 return std::make_pair(First, Second); 1844 }); 1845 1846 return ChecksWithBounds; 1847 } 1848 1849 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 1850 Instruction *Loc, 1851 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 1852 const { 1853 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 1854 auto *SE = PSE->getSE(); 1855 SCEVExpander Exp(*SE, DL, "induction"); 1856 auto ExpandedChecks = 1857 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 1858 1859 LLVMContext &Ctx = Loc->getContext(); 1860 Instruction *FirstInst = nullptr; 1861 IRBuilder<> ChkBuilder(Loc); 1862 // Our instructions might fold to a constant. 1863 Value *MemoryRuntimeCheck = nullptr; 1864 1865 for (const auto &Check : ExpandedChecks) { 1866 const PointerBounds &A = Check.first, &B = Check.second; 1867 // Check if two pointers (A and B) conflict where conflict is computed as: 1868 // start(A) <= end(B) && start(B) <= end(A) 1869 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1870 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1871 1872 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1873 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1874 "Trying to bounds check pointers with different address spaces"); 1875 1876 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1877 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1878 1879 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1880 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1881 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1882 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1883 1884 // [A|B].Start points to the first accessed byte under base [A|B]. 1885 // [A|B].End points to the last accessed byte, plus one. 1886 // There is no conflict when the intervals are disjoint: 1887 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1888 // 1889 // bound0 = (B.Start < A.End) 1890 // bound1 = (A.Start < B.End) 1891 // IsConflict = bound0 & bound1 1892 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 1893 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1894 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 1895 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1896 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1897 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1898 if (MemoryRuntimeCheck) { 1899 IsConflict = 1900 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1901 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1902 } 1903 MemoryRuntimeCheck = IsConflict; 1904 } 1905 1906 if (!MemoryRuntimeCheck) 1907 return std::make_pair(nullptr, nullptr); 1908 1909 // We have to do this trickery because the IRBuilder might fold the check to a 1910 // constant expression in which case there is no Instruction anchored in a 1911 // the block. 1912 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1913 ConstantInt::getTrue(Ctx)); 1914 ChkBuilder.Insert(Check, "memcheck.conflict"); 1915 FirstInst = getFirstInst(FirstInst, Check, Loc); 1916 return std::make_pair(FirstInst, Check); 1917 } 1918 1919 std::pair<Instruction *, Instruction *> 1920 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 1921 if (!PtrRtChecking->Need) 1922 return std::make_pair(nullptr, nullptr); 1923 1924 return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 1925 } 1926 1927 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 1928 Value *Ptr = nullptr; 1929 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 1930 Ptr = LI->getPointerOperand(); 1931 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 1932 Ptr = SI->getPointerOperand(); 1933 else 1934 return; 1935 1936 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 1937 if (!Stride) 1938 return; 1939 1940 DEBUG(dbgs() << "LAA: Found a strided access that we can version"); 1941 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 1942 SymbolicStrides[Ptr] = Stride; 1943 StrideSet.insert(Stride); 1944 } 1945 1946 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1947 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1948 DominatorTree *DT, LoopInfo *LI) 1949 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), 1950 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), 1951 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 1952 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 1953 StoreToLoopInvariantAddress(false) { 1954 if (canAnalyzeLoop()) 1955 analyzeLoop(AA, LI, TLI, DT); 1956 } 1957 1958 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1959 if (CanVecMem) { 1960 OS.indent(Depth) << "Memory dependences are safe"; 1961 if (MaxSafeDepDistBytes != -1ULL) 1962 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 1963 << " bytes"; 1964 if (PtrRtChecking->Need) 1965 OS << " with run-time checks"; 1966 OS << "\n"; 1967 } 1968 1969 if (Report) 1970 OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1971 1972 if (auto *Dependences = DepChecker->getDependences()) { 1973 OS.indent(Depth) << "Dependences:\n"; 1974 for (auto &Dep : *Dependences) { 1975 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 1976 OS << "\n"; 1977 } 1978 } else 1979 OS.indent(Depth) << "Too many dependences, not recorded\n"; 1980 1981 // List the pair of accesses need run-time checks to prove independence. 1982 PtrRtChecking->print(OS, Depth); 1983 OS << "\n"; 1984 1985 OS.indent(Depth) << "Store to invariant address was " 1986 << (StoreToLoopInvariantAddress ? "" : "not ") 1987 << "found in loop.\n"; 1988 1989 OS.indent(Depth) << "SCEV assumptions:\n"; 1990 PSE->getUnionPredicate().print(OS, Depth); 1991 1992 OS << "\n"; 1993 1994 OS.indent(Depth) << "Expressions re-written:\n"; 1995 PSE->print(OS, Depth); 1996 } 1997 1998 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 1999 auto &LAI = LoopAccessInfoMap[L]; 2000 2001 if (!LAI) 2002 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2003 2004 return *LAI.get(); 2005 } 2006 2007 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2008 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2009 2010 for (Loop *TopLevelLoop : *LI) 2011 for (Loop *L : depth_first(TopLevelLoop)) { 2012 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2013 auto &LAI = LAA.getInfo(L); 2014 LAI.print(OS, 4); 2015 } 2016 } 2017 2018 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2019 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2020 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2021 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2022 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2023 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2024 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2025 2026 return false; 2027 } 2028 2029 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2030 AU.addRequired<ScalarEvolutionWrapperPass>(); 2031 AU.addRequired<AAResultsWrapperPass>(); 2032 AU.addRequired<DominatorTreeWrapperPass>(); 2033 AU.addRequired<LoopInfoWrapperPass>(); 2034 2035 AU.setPreservesAll(); 2036 } 2037 2038 char LoopAccessLegacyAnalysis::ID = 0; 2039 static const char laa_name[] = "Loop Access Analysis"; 2040 #define LAA_NAME "loop-accesses" 2041 2042 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2043 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2044 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2045 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2046 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2047 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2048 2049 char LoopAccessAnalysis::PassID; 2050 2051 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, AnalysisManager<Loop> &AM) { 2052 const AnalysisManager<Function> &FAM = 2053 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 2054 Function &F = *L.getHeader()->getParent(); 2055 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(F); 2056 auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(F); 2057 auto *AA = FAM.getCachedResult<AAManager>(F); 2058 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 2059 auto *LI = FAM.getCachedResult<LoopAnalysis>(F); 2060 if (!SE) 2061 report_fatal_error( 2062 "ScalarEvolution must have been cached at a higher level"); 2063 if (!AA) 2064 report_fatal_error("AliasAnalysis must have been cached at a higher level"); 2065 if (!DT) 2066 report_fatal_error("DominatorTree must have been cached at a higher level"); 2067 if (!LI) 2068 report_fatal_error("LoopInfo must have been cached at a higher level"); 2069 return LoopAccessInfo(&L, SE, TLI, AA, DT, LI); 2070 } 2071 2072 PreservedAnalyses LoopAccessInfoPrinterPass::run(Loop &L, 2073 AnalysisManager<Loop> &AM) { 2074 Function &F = *L.getHeader()->getParent(); 2075 auto &LAI = AM.getResult<LoopAccessAnalysis>(L); 2076 OS << "Loop access info in function '" << F.getName() << "':\n"; 2077 OS.indent(2) << L.getHeader()->getName() << ":\n"; 2078 LAI.print(OS, 4); 2079 return PreservedAnalyses::all(); 2080 } 2081 2082 namespace llvm { 2083 Pass *createLAAPass() { 2084 return new LoopAccessLegacyAnalysis(); 2085 } 2086 } 2087