1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/CmpInstAnalysis.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/KnownBits.h" 41 #include <algorithm> 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "instsimplify" 46 47 enum { RecursionLimit = 3 }; 48 49 STATISTIC(NumExpand, "Number of expansions"); 50 STATISTIC(NumReassoc, "Number of reassociations"); 51 52 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 53 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 54 unsigned); 55 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 60 const SimplifyQuery &Q, unsigned MaxRecurse); 61 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 62 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyCastInst(unsigned, Value *, Type *, 64 const SimplifyQuery &, unsigned); 65 66 /// For a boolean type or a vector of boolean type, return false or a vector 67 /// with every element false. 68 static Constant *getFalse(Type *Ty) { 69 return ConstantInt::getFalse(Ty); 70 } 71 72 /// For a boolean type or a vector of boolean type, return true or a vector 73 /// with every element true. 74 static Constant *getTrue(Type *Ty) { 75 return ConstantInt::getTrue(Ty); 76 } 77 78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 80 Value *RHS) { 81 CmpInst *Cmp = dyn_cast<CmpInst>(V); 82 if (!Cmp) 83 return false; 84 CmpInst::Predicate CPred = Cmp->getPredicate(); 85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 86 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 87 return true; 88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 89 CRHS == LHS; 90 } 91 92 /// Does the given value dominate the specified phi node? 93 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 94 Instruction *I = dyn_cast<Instruction>(V); 95 if (!I) 96 // Arguments and constants dominate all instructions. 97 return true; 98 99 // If we are processing instructions (and/or basic blocks) that have not been 100 // fully added to a function, the parent nodes may still be null. Simply 101 // return the conservative answer in these cases. 102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 103 return false; 104 105 // If we have a DominatorTree then do a precise test. 106 if (DT) 107 return DT->dominates(I, P); 108 109 // Otherwise, if the instruction is in the entry block and is not an invoke, 110 // then it obviously dominates all phi nodes. 111 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 112 !isa<InvokeInst>(I)) 113 return true; 114 115 return false; 116 } 117 118 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 119 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 120 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 121 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 122 /// Returns the simplified value, or null if no simplification was performed. 123 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 124 Instruction::BinaryOps OpcodeToExpand, 125 const SimplifyQuery &Q, unsigned MaxRecurse) { 126 // Recursion is always used, so bail out at once if we already hit the limit. 127 if (!MaxRecurse--) 128 return nullptr; 129 130 // Check whether the expression has the form "(A op' B) op C". 131 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 132 if (Op0->getOpcode() == OpcodeToExpand) { 133 // It does! Try turning it into "(A op C) op' (B op C)". 134 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 135 // Do "A op C" and "B op C" both simplify? 136 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 137 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 138 // They do! Return "L op' R" if it simplifies or is already available. 139 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 140 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 141 && L == B && R == A)) { 142 ++NumExpand; 143 return LHS; 144 } 145 // Otherwise return "L op' R" if it simplifies. 146 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 147 ++NumExpand; 148 return V; 149 } 150 } 151 } 152 153 // Check whether the expression has the form "A op (B op' C)". 154 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 155 if (Op1->getOpcode() == OpcodeToExpand) { 156 // It does! Try turning it into "(A op B) op' (A op C)". 157 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 158 // Do "A op B" and "A op C" both simplify? 159 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 160 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 161 // They do! Return "L op' R" if it simplifies or is already available. 162 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 163 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 164 && L == C && R == B)) { 165 ++NumExpand; 166 return RHS; 167 } 168 // Otherwise return "L op' R" if it simplifies. 169 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 170 ++NumExpand; 171 return V; 172 } 173 } 174 } 175 176 return nullptr; 177 } 178 179 /// Generic simplifications for associative binary operations. 180 /// Returns the simpler value, or null if none was found. 181 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 182 Value *LHS, Value *RHS, 183 const SimplifyQuery &Q, 184 unsigned MaxRecurse) { 185 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 186 187 // Recursion is always used, so bail out at once if we already hit the limit. 188 if (!MaxRecurse--) 189 return nullptr; 190 191 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 192 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 193 194 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 195 if (Op0 && Op0->getOpcode() == Opcode) { 196 Value *A = Op0->getOperand(0); 197 Value *B = Op0->getOperand(1); 198 Value *C = RHS; 199 200 // Does "B op C" simplify? 201 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 202 // It does! Return "A op V" if it simplifies or is already available. 203 // If V equals B then "A op V" is just the LHS. 204 if (V == B) return LHS; 205 // Otherwise return "A op V" if it simplifies. 206 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 207 ++NumReassoc; 208 return W; 209 } 210 } 211 } 212 213 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 214 if (Op1 && Op1->getOpcode() == Opcode) { 215 Value *A = LHS; 216 Value *B = Op1->getOperand(0); 217 Value *C = Op1->getOperand(1); 218 219 // Does "A op B" simplify? 220 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 221 // It does! Return "V op C" if it simplifies or is already available. 222 // If V equals B then "V op C" is just the RHS. 223 if (V == B) return RHS; 224 // Otherwise return "V op C" if it simplifies. 225 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 226 ++NumReassoc; 227 return W; 228 } 229 } 230 } 231 232 // The remaining transforms require commutativity as well as associativity. 233 if (!Instruction::isCommutative(Opcode)) 234 return nullptr; 235 236 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 237 if (Op0 && Op0->getOpcode() == Opcode) { 238 Value *A = Op0->getOperand(0); 239 Value *B = Op0->getOperand(1); 240 Value *C = RHS; 241 242 // Does "C op A" simplify? 243 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 244 // It does! Return "V op B" if it simplifies or is already available. 245 // If V equals A then "V op B" is just the LHS. 246 if (V == A) return LHS; 247 // Otherwise return "V op B" if it simplifies. 248 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 249 ++NumReassoc; 250 return W; 251 } 252 } 253 } 254 255 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 256 if (Op1 && Op1->getOpcode() == Opcode) { 257 Value *A = LHS; 258 Value *B = Op1->getOperand(0); 259 Value *C = Op1->getOperand(1); 260 261 // Does "C op A" simplify? 262 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 263 // It does! Return "B op V" if it simplifies or is already available. 264 // If V equals C then "B op V" is just the RHS. 265 if (V == C) return RHS; 266 // Otherwise return "B op V" if it simplifies. 267 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 268 ++NumReassoc; 269 return W; 270 } 271 } 272 } 273 274 return nullptr; 275 } 276 277 /// In the case of a binary operation with a select instruction as an operand, 278 /// try to simplify the binop by seeing whether evaluating it on both branches 279 /// of the select results in the same value. Returns the common value if so, 280 /// otherwise returns null. 281 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 282 Value *RHS, const SimplifyQuery &Q, 283 unsigned MaxRecurse) { 284 // Recursion is always used, so bail out at once if we already hit the limit. 285 if (!MaxRecurse--) 286 return nullptr; 287 288 SelectInst *SI; 289 if (isa<SelectInst>(LHS)) { 290 SI = cast<SelectInst>(LHS); 291 } else { 292 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 293 SI = cast<SelectInst>(RHS); 294 } 295 296 // Evaluate the BinOp on the true and false branches of the select. 297 Value *TV; 298 Value *FV; 299 if (SI == LHS) { 300 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 301 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 302 } else { 303 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 304 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 305 } 306 307 // If they simplified to the same value, then return the common value. 308 // If they both failed to simplify then return null. 309 if (TV == FV) 310 return TV; 311 312 // If one branch simplified to undef, return the other one. 313 if (TV && isa<UndefValue>(TV)) 314 return FV; 315 if (FV && isa<UndefValue>(FV)) 316 return TV; 317 318 // If applying the operation did not change the true and false select values, 319 // then the result of the binop is the select itself. 320 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 321 return SI; 322 323 // If one branch simplified and the other did not, and the simplified 324 // value is equal to the unsimplified one, return the simplified value. 325 // For example, select (cond, X, X & Z) & Z -> X & Z. 326 if ((FV && !TV) || (TV && !FV)) { 327 // Check that the simplified value has the form "X op Y" where "op" is the 328 // same as the original operation. 329 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 330 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 331 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 332 // We already know that "op" is the same as for the simplified value. See 333 // if the operands match too. If so, return the simplified value. 334 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 335 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 336 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 337 if (Simplified->getOperand(0) == UnsimplifiedLHS && 338 Simplified->getOperand(1) == UnsimplifiedRHS) 339 return Simplified; 340 if (Simplified->isCommutative() && 341 Simplified->getOperand(1) == UnsimplifiedLHS && 342 Simplified->getOperand(0) == UnsimplifiedRHS) 343 return Simplified; 344 } 345 } 346 347 return nullptr; 348 } 349 350 /// In the case of a comparison with a select instruction, try to simplify the 351 /// comparison by seeing whether both branches of the select result in the same 352 /// value. Returns the common value if so, otherwise returns null. 353 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 354 Value *RHS, const SimplifyQuery &Q, 355 unsigned MaxRecurse) { 356 // Recursion is always used, so bail out at once if we already hit the limit. 357 if (!MaxRecurse--) 358 return nullptr; 359 360 // Make sure the select is on the LHS. 361 if (!isa<SelectInst>(LHS)) { 362 std::swap(LHS, RHS); 363 Pred = CmpInst::getSwappedPredicate(Pred); 364 } 365 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 366 SelectInst *SI = cast<SelectInst>(LHS); 367 Value *Cond = SI->getCondition(); 368 Value *TV = SI->getTrueValue(); 369 Value *FV = SI->getFalseValue(); 370 371 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 372 // Does "cmp TV, RHS" simplify? 373 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 374 if (TCmp == Cond) { 375 // It not only simplified, it simplified to the select condition. Replace 376 // it with 'true'. 377 TCmp = getTrue(Cond->getType()); 378 } else if (!TCmp) { 379 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 380 // condition then we can replace it with 'true'. Otherwise give up. 381 if (!isSameCompare(Cond, Pred, TV, RHS)) 382 return nullptr; 383 TCmp = getTrue(Cond->getType()); 384 } 385 386 // Does "cmp FV, RHS" simplify? 387 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 388 if (FCmp == Cond) { 389 // It not only simplified, it simplified to the select condition. Replace 390 // it with 'false'. 391 FCmp = getFalse(Cond->getType()); 392 } else if (!FCmp) { 393 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 394 // condition then we can replace it with 'false'. Otherwise give up. 395 if (!isSameCompare(Cond, Pred, FV, RHS)) 396 return nullptr; 397 FCmp = getFalse(Cond->getType()); 398 } 399 400 // If both sides simplified to the same value, then use it as the result of 401 // the original comparison. 402 if (TCmp == FCmp) 403 return TCmp; 404 405 // The remaining cases only make sense if the select condition has the same 406 // type as the result of the comparison, so bail out if this is not so. 407 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 408 return nullptr; 409 // If the false value simplified to false, then the result of the compare 410 // is equal to "Cond && TCmp". This also catches the case when the false 411 // value simplified to false and the true value to true, returning "Cond". 412 if (match(FCmp, m_Zero())) 413 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 414 return V; 415 // If the true value simplified to true, then the result of the compare 416 // is equal to "Cond || FCmp". 417 if (match(TCmp, m_One())) 418 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 419 return V; 420 // Finally, if the false value simplified to true and the true value to 421 // false, then the result of the compare is equal to "!Cond". 422 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 423 if (Value *V = 424 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 425 Q, MaxRecurse)) 426 return V; 427 428 return nullptr; 429 } 430 431 /// In the case of a binary operation with an operand that is a PHI instruction, 432 /// try to simplify the binop by seeing whether evaluating it on the incoming 433 /// phi values yields the same result for every value. If so returns the common 434 /// value, otherwise returns null. 435 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 436 Value *RHS, const SimplifyQuery &Q, 437 unsigned MaxRecurse) { 438 // Recursion is always used, so bail out at once if we already hit the limit. 439 if (!MaxRecurse--) 440 return nullptr; 441 442 PHINode *PI; 443 if (isa<PHINode>(LHS)) { 444 PI = cast<PHINode>(LHS); 445 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 446 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 447 return nullptr; 448 } else { 449 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 450 PI = cast<PHINode>(RHS); 451 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 452 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 453 return nullptr; 454 } 455 456 // Evaluate the BinOp on the incoming phi values. 457 Value *CommonValue = nullptr; 458 for (Value *Incoming : PI->incoming_values()) { 459 // If the incoming value is the phi node itself, it can safely be skipped. 460 if (Incoming == PI) continue; 461 Value *V = PI == LHS ? 462 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 463 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 464 // If the operation failed to simplify, or simplified to a different value 465 // to previously, then give up. 466 if (!V || (CommonValue && V != CommonValue)) 467 return nullptr; 468 CommonValue = V; 469 } 470 471 return CommonValue; 472 } 473 474 /// In the case of a comparison with a PHI instruction, try to simplify the 475 /// comparison by seeing whether comparing with all of the incoming phi values 476 /// yields the same result every time. If so returns the common result, 477 /// otherwise returns null. 478 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 479 const SimplifyQuery &Q, unsigned MaxRecurse) { 480 // Recursion is always used, so bail out at once if we already hit the limit. 481 if (!MaxRecurse--) 482 return nullptr; 483 484 // Make sure the phi is on the LHS. 485 if (!isa<PHINode>(LHS)) { 486 std::swap(LHS, RHS); 487 Pred = CmpInst::getSwappedPredicate(Pred); 488 } 489 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 490 PHINode *PI = cast<PHINode>(LHS); 491 492 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 493 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 494 return nullptr; 495 496 // Evaluate the BinOp on the incoming phi values. 497 Value *CommonValue = nullptr; 498 for (Value *Incoming : PI->incoming_values()) { 499 // If the incoming value is the phi node itself, it can safely be skipped. 500 if (Incoming == PI) continue; 501 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 502 // If the operation failed to simplify, or simplified to a different value 503 // to previously, then give up. 504 if (!V || (CommonValue && V != CommonValue)) 505 return nullptr; 506 CommonValue = V; 507 } 508 509 return CommonValue; 510 } 511 512 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 513 Value *&Op0, Value *&Op1, 514 const SimplifyQuery &Q) { 515 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 516 if (auto *CRHS = dyn_cast<Constant>(Op1)) 517 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 518 519 // Canonicalize the constant to the RHS if this is a commutative operation. 520 if (Instruction::isCommutative(Opcode)) 521 std::swap(Op0, Op1); 522 } 523 return nullptr; 524 } 525 526 /// Given operands for an Add, see if we can fold the result. 527 /// If not, this returns null. 528 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 529 const SimplifyQuery &Q, unsigned MaxRecurse) { 530 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 531 return C; 532 533 // X + undef -> undef 534 if (match(Op1, m_Undef())) 535 return Op1; 536 537 // X + 0 -> X 538 if (match(Op1, m_Zero())) 539 return Op0; 540 541 // X + (Y - X) -> Y 542 // (Y - X) + X -> Y 543 // Eg: X + -X -> 0 544 Value *Y = nullptr; 545 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 546 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 547 return Y; 548 549 // X + ~X -> -1 since ~X = -X-1 550 Type *Ty = Op0->getType(); 551 if (match(Op0, m_Not(m_Specific(Op1))) || 552 match(Op1, m_Not(m_Specific(Op0)))) 553 return Constant::getAllOnesValue(Ty); 554 555 // add nsw/nuw (xor Y, signmask), signmask --> Y 556 // The no-wrapping add guarantees that the top bit will be set by the add. 557 // Therefore, the xor must be clearing the already set sign bit of Y. 558 if ((isNSW || isNUW) && match(Op1, m_SignMask()) && 559 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 560 return Y; 561 562 /// i1 add -> xor. 563 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 564 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 565 return V; 566 567 // Try some generic simplifications for associative operations. 568 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 569 MaxRecurse)) 570 return V; 571 572 // Threading Add over selects and phi nodes is pointless, so don't bother. 573 // Threading over the select in "A + select(cond, B, C)" means evaluating 574 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 575 // only if B and C are equal. If B and C are equal then (since we assume 576 // that operands have already been simplified) "select(cond, B, C)" should 577 // have been simplified to the common value of B and C already. Analysing 578 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 579 // for threading over phi nodes. 580 581 return nullptr; 582 } 583 584 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 585 const SimplifyQuery &Query) { 586 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit); 587 } 588 589 /// \brief Compute the base pointer and cumulative constant offsets for V. 590 /// 591 /// This strips all constant offsets off of V, leaving it the base pointer, and 592 /// accumulates the total constant offset applied in the returned constant. It 593 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 594 /// no constant offsets applied. 595 /// 596 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 597 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 598 /// folding. 599 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 600 bool AllowNonInbounds = false) { 601 assert(V->getType()->isPtrOrPtrVectorTy()); 602 603 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 604 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 605 606 // Even though we don't look through PHI nodes, we could be called on an 607 // instruction in an unreachable block, which may be on a cycle. 608 SmallPtrSet<Value *, 4> Visited; 609 Visited.insert(V); 610 do { 611 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 612 if ((!AllowNonInbounds && !GEP->isInBounds()) || 613 !GEP->accumulateConstantOffset(DL, Offset)) 614 break; 615 V = GEP->getPointerOperand(); 616 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 617 V = cast<Operator>(V)->getOperand(0); 618 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 619 if (GA->isInterposable()) 620 break; 621 V = GA->getAliasee(); 622 } else { 623 if (auto CS = CallSite(V)) 624 if (Value *RV = CS.getReturnedArgOperand()) { 625 V = RV; 626 continue; 627 } 628 break; 629 } 630 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 631 } while (Visited.insert(V).second); 632 633 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 634 if (V->getType()->isVectorTy()) 635 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 636 OffsetIntPtr); 637 return OffsetIntPtr; 638 } 639 640 /// \brief Compute the constant difference between two pointer values. 641 /// If the difference is not a constant, returns zero. 642 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 643 Value *RHS) { 644 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 645 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 646 647 // If LHS and RHS are not related via constant offsets to the same base 648 // value, there is nothing we can do here. 649 if (LHS != RHS) 650 return nullptr; 651 652 // Otherwise, the difference of LHS - RHS can be computed as: 653 // LHS - RHS 654 // = (LHSOffset + Base) - (RHSOffset + Base) 655 // = LHSOffset - RHSOffset 656 return ConstantExpr::getSub(LHSOffset, RHSOffset); 657 } 658 659 /// Given operands for a Sub, see if we can fold the result. 660 /// If not, this returns null. 661 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 662 const SimplifyQuery &Q, unsigned MaxRecurse) { 663 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 664 return C; 665 666 // X - undef -> undef 667 // undef - X -> undef 668 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 669 return UndefValue::get(Op0->getType()); 670 671 // X - 0 -> X 672 if (match(Op1, m_Zero())) 673 return Op0; 674 675 // X - X -> 0 676 if (Op0 == Op1) 677 return Constant::getNullValue(Op0->getType()); 678 679 // Is this a negation? 680 if (match(Op0, m_Zero())) { 681 // 0 - X -> 0 if the sub is NUW. 682 if (isNUW) 683 return Op0; 684 685 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 686 if (Known.Zero.isMaxSignedValue()) { 687 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 688 // Op1 must be 0 because negating the minimum signed value is undefined. 689 if (isNSW) 690 return Op0; 691 692 // 0 - X -> X if X is 0 or the minimum signed value. 693 return Op1; 694 } 695 } 696 697 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 698 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 699 Value *X = nullptr, *Y = nullptr, *Z = Op1; 700 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 701 // See if "V === Y - Z" simplifies. 702 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 703 // It does! Now see if "X + V" simplifies. 704 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 705 // It does, we successfully reassociated! 706 ++NumReassoc; 707 return W; 708 } 709 // See if "V === X - Z" simplifies. 710 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 711 // It does! Now see if "Y + V" simplifies. 712 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 713 // It does, we successfully reassociated! 714 ++NumReassoc; 715 return W; 716 } 717 } 718 719 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 720 // For example, X - (X + 1) -> -1 721 X = Op0; 722 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 723 // See if "V === X - Y" simplifies. 724 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 725 // It does! Now see if "V - Z" simplifies. 726 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 727 // It does, we successfully reassociated! 728 ++NumReassoc; 729 return W; 730 } 731 // See if "V === X - Z" simplifies. 732 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 733 // It does! Now see if "V - Y" simplifies. 734 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 735 // It does, we successfully reassociated! 736 ++NumReassoc; 737 return W; 738 } 739 } 740 741 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 742 // For example, X - (X - Y) -> Y. 743 Z = Op0; 744 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 745 // See if "V === Z - X" simplifies. 746 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 747 // It does! Now see if "V + Y" simplifies. 748 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 749 // It does, we successfully reassociated! 750 ++NumReassoc; 751 return W; 752 } 753 754 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 755 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 756 match(Op1, m_Trunc(m_Value(Y)))) 757 if (X->getType() == Y->getType()) 758 // See if "V === X - Y" simplifies. 759 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 760 // It does! Now see if "trunc V" simplifies. 761 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 762 Q, MaxRecurse - 1)) 763 // It does, return the simplified "trunc V". 764 return W; 765 766 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 767 if (match(Op0, m_PtrToInt(m_Value(X))) && 768 match(Op1, m_PtrToInt(m_Value(Y)))) 769 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 770 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 771 772 // i1 sub -> xor. 773 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 774 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 775 return V; 776 777 // Threading Sub over selects and phi nodes is pointless, so don't bother. 778 // Threading over the select in "A - select(cond, B, C)" means evaluating 779 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 780 // only if B and C are equal. If B and C are equal then (since we assume 781 // that operands have already been simplified) "select(cond, B, C)" should 782 // have been simplified to the common value of B and C already. Analysing 783 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 784 // for threading over phi nodes. 785 786 return nullptr; 787 } 788 789 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 790 const SimplifyQuery &Q) { 791 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 792 } 793 794 /// Given operands for a Mul, see if we can fold the result. 795 /// If not, this returns null. 796 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 797 unsigned MaxRecurse) { 798 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 799 return C; 800 801 // X * undef -> 0 802 if (match(Op1, m_Undef())) 803 return Constant::getNullValue(Op0->getType()); 804 805 // X * 0 -> 0 806 if (match(Op1, m_Zero())) 807 return Op1; 808 809 // X * 1 -> X 810 if (match(Op1, m_One())) 811 return Op0; 812 813 // (X / Y) * Y -> X if the division is exact. 814 Value *X = nullptr; 815 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 816 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 817 return X; 818 819 // i1 mul -> and. 820 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 821 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 822 return V; 823 824 // Try some generic simplifications for associative operations. 825 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 826 MaxRecurse)) 827 return V; 828 829 // Mul distributes over Add. Try some generic simplifications based on this. 830 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 831 Q, MaxRecurse)) 832 return V; 833 834 // If the operation is with the result of a select instruction, check whether 835 // operating on either branch of the select always yields the same value. 836 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 837 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 838 MaxRecurse)) 839 return V; 840 841 // If the operation is with the result of a phi instruction, check whether 842 // operating on all incoming values of the phi always yields the same value. 843 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 844 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 845 MaxRecurse)) 846 return V; 847 848 return nullptr; 849 } 850 851 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 852 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 853 } 854 855 /// Check for common or similar folds of integer division or integer remainder. 856 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 857 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 858 Type *Ty = Op0->getType(); 859 860 // X / undef -> undef 861 // X % undef -> undef 862 if (match(Op1, m_Undef())) 863 return Op1; 864 865 // X / 0 -> undef 866 // X % 0 -> undef 867 // We don't need to preserve faults! 868 if (match(Op1, m_Zero())) 869 return UndefValue::get(Ty); 870 871 // If any element of a constant divisor vector is zero, the whole op is undef. 872 auto *Op1C = dyn_cast<Constant>(Op1); 873 if (Op1C && Ty->isVectorTy()) { 874 unsigned NumElts = Ty->getVectorNumElements(); 875 for (unsigned i = 0; i != NumElts; ++i) { 876 Constant *Elt = Op1C->getAggregateElement(i); 877 if (Elt && Elt->isNullValue()) 878 return UndefValue::get(Ty); 879 } 880 } 881 882 // undef / X -> 0 883 // undef % X -> 0 884 if (match(Op0, m_Undef())) 885 return Constant::getNullValue(Ty); 886 887 // 0 / X -> 0 888 // 0 % X -> 0 889 if (match(Op0, m_Zero())) 890 return Op0; 891 892 // X / X -> 1 893 // X % X -> 0 894 if (Op0 == Op1) 895 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 896 897 // X / 1 -> X 898 // X % 1 -> 0 899 // If this is a boolean op (single-bit element type), we can't have 900 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 901 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1)) 902 return IsDiv ? Op0 : Constant::getNullValue(Ty); 903 904 return nullptr; 905 } 906 907 /// Given a predicate and two operands, return true if the comparison is true. 908 /// This is a helper for div/rem simplification where we return some other value 909 /// when we can prove a relationship between the operands. 910 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 911 const SimplifyQuery &Q, unsigned MaxRecurse) { 912 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 913 Constant *C = dyn_cast_or_null<Constant>(V); 914 return (C && C->isAllOnesValue()); 915 } 916 917 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 918 /// to simplify X % Y to X. 919 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 920 unsigned MaxRecurse, bool IsSigned) { 921 // Recursion is always used, so bail out at once if we already hit the limit. 922 if (!MaxRecurse--) 923 return false; 924 925 if (IsSigned) { 926 // |X| / |Y| --> 0 927 // 928 // We require that 1 operand is a simple constant. That could be extended to 929 // 2 variables if we computed the sign bit for each. 930 // 931 // Make sure that a constant is not the minimum signed value because taking 932 // the abs() of that is undefined. 933 Type *Ty = X->getType(); 934 const APInt *C; 935 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 936 // Is the variable divisor magnitude always greater than the constant 937 // dividend magnitude? 938 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 939 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 940 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 941 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 942 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 943 return true; 944 } 945 if (match(Y, m_APInt(C))) { 946 // Special-case: we can't take the abs() of a minimum signed value. If 947 // that's the divisor, then all we have to do is prove that the dividend 948 // is also not the minimum signed value. 949 if (C->isMinSignedValue()) 950 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 951 952 // Is the variable dividend magnitude always less than the constant 953 // divisor magnitude? 954 // |X| < |C| --> X > -abs(C) and X < abs(C) 955 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 956 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 957 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 958 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 959 return true; 960 } 961 return false; 962 } 963 964 // IsSigned == false. 965 // Is the dividend unsigned less than the divisor? 966 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 967 } 968 969 /// These are simplifications common to SDiv and UDiv. 970 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 971 const SimplifyQuery &Q, unsigned MaxRecurse) { 972 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 973 return C; 974 975 if (Value *V = simplifyDivRem(Op0, Op1, true)) 976 return V; 977 978 bool IsSigned = Opcode == Instruction::SDiv; 979 980 // (X * Y) / Y -> X if the multiplication does not overflow. 981 Value *X = nullptr, *Y = nullptr; 982 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 983 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 984 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 985 // If the Mul knows it does not overflow, then we are good to go. 986 if ((IsSigned && Mul->hasNoSignedWrap()) || 987 (!IsSigned && Mul->hasNoUnsignedWrap())) 988 return X; 989 // If X has the form X = A / Y then X * Y cannot overflow. 990 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 991 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 992 return X; 993 } 994 995 // (X rem Y) / Y -> 0 996 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 997 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 998 return Constant::getNullValue(Op0->getType()); 999 1000 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1001 ConstantInt *C1, *C2; 1002 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1003 match(Op1, m_ConstantInt(C2))) { 1004 bool Overflow; 1005 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1006 if (Overflow) 1007 return Constant::getNullValue(Op0->getType()); 1008 } 1009 1010 // If the operation is with the result of a select instruction, check whether 1011 // operating on either branch of the select always yields the same value. 1012 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1013 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1014 return V; 1015 1016 // If the operation is with the result of a phi instruction, check whether 1017 // operating on all incoming values of the phi always yields the same value. 1018 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1019 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1020 return V; 1021 1022 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1023 return Constant::getNullValue(Op0->getType()); 1024 1025 return nullptr; 1026 } 1027 1028 /// These are simplifications common to SRem and URem. 1029 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1030 const SimplifyQuery &Q, unsigned MaxRecurse) { 1031 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1032 return C; 1033 1034 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1035 return V; 1036 1037 // (X % Y) % Y -> X % Y 1038 if ((Opcode == Instruction::SRem && 1039 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1040 (Opcode == Instruction::URem && 1041 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1042 return Op0; 1043 1044 // If the operation is with the result of a select instruction, check whether 1045 // operating on either branch of the select always yields the same value. 1046 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1047 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1048 return V; 1049 1050 // If the operation is with the result of a phi instruction, check whether 1051 // operating on all incoming values of the phi always yields the same value. 1052 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1053 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1054 return V; 1055 1056 // If X / Y == 0, then X % Y == X. 1057 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1058 return Op0; 1059 1060 return nullptr; 1061 } 1062 1063 /// Given operands for an SDiv, see if we can fold the result. 1064 /// If not, this returns null. 1065 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1066 unsigned MaxRecurse) { 1067 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1068 } 1069 1070 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1071 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1072 } 1073 1074 /// Given operands for a UDiv, see if we can fold the result. 1075 /// If not, this returns null. 1076 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1077 unsigned MaxRecurse) { 1078 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1079 } 1080 1081 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1082 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1083 } 1084 1085 /// Given operands for an SRem, see if we can fold the result. 1086 /// If not, this returns null. 1087 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1088 unsigned MaxRecurse) { 1089 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1090 } 1091 1092 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1093 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1094 } 1095 1096 /// Given operands for a URem, see if we can fold the result. 1097 /// If not, this returns null. 1098 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1099 unsigned MaxRecurse) { 1100 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1101 } 1102 1103 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1104 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1105 } 1106 1107 /// Returns true if a shift by \c Amount always yields undef. 1108 static bool isUndefShift(Value *Amount) { 1109 Constant *C = dyn_cast<Constant>(Amount); 1110 if (!C) 1111 return false; 1112 1113 // X shift by undef -> undef because it may shift by the bitwidth. 1114 if (isa<UndefValue>(C)) 1115 return true; 1116 1117 // Shifting by the bitwidth or more is undefined. 1118 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1119 if (CI->getValue().getLimitedValue() >= 1120 CI->getType()->getScalarSizeInBits()) 1121 return true; 1122 1123 // If all lanes of a vector shift are undefined the whole shift is. 1124 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1125 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1126 if (!isUndefShift(C->getAggregateElement(I))) 1127 return false; 1128 return true; 1129 } 1130 1131 return false; 1132 } 1133 1134 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1135 /// If not, this returns null. 1136 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1137 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1138 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1139 return C; 1140 1141 // 0 shift by X -> 0 1142 if (match(Op0, m_Zero())) 1143 return Op0; 1144 1145 // X shift by 0 -> X 1146 if (match(Op1, m_Zero())) 1147 return Op0; 1148 1149 // Fold undefined shifts. 1150 if (isUndefShift(Op1)) 1151 return UndefValue::get(Op0->getType()); 1152 1153 // If the operation is with the result of a select instruction, check whether 1154 // operating on either branch of the select always yields the same value. 1155 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1156 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1157 return V; 1158 1159 // If the operation is with the result of a phi instruction, check whether 1160 // operating on all incoming values of the phi always yields the same value. 1161 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1162 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1163 return V; 1164 1165 // If any bits in the shift amount make that value greater than or equal to 1166 // the number of bits in the type, the shift is undefined. 1167 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1168 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1169 return UndefValue::get(Op0->getType()); 1170 1171 // If all valid bits in the shift amount are known zero, the first operand is 1172 // unchanged. 1173 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1174 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1175 return Op0; 1176 1177 return nullptr; 1178 } 1179 1180 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1181 /// fold the result. If not, this returns null. 1182 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1183 Value *Op1, bool isExact, const SimplifyQuery &Q, 1184 unsigned MaxRecurse) { 1185 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1186 return V; 1187 1188 // X >> X -> 0 1189 if (Op0 == Op1) 1190 return Constant::getNullValue(Op0->getType()); 1191 1192 // undef >> X -> 0 1193 // undef >> X -> undef (if it's exact) 1194 if (match(Op0, m_Undef())) 1195 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1196 1197 // The low bit cannot be shifted out of an exact shift if it is set. 1198 if (isExact) { 1199 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1200 if (Op0Known.One[0]) 1201 return Op0; 1202 } 1203 1204 return nullptr; 1205 } 1206 1207 /// Given operands for an Shl, see if we can fold the result. 1208 /// If not, this returns null. 1209 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1210 const SimplifyQuery &Q, unsigned MaxRecurse) { 1211 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1212 return V; 1213 1214 // undef << X -> 0 1215 // undef << X -> undef if (if it's NSW/NUW) 1216 if (match(Op0, m_Undef())) 1217 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1218 1219 // (X >> A) << A -> X 1220 Value *X; 1221 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1222 return X; 1223 return nullptr; 1224 } 1225 1226 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1227 const SimplifyQuery &Q) { 1228 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1229 } 1230 1231 /// Given operands for an LShr, see if we can fold the result. 1232 /// If not, this returns null. 1233 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1234 const SimplifyQuery &Q, unsigned MaxRecurse) { 1235 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1236 MaxRecurse)) 1237 return V; 1238 1239 // (X << A) >> A -> X 1240 Value *X; 1241 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1242 return X; 1243 1244 return nullptr; 1245 } 1246 1247 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1248 const SimplifyQuery &Q) { 1249 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1250 } 1251 1252 /// Given operands for an AShr, see if we can fold the result. 1253 /// If not, this returns null. 1254 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1255 const SimplifyQuery &Q, unsigned MaxRecurse) { 1256 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1257 MaxRecurse)) 1258 return V; 1259 1260 // all ones >>a X -> all ones 1261 if (match(Op0, m_AllOnes())) 1262 return Op0; 1263 1264 // (X << A) >> A -> X 1265 Value *X; 1266 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1267 return X; 1268 1269 // Arithmetic shifting an all-sign-bit value is a no-op. 1270 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1271 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1272 return Op0; 1273 1274 return nullptr; 1275 } 1276 1277 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1278 const SimplifyQuery &Q) { 1279 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1280 } 1281 1282 /// Commuted variants are assumed to be handled by calling this function again 1283 /// with the parameters swapped. 1284 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1285 ICmpInst *UnsignedICmp, bool IsAnd) { 1286 Value *X, *Y; 1287 1288 ICmpInst::Predicate EqPred; 1289 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1290 !ICmpInst::isEquality(EqPred)) 1291 return nullptr; 1292 1293 ICmpInst::Predicate UnsignedPred; 1294 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1295 ICmpInst::isUnsigned(UnsignedPred)) 1296 ; 1297 else if (match(UnsignedICmp, 1298 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1299 ICmpInst::isUnsigned(UnsignedPred)) 1300 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1301 else 1302 return nullptr; 1303 1304 // X < Y && Y != 0 --> X < Y 1305 // X < Y || Y != 0 --> Y != 0 1306 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1307 return IsAnd ? UnsignedICmp : ZeroICmp; 1308 1309 // X >= Y || Y != 0 --> true 1310 // X >= Y || Y == 0 --> X >= Y 1311 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1312 if (EqPred == ICmpInst::ICMP_NE) 1313 return getTrue(UnsignedICmp->getType()); 1314 return UnsignedICmp; 1315 } 1316 1317 // X < Y && Y == 0 --> false 1318 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1319 IsAnd) 1320 return getFalse(UnsignedICmp->getType()); 1321 1322 return nullptr; 1323 } 1324 1325 /// Commuted variants are assumed to be handled by calling this function again 1326 /// with the parameters swapped. 1327 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1328 ICmpInst::Predicate Pred0, Pred1; 1329 Value *A ,*B; 1330 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1331 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1332 return nullptr; 1333 1334 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1335 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1336 // can eliminate Op1 from this 'and'. 1337 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1338 return Op0; 1339 1340 // Check for any combination of predicates that are guaranteed to be disjoint. 1341 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1342 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1343 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1344 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1345 return getFalse(Op0->getType()); 1346 1347 return nullptr; 1348 } 1349 1350 /// Commuted variants are assumed to be handled by calling this function again 1351 /// with the parameters swapped. 1352 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1353 ICmpInst::Predicate Pred0, Pred1; 1354 Value *A ,*B; 1355 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1356 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1357 return nullptr; 1358 1359 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1360 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1361 // can eliminate Op0 from this 'or'. 1362 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1363 return Op1; 1364 1365 // Check for any combination of predicates that cover the entire range of 1366 // possibilities. 1367 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1368 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1369 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1370 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1371 return getTrue(Op0->getType()); 1372 1373 return nullptr; 1374 } 1375 1376 /// Test if a pair of compares with a shared operand and 2 constants has an 1377 /// empty set intersection, full set union, or if one compare is a superset of 1378 /// the other. 1379 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1380 bool IsAnd) { 1381 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1382 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1383 return nullptr; 1384 1385 const APInt *C0, *C1; 1386 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1387 !match(Cmp1->getOperand(1), m_APInt(C1))) 1388 return nullptr; 1389 1390 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1391 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1392 1393 // For and-of-compares, check if the intersection is empty: 1394 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1395 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1396 return getFalse(Cmp0->getType()); 1397 1398 // For or-of-compares, check if the union is full: 1399 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1400 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1401 return getTrue(Cmp0->getType()); 1402 1403 // Is one range a superset of the other? 1404 // If this is and-of-compares, take the smaller set: 1405 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1406 // If this is or-of-compares, take the larger set: 1407 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1408 if (Range0.contains(Range1)) 1409 return IsAnd ? Cmp1 : Cmp0; 1410 if (Range1.contains(Range0)) 1411 return IsAnd ? Cmp0 : Cmp1; 1412 1413 return nullptr; 1414 } 1415 1416 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1417 // (icmp (add V, C0), C1) & (icmp V, C0) 1418 ICmpInst::Predicate Pred0, Pred1; 1419 const APInt *C0, *C1; 1420 Value *V; 1421 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1422 return nullptr; 1423 1424 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1425 return nullptr; 1426 1427 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1428 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1429 return nullptr; 1430 1431 Type *ITy = Op0->getType(); 1432 bool isNSW = AddInst->hasNoSignedWrap(); 1433 bool isNUW = AddInst->hasNoUnsignedWrap(); 1434 1435 const APInt Delta = *C1 - *C0; 1436 if (C0->isStrictlyPositive()) { 1437 if (Delta == 2) { 1438 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1439 return getFalse(ITy); 1440 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1441 return getFalse(ITy); 1442 } 1443 if (Delta == 1) { 1444 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1445 return getFalse(ITy); 1446 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1447 return getFalse(ITy); 1448 } 1449 } 1450 if (C0->getBoolValue() && isNUW) { 1451 if (Delta == 2) 1452 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1453 return getFalse(ITy); 1454 if (Delta == 1) 1455 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1456 return getFalse(ITy); 1457 } 1458 1459 return nullptr; 1460 } 1461 1462 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1463 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1464 return X; 1465 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1466 return X; 1467 1468 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1469 return X; 1470 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1471 return X; 1472 1473 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1474 return X; 1475 1476 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1)) 1477 return X; 1478 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0)) 1479 return X; 1480 1481 return nullptr; 1482 } 1483 1484 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1485 // (icmp (add V, C0), C1) | (icmp V, C0) 1486 ICmpInst::Predicate Pred0, Pred1; 1487 const APInt *C0, *C1; 1488 Value *V; 1489 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1490 return nullptr; 1491 1492 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1493 return nullptr; 1494 1495 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1496 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1497 return nullptr; 1498 1499 Type *ITy = Op0->getType(); 1500 bool isNSW = AddInst->hasNoSignedWrap(); 1501 bool isNUW = AddInst->hasNoUnsignedWrap(); 1502 1503 const APInt Delta = *C1 - *C0; 1504 if (C0->isStrictlyPositive()) { 1505 if (Delta == 2) { 1506 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1507 return getTrue(ITy); 1508 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1509 return getTrue(ITy); 1510 } 1511 if (Delta == 1) { 1512 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1513 return getTrue(ITy); 1514 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1515 return getTrue(ITy); 1516 } 1517 } 1518 if (C0->getBoolValue() && isNUW) { 1519 if (Delta == 2) 1520 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1521 return getTrue(ITy); 1522 if (Delta == 1) 1523 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1524 return getTrue(ITy); 1525 } 1526 1527 return nullptr; 1528 } 1529 1530 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1531 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1532 return X; 1533 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1534 return X; 1535 1536 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1537 return X; 1538 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1539 return X; 1540 1541 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1542 return X; 1543 1544 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1)) 1545 return X; 1546 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0)) 1547 return X; 1548 1549 return nullptr; 1550 } 1551 1552 static Value *simplifyAndOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1553 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1554 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1555 if (LHS0->getType() != RHS0->getType()) 1556 return nullptr; 1557 1558 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1559 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1560 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1561 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1562 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1563 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1564 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1565 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1566 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1567 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1568 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1569 if ((isKnownNeverNaN(LHS0) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1570 (isKnownNeverNaN(LHS1) && (LHS0 == RHS0 || LHS0 == RHS1))) 1571 return RHS; 1572 1573 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1574 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1575 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1576 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1577 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1578 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1579 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1580 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1581 if ((isKnownNeverNaN(RHS0) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1582 (isKnownNeverNaN(RHS1) && (RHS0 == LHS0 || RHS0 == LHS1))) 1583 return LHS; 1584 } 1585 1586 return nullptr; 1587 } 1588 1589 static Value *simplifyAndOrOfCmps(Value *Op0, Value *Op1, bool IsAnd) { 1590 // Look through casts of the 'and' operands to find compares. 1591 auto *Cast0 = dyn_cast<CastInst>(Op0); 1592 auto *Cast1 = dyn_cast<CastInst>(Op1); 1593 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1594 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1595 Op0 = Cast0->getOperand(0); 1596 Op1 = Cast1->getOperand(0); 1597 } 1598 1599 Value *V = nullptr; 1600 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1601 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1602 if (ICmp0 && ICmp1) 1603 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1) : 1604 simplifyOrOfICmps(ICmp0, ICmp1); 1605 1606 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1607 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1608 if (FCmp0 && FCmp1) 1609 V = simplifyAndOrOfFCmps(FCmp0, FCmp1, IsAnd); 1610 1611 if (!V) 1612 return nullptr; 1613 if (!Cast0) 1614 return V; 1615 1616 // If we looked through casts, we can only handle a constant simplification 1617 // because we are not allowed to create a cast instruction here. 1618 if (auto *C = dyn_cast<Constant>(V)) 1619 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1620 1621 return nullptr; 1622 } 1623 1624 /// Given operands for an And, see if we can fold the result. 1625 /// If not, this returns null. 1626 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1627 unsigned MaxRecurse) { 1628 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1629 return C; 1630 1631 // X & undef -> 0 1632 if (match(Op1, m_Undef())) 1633 return Constant::getNullValue(Op0->getType()); 1634 1635 // X & X = X 1636 if (Op0 == Op1) 1637 return Op0; 1638 1639 // X & 0 = 0 1640 if (match(Op1, m_Zero())) 1641 return Op1; 1642 1643 // X & -1 = X 1644 if (match(Op1, m_AllOnes())) 1645 return Op0; 1646 1647 // A & ~A = ~A & A = 0 1648 if (match(Op0, m_Not(m_Specific(Op1))) || 1649 match(Op1, m_Not(m_Specific(Op0)))) 1650 return Constant::getNullValue(Op0->getType()); 1651 1652 // (A | ?) & A = A 1653 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1654 return Op1; 1655 1656 // A & (A | ?) = A 1657 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1658 return Op0; 1659 1660 // A mask that only clears known zeros of a shifted value is a no-op. 1661 Value *X; 1662 const APInt *Mask; 1663 const APInt *ShAmt; 1664 if (match(Op1, m_APInt(Mask))) { 1665 // If all bits in the inverted and shifted mask are clear: 1666 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1667 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1668 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1669 return Op0; 1670 1671 // If all bits in the inverted and shifted mask are clear: 1672 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1673 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1674 (~(*Mask)).shl(*ShAmt).isNullValue()) 1675 return Op0; 1676 } 1677 1678 // A & (-A) = A if A is a power of two or zero. 1679 if (match(Op0, m_Neg(m_Specific(Op1))) || 1680 match(Op1, m_Neg(m_Specific(Op0)))) { 1681 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1682 Q.DT)) 1683 return Op0; 1684 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1685 Q.DT)) 1686 return Op1; 1687 } 1688 1689 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, true)) 1690 return V; 1691 1692 // Try some generic simplifications for associative operations. 1693 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1694 MaxRecurse)) 1695 return V; 1696 1697 // And distributes over Or. Try some generic simplifications based on this. 1698 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1699 Q, MaxRecurse)) 1700 return V; 1701 1702 // And distributes over Xor. Try some generic simplifications based on this. 1703 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1704 Q, MaxRecurse)) 1705 return V; 1706 1707 // If the operation is with the result of a select instruction, check whether 1708 // operating on either branch of the select always yields the same value. 1709 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1710 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1711 MaxRecurse)) 1712 return V; 1713 1714 // If the operation is with the result of a phi instruction, check whether 1715 // operating on all incoming values of the phi always yields the same value. 1716 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1717 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1718 MaxRecurse)) 1719 return V; 1720 1721 return nullptr; 1722 } 1723 1724 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1725 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1726 } 1727 1728 /// Given operands for an Or, see if we can fold the result. 1729 /// If not, this returns null. 1730 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1731 unsigned MaxRecurse) { 1732 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1733 return C; 1734 1735 // X | undef -> -1 1736 if (match(Op1, m_Undef())) 1737 return Constant::getAllOnesValue(Op0->getType()); 1738 1739 // X | X = X 1740 if (Op0 == Op1) 1741 return Op0; 1742 1743 // X | 0 = X 1744 if (match(Op1, m_Zero())) 1745 return Op0; 1746 1747 // X | -1 = -1 1748 if (match(Op1, m_AllOnes())) 1749 return Op1; 1750 1751 // A | ~A = ~A | A = -1 1752 if (match(Op0, m_Not(m_Specific(Op1))) || 1753 match(Op1, m_Not(m_Specific(Op0)))) 1754 return Constant::getAllOnesValue(Op0->getType()); 1755 1756 // (A & ?) | A = A 1757 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1758 return Op1; 1759 1760 // A | (A & ?) = A 1761 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1762 return Op0; 1763 1764 // ~(A & ?) | A = -1 1765 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1766 return Constant::getAllOnesValue(Op1->getType()); 1767 1768 // A | ~(A & ?) = -1 1769 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1770 return Constant::getAllOnesValue(Op0->getType()); 1771 1772 Value *A, *B; 1773 // (A & ~B) | (A ^ B) -> (A ^ B) 1774 // (~B & A) | (A ^ B) -> (A ^ B) 1775 // (A & ~B) | (B ^ A) -> (B ^ A) 1776 // (~B & A) | (B ^ A) -> (B ^ A) 1777 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1778 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1779 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1780 return Op1; 1781 1782 // Commute the 'or' operands. 1783 // (A ^ B) | (A & ~B) -> (A ^ B) 1784 // (A ^ B) | (~B & A) -> (A ^ B) 1785 // (B ^ A) | (A & ~B) -> (B ^ A) 1786 // (B ^ A) | (~B & A) -> (B ^ A) 1787 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1788 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1789 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1790 return Op0; 1791 1792 // (A & B) | (~A ^ B) -> (~A ^ B) 1793 // (B & A) | (~A ^ B) -> (~A ^ B) 1794 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1795 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1796 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1797 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1798 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1799 return Op1; 1800 1801 // (~A ^ B) | (A & B) -> (~A ^ B) 1802 // (~A ^ B) | (B & A) -> (~A ^ B) 1803 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1804 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1805 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1806 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1807 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1808 return Op0; 1809 1810 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, false)) 1811 return V; 1812 1813 // Try some generic simplifications for associative operations. 1814 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1815 MaxRecurse)) 1816 return V; 1817 1818 // Or distributes over And. Try some generic simplifications based on this. 1819 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1820 MaxRecurse)) 1821 return V; 1822 1823 // If the operation is with the result of a select instruction, check whether 1824 // operating on either branch of the select always yields the same value. 1825 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1826 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1827 MaxRecurse)) 1828 return V; 1829 1830 // (A & C1)|(B & C2) 1831 const APInt *C1, *C2; 1832 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 1833 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 1834 if (*C1 == ~*C2) { 1835 // (A & C1)|(B & C2) 1836 // If we have: ((V + N) & C1) | (V & C2) 1837 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1838 // replace with V+N. 1839 Value *N; 1840 if (C2->isMask() && // C2 == 0+1+ 1841 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 1842 // Add commutes, try both ways. 1843 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1844 return A; 1845 } 1846 // Or commutes, try both ways. 1847 if (C1->isMask() && 1848 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 1849 // Add commutes, try both ways. 1850 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1851 return B; 1852 } 1853 } 1854 } 1855 1856 // If the operation is with the result of a phi instruction, check whether 1857 // operating on all incoming values of the phi always yields the same value. 1858 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1859 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1860 return V; 1861 1862 return nullptr; 1863 } 1864 1865 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1866 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 1867 } 1868 1869 /// Given operands for a Xor, see if we can fold the result. 1870 /// If not, this returns null. 1871 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1872 unsigned MaxRecurse) { 1873 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 1874 return C; 1875 1876 // A ^ undef -> undef 1877 if (match(Op1, m_Undef())) 1878 return Op1; 1879 1880 // A ^ 0 = A 1881 if (match(Op1, m_Zero())) 1882 return Op0; 1883 1884 // A ^ A = 0 1885 if (Op0 == Op1) 1886 return Constant::getNullValue(Op0->getType()); 1887 1888 // A ^ ~A = ~A ^ A = -1 1889 if (match(Op0, m_Not(m_Specific(Op1))) || 1890 match(Op1, m_Not(m_Specific(Op0)))) 1891 return Constant::getAllOnesValue(Op0->getType()); 1892 1893 // Try some generic simplifications for associative operations. 1894 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1895 MaxRecurse)) 1896 return V; 1897 1898 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1899 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1900 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1901 // only if B and C are equal. If B and C are equal then (since we assume 1902 // that operands have already been simplified) "select(cond, B, C)" should 1903 // have been simplified to the common value of B and C already. Analysing 1904 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1905 // for threading over phi nodes. 1906 1907 return nullptr; 1908 } 1909 1910 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1911 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 1912 } 1913 1914 1915 static Type *GetCompareTy(Value *Op) { 1916 return CmpInst::makeCmpResultType(Op->getType()); 1917 } 1918 1919 /// Rummage around inside V looking for something equivalent to the comparison 1920 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1921 /// Helper function for analyzing max/min idioms. 1922 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1923 Value *LHS, Value *RHS) { 1924 SelectInst *SI = dyn_cast<SelectInst>(V); 1925 if (!SI) 1926 return nullptr; 1927 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1928 if (!Cmp) 1929 return nullptr; 1930 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1931 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1932 return Cmp; 1933 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1934 LHS == CmpRHS && RHS == CmpLHS) 1935 return Cmp; 1936 return nullptr; 1937 } 1938 1939 // A significant optimization not implemented here is assuming that alloca 1940 // addresses are not equal to incoming argument values. They don't *alias*, 1941 // as we say, but that doesn't mean they aren't equal, so we take a 1942 // conservative approach. 1943 // 1944 // This is inspired in part by C++11 5.10p1: 1945 // "Two pointers of the same type compare equal if and only if they are both 1946 // null, both point to the same function, or both represent the same 1947 // address." 1948 // 1949 // This is pretty permissive. 1950 // 1951 // It's also partly due to C11 6.5.9p6: 1952 // "Two pointers compare equal if and only if both are null pointers, both are 1953 // pointers to the same object (including a pointer to an object and a 1954 // subobject at its beginning) or function, both are pointers to one past the 1955 // last element of the same array object, or one is a pointer to one past the 1956 // end of one array object and the other is a pointer to the start of a 1957 // different array object that happens to immediately follow the first array 1958 // object in the address space.) 1959 // 1960 // C11's version is more restrictive, however there's no reason why an argument 1961 // couldn't be a one-past-the-end value for a stack object in the caller and be 1962 // equal to the beginning of a stack object in the callee. 1963 // 1964 // If the C and C++ standards are ever made sufficiently restrictive in this 1965 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1966 // this optimization. 1967 static Constant * 1968 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 1969 const DominatorTree *DT, CmpInst::Predicate Pred, 1970 AssumptionCache *AC, const Instruction *CxtI, 1971 Value *LHS, Value *RHS) { 1972 // First, skip past any trivial no-ops. 1973 LHS = LHS->stripPointerCasts(); 1974 RHS = RHS->stripPointerCasts(); 1975 1976 // A non-null pointer is not equal to a null pointer. 1977 if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) && 1978 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 1979 return ConstantInt::get(GetCompareTy(LHS), 1980 !CmpInst::isTrueWhenEqual(Pred)); 1981 1982 // We can only fold certain predicates on pointer comparisons. 1983 switch (Pred) { 1984 default: 1985 return nullptr; 1986 1987 // Equality comaprisons are easy to fold. 1988 case CmpInst::ICMP_EQ: 1989 case CmpInst::ICMP_NE: 1990 break; 1991 1992 // We can only handle unsigned relational comparisons because 'inbounds' on 1993 // a GEP only protects against unsigned wrapping. 1994 case CmpInst::ICMP_UGT: 1995 case CmpInst::ICMP_UGE: 1996 case CmpInst::ICMP_ULT: 1997 case CmpInst::ICMP_ULE: 1998 // However, we have to switch them to their signed variants to handle 1999 // negative indices from the base pointer. 2000 Pred = ICmpInst::getSignedPredicate(Pred); 2001 break; 2002 } 2003 2004 // Strip off any constant offsets so that we can reason about them. 2005 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2006 // here and compare base addresses like AliasAnalysis does, however there are 2007 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2008 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2009 // doesn't need to guarantee pointer inequality when it says NoAlias. 2010 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2011 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2012 2013 // If LHS and RHS are related via constant offsets to the same base 2014 // value, we can replace it with an icmp which just compares the offsets. 2015 if (LHS == RHS) 2016 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2017 2018 // Various optimizations for (in)equality comparisons. 2019 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2020 // Different non-empty allocations that exist at the same time have 2021 // different addresses (if the program can tell). Global variables always 2022 // exist, so they always exist during the lifetime of each other and all 2023 // allocas. Two different allocas usually have different addresses... 2024 // 2025 // However, if there's an @llvm.stackrestore dynamically in between two 2026 // allocas, they may have the same address. It's tempting to reduce the 2027 // scope of the problem by only looking at *static* allocas here. That would 2028 // cover the majority of allocas while significantly reducing the likelihood 2029 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2030 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2031 // an entry block. Also, if we have a block that's not attached to a 2032 // function, we can't tell if it's "static" under the current definition. 2033 // Theoretically, this problem could be fixed by creating a new kind of 2034 // instruction kind specifically for static allocas. Such a new instruction 2035 // could be required to be at the top of the entry block, thus preventing it 2036 // from being subject to a @llvm.stackrestore. Instcombine could even 2037 // convert regular allocas into these special allocas. It'd be nifty. 2038 // However, until then, this problem remains open. 2039 // 2040 // So, we'll assume that two non-empty allocas have different addresses 2041 // for now. 2042 // 2043 // With all that, if the offsets are within the bounds of their allocations 2044 // (and not one-past-the-end! so we can't use inbounds!), and their 2045 // allocations aren't the same, the pointers are not equal. 2046 // 2047 // Note that it's not necessary to check for LHS being a global variable 2048 // address, due to canonicalization and constant folding. 2049 if (isa<AllocaInst>(LHS) && 2050 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2051 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2052 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2053 uint64_t LHSSize, RHSSize; 2054 if (LHSOffsetCI && RHSOffsetCI && 2055 getObjectSize(LHS, LHSSize, DL, TLI) && 2056 getObjectSize(RHS, RHSSize, DL, TLI)) { 2057 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2058 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2059 if (!LHSOffsetValue.isNegative() && 2060 !RHSOffsetValue.isNegative() && 2061 LHSOffsetValue.ult(LHSSize) && 2062 RHSOffsetValue.ult(RHSSize)) { 2063 return ConstantInt::get(GetCompareTy(LHS), 2064 !CmpInst::isTrueWhenEqual(Pred)); 2065 } 2066 } 2067 2068 // Repeat the above check but this time without depending on DataLayout 2069 // or being able to compute a precise size. 2070 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2071 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2072 LHSOffset->isNullValue() && 2073 RHSOffset->isNullValue()) 2074 return ConstantInt::get(GetCompareTy(LHS), 2075 !CmpInst::isTrueWhenEqual(Pred)); 2076 } 2077 2078 // Even if an non-inbounds GEP occurs along the path we can still optimize 2079 // equality comparisons concerning the result. We avoid walking the whole 2080 // chain again by starting where the last calls to 2081 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2082 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2083 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2084 if (LHS == RHS) 2085 return ConstantExpr::getICmp(Pred, 2086 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2087 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2088 2089 // If one side of the equality comparison must come from a noalias call 2090 // (meaning a system memory allocation function), and the other side must 2091 // come from a pointer that cannot overlap with dynamically-allocated 2092 // memory within the lifetime of the current function (allocas, byval 2093 // arguments, globals), then determine the comparison result here. 2094 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2095 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2096 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2097 2098 // Is the set of underlying objects all noalias calls? 2099 auto IsNAC = [](ArrayRef<Value *> Objects) { 2100 return all_of(Objects, isNoAliasCall); 2101 }; 2102 2103 // Is the set of underlying objects all things which must be disjoint from 2104 // noalias calls. For allocas, we consider only static ones (dynamic 2105 // allocas might be transformed into calls to malloc not simultaneously 2106 // live with the compared-to allocation). For globals, we exclude symbols 2107 // that might be resolve lazily to symbols in another dynamically-loaded 2108 // library (and, thus, could be malloc'ed by the implementation). 2109 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2110 return all_of(Objects, [](Value *V) { 2111 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2112 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2113 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2114 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2115 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2116 !GV->isThreadLocal(); 2117 if (const Argument *A = dyn_cast<Argument>(V)) 2118 return A->hasByValAttr(); 2119 return false; 2120 }); 2121 }; 2122 2123 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2124 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2125 return ConstantInt::get(GetCompareTy(LHS), 2126 !CmpInst::isTrueWhenEqual(Pred)); 2127 2128 // Fold comparisons for non-escaping pointer even if the allocation call 2129 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2130 // dynamic allocation call could be either of the operands. 2131 Value *MI = nullptr; 2132 if (isAllocLikeFn(LHS, TLI) && 2133 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2134 MI = LHS; 2135 else if (isAllocLikeFn(RHS, TLI) && 2136 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2137 MI = RHS; 2138 // FIXME: We should also fold the compare when the pointer escapes, but the 2139 // compare dominates the pointer escape 2140 if (MI && !PointerMayBeCaptured(MI, true, true)) 2141 return ConstantInt::get(GetCompareTy(LHS), 2142 CmpInst::isFalseWhenEqual(Pred)); 2143 } 2144 2145 // Otherwise, fail. 2146 return nullptr; 2147 } 2148 2149 /// Fold an icmp when its operands have i1 scalar type. 2150 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2151 Value *RHS, const SimplifyQuery &Q) { 2152 Type *ITy = GetCompareTy(LHS); // The return type. 2153 Type *OpTy = LHS->getType(); // The operand type. 2154 if (!OpTy->isIntOrIntVectorTy(1)) 2155 return nullptr; 2156 2157 // A boolean compared to true/false can be simplified in 14 out of the 20 2158 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2159 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2160 if (match(RHS, m_Zero())) { 2161 switch (Pred) { 2162 case CmpInst::ICMP_NE: // X != 0 -> X 2163 case CmpInst::ICMP_UGT: // X >u 0 -> X 2164 case CmpInst::ICMP_SLT: // X <s 0 -> X 2165 return LHS; 2166 2167 case CmpInst::ICMP_ULT: // X <u 0 -> false 2168 case CmpInst::ICMP_SGT: // X >s 0 -> false 2169 return getFalse(ITy); 2170 2171 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2172 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2173 return getTrue(ITy); 2174 2175 default: break; 2176 } 2177 } else if (match(RHS, m_One())) { 2178 switch (Pred) { 2179 case CmpInst::ICMP_EQ: // X == 1 -> X 2180 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2181 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2182 return LHS; 2183 2184 case CmpInst::ICMP_UGT: // X >u 1 -> false 2185 case CmpInst::ICMP_SLT: // X <s -1 -> false 2186 return getFalse(ITy); 2187 2188 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2189 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2190 return getTrue(ITy); 2191 2192 default: break; 2193 } 2194 } 2195 2196 switch (Pred) { 2197 default: 2198 break; 2199 case ICmpInst::ICMP_UGE: 2200 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2201 return getTrue(ITy); 2202 break; 2203 case ICmpInst::ICMP_SGE: 2204 /// For signed comparison, the values for an i1 are 0 and -1 2205 /// respectively. This maps into a truth table of: 2206 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2207 /// 0 | 0 | 1 (0 >= 0) | 1 2208 /// 0 | 1 | 1 (0 >= -1) | 1 2209 /// 1 | 0 | 0 (-1 >= 0) | 0 2210 /// 1 | 1 | 1 (-1 >= -1) | 1 2211 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2212 return getTrue(ITy); 2213 break; 2214 case ICmpInst::ICMP_ULE: 2215 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2216 return getTrue(ITy); 2217 break; 2218 } 2219 2220 return nullptr; 2221 } 2222 2223 /// Try hard to fold icmp with zero RHS because this is a common case. 2224 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2225 Value *RHS, const SimplifyQuery &Q) { 2226 if (!match(RHS, m_Zero())) 2227 return nullptr; 2228 2229 Type *ITy = GetCompareTy(LHS); // The return type. 2230 switch (Pred) { 2231 default: 2232 llvm_unreachable("Unknown ICmp predicate!"); 2233 case ICmpInst::ICMP_ULT: 2234 return getFalse(ITy); 2235 case ICmpInst::ICMP_UGE: 2236 return getTrue(ITy); 2237 case ICmpInst::ICMP_EQ: 2238 case ICmpInst::ICMP_ULE: 2239 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2240 return getFalse(ITy); 2241 break; 2242 case ICmpInst::ICMP_NE: 2243 case ICmpInst::ICMP_UGT: 2244 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2245 return getTrue(ITy); 2246 break; 2247 case ICmpInst::ICMP_SLT: { 2248 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2249 if (LHSKnown.isNegative()) 2250 return getTrue(ITy); 2251 if (LHSKnown.isNonNegative()) 2252 return getFalse(ITy); 2253 break; 2254 } 2255 case ICmpInst::ICMP_SLE: { 2256 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2257 if (LHSKnown.isNegative()) 2258 return getTrue(ITy); 2259 if (LHSKnown.isNonNegative() && 2260 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2261 return getFalse(ITy); 2262 break; 2263 } 2264 case ICmpInst::ICMP_SGE: { 2265 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2266 if (LHSKnown.isNegative()) 2267 return getFalse(ITy); 2268 if (LHSKnown.isNonNegative()) 2269 return getTrue(ITy); 2270 break; 2271 } 2272 case ICmpInst::ICMP_SGT: { 2273 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2274 if (LHSKnown.isNegative()) 2275 return getFalse(ITy); 2276 if (LHSKnown.isNonNegative() && 2277 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2278 return getTrue(ITy); 2279 break; 2280 } 2281 } 2282 2283 return nullptr; 2284 } 2285 2286 /// Many binary operators with a constant operand have an easy-to-compute 2287 /// range of outputs. This can be used to fold a comparison to always true or 2288 /// always false. 2289 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2290 unsigned Width = Lower.getBitWidth(); 2291 const APInt *C; 2292 switch (BO.getOpcode()) { 2293 case Instruction::Add: 2294 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2295 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2296 if (BO.hasNoUnsignedWrap()) { 2297 // 'add nuw x, C' produces [C, UINT_MAX]. 2298 Lower = *C; 2299 } else if (BO.hasNoSignedWrap()) { 2300 if (C->isNegative()) { 2301 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2302 Lower = APInt::getSignedMinValue(Width); 2303 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2304 } else { 2305 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2306 Lower = APInt::getSignedMinValue(Width) + *C; 2307 Upper = APInt::getSignedMaxValue(Width) + 1; 2308 } 2309 } 2310 } 2311 break; 2312 2313 case Instruction::And: 2314 if (match(BO.getOperand(1), m_APInt(C))) 2315 // 'and x, C' produces [0, C]. 2316 Upper = *C + 1; 2317 break; 2318 2319 case Instruction::Or: 2320 if (match(BO.getOperand(1), m_APInt(C))) 2321 // 'or x, C' produces [C, UINT_MAX]. 2322 Lower = *C; 2323 break; 2324 2325 case Instruction::AShr: 2326 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2327 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2328 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2329 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2330 } else if (match(BO.getOperand(0), m_APInt(C))) { 2331 unsigned ShiftAmount = Width - 1; 2332 if (!C->isNullValue() && BO.isExact()) 2333 ShiftAmount = C->countTrailingZeros(); 2334 if (C->isNegative()) { 2335 // 'ashr C, x' produces [C, C >> (Width-1)] 2336 Lower = *C; 2337 Upper = C->ashr(ShiftAmount) + 1; 2338 } else { 2339 // 'ashr C, x' produces [C >> (Width-1), C] 2340 Lower = C->ashr(ShiftAmount); 2341 Upper = *C + 1; 2342 } 2343 } 2344 break; 2345 2346 case Instruction::LShr: 2347 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2348 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2349 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2350 } else if (match(BO.getOperand(0), m_APInt(C))) { 2351 // 'lshr C, x' produces [C >> (Width-1), C]. 2352 unsigned ShiftAmount = Width - 1; 2353 if (!C->isNullValue() && BO.isExact()) 2354 ShiftAmount = C->countTrailingZeros(); 2355 Lower = C->lshr(ShiftAmount); 2356 Upper = *C + 1; 2357 } 2358 break; 2359 2360 case Instruction::Shl: 2361 if (match(BO.getOperand(0), m_APInt(C))) { 2362 if (BO.hasNoUnsignedWrap()) { 2363 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2364 Lower = *C; 2365 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2366 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2367 if (C->isNegative()) { 2368 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2369 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2370 Lower = C->shl(ShiftAmount); 2371 Upper = *C + 1; 2372 } else { 2373 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2374 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2375 Lower = *C; 2376 Upper = C->shl(ShiftAmount) + 1; 2377 } 2378 } 2379 } 2380 break; 2381 2382 case Instruction::SDiv: 2383 if (match(BO.getOperand(1), m_APInt(C))) { 2384 APInt IntMin = APInt::getSignedMinValue(Width); 2385 APInt IntMax = APInt::getSignedMaxValue(Width); 2386 if (C->isAllOnesValue()) { 2387 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2388 // where C != -1 and C != 0 and C != 1 2389 Lower = IntMin + 1; 2390 Upper = IntMax + 1; 2391 } else if (C->countLeadingZeros() < Width - 1) { 2392 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2393 // where C != -1 and C != 0 and C != 1 2394 Lower = IntMin.sdiv(*C); 2395 Upper = IntMax.sdiv(*C); 2396 if (Lower.sgt(Upper)) 2397 std::swap(Lower, Upper); 2398 Upper = Upper + 1; 2399 assert(Upper != Lower && "Upper part of range has wrapped!"); 2400 } 2401 } else if (match(BO.getOperand(0), m_APInt(C))) { 2402 if (C->isMinSignedValue()) { 2403 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2404 Lower = *C; 2405 Upper = Lower.lshr(1) + 1; 2406 } else { 2407 // 'sdiv C, x' produces [-|C|, |C|]. 2408 Upper = C->abs() + 1; 2409 Lower = (-Upper) + 1; 2410 } 2411 } 2412 break; 2413 2414 case Instruction::UDiv: 2415 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2416 // 'udiv x, C' produces [0, UINT_MAX / C]. 2417 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2418 } else if (match(BO.getOperand(0), m_APInt(C))) { 2419 // 'udiv C, x' produces [0, C]. 2420 Upper = *C + 1; 2421 } 2422 break; 2423 2424 case Instruction::SRem: 2425 if (match(BO.getOperand(1), m_APInt(C))) { 2426 // 'srem x, C' produces (-|C|, |C|). 2427 Upper = C->abs(); 2428 Lower = (-Upper) + 1; 2429 } 2430 break; 2431 2432 case Instruction::URem: 2433 if (match(BO.getOperand(1), m_APInt(C))) 2434 // 'urem x, C' produces [0, C). 2435 Upper = *C; 2436 break; 2437 2438 default: 2439 break; 2440 } 2441 } 2442 2443 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2444 Value *RHS) { 2445 const APInt *C; 2446 if (!match(RHS, m_APInt(C))) 2447 return nullptr; 2448 2449 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2450 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2451 if (RHS_CR.isEmptySet()) 2452 return ConstantInt::getFalse(GetCompareTy(RHS)); 2453 if (RHS_CR.isFullSet()) 2454 return ConstantInt::getTrue(GetCompareTy(RHS)); 2455 2456 // Find the range of possible values for binary operators. 2457 unsigned Width = C->getBitWidth(); 2458 APInt Lower = APInt(Width, 0); 2459 APInt Upper = APInt(Width, 0); 2460 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2461 setLimitsForBinOp(*BO, Lower, Upper); 2462 2463 ConstantRange LHS_CR = 2464 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2465 2466 if (auto *I = dyn_cast<Instruction>(LHS)) 2467 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2468 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2469 2470 if (!LHS_CR.isFullSet()) { 2471 if (RHS_CR.contains(LHS_CR)) 2472 return ConstantInt::getTrue(GetCompareTy(RHS)); 2473 if (RHS_CR.inverse().contains(LHS_CR)) 2474 return ConstantInt::getFalse(GetCompareTy(RHS)); 2475 } 2476 2477 return nullptr; 2478 } 2479 2480 /// TODO: A large part of this logic is duplicated in InstCombine's 2481 /// foldICmpBinOp(). We should be able to share that and avoid the code 2482 /// duplication. 2483 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2484 Value *RHS, const SimplifyQuery &Q, 2485 unsigned MaxRecurse) { 2486 Type *ITy = GetCompareTy(LHS); // The return type. 2487 2488 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2489 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2490 if (MaxRecurse && (LBO || RBO)) { 2491 // Analyze the case when either LHS or RHS is an add instruction. 2492 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2493 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2494 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2495 if (LBO && LBO->getOpcode() == Instruction::Add) { 2496 A = LBO->getOperand(0); 2497 B = LBO->getOperand(1); 2498 NoLHSWrapProblem = 2499 ICmpInst::isEquality(Pred) || 2500 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2501 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2502 } 2503 if (RBO && RBO->getOpcode() == Instruction::Add) { 2504 C = RBO->getOperand(0); 2505 D = RBO->getOperand(1); 2506 NoRHSWrapProblem = 2507 ICmpInst::isEquality(Pred) || 2508 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2509 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2510 } 2511 2512 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2513 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2514 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2515 Constant::getNullValue(RHS->getType()), Q, 2516 MaxRecurse - 1)) 2517 return V; 2518 2519 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2520 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2521 if (Value *V = 2522 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2523 C == LHS ? D : C, Q, MaxRecurse - 1)) 2524 return V; 2525 2526 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2527 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2528 NoRHSWrapProblem) { 2529 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2530 Value *Y, *Z; 2531 if (A == C) { 2532 // C + B == C + D -> B == D 2533 Y = B; 2534 Z = D; 2535 } else if (A == D) { 2536 // D + B == C + D -> B == C 2537 Y = B; 2538 Z = C; 2539 } else if (B == C) { 2540 // A + C == C + D -> A == D 2541 Y = A; 2542 Z = D; 2543 } else { 2544 assert(B == D); 2545 // A + D == C + D -> A == C 2546 Y = A; 2547 Z = C; 2548 } 2549 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2550 return V; 2551 } 2552 } 2553 2554 { 2555 Value *Y = nullptr; 2556 // icmp pred (or X, Y), X 2557 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2558 if (Pred == ICmpInst::ICMP_ULT) 2559 return getFalse(ITy); 2560 if (Pred == ICmpInst::ICMP_UGE) 2561 return getTrue(ITy); 2562 2563 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2564 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2565 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2566 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2567 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2568 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2569 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2570 } 2571 } 2572 // icmp pred X, (or X, Y) 2573 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2574 if (Pred == ICmpInst::ICMP_ULE) 2575 return getTrue(ITy); 2576 if (Pred == ICmpInst::ICMP_UGT) 2577 return getFalse(ITy); 2578 2579 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2580 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2581 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2582 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2583 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2584 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2585 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2586 } 2587 } 2588 } 2589 2590 // icmp pred (and X, Y), X 2591 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2592 if (Pred == ICmpInst::ICMP_UGT) 2593 return getFalse(ITy); 2594 if (Pred == ICmpInst::ICMP_ULE) 2595 return getTrue(ITy); 2596 } 2597 // icmp pred X, (and X, Y) 2598 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2599 if (Pred == ICmpInst::ICMP_UGE) 2600 return getTrue(ITy); 2601 if (Pred == ICmpInst::ICMP_ULT) 2602 return getFalse(ITy); 2603 } 2604 2605 // 0 - (zext X) pred C 2606 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2607 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2608 if (RHSC->getValue().isStrictlyPositive()) { 2609 if (Pred == ICmpInst::ICMP_SLT) 2610 return ConstantInt::getTrue(RHSC->getContext()); 2611 if (Pred == ICmpInst::ICMP_SGE) 2612 return ConstantInt::getFalse(RHSC->getContext()); 2613 if (Pred == ICmpInst::ICMP_EQ) 2614 return ConstantInt::getFalse(RHSC->getContext()); 2615 if (Pred == ICmpInst::ICMP_NE) 2616 return ConstantInt::getTrue(RHSC->getContext()); 2617 } 2618 if (RHSC->getValue().isNonNegative()) { 2619 if (Pred == ICmpInst::ICMP_SLE) 2620 return ConstantInt::getTrue(RHSC->getContext()); 2621 if (Pred == ICmpInst::ICMP_SGT) 2622 return ConstantInt::getFalse(RHSC->getContext()); 2623 } 2624 } 2625 } 2626 2627 // icmp pred (urem X, Y), Y 2628 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2629 switch (Pred) { 2630 default: 2631 break; 2632 case ICmpInst::ICMP_SGT: 2633 case ICmpInst::ICMP_SGE: { 2634 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2635 if (!Known.isNonNegative()) 2636 break; 2637 LLVM_FALLTHROUGH; 2638 } 2639 case ICmpInst::ICMP_EQ: 2640 case ICmpInst::ICMP_UGT: 2641 case ICmpInst::ICMP_UGE: 2642 return getFalse(ITy); 2643 case ICmpInst::ICMP_SLT: 2644 case ICmpInst::ICMP_SLE: { 2645 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2646 if (!Known.isNonNegative()) 2647 break; 2648 LLVM_FALLTHROUGH; 2649 } 2650 case ICmpInst::ICMP_NE: 2651 case ICmpInst::ICMP_ULT: 2652 case ICmpInst::ICMP_ULE: 2653 return getTrue(ITy); 2654 } 2655 } 2656 2657 // icmp pred X, (urem Y, X) 2658 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2659 switch (Pred) { 2660 default: 2661 break; 2662 case ICmpInst::ICMP_SGT: 2663 case ICmpInst::ICMP_SGE: { 2664 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2665 if (!Known.isNonNegative()) 2666 break; 2667 LLVM_FALLTHROUGH; 2668 } 2669 case ICmpInst::ICMP_NE: 2670 case ICmpInst::ICMP_UGT: 2671 case ICmpInst::ICMP_UGE: 2672 return getTrue(ITy); 2673 case ICmpInst::ICMP_SLT: 2674 case ICmpInst::ICMP_SLE: { 2675 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2676 if (!Known.isNonNegative()) 2677 break; 2678 LLVM_FALLTHROUGH; 2679 } 2680 case ICmpInst::ICMP_EQ: 2681 case ICmpInst::ICMP_ULT: 2682 case ICmpInst::ICMP_ULE: 2683 return getFalse(ITy); 2684 } 2685 } 2686 2687 // x >> y <=u x 2688 // x udiv y <=u x. 2689 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2690 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2691 // icmp pred (X op Y), X 2692 if (Pred == ICmpInst::ICMP_UGT) 2693 return getFalse(ITy); 2694 if (Pred == ICmpInst::ICMP_ULE) 2695 return getTrue(ITy); 2696 } 2697 2698 // x >=u x >> y 2699 // x >=u x udiv y. 2700 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2701 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2702 // icmp pred X, (X op Y) 2703 if (Pred == ICmpInst::ICMP_ULT) 2704 return getFalse(ITy); 2705 if (Pred == ICmpInst::ICMP_UGE) 2706 return getTrue(ITy); 2707 } 2708 2709 // handle: 2710 // CI2 << X == CI 2711 // CI2 << X != CI 2712 // 2713 // where CI2 is a power of 2 and CI isn't 2714 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2715 const APInt *CI2Val, *CIVal = &CI->getValue(); 2716 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2717 CI2Val->isPowerOf2()) { 2718 if (!CIVal->isPowerOf2()) { 2719 // CI2 << X can equal zero in some circumstances, 2720 // this simplification is unsafe if CI is zero. 2721 // 2722 // We know it is safe if: 2723 // - The shift is nsw, we can't shift out the one bit. 2724 // - The shift is nuw, we can't shift out the one bit. 2725 // - CI2 is one 2726 // - CI isn't zero 2727 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2728 CI2Val->isOneValue() || !CI->isZero()) { 2729 if (Pred == ICmpInst::ICMP_EQ) 2730 return ConstantInt::getFalse(RHS->getContext()); 2731 if (Pred == ICmpInst::ICMP_NE) 2732 return ConstantInt::getTrue(RHS->getContext()); 2733 } 2734 } 2735 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2736 if (Pred == ICmpInst::ICMP_UGT) 2737 return ConstantInt::getFalse(RHS->getContext()); 2738 if (Pred == ICmpInst::ICMP_ULE) 2739 return ConstantInt::getTrue(RHS->getContext()); 2740 } 2741 } 2742 } 2743 2744 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2745 LBO->getOperand(1) == RBO->getOperand(1)) { 2746 switch (LBO->getOpcode()) { 2747 default: 2748 break; 2749 case Instruction::UDiv: 2750 case Instruction::LShr: 2751 if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact()) 2752 break; 2753 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2754 RBO->getOperand(0), Q, MaxRecurse - 1)) 2755 return V; 2756 break; 2757 case Instruction::SDiv: 2758 if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact()) 2759 break; 2760 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2761 RBO->getOperand(0), Q, MaxRecurse - 1)) 2762 return V; 2763 break; 2764 case Instruction::AShr: 2765 if (!LBO->isExact() || !RBO->isExact()) 2766 break; 2767 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2768 RBO->getOperand(0), Q, MaxRecurse - 1)) 2769 return V; 2770 break; 2771 case Instruction::Shl: { 2772 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2773 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2774 if (!NUW && !NSW) 2775 break; 2776 if (!NSW && ICmpInst::isSigned(Pred)) 2777 break; 2778 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2779 RBO->getOperand(0), Q, MaxRecurse - 1)) 2780 return V; 2781 break; 2782 } 2783 } 2784 } 2785 return nullptr; 2786 } 2787 2788 /// Simplify integer comparisons where at least one operand of the compare 2789 /// matches an integer min/max idiom. 2790 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2791 Value *RHS, const SimplifyQuery &Q, 2792 unsigned MaxRecurse) { 2793 Type *ITy = GetCompareTy(LHS); // The return type. 2794 Value *A, *B; 2795 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2796 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2797 2798 // Signed variants on "max(a,b)>=a -> true". 2799 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2800 if (A != RHS) 2801 std::swap(A, B); // smax(A, B) pred A. 2802 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2803 // We analyze this as smax(A, B) pred A. 2804 P = Pred; 2805 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2806 (A == LHS || B == LHS)) { 2807 if (A != LHS) 2808 std::swap(A, B); // A pred smax(A, B). 2809 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2810 // We analyze this as smax(A, B) swapped-pred A. 2811 P = CmpInst::getSwappedPredicate(Pred); 2812 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2813 (A == RHS || B == RHS)) { 2814 if (A != RHS) 2815 std::swap(A, B); // smin(A, B) pred A. 2816 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2817 // We analyze this as smax(-A, -B) swapped-pred -A. 2818 // Note that we do not need to actually form -A or -B thanks to EqP. 2819 P = CmpInst::getSwappedPredicate(Pred); 2820 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2821 (A == LHS || B == LHS)) { 2822 if (A != LHS) 2823 std::swap(A, B); // A pred smin(A, B). 2824 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2825 // We analyze this as smax(-A, -B) pred -A. 2826 // Note that we do not need to actually form -A or -B thanks to EqP. 2827 P = Pred; 2828 } 2829 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2830 // Cases correspond to "max(A, B) p A". 2831 switch (P) { 2832 default: 2833 break; 2834 case CmpInst::ICMP_EQ: 2835 case CmpInst::ICMP_SLE: 2836 // Equivalent to "A EqP B". This may be the same as the condition tested 2837 // in the max/min; if so, we can just return that. 2838 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2839 return V; 2840 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2841 return V; 2842 // Otherwise, see if "A EqP B" simplifies. 2843 if (MaxRecurse) 2844 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2845 return V; 2846 break; 2847 case CmpInst::ICMP_NE: 2848 case CmpInst::ICMP_SGT: { 2849 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2850 // Equivalent to "A InvEqP B". This may be the same as the condition 2851 // tested in the max/min; if so, we can just return that. 2852 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2853 return V; 2854 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2855 return V; 2856 // Otherwise, see if "A InvEqP B" simplifies. 2857 if (MaxRecurse) 2858 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2859 return V; 2860 break; 2861 } 2862 case CmpInst::ICMP_SGE: 2863 // Always true. 2864 return getTrue(ITy); 2865 case CmpInst::ICMP_SLT: 2866 // Always false. 2867 return getFalse(ITy); 2868 } 2869 } 2870 2871 // Unsigned variants on "max(a,b)>=a -> true". 2872 P = CmpInst::BAD_ICMP_PREDICATE; 2873 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2874 if (A != RHS) 2875 std::swap(A, B); // umax(A, B) pred A. 2876 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2877 // We analyze this as umax(A, B) pred A. 2878 P = Pred; 2879 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2880 (A == LHS || B == LHS)) { 2881 if (A != LHS) 2882 std::swap(A, B); // A pred umax(A, B). 2883 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2884 // We analyze this as umax(A, B) swapped-pred A. 2885 P = CmpInst::getSwappedPredicate(Pred); 2886 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2887 (A == RHS || B == RHS)) { 2888 if (A != RHS) 2889 std::swap(A, B); // umin(A, B) pred A. 2890 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2891 // We analyze this as umax(-A, -B) swapped-pred -A. 2892 // Note that we do not need to actually form -A or -B thanks to EqP. 2893 P = CmpInst::getSwappedPredicate(Pred); 2894 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2895 (A == LHS || B == LHS)) { 2896 if (A != LHS) 2897 std::swap(A, B); // A pred umin(A, B). 2898 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2899 // We analyze this as umax(-A, -B) pred -A. 2900 // Note that we do not need to actually form -A or -B thanks to EqP. 2901 P = Pred; 2902 } 2903 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2904 // Cases correspond to "max(A, B) p A". 2905 switch (P) { 2906 default: 2907 break; 2908 case CmpInst::ICMP_EQ: 2909 case CmpInst::ICMP_ULE: 2910 // Equivalent to "A EqP B". This may be the same as the condition tested 2911 // in the max/min; if so, we can just return that. 2912 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2913 return V; 2914 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2915 return V; 2916 // Otherwise, see if "A EqP B" simplifies. 2917 if (MaxRecurse) 2918 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2919 return V; 2920 break; 2921 case CmpInst::ICMP_NE: 2922 case CmpInst::ICMP_UGT: { 2923 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2924 // Equivalent to "A InvEqP B". This may be the same as the condition 2925 // tested in the max/min; if so, we can just return that. 2926 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2927 return V; 2928 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2929 return V; 2930 // Otherwise, see if "A InvEqP B" simplifies. 2931 if (MaxRecurse) 2932 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2933 return V; 2934 break; 2935 } 2936 case CmpInst::ICMP_UGE: 2937 // Always true. 2938 return getTrue(ITy); 2939 case CmpInst::ICMP_ULT: 2940 // Always false. 2941 return getFalse(ITy); 2942 } 2943 } 2944 2945 // Variants on "max(x,y) >= min(x,z)". 2946 Value *C, *D; 2947 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2948 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2949 (A == C || A == D || B == C || B == D)) { 2950 // max(x, ?) pred min(x, ?). 2951 if (Pred == CmpInst::ICMP_SGE) 2952 // Always true. 2953 return getTrue(ITy); 2954 if (Pred == CmpInst::ICMP_SLT) 2955 // Always false. 2956 return getFalse(ITy); 2957 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2958 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 2959 (A == C || A == D || B == C || B == D)) { 2960 // min(x, ?) pred max(x, ?). 2961 if (Pred == CmpInst::ICMP_SLE) 2962 // Always true. 2963 return getTrue(ITy); 2964 if (Pred == CmpInst::ICMP_SGT) 2965 // Always false. 2966 return getFalse(ITy); 2967 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 2968 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 2969 (A == C || A == D || B == C || B == D)) { 2970 // max(x, ?) pred min(x, ?). 2971 if (Pred == CmpInst::ICMP_UGE) 2972 // Always true. 2973 return getTrue(ITy); 2974 if (Pred == CmpInst::ICMP_ULT) 2975 // Always false. 2976 return getFalse(ITy); 2977 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2978 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 2979 (A == C || A == D || B == C || B == D)) { 2980 // min(x, ?) pred max(x, ?). 2981 if (Pred == CmpInst::ICMP_ULE) 2982 // Always true. 2983 return getTrue(ITy); 2984 if (Pred == CmpInst::ICMP_UGT) 2985 // Always false. 2986 return getFalse(ITy); 2987 } 2988 2989 return nullptr; 2990 } 2991 2992 /// Given operands for an ICmpInst, see if we can fold the result. 2993 /// If not, this returns null. 2994 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2995 const SimplifyQuery &Q, unsigned MaxRecurse) { 2996 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2997 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 2998 2999 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3000 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3001 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3002 3003 // If we have a constant, make sure it is on the RHS. 3004 std::swap(LHS, RHS); 3005 Pred = CmpInst::getSwappedPredicate(Pred); 3006 } 3007 3008 Type *ITy = GetCompareTy(LHS); // The return type. 3009 3010 // icmp X, X -> true/false 3011 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 3012 // because X could be 0. 3013 if (LHS == RHS || isa<UndefValue>(RHS)) 3014 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3015 3016 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3017 return V; 3018 3019 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3020 return V; 3021 3022 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3023 return V; 3024 3025 // If both operands have range metadata, use the metadata 3026 // to simplify the comparison. 3027 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3028 auto RHS_Instr = cast<Instruction>(RHS); 3029 auto LHS_Instr = cast<Instruction>(LHS); 3030 3031 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3032 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3033 auto RHS_CR = getConstantRangeFromMetadata( 3034 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3035 auto LHS_CR = getConstantRangeFromMetadata( 3036 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3037 3038 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3039 if (Satisfied_CR.contains(LHS_CR)) 3040 return ConstantInt::getTrue(RHS->getContext()); 3041 3042 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3043 CmpInst::getInversePredicate(Pred), RHS_CR); 3044 if (InversedSatisfied_CR.contains(LHS_CR)) 3045 return ConstantInt::getFalse(RHS->getContext()); 3046 } 3047 } 3048 3049 // Compare of cast, for example (zext X) != 0 -> X != 0 3050 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3051 Instruction *LI = cast<CastInst>(LHS); 3052 Value *SrcOp = LI->getOperand(0); 3053 Type *SrcTy = SrcOp->getType(); 3054 Type *DstTy = LI->getType(); 3055 3056 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3057 // if the integer type is the same size as the pointer type. 3058 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3059 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3060 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3061 // Transfer the cast to the constant. 3062 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3063 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3064 Q, MaxRecurse-1)) 3065 return V; 3066 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3067 if (RI->getOperand(0)->getType() == SrcTy) 3068 // Compare without the cast. 3069 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3070 Q, MaxRecurse-1)) 3071 return V; 3072 } 3073 } 3074 3075 if (isa<ZExtInst>(LHS)) { 3076 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3077 // same type. 3078 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3079 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3080 // Compare X and Y. Note that signed predicates become unsigned. 3081 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3082 SrcOp, RI->getOperand(0), Q, 3083 MaxRecurse-1)) 3084 return V; 3085 } 3086 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3087 // too. If not, then try to deduce the result of the comparison. 3088 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3089 // Compute the constant that would happen if we truncated to SrcTy then 3090 // reextended to DstTy. 3091 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3092 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3093 3094 // If the re-extended constant didn't change then this is effectively 3095 // also a case of comparing two zero-extended values. 3096 if (RExt == CI && MaxRecurse) 3097 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3098 SrcOp, Trunc, Q, MaxRecurse-1)) 3099 return V; 3100 3101 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3102 // there. Use this to work out the result of the comparison. 3103 if (RExt != CI) { 3104 switch (Pred) { 3105 default: llvm_unreachable("Unknown ICmp predicate!"); 3106 // LHS <u RHS. 3107 case ICmpInst::ICMP_EQ: 3108 case ICmpInst::ICMP_UGT: 3109 case ICmpInst::ICMP_UGE: 3110 return ConstantInt::getFalse(CI->getContext()); 3111 3112 case ICmpInst::ICMP_NE: 3113 case ICmpInst::ICMP_ULT: 3114 case ICmpInst::ICMP_ULE: 3115 return ConstantInt::getTrue(CI->getContext()); 3116 3117 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3118 // is non-negative then LHS <s RHS. 3119 case ICmpInst::ICMP_SGT: 3120 case ICmpInst::ICMP_SGE: 3121 return CI->getValue().isNegative() ? 3122 ConstantInt::getTrue(CI->getContext()) : 3123 ConstantInt::getFalse(CI->getContext()); 3124 3125 case ICmpInst::ICMP_SLT: 3126 case ICmpInst::ICMP_SLE: 3127 return CI->getValue().isNegative() ? 3128 ConstantInt::getFalse(CI->getContext()) : 3129 ConstantInt::getTrue(CI->getContext()); 3130 } 3131 } 3132 } 3133 } 3134 3135 if (isa<SExtInst>(LHS)) { 3136 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3137 // same type. 3138 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3139 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3140 // Compare X and Y. Note that the predicate does not change. 3141 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3142 Q, MaxRecurse-1)) 3143 return V; 3144 } 3145 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3146 // too. If not, then try to deduce the result of the comparison. 3147 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3148 // Compute the constant that would happen if we truncated to SrcTy then 3149 // reextended to DstTy. 3150 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3151 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3152 3153 // If the re-extended constant didn't change then this is effectively 3154 // also a case of comparing two sign-extended values. 3155 if (RExt == CI && MaxRecurse) 3156 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3157 return V; 3158 3159 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3160 // bits there. Use this to work out the result of the comparison. 3161 if (RExt != CI) { 3162 switch (Pred) { 3163 default: llvm_unreachable("Unknown ICmp predicate!"); 3164 case ICmpInst::ICMP_EQ: 3165 return ConstantInt::getFalse(CI->getContext()); 3166 case ICmpInst::ICMP_NE: 3167 return ConstantInt::getTrue(CI->getContext()); 3168 3169 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3170 // LHS >s RHS. 3171 case ICmpInst::ICMP_SGT: 3172 case ICmpInst::ICMP_SGE: 3173 return CI->getValue().isNegative() ? 3174 ConstantInt::getTrue(CI->getContext()) : 3175 ConstantInt::getFalse(CI->getContext()); 3176 case ICmpInst::ICMP_SLT: 3177 case ICmpInst::ICMP_SLE: 3178 return CI->getValue().isNegative() ? 3179 ConstantInt::getFalse(CI->getContext()) : 3180 ConstantInt::getTrue(CI->getContext()); 3181 3182 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3183 // LHS >u RHS. 3184 case ICmpInst::ICMP_UGT: 3185 case ICmpInst::ICMP_UGE: 3186 // Comparison is true iff the LHS <s 0. 3187 if (MaxRecurse) 3188 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3189 Constant::getNullValue(SrcTy), 3190 Q, MaxRecurse-1)) 3191 return V; 3192 break; 3193 case ICmpInst::ICMP_ULT: 3194 case ICmpInst::ICMP_ULE: 3195 // Comparison is true iff the LHS >=s 0. 3196 if (MaxRecurse) 3197 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3198 Constant::getNullValue(SrcTy), 3199 Q, MaxRecurse-1)) 3200 return V; 3201 break; 3202 } 3203 } 3204 } 3205 } 3206 } 3207 3208 // icmp eq|ne X, Y -> false|true if X != Y 3209 if (ICmpInst::isEquality(Pred) && 3210 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3211 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3212 } 3213 3214 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3215 return V; 3216 3217 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3218 return V; 3219 3220 // Simplify comparisons of related pointers using a powerful, recursive 3221 // GEP-walk when we have target data available.. 3222 if (LHS->getType()->isPointerTy()) 3223 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS, 3224 RHS)) 3225 return C; 3226 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3227 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3228 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3229 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3230 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3231 Q.DL.getTypeSizeInBits(CRHS->getType())) 3232 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3233 CLHS->getPointerOperand(), 3234 CRHS->getPointerOperand())) 3235 return C; 3236 3237 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3238 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3239 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3240 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3241 (ICmpInst::isEquality(Pred) || 3242 (GLHS->isInBounds() && GRHS->isInBounds() && 3243 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3244 // The bases are equal and the indices are constant. Build a constant 3245 // expression GEP with the same indices and a null base pointer to see 3246 // what constant folding can make out of it. 3247 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3248 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3249 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3250 GLHS->getSourceElementType(), Null, IndicesLHS); 3251 3252 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3253 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3254 GLHS->getSourceElementType(), Null, IndicesRHS); 3255 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3256 } 3257 } 3258 } 3259 3260 // If the comparison is with the result of a select instruction, check whether 3261 // comparing with either branch of the select always yields the same value. 3262 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3263 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3264 return V; 3265 3266 // If the comparison is with the result of a phi instruction, check whether 3267 // doing the compare with each incoming phi value yields a common result. 3268 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3269 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3270 return V; 3271 3272 return nullptr; 3273 } 3274 3275 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3276 const SimplifyQuery &Q) { 3277 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3278 } 3279 3280 /// Given operands for an FCmpInst, see if we can fold the result. 3281 /// If not, this returns null. 3282 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3283 FastMathFlags FMF, const SimplifyQuery &Q, 3284 unsigned MaxRecurse) { 3285 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3286 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3287 3288 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3289 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3290 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3291 3292 // If we have a constant, make sure it is on the RHS. 3293 std::swap(LHS, RHS); 3294 Pred = CmpInst::getSwappedPredicate(Pred); 3295 } 3296 3297 // Fold trivial predicates. 3298 Type *RetTy = GetCompareTy(LHS); 3299 if (Pred == FCmpInst::FCMP_FALSE) 3300 return getFalse(RetTy); 3301 if (Pred == FCmpInst::FCMP_TRUE) 3302 return getTrue(RetTy); 3303 3304 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3305 if (FMF.noNaNs()) { 3306 if (Pred == FCmpInst::FCMP_UNO) 3307 return getFalse(RetTy); 3308 if (Pred == FCmpInst::FCMP_ORD) 3309 return getTrue(RetTy); 3310 } 3311 3312 // fcmp pred x, undef and fcmp pred undef, x 3313 // fold to true if unordered, false if ordered 3314 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3315 // Choosing NaN for the undef will always make unordered comparison succeed 3316 // and ordered comparison fail. 3317 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3318 } 3319 3320 // fcmp x,x -> true/false. Not all compares are foldable. 3321 if (LHS == RHS) { 3322 if (CmpInst::isTrueWhenEqual(Pred)) 3323 return getTrue(RetTy); 3324 if (CmpInst::isFalseWhenEqual(Pred)) 3325 return getFalse(RetTy); 3326 } 3327 3328 // Handle fcmp with constant RHS. 3329 const APFloat *C; 3330 if (match(RHS, m_APFloat(C))) { 3331 // If the constant is a nan, see if we can fold the comparison based on it. 3332 if (C->isNaN()) { 3333 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3334 return getFalse(RetTy); 3335 assert(FCmpInst::isUnordered(Pred) && 3336 "Comparison must be either ordered or unordered!"); 3337 // True if unordered. 3338 return getTrue(RetTy); 3339 } 3340 // Check whether the constant is an infinity. 3341 if (C->isInfinity()) { 3342 if (C->isNegative()) { 3343 switch (Pred) { 3344 case FCmpInst::FCMP_OLT: 3345 // No value is ordered and less than negative infinity. 3346 return getFalse(RetTy); 3347 case FCmpInst::FCMP_UGE: 3348 // All values are unordered with or at least negative infinity. 3349 return getTrue(RetTy); 3350 default: 3351 break; 3352 } 3353 } else { 3354 switch (Pred) { 3355 case FCmpInst::FCMP_OGT: 3356 // No value is ordered and greater than infinity. 3357 return getFalse(RetTy); 3358 case FCmpInst::FCMP_ULE: 3359 // All values are unordered with and at most infinity. 3360 return getTrue(RetTy); 3361 default: 3362 break; 3363 } 3364 } 3365 } 3366 if (C->isZero()) { 3367 switch (Pred) { 3368 case FCmpInst::FCMP_UGE: 3369 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3370 return getTrue(RetTy); 3371 break; 3372 case FCmpInst::FCMP_OLT: 3373 // X < 0 3374 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3375 return getFalse(RetTy); 3376 break; 3377 default: 3378 break; 3379 } 3380 } else if (C->isNegative()) { 3381 assert(!C->isNaN() && "Unexpected NaN constant!"); 3382 // TODO: We can catch more cases by using a range check rather than 3383 // relying on CannotBeOrderedLessThanZero. 3384 switch (Pred) { 3385 case FCmpInst::FCMP_UGE: 3386 case FCmpInst::FCMP_UGT: 3387 case FCmpInst::FCMP_UNE: 3388 // (X >= 0) implies (X > C) when (C < 0) 3389 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3390 return getTrue(RetTy); 3391 break; 3392 case FCmpInst::FCMP_OEQ: 3393 case FCmpInst::FCMP_OLE: 3394 case FCmpInst::FCMP_OLT: 3395 // (X >= 0) implies !(X < C) when (C < 0) 3396 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3397 return getFalse(RetTy); 3398 break; 3399 default: 3400 break; 3401 } 3402 } 3403 } 3404 3405 // If the comparison is with the result of a select instruction, check whether 3406 // comparing with either branch of the select always yields the same value. 3407 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3408 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3409 return V; 3410 3411 // If the comparison is with the result of a phi instruction, check whether 3412 // doing the compare with each incoming phi value yields a common result. 3413 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3414 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3415 return V; 3416 3417 return nullptr; 3418 } 3419 3420 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3421 FastMathFlags FMF, const SimplifyQuery &Q) { 3422 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3423 } 3424 3425 /// See if V simplifies when its operand Op is replaced with RepOp. 3426 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3427 const SimplifyQuery &Q, 3428 unsigned MaxRecurse) { 3429 // Trivial replacement. 3430 if (V == Op) 3431 return RepOp; 3432 3433 // We cannot replace a constant, and shouldn't even try. 3434 if (isa<Constant>(Op)) 3435 return nullptr; 3436 3437 auto *I = dyn_cast<Instruction>(V); 3438 if (!I) 3439 return nullptr; 3440 3441 // If this is a binary operator, try to simplify it with the replaced op. 3442 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3443 // Consider: 3444 // %cmp = icmp eq i32 %x, 2147483647 3445 // %add = add nsw i32 %x, 1 3446 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3447 // 3448 // We can't replace %sel with %add unless we strip away the flags. 3449 if (isa<OverflowingBinaryOperator>(B)) 3450 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3451 return nullptr; 3452 if (isa<PossiblyExactOperator>(B)) 3453 if (B->isExact()) 3454 return nullptr; 3455 3456 if (MaxRecurse) { 3457 if (B->getOperand(0) == Op) 3458 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3459 MaxRecurse - 1); 3460 if (B->getOperand(1) == Op) 3461 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3462 MaxRecurse - 1); 3463 } 3464 } 3465 3466 // Same for CmpInsts. 3467 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3468 if (MaxRecurse) { 3469 if (C->getOperand(0) == Op) 3470 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3471 MaxRecurse - 1); 3472 if (C->getOperand(1) == Op) 3473 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3474 MaxRecurse - 1); 3475 } 3476 } 3477 3478 // TODO: We could hand off more cases to instsimplify here. 3479 3480 // If all operands are constant after substituting Op for RepOp then we can 3481 // constant fold the instruction. 3482 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3483 // Build a list of all constant operands. 3484 SmallVector<Constant *, 8> ConstOps; 3485 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3486 if (I->getOperand(i) == Op) 3487 ConstOps.push_back(CRepOp); 3488 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3489 ConstOps.push_back(COp); 3490 else 3491 break; 3492 } 3493 3494 // All operands were constants, fold it. 3495 if (ConstOps.size() == I->getNumOperands()) { 3496 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3497 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3498 ConstOps[1], Q.DL, Q.TLI); 3499 3500 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3501 if (!LI->isVolatile()) 3502 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3503 3504 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3505 } 3506 } 3507 3508 return nullptr; 3509 } 3510 3511 /// Try to simplify a select instruction when its condition operand is an 3512 /// integer comparison where one operand of the compare is a constant. 3513 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3514 const APInt *Y, bool TrueWhenUnset) { 3515 const APInt *C; 3516 3517 // (X & Y) == 0 ? X & ~Y : X --> X 3518 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3519 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3520 *Y == ~*C) 3521 return TrueWhenUnset ? FalseVal : TrueVal; 3522 3523 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3524 // (X & Y) != 0 ? X : X & ~Y --> X 3525 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3526 *Y == ~*C) 3527 return TrueWhenUnset ? FalseVal : TrueVal; 3528 3529 if (Y->isPowerOf2()) { 3530 // (X & Y) == 0 ? X | Y : X --> X | Y 3531 // (X & Y) != 0 ? X | Y : X --> X 3532 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3533 *Y == *C) 3534 return TrueWhenUnset ? TrueVal : FalseVal; 3535 3536 // (X & Y) == 0 ? X : X | Y --> X 3537 // (X & Y) != 0 ? X : X | Y --> X | Y 3538 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3539 *Y == *C) 3540 return TrueWhenUnset ? TrueVal : FalseVal; 3541 } 3542 3543 return nullptr; 3544 } 3545 3546 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3547 /// eq/ne. 3548 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3549 ICmpInst::Predicate Pred, 3550 Value *TrueVal, Value *FalseVal) { 3551 Value *X; 3552 APInt Mask; 3553 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3554 return nullptr; 3555 3556 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3557 Pred == ICmpInst::ICMP_EQ); 3558 } 3559 3560 /// Try to simplify a select instruction when its condition operand is an 3561 /// integer comparison. 3562 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3563 Value *FalseVal, const SimplifyQuery &Q, 3564 unsigned MaxRecurse) { 3565 ICmpInst::Predicate Pred; 3566 Value *CmpLHS, *CmpRHS; 3567 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3568 return nullptr; 3569 3570 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3571 Value *X; 3572 const APInt *Y; 3573 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3574 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3575 Pred == ICmpInst::ICMP_EQ)) 3576 return V; 3577 } 3578 3579 // Check for other compares that behave like bit test. 3580 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3581 TrueVal, FalseVal)) 3582 return V; 3583 3584 if (CondVal->hasOneUse()) { 3585 const APInt *C; 3586 if (match(CmpRHS, m_APInt(C))) { 3587 // X < MIN ? T : F --> F 3588 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3589 return FalseVal; 3590 // X < MIN ? T : F --> F 3591 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3592 return FalseVal; 3593 // X > MAX ? T : F --> F 3594 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3595 return FalseVal; 3596 // X > MAX ? T : F --> F 3597 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3598 return FalseVal; 3599 } 3600 } 3601 3602 // If we have an equality comparison, then we know the value in one of the 3603 // arms of the select. See if substituting this value into the arm and 3604 // simplifying the result yields the same value as the other arm. 3605 if (Pred == ICmpInst::ICMP_EQ) { 3606 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3607 TrueVal || 3608 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3609 TrueVal) 3610 return FalseVal; 3611 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3612 FalseVal || 3613 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3614 FalseVal) 3615 return FalseVal; 3616 } else if (Pred == ICmpInst::ICMP_NE) { 3617 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3618 FalseVal || 3619 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3620 FalseVal) 3621 return TrueVal; 3622 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3623 TrueVal || 3624 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3625 TrueVal) 3626 return TrueVal; 3627 } 3628 3629 return nullptr; 3630 } 3631 3632 /// Given operands for a SelectInst, see if we can fold the result. 3633 /// If not, this returns null. 3634 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3635 Value *FalseVal, const SimplifyQuery &Q, 3636 unsigned MaxRecurse) { 3637 // select true, X, Y -> X 3638 // select false, X, Y -> Y 3639 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3640 if (Constant *CT = dyn_cast<Constant>(TrueVal)) 3641 if (Constant *CF = dyn_cast<Constant>(FalseVal)) 3642 return ConstantFoldSelectInstruction(CB, CT, CF); 3643 if (CB->isAllOnesValue()) 3644 return TrueVal; 3645 if (CB->isNullValue()) 3646 return FalseVal; 3647 } 3648 3649 // select C, X, X -> X 3650 if (TrueVal == FalseVal) 3651 return TrueVal; 3652 3653 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3654 if (isa<Constant>(FalseVal)) 3655 return FalseVal; 3656 return TrueVal; 3657 } 3658 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3659 return FalseVal; 3660 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3661 return TrueVal; 3662 3663 if (Value *V = 3664 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3665 return V; 3666 3667 return nullptr; 3668 } 3669 3670 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3671 const SimplifyQuery &Q) { 3672 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3673 } 3674 3675 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3676 /// If not, this returns null. 3677 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3678 const SimplifyQuery &Q, unsigned) { 3679 // The type of the GEP pointer operand. 3680 unsigned AS = 3681 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3682 3683 // getelementptr P -> P. 3684 if (Ops.size() == 1) 3685 return Ops[0]; 3686 3687 // Compute the (pointer) type returned by the GEP instruction. 3688 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3689 Type *GEPTy = PointerType::get(LastType, AS); 3690 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3691 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3692 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3693 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3694 3695 if (isa<UndefValue>(Ops[0])) 3696 return UndefValue::get(GEPTy); 3697 3698 if (Ops.size() == 2) { 3699 // getelementptr P, 0 -> P. 3700 if (match(Ops[1], m_Zero())) 3701 return Ops[0]; 3702 3703 Type *Ty = SrcTy; 3704 if (Ty->isSized()) { 3705 Value *P; 3706 uint64_t C; 3707 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3708 // getelementptr P, N -> P if P points to a type of zero size. 3709 if (TyAllocSize == 0) 3710 return Ops[0]; 3711 3712 // The following transforms are only safe if the ptrtoint cast 3713 // doesn't truncate the pointers. 3714 if (Ops[1]->getType()->getScalarSizeInBits() == 3715 Q.DL.getPointerSizeInBits(AS)) { 3716 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3717 if (match(P, m_Zero())) 3718 return Constant::getNullValue(GEPTy); 3719 Value *Temp; 3720 if (match(P, m_PtrToInt(m_Value(Temp)))) 3721 if (Temp->getType() == GEPTy) 3722 return Temp; 3723 return nullptr; 3724 }; 3725 3726 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3727 if (TyAllocSize == 1 && 3728 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3729 if (Value *R = PtrToIntOrZero(P)) 3730 return R; 3731 3732 // getelementptr V, (ashr (sub P, V), C) -> Q 3733 // if P points to a type of size 1 << C. 3734 if (match(Ops[1], 3735 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3736 m_ConstantInt(C))) && 3737 TyAllocSize == 1ULL << C) 3738 if (Value *R = PtrToIntOrZero(P)) 3739 return R; 3740 3741 // getelementptr V, (sdiv (sub P, V), C) -> Q 3742 // if P points to a type of size C. 3743 if (match(Ops[1], 3744 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3745 m_SpecificInt(TyAllocSize)))) 3746 if (Value *R = PtrToIntOrZero(P)) 3747 return R; 3748 } 3749 } 3750 } 3751 3752 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3753 all_of(Ops.slice(1).drop_back(1), 3754 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3755 unsigned PtrWidth = 3756 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3757 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3758 APInt BasePtrOffset(PtrWidth, 0); 3759 Value *StrippedBasePtr = 3760 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3761 BasePtrOffset); 3762 3763 // gep (gep V, C), (sub 0, V) -> C 3764 if (match(Ops.back(), 3765 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3766 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3767 return ConstantExpr::getIntToPtr(CI, GEPTy); 3768 } 3769 // gep (gep V, C), (xor V, -1) -> C-1 3770 if (match(Ops.back(), 3771 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3772 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3773 return ConstantExpr::getIntToPtr(CI, GEPTy); 3774 } 3775 } 3776 } 3777 3778 // Check to see if this is constant foldable. 3779 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3780 return nullptr; 3781 3782 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3783 Ops.slice(1)); 3784 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3785 return CEFolded; 3786 return CE; 3787 } 3788 3789 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3790 const SimplifyQuery &Q) { 3791 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3792 } 3793 3794 /// Given operands for an InsertValueInst, see if we can fold the result. 3795 /// If not, this returns null. 3796 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3797 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3798 unsigned) { 3799 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3800 if (Constant *CVal = dyn_cast<Constant>(Val)) 3801 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3802 3803 // insertvalue x, undef, n -> x 3804 if (match(Val, m_Undef())) 3805 return Agg; 3806 3807 // insertvalue x, (extractvalue y, n), n 3808 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3809 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3810 EV->getIndices() == Idxs) { 3811 // insertvalue undef, (extractvalue y, n), n -> y 3812 if (match(Agg, m_Undef())) 3813 return EV->getAggregateOperand(); 3814 3815 // insertvalue y, (extractvalue y, n), n -> y 3816 if (Agg == EV->getAggregateOperand()) 3817 return Agg; 3818 } 3819 3820 return nullptr; 3821 } 3822 3823 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3824 ArrayRef<unsigned> Idxs, 3825 const SimplifyQuery &Q) { 3826 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 3827 } 3828 3829 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 3830 const SimplifyQuery &Q) { 3831 // Try to constant fold. 3832 auto *VecC = dyn_cast<Constant>(Vec); 3833 auto *ValC = dyn_cast<Constant>(Val); 3834 auto *IdxC = dyn_cast<Constant>(Idx); 3835 if (VecC && ValC && IdxC) 3836 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 3837 3838 // Fold into undef if index is out of bounds. 3839 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 3840 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); 3841 if (CI->uge(NumElements)) 3842 return UndefValue::get(Vec->getType()); 3843 } 3844 3845 // If index is undef, it might be out of bounds (see above case) 3846 if (isa<UndefValue>(Idx)) 3847 return UndefValue::get(Vec->getType()); 3848 3849 return nullptr; 3850 } 3851 3852 /// Given operands for an ExtractValueInst, see if we can fold the result. 3853 /// If not, this returns null. 3854 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3855 const SimplifyQuery &, unsigned) { 3856 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3857 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3858 3859 // extractvalue x, (insertvalue y, elt, n), n -> elt 3860 unsigned NumIdxs = Idxs.size(); 3861 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3862 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3863 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3864 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3865 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3866 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3867 Idxs.slice(0, NumCommonIdxs)) { 3868 if (NumIdxs == NumInsertValueIdxs) 3869 return IVI->getInsertedValueOperand(); 3870 break; 3871 } 3872 } 3873 3874 return nullptr; 3875 } 3876 3877 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3878 const SimplifyQuery &Q) { 3879 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 3880 } 3881 3882 /// Given operands for an ExtractElementInst, see if we can fold the result. 3883 /// If not, this returns null. 3884 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 3885 unsigned) { 3886 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3887 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3888 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3889 3890 // The index is not relevant if our vector is a splat. 3891 if (auto *Splat = CVec->getSplatValue()) 3892 return Splat; 3893 3894 if (isa<UndefValue>(Vec)) 3895 return UndefValue::get(Vec->getType()->getVectorElementType()); 3896 } 3897 3898 // If extracting a specified index from the vector, see if we can recursively 3899 // find a previously computed scalar that was inserted into the vector. 3900 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 3901 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) 3902 // definitely out of bounds, thus undefined result 3903 return UndefValue::get(Vec->getType()->getVectorElementType()); 3904 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3905 return Elt; 3906 } 3907 3908 // An undef extract index can be arbitrarily chosen to be an out-of-range 3909 // index value, which would result in the instruction being undef. 3910 if (isa<UndefValue>(Idx)) 3911 return UndefValue::get(Vec->getType()->getVectorElementType()); 3912 3913 return nullptr; 3914 } 3915 3916 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 3917 const SimplifyQuery &Q) { 3918 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 3919 } 3920 3921 /// See if we can fold the given phi. If not, returns null. 3922 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 3923 // If all of the PHI's incoming values are the same then replace the PHI node 3924 // with the common value. 3925 Value *CommonValue = nullptr; 3926 bool HasUndefInput = false; 3927 for (Value *Incoming : PN->incoming_values()) { 3928 // If the incoming value is the phi node itself, it can safely be skipped. 3929 if (Incoming == PN) continue; 3930 if (isa<UndefValue>(Incoming)) { 3931 // Remember that we saw an undef value, but otherwise ignore them. 3932 HasUndefInput = true; 3933 continue; 3934 } 3935 if (CommonValue && Incoming != CommonValue) 3936 return nullptr; // Not the same, bail out. 3937 CommonValue = Incoming; 3938 } 3939 3940 // If CommonValue is null then all of the incoming values were either undef or 3941 // equal to the phi node itself. 3942 if (!CommonValue) 3943 return UndefValue::get(PN->getType()); 3944 3945 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3946 // instruction, we cannot return X as the result of the PHI node unless it 3947 // dominates the PHI block. 3948 if (HasUndefInput) 3949 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3950 3951 return CommonValue; 3952 } 3953 3954 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 3955 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 3956 if (auto *C = dyn_cast<Constant>(Op)) 3957 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 3958 3959 if (auto *CI = dyn_cast<CastInst>(Op)) { 3960 auto *Src = CI->getOperand(0); 3961 Type *SrcTy = Src->getType(); 3962 Type *MidTy = CI->getType(); 3963 Type *DstTy = Ty; 3964 if (Src->getType() == Ty) { 3965 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 3966 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 3967 Type *SrcIntPtrTy = 3968 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 3969 Type *MidIntPtrTy = 3970 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 3971 Type *DstIntPtrTy = 3972 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 3973 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 3974 SrcIntPtrTy, MidIntPtrTy, 3975 DstIntPtrTy) == Instruction::BitCast) 3976 return Src; 3977 } 3978 } 3979 3980 // bitcast x -> x 3981 if (CastOpc == Instruction::BitCast) 3982 if (Op->getType() == Ty) 3983 return Op; 3984 3985 return nullptr; 3986 } 3987 3988 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 3989 const SimplifyQuery &Q) { 3990 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 3991 } 3992 3993 /// For the given destination element of a shuffle, peek through shuffles to 3994 /// match a root vector source operand that contains that element in the same 3995 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 3996 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 3997 int MaskVal, Value *RootVec, 3998 unsigned MaxRecurse) { 3999 if (!MaxRecurse--) 4000 return nullptr; 4001 4002 // Bail out if any mask value is undefined. That kind of shuffle may be 4003 // simplified further based on demanded bits or other folds. 4004 if (MaskVal == -1) 4005 return nullptr; 4006 4007 // The mask value chooses which source operand we need to look at next. 4008 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4009 int RootElt = MaskVal; 4010 Value *SourceOp = Op0; 4011 if (MaskVal >= InVecNumElts) { 4012 RootElt = MaskVal - InVecNumElts; 4013 SourceOp = Op1; 4014 } 4015 4016 // If the source operand is a shuffle itself, look through it to find the 4017 // matching root vector. 4018 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4019 return foldIdentityShuffles( 4020 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4021 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4022 } 4023 4024 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4025 // size? 4026 4027 // The source operand is not a shuffle. Initialize the root vector value for 4028 // this shuffle if that has not been done yet. 4029 if (!RootVec) 4030 RootVec = SourceOp; 4031 4032 // Give up as soon as a source operand does not match the existing root value. 4033 if (RootVec != SourceOp) 4034 return nullptr; 4035 4036 // The element must be coming from the same lane in the source vector 4037 // (although it may have crossed lanes in intermediate shuffles). 4038 if (RootElt != DestElt) 4039 return nullptr; 4040 4041 return RootVec; 4042 } 4043 4044 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4045 Type *RetTy, const SimplifyQuery &Q, 4046 unsigned MaxRecurse) { 4047 if (isa<UndefValue>(Mask)) 4048 return UndefValue::get(RetTy); 4049 4050 Type *InVecTy = Op0->getType(); 4051 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4052 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4053 4054 SmallVector<int, 32> Indices; 4055 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4056 assert(MaskNumElts == Indices.size() && 4057 "Size of Indices not same as number of mask elements?"); 4058 4059 // Canonicalization: If mask does not select elements from an input vector, 4060 // replace that input vector with undef. 4061 bool MaskSelects0 = false, MaskSelects1 = false; 4062 for (unsigned i = 0; i != MaskNumElts; ++i) { 4063 if (Indices[i] == -1) 4064 continue; 4065 if ((unsigned)Indices[i] < InVecNumElts) 4066 MaskSelects0 = true; 4067 else 4068 MaskSelects1 = true; 4069 } 4070 if (!MaskSelects0) 4071 Op0 = UndefValue::get(InVecTy); 4072 if (!MaskSelects1) 4073 Op1 = UndefValue::get(InVecTy); 4074 4075 auto *Op0Const = dyn_cast<Constant>(Op0); 4076 auto *Op1Const = dyn_cast<Constant>(Op1); 4077 4078 // If all operands are constant, constant fold the shuffle. 4079 if (Op0Const && Op1Const) 4080 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4081 4082 // Canonicalization: if only one input vector is constant, it shall be the 4083 // second one. 4084 if (Op0Const && !Op1Const) { 4085 std::swap(Op0, Op1); 4086 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4087 } 4088 4089 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4090 // value type is same as the input vectors' type. 4091 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4092 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4093 OpShuf->getMask()->getSplatValue()) 4094 return Op0; 4095 4096 // Don't fold a shuffle with undef mask elements. This may get folded in a 4097 // better way using demanded bits or other analysis. 4098 // TODO: Should we allow this? 4099 if (find(Indices, -1) != Indices.end()) 4100 return nullptr; 4101 4102 // Check if every element of this shuffle can be mapped back to the 4103 // corresponding element of a single root vector. If so, we don't need this 4104 // shuffle. This handles simple identity shuffles as well as chains of 4105 // shuffles that may widen/narrow and/or move elements across lanes and back. 4106 Value *RootVec = nullptr; 4107 for (unsigned i = 0; i != MaskNumElts; ++i) { 4108 // Note that recursion is limited for each vector element, so if any element 4109 // exceeds the limit, this will fail to simplify. 4110 RootVec = 4111 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4112 4113 // We can't replace a widening/narrowing shuffle with one of its operands. 4114 if (!RootVec || RootVec->getType() != RetTy) 4115 return nullptr; 4116 } 4117 return RootVec; 4118 } 4119 4120 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4121 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4122 Type *RetTy, const SimplifyQuery &Q) { 4123 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4124 } 4125 4126 /// Given operands for an FAdd, see if we can fold the result. If not, this 4127 /// returns null. 4128 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4129 const SimplifyQuery &Q, unsigned MaxRecurse) { 4130 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4131 return C; 4132 4133 // fadd X, -0 ==> X 4134 if (match(Op1, m_NegZero())) 4135 return Op0; 4136 4137 // fadd X, 0 ==> X, when we know X is not -0 4138 if (match(Op1, m_Zero()) && 4139 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4140 return Op0; 4141 4142 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 4143 // where nnan and ninf have to occur at least once somewhere in this 4144 // expression 4145 Value *SubOp = nullptr; 4146 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 4147 SubOp = Op1; 4148 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 4149 SubOp = Op0; 4150 if (SubOp) { 4151 Instruction *FSub = cast<Instruction>(SubOp); 4152 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 4153 (FMF.noInfs() || FSub->hasNoInfs())) 4154 return Constant::getNullValue(Op0->getType()); 4155 } 4156 4157 return nullptr; 4158 } 4159 4160 /// Given operands for an FSub, see if we can fold the result. If not, this 4161 /// returns null. 4162 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4163 const SimplifyQuery &Q, unsigned MaxRecurse) { 4164 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4165 return C; 4166 4167 // fsub X, 0 ==> X 4168 if (match(Op1, m_Zero())) 4169 return Op0; 4170 4171 // fsub X, -0 ==> X, when we know X is not -0 4172 if (match(Op1, m_NegZero()) && 4173 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4174 return Op0; 4175 4176 // fsub -0.0, (fsub -0.0, X) ==> X 4177 Value *X; 4178 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 4179 return X; 4180 4181 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4182 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 4183 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 4184 return X; 4185 4186 // fsub nnan x, x ==> 0.0 4187 if (FMF.noNaNs() && Op0 == Op1) 4188 return Constant::getNullValue(Op0->getType()); 4189 4190 return nullptr; 4191 } 4192 4193 /// Given the operands for an FMul, see if we can fold the result 4194 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4195 const SimplifyQuery &Q, unsigned MaxRecurse) { 4196 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4197 return C; 4198 4199 // fmul X, 1.0 ==> X 4200 if (match(Op1, m_FPOne())) 4201 return Op0; 4202 4203 // fmul nnan nsz X, 0 ==> 0 4204 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 4205 return Op1; 4206 4207 return nullptr; 4208 } 4209 4210 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4211 const SimplifyQuery &Q) { 4212 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4213 } 4214 4215 4216 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4217 const SimplifyQuery &Q) { 4218 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4219 } 4220 4221 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4222 const SimplifyQuery &Q) { 4223 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4224 } 4225 4226 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4227 const SimplifyQuery &Q, unsigned) { 4228 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4229 return C; 4230 4231 // undef / X -> undef (the undef could be a snan). 4232 if (match(Op0, m_Undef())) 4233 return Op0; 4234 4235 // X / undef -> undef 4236 if (match(Op1, m_Undef())) 4237 return Op1; 4238 4239 // X / 1.0 -> X 4240 if (match(Op1, m_FPOne())) 4241 return Op0; 4242 4243 // 0 / X -> 0 4244 // Requires that NaNs are off (X could be zero) and signed zeroes are 4245 // ignored (X could be positive or negative, so the output sign is unknown). 4246 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 4247 return Op0; 4248 4249 if (FMF.noNaNs()) { 4250 // X / X -> 1.0 is legal when NaNs are ignored. 4251 if (Op0 == Op1) 4252 return ConstantFP::get(Op0->getType(), 1.0); 4253 4254 // -X / X -> -1.0 and 4255 // X / -X -> -1.0 are legal when NaNs are ignored. 4256 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4257 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 4258 BinaryOperator::getFNegArgument(Op0) == Op1) || 4259 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 4260 BinaryOperator::getFNegArgument(Op1) == Op0)) 4261 return ConstantFP::get(Op0->getType(), -1.0); 4262 } 4263 4264 return nullptr; 4265 } 4266 4267 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4268 const SimplifyQuery &Q) { 4269 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4270 } 4271 4272 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4273 const SimplifyQuery &Q, unsigned) { 4274 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4275 return C; 4276 4277 // undef % X -> undef (the undef could be a snan). 4278 if (match(Op0, m_Undef())) 4279 return Op0; 4280 4281 // X % undef -> undef 4282 if (match(Op1, m_Undef())) 4283 return Op1; 4284 4285 // 0 % X -> 0 4286 // Requires that NaNs are off (X could be zero) and signed zeroes are 4287 // ignored (X could be positive or negative, so the output sign is unknown). 4288 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 4289 return Op0; 4290 4291 return nullptr; 4292 } 4293 4294 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4295 const SimplifyQuery &Q) { 4296 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4297 } 4298 4299 //=== Helper functions for higher up the class hierarchy. 4300 4301 /// Given operands for a BinaryOperator, see if we can fold the result. 4302 /// If not, this returns null. 4303 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4304 const SimplifyQuery &Q, unsigned MaxRecurse) { 4305 switch (Opcode) { 4306 case Instruction::Add: 4307 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4308 case Instruction::Sub: 4309 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4310 case Instruction::Mul: 4311 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4312 case Instruction::SDiv: 4313 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4314 case Instruction::UDiv: 4315 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4316 case Instruction::SRem: 4317 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4318 case Instruction::URem: 4319 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4320 case Instruction::Shl: 4321 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4322 case Instruction::LShr: 4323 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4324 case Instruction::AShr: 4325 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4326 case Instruction::And: 4327 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4328 case Instruction::Or: 4329 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4330 case Instruction::Xor: 4331 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4332 case Instruction::FAdd: 4333 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4334 case Instruction::FSub: 4335 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4336 case Instruction::FMul: 4337 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4338 case Instruction::FDiv: 4339 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4340 case Instruction::FRem: 4341 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4342 default: 4343 llvm_unreachable("Unexpected opcode"); 4344 } 4345 } 4346 4347 /// Given operands for a BinaryOperator, see if we can fold the result. 4348 /// If not, this returns null. 4349 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4350 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4351 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4352 const FastMathFlags &FMF, const SimplifyQuery &Q, 4353 unsigned MaxRecurse) { 4354 switch (Opcode) { 4355 case Instruction::FAdd: 4356 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4357 case Instruction::FSub: 4358 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4359 case Instruction::FMul: 4360 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4361 case Instruction::FDiv: 4362 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4363 default: 4364 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4365 } 4366 } 4367 4368 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4369 const SimplifyQuery &Q) { 4370 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4371 } 4372 4373 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4374 FastMathFlags FMF, const SimplifyQuery &Q) { 4375 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4376 } 4377 4378 /// Given operands for a CmpInst, see if we can fold the result. 4379 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4380 const SimplifyQuery &Q, unsigned MaxRecurse) { 4381 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4382 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4383 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4384 } 4385 4386 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4387 const SimplifyQuery &Q) { 4388 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4389 } 4390 4391 static bool IsIdempotent(Intrinsic::ID ID) { 4392 switch (ID) { 4393 default: return false; 4394 4395 // Unary idempotent: f(f(x)) = f(x) 4396 case Intrinsic::fabs: 4397 case Intrinsic::floor: 4398 case Intrinsic::ceil: 4399 case Intrinsic::trunc: 4400 case Intrinsic::rint: 4401 case Intrinsic::nearbyint: 4402 case Intrinsic::round: 4403 case Intrinsic::canonicalize: 4404 return true; 4405 } 4406 } 4407 4408 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4409 const DataLayout &DL) { 4410 GlobalValue *PtrSym; 4411 APInt PtrOffset; 4412 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4413 return nullptr; 4414 4415 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4416 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4417 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4418 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4419 4420 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4421 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4422 return nullptr; 4423 4424 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4425 if (OffsetInt % 4 != 0) 4426 return nullptr; 4427 4428 Constant *C = ConstantExpr::getGetElementPtr( 4429 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4430 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4431 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4432 if (!Loaded) 4433 return nullptr; 4434 4435 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4436 if (!LoadedCE) 4437 return nullptr; 4438 4439 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4440 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4441 if (!LoadedCE) 4442 return nullptr; 4443 } 4444 4445 if (LoadedCE->getOpcode() != Instruction::Sub) 4446 return nullptr; 4447 4448 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4449 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4450 return nullptr; 4451 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4452 4453 Constant *LoadedRHS = LoadedCE->getOperand(1); 4454 GlobalValue *LoadedRHSSym; 4455 APInt LoadedRHSOffset; 4456 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4457 DL) || 4458 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4459 return nullptr; 4460 4461 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4462 } 4463 4464 static bool maskIsAllZeroOrUndef(Value *Mask) { 4465 auto *ConstMask = dyn_cast<Constant>(Mask); 4466 if (!ConstMask) 4467 return false; 4468 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4469 return true; 4470 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4471 ++I) { 4472 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4473 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4474 continue; 4475 return false; 4476 } 4477 return true; 4478 } 4479 4480 template <typename IterTy> 4481 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4482 const SimplifyQuery &Q, unsigned MaxRecurse) { 4483 Intrinsic::ID IID = F->getIntrinsicID(); 4484 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4485 4486 // Unary Ops 4487 if (NumOperands == 1) { 4488 // Perform idempotent optimizations 4489 if (IsIdempotent(IID)) { 4490 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4491 if (II->getIntrinsicID() == IID) 4492 return II; 4493 } 4494 } 4495 4496 Value *IIOperand = *ArgBegin; 4497 Value *X; 4498 switch (IID) { 4499 case Intrinsic::fabs: { 4500 if (SignBitMustBeZero(IIOperand, Q.TLI)) 4501 return IIOperand; 4502 return nullptr; 4503 } 4504 case Intrinsic::bswap: { 4505 // bswap(bswap(x)) -> x 4506 if (match(IIOperand, m_BSwap(m_Value(X)))) 4507 return X; 4508 return nullptr; 4509 } 4510 case Intrinsic::bitreverse: { 4511 // bitreverse(bitreverse(x)) -> x 4512 if (match(IIOperand, m_BitReverse(m_Value(X)))) 4513 return X; 4514 return nullptr; 4515 } 4516 case Intrinsic::exp: { 4517 // exp(log(x)) -> x 4518 if (Q.CxtI->isFast() && 4519 match(IIOperand, m_Intrinsic<Intrinsic::log>(m_Value(X)))) 4520 return X; 4521 return nullptr; 4522 } 4523 case Intrinsic::exp2: { 4524 // exp2(log2(x)) -> x 4525 if (Q.CxtI->isFast() && 4526 match(IIOperand, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) 4527 return X; 4528 return nullptr; 4529 } 4530 case Intrinsic::log: { 4531 // log(exp(x)) -> x 4532 if (Q.CxtI->isFast() && 4533 match(IIOperand, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) 4534 return X; 4535 return nullptr; 4536 } 4537 case Intrinsic::log2: { 4538 // log2(exp2(x)) -> x 4539 if (Q.CxtI->isFast() && 4540 match(IIOperand, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) { 4541 return X; 4542 } 4543 return nullptr; 4544 } 4545 default: 4546 return nullptr; 4547 } 4548 } 4549 4550 // Binary Ops 4551 if (NumOperands == 2) { 4552 Value *LHS = *ArgBegin; 4553 Value *RHS = *(ArgBegin + 1); 4554 Type *ReturnType = F->getReturnType(); 4555 4556 switch (IID) { 4557 case Intrinsic::usub_with_overflow: 4558 case Intrinsic::ssub_with_overflow: { 4559 // X - X -> { 0, false } 4560 if (LHS == RHS) 4561 return Constant::getNullValue(ReturnType); 4562 4563 // X - undef -> undef 4564 // undef - X -> undef 4565 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4566 return UndefValue::get(ReturnType); 4567 4568 return nullptr; 4569 } 4570 case Intrinsic::uadd_with_overflow: 4571 case Intrinsic::sadd_with_overflow: { 4572 // X + undef -> undef 4573 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4574 return UndefValue::get(ReturnType); 4575 4576 return nullptr; 4577 } 4578 case Intrinsic::umul_with_overflow: 4579 case Intrinsic::smul_with_overflow: { 4580 // 0 * X -> { 0, false } 4581 // X * 0 -> { 0, false } 4582 if (match(LHS, m_Zero()) || match(RHS, m_Zero())) 4583 return Constant::getNullValue(ReturnType); 4584 4585 // undef * X -> { 0, false } 4586 // X * undef -> { 0, false } 4587 if (match(LHS, m_Undef()) || match(RHS, m_Undef())) 4588 return Constant::getNullValue(ReturnType); 4589 4590 return nullptr; 4591 } 4592 case Intrinsic::load_relative: { 4593 Constant *C0 = dyn_cast<Constant>(LHS); 4594 Constant *C1 = dyn_cast<Constant>(RHS); 4595 if (C0 && C1) 4596 return SimplifyRelativeLoad(C0, C1, Q.DL); 4597 return nullptr; 4598 } 4599 case Intrinsic::powi: 4600 if (ConstantInt *Power = dyn_cast<ConstantInt>(RHS)) { 4601 // powi(x, 0) -> 1.0 4602 if (Power->isZero()) 4603 return ConstantFP::get(LHS->getType(), 1.0); 4604 // powi(x, 1) -> x 4605 if (Power->isOne()) 4606 return LHS; 4607 } 4608 return nullptr; 4609 default: 4610 return nullptr; 4611 } 4612 } 4613 4614 // Simplify calls to llvm.masked.load.* 4615 switch (IID) { 4616 case Intrinsic::masked_load: { 4617 Value *MaskArg = ArgBegin[2]; 4618 Value *PassthruArg = ArgBegin[3]; 4619 // If the mask is all zeros or undef, the "passthru" argument is the result. 4620 if (maskIsAllZeroOrUndef(MaskArg)) 4621 return PassthruArg; 4622 return nullptr; 4623 } 4624 default: 4625 return nullptr; 4626 } 4627 } 4628 4629 template <typename IterTy> 4630 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin, 4631 IterTy ArgEnd, const SimplifyQuery &Q, 4632 unsigned MaxRecurse) { 4633 Type *Ty = V->getType(); 4634 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4635 Ty = PTy->getElementType(); 4636 FunctionType *FTy = cast<FunctionType>(Ty); 4637 4638 // call undef -> undef 4639 // call null -> undef 4640 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4641 return UndefValue::get(FTy->getReturnType()); 4642 4643 Function *F = dyn_cast<Function>(V); 4644 if (!F) 4645 return nullptr; 4646 4647 if (F->isIntrinsic()) 4648 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4649 return Ret; 4650 4651 if (!canConstantFoldCallTo(CS, F)) 4652 return nullptr; 4653 4654 SmallVector<Constant *, 4> ConstantArgs; 4655 ConstantArgs.reserve(ArgEnd - ArgBegin); 4656 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4657 Constant *C = dyn_cast<Constant>(*I); 4658 if (!C) 4659 return nullptr; 4660 ConstantArgs.push_back(C); 4661 } 4662 4663 return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI); 4664 } 4665 4666 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4667 User::op_iterator ArgBegin, User::op_iterator ArgEnd, 4668 const SimplifyQuery &Q) { 4669 return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit); 4670 } 4671 4672 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4673 ArrayRef<Value *> Args, const SimplifyQuery &Q) { 4674 return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit); 4675 } 4676 4677 Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) { 4678 CallSite CS(const_cast<Instruction*>(ICS.getInstruction())); 4679 return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 4680 Q, RecursionLimit); 4681 } 4682 4683 /// See if we can compute a simplified version of this instruction. 4684 /// If not, this returns null. 4685 4686 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 4687 OptimizationRemarkEmitter *ORE) { 4688 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 4689 Value *Result; 4690 4691 switch (I->getOpcode()) { 4692 default: 4693 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 4694 break; 4695 case Instruction::FAdd: 4696 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4697 I->getFastMathFlags(), Q); 4698 break; 4699 case Instruction::Add: 4700 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4701 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4702 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4703 break; 4704 case Instruction::FSub: 4705 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4706 I->getFastMathFlags(), Q); 4707 break; 4708 case Instruction::Sub: 4709 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4710 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4711 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4712 break; 4713 case Instruction::FMul: 4714 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4715 I->getFastMathFlags(), Q); 4716 break; 4717 case Instruction::Mul: 4718 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 4719 break; 4720 case Instruction::SDiv: 4721 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 4722 break; 4723 case Instruction::UDiv: 4724 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 4725 break; 4726 case Instruction::FDiv: 4727 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4728 I->getFastMathFlags(), Q); 4729 break; 4730 case Instruction::SRem: 4731 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 4732 break; 4733 case Instruction::URem: 4734 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 4735 break; 4736 case Instruction::FRem: 4737 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4738 I->getFastMathFlags(), Q); 4739 break; 4740 case Instruction::Shl: 4741 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4742 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4743 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4744 break; 4745 case Instruction::LShr: 4746 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4747 cast<BinaryOperator>(I)->isExact(), Q); 4748 break; 4749 case Instruction::AShr: 4750 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4751 cast<BinaryOperator>(I)->isExact(), Q); 4752 break; 4753 case Instruction::And: 4754 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 4755 break; 4756 case Instruction::Or: 4757 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 4758 break; 4759 case Instruction::Xor: 4760 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 4761 break; 4762 case Instruction::ICmp: 4763 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 4764 I->getOperand(0), I->getOperand(1), Q); 4765 break; 4766 case Instruction::FCmp: 4767 Result = 4768 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 4769 I->getOperand(1), I->getFastMathFlags(), Q); 4770 break; 4771 case Instruction::Select: 4772 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4773 I->getOperand(2), Q); 4774 break; 4775 case Instruction::GetElementPtr: { 4776 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 4777 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4778 Ops, Q); 4779 break; 4780 } 4781 case Instruction::InsertValue: { 4782 InsertValueInst *IV = cast<InsertValueInst>(I); 4783 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4784 IV->getInsertedValueOperand(), 4785 IV->getIndices(), Q); 4786 break; 4787 } 4788 case Instruction::InsertElement: { 4789 auto *IE = cast<InsertElementInst>(I); 4790 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 4791 IE->getOperand(2), Q); 4792 break; 4793 } 4794 case Instruction::ExtractValue: { 4795 auto *EVI = cast<ExtractValueInst>(I); 4796 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4797 EVI->getIndices(), Q); 4798 break; 4799 } 4800 case Instruction::ExtractElement: { 4801 auto *EEI = cast<ExtractElementInst>(I); 4802 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 4803 EEI->getIndexOperand(), Q); 4804 break; 4805 } 4806 case Instruction::ShuffleVector: { 4807 auto *SVI = cast<ShuffleVectorInst>(I); 4808 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4809 SVI->getMask(), SVI->getType(), Q); 4810 break; 4811 } 4812 case Instruction::PHI: 4813 Result = SimplifyPHINode(cast<PHINode>(I), Q); 4814 break; 4815 case Instruction::Call: { 4816 CallSite CS(cast<CallInst>(I)); 4817 Result = SimplifyCall(CS, Q); 4818 break; 4819 } 4820 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4821 #include "llvm/IR/Instruction.def" 4822 #undef HANDLE_CAST_INST 4823 Result = 4824 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 4825 break; 4826 case Instruction::Alloca: 4827 // No simplifications for Alloca and it can't be constant folded. 4828 Result = nullptr; 4829 break; 4830 } 4831 4832 // In general, it is possible for computeKnownBits to determine all bits in a 4833 // value even when the operands are not all constants. 4834 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4835 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 4836 if (Known.isConstant()) 4837 Result = ConstantInt::get(I->getType(), Known.getConstant()); 4838 } 4839 4840 /// If called on unreachable code, the above logic may report that the 4841 /// instruction simplified to itself. Make life easier for users by 4842 /// detecting that case here, returning a safe value instead. 4843 return Result == I ? UndefValue::get(I->getType()) : Result; 4844 } 4845 4846 /// \brief Implementation of recursive simplification through an instruction's 4847 /// uses. 4848 /// 4849 /// This is the common implementation of the recursive simplification routines. 4850 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4851 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4852 /// instructions to process and attempt to simplify it using 4853 /// InstructionSimplify. 4854 /// 4855 /// This routine returns 'true' only when *it* simplifies something. The passed 4856 /// in simplified value does not count toward this. 4857 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4858 const TargetLibraryInfo *TLI, 4859 const DominatorTree *DT, 4860 AssumptionCache *AC) { 4861 bool Simplified = false; 4862 SmallSetVector<Instruction *, 8> Worklist; 4863 const DataLayout &DL = I->getModule()->getDataLayout(); 4864 4865 // If we have an explicit value to collapse to, do that round of the 4866 // simplification loop by hand initially. 4867 if (SimpleV) { 4868 for (User *U : I->users()) 4869 if (U != I) 4870 Worklist.insert(cast<Instruction>(U)); 4871 4872 // Replace the instruction with its simplified value. 4873 I->replaceAllUsesWith(SimpleV); 4874 4875 // Gracefully handle edge cases where the instruction is not wired into any 4876 // parent block. 4877 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4878 !I->mayHaveSideEffects()) 4879 I->eraseFromParent(); 4880 } else { 4881 Worklist.insert(I); 4882 } 4883 4884 // Note that we must test the size on each iteration, the worklist can grow. 4885 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4886 I = Worklist[Idx]; 4887 4888 // See if this instruction simplifies. 4889 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 4890 if (!SimpleV) 4891 continue; 4892 4893 Simplified = true; 4894 4895 // Stash away all the uses of the old instruction so we can check them for 4896 // recursive simplifications after a RAUW. This is cheaper than checking all 4897 // uses of To on the recursive step in most cases. 4898 for (User *U : I->users()) 4899 Worklist.insert(cast<Instruction>(U)); 4900 4901 // Replace the instruction with its simplified value. 4902 I->replaceAllUsesWith(SimpleV); 4903 4904 // Gracefully handle edge cases where the instruction is not wired into any 4905 // parent block. 4906 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4907 !I->mayHaveSideEffects()) 4908 I->eraseFromParent(); 4909 } 4910 return Simplified; 4911 } 4912 4913 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4914 const TargetLibraryInfo *TLI, 4915 const DominatorTree *DT, 4916 AssumptionCache *AC) { 4917 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4918 } 4919 4920 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4921 const TargetLibraryInfo *TLI, 4922 const DominatorTree *DT, 4923 AssumptionCache *AC) { 4924 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4925 assert(SimpleV && "Must provide a simplified value."); 4926 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4927 } 4928 4929 namespace llvm { 4930 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 4931 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 4932 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 4933 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4934 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 4935 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 4936 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 4937 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4938 } 4939 4940 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 4941 const DataLayout &DL) { 4942 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 4943 } 4944 4945 template <class T, class... TArgs> 4946 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 4947 Function &F) { 4948 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 4949 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 4950 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 4951 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4952 } 4953 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 4954 Function &); 4955 } 4956