1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/CmpInstAnalysis.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/KnownBits.h" 41 #include <algorithm> 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "instsimplify" 46 47 enum { RecursionLimit = 3 }; 48 49 STATISTIC(NumExpand, "Number of expansions"); 50 STATISTIC(NumReassoc, "Number of reassociations"); 51 52 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 53 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 54 unsigned); 55 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 60 const SimplifyQuery &Q, unsigned MaxRecurse); 61 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 62 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyCastInst(unsigned, Value *, Type *, 64 const SimplifyQuery &, unsigned); 65 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 66 unsigned); 67 68 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 69 Value *FalseVal) { 70 BinaryOperator::BinaryOps BinOpCode; 71 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 72 BinOpCode = BO->getOpcode(); 73 else 74 return nullptr; 75 76 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 77 if (BinOpCode == BinaryOperator::Or) { 78 ExpectedPred = ICmpInst::ICMP_NE; 79 } else if (BinOpCode == BinaryOperator::And) { 80 ExpectedPred = ICmpInst::ICMP_EQ; 81 } else 82 return nullptr; 83 84 // %A = icmp eq %TV, %FV 85 // %B = icmp eq %X, %Y (and one of these is a select operand) 86 // %C = and %A, %B 87 // %D = select %C, %TV, %FV 88 // --> 89 // %FV 90 91 // %A = icmp ne %TV, %FV 92 // %B = icmp ne %X, %Y (and one of these is a select operand) 93 // %C = or %A, %B 94 // %D = select %C, %TV, %FV 95 // --> 96 // %TV 97 Value *X, *Y; 98 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 99 m_Specific(FalseVal)), 100 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 101 Pred1 != Pred2 || Pred1 != ExpectedPred) 102 return nullptr; 103 104 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 105 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 106 107 return nullptr; 108 } 109 110 /// For a boolean type or a vector of boolean type, return false or a vector 111 /// with every element false. 112 static Constant *getFalse(Type *Ty) { 113 return ConstantInt::getFalse(Ty); 114 } 115 116 /// For a boolean type or a vector of boolean type, return true or a vector 117 /// with every element true. 118 static Constant *getTrue(Type *Ty) { 119 return ConstantInt::getTrue(Ty); 120 } 121 122 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 123 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 124 Value *RHS) { 125 CmpInst *Cmp = dyn_cast<CmpInst>(V); 126 if (!Cmp) 127 return false; 128 CmpInst::Predicate CPred = Cmp->getPredicate(); 129 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 130 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 131 return true; 132 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 133 CRHS == LHS; 134 } 135 136 /// Does the given value dominate the specified phi node? 137 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 138 Instruction *I = dyn_cast<Instruction>(V); 139 if (!I) 140 // Arguments and constants dominate all instructions. 141 return true; 142 143 // If we are processing instructions (and/or basic blocks) that have not been 144 // fully added to a function, the parent nodes may still be null. Simply 145 // return the conservative answer in these cases. 146 if (!I->getParent() || !P->getParent() || !I->getFunction()) 147 return false; 148 149 // If we have a DominatorTree then do a precise test. 150 if (DT) 151 return DT->dominates(I, P); 152 153 // Otherwise, if the instruction is in the entry block and is not an invoke, 154 // then it obviously dominates all phi nodes. 155 if (I->getParent() == &I->getFunction()->getEntryBlock() && 156 !isa<InvokeInst>(I)) 157 return true; 158 159 return false; 160 } 161 162 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 163 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 164 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 165 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 166 /// Returns the simplified value, or null if no simplification was performed. 167 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 168 Instruction::BinaryOps OpcodeToExpand, 169 const SimplifyQuery &Q, unsigned MaxRecurse) { 170 // Recursion is always used, so bail out at once if we already hit the limit. 171 if (!MaxRecurse--) 172 return nullptr; 173 174 // Check whether the expression has the form "(A op' B) op C". 175 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 176 if (Op0->getOpcode() == OpcodeToExpand) { 177 // It does! Try turning it into "(A op C) op' (B op C)". 178 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 179 // Do "A op C" and "B op C" both simplify? 180 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 181 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 182 // They do! Return "L op' R" if it simplifies or is already available. 183 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 184 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 185 && L == B && R == A)) { 186 ++NumExpand; 187 return LHS; 188 } 189 // Otherwise return "L op' R" if it simplifies. 190 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 191 ++NumExpand; 192 return V; 193 } 194 } 195 } 196 197 // Check whether the expression has the form "A op (B op' C)". 198 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 199 if (Op1->getOpcode() == OpcodeToExpand) { 200 // It does! Try turning it into "(A op B) op' (A op C)". 201 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 202 // Do "A op B" and "A op C" both simplify? 203 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 204 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 205 // They do! Return "L op' R" if it simplifies or is already available. 206 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 207 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 208 && L == C && R == B)) { 209 ++NumExpand; 210 return RHS; 211 } 212 // Otherwise return "L op' R" if it simplifies. 213 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 214 ++NumExpand; 215 return V; 216 } 217 } 218 } 219 220 return nullptr; 221 } 222 223 /// Generic simplifications for associative binary operations. 224 /// Returns the simpler value, or null if none was found. 225 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 226 Value *LHS, Value *RHS, 227 const SimplifyQuery &Q, 228 unsigned MaxRecurse) { 229 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 230 231 // Recursion is always used, so bail out at once if we already hit the limit. 232 if (!MaxRecurse--) 233 return nullptr; 234 235 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 236 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 237 238 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 239 if (Op0 && Op0->getOpcode() == Opcode) { 240 Value *A = Op0->getOperand(0); 241 Value *B = Op0->getOperand(1); 242 Value *C = RHS; 243 244 // Does "B op C" simplify? 245 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 246 // It does! Return "A op V" if it simplifies or is already available. 247 // If V equals B then "A op V" is just the LHS. 248 if (V == B) return LHS; 249 // Otherwise return "A op V" if it simplifies. 250 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 251 ++NumReassoc; 252 return W; 253 } 254 } 255 } 256 257 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 258 if (Op1 && Op1->getOpcode() == Opcode) { 259 Value *A = LHS; 260 Value *B = Op1->getOperand(0); 261 Value *C = Op1->getOperand(1); 262 263 // Does "A op B" simplify? 264 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 265 // It does! Return "V op C" if it simplifies or is already available. 266 // If V equals B then "V op C" is just the RHS. 267 if (V == B) return RHS; 268 // Otherwise return "V op C" if it simplifies. 269 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 270 ++NumReassoc; 271 return W; 272 } 273 } 274 } 275 276 // The remaining transforms require commutativity as well as associativity. 277 if (!Instruction::isCommutative(Opcode)) 278 return nullptr; 279 280 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 281 if (Op0 && Op0->getOpcode() == Opcode) { 282 Value *A = Op0->getOperand(0); 283 Value *B = Op0->getOperand(1); 284 Value *C = RHS; 285 286 // Does "C op A" simplify? 287 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 288 // It does! Return "V op B" if it simplifies or is already available. 289 // If V equals A then "V op B" is just the LHS. 290 if (V == A) return LHS; 291 // Otherwise return "V op B" if it simplifies. 292 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 293 ++NumReassoc; 294 return W; 295 } 296 } 297 } 298 299 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 300 if (Op1 && Op1->getOpcode() == Opcode) { 301 Value *A = LHS; 302 Value *B = Op1->getOperand(0); 303 Value *C = Op1->getOperand(1); 304 305 // Does "C op A" simplify? 306 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 307 // It does! Return "B op V" if it simplifies or is already available. 308 // If V equals C then "B op V" is just the RHS. 309 if (V == C) return RHS; 310 // Otherwise return "B op V" if it simplifies. 311 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 312 ++NumReassoc; 313 return W; 314 } 315 } 316 } 317 318 return nullptr; 319 } 320 321 /// In the case of a binary operation with a select instruction as an operand, 322 /// try to simplify the binop by seeing whether evaluating it on both branches 323 /// of the select results in the same value. Returns the common value if so, 324 /// otherwise returns null. 325 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 326 Value *RHS, const SimplifyQuery &Q, 327 unsigned MaxRecurse) { 328 // Recursion is always used, so bail out at once if we already hit the limit. 329 if (!MaxRecurse--) 330 return nullptr; 331 332 SelectInst *SI; 333 if (isa<SelectInst>(LHS)) { 334 SI = cast<SelectInst>(LHS); 335 } else { 336 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 337 SI = cast<SelectInst>(RHS); 338 } 339 340 // Evaluate the BinOp on the true and false branches of the select. 341 Value *TV; 342 Value *FV; 343 if (SI == LHS) { 344 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 345 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 346 } else { 347 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 348 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 349 } 350 351 // If they simplified to the same value, then return the common value. 352 // If they both failed to simplify then return null. 353 if (TV == FV) 354 return TV; 355 356 // If one branch simplified to undef, return the other one. 357 if (TV && isa<UndefValue>(TV)) 358 return FV; 359 if (FV && isa<UndefValue>(FV)) 360 return TV; 361 362 // If applying the operation did not change the true and false select values, 363 // then the result of the binop is the select itself. 364 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 365 return SI; 366 367 // If one branch simplified and the other did not, and the simplified 368 // value is equal to the unsimplified one, return the simplified value. 369 // For example, select (cond, X, X & Z) & Z -> X & Z. 370 if ((FV && !TV) || (TV && !FV)) { 371 // Check that the simplified value has the form "X op Y" where "op" is the 372 // same as the original operation. 373 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 374 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 375 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 376 // We already know that "op" is the same as for the simplified value. See 377 // if the operands match too. If so, return the simplified value. 378 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 379 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 380 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 381 if (Simplified->getOperand(0) == UnsimplifiedLHS && 382 Simplified->getOperand(1) == UnsimplifiedRHS) 383 return Simplified; 384 if (Simplified->isCommutative() && 385 Simplified->getOperand(1) == UnsimplifiedLHS && 386 Simplified->getOperand(0) == UnsimplifiedRHS) 387 return Simplified; 388 } 389 } 390 391 return nullptr; 392 } 393 394 /// In the case of a comparison with a select instruction, try to simplify the 395 /// comparison by seeing whether both branches of the select result in the same 396 /// value. Returns the common value if so, otherwise returns null. 397 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 398 Value *RHS, const SimplifyQuery &Q, 399 unsigned MaxRecurse) { 400 // Recursion is always used, so bail out at once if we already hit the limit. 401 if (!MaxRecurse--) 402 return nullptr; 403 404 // Make sure the select is on the LHS. 405 if (!isa<SelectInst>(LHS)) { 406 std::swap(LHS, RHS); 407 Pred = CmpInst::getSwappedPredicate(Pred); 408 } 409 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 410 SelectInst *SI = cast<SelectInst>(LHS); 411 Value *Cond = SI->getCondition(); 412 Value *TV = SI->getTrueValue(); 413 Value *FV = SI->getFalseValue(); 414 415 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 416 // Does "cmp TV, RHS" simplify? 417 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 418 if (TCmp == Cond) { 419 // It not only simplified, it simplified to the select condition. Replace 420 // it with 'true'. 421 TCmp = getTrue(Cond->getType()); 422 } else if (!TCmp) { 423 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 424 // condition then we can replace it with 'true'. Otherwise give up. 425 if (!isSameCompare(Cond, Pred, TV, RHS)) 426 return nullptr; 427 TCmp = getTrue(Cond->getType()); 428 } 429 430 // Does "cmp FV, RHS" simplify? 431 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 432 if (FCmp == Cond) { 433 // It not only simplified, it simplified to the select condition. Replace 434 // it with 'false'. 435 FCmp = getFalse(Cond->getType()); 436 } else if (!FCmp) { 437 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 438 // condition then we can replace it with 'false'. Otherwise give up. 439 if (!isSameCompare(Cond, Pred, FV, RHS)) 440 return nullptr; 441 FCmp = getFalse(Cond->getType()); 442 } 443 444 // If both sides simplified to the same value, then use it as the result of 445 // the original comparison. 446 if (TCmp == FCmp) 447 return TCmp; 448 449 // The remaining cases only make sense if the select condition has the same 450 // type as the result of the comparison, so bail out if this is not so. 451 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 452 return nullptr; 453 // If the false value simplified to false, then the result of the compare 454 // is equal to "Cond && TCmp". This also catches the case when the false 455 // value simplified to false and the true value to true, returning "Cond". 456 if (match(FCmp, m_Zero())) 457 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 458 return V; 459 // If the true value simplified to true, then the result of the compare 460 // is equal to "Cond || FCmp". 461 if (match(TCmp, m_One())) 462 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 463 return V; 464 // Finally, if the false value simplified to true and the true value to 465 // false, then the result of the compare is equal to "!Cond". 466 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 467 if (Value *V = 468 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 469 Q, MaxRecurse)) 470 return V; 471 472 return nullptr; 473 } 474 475 /// In the case of a binary operation with an operand that is a PHI instruction, 476 /// try to simplify the binop by seeing whether evaluating it on the incoming 477 /// phi values yields the same result for every value. If so returns the common 478 /// value, otherwise returns null. 479 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 480 Value *RHS, const SimplifyQuery &Q, 481 unsigned MaxRecurse) { 482 // Recursion is always used, so bail out at once if we already hit the limit. 483 if (!MaxRecurse--) 484 return nullptr; 485 486 PHINode *PI; 487 if (isa<PHINode>(LHS)) { 488 PI = cast<PHINode>(LHS); 489 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 490 if (!valueDominatesPHI(RHS, PI, Q.DT)) 491 return nullptr; 492 } else { 493 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 494 PI = cast<PHINode>(RHS); 495 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 496 if (!valueDominatesPHI(LHS, PI, Q.DT)) 497 return nullptr; 498 } 499 500 // Evaluate the BinOp on the incoming phi values. 501 Value *CommonValue = nullptr; 502 for (Value *Incoming : PI->incoming_values()) { 503 // If the incoming value is the phi node itself, it can safely be skipped. 504 if (Incoming == PI) continue; 505 Value *V = PI == LHS ? 506 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 507 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 508 // If the operation failed to simplify, or simplified to a different value 509 // to previously, then give up. 510 if (!V || (CommonValue && V != CommonValue)) 511 return nullptr; 512 CommonValue = V; 513 } 514 515 return CommonValue; 516 } 517 518 /// In the case of a comparison with a PHI instruction, try to simplify the 519 /// comparison by seeing whether comparing with all of the incoming phi values 520 /// yields the same result every time. If so returns the common result, 521 /// otherwise returns null. 522 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 523 const SimplifyQuery &Q, unsigned MaxRecurse) { 524 // Recursion is always used, so bail out at once if we already hit the limit. 525 if (!MaxRecurse--) 526 return nullptr; 527 528 // Make sure the phi is on the LHS. 529 if (!isa<PHINode>(LHS)) { 530 std::swap(LHS, RHS); 531 Pred = CmpInst::getSwappedPredicate(Pred); 532 } 533 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 534 PHINode *PI = cast<PHINode>(LHS); 535 536 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 537 if (!valueDominatesPHI(RHS, PI, Q.DT)) 538 return nullptr; 539 540 // Evaluate the BinOp on the incoming phi values. 541 Value *CommonValue = nullptr; 542 for (Value *Incoming : PI->incoming_values()) { 543 // If the incoming value is the phi node itself, it can safely be skipped. 544 if (Incoming == PI) continue; 545 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 546 // If the operation failed to simplify, or simplified to a different value 547 // to previously, then give up. 548 if (!V || (CommonValue && V != CommonValue)) 549 return nullptr; 550 CommonValue = V; 551 } 552 553 return CommonValue; 554 } 555 556 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 557 Value *&Op0, Value *&Op1, 558 const SimplifyQuery &Q) { 559 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 560 if (auto *CRHS = dyn_cast<Constant>(Op1)) 561 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 562 563 // Canonicalize the constant to the RHS if this is a commutative operation. 564 if (Instruction::isCommutative(Opcode)) 565 std::swap(Op0, Op1); 566 } 567 return nullptr; 568 } 569 570 /// Given operands for an Add, see if we can fold the result. 571 /// If not, this returns null. 572 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 573 const SimplifyQuery &Q, unsigned MaxRecurse) { 574 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 575 return C; 576 577 // X + undef -> undef 578 if (match(Op1, m_Undef())) 579 return Op1; 580 581 // X + 0 -> X 582 if (match(Op1, m_Zero())) 583 return Op0; 584 585 // If two operands are negative, return 0. 586 if (isKnownNegation(Op0, Op1)) 587 return Constant::getNullValue(Op0->getType()); 588 589 // X + (Y - X) -> Y 590 // (Y - X) + X -> Y 591 // Eg: X + -X -> 0 592 Value *Y = nullptr; 593 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 594 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 595 return Y; 596 597 // X + ~X -> -1 since ~X = -X-1 598 Type *Ty = Op0->getType(); 599 if (match(Op0, m_Not(m_Specific(Op1))) || 600 match(Op1, m_Not(m_Specific(Op0)))) 601 return Constant::getAllOnesValue(Ty); 602 603 // add nsw/nuw (xor Y, signmask), signmask --> Y 604 // The no-wrapping add guarantees that the top bit will be set by the add. 605 // Therefore, the xor must be clearing the already set sign bit of Y. 606 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 607 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 608 return Y; 609 610 // add nuw %x, -1 -> -1, because %x can only be 0. 611 if (IsNUW && match(Op1, m_AllOnes())) 612 return Op1; // Which is -1. 613 614 /// i1 add -> xor. 615 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 616 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 617 return V; 618 619 // Try some generic simplifications for associative operations. 620 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 621 MaxRecurse)) 622 return V; 623 624 // Threading Add over selects and phi nodes is pointless, so don't bother. 625 // Threading over the select in "A + select(cond, B, C)" means evaluating 626 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 627 // only if B and C are equal. If B and C are equal then (since we assume 628 // that operands have already been simplified) "select(cond, B, C)" should 629 // have been simplified to the common value of B and C already. Analysing 630 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 631 // for threading over phi nodes. 632 633 return nullptr; 634 } 635 636 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 637 const SimplifyQuery &Query) { 638 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 639 } 640 641 /// Compute the base pointer and cumulative constant offsets for V. 642 /// 643 /// This strips all constant offsets off of V, leaving it the base pointer, and 644 /// accumulates the total constant offset applied in the returned constant. It 645 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 646 /// no constant offsets applied. 647 /// 648 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 649 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 650 /// folding. 651 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 652 bool AllowNonInbounds = false) { 653 assert(V->getType()->isPtrOrPtrVectorTy()); 654 655 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 656 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 657 658 // Even though we don't look through PHI nodes, we could be called on an 659 // instruction in an unreachable block, which may be on a cycle. 660 SmallPtrSet<Value *, 4> Visited; 661 Visited.insert(V); 662 do { 663 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 664 if ((!AllowNonInbounds && !GEP->isInBounds()) || 665 !GEP->accumulateConstantOffset(DL, Offset)) 666 break; 667 V = GEP->getPointerOperand(); 668 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 669 V = cast<Operator>(V)->getOperand(0); 670 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 671 if (GA->isInterposable()) 672 break; 673 V = GA->getAliasee(); 674 } else { 675 if (auto CS = CallSite(V)) 676 if (Value *RV = CS.getReturnedArgOperand()) { 677 V = RV; 678 continue; 679 } 680 break; 681 } 682 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 683 } while (Visited.insert(V).second); 684 685 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 686 if (V->getType()->isVectorTy()) 687 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 688 OffsetIntPtr); 689 return OffsetIntPtr; 690 } 691 692 /// Compute the constant difference between two pointer values. 693 /// If the difference is not a constant, returns zero. 694 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 695 Value *RHS) { 696 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 697 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 698 699 // If LHS and RHS are not related via constant offsets to the same base 700 // value, there is nothing we can do here. 701 if (LHS != RHS) 702 return nullptr; 703 704 // Otherwise, the difference of LHS - RHS can be computed as: 705 // LHS - RHS 706 // = (LHSOffset + Base) - (RHSOffset + Base) 707 // = LHSOffset - RHSOffset 708 return ConstantExpr::getSub(LHSOffset, RHSOffset); 709 } 710 711 /// Given operands for a Sub, see if we can fold the result. 712 /// If not, this returns null. 713 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 714 const SimplifyQuery &Q, unsigned MaxRecurse) { 715 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 716 return C; 717 718 // X - undef -> undef 719 // undef - X -> undef 720 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 721 return UndefValue::get(Op0->getType()); 722 723 // X - 0 -> X 724 if (match(Op1, m_Zero())) 725 return Op0; 726 727 // X - X -> 0 728 if (Op0 == Op1) 729 return Constant::getNullValue(Op0->getType()); 730 731 // Is this a negation? 732 if (match(Op0, m_Zero())) { 733 // 0 - X -> 0 if the sub is NUW. 734 if (isNUW) 735 return Constant::getNullValue(Op0->getType()); 736 737 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 738 if (Known.Zero.isMaxSignedValue()) { 739 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 740 // Op1 must be 0 because negating the minimum signed value is undefined. 741 if (isNSW) 742 return Constant::getNullValue(Op0->getType()); 743 744 // 0 - X -> X if X is 0 or the minimum signed value. 745 return Op1; 746 } 747 } 748 749 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 750 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 751 Value *X = nullptr, *Y = nullptr, *Z = Op1; 752 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 753 // See if "V === Y - Z" simplifies. 754 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 755 // It does! Now see if "X + V" simplifies. 756 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 757 // It does, we successfully reassociated! 758 ++NumReassoc; 759 return W; 760 } 761 // See if "V === X - Z" simplifies. 762 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 763 // It does! Now see if "Y + V" simplifies. 764 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 765 // It does, we successfully reassociated! 766 ++NumReassoc; 767 return W; 768 } 769 } 770 771 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 772 // For example, X - (X + 1) -> -1 773 X = Op0; 774 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 775 // See if "V === X - Y" simplifies. 776 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 777 // It does! Now see if "V - Z" simplifies. 778 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 779 // It does, we successfully reassociated! 780 ++NumReassoc; 781 return W; 782 } 783 // See if "V === X - Z" simplifies. 784 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 785 // It does! Now see if "V - Y" simplifies. 786 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 787 // It does, we successfully reassociated! 788 ++NumReassoc; 789 return W; 790 } 791 } 792 793 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 794 // For example, X - (X - Y) -> Y. 795 Z = Op0; 796 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 797 // See if "V === Z - X" simplifies. 798 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 799 // It does! Now see if "V + Y" simplifies. 800 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 801 // It does, we successfully reassociated! 802 ++NumReassoc; 803 return W; 804 } 805 806 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 807 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 808 match(Op1, m_Trunc(m_Value(Y)))) 809 if (X->getType() == Y->getType()) 810 // See if "V === X - Y" simplifies. 811 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 812 // It does! Now see if "trunc V" simplifies. 813 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 814 Q, MaxRecurse - 1)) 815 // It does, return the simplified "trunc V". 816 return W; 817 818 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 819 if (match(Op0, m_PtrToInt(m_Value(X))) && 820 match(Op1, m_PtrToInt(m_Value(Y)))) 821 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 822 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 823 824 // i1 sub -> xor. 825 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 826 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 827 return V; 828 829 // Threading Sub over selects and phi nodes is pointless, so don't bother. 830 // Threading over the select in "A - select(cond, B, C)" means evaluating 831 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 832 // only if B and C are equal. If B and C are equal then (since we assume 833 // that operands have already been simplified) "select(cond, B, C)" should 834 // have been simplified to the common value of B and C already. Analysing 835 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 836 // for threading over phi nodes. 837 838 return nullptr; 839 } 840 841 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 842 const SimplifyQuery &Q) { 843 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 844 } 845 846 /// Given operands for a Mul, see if we can fold the result. 847 /// If not, this returns null. 848 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 849 unsigned MaxRecurse) { 850 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 851 return C; 852 853 // X * undef -> 0 854 // X * 0 -> 0 855 if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) 856 return Constant::getNullValue(Op0->getType()); 857 858 // X * 1 -> X 859 if (match(Op1, m_One())) 860 return Op0; 861 862 // (X / Y) * Y -> X if the division is exact. 863 Value *X = nullptr; 864 if (Q.IIQ.UseInstrInfo && 865 (match(Op0, 866 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 867 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 868 return X; 869 870 // i1 mul -> and. 871 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 872 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 873 return V; 874 875 // Try some generic simplifications for associative operations. 876 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 877 MaxRecurse)) 878 return V; 879 880 // Mul distributes over Add. Try some generic simplifications based on this. 881 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 882 Q, MaxRecurse)) 883 return V; 884 885 // If the operation is with the result of a select instruction, check whether 886 // operating on either branch of the select always yields the same value. 887 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 888 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 889 MaxRecurse)) 890 return V; 891 892 // If the operation is with the result of a phi instruction, check whether 893 // operating on all incoming values of the phi always yields the same value. 894 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 895 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 896 MaxRecurse)) 897 return V; 898 899 return nullptr; 900 } 901 902 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 903 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 904 } 905 906 /// Check for common or similar folds of integer division or integer remainder. 907 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 908 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 909 Type *Ty = Op0->getType(); 910 911 // X / undef -> undef 912 // X % undef -> undef 913 if (match(Op1, m_Undef())) 914 return Op1; 915 916 // X / 0 -> undef 917 // X % 0 -> undef 918 // We don't need to preserve faults! 919 if (match(Op1, m_Zero())) 920 return UndefValue::get(Ty); 921 922 // If any element of a constant divisor vector is zero or undef, the whole op 923 // is undef. 924 auto *Op1C = dyn_cast<Constant>(Op1); 925 if (Op1C && Ty->isVectorTy()) { 926 unsigned NumElts = Ty->getVectorNumElements(); 927 for (unsigned i = 0; i != NumElts; ++i) { 928 Constant *Elt = Op1C->getAggregateElement(i); 929 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) 930 return UndefValue::get(Ty); 931 } 932 } 933 934 // undef / X -> 0 935 // undef % X -> 0 936 if (match(Op0, m_Undef())) 937 return Constant::getNullValue(Ty); 938 939 // 0 / X -> 0 940 // 0 % X -> 0 941 if (match(Op0, m_Zero())) 942 return Constant::getNullValue(Op0->getType()); 943 944 // X / X -> 1 945 // X % X -> 0 946 if (Op0 == Op1) 947 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 948 949 // X / 1 -> X 950 // X % 1 -> 0 951 // If this is a boolean op (single-bit element type), we can't have 952 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 953 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 954 Value *X; 955 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 956 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 957 return IsDiv ? Op0 : Constant::getNullValue(Ty); 958 959 return nullptr; 960 } 961 962 /// Given a predicate and two operands, return true if the comparison is true. 963 /// This is a helper for div/rem simplification where we return some other value 964 /// when we can prove a relationship between the operands. 965 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 966 const SimplifyQuery &Q, unsigned MaxRecurse) { 967 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 968 Constant *C = dyn_cast_or_null<Constant>(V); 969 return (C && C->isAllOnesValue()); 970 } 971 972 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 973 /// to simplify X % Y to X. 974 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 975 unsigned MaxRecurse, bool IsSigned) { 976 // Recursion is always used, so bail out at once if we already hit the limit. 977 if (!MaxRecurse--) 978 return false; 979 980 if (IsSigned) { 981 // |X| / |Y| --> 0 982 // 983 // We require that 1 operand is a simple constant. That could be extended to 984 // 2 variables if we computed the sign bit for each. 985 // 986 // Make sure that a constant is not the minimum signed value because taking 987 // the abs() of that is undefined. 988 Type *Ty = X->getType(); 989 const APInt *C; 990 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 991 // Is the variable divisor magnitude always greater than the constant 992 // dividend magnitude? 993 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 994 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 995 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 996 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 997 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 998 return true; 999 } 1000 if (match(Y, m_APInt(C))) { 1001 // Special-case: we can't take the abs() of a minimum signed value. If 1002 // that's the divisor, then all we have to do is prove that the dividend 1003 // is also not the minimum signed value. 1004 if (C->isMinSignedValue()) 1005 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1006 1007 // Is the variable dividend magnitude always less than the constant 1008 // divisor magnitude? 1009 // |X| < |C| --> X > -abs(C) and X < abs(C) 1010 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1011 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1012 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1013 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1014 return true; 1015 } 1016 return false; 1017 } 1018 1019 // IsSigned == false. 1020 // Is the dividend unsigned less than the divisor? 1021 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1022 } 1023 1024 /// These are simplifications common to SDiv and UDiv. 1025 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1026 const SimplifyQuery &Q, unsigned MaxRecurse) { 1027 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1028 return C; 1029 1030 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1031 return V; 1032 1033 bool IsSigned = Opcode == Instruction::SDiv; 1034 1035 // (X * Y) / Y -> X if the multiplication does not overflow. 1036 Value *X; 1037 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1038 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1039 // If the Mul does not overflow, then we are good to go. 1040 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1041 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1042 return X; 1043 // If X has the form X = A / Y, then X * Y cannot overflow. 1044 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1045 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1046 return X; 1047 } 1048 1049 // (X rem Y) / Y -> 0 1050 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1051 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1052 return Constant::getNullValue(Op0->getType()); 1053 1054 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1055 ConstantInt *C1, *C2; 1056 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1057 match(Op1, m_ConstantInt(C2))) { 1058 bool Overflow; 1059 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1060 if (Overflow) 1061 return Constant::getNullValue(Op0->getType()); 1062 } 1063 1064 // If the operation is with the result of a select instruction, check whether 1065 // operating on either branch of the select always yields the same value. 1066 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1067 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1068 return V; 1069 1070 // If the operation is with the result of a phi instruction, check whether 1071 // operating on all incoming values of the phi always yields the same value. 1072 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1073 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1074 return V; 1075 1076 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1077 return Constant::getNullValue(Op0->getType()); 1078 1079 return nullptr; 1080 } 1081 1082 /// These are simplifications common to SRem and URem. 1083 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1084 const SimplifyQuery &Q, unsigned MaxRecurse) { 1085 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1086 return C; 1087 1088 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1089 return V; 1090 1091 // (X % Y) % Y -> X % Y 1092 if ((Opcode == Instruction::SRem && 1093 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1094 (Opcode == Instruction::URem && 1095 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1096 return Op0; 1097 1098 // (X << Y) % X -> 0 1099 if (Q.IIQ.UseInstrInfo && 1100 ((Opcode == Instruction::SRem && 1101 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1102 (Opcode == Instruction::URem && 1103 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1104 return Constant::getNullValue(Op0->getType()); 1105 1106 // If the operation is with the result of a select instruction, check whether 1107 // operating on either branch of the select always yields the same value. 1108 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1109 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1110 return V; 1111 1112 // If the operation is with the result of a phi instruction, check whether 1113 // operating on all incoming values of the phi always yields the same value. 1114 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1115 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1116 return V; 1117 1118 // If X / Y == 0, then X % Y == X. 1119 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1120 return Op0; 1121 1122 return nullptr; 1123 } 1124 1125 /// Given operands for an SDiv, see if we can fold the result. 1126 /// If not, this returns null. 1127 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1128 unsigned MaxRecurse) { 1129 // If two operands are negated and no signed overflow, return -1. 1130 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1131 return Constant::getAllOnesValue(Op0->getType()); 1132 1133 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1134 } 1135 1136 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1137 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1138 } 1139 1140 /// Given operands for a UDiv, see if we can fold the result. 1141 /// If not, this returns null. 1142 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1143 unsigned MaxRecurse) { 1144 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1145 } 1146 1147 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1148 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1149 } 1150 1151 /// Given operands for an SRem, see if we can fold the result. 1152 /// If not, this returns null. 1153 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1154 unsigned MaxRecurse) { 1155 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1156 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1157 Value *X; 1158 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1159 return ConstantInt::getNullValue(Op0->getType()); 1160 1161 // If the two operands are negated, return 0. 1162 if (isKnownNegation(Op0, Op1)) 1163 return ConstantInt::getNullValue(Op0->getType()); 1164 1165 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1166 } 1167 1168 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1169 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1170 } 1171 1172 /// Given operands for a URem, see if we can fold the result. 1173 /// If not, this returns null. 1174 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1175 unsigned MaxRecurse) { 1176 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1177 } 1178 1179 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1180 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1181 } 1182 1183 /// Returns true if a shift by \c Amount always yields undef. 1184 static bool isUndefShift(Value *Amount) { 1185 Constant *C = dyn_cast<Constant>(Amount); 1186 if (!C) 1187 return false; 1188 1189 // X shift by undef -> undef because it may shift by the bitwidth. 1190 if (isa<UndefValue>(C)) 1191 return true; 1192 1193 // Shifting by the bitwidth or more is undefined. 1194 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1195 if (CI->getValue().getLimitedValue() >= 1196 CI->getType()->getScalarSizeInBits()) 1197 return true; 1198 1199 // If all lanes of a vector shift are undefined the whole shift is. 1200 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1201 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1202 if (!isUndefShift(C->getAggregateElement(I))) 1203 return false; 1204 return true; 1205 } 1206 1207 return false; 1208 } 1209 1210 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1211 /// If not, this returns null. 1212 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1213 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1214 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1215 return C; 1216 1217 // 0 shift by X -> 0 1218 if (match(Op0, m_Zero())) 1219 return Constant::getNullValue(Op0->getType()); 1220 1221 // X shift by 0 -> X 1222 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1223 // would be poison. 1224 Value *X; 1225 if (match(Op1, m_Zero()) || 1226 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1227 return Op0; 1228 1229 // Fold undefined shifts. 1230 if (isUndefShift(Op1)) 1231 return UndefValue::get(Op0->getType()); 1232 1233 // If the operation is with the result of a select instruction, check whether 1234 // operating on either branch of the select always yields the same value. 1235 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1236 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1237 return V; 1238 1239 // If the operation is with the result of a phi instruction, check whether 1240 // operating on all incoming values of the phi always yields the same value. 1241 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1242 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1243 return V; 1244 1245 // If any bits in the shift amount make that value greater than or equal to 1246 // the number of bits in the type, the shift is undefined. 1247 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1248 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1249 return UndefValue::get(Op0->getType()); 1250 1251 // If all valid bits in the shift amount are known zero, the first operand is 1252 // unchanged. 1253 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1254 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1255 return Op0; 1256 1257 return nullptr; 1258 } 1259 1260 /// Given operands for an Shl, LShr or AShr, see if we can 1261 /// fold the result. If not, this returns null. 1262 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1263 Value *Op1, bool isExact, const SimplifyQuery &Q, 1264 unsigned MaxRecurse) { 1265 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1266 return V; 1267 1268 // X >> X -> 0 1269 if (Op0 == Op1) 1270 return Constant::getNullValue(Op0->getType()); 1271 1272 // undef >> X -> 0 1273 // undef >> X -> undef (if it's exact) 1274 if (match(Op0, m_Undef())) 1275 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1276 1277 // The low bit cannot be shifted out of an exact shift if it is set. 1278 if (isExact) { 1279 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1280 if (Op0Known.One[0]) 1281 return Op0; 1282 } 1283 1284 return nullptr; 1285 } 1286 1287 /// Given operands for an Shl, see if we can fold the result. 1288 /// If not, this returns null. 1289 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1290 const SimplifyQuery &Q, unsigned MaxRecurse) { 1291 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1292 return V; 1293 1294 // undef << X -> 0 1295 // undef << X -> undef if (if it's NSW/NUW) 1296 if (match(Op0, m_Undef())) 1297 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1298 1299 // (X >> A) << A -> X 1300 Value *X; 1301 if (Q.IIQ.UseInstrInfo && 1302 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1303 return X; 1304 1305 // shl nuw i8 C, %x -> C iff C has sign bit set. 1306 if (isNUW && match(Op0, m_Negative())) 1307 return Op0; 1308 // NOTE: could use computeKnownBits() / LazyValueInfo, 1309 // but the cost-benefit analysis suggests it isn't worth it. 1310 1311 return nullptr; 1312 } 1313 1314 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1315 const SimplifyQuery &Q) { 1316 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1317 } 1318 1319 /// Given operands for an LShr, see if we can fold the result. 1320 /// If not, this returns null. 1321 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1322 const SimplifyQuery &Q, unsigned MaxRecurse) { 1323 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1324 MaxRecurse)) 1325 return V; 1326 1327 // (X << A) >> A -> X 1328 Value *X; 1329 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1330 return X; 1331 1332 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1333 // We can return X as we do in the above case since OR alters no bits in X. 1334 // SimplifyDemandedBits in InstCombine can do more general optimization for 1335 // bit manipulation. This pattern aims to provide opportunities for other 1336 // optimizers by supporting a simple but common case in InstSimplify. 1337 Value *Y; 1338 const APInt *ShRAmt, *ShLAmt; 1339 if (match(Op1, m_APInt(ShRAmt)) && 1340 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1341 *ShRAmt == *ShLAmt) { 1342 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1343 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1344 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1345 if (ShRAmt->uge(EffWidthY)) 1346 return X; 1347 } 1348 1349 return nullptr; 1350 } 1351 1352 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1353 const SimplifyQuery &Q) { 1354 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1355 } 1356 1357 /// Given operands for an AShr, see if we can fold the result. 1358 /// If not, this returns null. 1359 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1360 const SimplifyQuery &Q, unsigned MaxRecurse) { 1361 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1362 MaxRecurse)) 1363 return V; 1364 1365 // all ones >>a X -> -1 1366 // Do not return Op0 because it may contain undef elements if it's a vector. 1367 if (match(Op0, m_AllOnes())) 1368 return Constant::getAllOnesValue(Op0->getType()); 1369 1370 // (X << A) >> A -> X 1371 Value *X; 1372 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1373 return X; 1374 1375 // Arithmetic shifting an all-sign-bit value is a no-op. 1376 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1377 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1378 return Op0; 1379 1380 return nullptr; 1381 } 1382 1383 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1384 const SimplifyQuery &Q) { 1385 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1386 } 1387 1388 /// Commuted variants are assumed to be handled by calling this function again 1389 /// with the parameters swapped. 1390 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1391 ICmpInst *UnsignedICmp, bool IsAnd) { 1392 Value *X, *Y; 1393 1394 ICmpInst::Predicate EqPred; 1395 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1396 !ICmpInst::isEquality(EqPred)) 1397 return nullptr; 1398 1399 ICmpInst::Predicate UnsignedPred; 1400 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1401 ICmpInst::isUnsigned(UnsignedPred)) 1402 ; 1403 else if (match(UnsignedICmp, 1404 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1405 ICmpInst::isUnsigned(UnsignedPred)) 1406 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1407 else 1408 return nullptr; 1409 1410 // X < Y && Y != 0 --> X < Y 1411 // X < Y || Y != 0 --> Y != 0 1412 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1413 return IsAnd ? UnsignedICmp : ZeroICmp; 1414 1415 // X >= Y || Y != 0 --> true 1416 // X >= Y || Y == 0 --> X >= Y 1417 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1418 if (EqPred == ICmpInst::ICMP_NE) 1419 return getTrue(UnsignedICmp->getType()); 1420 return UnsignedICmp; 1421 } 1422 1423 // X < Y && Y == 0 --> false 1424 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1425 IsAnd) 1426 return getFalse(UnsignedICmp->getType()); 1427 1428 return nullptr; 1429 } 1430 1431 /// Commuted variants are assumed to be handled by calling this function again 1432 /// with the parameters swapped. 1433 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1434 ICmpInst::Predicate Pred0, Pred1; 1435 Value *A ,*B; 1436 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1437 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1438 return nullptr; 1439 1440 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1441 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1442 // can eliminate Op1 from this 'and'. 1443 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1444 return Op0; 1445 1446 // Check for any combination of predicates that are guaranteed to be disjoint. 1447 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1448 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1449 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1450 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1451 return getFalse(Op0->getType()); 1452 1453 return nullptr; 1454 } 1455 1456 /// Commuted variants are assumed to be handled by calling this function again 1457 /// with the parameters swapped. 1458 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1459 ICmpInst::Predicate Pred0, Pred1; 1460 Value *A ,*B; 1461 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1462 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1463 return nullptr; 1464 1465 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1466 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1467 // can eliminate Op0 from this 'or'. 1468 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1469 return Op1; 1470 1471 // Check for any combination of predicates that cover the entire range of 1472 // possibilities. 1473 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1474 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1475 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1476 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1477 return getTrue(Op0->getType()); 1478 1479 return nullptr; 1480 } 1481 1482 /// Test if a pair of compares with a shared operand and 2 constants has an 1483 /// empty set intersection, full set union, or if one compare is a superset of 1484 /// the other. 1485 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1486 bool IsAnd) { 1487 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1488 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1489 return nullptr; 1490 1491 const APInt *C0, *C1; 1492 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1493 !match(Cmp1->getOperand(1), m_APInt(C1))) 1494 return nullptr; 1495 1496 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1497 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1498 1499 // For and-of-compares, check if the intersection is empty: 1500 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1501 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1502 return getFalse(Cmp0->getType()); 1503 1504 // For or-of-compares, check if the union is full: 1505 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1506 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1507 return getTrue(Cmp0->getType()); 1508 1509 // Is one range a superset of the other? 1510 // If this is and-of-compares, take the smaller set: 1511 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1512 // If this is or-of-compares, take the larger set: 1513 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1514 if (Range0.contains(Range1)) 1515 return IsAnd ? Cmp1 : Cmp0; 1516 if (Range1.contains(Range0)) 1517 return IsAnd ? Cmp0 : Cmp1; 1518 1519 return nullptr; 1520 } 1521 1522 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1523 bool IsAnd) { 1524 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1525 if (!match(Cmp0->getOperand(1), m_Zero()) || 1526 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1527 return nullptr; 1528 1529 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1530 return nullptr; 1531 1532 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1533 Value *X = Cmp0->getOperand(0); 1534 Value *Y = Cmp1->getOperand(0); 1535 1536 // If one of the compares is a masked version of a (not) null check, then 1537 // that compare implies the other, so we eliminate the other. Optionally, look 1538 // through a pointer-to-int cast to match a null check of a pointer type. 1539 1540 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1541 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1542 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1543 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1544 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1545 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1546 return Cmp1; 1547 1548 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1549 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1550 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1551 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1552 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1553 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1554 return Cmp0; 1555 1556 return nullptr; 1557 } 1558 1559 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1560 const InstrInfoQuery &IIQ) { 1561 // (icmp (add V, C0), C1) & (icmp V, C0) 1562 ICmpInst::Predicate Pred0, Pred1; 1563 const APInt *C0, *C1; 1564 Value *V; 1565 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1566 return nullptr; 1567 1568 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1569 return nullptr; 1570 1571 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1572 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1573 return nullptr; 1574 1575 Type *ITy = Op0->getType(); 1576 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1577 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1578 1579 const APInt Delta = *C1 - *C0; 1580 if (C0->isStrictlyPositive()) { 1581 if (Delta == 2) { 1582 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1583 return getFalse(ITy); 1584 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1585 return getFalse(ITy); 1586 } 1587 if (Delta == 1) { 1588 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1589 return getFalse(ITy); 1590 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1591 return getFalse(ITy); 1592 } 1593 } 1594 if (C0->getBoolValue() && isNUW) { 1595 if (Delta == 2) 1596 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1597 return getFalse(ITy); 1598 if (Delta == 1) 1599 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1600 return getFalse(ITy); 1601 } 1602 1603 return nullptr; 1604 } 1605 1606 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1607 const InstrInfoQuery &IIQ) { 1608 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1609 return X; 1610 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1611 return X; 1612 1613 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1614 return X; 1615 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1616 return X; 1617 1618 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1619 return X; 1620 1621 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1622 return X; 1623 1624 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ)) 1625 return X; 1626 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, IIQ)) 1627 return X; 1628 1629 return nullptr; 1630 } 1631 1632 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1633 const InstrInfoQuery &IIQ) { 1634 // (icmp (add V, C0), C1) | (icmp V, C0) 1635 ICmpInst::Predicate Pred0, Pred1; 1636 const APInt *C0, *C1; 1637 Value *V; 1638 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1639 return nullptr; 1640 1641 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1642 return nullptr; 1643 1644 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1645 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1646 return nullptr; 1647 1648 Type *ITy = Op0->getType(); 1649 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1650 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1651 1652 const APInt Delta = *C1 - *C0; 1653 if (C0->isStrictlyPositive()) { 1654 if (Delta == 2) { 1655 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1656 return getTrue(ITy); 1657 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1658 return getTrue(ITy); 1659 } 1660 if (Delta == 1) { 1661 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1662 return getTrue(ITy); 1663 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1664 return getTrue(ITy); 1665 } 1666 } 1667 if (C0->getBoolValue() && isNUW) { 1668 if (Delta == 2) 1669 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1670 return getTrue(ITy); 1671 if (Delta == 1) 1672 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1673 return getTrue(ITy); 1674 } 1675 1676 return nullptr; 1677 } 1678 1679 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1680 const InstrInfoQuery &IIQ) { 1681 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1682 return X; 1683 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1684 return X; 1685 1686 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1687 return X; 1688 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1689 return X; 1690 1691 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1692 return X; 1693 1694 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1695 return X; 1696 1697 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ)) 1698 return X; 1699 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, IIQ)) 1700 return X; 1701 1702 return nullptr; 1703 } 1704 1705 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1706 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1707 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1708 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1709 if (LHS0->getType() != RHS0->getType()) 1710 return nullptr; 1711 1712 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1713 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1714 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1715 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1716 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1717 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1718 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1719 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1720 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1721 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1722 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1723 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1724 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1725 return RHS; 1726 1727 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1728 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1729 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1730 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1731 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1732 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1733 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1734 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1735 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1736 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1737 return LHS; 1738 } 1739 1740 return nullptr; 1741 } 1742 1743 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1744 Value *Op0, Value *Op1, bool IsAnd) { 1745 // Look through casts of the 'and' operands to find compares. 1746 auto *Cast0 = dyn_cast<CastInst>(Op0); 1747 auto *Cast1 = dyn_cast<CastInst>(Op1); 1748 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1749 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1750 Op0 = Cast0->getOperand(0); 1751 Op1 = Cast1->getOperand(0); 1752 } 1753 1754 Value *V = nullptr; 1755 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1756 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1757 if (ICmp0 && ICmp1) 1758 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q.IIQ) 1759 : simplifyOrOfICmps(ICmp0, ICmp1, Q.IIQ); 1760 1761 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1762 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1763 if (FCmp0 && FCmp1) 1764 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1765 1766 if (!V) 1767 return nullptr; 1768 if (!Cast0) 1769 return V; 1770 1771 // If we looked through casts, we can only handle a constant simplification 1772 // because we are not allowed to create a cast instruction here. 1773 if (auto *C = dyn_cast<Constant>(V)) 1774 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1775 1776 return nullptr; 1777 } 1778 1779 /// Given operands for an And, see if we can fold the result. 1780 /// If not, this returns null. 1781 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1782 unsigned MaxRecurse) { 1783 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1784 return C; 1785 1786 // X & undef -> 0 1787 if (match(Op1, m_Undef())) 1788 return Constant::getNullValue(Op0->getType()); 1789 1790 // X & X = X 1791 if (Op0 == Op1) 1792 return Op0; 1793 1794 // X & 0 = 0 1795 if (match(Op1, m_Zero())) 1796 return Constant::getNullValue(Op0->getType()); 1797 1798 // X & -1 = X 1799 if (match(Op1, m_AllOnes())) 1800 return Op0; 1801 1802 // A & ~A = ~A & A = 0 1803 if (match(Op0, m_Not(m_Specific(Op1))) || 1804 match(Op1, m_Not(m_Specific(Op0)))) 1805 return Constant::getNullValue(Op0->getType()); 1806 1807 // (A | ?) & A = A 1808 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1809 return Op1; 1810 1811 // A & (A | ?) = A 1812 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1813 return Op0; 1814 1815 // A mask that only clears known zeros of a shifted value is a no-op. 1816 Value *X; 1817 const APInt *Mask; 1818 const APInt *ShAmt; 1819 if (match(Op1, m_APInt(Mask))) { 1820 // If all bits in the inverted and shifted mask are clear: 1821 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1822 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1823 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1824 return Op0; 1825 1826 // If all bits in the inverted and shifted mask are clear: 1827 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1828 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1829 (~(*Mask)).shl(*ShAmt).isNullValue()) 1830 return Op0; 1831 } 1832 1833 // A & (-A) = A if A is a power of two or zero. 1834 if (match(Op0, m_Neg(m_Specific(Op1))) || 1835 match(Op1, m_Neg(m_Specific(Op0)))) { 1836 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1837 Q.DT)) 1838 return Op0; 1839 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1840 Q.DT)) 1841 return Op1; 1842 } 1843 1844 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 1845 return V; 1846 1847 // Try some generic simplifications for associative operations. 1848 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1849 MaxRecurse)) 1850 return V; 1851 1852 // And distributes over Or. Try some generic simplifications based on this. 1853 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1854 Q, MaxRecurse)) 1855 return V; 1856 1857 // And distributes over Xor. Try some generic simplifications based on this. 1858 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1859 Q, MaxRecurse)) 1860 return V; 1861 1862 // If the operation is with the result of a select instruction, check whether 1863 // operating on either branch of the select always yields the same value. 1864 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1865 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1866 MaxRecurse)) 1867 return V; 1868 1869 // If the operation is with the result of a phi instruction, check whether 1870 // operating on all incoming values of the phi always yields the same value. 1871 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1872 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1873 MaxRecurse)) 1874 return V; 1875 1876 // Assuming the effective width of Y is not larger than A, i.e. all bits 1877 // from X and Y are disjoint in (X << A) | Y, 1878 // if the mask of this AND op covers all bits of X or Y, while it covers 1879 // no bits from the other, we can bypass this AND op. E.g., 1880 // ((X << A) | Y) & Mask -> Y, 1881 // if Mask = ((1 << effective_width_of(Y)) - 1) 1882 // ((X << A) | Y) & Mask -> X << A, 1883 // if Mask = ((1 << effective_width_of(X)) - 1) << A 1884 // SimplifyDemandedBits in InstCombine can optimize the general case. 1885 // This pattern aims to help other passes for a common case. 1886 Value *Y, *XShifted; 1887 if (match(Op1, m_APInt(Mask)) && 1888 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 1889 m_Value(XShifted)), 1890 m_Value(Y)))) { 1891 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1892 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 1893 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1894 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1895 if (EffWidthY <= ShftCnt) { 1896 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 1897 Q.DT); 1898 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 1899 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 1900 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 1901 // If the mask is extracting all bits from X or Y as is, we can skip 1902 // this AND op. 1903 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 1904 return Y; 1905 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 1906 return XShifted; 1907 } 1908 } 1909 1910 return nullptr; 1911 } 1912 1913 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1914 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1915 } 1916 1917 /// Given operands for an Or, see if we can fold the result. 1918 /// If not, this returns null. 1919 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1920 unsigned MaxRecurse) { 1921 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1922 return C; 1923 1924 // X | undef -> -1 1925 // X | -1 = -1 1926 // Do not return Op1 because it may contain undef elements if it's a vector. 1927 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) 1928 return Constant::getAllOnesValue(Op0->getType()); 1929 1930 // X | X = X 1931 // X | 0 = X 1932 if (Op0 == Op1 || match(Op1, m_Zero())) 1933 return Op0; 1934 1935 // A | ~A = ~A | A = -1 1936 if (match(Op0, m_Not(m_Specific(Op1))) || 1937 match(Op1, m_Not(m_Specific(Op0)))) 1938 return Constant::getAllOnesValue(Op0->getType()); 1939 1940 // (A & ?) | A = A 1941 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1942 return Op1; 1943 1944 // A | (A & ?) = A 1945 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1946 return Op0; 1947 1948 // ~(A & ?) | A = -1 1949 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1950 return Constant::getAllOnesValue(Op1->getType()); 1951 1952 // A | ~(A & ?) = -1 1953 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1954 return Constant::getAllOnesValue(Op0->getType()); 1955 1956 Value *A, *B; 1957 // (A & ~B) | (A ^ B) -> (A ^ B) 1958 // (~B & A) | (A ^ B) -> (A ^ B) 1959 // (A & ~B) | (B ^ A) -> (B ^ A) 1960 // (~B & A) | (B ^ A) -> (B ^ A) 1961 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1962 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1963 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1964 return Op1; 1965 1966 // Commute the 'or' operands. 1967 // (A ^ B) | (A & ~B) -> (A ^ B) 1968 // (A ^ B) | (~B & A) -> (A ^ B) 1969 // (B ^ A) | (A & ~B) -> (B ^ A) 1970 // (B ^ A) | (~B & A) -> (B ^ A) 1971 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1972 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1973 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1974 return Op0; 1975 1976 // (A & B) | (~A ^ B) -> (~A ^ B) 1977 // (B & A) | (~A ^ B) -> (~A ^ B) 1978 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1979 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1980 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1981 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1982 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1983 return Op1; 1984 1985 // (~A ^ B) | (A & B) -> (~A ^ B) 1986 // (~A ^ B) | (B & A) -> (~A ^ B) 1987 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1988 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1989 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1990 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1991 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1992 return Op0; 1993 1994 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 1995 return V; 1996 1997 // Try some generic simplifications for associative operations. 1998 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1999 MaxRecurse)) 2000 return V; 2001 2002 // Or distributes over And. Try some generic simplifications based on this. 2003 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 2004 MaxRecurse)) 2005 return V; 2006 2007 // If the operation is with the result of a select instruction, check whether 2008 // operating on either branch of the select always yields the same value. 2009 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2010 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2011 MaxRecurse)) 2012 return V; 2013 2014 // (A & C1)|(B & C2) 2015 const APInt *C1, *C2; 2016 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2017 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2018 if (*C1 == ~*C2) { 2019 // (A & C1)|(B & C2) 2020 // If we have: ((V + N) & C1) | (V & C2) 2021 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2022 // replace with V+N. 2023 Value *N; 2024 if (C2->isMask() && // C2 == 0+1+ 2025 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2026 // Add commutes, try both ways. 2027 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2028 return A; 2029 } 2030 // Or commutes, try both ways. 2031 if (C1->isMask() && 2032 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2033 // Add commutes, try both ways. 2034 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2035 return B; 2036 } 2037 } 2038 } 2039 2040 // If the operation is with the result of a phi instruction, check whether 2041 // operating on all incoming values of the phi always yields the same value. 2042 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2043 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2044 return V; 2045 2046 return nullptr; 2047 } 2048 2049 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2050 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2051 } 2052 2053 /// Given operands for a Xor, see if we can fold the result. 2054 /// If not, this returns null. 2055 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2056 unsigned MaxRecurse) { 2057 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2058 return C; 2059 2060 // A ^ undef -> undef 2061 if (match(Op1, m_Undef())) 2062 return Op1; 2063 2064 // A ^ 0 = A 2065 if (match(Op1, m_Zero())) 2066 return Op0; 2067 2068 // A ^ A = 0 2069 if (Op0 == Op1) 2070 return Constant::getNullValue(Op0->getType()); 2071 2072 // A ^ ~A = ~A ^ A = -1 2073 if (match(Op0, m_Not(m_Specific(Op1))) || 2074 match(Op1, m_Not(m_Specific(Op0)))) 2075 return Constant::getAllOnesValue(Op0->getType()); 2076 2077 // Try some generic simplifications for associative operations. 2078 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2079 MaxRecurse)) 2080 return V; 2081 2082 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2083 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2084 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2085 // only if B and C are equal. If B and C are equal then (since we assume 2086 // that operands have already been simplified) "select(cond, B, C)" should 2087 // have been simplified to the common value of B and C already. Analysing 2088 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2089 // for threading over phi nodes. 2090 2091 return nullptr; 2092 } 2093 2094 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2095 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2096 } 2097 2098 2099 static Type *GetCompareTy(Value *Op) { 2100 return CmpInst::makeCmpResultType(Op->getType()); 2101 } 2102 2103 /// Rummage around inside V looking for something equivalent to the comparison 2104 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2105 /// Helper function for analyzing max/min idioms. 2106 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2107 Value *LHS, Value *RHS) { 2108 SelectInst *SI = dyn_cast<SelectInst>(V); 2109 if (!SI) 2110 return nullptr; 2111 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2112 if (!Cmp) 2113 return nullptr; 2114 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2115 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2116 return Cmp; 2117 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2118 LHS == CmpRHS && RHS == CmpLHS) 2119 return Cmp; 2120 return nullptr; 2121 } 2122 2123 // A significant optimization not implemented here is assuming that alloca 2124 // addresses are not equal to incoming argument values. They don't *alias*, 2125 // as we say, but that doesn't mean they aren't equal, so we take a 2126 // conservative approach. 2127 // 2128 // This is inspired in part by C++11 5.10p1: 2129 // "Two pointers of the same type compare equal if and only if they are both 2130 // null, both point to the same function, or both represent the same 2131 // address." 2132 // 2133 // This is pretty permissive. 2134 // 2135 // It's also partly due to C11 6.5.9p6: 2136 // "Two pointers compare equal if and only if both are null pointers, both are 2137 // pointers to the same object (including a pointer to an object and a 2138 // subobject at its beginning) or function, both are pointers to one past the 2139 // last element of the same array object, or one is a pointer to one past the 2140 // end of one array object and the other is a pointer to the start of a 2141 // different array object that happens to immediately follow the first array 2142 // object in the address space.) 2143 // 2144 // C11's version is more restrictive, however there's no reason why an argument 2145 // couldn't be a one-past-the-end value for a stack object in the caller and be 2146 // equal to the beginning of a stack object in the callee. 2147 // 2148 // If the C and C++ standards are ever made sufficiently restrictive in this 2149 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2150 // this optimization. 2151 static Constant * 2152 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2153 const DominatorTree *DT, CmpInst::Predicate Pred, 2154 AssumptionCache *AC, const Instruction *CxtI, 2155 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2156 // First, skip past any trivial no-ops. 2157 LHS = LHS->stripPointerCasts(); 2158 RHS = RHS->stripPointerCasts(); 2159 2160 // A non-null pointer is not equal to a null pointer. 2161 if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2162 IIQ.UseInstrInfo) && 2163 isa<ConstantPointerNull>(RHS) && 2164 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2165 return ConstantInt::get(GetCompareTy(LHS), 2166 !CmpInst::isTrueWhenEqual(Pred)); 2167 2168 // We can only fold certain predicates on pointer comparisons. 2169 switch (Pred) { 2170 default: 2171 return nullptr; 2172 2173 // Equality comaprisons are easy to fold. 2174 case CmpInst::ICMP_EQ: 2175 case CmpInst::ICMP_NE: 2176 break; 2177 2178 // We can only handle unsigned relational comparisons because 'inbounds' on 2179 // a GEP only protects against unsigned wrapping. 2180 case CmpInst::ICMP_UGT: 2181 case CmpInst::ICMP_UGE: 2182 case CmpInst::ICMP_ULT: 2183 case CmpInst::ICMP_ULE: 2184 // However, we have to switch them to their signed variants to handle 2185 // negative indices from the base pointer. 2186 Pred = ICmpInst::getSignedPredicate(Pred); 2187 break; 2188 } 2189 2190 // Strip off any constant offsets so that we can reason about them. 2191 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2192 // here and compare base addresses like AliasAnalysis does, however there are 2193 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2194 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2195 // doesn't need to guarantee pointer inequality when it says NoAlias. 2196 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2197 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2198 2199 // If LHS and RHS are related via constant offsets to the same base 2200 // value, we can replace it with an icmp which just compares the offsets. 2201 if (LHS == RHS) 2202 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2203 2204 // Various optimizations for (in)equality comparisons. 2205 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2206 // Different non-empty allocations that exist at the same time have 2207 // different addresses (if the program can tell). Global variables always 2208 // exist, so they always exist during the lifetime of each other and all 2209 // allocas. Two different allocas usually have different addresses... 2210 // 2211 // However, if there's an @llvm.stackrestore dynamically in between two 2212 // allocas, they may have the same address. It's tempting to reduce the 2213 // scope of the problem by only looking at *static* allocas here. That would 2214 // cover the majority of allocas while significantly reducing the likelihood 2215 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2216 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2217 // an entry block. Also, if we have a block that's not attached to a 2218 // function, we can't tell if it's "static" under the current definition. 2219 // Theoretically, this problem could be fixed by creating a new kind of 2220 // instruction kind specifically for static allocas. Such a new instruction 2221 // could be required to be at the top of the entry block, thus preventing it 2222 // from being subject to a @llvm.stackrestore. Instcombine could even 2223 // convert regular allocas into these special allocas. It'd be nifty. 2224 // However, until then, this problem remains open. 2225 // 2226 // So, we'll assume that two non-empty allocas have different addresses 2227 // for now. 2228 // 2229 // With all that, if the offsets are within the bounds of their allocations 2230 // (and not one-past-the-end! so we can't use inbounds!), and their 2231 // allocations aren't the same, the pointers are not equal. 2232 // 2233 // Note that it's not necessary to check for LHS being a global variable 2234 // address, due to canonicalization and constant folding. 2235 if (isa<AllocaInst>(LHS) && 2236 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2237 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2238 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2239 uint64_t LHSSize, RHSSize; 2240 ObjectSizeOpts Opts; 2241 Opts.NullIsUnknownSize = 2242 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2243 if (LHSOffsetCI && RHSOffsetCI && 2244 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2245 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2246 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2247 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2248 if (!LHSOffsetValue.isNegative() && 2249 !RHSOffsetValue.isNegative() && 2250 LHSOffsetValue.ult(LHSSize) && 2251 RHSOffsetValue.ult(RHSSize)) { 2252 return ConstantInt::get(GetCompareTy(LHS), 2253 !CmpInst::isTrueWhenEqual(Pred)); 2254 } 2255 } 2256 2257 // Repeat the above check but this time without depending on DataLayout 2258 // or being able to compute a precise size. 2259 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2260 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2261 LHSOffset->isNullValue() && 2262 RHSOffset->isNullValue()) 2263 return ConstantInt::get(GetCompareTy(LHS), 2264 !CmpInst::isTrueWhenEqual(Pred)); 2265 } 2266 2267 // Even if an non-inbounds GEP occurs along the path we can still optimize 2268 // equality comparisons concerning the result. We avoid walking the whole 2269 // chain again by starting where the last calls to 2270 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2271 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2272 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2273 if (LHS == RHS) 2274 return ConstantExpr::getICmp(Pred, 2275 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2276 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2277 2278 // If one side of the equality comparison must come from a noalias call 2279 // (meaning a system memory allocation function), and the other side must 2280 // come from a pointer that cannot overlap with dynamically-allocated 2281 // memory within the lifetime of the current function (allocas, byval 2282 // arguments, globals), then determine the comparison result here. 2283 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2284 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2285 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2286 2287 // Is the set of underlying objects all noalias calls? 2288 auto IsNAC = [](ArrayRef<Value *> Objects) { 2289 return all_of(Objects, isNoAliasCall); 2290 }; 2291 2292 // Is the set of underlying objects all things which must be disjoint from 2293 // noalias calls. For allocas, we consider only static ones (dynamic 2294 // allocas might be transformed into calls to malloc not simultaneously 2295 // live with the compared-to allocation). For globals, we exclude symbols 2296 // that might be resolve lazily to symbols in another dynamically-loaded 2297 // library (and, thus, could be malloc'ed by the implementation). 2298 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2299 return all_of(Objects, [](Value *V) { 2300 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2301 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2302 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2303 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2304 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2305 !GV->isThreadLocal(); 2306 if (const Argument *A = dyn_cast<Argument>(V)) 2307 return A->hasByValAttr(); 2308 return false; 2309 }); 2310 }; 2311 2312 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2313 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2314 return ConstantInt::get(GetCompareTy(LHS), 2315 !CmpInst::isTrueWhenEqual(Pred)); 2316 2317 // Fold comparisons for non-escaping pointer even if the allocation call 2318 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2319 // dynamic allocation call could be either of the operands. 2320 Value *MI = nullptr; 2321 if (isAllocLikeFn(LHS, TLI) && 2322 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2323 MI = LHS; 2324 else if (isAllocLikeFn(RHS, TLI) && 2325 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2326 MI = RHS; 2327 // FIXME: We should also fold the compare when the pointer escapes, but the 2328 // compare dominates the pointer escape 2329 if (MI && !PointerMayBeCaptured(MI, true, true)) 2330 return ConstantInt::get(GetCompareTy(LHS), 2331 CmpInst::isFalseWhenEqual(Pred)); 2332 } 2333 2334 // Otherwise, fail. 2335 return nullptr; 2336 } 2337 2338 /// Fold an icmp when its operands have i1 scalar type. 2339 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2340 Value *RHS, const SimplifyQuery &Q) { 2341 Type *ITy = GetCompareTy(LHS); // The return type. 2342 Type *OpTy = LHS->getType(); // The operand type. 2343 if (!OpTy->isIntOrIntVectorTy(1)) 2344 return nullptr; 2345 2346 // A boolean compared to true/false can be simplified in 14 out of the 20 2347 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2348 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2349 if (match(RHS, m_Zero())) { 2350 switch (Pred) { 2351 case CmpInst::ICMP_NE: // X != 0 -> X 2352 case CmpInst::ICMP_UGT: // X >u 0 -> X 2353 case CmpInst::ICMP_SLT: // X <s 0 -> X 2354 return LHS; 2355 2356 case CmpInst::ICMP_ULT: // X <u 0 -> false 2357 case CmpInst::ICMP_SGT: // X >s 0 -> false 2358 return getFalse(ITy); 2359 2360 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2361 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2362 return getTrue(ITy); 2363 2364 default: break; 2365 } 2366 } else if (match(RHS, m_One())) { 2367 switch (Pred) { 2368 case CmpInst::ICMP_EQ: // X == 1 -> X 2369 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2370 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2371 return LHS; 2372 2373 case CmpInst::ICMP_UGT: // X >u 1 -> false 2374 case CmpInst::ICMP_SLT: // X <s -1 -> false 2375 return getFalse(ITy); 2376 2377 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2378 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2379 return getTrue(ITy); 2380 2381 default: break; 2382 } 2383 } 2384 2385 switch (Pred) { 2386 default: 2387 break; 2388 case ICmpInst::ICMP_UGE: 2389 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2390 return getTrue(ITy); 2391 break; 2392 case ICmpInst::ICMP_SGE: 2393 /// For signed comparison, the values for an i1 are 0 and -1 2394 /// respectively. This maps into a truth table of: 2395 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2396 /// 0 | 0 | 1 (0 >= 0) | 1 2397 /// 0 | 1 | 1 (0 >= -1) | 1 2398 /// 1 | 0 | 0 (-1 >= 0) | 0 2399 /// 1 | 1 | 1 (-1 >= -1) | 1 2400 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2401 return getTrue(ITy); 2402 break; 2403 case ICmpInst::ICMP_ULE: 2404 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2405 return getTrue(ITy); 2406 break; 2407 } 2408 2409 return nullptr; 2410 } 2411 2412 /// Try hard to fold icmp with zero RHS because this is a common case. 2413 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2414 Value *RHS, const SimplifyQuery &Q) { 2415 if (!match(RHS, m_Zero())) 2416 return nullptr; 2417 2418 Type *ITy = GetCompareTy(LHS); // The return type. 2419 switch (Pred) { 2420 default: 2421 llvm_unreachable("Unknown ICmp predicate!"); 2422 case ICmpInst::ICMP_ULT: 2423 return getFalse(ITy); 2424 case ICmpInst::ICMP_UGE: 2425 return getTrue(ITy); 2426 case ICmpInst::ICMP_EQ: 2427 case ICmpInst::ICMP_ULE: 2428 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2429 return getFalse(ITy); 2430 break; 2431 case ICmpInst::ICMP_NE: 2432 case ICmpInst::ICMP_UGT: 2433 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2434 return getTrue(ITy); 2435 break; 2436 case ICmpInst::ICMP_SLT: { 2437 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2438 if (LHSKnown.isNegative()) 2439 return getTrue(ITy); 2440 if (LHSKnown.isNonNegative()) 2441 return getFalse(ITy); 2442 break; 2443 } 2444 case ICmpInst::ICMP_SLE: { 2445 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2446 if (LHSKnown.isNegative()) 2447 return getTrue(ITy); 2448 if (LHSKnown.isNonNegative() && 2449 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2450 return getFalse(ITy); 2451 break; 2452 } 2453 case ICmpInst::ICMP_SGE: { 2454 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2455 if (LHSKnown.isNegative()) 2456 return getFalse(ITy); 2457 if (LHSKnown.isNonNegative()) 2458 return getTrue(ITy); 2459 break; 2460 } 2461 case ICmpInst::ICMP_SGT: { 2462 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2463 if (LHSKnown.isNegative()) 2464 return getFalse(ITy); 2465 if (LHSKnown.isNonNegative() && 2466 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2467 return getTrue(ITy); 2468 break; 2469 } 2470 } 2471 2472 return nullptr; 2473 } 2474 2475 /// Many binary operators with a constant operand have an easy-to-compute 2476 /// range of outputs. This can be used to fold a comparison to always true or 2477 /// always false. 2478 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper, 2479 const InstrInfoQuery &IIQ) { 2480 unsigned Width = Lower.getBitWidth(); 2481 const APInt *C; 2482 switch (BO.getOpcode()) { 2483 case Instruction::Add: 2484 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2485 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2486 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 2487 // 'add nuw x, C' produces [C, UINT_MAX]. 2488 Lower = *C; 2489 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 2490 if (C->isNegative()) { 2491 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2492 Lower = APInt::getSignedMinValue(Width); 2493 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2494 } else { 2495 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2496 Lower = APInt::getSignedMinValue(Width) + *C; 2497 Upper = APInt::getSignedMaxValue(Width) + 1; 2498 } 2499 } 2500 } 2501 break; 2502 2503 case Instruction::And: 2504 if (match(BO.getOperand(1), m_APInt(C))) 2505 // 'and x, C' produces [0, C]. 2506 Upper = *C + 1; 2507 break; 2508 2509 case Instruction::Or: 2510 if (match(BO.getOperand(1), m_APInt(C))) 2511 // 'or x, C' produces [C, UINT_MAX]. 2512 Lower = *C; 2513 break; 2514 2515 case Instruction::AShr: 2516 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2517 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2518 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2519 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2520 } else if (match(BO.getOperand(0), m_APInt(C))) { 2521 unsigned ShiftAmount = Width - 1; 2522 if (!C->isNullValue() && IIQ.isExact(&BO)) 2523 ShiftAmount = C->countTrailingZeros(); 2524 if (C->isNegative()) { 2525 // 'ashr C, x' produces [C, C >> (Width-1)] 2526 Lower = *C; 2527 Upper = C->ashr(ShiftAmount) + 1; 2528 } else { 2529 // 'ashr C, x' produces [C >> (Width-1), C] 2530 Lower = C->ashr(ShiftAmount); 2531 Upper = *C + 1; 2532 } 2533 } 2534 break; 2535 2536 case Instruction::LShr: 2537 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2538 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2539 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2540 } else if (match(BO.getOperand(0), m_APInt(C))) { 2541 // 'lshr C, x' produces [C >> (Width-1), C]. 2542 unsigned ShiftAmount = Width - 1; 2543 if (!C->isNullValue() && IIQ.isExact(&BO)) 2544 ShiftAmount = C->countTrailingZeros(); 2545 Lower = C->lshr(ShiftAmount); 2546 Upper = *C + 1; 2547 } 2548 break; 2549 2550 case Instruction::Shl: 2551 if (match(BO.getOperand(0), m_APInt(C))) { 2552 if (IIQ.hasNoUnsignedWrap(&BO)) { 2553 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2554 Lower = *C; 2555 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2556 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2557 if (C->isNegative()) { 2558 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2559 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2560 Lower = C->shl(ShiftAmount); 2561 Upper = *C + 1; 2562 } else { 2563 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2564 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2565 Lower = *C; 2566 Upper = C->shl(ShiftAmount) + 1; 2567 } 2568 } 2569 } 2570 break; 2571 2572 case Instruction::SDiv: 2573 if (match(BO.getOperand(1), m_APInt(C))) { 2574 APInt IntMin = APInt::getSignedMinValue(Width); 2575 APInt IntMax = APInt::getSignedMaxValue(Width); 2576 if (C->isAllOnesValue()) { 2577 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2578 // where C != -1 and C != 0 and C != 1 2579 Lower = IntMin + 1; 2580 Upper = IntMax + 1; 2581 } else if (C->countLeadingZeros() < Width - 1) { 2582 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2583 // where C != -1 and C != 0 and C != 1 2584 Lower = IntMin.sdiv(*C); 2585 Upper = IntMax.sdiv(*C); 2586 if (Lower.sgt(Upper)) 2587 std::swap(Lower, Upper); 2588 Upper = Upper + 1; 2589 assert(Upper != Lower && "Upper part of range has wrapped!"); 2590 } 2591 } else if (match(BO.getOperand(0), m_APInt(C))) { 2592 if (C->isMinSignedValue()) { 2593 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2594 Lower = *C; 2595 Upper = Lower.lshr(1) + 1; 2596 } else { 2597 // 'sdiv C, x' produces [-|C|, |C|]. 2598 Upper = C->abs() + 1; 2599 Lower = (-Upper) + 1; 2600 } 2601 } 2602 break; 2603 2604 case Instruction::UDiv: 2605 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2606 // 'udiv x, C' produces [0, UINT_MAX / C]. 2607 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2608 } else if (match(BO.getOperand(0), m_APInt(C))) { 2609 // 'udiv C, x' produces [0, C]. 2610 Upper = *C + 1; 2611 } 2612 break; 2613 2614 case Instruction::SRem: 2615 if (match(BO.getOperand(1), m_APInt(C))) { 2616 // 'srem x, C' produces (-|C|, |C|). 2617 Upper = C->abs(); 2618 Lower = (-Upper) + 1; 2619 } 2620 break; 2621 2622 case Instruction::URem: 2623 if (match(BO.getOperand(1), m_APInt(C))) 2624 // 'urem x, C' produces [0, C). 2625 Upper = *C; 2626 break; 2627 2628 default: 2629 break; 2630 } 2631 } 2632 2633 /// Some intrinsics with a constant operand have an easy-to-compute range of 2634 /// outputs. This can be used to fold a comparison to always true or always 2635 /// false. 2636 static void setLimitsForIntrinsic(IntrinsicInst &II, APInt &Lower, 2637 APInt &Upper) { 2638 unsigned Width = Lower.getBitWidth(); 2639 const APInt *C; 2640 switch (II.getIntrinsicID()) { 2641 case Intrinsic::uadd_sat: 2642 // uadd.sat(x, C) produces [C, UINT_MAX]. 2643 if (match(II.getOperand(0), m_APInt(C)) || 2644 match(II.getOperand(1), m_APInt(C))) 2645 Lower = *C; 2646 break; 2647 case Intrinsic::sadd_sat: 2648 if (match(II.getOperand(0), m_APInt(C)) || 2649 match(II.getOperand(1), m_APInt(C))) { 2650 if (C->isNegative()) { 2651 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 2652 Lower = APInt::getSignedMinValue(Width); 2653 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2654 } else { 2655 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 2656 Lower = APInt::getSignedMinValue(Width) + *C; 2657 Upper = APInt::getSignedMaxValue(Width) + 1; 2658 } 2659 } 2660 break; 2661 case Intrinsic::usub_sat: 2662 // usub.sat(C, x) produces [0, C]. 2663 if (match(II.getOperand(0), m_APInt(C))) 2664 Upper = *C + 1; 2665 // usub.sat(x, C) produces [0, UINT_MAX - C]. 2666 else if (match(II.getOperand(1), m_APInt(C))) 2667 Upper = APInt::getMaxValue(Width) - *C + 1; 2668 break; 2669 case Intrinsic::ssub_sat: 2670 if (match(II.getOperand(0), m_APInt(C))) { 2671 if (C->isNegative()) { 2672 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 2673 Lower = APInt::getSignedMinValue(Width); 2674 Upper = *C - APInt::getSignedMinValue(Width) + 1; 2675 } else { 2676 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 2677 Lower = *C - APInt::getSignedMaxValue(Width); 2678 Upper = APInt::getSignedMaxValue(Width) + 1; 2679 } 2680 } else if (match(II.getOperand(1), m_APInt(C))) { 2681 if (C->isNegative()) { 2682 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 2683 Lower = APInt::getSignedMinValue(Width) - *C; 2684 Upper = APInt::getSignedMaxValue(Width) + 1; 2685 } else { 2686 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 2687 Lower = APInt::getSignedMinValue(Width); 2688 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 2689 } 2690 } 2691 break; 2692 default: 2693 break; 2694 } 2695 } 2696 2697 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2698 Value *RHS, const InstrInfoQuery &IIQ) { 2699 Type *ITy = GetCompareTy(RHS); // The return type. 2700 2701 Value *X; 2702 // Sign-bit checks can be optimized to true/false after unsigned 2703 // floating-point casts: 2704 // icmp slt (bitcast (uitofp X)), 0 --> false 2705 // icmp sgt (bitcast (uitofp X)), -1 --> true 2706 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2707 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2708 return ConstantInt::getFalse(ITy); 2709 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2710 return ConstantInt::getTrue(ITy); 2711 } 2712 2713 const APInt *C; 2714 if (!match(RHS, m_APInt(C))) 2715 return nullptr; 2716 2717 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2718 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2719 if (RHS_CR.isEmptySet()) 2720 return ConstantInt::getFalse(ITy); 2721 if (RHS_CR.isFullSet()) 2722 return ConstantInt::getTrue(ITy); 2723 2724 // Find the range of possible values for binary operators. 2725 unsigned Width = C->getBitWidth(); 2726 APInt Lower = APInt(Width, 0); 2727 APInt Upper = APInt(Width, 0); 2728 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2729 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 2730 else if (auto *II = dyn_cast<IntrinsicInst>(LHS)) 2731 setLimitsForIntrinsic(*II, Lower, Upper); 2732 2733 ConstantRange LHS_CR = 2734 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2735 2736 if (auto *I = dyn_cast<Instruction>(LHS)) 2737 if (auto *Ranges = IIQ.getMetadata(I, LLVMContext::MD_range)) 2738 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2739 2740 if (!LHS_CR.isFullSet()) { 2741 if (RHS_CR.contains(LHS_CR)) 2742 return ConstantInt::getTrue(ITy); 2743 if (RHS_CR.inverse().contains(LHS_CR)) 2744 return ConstantInt::getFalse(ITy); 2745 } 2746 2747 return nullptr; 2748 } 2749 2750 /// TODO: A large part of this logic is duplicated in InstCombine's 2751 /// foldICmpBinOp(). We should be able to share that and avoid the code 2752 /// duplication. 2753 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2754 Value *RHS, const SimplifyQuery &Q, 2755 unsigned MaxRecurse) { 2756 Type *ITy = GetCompareTy(LHS); // The return type. 2757 2758 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2759 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2760 if (MaxRecurse && (LBO || RBO)) { 2761 // Analyze the case when either LHS or RHS is an add instruction. 2762 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2763 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2764 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2765 if (LBO && LBO->getOpcode() == Instruction::Add) { 2766 A = LBO->getOperand(0); 2767 B = LBO->getOperand(1); 2768 NoLHSWrapProblem = 2769 ICmpInst::isEquality(Pred) || 2770 (CmpInst::isUnsigned(Pred) && 2771 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2772 (CmpInst::isSigned(Pred) && 2773 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2774 } 2775 if (RBO && RBO->getOpcode() == Instruction::Add) { 2776 C = RBO->getOperand(0); 2777 D = RBO->getOperand(1); 2778 NoRHSWrapProblem = 2779 ICmpInst::isEquality(Pred) || 2780 (CmpInst::isUnsigned(Pred) && 2781 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2782 (CmpInst::isSigned(Pred) && 2783 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2784 } 2785 2786 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2787 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2788 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2789 Constant::getNullValue(RHS->getType()), Q, 2790 MaxRecurse - 1)) 2791 return V; 2792 2793 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2794 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2795 if (Value *V = 2796 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2797 C == LHS ? D : C, Q, MaxRecurse - 1)) 2798 return V; 2799 2800 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2801 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2802 NoRHSWrapProblem) { 2803 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2804 Value *Y, *Z; 2805 if (A == C) { 2806 // C + B == C + D -> B == D 2807 Y = B; 2808 Z = D; 2809 } else if (A == D) { 2810 // D + B == C + D -> B == C 2811 Y = B; 2812 Z = C; 2813 } else if (B == C) { 2814 // A + C == C + D -> A == D 2815 Y = A; 2816 Z = D; 2817 } else { 2818 assert(B == D); 2819 // A + D == C + D -> A == C 2820 Y = A; 2821 Z = C; 2822 } 2823 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2824 return V; 2825 } 2826 } 2827 2828 { 2829 Value *Y = nullptr; 2830 // icmp pred (or X, Y), X 2831 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2832 if (Pred == ICmpInst::ICMP_ULT) 2833 return getFalse(ITy); 2834 if (Pred == ICmpInst::ICMP_UGE) 2835 return getTrue(ITy); 2836 2837 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2838 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2839 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2840 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2841 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2842 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2843 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2844 } 2845 } 2846 // icmp pred X, (or X, Y) 2847 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2848 if (Pred == ICmpInst::ICMP_ULE) 2849 return getTrue(ITy); 2850 if (Pred == ICmpInst::ICMP_UGT) 2851 return getFalse(ITy); 2852 2853 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2854 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2855 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2856 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2857 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2858 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2859 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2860 } 2861 } 2862 } 2863 2864 // icmp pred (and X, Y), X 2865 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2866 if (Pred == ICmpInst::ICMP_UGT) 2867 return getFalse(ITy); 2868 if (Pred == ICmpInst::ICMP_ULE) 2869 return getTrue(ITy); 2870 } 2871 // icmp pred X, (and X, Y) 2872 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2873 if (Pred == ICmpInst::ICMP_UGE) 2874 return getTrue(ITy); 2875 if (Pred == ICmpInst::ICMP_ULT) 2876 return getFalse(ITy); 2877 } 2878 2879 // 0 - (zext X) pred C 2880 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2881 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2882 if (RHSC->getValue().isStrictlyPositive()) { 2883 if (Pred == ICmpInst::ICMP_SLT) 2884 return ConstantInt::getTrue(RHSC->getContext()); 2885 if (Pred == ICmpInst::ICMP_SGE) 2886 return ConstantInt::getFalse(RHSC->getContext()); 2887 if (Pred == ICmpInst::ICMP_EQ) 2888 return ConstantInt::getFalse(RHSC->getContext()); 2889 if (Pred == ICmpInst::ICMP_NE) 2890 return ConstantInt::getTrue(RHSC->getContext()); 2891 } 2892 if (RHSC->getValue().isNonNegative()) { 2893 if (Pred == ICmpInst::ICMP_SLE) 2894 return ConstantInt::getTrue(RHSC->getContext()); 2895 if (Pred == ICmpInst::ICMP_SGT) 2896 return ConstantInt::getFalse(RHSC->getContext()); 2897 } 2898 } 2899 } 2900 2901 // icmp pred (urem X, Y), Y 2902 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2903 switch (Pred) { 2904 default: 2905 break; 2906 case ICmpInst::ICMP_SGT: 2907 case ICmpInst::ICMP_SGE: { 2908 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2909 if (!Known.isNonNegative()) 2910 break; 2911 LLVM_FALLTHROUGH; 2912 } 2913 case ICmpInst::ICMP_EQ: 2914 case ICmpInst::ICMP_UGT: 2915 case ICmpInst::ICMP_UGE: 2916 return getFalse(ITy); 2917 case ICmpInst::ICMP_SLT: 2918 case ICmpInst::ICMP_SLE: { 2919 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2920 if (!Known.isNonNegative()) 2921 break; 2922 LLVM_FALLTHROUGH; 2923 } 2924 case ICmpInst::ICMP_NE: 2925 case ICmpInst::ICMP_ULT: 2926 case ICmpInst::ICMP_ULE: 2927 return getTrue(ITy); 2928 } 2929 } 2930 2931 // icmp pred X, (urem Y, X) 2932 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2933 switch (Pred) { 2934 default: 2935 break; 2936 case ICmpInst::ICMP_SGT: 2937 case ICmpInst::ICMP_SGE: { 2938 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2939 if (!Known.isNonNegative()) 2940 break; 2941 LLVM_FALLTHROUGH; 2942 } 2943 case ICmpInst::ICMP_NE: 2944 case ICmpInst::ICMP_UGT: 2945 case ICmpInst::ICMP_UGE: 2946 return getTrue(ITy); 2947 case ICmpInst::ICMP_SLT: 2948 case ICmpInst::ICMP_SLE: { 2949 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2950 if (!Known.isNonNegative()) 2951 break; 2952 LLVM_FALLTHROUGH; 2953 } 2954 case ICmpInst::ICMP_EQ: 2955 case ICmpInst::ICMP_ULT: 2956 case ICmpInst::ICMP_ULE: 2957 return getFalse(ITy); 2958 } 2959 } 2960 2961 // x >> y <=u x 2962 // x udiv y <=u x. 2963 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2964 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2965 // icmp pred (X op Y), X 2966 if (Pred == ICmpInst::ICMP_UGT) 2967 return getFalse(ITy); 2968 if (Pred == ICmpInst::ICMP_ULE) 2969 return getTrue(ITy); 2970 } 2971 2972 // x >=u x >> y 2973 // x >=u x udiv y. 2974 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2975 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2976 // icmp pred X, (X op Y) 2977 if (Pred == ICmpInst::ICMP_ULT) 2978 return getFalse(ITy); 2979 if (Pred == ICmpInst::ICMP_UGE) 2980 return getTrue(ITy); 2981 } 2982 2983 // handle: 2984 // CI2 << X == CI 2985 // CI2 << X != CI 2986 // 2987 // where CI2 is a power of 2 and CI isn't 2988 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2989 const APInt *CI2Val, *CIVal = &CI->getValue(); 2990 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2991 CI2Val->isPowerOf2()) { 2992 if (!CIVal->isPowerOf2()) { 2993 // CI2 << X can equal zero in some circumstances, 2994 // this simplification is unsafe if CI is zero. 2995 // 2996 // We know it is safe if: 2997 // - The shift is nsw, we can't shift out the one bit. 2998 // - The shift is nuw, we can't shift out the one bit. 2999 // - CI2 is one 3000 // - CI isn't zero 3001 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3002 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3003 CI2Val->isOneValue() || !CI->isZero()) { 3004 if (Pred == ICmpInst::ICMP_EQ) 3005 return ConstantInt::getFalse(RHS->getContext()); 3006 if (Pred == ICmpInst::ICMP_NE) 3007 return ConstantInt::getTrue(RHS->getContext()); 3008 } 3009 } 3010 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 3011 if (Pred == ICmpInst::ICMP_UGT) 3012 return ConstantInt::getFalse(RHS->getContext()); 3013 if (Pred == ICmpInst::ICMP_ULE) 3014 return ConstantInt::getTrue(RHS->getContext()); 3015 } 3016 } 3017 } 3018 3019 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3020 LBO->getOperand(1) == RBO->getOperand(1)) { 3021 switch (LBO->getOpcode()) { 3022 default: 3023 break; 3024 case Instruction::UDiv: 3025 case Instruction::LShr: 3026 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3027 !Q.IIQ.isExact(RBO)) 3028 break; 3029 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3030 RBO->getOperand(0), Q, MaxRecurse - 1)) 3031 return V; 3032 break; 3033 case Instruction::SDiv: 3034 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3035 !Q.IIQ.isExact(RBO)) 3036 break; 3037 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3038 RBO->getOperand(0), Q, MaxRecurse - 1)) 3039 return V; 3040 break; 3041 case Instruction::AShr: 3042 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3043 break; 3044 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3045 RBO->getOperand(0), Q, MaxRecurse - 1)) 3046 return V; 3047 break; 3048 case Instruction::Shl: { 3049 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3050 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3051 if (!NUW && !NSW) 3052 break; 3053 if (!NSW && ICmpInst::isSigned(Pred)) 3054 break; 3055 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3056 RBO->getOperand(0), Q, MaxRecurse - 1)) 3057 return V; 3058 break; 3059 } 3060 } 3061 } 3062 return nullptr; 3063 } 3064 3065 static Value *simplifyICmpWithAbsNabs(CmpInst::Predicate Pred, Value *Op0, 3066 Value *Op1) { 3067 // We need a comparison with a constant. 3068 const APInt *C; 3069 if (!match(Op1, m_APInt(C))) 3070 return nullptr; 3071 3072 // matchSelectPattern returns the negation part of an abs pattern in SP1. 3073 // If the negate has an NSW flag, abs(INT_MIN) is undefined. Without that 3074 // constraint, we can't make a contiguous range for the result of abs. 3075 ICmpInst::Predicate AbsPred = ICmpInst::BAD_ICMP_PREDICATE; 3076 Value *SP0, *SP1; 3077 SelectPatternFlavor SPF = matchSelectPattern(Op0, SP0, SP1).Flavor; 3078 if (SPF == SelectPatternFlavor::SPF_ABS && 3079 cast<Instruction>(SP1)->hasNoSignedWrap()) 3080 // The result of abs(X) is >= 0 (with nsw). 3081 AbsPred = ICmpInst::ICMP_SGE; 3082 if (SPF == SelectPatternFlavor::SPF_NABS) 3083 // The result of -abs(X) is <= 0. 3084 AbsPred = ICmpInst::ICMP_SLE; 3085 3086 if (AbsPred == ICmpInst::BAD_ICMP_PREDICATE) 3087 return nullptr; 3088 3089 // If there is no intersection between abs/nabs and the range of this icmp, 3090 // the icmp must be false. If the abs/nabs range is a subset of the icmp 3091 // range, the icmp must be true. 3092 APInt Zero = APInt::getNullValue(C->getBitWidth()); 3093 ConstantRange AbsRange = ConstantRange::makeExactICmpRegion(AbsPred, Zero); 3094 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(Pred, *C); 3095 if (AbsRange.intersectWith(CmpRange).isEmptySet()) 3096 return getFalse(GetCompareTy(Op0)); 3097 if (CmpRange.contains(AbsRange)) 3098 return getTrue(GetCompareTy(Op0)); 3099 3100 return nullptr; 3101 } 3102 3103 /// Simplify integer comparisons where at least one operand of the compare 3104 /// matches an integer min/max idiom. 3105 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3106 Value *RHS, const SimplifyQuery &Q, 3107 unsigned MaxRecurse) { 3108 Type *ITy = GetCompareTy(LHS); // The return type. 3109 Value *A, *B; 3110 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3111 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3112 3113 // Signed variants on "max(a,b)>=a -> true". 3114 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3115 if (A != RHS) 3116 std::swap(A, B); // smax(A, B) pred A. 3117 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3118 // We analyze this as smax(A, B) pred A. 3119 P = Pred; 3120 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3121 (A == LHS || B == LHS)) { 3122 if (A != LHS) 3123 std::swap(A, B); // A pred smax(A, B). 3124 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3125 // We analyze this as smax(A, B) swapped-pred A. 3126 P = CmpInst::getSwappedPredicate(Pred); 3127 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3128 (A == RHS || B == RHS)) { 3129 if (A != RHS) 3130 std::swap(A, B); // smin(A, B) pred A. 3131 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3132 // We analyze this as smax(-A, -B) swapped-pred -A. 3133 // Note that we do not need to actually form -A or -B thanks to EqP. 3134 P = CmpInst::getSwappedPredicate(Pred); 3135 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3136 (A == LHS || B == LHS)) { 3137 if (A != LHS) 3138 std::swap(A, B); // A pred smin(A, B). 3139 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3140 // We analyze this as smax(-A, -B) pred -A. 3141 // Note that we do not need to actually form -A or -B thanks to EqP. 3142 P = Pred; 3143 } 3144 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3145 // Cases correspond to "max(A, B) p A". 3146 switch (P) { 3147 default: 3148 break; 3149 case CmpInst::ICMP_EQ: 3150 case CmpInst::ICMP_SLE: 3151 // Equivalent to "A EqP B". This may be the same as the condition tested 3152 // in the max/min; if so, we can just return that. 3153 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3154 return V; 3155 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3156 return V; 3157 // Otherwise, see if "A EqP B" simplifies. 3158 if (MaxRecurse) 3159 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3160 return V; 3161 break; 3162 case CmpInst::ICMP_NE: 3163 case CmpInst::ICMP_SGT: { 3164 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3165 // Equivalent to "A InvEqP B". This may be the same as the condition 3166 // tested in the max/min; if so, we can just return that. 3167 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3168 return V; 3169 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3170 return V; 3171 // Otherwise, see if "A InvEqP B" simplifies. 3172 if (MaxRecurse) 3173 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3174 return V; 3175 break; 3176 } 3177 case CmpInst::ICMP_SGE: 3178 // Always true. 3179 return getTrue(ITy); 3180 case CmpInst::ICMP_SLT: 3181 // Always false. 3182 return getFalse(ITy); 3183 } 3184 } 3185 3186 // Unsigned variants on "max(a,b)>=a -> true". 3187 P = CmpInst::BAD_ICMP_PREDICATE; 3188 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3189 if (A != RHS) 3190 std::swap(A, B); // umax(A, B) pred A. 3191 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3192 // We analyze this as umax(A, B) pred A. 3193 P = Pred; 3194 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3195 (A == LHS || B == LHS)) { 3196 if (A != LHS) 3197 std::swap(A, B); // A pred umax(A, B). 3198 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3199 // We analyze this as umax(A, B) swapped-pred A. 3200 P = CmpInst::getSwappedPredicate(Pred); 3201 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3202 (A == RHS || B == RHS)) { 3203 if (A != RHS) 3204 std::swap(A, B); // umin(A, B) pred A. 3205 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3206 // We analyze this as umax(-A, -B) swapped-pred -A. 3207 // Note that we do not need to actually form -A or -B thanks to EqP. 3208 P = CmpInst::getSwappedPredicate(Pred); 3209 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3210 (A == LHS || B == LHS)) { 3211 if (A != LHS) 3212 std::swap(A, B); // A pred umin(A, B). 3213 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3214 // We analyze this as umax(-A, -B) pred -A. 3215 // Note that we do not need to actually form -A or -B thanks to EqP. 3216 P = Pred; 3217 } 3218 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3219 // Cases correspond to "max(A, B) p A". 3220 switch (P) { 3221 default: 3222 break; 3223 case CmpInst::ICMP_EQ: 3224 case CmpInst::ICMP_ULE: 3225 // Equivalent to "A EqP B". This may be the same as the condition tested 3226 // in the max/min; if so, we can just return that. 3227 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3228 return V; 3229 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3230 return V; 3231 // Otherwise, see if "A EqP B" simplifies. 3232 if (MaxRecurse) 3233 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3234 return V; 3235 break; 3236 case CmpInst::ICMP_NE: 3237 case CmpInst::ICMP_UGT: { 3238 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3239 // Equivalent to "A InvEqP B". This may be the same as the condition 3240 // tested in the max/min; if so, we can just return that. 3241 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3242 return V; 3243 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3244 return V; 3245 // Otherwise, see if "A InvEqP B" simplifies. 3246 if (MaxRecurse) 3247 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3248 return V; 3249 break; 3250 } 3251 case CmpInst::ICMP_UGE: 3252 // Always true. 3253 return getTrue(ITy); 3254 case CmpInst::ICMP_ULT: 3255 // Always false. 3256 return getFalse(ITy); 3257 } 3258 } 3259 3260 // Variants on "max(x,y) >= min(x,z)". 3261 Value *C, *D; 3262 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3263 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3264 (A == C || A == D || B == C || B == D)) { 3265 // max(x, ?) pred min(x, ?). 3266 if (Pred == CmpInst::ICMP_SGE) 3267 // Always true. 3268 return getTrue(ITy); 3269 if (Pred == CmpInst::ICMP_SLT) 3270 // Always false. 3271 return getFalse(ITy); 3272 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3273 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3274 (A == C || A == D || B == C || B == D)) { 3275 // min(x, ?) pred max(x, ?). 3276 if (Pred == CmpInst::ICMP_SLE) 3277 // Always true. 3278 return getTrue(ITy); 3279 if (Pred == CmpInst::ICMP_SGT) 3280 // Always false. 3281 return getFalse(ITy); 3282 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3283 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3284 (A == C || A == D || B == C || B == D)) { 3285 // max(x, ?) pred min(x, ?). 3286 if (Pred == CmpInst::ICMP_UGE) 3287 // Always true. 3288 return getTrue(ITy); 3289 if (Pred == CmpInst::ICMP_ULT) 3290 // Always false. 3291 return getFalse(ITy); 3292 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3293 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3294 (A == C || A == D || B == C || B == D)) { 3295 // min(x, ?) pred max(x, ?). 3296 if (Pred == CmpInst::ICMP_ULE) 3297 // Always true. 3298 return getTrue(ITy); 3299 if (Pred == CmpInst::ICMP_UGT) 3300 // Always false. 3301 return getFalse(ITy); 3302 } 3303 3304 return nullptr; 3305 } 3306 3307 /// Given operands for an ICmpInst, see if we can fold the result. 3308 /// If not, this returns null. 3309 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3310 const SimplifyQuery &Q, unsigned MaxRecurse) { 3311 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3312 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3313 3314 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3315 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3316 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3317 3318 // If we have a constant, make sure it is on the RHS. 3319 std::swap(LHS, RHS); 3320 Pred = CmpInst::getSwappedPredicate(Pred); 3321 } 3322 3323 Type *ITy = GetCompareTy(LHS); // The return type. 3324 3325 // icmp X, X -> true/false 3326 // icmp X, undef -> true/false because undef could be X. 3327 if (LHS == RHS || isa<UndefValue>(RHS)) 3328 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3329 3330 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3331 return V; 3332 3333 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3334 return V; 3335 3336 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3337 return V; 3338 3339 // If both operands have range metadata, use the metadata 3340 // to simplify the comparison. 3341 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3342 auto RHS_Instr = cast<Instruction>(RHS); 3343 auto LHS_Instr = cast<Instruction>(LHS); 3344 3345 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3346 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3347 auto RHS_CR = getConstantRangeFromMetadata( 3348 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3349 auto LHS_CR = getConstantRangeFromMetadata( 3350 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3351 3352 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3353 if (Satisfied_CR.contains(LHS_CR)) 3354 return ConstantInt::getTrue(RHS->getContext()); 3355 3356 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3357 CmpInst::getInversePredicate(Pred), RHS_CR); 3358 if (InversedSatisfied_CR.contains(LHS_CR)) 3359 return ConstantInt::getFalse(RHS->getContext()); 3360 } 3361 } 3362 3363 // Compare of cast, for example (zext X) != 0 -> X != 0 3364 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3365 Instruction *LI = cast<CastInst>(LHS); 3366 Value *SrcOp = LI->getOperand(0); 3367 Type *SrcTy = SrcOp->getType(); 3368 Type *DstTy = LI->getType(); 3369 3370 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3371 // if the integer type is the same size as the pointer type. 3372 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3373 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3374 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3375 // Transfer the cast to the constant. 3376 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3377 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3378 Q, MaxRecurse-1)) 3379 return V; 3380 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3381 if (RI->getOperand(0)->getType() == SrcTy) 3382 // Compare without the cast. 3383 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3384 Q, MaxRecurse-1)) 3385 return V; 3386 } 3387 } 3388 3389 if (isa<ZExtInst>(LHS)) { 3390 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3391 // same type. 3392 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3393 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3394 // Compare X and Y. Note that signed predicates become unsigned. 3395 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3396 SrcOp, RI->getOperand(0), Q, 3397 MaxRecurse-1)) 3398 return V; 3399 } 3400 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3401 // too. If not, then try to deduce the result of the comparison. 3402 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3403 // Compute the constant that would happen if we truncated to SrcTy then 3404 // reextended to DstTy. 3405 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3406 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3407 3408 // If the re-extended constant didn't change then this is effectively 3409 // also a case of comparing two zero-extended values. 3410 if (RExt == CI && MaxRecurse) 3411 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3412 SrcOp, Trunc, Q, MaxRecurse-1)) 3413 return V; 3414 3415 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3416 // there. Use this to work out the result of the comparison. 3417 if (RExt != CI) { 3418 switch (Pred) { 3419 default: llvm_unreachable("Unknown ICmp predicate!"); 3420 // LHS <u RHS. 3421 case ICmpInst::ICMP_EQ: 3422 case ICmpInst::ICMP_UGT: 3423 case ICmpInst::ICMP_UGE: 3424 return ConstantInt::getFalse(CI->getContext()); 3425 3426 case ICmpInst::ICMP_NE: 3427 case ICmpInst::ICMP_ULT: 3428 case ICmpInst::ICMP_ULE: 3429 return ConstantInt::getTrue(CI->getContext()); 3430 3431 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3432 // is non-negative then LHS <s RHS. 3433 case ICmpInst::ICMP_SGT: 3434 case ICmpInst::ICMP_SGE: 3435 return CI->getValue().isNegative() ? 3436 ConstantInt::getTrue(CI->getContext()) : 3437 ConstantInt::getFalse(CI->getContext()); 3438 3439 case ICmpInst::ICMP_SLT: 3440 case ICmpInst::ICMP_SLE: 3441 return CI->getValue().isNegative() ? 3442 ConstantInt::getFalse(CI->getContext()) : 3443 ConstantInt::getTrue(CI->getContext()); 3444 } 3445 } 3446 } 3447 } 3448 3449 if (isa<SExtInst>(LHS)) { 3450 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3451 // same type. 3452 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3453 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3454 // Compare X and Y. Note that the predicate does not change. 3455 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3456 Q, MaxRecurse-1)) 3457 return V; 3458 } 3459 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3460 // too. If not, then try to deduce the result of the comparison. 3461 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3462 // Compute the constant that would happen if we truncated to SrcTy then 3463 // reextended to DstTy. 3464 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3465 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3466 3467 // If the re-extended constant didn't change then this is effectively 3468 // also a case of comparing two sign-extended values. 3469 if (RExt == CI && MaxRecurse) 3470 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3471 return V; 3472 3473 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3474 // bits there. Use this to work out the result of the comparison. 3475 if (RExt != CI) { 3476 switch (Pred) { 3477 default: llvm_unreachable("Unknown ICmp predicate!"); 3478 case ICmpInst::ICMP_EQ: 3479 return ConstantInt::getFalse(CI->getContext()); 3480 case ICmpInst::ICMP_NE: 3481 return ConstantInt::getTrue(CI->getContext()); 3482 3483 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3484 // LHS >s RHS. 3485 case ICmpInst::ICMP_SGT: 3486 case ICmpInst::ICMP_SGE: 3487 return CI->getValue().isNegative() ? 3488 ConstantInt::getTrue(CI->getContext()) : 3489 ConstantInt::getFalse(CI->getContext()); 3490 case ICmpInst::ICMP_SLT: 3491 case ICmpInst::ICMP_SLE: 3492 return CI->getValue().isNegative() ? 3493 ConstantInt::getFalse(CI->getContext()) : 3494 ConstantInt::getTrue(CI->getContext()); 3495 3496 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3497 // LHS >u RHS. 3498 case ICmpInst::ICMP_UGT: 3499 case ICmpInst::ICMP_UGE: 3500 // Comparison is true iff the LHS <s 0. 3501 if (MaxRecurse) 3502 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3503 Constant::getNullValue(SrcTy), 3504 Q, MaxRecurse-1)) 3505 return V; 3506 break; 3507 case ICmpInst::ICMP_ULT: 3508 case ICmpInst::ICMP_ULE: 3509 // Comparison is true iff the LHS >=s 0. 3510 if (MaxRecurse) 3511 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3512 Constant::getNullValue(SrcTy), 3513 Q, MaxRecurse-1)) 3514 return V; 3515 break; 3516 } 3517 } 3518 } 3519 } 3520 } 3521 3522 // icmp eq|ne X, Y -> false|true if X != Y 3523 if (ICmpInst::isEquality(Pred) && 3524 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3525 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3526 } 3527 3528 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3529 return V; 3530 3531 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3532 return V; 3533 3534 if (Value *V = simplifyICmpWithAbsNabs(Pred, LHS, RHS)) 3535 return V; 3536 3537 // Simplify comparisons of related pointers using a powerful, recursive 3538 // GEP-walk when we have target data available.. 3539 if (LHS->getType()->isPointerTy()) 3540 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3541 Q.IIQ, LHS, RHS)) 3542 return C; 3543 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3544 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3545 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3546 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3547 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3548 Q.DL.getTypeSizeInBits(CRHS->getType())) 3549 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3550 Q.IIQ, CLHS->getPointerOperand(), 3551 CRHS->getPointerOperand())) 3552 return C; 3553 3554 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3555 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3556 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3557 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3558 (ICmpInst::isEquality(Pred) || 3559 (GLHS->isInBounds() && GRHS->isInBounds() && 3560 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3561 // The bases are equal and the indices are constant. Build a constant 3562 // expression GEP with the same indices and a null base pointer to see 3563 // what constant folding can make out of it. 3564 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3565 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3566 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3567 GLHS->getSourceElementType(), Null, IndicesLHS); 3568 3569 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3570 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3571 GLHS->getSourceElementType(), Null, IndicesRHS); 3572 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3573 } 3574 } 3575 } 3576 3577 // If the comparison is with the result of a select instruction, check whether 3578 // comparing with either branch of the select always yields the same value. 3579 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3580 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3581 return V; 3582 3583 // If the comparison is with the result of a phi instruction, check whether 3584 // doing the compare with each incoming phi value yields a common result. 3585 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3586 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3587 return V; 3588 3589 return nullptr; 3590 } 3591 3592 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3593 const SimplifyQuery &Q) { 3594 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3595 } 3596 3597 /// Given operands for an FCmpInst, see if we can fold the result. 3598 /// If not, this returns null. 3599 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3600 FastMathFlags FMF, const SimplifyQuery &Q, 3601 unsigned MaxRecurse) { 3602 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3603 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3604 3605 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3606 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3607 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3608 3609 // If we have a constant, make sure it is on the RHS. 3610 std::swap(LHS, RHS); 3611 Pred = CmpInst::getSwappedPredicate(Pred); 3612 } 3613 3614 // Fold trivial predicates. 3615 Type *RetTy = GetCompareTy(LHS); 3616 if (Pred == FCmpInst::FCMP_FALSE) 3617 return getFalse(RetTy); 3618 if (Pred == FCmpInst::FCMP_TRUE) 3619 return getTrue(RetTy); 3620 3621 // Fold (un)ordered comparison if we can determine there are no NaNs. 3622 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3623 if (FMF.noNaNs() || 3624 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3625 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3626 3627 // NaN is unordered; NaN is not ordered. 3628 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3629 "Comparison must be either ordered or unordered"); 3630 if (match(RHS, m_NaN())) 3631 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3632 3633 // fcmp pred x, undef and fcmp pred undef, x 3634 // fold to true if unordered, false if ordered 3635 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3636 // Choosing NaN for the undef will always make unordered comparison succeed 3637 // and ordered comparison fail. 3638 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3639 } 3640 3641 // fcmp x,x -> true/false. Not all compares are foldable. 3642 if (LHS == RHS) { 3643 if (CmpInst::isTrueWhenEqual(Pred)) 3644 return getTrue(RetTy); 3645 if (CmpInst::isFalseWhenEqual(Pred)) 3646 return getFalse(RetTy); 3647 } 3648 3649 // Handle fcmp with constant RHS. 3650 const APFloat *C; 3651 if (match(RHS, m_APFloat(C))) { 3652 // Check whether the constant is an infinity. 3653 if (C->isInfinity()) { 3654 if (C->isNegative()) { 3655 switch (Pred) { 3656 case FCmpInst::FCMP_OLT: 3657 // No value is ordered and less than negative infinity. 3658 return getFalse(RetTy); 3659 case FCmpInst::FCMP_UGE: 3660 // All values are unordered with or at least negative infinity. 3661 return getTrue(RetTy); 3662 default: 3663 break; 3664 } 3665 } else { 3666 switch (Pred) { 3667 case FCmpInst::FCMP_OGT: 3668 // No value is ordered and greater than infinity. 3669 return getFalse(RetTy); 3670 case FCmpInst::FCMP_ULE: 3671 // All values are unordered with and at most infinity. 3672 return getTrue(RetTy); 3673 default: 3674 break; 3675 } 3676 } 3677 } 3678 if (C->isZero()) { 3679 switch (Pred) { 3680 case FCmpInst::FCMP_OGE: 3681 if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3682 return getTrue(RetTy); 3683 break; 3684 case FCmpInst::FCMP_UGE: 3685 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3686 return getTrue(RetTy); 3687 break; 3688 case FCmpInst::FCMP_ULT: 3689 if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3690 return getFalse(RetTy); 3691 break; 3692 case FCmpInst::FCMP_OLT: 3693 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3694 return getFalse(RetTy); 3695 break; 3696 default: 3697 break; 3698 } 3699 } else if (C->isNegative()) { 3700 assert(!C->isNaN() && "Unexpected NaN constant!"); 3701 // TODO: We can catch more cases by using a range check rather than 3702 // relying on CannotBeOrderedLessThanZero. 3703 switch (Pred) { 3704 case FCmpInst::FCMP_UGE: 3705 case FCmpInst::FCMP_UGT: 3706 case FCmpInst::FCMP_UNE: 3707 // (X >= 0) implies (X > C) when (C < 0) 3708 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3709 return getTrue(RetTy); 3710 break; 3711 case FCmpInst::FCMP_OEQ: 3712 case FCmpInst::FCMP_OLE: 3713 case FCmpInst::FCMP_OLT: 3714 // (X >= 0) implies !(X < C) when (C < 0) 3715 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3716 return getFalse(RetTy); 3717 break; 3718 default: 3719 break; 3720 } 3721 } 3722 } 3723 3724 // If the comparison is with the result of a select instruction, check whether 3725 // comparing with either branch of the select always yields the same value. 3726 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3727 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3728 return V; 3729 3730 // If the comparison is with the result of a phi instruction, check whether 3731 // doing the compare with each incoming phi value yields a common result. 3732 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3733 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3734 return V; 3735 3736 return nullptr; 3737 } 3738 3739 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3740 FastMathFlags FMF, const SimplifyQuery &Q) { 3741 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3742 } 3743 3744 /// See if V simplifies when its operand Op is replaced with RepOp. 3745 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3746 const SimplifyQuery &Q, 3747 unsigned MaxRecurse) { 3748 // Trivial replacement. 3749 if (V == Op) 3750 return RepOp; 3751 3752 // We cannot replace a constant, and shouldn't even try. 3753 if (isa<Constant>(Op)) 3754 return nullptr; 3755 3756 auto *I = dyn_cast<Instruction>(V); 3757 if (!I) 3758 return nullptr; 3759 3760 // If this is a binary operator, try to simplify it with the replaced op. 3761 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3762 // Consider: 3763 // %cmp = icmp eq i32 %x, 2147483647 3764 // %add = add nsw i32 %x, 1 3765 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3766 // 3767 // We can't replace %sel with %add unless we strip away the flags. 3768 if (isa<OverflowingBinaryOperator>(B)) 3769 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B)) 3770 return nullptr; 3771 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B)) 3772 return nullptr; 3773 3774 if (MaxRecurse) { 3775 if (B->getOperand(0) == Op) 3776 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3777 MaxRecurse - 1); 3778 if (B->getOperand(1) == Op) 3779 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3780 MaxRecurse - 1); 3781 } 3782 } 3783 3784 // Same for CmpInsts. 3785 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3786 if (MaxRecurse) { 3787 if (C->getOperand(0) == Op) 3788 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3789 MaxRecurse - 1); 3790 if (C->getOperand(1) == Op) 3791 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3792 MaxRecurse - 1); 3793 } 3794 } 3795 3796 // Same for GEPs. 3797 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3798 if (MaxRecurse) { 3799 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3800 transform(GEP->operands(), NewOps.begin(), 3801 [&](Value *V) { return V == Op ? RepOp : V; }); 3802 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, 3803 MaxRecurse - 1); 3804 } 3805 } 3806 3807 // TODO: We could hand off more cases to instsimplify here. 3808 3809 // If all operands are constant after substituting Op for RepOp then we can 3810 // constant fold the instruction. 3811 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3812 // Build a list of all constant operands. 3813 SmallVector<Constant *, 8> ConstOps; 3814 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3815 if (I->getOperand(i) == Op) 3816 ConstOps.push_back(CRepOp); 3817 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3818 ConstOps.push_back(COp); 3819 else 3820 break; 3821 } 3822 3823 // All operands were constants, fold it. 3824 if (ConstOps.size() == I->getNumOperands()) { 3825 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3826 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3827 ConstOps[1], Q.DL, Q.TLI); 3828 3829 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3830 if (!LI->isVolatile()) 3831 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3832 3833 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3834 } 3835 } 3836 3837 return nullptr; 3838 } 3839 3840 /// Try to simplify a select instruction when its condition operand is an 3841 /// integer comparison where one operand of the compare is a constant. 3842 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3843 const APInt *Y, bool TrueWhenUnset) { 3844 const APInt *C; 3845 3846 // (X & Y) == 0 ? X & ~Y : X --> X 3847 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3848 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3849 *Y == ~*C) 3850 return TrueWhenUnset ? FalseVal : TrueVal; 3851 3852 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3853 // (X & Y) != 0 ? X : X & ~Y --> X 3854 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3855 *Y == ~*C) 3856 return TrueWhenUnset ? FalseVal : TrueVal; 3857 3858 if (Y->isPowerOf2()) { 3859 // (X & Y) == 0 ? X | Y : X --> X | Y 3860 // (X & Y) != 0 ? X | Y : X --> X 3861 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3862 *Y == *C) 3863 return TrueWhenUnset ? TrueVal : FalseVal; 3864 3865 // (X & Y) == 0 ? X : X | Y --> X 3866 // (X & Y) != 0 ? X : X | Y --> X | Y 3867 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3868 *Y == *C) 3869 return TrueWhenUnset ? TrueVal : FalseVal; 3870 } 3871 3872 return nullptr; 3873 } 3874 3875 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3876 /// eq/ne. 3877 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3878 ICmpInst::Predicate Pred, 3879 Value *TrueVal, Value *FalseVal) { 3880 Value *X; 3881 APInt Mask; 3882 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3883 return nullptr; 3884 3885 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3886 Pred == ICmpInst::ICMP_EQ); 3887 } 3888 3889 /// Try to simplify a select instruction when its condition operand is an 3890 /// integer comparison. 3891 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3892 Value *FalseVal, const SimplifyQuery &Q, 3893 unsigned MaxRecurse) { 3894 ICmpInst::Predicate Pred; 3895 Value *CmpLHS, *CmpRHS; 3896 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3897 return nullptr; 3898 3899 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3900 Value *X; 3901 const APInt *Y; 3902 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3903 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3904 Pred == ICmpInst::ICMP_EQ)) 3905 return V; 3906 3907 // Test for zero-shift-guard-ops around funnel shifts. These are used to 3908 // avoid UB from oversized shifts in raw IR rotate patterns, but the 3909 // intrinsics do not have that problem. 3910 Value *ShAmt; 3911 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), 3912 m_Value(ShAmt)), 3913 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), 3914 m_Value(ShAmt))); 3915 // (ShAmt != 0) ? fshl(X, *, ShAmt) : X --> fshl(X, *, ShAmt) 3916 // (ShAmt != 0) ? fshr(*, X, ShAmt) : X --> fshr(*, X, ShAmt) 3917 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 3918 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 3919 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 3920 return Pred == ICmpInst::ICMP_NE ? TrueVal : X; 3921 3922 // (ShAmt == 0) ? X : fshl(X, *, ShAmt) --> fshl(X, *, ShAmt) 3923 // (ShAmt == 0) ? X : fshr(*, X, ShAmt) --> fshr(*, X, ShAmt) 3924 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X 3925 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X 3926 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt) 3927 return Pred == ICmpInst::ICMP_EQ ? FalseVal : X; 3928 } 3929 3930 // Check for other compares that behave like bit test. 3931 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3932 TrueVal, FalseVal)) 3933 return V; 3934 3935 // If we have an equality comparison, then we know the value in one of the 3936 // arms of the select. See if substituting this value into the arm and 3937 // simplifying the result yields the same value as the other arm. 3938 if (Pred == ICmpInst::ICMP_EQ) { 3939 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3940 TrueVal || 3941 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3942 TrueVal) 3943 return FalseVal; 3944 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3945 FalseVal || 3946 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3947 FalseVal) 3948 return FalseVal; 3949 } else if (Pred == ICmpInst::ICMP_NE) { 3950 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3951 FalseVal || 3952 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3953 FalseVal) 3954 return TrueVal; 3955 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3956 TrueVal || 3957 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3958 TrueVal) 3959 return TrueVal; 3960 } 3961 3962 return nullptr; 3963 } 3964 3965 /// Try to simplify a select instruction when its condition operand is a 3966 /// floating-point comparison. 3967 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) { 3968 FCmpInst::Predicate Pred; 3969 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 3970 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 3971 return nullptr; 3972 3973 // TODO: The transform may not be valid with -0.0. An incomplete way of 3974 // testing for that possibility is to check if at least one operand is a 3975 // non-zero constant. 3976 const APFloat *C; 3977 if ((match(T, m_APFloat(C)) && C->isNonZero()) || 3978 (match(F, m_APFloat(C)) && C->isNonZero())) { 3979 // (T == F) ? T : F --> F 3980 // (F == T) ? T : F --> F 3981 if (Pred == FCmpInst::FCMP_OEQ) 3982 return F; 3983 3984 // (T != F) ? T : F --> T 3985 // (F != T) ? T : F --> T 3986 if (Pred == FCmpInst::FCMP_UNE) 3987 return T; 3988 } 3989 3990 return nullptr; 3991 } 3992 3993 /// Given operands for a SelectInst, see if we can fold the result. 3994 /// If not, this returns null. 3995 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3996 const SimplifyQuery &Q, unsigned MaxRecurse) { 3997 if (auto *CondC = dyn_cast<Constant>(Cond)) { 3998 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 3999 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4000 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4001 4002 // select undef, X, Y -> X or Y 4003 if (isa<UndefValue>(CondC)) 4004 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4005 4006 // TODO: Vector constants with undef elements don't simplify. 4007 4008 // select true, X, Y -> X 4009 if (CondC->isAllOnesValue()) 4010 return TrueVal; 4011 // select false, X, Y -> Y 4012 if (CondC->isNullValue()) 4013 return FalseVal; 4014 } 4015 4016 // select ?, X, X -> X 4017 if (TrueVal == FalseVal) 4018 return TrueVal; 4019 4020 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X 4021 return FalseVal; 4022 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X 4023 return TrueVal; 4024 4025 if (Value *V = 4026 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4027 return V; 4028 4029 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal)) 4030 return V; 4031 4032 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4033 return V; 4034 4035 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4036 if (Imp) 4037 return *Imp ? TrueVal : FalseVal; 4038 4039 return nullptr; 4040 } 4041 4042 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4043 const SimplifyQuery &Q) { 4044 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4045 } 4046 4047 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4048 /// If not, this returns null. 4049 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4050 const SimplifyQuery &Q, unsigned) { 4051 // The type of the GEP pointer operand. 4052 unsigned AS = 4053 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4054 4055 // getelementptr P -> P. 4056 if (Ops.size() == 1) 4057 return Ops[0]; 4058 4059 // Compute the (pointer) type returned by the GEP instruction. 4060 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4061 Type *GEPTy = PointerType::get(LastType, AS); 4062 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 4063 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 4064 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 4065 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 4066 4067 if (isa<UndefValue>(Ops[0])) 4068 return UndefValue::get(GEPTy); 4069 4070 if (Ops.size() == 2) { 4071 // getelementptr P, 0 -> P. 4072 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4073 return Ops[0]; 4074 4075 Type *Ty = SrcTy; 4076 if (Ty->isSized()) { 4077 Value *P; 4078 uint64_t C; 4079 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4080 // getelementptr P, N -> P if P points to a type of zero size. 4081 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4082 return Ops[0]; 4083 4084 // The following transforms are only safe if the ptrtoint cast 4085 // doesn't truncate the pointers. 4086 if (Ops[1]->getType()->getScalarSizeInBits() == 4087 Q.DL.getIndexSizeInBits(AS)) { 4088 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 4089 if (match(P, m_Zero())) 4090 return Constant::getNullValue(GEPTy); 4091 Value *Temp; 4092 if (match(P, m_PtrToInt(m_Value(Temp)))) 4093 if (Temp->getType() == GEPTy) 4094 return Temp; 4095 return nullptr; 4096 }; 4097 4098 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4099 if (TyAllocSize == 1 && 4100 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 4101 if (Value *R = PtrToIntOrZero(P)) 4102 return R; 4103 4104 // getelementptr V, (ashr (sub P, V), C) -> Q 4105 // if P points to a type of size 1 << C. 4106 if (match(Ops[1], 4107 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4108 m_ConstantInt(C))) && 4109 TyAllocSize == 1ULL << C) 4110 if (Value *R = PtrToIntOrZero(P)) 4111 return R; 4112 4113 // getelementptr V, (sdiv (sub P, V), C) -> Q 4114 // if P points to a type of size C. 4115 if (match(Ops[1], 4116 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4117 m_SpecificInt(TyAllocSize)))) 4118 if (Value *R = PtrToIntOrZero(P)) 4119 return R; 4120 } 4121 } 4122 } 4123 4124 if (Q.DL.getTypeAllocSize(LastType) == 1 && 4125 all_of(Ops.slice(1).drop_back(1), 4126 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4127 unsigned IdxWidth = 4128 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4129 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4130 APInt BasePtrOffset(IdxWidth, 0); 4131 Value *StrippedBasePtr = 4132 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4133 BasePtrOffset); 4134 4135 // gep (gep V, C), (sub 0, V) -> C 4136 if (match(Ops.back(), 4137 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 4138 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4139 return ConstantExpr::getIntToPtr(CI, GEPTy); 4140 } 4141 // gep (gep V, C), (xor V, -1) -> C-1 4142 if (match(Ops.back(), 4143 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 4144 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4145 return ConstantExpr::getIntToPtr(CI, GEPTy); 4146 } 4147 } 4148 } 4149 4150 // Check to see if this is constant foldable. 4151 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4152 return nullptr; 4153 4154 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4155 Ops.slice(1)); 4156 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 4157 return CEFolded; 4158 return CE; 4159 } 4160 4161 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4162 const SimplifyQuery &Q) { 4163 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4164 } 4165 4166 /// Given operands for an InsertValueInst, see if we can fold the result. 4167 /// If not, this returns null. 4168 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4169 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4170 unsigned) { 4171 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4172 if (Constant *CVal = dyn_cast<Constant>(Val)) 4173 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4174 4175 // insertvalue x, undef, n -> x 4176 if (match(Val, m_Undef())) 4177 return Agg; 4178 4179 // insertvalue x, (extractvalue y, n), n 4180 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4181 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4182 EV->getIndices() == Idxs) { 4183 // insertvalue undef, (extractvalue y, n), n -> y 4184 if (match(Agg, m_Undef())) 4185 return EV->getAggregateOperand(); 4186 4187 // insertvalue y, (extractvalue y, n), n -> y 4188 if (Agg == EV->getAggregateOperand()) 4189 return Agg; 4190 } 4191 4192 return nullptr; 4193 } 4194 4195 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4196 ArrayRef<unsigned> Idxs, 4197 const SimplifyQuery &Q) { 4198 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4199 } 4200 4201 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4202 const SimplifyQuery &Q) { 4203 // Try to constant fold. 4204 auto *VecC = dyn_cast<Constant>(Vec); 4205 auto *ValC = dyn_cast<Constant>(Val); 4206 auto *IdxC = dyn_cast<Constant>(Idx); 4207 if (VecC && ValC && IdxC) 4208 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 4209 4210 // Fold into undef if index is out of bounds. 4211 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4212 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); 4213 if (CI->uge(NumElements)) 4214 return UndefValue::get(Vec->getType()); 4215 } 4216 4217 // If index is undef, it might be out of bounds (see above case) 4218 if (isa<UndefValue>(Idx)) 4219 return UndefValue::get(Vec->getType()); 4220 4221 return nullptr; 4222 } 4223 4224 /// Given operands for an ExtractValueInst, see if we can fold the result. 4225 /// If not, this returns null. 4226 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4227 const SimplifyQuery &, unsigned) { 4228 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4229 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4230 4231 // extractvalue x, (insertvalue y, elt, n), n -> elt 4232 unsigned NumIdxs = Idxs.size(); 4233 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4234 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4235 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4236 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4237 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4238 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4239 Idxs.slice(0, NumCommonIdxs)) { 4240 if (NumIdxs == NumInsertValueIdxs) 4241 return IVI->getInsertedValueOperand(); 4242 break; 4243 } 4244 } 4245 4246 return nullptr; 4247 } 4248 4249 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4250 const SimplifyQuery &Q) { 4251 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4252 } 4253 4254 /// Given operands for an ExtractElementInst, see if we can fold the result. 4255 /// If not, this returns null. 4256 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 4257 unsigned) { 4258 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4259 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4260 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4261 4262 // The index is not relevant if our vector is a splat. 4263 if (auto *Splat = CVec->getSplatValue()) 4264 return Splat; 4265 4266 if (isa<UndefValue>(Vec)) 4267 return UndefValue::get(Vec->getType()->getVectorElementType()); 4268 } 4269 4270 // If extracting a specified index from the vector, see if we can recursively 4271 // find a previously computed scalar that was inserted into the vector. 4272 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4273 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) 4274 // definitely out of bounds, thus undefined result 4275 return UndefValue::get(Vec->getType()->getVectorElementType()); 4276 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4277 return Elt; 4278 } 4279 4280 // An undef extract index can be arbitrarily chosen to be an out-of-range 4281 // index value, which would result in the instruction being undef. 4282 if (isa<UndefValue>(Idx)) 4283 return UndefValue::get(Vec->getType()->getVectorElementType()); 4284 4285 return nullptr; 4286 } 4287 4288 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4289 const SimplifyQuery &Q) { 4290 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4291 } 4292 4293 /// See if we can fold the given phi. If not, returns null. 4294 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4295 // If all of the PHI's incoming values are the same then replace the PHI node 4296 // with the common value. 4297 Value *CommonValue = nullptr; 4298 bool HasUndefInput = false; 4299 for (Value *Incoming : PN->incoming_values()) { 4300 // If the incoming value is the phi node itself, it can safely be skipped. 4301 if (Incoming == PN) continue; 4302 if (isa<UndefValue>(Incoming)) { 4303 // Remember that we saw an undef value, but otherwise ignore them. 4304 HasUndefInput = true; 4305 continue; 4306 } 4307 if (CommonValue && Incoming != CommonValue) 4308 return nullptr; // Not the same, bail out. 4309 CommonValue = Incoming; 4310 } 4311 4312 // If CommonValue is null then all of the incoming values were either undef or 4313 // equal to the phi node itself. 4314 if (!CommonValue) 4315 return UndefValue::get(PN->getType()); 4316 4317 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4318 // instruction, we cannot return X as the result of the PHI node unless it 4319 // dominates the PHI block. 4320 if (HasUndefInput) 4321 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4322 4323 return CommonValue; 4324 } 4325 4326 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4327 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4328 if (auto *C = dyn_cast<Constant>(Op)) 4329 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4330 4331 if (auto *CI = dyn_cast<CastInst>(Op)) { 4332 auto *Src = CI->getOperand(0); 4333 Type *SrcTy = Src->getType(); 4334 Type *MidTy = CI->getType(); 4335 Type *DstTy = Ty; 4336 if (Src->getType() == Ty) { 4337 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4338 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4339 Type *SrcIntPtrTy = 4340 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4341 Type *MidIntPtrTy = 4342 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4343 Type *DstIntPtrTy = 4344 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4345 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4346 SrcIntPtrTy, MidIntPtrTy, 4347 DstIntPtrTy) == Instruction::BitCast) 4348 return Src; 4349 } 4350 } 4351 4352 // bitcast x -> x 4353 if (CastOpc == Instruction::BitCast) 4354 if (Op->getType() == Ty) 4355 return Op; 4356 4357 return nullptr; 4358 } 4359 4360 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4361 const SimplifyQuery &Q) { 4362 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4363 } 4364 4365 /// For the given destination element of a shuffle, peek through shuffles to 4366 /// match a root vector source operand that contains that element in the same 4367 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4368 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4369 int MaskVal, Value *RootVec, 4370 unsigned MaxRecurse) { 4371 if (!MaxRecurse--) 4372 return nullptr; 4373 4374 // Bail out if any mask value is undefined. That kind of shuffle may be 4375 // simplified further based on demanded bits or other folds. 4376 if (MaskVal == -1) 4377 return nullptr; 4378 4379 // The mask value chooses which source operand we need to look at next. 4380 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4381 int RootElt = MaskVal; 4382 Value *SourceOp = Op0; 4383 if (MaskVal >= InVecNumElts) { 4384 RootElt = MaskVal - InVecNumElts; 4385 SourceOp = Op1; 4386 } 4387 4388 // If the source operand is a shuffle itself, look through it to find the 4389 // matching root vector. 4390 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4391 return foldIdentityShuffles( 4392 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4393 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4394 } 4395 4396 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4397 // size? 4398 4399 // The source operand is not a shuffle. Initialize the root vector value for 4400 // this shuffle if that has not been done yet. 4401 if (!RootVec) 4402 RootVec = SourceOp; 4403 4404 // Give up as soon as a source operand does not match the existing root value. 4405 if (RootVec != SourceOp) 4406 return nullptr; 4407 4408 // The element must be coming from the same lane in the source vector 4409 // (although it may have crossed lanes in intermediate shuffles). 4410 if (RootElt != DestElt) 4411 return nullptr; 4412 4413 return RootVec; 4414 } 4415 4416 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4417 Type *RetTy, const SimplifyQuery &Q, 4418 unsigned MaxRecurse) { 4419 if (isa<UndefValue>(Mask)) 4420 return UndefValue::get(RetTy); 4421 4422 Type *InVecTy = Op0->getType(); 4423 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4424 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4425 4426 SmallVector<int, 32> Indices; 4427 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4428 assert(MaskNumElts == Indices.size() && 4429 "Size of Indices not same as number of mask elements?"); 4430 4431 // Canonicalization: If mask does not select elements from an input vector, 4432 // replace that input vector with undef. 4433 bool MaskSelects0 = false, MaskSelects1 = false; 4434 for (unsigned i = 0; i != MaskNumElts; ++i) { 4435 if (Indices[i] == -1) 4436 continue; 4437 if ((unsigned)Indices[i] < InVecNumElts) 4438 MaskSelects0 = true; 4439 else 4440 MaskSelects1 = true; 4441 } 4442 if (!MaskSelects0) 4443 Op0 = UndefValue::get(InVecTy); 4444 if (!MaskSelects1) 4445 Op1 = UndefValue::get(InVecTy); 4446 4447 auto *Op0Const = dyn_cast<Constant>(Op0); 4448 auto *Op1Const = dyn_cast<Constant>(Op1); 4449 4450 // If all operands are constant, constant fold the shuffle. 4451 if (Op0Const && Op1Const) 4452 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4453 4454 // Canonicalization: if only one input vector is constant, it shall be the 4455 // second one. 4456 if (Op0Const && !Op1Const) { 4457 std::swap(Op0, Op1); 4458 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4459 } 4460 4461 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4462 // value type is same as the input vectors' type. 4463 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4464 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4465 OpShuf->getMask()->getSplatValue()) 4466 return Op0; 4467 4468 // Don't fold a shuffle with undef mask elements. This may get folded in a 4469 // better way using demanded bits or other analysis. 4470 // TODO: Should we allow this? 4471 if (find(Indices, -1) != Indices.end()) 4472 return nullptr; 4473 4474 // Check if every element of this shuffle can be mapped back to the 4475 // corresponding element of a single root vector. If so, we don't need this 4476 // shuffle. This handles simple identity shuffles as well as chains of 4477 // shuffles that may widen/narrow and/or move elements across lanes and back. 4478 Value *RootVec = nullptr; 4479 for (unsigned i = 0; i != MaskNumElts; ++i) { 4480 // Note that recursion is limited for each vector element, so if any element 4481 // exceeds the limit, this will fail to simplify. 4482 RootVec = 4483 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4484 4485 // We can't replace a widening/narrowing shuffle with one of its operands. 4486 if (!RootVec || RootVec->getType() != RetTy) 4487 return nullptr; 4488 } 4489 return RootVec; 4490 } 4491 4492 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4493 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4494 Type *RetTy, const SimplifyQuery &Q) { 4495 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4496 } 4497 4498 static Constant *propagateNaN(Constant *In) { 4499 // If the input is a vector with undef elements, just return a default NaN. 4500 if (!In->isNaN()) 4501 return ConstantFP::getNaN(In->getType()); 4502 4503 // Propagate the existing NaN constant when possible. 4504 // TODO: Should we quiet a signaling NaN? 4505 return In; 4506 } 4507 4508 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) { 4509 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4510 return ConstantFP::getNaN(Op0->getType()); 4511 4512 if (match(Op0, m_NaN())) 4513 return propagateNaN(cast<Constant>(Op0)); 4514 if (match(Op1, m_NaN())) 4515 return propagateNaN(cast<Constant>(Op1)); 4516 4517 return nullptr; 4518 } 4519 4520 /// Given operands for an FAdd, see if we can fold the result. If not, this 4521 /// returns null. 4522 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4523 const SimplifyQuery &Q, unsigned MaxRecurse) { 4524 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4525 return C; 4526 4527 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4528 return C; 4529 4530 // fadd X, -0 ==> X 4531 if (match(Op1, m_NegZeroFP())) 4532 return Op0; 4533 4534 // fadd X, 0 ==> X, when we know X is not -0 4535 if (match(Op1, m_PosZeroFP()) && 4536 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4537 return Op0; 4538 4539 // With nnan: (+/-0.0 - X) + X --> 0.0 (and commuted variant) 4540 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4541 // Negative zeros are allowed because we always end up with positive zero: 4542 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4543 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4544 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4545 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4546 if (FMF.noNaNs() && (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4547 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))) 4548 return ConstantFP::getNullValue(Op0->getType()); 4549 4550 // (X - Y) + Y --> X 4551 // Y + (X - Y) --> X 4552 Value *X; 4553 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4554 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4555 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4556 return X; 4557 4558 return nullptr; 4559 } 4560 4561 /// Given operands for an FSub, see if we can fold the result. If not, this 4562 /// returns null. 4563 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4564 const SimplifyQuery &Q, unsigned MaxRecurse) { 4565 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4566 return C; 4567 4568 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4569 return C; 4570 4571 // fsub X, +0 ==> X 4572 if (match(Op1, m_PosZeroFP())) 4573 return Op0; 4574 4575 // fsub X, -0 ==> X, when we know X is not -0 4576 if (match(Op1, m_NegZeroFP()) && 4577 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4578 return Op0; 4579 4580 // fsub -0.0, (fsub -0.0, X) ==> X 4581 Value *X; 4582 if (match(Op0, m_NegZeroFP()) && 4583 match(Op1, m_FSub(m_NegZeroFP(), m_Value(X)))) 4584 return X; 4585 4586 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4587 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4588 match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X)))) 4589 return X; 4590 4591 // fsub nnan x, x ==> 0.0 4592 if (FMF.noNaNs() && Op0 == Op1) 4593 return Constant::getNullValue(Op0->getType()); 4594 4595 // Y - (Y - X) --> X 4596 // (X + Y) - Y --> X 4597 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4598 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4599 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4600 return X; 4601 4602 return nullptr; 4603 } 4604 4605 /// Given the operands for an FMul, see if we can fold the result 4606 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4607 const SimplifyQuery &Q, unsigned MaxRecurse) { 4608 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4609 return C; 4610 4611 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4612 return C; 4613 4614 // fmul X, 1.0 ==> X 4615 if (match(Op1, m_FPOne())) 4616 return Op0; 4617 4618 // fmul nnan nsz X, 0 ==> 0 4619 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4620 return ConstantFP::getNullValue(Op0->getType()); 4621 4622 // sqrt(X) * sqrt(X) --> X, if we can: 4623 // 1. Remove the intermediate rounding (reassociate). 4624 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4625 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4626 Value *X; 4627 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4628 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4629 return X; 4630 4631 return nullptr; 4632 } 4633 4634 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4635 const SimplifyQuery &Q) { 4636 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4637 } 4638 4639 4640 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4641 const SimplifyQuery &Q) { 4642 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4643 } 4644 4645 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4646 const SimplifyQuery &Q) { 4647 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4648 } 4649 4650 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4651 const SimplifyQuery &Q, unsigned) { 4652 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4653 return C; 4654 4655 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4656 return C; 4657 4658 // X / 1.0 -> X 4659 if (match(Op1, m_FPOne())) 4660 return Op0; 4661 4662 // 0 / X -> 0 4663 // Requires that NaNs are off (X could be zero) and signed zeroes are 4664 // ignored (X could be positive or negative, so the output sign is unknown). 4665 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4666 return ConstantFP::getNullValue(Op0->getType()); 4667 4668 if (FMF.noNaNs()) { 4669 // X / X -> 1.0 is legal when NaNs are ignored. 4670 // We can ignore infinities because INF/INF is NaN. 4671 if (Op0 == Op1) 4672 return ConstantFP::get(Op0->getType(), 1.0); 4673 4674 // (X * Y) / Y --> X if we can reassociate to the above form. 4675 Value *X; 4676 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4677 return X; 4678 4679 // -X / X -> -1.0 and 4680 // X / -X -> -1.0 are legal when NaNs are ignored. 4681 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4682 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 4683 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 4684 return ConstantFP::get(Op0->getType(), -1.0); 4685 } 4686 4687 return nullptr; 4688 } 4689 4690 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4691 const SimplifyQuery &Q) { 4692 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4693 } 4694 4695 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4696 const SimplifyQuery &Q, unsigned) { 4697 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4698 return C; 4699 4700 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4701 return C; 4702 4703 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4704 // The constant match may include undef elements in a vector, so return a full 4705 // zero constant as the result. 4706 if (FMF.noNaNs()) { 4707 // +0 % X -> 0 4708 if (match(Op0, m_PosZeroFP())) 4709 return ConstantFP::getNullValue(Op0->getType()); 4710 // -0 % X -> -0 4711 if (match(Op0, m_NegZeroFP())) 4712 return ConstantFP::getNegativeZero(Op0->getType()); 4713 } 4714 4715 return nullptr; 4716 } 4717 4718 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4719 const SimplifyQuery &Q) { 4720 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4721 } 4722 4723 //=== Helper functions for higher up the class hierarchy. 4724 4725 /// Given operands for a BinaryOperator, see if we can fold the result. 4726 /// If not, this returns null. 4727 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4728 const SimplifyQuery &Q, unsigned MaxRecurse) { 4729 switch (Opcode) { 4730 case Instruction::Add: 4731 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4732 case Instruction::Sub: 4733 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4734 case Instruction::Mul: 4735 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4736 case Instruction::SDiv: 4737 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4738 case Instruction::UDiv: 4739 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4740 case Instruction::SRem: 4741 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4742 case Instruction::URem: 4743 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4744 case Instruction::Shl: 4745 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4746 case Instruction::LShr: 4747 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4748 case Instruction::AShr: 4749 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4750 case Instruction::And: 4751 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4752 case Instruction::Or: 4753 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4754 case Instruction::Xor: 4755 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4756 case Instruction::FAdd: 4757 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4758 case Instruction::FSub: 4759 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4760 case Instruction::FMul: 4761 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4762 case Instruction::FDiv: 4763 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4764 case Instruction::FRem: 4765 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4766 default: 4767 llvm_unreachable("Unexpected opcode"); 4768 } 4769 } 4770 4771 /// Given operands for a BinaryOperator, see if we can fold the result. 4772 /// If not, this returns null. 4773 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4774 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4775 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4776 const FastMathFlags &FMF, const SimplifyQuery &Q, 4777 unsigned MaxRecurse) { 4778 switch (Opcode) { 4779 case Instruction::FAdd: 4780 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4781 case Instruction::FSub: 4782 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4783 case Instruction::FMul: 4784 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4785 case Instruction::FDiv: 4786 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4787 default: 4788 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4789 } 4790 } 4791 4792 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4793 const SimplifyQuery &Q) { 4794 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4795 } 4796 4797 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4798 FastMathFlags FMF, const SimplifyQuery &Q) { 4799 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4800 } 4801 4802 /// Given operands for a CmpInst, see if we can fold the result. 4803 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4804 const SimplifyQuery &Q, unsigned MaxRecurse) { 4805 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4806 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4807 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4808 } 4809 4810 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4811 const SimplifyQuery &Q) { 4812 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4813 } 4814 4815 static bool IsIdempotent(Intrinsic::ID ID) { 4816 switch (ID) { 4817 default: return false; 4818 4819 // Unary idempotent: f(f(x)) = f(x) 4820 case Intrinsic::fabs: 4821 case Intrinsic::floor: 4822 case Intrinsic::ceil: 4823 case Intrinsic::trunc: 4824 case Intrinsic::rint: 4825 case Intrinsic::nearbyint: 4826 case Intrinsic::round: 4827 case Intrinsic::canonicalize: 4828 return true; 4829 } 4830 } 4831 4832 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4833 const DataLayout &DL) { 4834 GlobalValue *PtrSym; 4835 APInt PtrOffset; 4836 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4837 return nullptr; 4838 4839 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4840 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4841 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4842 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4843 4844 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4845 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4846 return nullptr; 4847 4848 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4849 if (OffsetInt % 4 != 0) 4850 return nullptr; 4851 4852 Constant *C = ConstantExpr::getGetElementPtr( 4853 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4854 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4855 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4856 if (!Loaded) 4857 return nullptr; 4858 4859 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4860 if (!LoadedCE) 4861 return nullptr; 4862 4863 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4864 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4865 if (!LoadedCE) 4866 return nullptr; 4867 } 4868 4869 if (LoadedCE->getOpcode() != Instruction::Sub) 4870 return nullptr; 4871 4872 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4873 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4874 return nullptr; 4875 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4876 4877 Constant *LoadedRHS = LoadedCE->getOperand(1); 4878 GlobalValue *LoadedRHSSym; 4879 APInt LoadedRHSOffset; 4880 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4881 DL) || 4882 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4883 return nullptr; 4884 4885 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4886 } 4887 4888 static bool maskIsAllZeroOrUndef(Value *Mask) { 4889 auto *ConstMask = dyn_cast<Constant>(Mask); 4890 if (!ConstMask) 4891 return false; 4892 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4893 return true; 4894 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4895 ++I) { 4896 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4897 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4898 continue; 4899 return false; 4900 } 4901 return true; 4902 } 4903 4904 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 4905 const SimplifyQuery &Q) { 4906 // Idempotent functions return the same result when called repeatedly. 4907 Intrinsic::ID IID = F->getIntrinsicID(); 4908 if (IsIdempotent(IID)) 4909 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 4910 if (II->getIntrinsicID() == IID) 4911 return II; 4912 4913 Value *X; 4914 switch (IID) { 4915 case Intrinsic::fabs: 4916 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 4917 break; 4918 case Intrinsic::bswap: 4919 // bswap(bswap(x)) -> x 4920 if (match(Op0, m_BSwap(m_Value(X)))) return X; 4921 break; 4922 case Intrinsic::bitreverse: 4923 // bitreverse(bitreverse(x)) -> x 4924 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 4925 break; 4926 case Intrinsic::exp: 4927 // exp(log(x)) -> x 4928 if (Q.CxtI->hasAllowReassoc() && 4929 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 4930 break; 4931 case Intrinsic::exp2: 4932 // exp2(log2(x)) -> x 4933 if (Q.CxtI->hasAllowReassoc() && 4934 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 4935 break; 4936 case Intrinsic::log: 4937 // log(exp(x)) -> x 4938 if (Q.CxtI->hasAllowReassoc() && 4939 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 4940 break; 4941 case Intrinsic::log2: 4942 // log2(exp2(x)) -> x 4943 if (Q.CxtI->hasAllowReassoc() && 4944 match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) return X; 4945 break; 4946 default: 4947 break; 4948 } 4949 4950 return nullptr; 4951 } 4952 4953 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 4954 const SimplifyQuery &Q) { 4955 Intrinsic::ID IID = F->getIntrinsicID(); 4956 Type *ReturnType = F->getReturnType(); 4957 switch (IID) { 4958 case Intrinsic::usub_with_overflow: 4959 case Intrinsic::ssub_with_overflow: 4960 // X - X -> { 0, false } 4961 if (Op0 == Op1) 4962 return Constant::getNullValue(ReturnType); 4963 // X - undef -> undef 4964 // undef - X -> undef 4965 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4966 return UndefValue::get(ReturnType); 4967 break; 4968 case Intrinsic::uadd_with_overflow: 4969 case Intrinsic::sadd_with_overflow: 4970 // X + undef -> undef 4971 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4972 return UndefValue::get(ReturnType); 4973 break; 4974 case Intrinsic::umul_with_overflow: 4975 case Intrinsic::smul_with_overflow: 4976 // 0 * X -> { 0, false } 4977 // X * 0 -> { 0, false } 4978 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 4979 return Constant::getNullValue(ReturnType); 4980 // undef * X -> { 0, false } 4981 // X * undef -> { 0, false } 4982 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 4983 return Constant::getNullValue(ReturnType); 4984 break; 4985 case Intrinsic::uadd_sat: 4986 // sat(MAX + X) -> MAX 4987 // sat(X + MAX) -> MAX 4988 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 4989 return Constant::getAllOnesValue(ReturnType); 4990 LLVM_FALLTHROUGH; 4991 case Intrinsic::sadd_sat: 4992 // sat(X + undef) -> -1 4993 // sat(undef + X) -> -1 4994 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 4995 // For signed: Assume undef is ~X, in which case X + ~X = -1. 4996 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 4997 return Constant::getAllOnesValue(ReturnType); 4998 4999 // X + 0 -> X 5000 if (match(Op1, m_Zero())) 5001 return Op0; 5002 // 0 + X -> X 5003 if (match(Op0, m_Zero())) 5004 return Op1; 5005 break; 5006 case Intrinsic::usub_sat: 5007 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5008 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5009 return Constant::getNullValue(ReturnType); 5010 LLVM_FALLTHROUGH; 5011 case Intrinsic::ssub_sat: 5012 // X - X -> 0, X - undef -> 0, undef - X -> 0 5013 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef())) 5014 return Constant::getNullValue(ReturnType); 5015 // X - 0 -> X 5016 if (match(Op1, m_Zero())) 5017 return Op0; 5018 break; 5019 case Intrinsic::load_relative: 5020 if (auto *C0 = dyn_cast<Constant>(Op0)) 5021 if (auto *C1 = dyn_cast<Constant>(Op1)) 5022 return SimplifyRelativeLoad(C0, C1, Q.DL); 5023 break; 5024 case Intrinsic::powi: 5025 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5026 // powi(x, 0) -> 1.0 5027 if (Power->isZero()) 5028 return ConstantFP::get(Op0->getType(), 1.0); 5029 // powi(x, 1) -> x 5030 if (Power->isOne()) 5031 return Op0; 5032 } 5033 break; 5034 case Intrinsic::maxnum: 5035 case Intrinsic::minnum: 5036 case Intrinsic::maximum: 5037 case Intrinsic::minimum: { 5038 // If the arguments are the same, this is a no-op. 5039 if (Op0 == Op1) return Op0; 5040 5041 // If one argument is undef, return the other argument. 5042 if (match(Op0, m_Undef())) 5043 return Op1; 5044 if (match(Op1, m_Undef())) 5045 return Op0; 5046 5047 // If one argument is NaN, return other or NaN appropriately. 5048 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5049 if (match(Op0, m_NaN())) 5050 return PropagateNaN ? Op0 : Op1; 5051 if (match(Op1, m_NaN())) 5052 return PropagateNaN ? Op1 : Op0; 5053 5054 // Min/max of the same operation with common operand: 5055 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5056 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5057 if (M0->getIntrinsicID() == IID && 5058 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5059 return Op0; 5060 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5061 if (M1->getIntrinsicID() == IID && 5062 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5063 return Op1; 5064 5065 // min(X, -Inf) --> -Inf (and commuted variant) 5066 // max(X, +Inf) --> +Inf (and commuted variant) 5067 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum; 5068 const APFloat *C; 5069 if ((match(Op0, m_APFloat(C)) && C->isInfinity() && 5070 C->isNegative() == UseNegInf) || 5071 (match(Op1, m_APFloat(C)) && C->isInfinity() && 5072 C->isNegative() == UseNegInf)) 5073 return ConstantFP::getInfinity(ReturnType, UseNegInf); 5074 5075 // TODO: minnum(nnan x, inf) -> x 5076 // TODO: minnum(nnan ninf x, flt_max) -> x 5077 // TODO: maxnum(nnan x, -inf) -> x 5078 // TODO: maxnum(nnan ninf x, -flt_max) -> x 5079 break; 5080 } 5081 default: 5082 break; 5083 } 5084 5085 return nullptr; 5086 } 5087 5088 template <typename IterTy> 5089 static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 5090 const SimplifyQuery &Q) { 5091 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5092 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 5093 if (NumOperands == 0) 5094 return nullptr; 5095 5096 Intrinsic::ID IID = F->getIntrinsicID(); 5097 if (NumOperands == 1) 5098 return simplifyUnaryIntrinsic(F, ArgBegin[0], Q); 5099 5100 if (NumOperands == 2) 5101 return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q); 5102 5103 // Handle intrinsics with 3 or more arguments. 5104 switch (IID) { 5105 case Intrinsic::masked_load: { 5106 Value *MaskArg = ArgBegin[2]; 5107 Value *PassthruArg = ArgBegin[3]; 5108 // If the mask is all zeros or undef, the "passthru" argument is the result. 5109 if (maskIsAllZeroOrUndef(MaskArg)) 5110 return PassthruArg; 5111 return nullptr; 5112 } 5113 case Intrinsic::fshl: 5114 case Intrinsic::fshr: { 5115 Value *Op0 = ArgBegin[0], *Op1 = ArgBegin[1], *ShAmtArg = ArgBegin[2]; 5116 5117 // If both operands are undef, the result is undef. 5118 if (match(Op0, m_Undef()) && match(Op1, m_Undef())) 5119 return UndefValue::get(F->getReturnType()); 5120 5121 // If shift amount is undef, assume it is zero. 5122 if (match(ShAmtArg, m_Undef())) 5123 return ArgBegin[IID == Intrinsic::fshl ? 0 : 1]; 5124 5125 const APInt *ShAmtC; 5126 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5127 // If there's effectively no shift, return the 1st arg or 2nd arg. 5128 // TODO: For vectors, we could check each element of a non-splat constant. 5129 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5130 if (ShAmtC->urem(BitWidth).isNullValue()) 5131 return ArgBegin[IID == Intrinsic::fshl ? 0 : 1]; 5132 } 5133 return nullptr; 5134 } 5135 default: 5136 return nullptr; 5137 } 5138 } 5139 5140 template <typename IterTy> 5141 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin, 5142 IterTy ArgEnd, const SimplifyQuery &Q, 5143 unsigned MaxRecurse) { 5144 Type *Ty = V->getType(); 5145 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 5146 Ty = PTy->getElementType(); 5147 FunctionType *FTy = cast<FunctionType>(Ty); 5148 5149 // call undef -> undef 5150 // call null -> undef 5151 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 5152 return UndefValue::get(FTy->getReturnType()); 5153 5154 Function *F = dyn_cast<Function>(V); 5155 if (!F) 5156 return nullptr; 5157 5158 if (F->isIntrinsic()) 5159 if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q)) 5160 return Ret; 5161 5162 if (!canConstantFoldCallTo(CS, F)) 5163 return nullptr; 5164 5165 SmallVector<Constant *, 4> ConstantArgs; 5166 ConstantArgs.reserve(ArgEnd - ArgBegin); 5167 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 5168 Constant *C = dyn_cast<Constant>(*I); 5169 if (!C) 5170 return nullptr; 5171 ConstantArgs.push_back(C); 5172 } 5173 5174 return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI); 5175 } 5176 5177 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 5178 User::op_iterator ArgBegin, User::op_iterator ArgEnd, 5179 const SimplifyQuery &Q) { 5180 return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit); 5181 } 5182 5183 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 5184 ArrayRef<Value *> Args, const SimplifyQuery &Q) { 5185 return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit); 5186 } 5187 5188 Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) { 5189 CallSite CS(const_cast<Instruction*>(ICS.getInstruction())); 5190 return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 5191 Q, RecursionLimit); 5192 } 5193 5194 /// See if we can compute a simplified version of this instruction. 5195 /// If not, this returns null. 5196 5197 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5198 OptimizationRemarkEmitter *ORE) { 5199 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5200 Value *Result; 5201 5202 switch (I->getOpcode()) { 5203 default: 5204 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5205 break; 5206 case Instruction::FAdd: 5207 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5208 I->getFastMathFlags(), Q); 5209 break; 5210 case Instruction::Add: 5211 Result = 5212 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5213 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5214 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5215 break; 5216 case Instruction::FSub: 5217 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5218 I->getFastMathFlags(), Q); 5219 break; 5220 case Instruction::Sub: 5221 Result = 5222 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5223 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5224 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5225 break; 5226 case Instruction::FMul: 5227 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5228 I->getFastMathFlags(), Q); 5229 break; 5230 case Instruction::Mul: 5231 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5232 break; 5233 case Instruction::SDiv: 5234 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5235 break; 5236 case Instruction::UDiv: 5237 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5238 break; 5239 case Instruction::FDiv: 5240 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5241 I->getFastMathFlags(), Q); 5242 break; 5243 case Instruction::SRem: 5244 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5245 break; 5246 case Instruction::URem: 5247 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5248 break; 5249 case Instruction::FRem: 5250 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5251 I->getFastMathFlags(), Q); 5252 break; 5253 case Instruction::Shl: 5254 Result = 5255 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5256 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5257 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5258 break; 5259 case Instruction::LShr: 5260 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5261 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5262 break; 5263 case Instruction::AShr: 5264 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5265 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5266 break; 5267 case Instruction::And: 5268 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5269 break; 5270 case Instruction::Or: 5271 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5272 break; 5273 case Instruction::Xor: 5274 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5275 break; 5276 case Instruction::ICmp: 5277 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5278 I->getOperand(0), I->getOperand(1), Q); 5279 break; 5280 case Instruction::FCmp: 5281 Result = 5282 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5283 I->getOperand(1), I->getFastMathFlags(), Q); 5284 break; 5285 case Instruction::Select: 5286 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5287 I->getOperand(2), Q); 5288 break; 5289 case Instruction::GetElementPtr: { 5290 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 5291 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5292 Ops, Q); 5293 break; 5294 } 5295 case Instruction::InsertValue: { 5296 InsertValueInst *IV = cast<InsertValueInst>(I); 5297 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5298 IV->getInsertedValueOperand(), 5299 IV->getIndices(), Q); 5300 break; 5301 } 5302 case Instruction::InsertElement: { 5303 auto *IE = cast<InsertElementInst>(I); 5304 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5305 IE->getOperand(2), Q); 5306 break; 5307 } 5308 case Instruction::ExtractValue: { 5309 auto *EVI = cast<ExtractValueInst>(I); 5310 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5311 EVI->getIndices(), Q); 5312 break; 5313 } 5314 case Instruction::ExtractElement: { 5315 auto *EEI = cast<ExtractElementInst>(I); 5316 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5317 EEI->getIndexOperand(), Q); 5318 break; 5319 } 5320 case Instruction::ShuffleVector: { 5321 auto *SVI = cast<ShuffleVectorInst>(I); 5322 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5323 SVI->getMask(), SVI->getType(), Q); 5324 break; 5325 } 5326 case Instruction::PHI: 5327 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5328 break; 5329 case Instruction::Call: { 5330 CallSite CS(cast<CallInst>(I)); 5331 Result = SimplifyCall(CS, Q); 5332 break; 5333 } 5334 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5335 #include "llvm/IR/Instruction.def" 5336 #undef HANDLE_CAST_INST 5337 Result = 5338 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5339 break; 5340 case Instruction::Alloca: 5341 // No simplifications for Alloca and it can't be constant folded. 5342 Result = nullptr; 5343 break; 5344 } 5345 5346 // In general, it is possible for computeKnownBits to determine all bits in a 5347 // value even when the operands are not all constants. 5348 if (!Result && I->getType()->isIntOrIntVectorTy()) { 5349 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 5350 if (Known.isConstant()) 5351 Result = ConstantInt::get(I->getType(), Known.getConstant()); 5352 } 5353 5354 /// If called on unreachable code, the above logic may report that the 5355 /// instruction simplified to itself. Make life easier for users by 5356 /// detecting that case here, returning a safe value instead. 5357 return Result == I ? UndefValue::get(I->getType()) : Result; 5358 } 5359 5360 /// Implementation of recursive simplification through an instruction's 5361 /// uses. 5362 /// 5363 /// This is the common implementation of the recursive simplification routines. 5364 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5365 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5366 /// instructions to process and attempt to simplify it using 5367 /// InstructionSimplify. 5368 /// 5369 /// This routine returns 'true' only when *it* simplifies something. The passed 5370 /// in simplified value does not count toward this. 5371 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 5372 const TargetLibraryInfo *TLI, 5373 const DominatorTree *DT, 5374 AssumptionCache *AC) { 5375 bool Simplified = false; 5376 SmallSetVector<Instruction *, 8> Worklist; 5377 const DataLayout &DL = I->getModule()->getDataLayout(); 5378 5379 // If we have an explicit value to collapse to, do that round of the 5380 // simplification loop by hand initially. 5381 if (SimpleV) { 5382 for (User *U : I->users()) 5383 if (U != I) 5384 Worklist.insert(cast<Instruction>(U)); 5385 5386 // Replace the instruction with its simplified value. 5387 I->replaceAllUsesWith(SimpleV); 5388 5389 // Gracefully handle edge cases where the instruction is not wired into any 5390 // parent block. 5391 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5392 !I->mayHaveSideEffects()) 5393 I->eraseFromParent(); 5394 } else { 5395 Worklist.insert(I); 5396 } 5397 5398 // Note that we must test the size on each iteration, the worklist can grow. 5399 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5400 I = Worklist[Idx]; 5401 5402 // See if this instruction simplifies. 5403 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5404 if (!SimpleV) 5405 continue; 5406 5407 Simplified = true; 5408 5409 // Stash away all the uses of the old instruction so we can check them for 5410 // recursive simplifications after a RAUW. This is cheaper than checking all 5411 // uses of To on the recursive step in most cases. 5412 for (User *U : I->users()) 5413 Worklist.insert(cast<Instruction>(U)); 5414 5415 // Replace the instruction with its simplified value. 5416 I->replaceAllUsesWith(SimpleV); 5417 5418 // Gracefully handle edge cases where the instruction is not wired into any 5419 // parent block. 5420 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5421 !I->mayHaveSideEffects()) 5422 I->eraseFromParent(); 5423 } 5424 return Simplified; 5425 } 5426 5427 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5428 const TargetLibraryInfo *TLI, 5429 const DominatorTree *DT, 5430 AssumptionCache *AC) { 5431 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 5432 } 5433 5434 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 5435 const TargetLibraryInfo *TLI, 5436 const DominatorTree *DT, 5437 AssumptionCache *AC) { 5438 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5439 assert(SimpleV && "Must provide a simplified value."); 5440 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 5441 } 5442 5443 namespace llvm { 5444 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5445 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5446 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5447 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5448 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 5449 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5450 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5451 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5452 } 5453 5454 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5455 const DataLayout &DL) { 5456 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5457 } 5458 5459 template <class T, class... TArgs> 5460 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5461 Function &F) { 5462 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5463 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5464 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5465 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5466 } 5467 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5468 Function &); 5469 } 5470