1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This simple pass provides alias and mod/ref information for global values 11 // that do not have their address taken, and keeps track of whether functions 12 // read or write memory (are "pure"). For this simple (but very common) case, 13 // we can provide pretty accurate and useful information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/GlobalsModRef.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 using namespace llvm; 32 33 #define DEBUG_TYPE "globalsmodref-aa" 34 35 STATISTIC(NumNonAddrTakenGlobalVars, 36 "Number of global vars without address taken"); 37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 41 42 // An option to enable unsafe alias results from the GlobalsModRef analysis. 43 // When enabled, GlobalsModRef will provide no-alias results which in extremely 44 // rare cases may not be conservatively correct. In particular, in the face of 45 // transforms which cause assymetry between how effective GetUnderlyingObject 46 // is for two pointers, it may produce incorrect results. 47 // 48 // These unsafe results have been returned by GMR for many years without 49 // causing significant issues in the wild and so we provide a mechanism to 50 // re-enable them for users of LLVM that have a particular performance 51 // sensitivity and no known issues. The option also makes it easy to evaluate 52 // the performance impact of these results. 53 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 54 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 55 56 /// The mod/ref information collected for a particular function. 57 /// 58 /// We collect information about mod/ref behavior of a function here, both in 59 /// general and as pertains to specific globals. We only have this detailed 60 /// information when we know *something* useful about the behavior. If we 61 /// saturate to fully general mod/ref, we remove the info for the function. 62 class GlobalsAAResult::FunctionInfo { 63 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 64 65 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 66 /// should provide this much alignment at least, but this makes it clear we 67 /// specifically rely on this amount of alignment. 68 struct alignas(8) AlignedMap { 69 AlignedMap() {} 70 AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {} 71 GlobalInfoMapType Map; 72 }; 73 74 /// Pointer traits for our aligned map. 75 struct AlignedMapPointerTraits { 76 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 77 static inline AlignedMap *getFromVoidPointer(void *P) { 78 return (AlignedMap *)P; 79 } 80 enum { NumLowBitsAvailable = 3 }; 81 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), 82 "AlignedMap insufficiently aligned to have enough low bits."); 83 }; 84 85 /// The bit that flags that this function may read any global. This is 86 /// chosen to mix together with ModRefInfo bits. 87 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits! 88 /// It overlaps with ModRefInfo::Must bit! 89 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so 90 /// this remains correct, but the Must info is lost. 91 enum { MayReadAnyGlobal = 4 }; 92 93 /// Checks to document the invariants of the bit packing here. 94 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) == 95 0, 96 "ModRef and the MayReadAnyGlobal flag bits overlap."); 97 static_assert(((MayReadAnyGlobal | 98 static_cast<int>(ModRefInfo::MustModRef)) >> 99 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 100 "Insufficient low bits to store our flag and ModRef info."); 101 102 public: 103 FunctionInfo() : Info() {} 104 ~FunctionInfo() { 105 delete Info.getPointer(); 106 } 107 // Spell out the copy ond move constructors and assignment operators to get 108 // deep copy semantics and correct move semantics in the face of the 109 // pointer-int pair. 110 FunctionInfo(const FunctionInfo &Arg) 111 : Info(nullptr, Arg.Info.getInt()) { 112 if (const auto *ArgPtr = Arg.Info.getPointer()) 113 Info.setPointer(new AlignedMap(*ArgPtr)); 114 } 115 FunctionInfo(FunctionInfo &&Arg) 116 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 117 Arg.Info.setPointerAndInt(nullptr, 0); 118 } 119 FunctionInfo &operator=(const FunctionInfo &RHS) { 120 delete Info.getPointer(); 121 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 122 if (const auto *RHSPtr = RHS.Info.getPointer()) 123 Info.setPointer(new AlignedMap(*RHSPtr)); 124 return *this; 125 } 126 FunctionInfo &operator=(FunctionInfo &&RHS) { 127 delete Info.getPointer(); 128 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 129 RHS.Info.setPointerAndInt(nullptr, 0); 130 return *this; 131 } 132 133 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return 134 /// the corresponding ModRefInfo. It must align in functionality with 135 /// clearMust(). 136 ModRefInfo globalClearMayReadAnyGlobal(int I) const { 137 return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) | 138 static_cast<int>(ModRefInfo::NoModRef)); 139 } 140 141 /// Returns the \c ModRefInfo info for this function. 142 ModRefInfo getModRefInfo() const { 143 return globalClearMayReadAnyGlobal(Info.getInt()); 144 } 145 146 /// Adds new \c ModRefInfo for this function to its state. 147 void addModRefInfo(ModRefInfo NewMRI) { 148 Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI))); 149 } 150 151 /// Returns whether this function may read any global variable, and we don't 152 /// know which global. 153 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 154 155 /// Sets this function as potentially reading from any global. 156 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 157 158 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 159 /// global, which may be more precise than the general information above. 160 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 161 ModRefInfo GlobalMRI = 162 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef; 163 if (AlignedMap *P = Info.getPointer()) { 164 auto I = P->Map.find(&GV); 165 if (I != P->Map.end()) 166 GlobalMRI = unionModRef(GlobalMRI, I->second); 167 } 168 return GlobalMRI; 169 } 170 171 /// Add mod/ref info from another function into ours, saturating towards 172 /// ModRef. 173 void addFunctionInfo(const FunctionInfo &FI) { 174 addModRefInfo(FI.getModRefInfo()); 175 176 if (FI.mayReadAnyGlobal()) 177 setMayReadAnyGlobal(); 178 179 if (AlignedMap *P = FI.Info.getPointer()) 180 for (const auto &G : P->Map) 181 addModRefInfoForGlobal(*G.first, G.second); 182 } 183 184 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 185 AlignedMap *P = Info.getPointer(); 186 if (!P) { 187 P = new AlignedMap(); 188 Info.setPointer(P); 189 } 190 auto &GlobalMRI = P->Map[&GV]; 191 GlobalMRI = unionModRef(GlobalMRI, NewMRI); 192 } 193 194 /// Clear a global's ModRef info. Should be used when a global is being 195 /// deleted. 196 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 197 if (AlignedMap *P = Info.getPointer()) 198 P->Map.erase(&GV); 199 } 200 201 private: 202 /// All of the information is encoded into a single pointer, with a three bit 203 /// integer in the low three bits. The high bit provides a flag for when this 204 /// function may read any global. The low two bits are the ModRefInfo. And 205 /// the pointer, when non-null, points to a map from GlobalValue to 206 /// ModRefInfo specific to that GlobalValue. 207 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 208 }; 209 210 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 211 Value *V = getValPtr(); 212 if (auto *F = dyn_cast<Function>(V)) 213 GAR->FunctionInfos.erase(F); 214 215 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 216 if (GAR->NonAddressTakenGlobals.erase(GV)) { 217 // This global might be an indirect global. If so, remove it and 218 // remove any AllocRelatedValues for it. 219 if (GAR->IndirectGlobals.erase(GV)) { 220 // Remove any entries in AllocsForIndirectGlobals for this global. 221 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 222 E = GAR->AllocsForIndirectGlobals.end(); 223 I != E; ++I) 224 if (I->second == GV) 225 GAR->AllocsForIndirectGlobals.erase(I); 226 } 227 228 // Scan the function info we have collected and remove this global 229 // from all of them. 230 for (auto &FIPair : GAR->FunctionInfos) 231 FIPair.second.eraseModRefInfoForGlobal(*GV); 232 } 233 } 234 235 // If this is an allocation related to an indirect global, remove it. 236 GAR->AllocsForIndirectGlobals.erase(V); 237 238 // And clear out the handle. 239 setValPtr(nullptr); 240 GAR->Handles.erase(I); 241 // This object is now destroyed! 242 } 243 244 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { 245 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 246 247 if (FunctionInfo *FI = getFunctionInfo(F)) { 248 if (!isModOrRefSet(FI->getModRefInfo())) 249 Min = FMRB_DoesNotAccessMemory; 250 else if (!isModSet(FI->getModRefInfo())) 251 Min = FMRB_OnlyReadsMemory; 252 } 253 254 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); 255 } 256 257 FunctionModRefBehavior 258 GlobalsAAResult::getModRefBehavior(const CallBase *Call) { 259 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 260 261 if (!Call->hasOperandBundles()) 262 if (const Function *F = Call->getCalledFunction()) 263 if (FunctionInfo *FI = getFunctionInfo(F)) { 264 if (!isModOrRefSet(FI->getModRefInfo())) 265 Min = FMRB_DoesNotAccessMemory; 266 else if (!isModSet(FI->getModRefInfo())) 267 Min = FMRB_OnlyReadsMemory; 268 } 269 270 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min); 271 } 272 273 /// Returns the function info for the function, or null if we don't have 274 /// anything useful to say about it. 275 GlobalsAAResult::FunctionInfo * 276 GlobalsAAResult::getFunctionInfo(const Function *F) { 277 auto I = FunctionInfos.find(F); 278 if (I != FunctionInfos.end()) 279 return &I->second; 280 return nullptr; 281 } 282 283 /// AnalyzeGlobals - Scan through the users of all of the internal 284 /// GlobalValue's in the program. If none of them have their "address taken" 285 /// (really, their address passed to something nontrivial), record this fact, 286 /// and record the functions that they are used directly in. 287 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 288 SmallPtrSet<Function *, 32> TrackedFunctions; 289 for (Function &F : M) 290 if (F.hasLocalLinkage()) 291 if (!AnalyzeUsesOfPointer(&F)) { 292 // Remember that we are tracking this global. 293 NonAddressTakenGlobals.insert(&F); 294 TrackedFunctions.insert(&F); 295 Handles.emplace_front(*this, &F); 296 Handles.front().I = Handles.begin(); 297 ++NumNonAddrTakenFunctions; 298 } 299 300 SmallPtrSet<Function *, 16> Readers, Writers; 301 for (GlobalVariable &GV : M.globals()) 302 if (GV.hasLocalLinkage()) { 303 if (!AnalyzeUsesOfPointer(&GV, &Readers, 304 GV.isConstant() ? nullptr : &Writers)) { 305 // Remember that we are tracking this global, and the mod/ref fns 306 NonAddressTakenGlobals.insert(&GV); 307 Handles.emplace_front(*this, &GV); 308 Handles.front().I = Handles.begin(); 309 310 for (Function *Reader : Readers) { 311 if (TrackedFunctions.insert(Reader).second) { 312 Handles.emplace_front(*this, Reader); 313 Handles.front().I = Handles.begin(); 314 } 315 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref); 316 } 317 318 if (!GV.isConstant()) // No need to keep track of writers to constants 319 for (Function *Writer : Writers) { 320 if (TrackedFunctions.insert(Writer).second) { 321 Handles.emplace_front(*this, Writer); 322 Handles.front().I = Handles.begin(); 323 } 324 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod); 325 } 326 ++NumNonAddrTakenGlobalVars; 327 328 // If this global holds a pointer type, see if it is an indirect global. 329 if (GV.getValueType()->isPointerTy() && 330 AnalyzeIndirectGlobalMemory(&GV)) 331 ++NumIndirectGlobalVars; 332 } 333 Readers.clear(); 334 Writers.clear(); 335 } 336 } 337 338 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 339 /// If this is used by anything complex (i.e., the address escapes), return 340 /// true. Also, while we are at it, keep track of those functions that read and 341 /// write to the value. 342 /// 343 /// If OkayStoreDest is non-null, stores into this global are allowed. 344 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 345 SmallPtrSetImpl<Function *> *Readers, 346 SmallPtrSetImpl<Function *> *Writers, 347 GlobalValue *OkayStoreDest) { 348 if (!V->getType()->isPointerTy()) 349 return true; 350 351 for (Use &U : V->uses()) { 352 User *I = U.getUser(); 353 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 354 if (Readers) 355 Readers->insert(LI->getParent()->getParent()); 356 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 357 if (V == SI->getOperand(1)) { 358 if (Writers) 359 Writers->insert(SI->getParent()->getParent()); 360 } else if (SI->getOperand(1) != OkayStoreDest) { 361 return true; // Storing the pointer 362 } 363 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 364 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 365 return true; 366 } else if (Operator::getOpcode(I) == Instruction::BitCast) { 367 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 368 return true; 369 } else if (auto *Call = dyn_cast<CallBase>(I)) { 370 // Make sure that this is just the function being called, not that it is 371 // passing into the function. 372 if (Call->isDataOperand(&U)) { 373 // Detect calls to free. 374 if (Call->isArgOperand(&U) && isFreeCall(I, &TLI)) { 375 if (Writers) 376 Writers->insert(Call->getParent()->getParent()); 377 } else { 378 return true; // Argument of an unknown call. 379 } 380 } 381 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 382 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 383 return true; // Allow comparison against null. 384 } else if (Constant *C = dyn_cast<Constant>(I)) { 385 // Ignore constants which don't have any live uses. 386 if (isa<GlobalValue>(C) || C->isConstantUsed()) 387 return true; 388 } else { 389 return true; 390 } 391 } 392 393 return false; 394 } 395 396 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 397 /// which holds a pointer type. See if the global always points to non-aliased 398 /// heap memory: that is, all initializers of the globals are allocations, and 399 /// those allocations have no use other than initialization of the global. 400 /// Further, all loads out of GV must directly use the memory, not store the 401 /// pointer somewhere. If this is true, we consider the memory pointed to by 402 /// GV to be owned by GV and can disambiguate other pointers from it. 403 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { 404 // Keep track of values related to the allocation of the memory, f.e. the 405 // value produced by the malloc call and any casts. 406 std::vector<Value *> AllocRelatedValues; 407 408 // If the initializer is a valid pointer, bail. 409 if (Constant *C = GV->getInitializer()) 410 if (!C->isNullValue()) 411 return false; 412 413 // Walk the user list of the global. If we find anything other than a direct 414 // load or store, bail out. 415 for (User *U : GV->users()) { 416 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 417 // The pointer loaded from the global can only be used in simple ways: 418 // we allow addressing of it and loading storing to it. We do *not* allow 419 // storing the loaded pointer somewhere else or passing to a function. 420 if (AnalyzeUsesOfPointer(LI)) 421 return false; // Loaded pointer escapes. 422 // TODO: Could try some IP mod/ref of the loaded pointer. 423 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 424 // Storing the global itself. 425 if (SI->getOperand(0) == GV) 426 return false; 427 428 // If storing the null pointer, ignore it. 429 if (isa<ConstantPointerNull>(SI->getOperand(0))) 430 continue; 431 432 // Check the value being stored. 433 Value *Ptr = GetUnderlyingObject(SI->getOperand(0), 434 GV->getParent()->getDataLayout()); 435 436 if (!isAllocLikeFn(Ptr, &TLI)) 437 return false; // Too hard to analyze. 438 439 // Analyze all uses of the allocation. If any of them are used in a 440 // non-simple way (e.g. stored to another global) bail out. 441 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 442 GV)) 443 return false; // Loaded pointer escapes. 444 445 // Remember that this allocation is related to the indirect global. 446 AllocRelatedValues.push_back(Ptr); 447 } else { 448 // Something complex, bail out. 449 return false; 450 } 451 } 452 453 // Okay, this is an indirect global. Remember all of the allocations for 454 // this global in AllocsForIndirectGlobals. 455 while (!AllocRelatedValues.empty()) { 456 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 457 Handles.emplace_front(*this, AllocRelatedValues.back()); 458 Handles.front().I = Handles.begin(); 459 AllocRelatedValues.pop_back(); 460 } 461 IndirectGlobals.insert(GV); 462 Handles.emplace_front(*this, GV); 463 Handles.front().I = Handles.begin(); 464 return true; 465 } 466 467 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { 468 // We do a bottom-up SCC traversal of the call graph. In other words, we 469 // visit all callees before callers (leaf-first). 470 unsigned SCCID = 0; 471 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 472 const std::vector<CallGraphNode *> &SCC = *I; 473 assert(!SCC.empty() && "SCC with no functions?"); 474 475 for (auto *CGN : SCC) 476 if (Function *F = CGN->getFunction()) 477 FunctionToSCCMap[F] = SCCID; 478 ++SCCID; 479 } 480 } 481 482 /// AnalyzeCallGraph - At this point, we know the functions where globals are 483 /// immediately stored to and read from. Propagate this information up the call 484 /// graph to all callers and compute the mod/ref info for all memory for each 485 /// function. 486 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 487 // We do a bottom-up SCC traversal of the call graph. In other words, we 488 // visit all callees before callers (leaf-first). 489 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 490 const std::vector<CallGraphNode *> &SCC = *I; 491 assert(!SCC.empty() && "SCC with no functions?"); 492 493 Function *F = SCC[0]->getFunction(); 494 495 if (!F || !F->isDefinitionExact()) { 496 // Calls externally or not exact - can't say anything useful. Remove any 497 // existing function records (may have been created when scanning 498 // globals). 499 for (auto *Node : SCC) 500 FunctionInfos.erase(Node->getFunction()); 501 continue; 502 } 503 504 FunctionInfo &FI = FunctionInfos[F]; 505 Handles.emplace_front(*this, F); 506 Handles.front().I = Handles.begin(); 507 bool KnowNothing = false; 508 509 // Collect the mod/ref properties due to called functions. We only compute 510 // one mod-ref set. 511 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 512 if (!F) { 513 KnowNothing = true; 514 break; 515 } 516 517 if (F->isDeclaration() || F->hasFnAttribute(Attribute::OptimizeNone)) { 518 // Try to get mod/ref behaviour from function attributes. 519 if (F->doesNotAccessMemory()) { 520 // Can't do better than that! 521 } else if (F->onlyReadsMemory()) { 522 FI.addModRefInfo(ModRefInfo::Ref); 523 if (!F->isIntrinsic() && !F->onlyAccessesArgMemory()) 524 // This function might call back into the module and read a global - 525 // consider every global as possibly being read by this function. 526 FI.setMayReadAnyGlobal(); 527 } else { 528 FI.addModRefInfo(ModRefInfo::ModRef); 529 // Can't say anything useful unless it's an intrinsic - they don't 530 // read or write global variables of the kind considered here. 531 KnowNothing = !F->isIntrinsic(); 532 } 533 continue; 534 } 535 536 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 537 CI != E && !KnowNothing; ++CI) 538 if (Function *Callee = CI->second->getFunction()) { 539 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 540 // Propagate function effect up. 541 FI.addFunctionInfo(*CalleeFI); 542 } else { 543 // Can't say anything about it. However, if it is inside our SCC, 544 // then nothing needs to be done. 545 CallGraphNode *CalleeNode = CG[Callee]; 546 if (!is_contained(SCC, CalleeNode)) 547 KnowNothing = true; 548 } 549 } else { 550 KnowNothing = true; 551 } 552 } 553 554 // If we can't say anything useful about this SCC, remove all SCC functions 555 // from the FunctionInfos map. 556 if (KnowNothing) { 557 for (auto *Node : SCC) 558 FunctionInfos.erase(Node->getFunction()); 559 continue; 560 } 561 562 // Scan the function bodies for explicit loads or stores. 563 for (auto *Node : SCC) { 564 if (isModAndRefSet(FI.getModRefInfo())) 565 break; // The mod/ref lattice saturates here. 566 567 // Don't prove any properties based on the implementation of an optnone 568 // function. Function attributes were already used as a best approximation 569 // above. 570 if (Node->getFunction()->hasFnAttribute(Attribute::OptimizeNone)) 571 continue; 572 573 for (Instruction &I : instructions(Node->getFunction())) { 574 if (isModAndRefSet(FI.getModRefInfo())) 575 break; // The mod/ref lattice saturates here. 576 577 // We handle calls specially because the graph-relevant aspects are 578 // handled above. 579 if (auto *Call = dyn_cast<CallBase>(&I)) { 580 if (isAllocationFn(Call, &TLI) || isFreeCall(Call, &TLI)) { 581 // FIXME: It is completely unclear why this is necessary and not 582 // handled by the above graph code. 583 FI.addModRefInfo(ModRefInfo::ModRef); 584 } else if (Function *Callee = Call->getCalledFunction()) { 585 // The callgraph doesn't include intrinsic calls. 586 if (Callee->isIntrinsic()) { 587 if (isa<DbgInfoIntrinsic>(Call)) 588 // Don't let dbg intrinsics affect alias info. 589 continue; 590 591 FunctionModRefBehavior Behaviour = 592 AAResultBase::getModRefBehavior(Callee); 593 FI.addModRefInfo(createModRefInfo(Behaviour)); 594 } 595 } 596 continue; 597 } 598 599 // All non-call instructions we use the primary predicates for whether 600 // thay read or write memory. 601 if (I.mayReadFromMemory()) 602 FI.addModRefInfo(ModRefInfo::Ref); 603 if (I.mayWriteToMemory()) 604 FI.addModRefInfo(ModRefInfo::Mod); 605 } 606 } 607 608 if (!isModSet(FI.getModRefInfo())) 609 ++NumReadMemFunctions; 610 if (!isModOrRefSet(FI.getModRefInfo())) 611 ++NumNoMemFunctions; 612 613 // Finally, now that we know the full effect on this SCC, clone the 614 // information to each function in the SCC. 615 // FI is a reference into FunctionInfos, so copy it now so that it doesn't 616 // get invalidated if DenseMap decides to re-hash. 617 FunctionInfo CachedFI = FI; 618 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 619 FunctionInfos[SCC[i]->getFunction()] = CachedFI; 620 } 621 } 622 623 // GV is a non-escaping global. V is a pointer address that has been loaded from. 624 // If we can prove that V must escape, we can conclude that a load from V cannot 625 // alias GV. 626 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, 627 const Value *V, 628 int &Depth, 629 const DataLayout &DL) { 630 SmallPtrSet<const Value *, 8> Visited; 631 SmallVector<const Value *, 8> Inputs; 632 Visited.insert(V); 633 Inputs.push_back(V); 634 do { 635 const Value *Input = Inputs.pop_back_val(); 636 637 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || 638 isa<InvokeInst>(Input)) 639 // Arguments to functions or returns from functions are inherently 640 // escaping, so we can immediately classify those as not aliasing any 641 // non-addr-taken globals. 642 // 643 // (Transitive) loads from a global are also safe - if this aliased 644 // another global, its address would escape, so no alias. 645 continue; 646 647 // Recurse through a limited number of selects, loads and PHIs. This is an 648 // arbitrary depth of 4, lower numbers could be used to fix compile time 649 // issues if needed, but this is generally expected to be only be important 650 // for small depths. 651 if (++Depth > 4) 652 return false; 653 654 if (auto *LI = dyn_cast<LoadInst>(Input)) { 655 Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL)); 656 continue; 657 } 658 if (auto *SI = dyn_cast<SelectInst>(Input)) { 659 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 660 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 661 if (Visited.insert(LHS).second) 662 Inputs.push_back(LHS); 663 if (Visited.insert(RHS).second) 664 Inputs.push_back(RHS); 665 continue; 666 } 667 if (auto *PN = dyn_cast<PHINode>(Input)) { 668 for (const Value *Op : PN->incoming_values()) { 669 Op = GetUnderlyingObject(Op, DL); 670 if (Visited.insert(Op).second) 671 Inputs.push_back(Op); 672 } 673 continue; 674 } 675 676 return false; 677 } while (!Inputs.empty()); 678 679 // All inputs were known to be no-alias. 680 return true; 681 } 682 683 // There are particular cases where we can conclude no-alias between 684 // a non-addr-taken global and some other underlying object. Specifically, 685 // a non-addr-taken global is known to not be escaped from any function. It is 686 // also incorrect for a transformation to introduce an escape of a global in 687 // a way that is observable when it was not there previously. One function 688 // being transformed to introduce an escape which could possibly be observed 689 // (via loading from a global or the return value for example) within another 690 // function is never safe. If the observation is made through non-atomic 691 // operations on different threads, it is a data-race and UB. If the 692 // observation is well defined, by being observed the transformation would have 693 // changed program behavior by introducing the observed escape, making it an 694 // invalid transform. 695 // 696 // This property does require that transformations which *temporarily* escape 697 // a global that was not previously escaped, prior to restoring it, cannot rely 698 // on the results of GMR::alias. This seems a reasonable restriction, although 699 // currently there is no way to enforce it. There is also no realistic 700 // optimization pass that would make this mistake. The closest example is 701 // a transformation pass which does reg2mem of SSA values but stores them into 702 // global variables temporarily before restoring the global variable's value. 703 // This could be useful to expose "benign" races for example. However, it seems 704 // reasonable to require that a pass which introduces escapes of global 705 // variables in this way to either not trust AA results while the escape is 706 // active, or to be forced to operate as a module pass that cannot co-exist 707 // with an alias analysis such as GMR. 708 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 709 const Value *V) { 710 // In order to know that the underlying object cannot alias the 711 // non-addr-taken global, we must know that it would have to be an escape. 712 // Thus if the underlying object is a function argument, a load from 713 // a global, or the return of a function, it cannot alias. We can also 714 // recurse through PHI nodes and select nodes provided all of their inputs 715 // resolve to one of these known-escaping roots. 716 SmallPtrSet<const Value *, 8> Visited; 717 SmallVector<const Value *, 8> Inputs; 718 Visited.insert(V); 719 Inputs.push_back(V); 720 int Depth = 0; 721 do { 722 const Value *Input = Inputs.pop_back_val(); 723 724 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 725 // If one input is the very global we're querying against, then we can't 726 // conclude no-alias. 727 if (InputGV == GV) 728 return false; 729 730 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 731 // FIXME: The condition can be refined, but be conservative for now. 732 auto *GVar = dyn_cast<GlobalVariable>(GV); 733 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 734 if (GVar && InputGVar && 735 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 736 !GVar->isInterposable() && !InputGVar->isInterposable()) { 737 Type *GVType = GVar->getInitializer()->getType(); 738 Type *InputGVType = InputGVar->getInitializer()->getType(); 739 if (GVType->isSized() && InputGVType->isSized() && 740 (DL.getTypeAllocSize(GVType) > 0) && 741 (DL.getTypeAllocSize(InputGVType) > 0)) 742 continue; 743 } 744 745 // Conservatively return false, even though we could be smarter 746 // (e.g. look through GlobalAliases). 747 return false; 748 } 749 750 if (isa<Argument>(Input) || isa<CallInst>(Input) || 751 isa<InvokeInst>(Input)) { 752 // Arguments to functions or returns from functions are inherently 753 // escaping, so we can immediately classify those as not aliasing any 754 // non-addr-taken globals. 755 continue; 756 } 757 758 // Recurse through a limited number of selects, loads and PHIs. This is an 759 // arbitrary depth of 4, lower numbers could be used to fix compile time 760 // issues if needed, but this is generally expected to be only be important 761 // for small depths. 762 if (++Depth > 4) 763 return false; 764 765 if (auto *LI = dyn_cast<LoadInst>(Input)) { 766 // A pointer loaded from a global would have been captured, and we know 767 // that the global is non-escaping, so no alias. 768 const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL); 769 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) 770 // The load does not alias with GV. 771 continue; 772 // Otherwise, a load could come from anywhere, so bail. 773 return false; 774 } 775 if (auto *SI = dyn_cast<SelectInst>(Input)) { 776 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 777 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 778 if (Visited.insert(LHS).second) 779 Inputs.push_back(LHS); 780 if (Visited.insert(RHS).second) 781 Inputs.push_back(RHS); 782 continue; 783 } 784 if (auto *PN = dyn_cast<PHINode>(Input)) { 785 for (const Value *Op : PN->incoming_values()) { 786 Op = GetUnderlyingObject(Op, DL); 787 if (Visited.insert(Op).second) 788 Inputs.push_back(Op); 789 } 790 continue; 791 } 792 793 // FIXME: It would be good to handle other obvious no-alias cases here, but 794 // it isn't clear how to do so reasonbly without building a small version 795 // of BasicAA into this code. We could recurse into AAResultBase::alias 796 // here but that seems likely to go poorly as we're inside the 797 // implementation of such a query. Until then, just conservatievly retun 798 // false. 799 return false; 800 } while (!Inputs.empty()); 801 802 // If all the inputs to V were definitively no-alias, then V is no-alias. 803 return true; 804 } 805 806 /// alias - If one of the pointers is to a global that we are tracking, and the 807 /// other is some random pointer, we know there cannot be an alias, because the 808 /// address of the global isn't taken. 809 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 810 const MemoryLocation &LocB) { 811 // Get the base object these pointers point to. 812 const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL); 813 const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL); 814 815 // If either of the underlying values is a global, they may be non-addr-taken 816 // globals, which we can answer queries about. 817 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 818 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 819 if (GV1 || GV2) { 820 // If the global's address is taken, pretend we don't know it's a pointer to 821 // the global. 822 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 823 GV1 = nullptr; 824 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 825 GV2 = nullptr; 826 827 // If the two pointers are derived from two different non-addr-taken 828 // globals we know these can't alias. 829 if (GV1 && GV2 && GV1 != GV2) 830 return NoAlias; 831 832 // If one is and the other isn't, it isn't strictly safe but we can fake 833 // this result if necessary for performance. This does not appear to be 834 // a common problem in practice. 835 if (EnableUnsafeGlobalsModRefAliasResults) 836 if ((GV1 || GV2) && GV1 != GV2) 837 return NoAlias; 838 839 // Check for a special case where a non-escaping global can be used to 840 // conclude no-alias. 841 if ((GV1 || GV2) && GV1 != GV2) { 842 const GlobalValue *GV = GV1 ? GV1 : GV2; 843 const Value *UV = GV1 ? UV2 : UV1; 844 if (isNonEscapingGlobalNoAlias(GV, UV)) 845 return NoAlias; 846 } 847 848 // Otherwise if they are both derived from the same addr-taken global, we 849 // can't know the two accesses don't overlap. 850 } 851 852 // These pointers may be based on the memory owned by an indirect global. If 853 // so, we may be able to handle this. First check to see if the base pointer 854 // is a direct load from an indirect global. 855 GV1 = GV2 = nullptr; 856 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 857 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 858 if (IndirectGlobals.count(GV)) 859 GV1 = GV; 860 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 861 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 862 if (IndirectGlobals.count(GV)) 863 GV2 = GV; 864 865 // These pointers may also be from an allocation for the indirect global. If 866 // so, also handle them. 867 if (!GV1) 868 GV1 = AllocsForIndirectGlobals.lookup(UV1); 869 if (!GV2) 870 GV2 = AllocsForIndirectGlobals.lookup(UV2); 871 872 // Now that we know whether the two pointers are related to indirect globals, 873 // use this to disambiguate the pointers. If the pointers are based on 874 // different indirect globals they cannot alias. 875 if (GV1 && GV2 && GV1 != GV2) 876 return NoAlias; 877 878 // If one is based on an indirect global and the other isn't, it isn't 879 // strictly safe but we can fake this result if necessary for performance. 880 // This does not appear to be a common problem in practice. 881 if (EnableUnsafeGlobalsModRefAliasResults) 882 if ((GV1 || GV2) && GV1 != GV2) 883 return NoAlias; 884 885 return AAResultBase::alias(LocA, LocB); 886 } 887 888 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call, 889 const GlobalValue *GV) { 890 if (Call->doesNotAccessMemory()) 891 return ModRefInfo::NoModRef; 892 ModRefInfo ConservativeResult = 893 Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef; 894 895 // Iterate through all the arguments to the called function. If any argument 896 // is based on GV, return the conservative result. 897 for (auto &A : Call->args()) { 898 SmallVector<Value*, 4> Objects; 899 GetUnderlyingObjects(A, Objects, DL); 900 901 // All objects must be identified. 902 if (!all_of(Objects, isIdentifiedObject) && 903 // Try ::alias to see if all objects are known not to alias GV. 904 !all_of(Objects, [&](Value *V) { 905 return this->alias(MemoryLocation(V), MemoryLocation(GV)) == NoAlias; 906 })) 907 return ConservativeResult; 908 909 if (is_contained(Objects, GV)) 910 return ConservativeResult; 911 } 912 913 // We identified all objects in the argument list, and none of them were GV. 914 return ModRefInfo::NoModRef; 915 } 916 917 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call, 918 const MemoryLocation &Loc) { 919 ModRefInfo Known = ModRefInfo::ModRef; 920 921 // If we are asking for mod/ref info of a direct call with a pointer to a 922 // global we are tracking, return information if we have it. 923 if (const GlobalValue *GV = 924 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL))) 925 if (GV->hasLocalLinkage()) 926 if (const Function *F = Call->getCalledFunction()) 927 if (NonAddressTakenGlobals.count(GV)) 928 if (const FunctionInfo *FI = getFunctionInfo(F)) 929 Known = unionModRef(FI->getModRefInfoForGlobal(*GV), 930 getModRefInfoForArgument(Call, GV)); 931 932 if (!isModOrRefSet(Known)) 933 return ModRefInfo::NoModRef; // No need to query other mod/ref analyses 934 return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc)); 935 } 936 937 GlobalsAAResult::GlobalsAAResult(const DataLayout &DL, 938 const TargetLibraryInfo &TLI) 939 : AAResultBase(), DL(DL), TLI(TLI) {} 940 941 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 942 : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI), 943 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 944 IndirectGlobals(std::move(Arg.IndirectGlobals)), 945 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 946 FunctionInfos(std::move(Arg.FunctionInfos)), 947 Handles(std::move(Arg.Handles)) { 948 // Update the parent for each DeletionCallbackHandle. 949 for (auto &H : Handles) { 950 assert(H.GAR == &Arg); 951 H.GAR = this; 952 } 953 } 954 955 GlobalsAAResult::~GlobalsAAResult() {} 956 957 /*static*/ GlobalsAAResult 958 GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI, 959 CallGraph &CG) { 960 GlobalsAAResult Result(M.getDataLayout(), TLI); 961 962 // Discover which functions aren't recursive, to feed into AnalyzeGlobals. 963 Result.CollectSCCMembership(CG); 964 965 // Find non-addr taken globals. 966 Result.AnalyzeGlobals(M); 967 968 // Propagate on CG. 969 Result.AnalyzeCallGraph(CG, M); 970 971 return Result; 972 } 973 974 AnalysisKey GlobalsAA::Key; 975 976 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { 977 return GlobalsAAResult::analyzeModule(M, 978 AM.getResult<TargetLibraryAnalysis>(M), 979 AM.getResult<CallGraphAnalysis>(M)); 980 } 981 982 char GlobalsAAWrapperPass::ID = 0; 983 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 984 "Globals Alias Analysis", false, true) 985 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 986 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 987 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 988 "Globals Alias Analysis", false, true) 989 990 ModulePass *llvm::createGlobalsAAWrapperPass() { 991 return new GlobalsAAWrapperPass(); 992 } 993 994 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 995 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 996 } 997 998 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 999 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 1000 M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1001 getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 1002 return false; 1003 } 1004 1005 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 1006 Result.reset(); 1007 return false; 1008 } 1009 1010 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1011 AU.setPreservesAll(); 1012 AU.addRequired<CallGraphWrapperPass>(); 1013 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1014 } 1015