1 //===- DemandedBits.cpp - Determine demanded bits -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a demanded bits analysis. A demanded bit is one that 11 // contributes to a result; bits that are not demanded can be either zero or 12 // one without affecting control or data flow. For example in this sequence: 13 // 14 // %1 = add i32 %x, %y 15 // %2 = trunc i32 %1 to i16 16 // 17 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the 18 // trunc. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Analysis/DemandedBits.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/InstIterator.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PassManager.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/IR/Use.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/KnownBits.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cstdint> 51 52 using namespace llvm; 53 using namespace llvm::PatternMatch; 54 55 #define DEBUG_TYPE "demanded-bits" 56 57 char DemandedBitsWrapperPass::ID = 0; 58 59 INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits", 60 "Demanded bits analysis", false, false) 61 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 63 INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits", 64 "Demanded bits analysis", false, false) 65 66 DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) { 67 initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry()); 68 } 69 70 void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 71 AU.setPreservesCFG(); 72 AU.addRequired<AssumptionCacheTracker>(); 73 AU.addRequired<DominatorTreeWrapperPass>(); 74 AU.setPreservesAll(); 75 } 76 77 void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const { 78 DB->print(OS); 79 } 80 81 static bool isAlwaysLive(Instruction *I) { 82 return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() || 83 I->mayHaveSideEffects(); 84 } 85 86 void DemandedBits::determineLiveOperandBits( 87 const Instruction *UserI, const Value *Val, unsigned OperandNo, 88 const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2, 89 bool &KnownBitsComputed) { 90 unsigned BitWidth = AB.getBitWidth(); 91 92 // We're called once per operand, but for some instructions, we need to 93 // compute known bits of both operands in order to determine the live bits of 94 // either (when both operands are instructions themselves). We don't, 95 // however, want to do this twice, so we cache the result in APInts that live 96 // in the caller. For the two-relevant-operands case, both operand values are 97 // provided here. 98 auto ComputeKnownBits = 99 [&](unsigned BitWidth, const Value *V1, const Value *V2) { 100 if (KnownBitsComputed) 101 return; 102 KnownBitsComputed = true; 103 104 const DataLayout &DL = UserI->getModule()->getDataLayout(); 105 Known = KnownBits(BitWidth); 106 computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT); 107 108 if (V2) { 109 Known2 = KnownBits(BitWidth); 110 computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT); 111 } 112 }; 113 114 switch (UserI->getOpcode()) { 115 default: break; 116 case Instruction::Call: 117 case Instruction::Invoke: 118 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI)) 119 switch (II->getIntrinsicID()) { 120 default: break; 121 case Intrinsic::bswap: 122 // The alive bits of the input are the swapped alive bits of 123 // the output. 124 AB = AOut.byteSwap(); 125 break; 126 case Intrinsic::bitreverse: 127 // The alive bits of the input are the reversed alive bits of 128 // the output. 129 AB = AOut.reverseBits(); 130 break; 131 case Intrinsic::ctlz: 132 if (OperandNo == 0) { 133 // We need some output bits, so we need all bits of the 134 // input to the left of, and including, the leftmost bit 135 // known to be one. 136 ComputeKnownBits(BitWidth, Val, nullptr); 137 AB = APInt::getHighBitsSet(BitWidth, 138 std::min(BitWidth, Known.countMaxLeadingZeros()+1)); 139 } 140 break; 141 case Intrinsic::cttz: 142 if (OperandNo == 0) { 143 // We need some output bits, so we need all bits of the 144 // input to the right of, and including, the rightmost bit 145 // known to be one. 146 ComputeKnownBits(BitWidth, Val, nullptr); 147 AB = APInt::getLowBitsSet(BitWidth, 148 std::min(BitWidth, Known.countMaxTrailingZeros()+1)); 149 } 150 break; 151 case Intrinsic::fshl: 152 case Intrinsic::fshr: { 153 const APInt *SA; 154 if (OperandNo == 2) { 155 // Shift amount is modulo the bitwidth. For powers of two we have 156 // SA % BW == SA & (BW - 1). 157 if (isPowerOf2_32(BitWidth)) 158 AB = BitWidth - 1; 159 } else if (match(II->getOperand(2), m_APInt(SA))) { 160 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 161 // defined, so no need to special-case zero shifts here. 162 uint64_t ShiftAmt = SA->urem(BitWidth); 163 if (II->getIntrinsicID() == Intrinsic::fshr) 164 ShiftAmt = BitWidth - ShiftAmt; 165 166 if (OperandNo == 0) 167 AB = AOut.lshr(ShiftAmt); 168 else if (OperandNo == 1) 169 AB = AOut.shl(BitWidth - ShiftAmt); 170 } 171 break; 172 } 173 } 174 break; 175 case Instruction::Add: 176 case Instruction::Sub: 177 case Instruction::Mul: 178 // Find the highest live output bit. We don't need any more input 179 // bits than that (adds, and thus subtracts, ripple only to the 180 // left). 181 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits()); 182 break; 183 case Instruction::Shl: 184 if (OperandNo == 0) { 185 const APInt *ShiftAmtC; 186 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { 187 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); 188 AB = AOut.lshr(ShiftAmt); 189 190 // If the shift is nuw/nsw, then the high bits are not dead 191 // (because we've promised that they *must* be zero). 192 const ShlOperator *S = cast<ShlOperator>(UserI); 193 if (S->hasNoSignedWrap()) 194 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 195 else if (S->hasNoUnsignedWrap()) 196 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 197 } 198 } 199 break; 200 case Instruction::LShr: 201 if (OperandNo == 0) { 202 const APInt *ShiftAmtC; 203 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { 204 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); 205 AB = AOut.shl(ShiftAmt); 206 207 // If the shift is exact, then the low bits are not dead 208 // (they must be zero). 209 if (cast<LShrOperator>(UserI)->isExact()) 210 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 211 } 212 } 213 break; 214 case Instruction::AShr: 215 if (OperandNo == 0) { 216 const APInt *ShiftAmtC; 217 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { 218 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); 219 AB = AOut.shl(ShiftAmt); 220 // Because the high input bit is replicated into the 221 // high-order bits of the result, if we need any of those 222 // bits, then we must keep the highest input bit. 223 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt)) 224 .getBoolValue()) 225 AB.setSignBit(); 226 227 // If the shift is exact, then the low bits are not dead 228 // (they must be zero). 229 if (cast<AShrOperator>(UserI)->isExact()) 230 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 231 } 232 } 233 break; 234 case Instruction::And: 235 AB = AOut; 236 237 // For bits that are known zero, the corresponding bits in the 238 // other operand are dead (unless they're both zero, in which 239 // case they can't both be dead, so just mark the LHS bits as 240 // dead). 241 ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); 242 if (OperandNo == 0) 243 AB &= ~Known2.Zero; 244 else 245 AB &= ~(Known.Zero & ~Known2.Zero); 246 break; 247 case Instruction::Or: 248 AB = AOut; 249 250 // For bits that are known one, the corresponding bits in the 251 // other operand are dead (unless they're both one, in which 252 // case they can't both be dead, so just mark the LHS bits as 253 // dead). 254 ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); 255 if (OperandNo == 0) 256 AB &= ~Known2.One; 257 else 258 AB &= ~(Known.One & ~Known2.One); 259 break; 260 case Instruction::Xor: 261 case Instruction::PHI: 262 AB = AOut; 263 break; 264 case Instruction::Trunc: 265 AB = AOut.zext(BitWidth); 266 break; 267 case Instruction::ZExt: 268 AB = AOut.trunc(BitWidth); 269 break; 270 case Instruction::SExt: 271 AB = AOut.trunc(BitWidth); 272 // Because the high input bit is replicated into the 273 // high-order bits of the result, if we need any of those 274 // bits, then we must keep the highest input bit. 275 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(), 276 AOut.getBitWidth() - BitWidth)) 277 .getBoolValue()) 278 AB.setSignBit(); 279 break; 280 case Instruction::Select: 281 if (OperandNo != 0) 282 AB = AOut; 283 break; 284 case Instruction::ExtractElement: 285 if (OperandNo == 0) 286 AB = AOut; 287 break; 288 case Instruction::InsertElement: 289 case Instruction::ShuffleVector: 290 if (OperandNo == 0 || OperandNo == 1) 291 AB = AOut; 292 break; 293 } 294 } 295 296 bool DemandedBitsWrapperPass::runOnFunction(Function &F) { 297 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 298 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 299 DB.emplace(F, AC, DT); 300 return false; 301 } 302 303 void DemandedBitsWrapperPass::releaseMemory() { 304 DB.reset(); 305 } 306 307 void DemandedBits::performAnalysis() { 308 if (Analyzed) 309 // Analysis already completed for this function. 310 return; 311 Analyzed = true; 312 313 Visited.clear(); 314 AliveBits.clear(); 315 DeadUses.clear(); 316 317 SmallSetVector<Instruction*, 16> Worklist; 318 319 // Collect the set of "root" instructions that are known live. 320 for (Instruction &I : instructions(F)) { 321 if (!isAlwaysLive(&I)) 322 continue; 323 324 LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n"); 325 // For integer-valued instructions, set up an initial empty set of alive 326 // bits and add the instruction to the work list. For other instructions 327 // add their operands to the work list (for integer values operands, mark 328 // all bits as live). 329 Type *T = I.getType(); 330 if (T->isIntOrIntVectorTy()) { 331 if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second) 332 Worklist.insert(&I); 333 334 continue; 335 } 336 337 // Non-integer-typed instructions... 338 for (Use &OI : I.operands()) { 339 if (Instruction *J = dyn_cast<Instruction>(OI)) { 340 Type *T = J->getType(); 341 if (T->isIntOrIntVectorTy()) 342 AliveBits[J] = APInt::getAllOnesValue(T->getScalarSizeInBits()); 343 Worklist.insert(J); 344 } 345 } 346 // To save memory, we don't add I to the Visited set here. Instead, we 347 // check isAlwaysLive on every instruction when searching for dead 348 // instructions later (we need to check isAlwaysLive for the 349 // integer-typed instructions anyway). 350 } 351 352 // Propagate liveness backwards to operands. 353 while (!Worklist.empty()) { 354 Instruction *UserI = Worklist.pop_back_val(); 355 356 LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI); 357 APInt AOut; 358 if (UserI->getType()->isIntOrIntVectorTy()) { 359 AOut = AliveBits[UserI]; 360 LLVM_DEBUG(dbgs() << " Alive Out: 0x" 361 << Twine::utohexstr(AOut.getLimitedValue())); 362 } 363 LLVM_DEBUG(dbgs() << "\n"); 364 365 if (!UserI->getType()->isIntOrIntVectorTy()) 366 Visited.insert(UserI); 367 368 KnownBits Known, Known2; 369 bool KnownBitsComputed = false; 370 // Compute the set of alive bits for each operand. These are anded into the 371 // existing set, if any, and if that changes the set of alive bits, the 372 // operand is added to the work-list. 373 for (Use &OI : UserI->operands()) { 374 // We also want to detect dead uses of arguments, but will only store 375 // demanded bits for instructions. 376 Instruction *I = dyn_cast<Instruction>(OI); 377 if (!I && !isa<Argument>(OI)) 378 continue; 379 380 Type *T = OI->getType(); 381 if (T->isIntOrIntVectorTy()) { 382 unsigned BitWidth = T->getScalarSizeInBits(); 383 APInt AB = APInt::getAllOnesValue(BitWidth); 384 if (UserI->getType()->isIntOrIntVectorTy() && !AOut && 385 !isAlwaysLive(UserI)) { 386 // If all bits of the output are dead, then all bits of the input 387 // are also dead. 388 AB = APInt(BitWidth, 0); 389 } else { 390 // Bits of each operand that are used to compute alive bits of the 391 // output are alive, all others are dead. 392 determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB, 393 Known, Known2, KnownBitsComputed); 394 395 // Keep track of uses which have no demanded bits. 396 if (AB.isNullValue()) 397 DeadUses.insert(&OI); 398 else 399 DeadUses.erase(&OI); 400 } 401 402 if (I) { 403 // If we've added to the set of alive bits (or the operand has not 404 // been previously visited), then re-queue the operand to be visited 405 // again. 406 APInt ABPrev(BitWidth, 0); 407 auto ABI = AliveBits.find(I); 408 if (ABI != AliveBits.end()) 409 ABPrev = ABI->second; 410 411 APInt ABNew = AB | ABPrev; 412 if (ABNew != ABPrev || ABI == AliveBits.end()) { 413 AliveBits[I] = std::move(ABNew); 414 Worklist.insert(I); 415 } 416 } 417 } else if (I && !Visited.count(I)) { 418 Worklist.insert(I); 419 } 420 } 421 } 422 } 423 424 APInt DemandedBits::getDemandedBits(Instruction *I) { 425 performAnalysis(); 426 427 auto Found = AliveBits.find(I); 428 if (Found != AliveBits.end()) 429 return Found->second; 430 431 const DataLayout &DL = I->getModule()->getDataLayout(); 432 return APInt::getAllOnesValue( 433 DL.getTypeSizeInBits(I->getType()->getScalarType())); 434 } 435 436 bool DemandedBits::isInstructionDead(Instruction *I) { 437 performAnalysis(); 438 439 return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() && 440 !isAlwaysLive(I); 441 } 442 443 bool DemandedBits::isUseDead(Use *U) { 444 // We only track integer uses, everything else is assumed live. 445 if (!(*U)->getType()->isIntOrIntVectorTy()) 446 return false; 447 448 // Uses by always-live instructions are never dead. 449 Instruction *UserI = cast<Instruction>(U->getUser()); 450 if (isAlwaysLive(UserI)) 451 return false; 452 453 performAnalysis(); 454 if (DeadUses.count(U)) 455 return true; 456 457 // If no output bits are demanded, no input bits are demanded and the use 458 // is dead. These uses might not be explicitly present in the DeadUses map. 459 if (UserI->getType()->isIntOrIntVectorTy()) { 460 auto Found = AliveBits.find(UserI); 461 if (Found != AliveBits.end() && Found->second.isNullValue()) 462 return true; 463 } 464 465 return false; 466 } 467 468 void DemandedBits::print(raw_ostream &OS) { 469 performAnalysis(); 470 for (auto &KV : AliveBits) { 471 OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue()) 472 << " for " << *KV.first << '\n'; 473 } 474 } 475 476 FunctionPass *llvm::createDemandedBitsWrapperPass() { 477 return new DemandedBitsWrapperPass(); 478 } 479 480 AnalysisKey DemandedBitsAnalysis::Key; 481 482 DemandedBits DemandedBitsAnalysis::run(Function &F, 483 FunctionAnalysisManager &AM) { 484 auto &AC = AM.getResult<AssumptionAnalysis>(F); 485 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 486 return DemandedBits(F, AC, DT); 487 } 488 489 PreservedAnalyses DemandedBitsPrinterPass::run(Function &F, 490 FunctionAnalysisManager &AM) { 491 AM.getResult<DemandedBitsAnalysis>(F).print(OS); 492 return PreservedAnalyses::all(); 493 } 494